WO2019225284A1 - Planar motor and control method - Google Patents

Planar motor and control method Download PDF

Info

Publication number
WO2019225284A1
WO2019225284A1 PCT/JP2019/017555 JP2019017555W WO2019225284A1 WO 2019225284 A1 WO2019225284 A1 WO 2019225284A1 JP 2019017555 W JP2019017555 W JP 2019017555W WO 2019225284 A1 WO2019225284 A1 WO 2019225284A1
Authority
WO
WIPO (PCT)
Prior art keywords
coils
coil
mover
planar motor
drive circuit
Prior art date
Application number
PCT/JP2019/017555
Other languages
French (fr)
Japanese (ja)
Inventor
若林 俊一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019225284A1 publication Critical patent/WO2019225284A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type

Definitions

  • the present invention relates to a planar motor that moves a mover two-dimensionally along a plane and a method for controlling the planar motor.
  • Patent Document 1 discloses a planar motor in which an enclosing member that cools an armature coil of a stator portion is formed as a module unit.
  • a method using an image is conceivable as a method for detecting the position of the mover in the planar motor.
  • a method for detecting the position of the mover in the planar motor requires a camera for capturing an image as an additional component.
  • the present invention provides a planar motor and a control method that can detect the position of a mover using existing components.
  • the planar motor according to one aspect of the present invention is configured to apply a thrust to the mover having a magnet, a main surface facing the mover, and a matrix arranged along the main surface.
  • a control method is a planar motor control method, wherein the planar motor includes a mover having a magnet, a main surface facing the mover, and a matrix along the main surface. And a stator having a plurality of coils for providing thrust to the mover, and the control method supplies power to a target coil among the plurality of coils. The position of the mover is detected based on an induced current flowing in a coil other than the target coil among the plurality of coils due to the magnetic flux of the magnet.
  • a planar motor capable of simplifying a wiring pattern and a control method are realized.
  • FIG. 1 is a diagram illustrating a schematic configuration of a planar motor system according to an embodiment.
  • FIG. 2 is a cross-sectional view of the planar motor according to the embodiment.
  • FIG. 3 is a diagram showing a specific configuration of the drive circuit.
  • FIG. 4 is a flowchart of the operation of the planar motor according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of driving a coil.
  • FIG. 6 is a flowchart of the position detection operation of the mover.
  • FIG. 7 is a diagram illustrating a specific configuration of a drive circuit according to the second modification.
  • plan view means viewing from a direction perpendicular to the main surface of the stator.
  • N pole of the magnet is described as “N”
  • S pole of the magnet is described as “S”.
  • FIG. 1 is a diagram illustrating a schematic configuration of a planar motor according to an embodiment.
  • FIG. 2 is a cross-sectional view of the planar motor according to the embodiment.
  • a plan view of the mover 20 and the stator 30 is shown.
  • the cover member 31 is not shown in order to show the arrangement of the plurality of coils 33.
  • the drive circuit 40 is not shown.
  • the planar motor 10 includes a mover 20, a stator 30, and a drive circuit 40.
  • the planar motor 10 is a linear motor (in other words, an electromagnetic actuator) that moves the mover 20 two-dimensionally along the main surface 31 a of the stator 30.
  • the flat motor 10 is used, for example, for transporting luggage in a distribution warehouse.
  • each component of the planar motor 10 will be described in detail.
  • the mover 20 is a moving object in the planar motor 10. As shown in FIG. 2, the mover 20 includes a mover main body 21, a permanent magnet 22, and a ball caster 23.
  • the mover body 21 is a substantially rectangular plate-shaped member.
  • the mover main body 21 is made of, for example, a resin material.
  • the mover main body 21 may be formed of a metal material having a relatively low permeability such as aluminum.
  • the permanent magnet 22 is a magnet for the mover 20 to obtain thrust from the stator 30, and is attached to the mover main body 21.
  • the permanent magnet 22 is, for example, a flat cylindrical neodymium magnet.
  • the shape and material of the permanent magnet 22 are not particularly limited.
  • the permanent magnet 22 may be, for example, a ferrite magnet or an alnico magnet.
  • the mover 20 includes a plurality of permanent magnets 22, for example, but may include at least one permanent magnet 22. In FIG. 2, the permanent magnet 22 is embedded in the mover main body 21. However, the permanent magnet 22 may be attached to the upper surface of the mover main body 21 or attached to the lower surface of the mover main body 21. Also good.
  • the permanent magnet 22 is arranged so that the arrangement direction of the S pole and the N pole intersects the main surface 31a, and the S pole is located closer to the main surface 31a than the N pole.
  • the permanent magnet 22 may be arranged such that the N pole is located closer to the main surface 31a than the S pole.
  • the permanent magnet 22 may be arrange
  • the mover 20 may have an electromagnet instead of the permanent magnet 22.
  • the electromagnet is driven by, for example, a dry battery or a storage battery.
  • the electromagnet may be supplied with power from the coil 33 that does not contribute to the movement of the mover 20.
  • mover 20 should just have the permanent magnet 22 or the electromagnet. That is, the needle
  • the ball caster 23 is a moving mechanism for moving the mover main body 21 along the main surface 31a of the stator 30.
  • the ball caster 23 is attached to the lower surface of the mover main body 21 and abuts on the main surface 31 a of the stator 30.
  • the mover 20 may include a moving mechanism other than the ball caster 23 such as a free caster or a wheel.
  • the stator 30 is a structure for moving the mover 20.
  • the stator 30 is a sheet-like member.
  • the stator 30 includes a cover member 31 and a circuit board 32.
  • the cover member 31 is a sheet-like protective member that suppresses wear and the like of the circuit board 32 and smoothes the surface of the stator 30.
  • the cover member 31 covers the entire top surface of the circuit board 32.
  • the cover member 31 has a rectangular shape in plan view, but may be other shapes such as a circle.
  • the upper surface of the cover member 31 is a main surface 31a of the stator 30.
  • the main surface 31 a faces the mover 20.
  • the cover member 31 is formed of an organic material such as melamine resin, urethane resin, or acrylic resin, for example.
  • the cover member 31 may be formed of a silane compound or a metal oxide.
  • Such an organic material, a silane compound, or a metal oxide is suitable for the cover member 31 in terms of wear resistance. If an organic material is employed for the cover member 31, the cover member 31 can be formed by a low-temperature manufacturing process. Further, if an organic material is employed for the cover member 31, it is easy to increase the area of the cover member 31.
  • the circuit board 32 is a thin film-like (in other words, sheet-like) board on which a plurality of coils 33 are formed on the upper surface.
  • the planar view shape of the circuit board 32 is rectangular, but may be other shapes such as a circle.
  • the base material of the circuit board 32 is formed of, for example, a resin material such as glass epoxy.
  • a plurality of coils 33 are formed on the upper surface of the circuit board 32. As shown in FIG. 1, the plurality of coils 33 are spread in a matrix in a plan view.
  • the plurality of coils 33 are coils for applying thrust to the mover 20.
  • the plurality of coils 33 are magnetized when power is supplied by the drive circuit 40.
  • Each of the plurality of coils 33 is a thin pattern coil that is patterned on the upper surface of the circuit board 32.
  • Each of the plurality of coils 33 is a rectangular winding wire whose winding axis extends in a direction perpendicular to the main surface 31a, but may be another winding shape such as a circular winding shape.
  • Each of the plurality of coils 33 may have, for example, a triangular shape or a wound shape along a polygon such as a hexagon.
  • the coil 33 is formed of a metal material such as copper, for example.
  • the coil 33 is formed by etching, for example.
  • the plurality of coils 33 include a first coil and a second coil having a winding direction opposite to that of the first coil.
  • the first coil and the second coil are alternately positioned. That is, the first coil and the second coil are arranged in a checkered flag shape.
  • the arrangement of the first coil and the second coil is not limited to the checkered flag shape.
  • rows composed only of the first coil and rows composed only of the second coil may be alternately arranged.
  • line which consists only of a 2nd coil may be arrange
  • the drive circuit 40 controls the drive of the plurality of coils 33 to move the mover 20 along the main surface 31a. As shown in FIG. 2, for example, when the mover 20 is moved in the movement direction, the drive circuit 40 drives the coil 33 a located at the rear of the movement direction, and between the coil 33 a and the permanent magnet 22. Creates a repulsive force. In addition, the drive circuit 40 may drive the coil 33b located in the front in the moving direction to generate an attractive force between the coil 33b and the permanent magnet 22.
  • the drive circuit 40 is arranged around the plurality of coils 33 on the circuit board 32, for example.
  • the drive circuit 40 is arranged along two sides of a rectangular region in which the plurality of coils 33 arranged in a matrix are formed. That is, the drive circuit 40 is disposed in an L-shaped region.
  • the drive circuit 40 may be arranged so as to surround a rectangular region where the plurality of coils 33 arranged in a matrix are formed. That is, the drive circuit 40 may be disposed in a rectangular annular region.
  • FIG. 3 is a diagram showing a specific configuration of the drive circuit 40.
  • the plurality of coils 33 are arranged in a matrix of 4 rows ⁇ 7 columns.
  • the four rows are distinguished by numbers and are described as row 1 to row 4.
  • the seven columns are distinguished by alphabets and are described as column A to column G.
  • the plurality of coils 33 are distinguished by addresses defined by numbers indicating rows and alphabets indicating columns. For example, the coil 33 belonging to row 1 and belonging to column A is the coil 33 corresponding to address 1-A.
  • the driving circuit 40 shown in FIG. 3 includes first wirings R1 to R4, second wirings CA to CG, a plurality of switching elements (first switching elements s1 to s4 and second switching elements SA to SG), One decoder 41, a second decoder 42, a control unit 43, a DC power supply 44, and a plurality of current sensors 45 are provided.
  • the first wirings R1 to R4 are wirings arranged in the row direction, one for each row.
  • the first wirings R1 to R4 are patterned on a circuit board 32 (not shown in FIG. 3) using a metal material such as copper.
  • Each of the first wirings R1 to R4 is electrically connected to a first coil group belonging to the same row among the plurality of coils 33.
  • the first wiring R1 is electrically connected to the first coil group belonging to the row 1.
  • the first coil group belonging to row 1 is composed of seven coils 33 corresponding to addresses 1-A to 1-G.
  • the second wirings CA to CG are wirings arranged in the column direction, one for each column.
  • the second wirings CA to CG are patterned on a circuit board 32 (not shown in FIG. 3) using a metal material such as copper.
  • Each of the second wirings CA to CG is electrically connected to a second coil group belonging to the same column among the plurality of coils 33.
  • the second wiring CA is electrically connected to the second coil group belonging to the row A.
  • the second coil group belonging to the column A is composed of four coils 33 corresponding to the addresses 1-A to 4-A.
  • each of the plurality of coils 33 arranged in a matrix form has one end electrically connected to the first wiring corresponding to the row to which the coil 33 belongs, and the other end corresponding to the column to which the coil 33 belongs. Electrically connected to the second wiring.
  • the drive circuit 40 has a plurality of switching elements for turning on and off the power supply to the plurality of coils 33.
  • the plurality of switching elements include first switching elements s1 to s4 for turning on and off power supply to the first coil group belonging to the same row among the plurality of coils 33, and the same among the plurality of coils 33.
  • Second switching elements SA to SG for turning on and off the power supply to the second coil group belonging to the column are included.
  • the first switching element s1 is located between the first wiring R1 and the DC power supply 44, and turns on and off the electrical connection between the first wiring R1 and the negative terminal of the DC power supply 44.
  • the second switching element SA is located between the second wiring CA and the DC power supply 44, and turns on and off the electrical connection between the second wiring CA and the positive terminal of the DC power supply 44.
  • Each of the first switching elements s1 to s4 and the second switching elements SA to SG as described above is, for example, an FET (Field Effect Transistor), but may be other switching elements (transistors).
  • the first switching elements s1 to s4 and the second switching elements SA to SG may be arranged on the circuit board 32 or may be arranged outside the circuit board 32.
  • each of the first switching elements s1 to s4 and the second switching elements SA to SG is a thin film transistor (TFT). : Thin Film Transistor).
  • the circuit board 32 is a thin film substrate including a plurality of coils 33 and a plurality of switching elements (thin film transistors).
  • the first decoder 41 turns on the first switching element corresponding to the row address notified from the control unit 43.
  • the first decoder 41 is electrically connected to control terminals (that is, gates) of the first switching elements s1 to s4.
  • the first decoder 41 is realized by a circuit, for example, but may include a processor or a microcomputer. In other words, the first decoder 41 is a first current driver.
  • the second decoder 42 turns on the second switching element corresponding to the column address notified from the control unit 43.
  • the second decoder 42 is electrically connected to control terminals (that is, gates) of the second switching elements SA to SG.
  • the second decoder 42 is realized by a circuit, for example, but may include a processor or a microcomputer. In other words, the second decoder 42 is a second current driver.
  • the control unit 43 is a control device that notifies the first decoder 41 and the second decoder 42 of an address.
  • the control unit 43 is realized by, for example, a microcomputer, but may be realized by a processor or a circuit.
  • the control unit 43 may be realized by a combination of two or more of a microcomputer, a processor, and a circuit.
  • the DC power supply 44 may include a current limiting circuit and the like, and may be configured to change the current value supplied to the coil 33 based on the control of the control unit 43. That is, the magnetic flux density generated by the coil 33 may be changeable.
  • the current may be analog-controlled or PWM (Pulse Width Modulation) controlled.
  • the plurality of current sensors 45 correspond to the first wirings R1 to R4 and the second wirings CA to CG on a one-to-one basis, and detect currents flowing through the corresponding wirings.
  • the plurality of current sensors 45 are used for detecting the position of the mover 20.
  • Each of the current sensors 45 is, for example, a current measurement circuit (that is, an ammeter) incorporated in the drive circuit 40, but may be a non-contact type current sensor.
  • the planar motor 10 does not employ a method of switching the magnetic poles (N pole and S pole) of the coil 33 by controlling the direction of the current flowing in one coil 33.
  • the direction of the current flowing through each of the plurality of coils 33 is constant.
  • the plurality of coils 33 include two types of first and second coils having different winding directions. One of the first coil and the second coil is N on the mover 20 side. The other of the first coil and the second coil functions as an S-pole electromagnet on the movable element 20 side.
  • the planar motor 10 has, for example, two coils that function as N poles included in one unit when the four coils 33 are used as one unit and the one unit functions as an N pole electromagnet. Current in a time-sharing manner. Similarly, when the one unit functions as an S-pole electromagnet, a current is passed through the two coils functioning as the S-pole included in the one unit in a time-sharing manner.
  • FIG. 4 is a flowchart of the operation of such a planar motor 10.
  • the control unit 43 repeats the control to turn on the plurality of first switching elements s1 to s4 one by one in a predetermined cycle (S11). Specifically, the control unit 43 notifies the first decoder 41 of the row address, thereby turning on only the first switching element s1 among the plurality of first switching elements s1 to s4 via the first decoder 41. . Thereafter, the first switching element s1 is turned off and only the first switching element s2 is turned on. Subsequently, similarly, only the first switching element s3 is turned on, only the first switching element s4 is turned on, only the first switching element s1 is turned on, and so on. In addition, the control to turn on in a predetermined order is periodically repeated. The predetermined order is not limited to the order of s1, s2, s3, and s4, and may be any order. Such control is also described as scan control.
  • the control unit 43 performs scan control on the first switching elements s1 to s4, while the first switching element corresponding to the driving target coil 33 is in a period in which the first switching element corresponding to the driving target coil 33 is on.
  • the two switching elements are turned on (S12).
  • Control for turning on the second switching element corresponding to the coil 33 to be driven is also referred to as address control.
  • the control unit 43 notifies the column address of the driving target coil 33 to the second decoder 42, thereby turning on the second switching element corresponding to the driving target coil 33 via the second decoder 42. To do. For example, as shown in FIG.
  • FIG. 5 is a diagram illustrating an example of driving the coil 33.
  • a current flows through the coil 33 at address 2-E, and the coil 33 functions as an S-pole electromagnet, for example.
  • the coil to be driven is, in other words, a coil that is a target of power supply of the DC power supply 44, and in the following embodiments, it is also simply referred to as a target coil.
  • the drive circuit 40 can passively drive the plurality of coils 33.
  • FIG. 6 is a flowchart of the position detection operation of the mover 20.
  • the controller 43 supplies power to the drive target coil 33 (for example, the coil 33 corresponding to the address 2-E) among the plurality of coils 33 (S21).
  • the position of the mover 20 is detected based on the induced current flowing in the coil 33 due to the permanent magnet 22 (S22). That is, the control unit 43 detects the position of the mover 20 based on the induced current flowing in the coil 33 that is not supplied with power from the DC power supply 44 (hereinafter also referred to as the empty coil 33).
  • control unit 43 uses the plurality of current sensors 45 to identify the first wiring and the second wiring in which a change in current has occurred due to the induced current.
  • the control unit 43 can detect that the mover 20 is positioned in the vicinity of the coil 33 connected to the identified first wiring and second wiring.
  • a coil group 34 (shown in FIG. 5) composed of four adjacent coils 33 arranged in a 2 ⁇ 2 matrix as one unit. It is done.
  • the coil group 34 includes two first coils and two second coils.
  • the first coil is, for example, a coil 33 that functions as an S-pole electromagnet
  • the second coil is, for example, a coil 33 that functions as an N-pole electromagnet.
  • the control unit 43 permanently sets at least one of the two second coils.
  • the position of the mover 20 is detected based on the induced current that flows due to the magnet 22.
  • the control unit 43 determines the next drive target coil 33 based on the detected position of the mover 20.
  • a change in current due to an induced current is sequentially generated in some of the plurality of coils 33.
  • the controller 43 determines the next drive target coil 33 by monitoring the order of the coils 33 in which a change in current has occurred due to the induced current.
  • the next coil 33 to be driven is, for example, a coil 33 positioned in front of the moving direction or a coil 33 positioned rearward in the moving direction.
  • the induced current is generated even when the switching element included in the drive circuit 40 is off.
  • the induced current flows through a protection diode inserted between the source and drain of the switching element (for example, FET).
  • the first switching elements s1 to s4 are the targets of scan control
  • the second switching elements SA to SG are the targets of address control.
  • the first switching elements s1 to s4 may be subject to address control
  • the second switching elements SA to SG may be subject to scan control. That is, the control unit 43 may set one of the first switching elements s1 to s4 and the second switching elements SA to SG as a target for scan control.
  • switching elements are turned on one by one in principle. However, turning on some of the switching elements may be skipped under certain conditions, or the switching elements may be turned on randomly ignoring the order.
  • the method of including the coil 33 functioning as the S pole electromagnet and the coil 33 functioning as the N pole electromagnet in the plurality of coils 33 is not limited to the method of making the winding direction different.
  • the coils 33 functioning as S-pole electromagnets are made to the plurality of coils 33, And the coil 33 which functions as an electromagnet of N pole can be included.
  • the plurality of coils 33 include the coil 33 that functions as an S-pole electromagnet and the coil 33 that functions as an N-pole electromagnet.
  • the plurality of coils 33 may be coils 33 that function as S-pole electromagnets.
  • the plurality of coils 33 may be coils 33 that function as N-pole electromagnets.
  • the drive circuit used for the planar motor 10 is not limited to the passive matrix drive type drive circuit 40.
  • a drive circuit that can drive each of the plurality of coils 33 completely independently may be used.
  • FIG. 7 is a diagram showing a specific configuration of the drive circuit according to the second modification.
  • the 7 includes a control unit 43a and a plurality of unit circuits 47.
  • the plurality of unit circuits 47 correspond to the plurality of coils 33 on a one-to-one basis.
  • Each of the plurality of unit circuits 47 includes a switching element S, a first polarity DC power supply 44p, a second polarity DC power supply 44n, and a current sensor 45.
  • the control unit 43a controls the switching element S so that (a) power is not supplied to each of the plurality of coils 33, (b) first polarity (for example, positive polarity). And (c) a DC voltage having a second polarity (for example, negative polarity) opposite to the first polarity can be supplied. Moreover, the control part 43a can detect the change of the electric current by the induced current which arises in the coil 33 by making the switching element S into an open state.
  • the unit circuit 47 includes two types of DC power supplies, and the unit circuit 47 only needs to include at least one type of DC power supply.
  • the unit circuit 47 has only one type of DC power supply. May be included.
  • the planar motor 10 includes the mover 20 having the permanent magnet 22, the main surface 31a facing the mover 20, and the mover 20 arranged in a matrix along the main surface 31a.
  • the other coils other than the target coil 33 among the plurality of coils 33 The coil 33 includes a control unit 43 that detects the position of the mover 20 based on the induced current that flows due to the magnetic flux of the permanent magnet 22.
  • the permanent magnet 22 is an example of a magnet.
  • Such a planar motor 10 can detect the position of the mover 20 by using the empty coil 33 to which power is not supplied among the plurality of coils 33 for applying thrust to the mover 20. That is, the planar motor 10 can detect the position of the mover 20 using existing components.
  • the planar motor 10 includes a drive circuit 40 including a control unit 43.
  • the drive circuit 40 includes a DC power supply that supplies power to the plurality of coils 33.
  • the DC power supply 44 is an example of a power supply.
  • the drive circuit 40 turns on and off the first wiring electrically connected to the coil group belonging to the same row among the plurality of coils 33 and the electrical connection between the first wiring and the DC power supply 44.
  • a plurality of sets of one switching element are provided.
  • the drive circuit 40 turns on and off the second wiring electrically connected to the coil group belonging to the same column among the plurality of coils 33 and the electrical connection between the second wiring and the DC power supply 44.
  • a plurality of two switching elements are provided.
  • the control unit 43 repeats the control of turning on one of the plurality of first switching elements and the plurality of second switching elements one by one in a predetermined cycle.
  • the first wiring is shared by the coil groups belonging to the same row, and the second wiring is shared by the coil groups belonging to the same column, so that the number of wirings for driving the coil 33 is increased. Can be reduced. Therefore, the wiring pattern can be simplified.
  • the plurality of coils 33 include a first coil and a second coil whose winding direction is opposite to that of the first coil, and in each of the row direction and the column direction of the matrix arrangement, One coil and second coil are located alternately.
  • the plurality of coils 33 include four coils 33 arranged in a 2 ⁇ 2 matrix, and the four coils 33 include two first coils and two second coils. included.
  • the control unit 43 controls the movement of the movable element 20 based on an induced current flowing in at least one of the two second coils due to the magnetic flux of the permanent magnet 22. Detect position.
  • Such a planar motor 10 can detect the position of the mover 20 by using the empty coil 33 to which no power is supplied from the coil group 34 including the four coils 33.
  • the stator 30 includes a circuit board 32 on which a plurality of coils 33 are formed, and the drive circuit 40 is arranged around the plurality of coils 33 on the circuit board 32.
  • Such a planar motor 10 can drive the plurality of coils 33 by the drive circuit 40 disposed around the plurality of coils 33.
  • the plurality of coils 33 are formed in a rectangular area on the circuit board 32, and the drive circuit 40 is disposed along the two sides of the rectangular area around the rectangular area.
  • Such a planar motor 10 can drive the plurality of coils 33 by the drive circuit 40 arranged along two sides of the rectangular region where the plurality of coils 33 are formed.
  • the plurality of coils 33 are formed in a rectangular area on the circuit board 32, and the drive circuit 40 is disposed so as to surround the rectangular area.
  • Such a planar motor 10 can drive the plurality of coils 33 by the drive circuit 40 arranged so as to surround a rectangular region where the plurality of coils 33 are formed.
  • the present invention may be realized as a method for controlling the planar motor 10.
  • a control method when power is supplied to the target coil 33 among the plurality of coils 33, the magnetic flux of the permanent magnet 22 is applied to the other coil 33 other than the target coil 33 among the plurality of coils 33.
  • the position of the mover 20 is detected based on the induced current that flows.
  • planar motor according to the embodiment has been described above, but the present invention is not limited to the above embodiment.
  • the planar motor is used for transporting luggage in a distribution warehouse, but may be used for purposes other than the transportation of luggage.
  • the coil was a thin film pattern coil, a coil
  • winding coil may be sufficient as a coil.
  • a rectifying element such as a diode may be connected in series to each of the plurality of coils. Thereby, it is suppressed that the electric current of a reverse direction flows into a coil.
  • the planar motor may include a stator having another laminated structure that can realize the characteristic function of the present invention.
  • the planar motor may include, for example, a stator in which another layer is provided between layers of the stacked structure of the above embodiment as long as the same function as the stacked structure described in the above embodiment can be realized. .
  • each layer of the laminated structure of the stator has the same function as the laminated structure of the above embodiment.
  • Other materials may be included to the extent that can be realized.
  • another processing unit may execute a process executed by a specific processing unit. Further, the order of the plurality of processes may be changed, and the plurality of processes may be executed in parallel.
  • the components such as the control unit may be realized by executing a software program suitable for the components.
  • the components such as the control unit may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the components such as the control unit may be realized by hardware.
  • the component such as the control unit may be a circuit (or an integrated circuit). These circuits may constitute one circuit as a whole, or may be separate circuits. Each of these circuits may be a general-purpose circuit or a dedicated circuit.
  • the general or specific aspect of the present invention may be realized by a recording medium such as a system, apparatus, method, integrated circuit, computer program, or computer-readable CD-ROM. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • the present invention may be realized as a planar motor control method (that is, a method of controlling a planar motor).
  • the present invention may be realized as a program for causing a computer to execute such a control method.
  • the present invention may be realized as a computer-readable non-transitory recording medium in which the program is recorded.

Abstract

A planar motor (10) is provided with: a needle (20) that has a permanent magnet (22); a stator (30) that has a main surface (31a) facing the needle (20) and has a plurality of coils (33) arranged in a matrix along the main surface (31a) so as to apply thrust force to the needle (20); and a control unit that, when power is supplied to a target coil (33), among the coils (33), detects the position of the needle (20) on the basis of the flow of an induced current to a coil (33) other than the target coil (33), among the coils (33), the flow being caused by a magnetic flux of the permanent magnet (22).

Description

平面モータ、及び、制御方法Planar motor and control method
 本発明は、可動子を平面に沿って二次元的に移動させる平面モータ、及び、平面モータの制御方法に関する。 The present invention relates to a planar motor that moves a mover two-dimensionally along a plane and a method for controlling the planar motor.
 可動子を平面に沿って二次元的に移動させる平面モータが知られている。特許文献1には、固定子部の電機子コイルを冷却する包囲部材がモジュールユニット化された平面モータが開示されている。 A planar motor that moves a mover two-dimensionally along a plane is known. Patent Document 1 discloses a planar motor in which an enclosing member that cools an armature coil of a stator portion is formed as a module unit.
特開2004-336863号公報JP 2004-336863 A
 平面モータにおいて可動子の位置を検出する方法として、画像を用いた方法が考えられる。しかしながら、このような方法は、画像を撮像するカメラが追加の構成要素として必要となる。 A method using an image is conceivable as a method for detecting the position of the mover in the planar motor. However, such a method requires a camera for capturing an image as an additional component.
 本発明は、既存の構成要素を利用して可動子の位置を検出することができる平面モータ、及び、制御方法を提供する。 The present invention provides a planar motor and a control method that can detect the position of a mover using existing components.
 本発明の一態様に係る平面モータは、磁石を有する可動子と、前記可動子と対向する主面、及び、前記主面に沿ってマトリクス状に配置される、前記可動子に推力を与えるための複数のコイルを有する固定子と、前記複数のコイルのうち対象のコイルに電力が供給されているときに、前記複数のコイルのうち前記対象のコイル以外の他のコイルに前記磁石の磁束に起因して流れる誘導電流に基づいて前記可動子の位置を検出する制御部とを備える。 The planar motor according to one aspect of the present invention is configured to apply a thrust to the mover having a magnet, a main surface facing the mover, and a matrix arranged along the main surface. When the electric power is supplied to the target coil among the plurality of coils and the other coil other than the target coil among the plurality of coils, the magnetic flux of the magnet And a controller that detects the position of the mover based on the induced current that flows.
 本発明の一態様に係る制御方法は、平面モータの制御方法であって、前記平面モータは、磁石を有する可動子と、前記可動子と対向する主面、及び、前記主面に沿ってマトリクス状に配置される、前記可動子に推力を与えるための複数のコイルを有する固定子とを備え、前記制御方法は、前記複数のコイルのうち対象のコイルに電力を供給しているときに、前記複数のコイルのうち前記対象のコイル以外の他のコイルに前記磁石の磁束に起因して流れる誘導電流に基づいて前記可動子の位置を検出する。 A control method according to an aspect of the present invention is a planar motor control method, wherein the planar motor includes a mover having a magnet, a main surface facing the mover, and a matrix along the main surface. And a stator having a plurality of coils for providing thrust to the mover, and the control method supplies power to a target coil among the plurality of coils. The position of the mover is detected based on an induced current flowing in a coil other than the target coil among the plurality of coils due to the magnetic flux of the magnet.
 本発明によれば、配線パターンの簡素化が可能な平面モータ、及び、制御方法が実現される。 According to the present invention, a planar motor capable of simplifying a wiring pattern and a control method are realized.
図1は、実施の形態に係る平面モータシステムの概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a planar motor system according to an embodiment. 図2は、実施の形態に係る平面モータの断面図である。FIG. 2 is a cross-sectional view of the planar motor according to the embodiment. 図3は、駆動回路の具体的構成を示す図である。FIG. 3 is a diagram showing a specific configuration of the drive circuit. 図4は、実施の形態に係る平面モータの動作のフローチャートである。FIG. 4 is a flowchart of the operation of the planar motor according to the embodiment. 図5は、コイルの駆動例を示す図である。FIG. 5 is a diagram illustrating an example of driving a coil. 図6は、可動子の位置検出動作のフローチャートである。FIG. 6 is a flowchart of the position detection operation of the mover. 図7は、変形例2に係る駆動回路の具体的構成を示す図である。FIG. 7 is a diagram illustrating a specific configuration of a drive circuit according to the second modification.
 以下、実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments will be described with reference to the drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. The numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化される場合がある。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, and the overlapping description may be abbreviate | omitted or simplified.
 また、以下の実施の形態において、「平面視」とは、固定子の主面に垂直な方向から見ることを意味する。図面において、磁石のN極は、「N」と記載され、磁石のS極は、「S」と記載される。 In the following embodiments, “plan view” means viewing from a direction perpendicular to the main surface of the stator. In the drawing, the N pole of the magnet is described as “N”, and the S pole of the magnet is described as “S”.
 (実施の形態)
 [全体構成]
 以下、実施の形態に係る平面モータの構成について図面を用いて説明する。図1は、実施の形態に係る平面モータの概略構成を示す図である。図2は、実施の形態に係る平面モータの断面図である。図1において、可動子20及び固定子30については平面図が示されている。図1においては、複数のコイル33の配置を示すために、カバー部材31は図示が省略されている。図2において、駆動回路40は図示が省略されている。
(Embodiment)
[overall structure]
Hereinafter, the structure of the planar motor according to the embodiment will be described with reference to the drawings. FIG. 1 is a diagram illustrating a schematic configuration of a planar motor according to an embodiment. FIG. 2 is a cross-sectional view of the planar motor according to the embodiment. In FIG. 1, a plan view of the mover 20 and the stator 30 is shown. In FIG. 1, the cover member 31 is not shown in order to show the arrangement of the plurality of coils 33. In FIG. 2, the drive circuit 40 is not shown.
 図1及び図2に示されるように、実施の形態に係る平面モータ10は、可動子20と、固定子30と、駆動回路40とを備える。平面モータ10は、固定子30が有する主面31aに沿って可動子20を2次元的に移動させるリニアモータ(言い換えれば、電磁アクチュエータ)である。平面モータ10は、例えば、物流倉庫内で荷物の運搬に用いられる。以下、このような平面モータ10の各構成要素について詳細に説明する。 As shown in FIGS. 1 and 2, the planar motor 10 according to the embodiment includes a mover 20, a stator 30, and a drive circuit 40. The planar motor 10 is a linear motor (in other words, an electromagnetic actuator) that moves the mover 20 two-dimensionally along the main surface 31 a of the stator 30. The flat motor 10 is used, for example, for transporting luggage in a distribution warehouse. Hereinafter, each component of the planar motor 10 will be described in detail.
 [可動子]
 まず、可動子20について説明する。可動子20は、平面モータ10における移動対象物である。図2に示されるように、可動子20は、可動子本体21と、永久磁石22と、ボールキャスタ23とを備える。
[Mover]
First, the mover 20 will be described. The mover 20 is a moving object in the planar motor 10. As shown in FIG. 2, the mover 20 includes a mover main body 21, a permanent magnet 22, and a ball caster 23.
 可動子本体21は、略矩形板状の部材である。可動子本体21は、例えば、樹脂材料によって形成される。可動子本体21は、アルミニウムなどの比較的透磁率の低い金属材料によって形成されてもよい。 The mover body 21 is a substantially rectangular plate-shaped member. The mover main body 21 is made of, for example, a resin material. The mover main body 21 may be formed of a metal material having a relatively low permeability such as aluminum.
 永久磁石22は、可動子20が固定子30から推力を得るための磁石であり、可動子本体21に取り付けられる。永久磁石22は、例えば、平たい円柱状のネオジム磁石である。永久磁石22の形状及び材料は特に限定されない。永久磁石22は、例えば、フェライト磁石、または、アルニコ磁石などであってもよい。可動子20は、例えば、複数の永久磁石22を備えるが、少なくとも1つの永久磁石22を備えればよい。図2では、永久磁石22は、可動子本体21内に埋め込まれているが、永久磁石22は、可動子本体21の上面に取り付けられてもよいし、可動子本体21の下面に取り付けられてもよい。 The permanent magnet 22 is a magnet for the mover 20 to obtain thrust from the stator 30, and is attached to the mover main body 21. The permanent magnet 22 is, for example, a flat cylindrical neodymium magnet. The shape and material of the permanent magnet 22 are not particularly limited. The permanent magnet 22 may be, for example, a ferrite magnet or an alnico magnet. The mover 20 includes a plurality of permanent magnets 22, for example, but may include at least one permanent magnet 22. In FIG. 2, the permanent magnet 22 is embedded in the mover main body 21. However, the permanent magnet 22 may be attached to the upper surface of the mover main body 21 or attached to the lower surface of the mover main body 21. Also good.
 図2の例では、永久磁石22は、S極及びN極の並び方向が主面31aに交差し、S極がN極よりも主面31a寄りに位置するように配置されている。しかしながら、永久磁石22は、N極がS極よりも主面31a寄りに位置するように配置されてもよい。また、永久磁石22は、S極及びN極の並び方向が主面31aに沿うように配置されてもよい。 In the example of FIG. 2, the permanent magnet 22 is arranged so that the arrangement direction of the S pole and the N pole intersects the main surface 31a, and the S pole is located closer to the main surface 31a than the N pole. However, the permanent magnet 22 may be arranged such that the N pole is located closer to the main surface 31a than the S pole. Moreover, the permanent magnet 22 may be arrange | positioned so that the arrangement direction of a south pole and a north pole may follow the main surface 31a.
 なお、可動子20は、永久磁石22に代えて電磁石を有してもよい。この場合、電磁石は、例えば、乾電池または蓄電池によって駆動される。電磁石は、可動子20の移動に寄与していないコイル33から給電されてもよい。このように、可動子20は、永久磁石22または電磁石を有していればよい。つまり、可動子20は、磁石を有していればよい。 The mover 20 may have an electromagnet instead of the permanent magnet 22. In this case, the electromagnet is driven by, for example, a dry battery or a storage battery. The electromagnet may be supplied with power from the coil 33 that does not contribute to the movement of the mover 20. Thus, the needle | mover 20 should just have the permanent magnet 22 or the electromagnet. That is, the needle | mover 20 should just have a magnet.
 ボールキャスタ23は、可動子本体21を固定子30の主面31aに沿って移動させるための移動機構である。ボールキャスタ23は、可動子本体21の下面に取り付けられ、固定子30の主面31aに当接する。なお、可動子20は、自在キャスタまたは車輪など、ボールキャスタ23以外の移動機構を備えてもよい。 The ball caster 23 is a moving mechanism for moving the mover main body 21 along the main surface 31a of the stator 30. The ball caster 23 is attached to the lower surface of the mover main body 21 and abuts on the main surface 31 a of the stator 30. The mover 20 may include a moving mechanism other than the ball caster 23 such as a free caster or a wheel.
 [固定子]
 次に、固定子30について説明する。固定子30は、可動子20を移動させるための構造体である。実施の形態では、固定子30は、シート状の部材である。図2に示されるように、固定子30は、カバー部材31と、回路基板32とを有する。
[stator]
Next, the stator 30 will be described. The stator 30 is a structure for moving the mover 20. In the embodiment, the stator 30 is a sheet-like member. As shown in FIG. 2, the stator 30 includes a cover member 31 and a circuit board 32.
 カバー部材31は、回路基板32の摩耗等を抑制し、かつ、固定子30の表面を平滑化するためのシート状の保護部材である。カバー部材31は、回路基板32の上面の全部を覆う。カバー部材31の平面視形状は、矩形であるが、円形等その他の形状であってもよい。カバー部材31の上面は、固定子30が有する主面31aとなる。主面31aは、可動子20と対向する。 The cover member 31 is a sheet-like protective member that suppresses wear and the like of the circuit board 32 and smoothes the surface of the stator 30. The cover member 31 covers the entire top surface of the circuit board 32. The cover member 31 has a rectangular shape in plan view, but may be other shapes such as a circle. The upper surface of the cover member 31 is a main surface 31a of the stator 30. The main surface 31 a faces the mover 20.
 カバー部材31は、例えば、メラミン樹脂、ウレタン樹脂、または、アクリル樹脂などの有機材料によって形成される。カバー部材31は、シラン化合物または金属酸化物によって形成されてもよい。このような有機材料、シラン化合物、または金属酸化物は、摩耗耐性の点でカバー部材31に適している。カバー部材31に有機材料が採用されれば、カバー部材31が低温の製造プロセスで形成できる。また、カバー部材31に有機材料が採用されれば、カバー部材31の大面積化が容易である。 The cover member 31 is formed of an organic material such as melamine resin, urethane resin, or acrylic resin, for example. The cover member 31 may be formed of a silane compound or a metal oxide. Such an organic material, a silane compound, or a metal oxide is suitable for the cover member 31 in terms of wear resistance. If an organic material is employed for the cover member 31, the cover member 31 can be formed by a low-temperature manufacturing process. Further, if an organic material is employed for the cover member 31, it is easy to increase the area of the cover member 31.
 回路基板32は、上面にコイル33が複数形成される薄膜状(言い換えれば、シート状)の基板である。回路基板32の平面視形状は、矩形であるが、円形等その他の形状であってもよい。回路基板32の基材は、例えば、ガラエポなどの樹脂材料によって形成される。 The circuit board 32 is a thin film-like (in other words, sheet-like) board on which a plurality of coils 33 are formed on the upper surface. The planar view shape of the circuit board 32 is rectangular, but may be other shapes such as a circle. The base material of the circuit board 32 is formed of, for example, a resin material such as glass epoxy.
 回路基板32の上面には、複数のコイル33が形成される。図1に示されるように、平面視において、複数のコイル33は、マトリクス状に敷き詰められている。 A plurality of coils 33 are formed on the upper surface of the circuit board 32. As shown in FIG. 1, the plurality of coils 33 are spread in a matrix in a plan view.
 複数のコイル33は、可動子20に推力を与えるためのコイルである。複数のコイル33は、駆動回路40によって電力が供給されて磁化する。複数のコイル33のそれぞれは、回路基板32の上面にパターン形成された薄膜状のパターンコイルである。 The plurality of coils 33 are coils for applying thrust to the mover 20. The plurality of coils 33 are magnetized when power is supplied by the drive circuit 40. Each of the plurality of coils 33 is a thin pattern coil that is patterned on the upper surface of the circuit board 32.
 複数のコイル33のそれぞれは、巻回軸が主面31aに垂直な方向に沿う矩形巻回状の配線であるが、円形巻回状等、他の巻回状であってもよい。複数のコイル33のそれぞれは、例えば、三角形、または、六角形等の多角形に沿う巻回形状であってもよい。コイル33は、例えば、銅などの金属材料によって形成される。コイル33は、例えば、エッチングによって形成される。 Each of the plurality of coils 33 is a rectangular winding wire whose winding axis extends in a direction perpendicular to the main surface 31a, but may be another winding shape such as a circular winding shape. Each of the plurality of coils 33 may have, for example, a triangular shape or a wound shape along a polygon such as a hexagon. The coil 33 is formed of a metal material such as copper, for example. The coil 33 is formed by etching, for example.
 複数のコイル33には、第一コイル、及び、第一コイルと巻回方向が逆の第二コイルの2種類が含まれる。マトリクス状の配置の行方向及び列方向のそれぞれにおいては、第一コイル及び第二コイルが交互に位置する。つまり、第一コイル及び第二コイルがチェッカーフラッグ状に配置される。なお、第一コイル及び第二コイルの配置は、チェッカーフラッグ状に限定されない。例えば、第一コイルのみからなる行及び第二コイルのみからなる行が交互に配置されてもよい。また、第一コイルのみからなる列及び第二コイルのみからなる列が交互に配置されてもよい。 The plurality of coils 33 include a first coil and a second coil having a winding direction opposite to that of the first coil. In each of the row direction and the column direction of the matrix arrangement, the first coil and the second coil are alternately positioned. That is, the first coil and the second coil are arranged in a checkered flag shape. The arrangement of the first coil and the second coil is not limited to the checkered flag shape. For example, rows composed only of the first coil and rows composed only of the second coil may be alternately arranged. Moreover, the row | line | column which consists only of a 1st coil, and the row | line which consists only of a 2nd coil may be arrange | positioned alternately.
 [駆動回路]
 次に、駆動回路40について説明する。駆動回路40は、複数のコイル33の駆動を制御することにより、可動子20を主面31aに沿って移動させる。図2に示されるように、駆動回路40は、例えば、可動子20を移動方向に移動させる場合、移動方向の後方に位置するコイル33aを駆動して、コイル33aと永久磁石22との間に反発力を生じさせる。また、駆動回路40は、移動方向の前方に位置するコイル33bを駆動して、コイル33bと永久磁石22との間に吸引力を生じさせてもよい。
[Drive circuit]
Next, the drive circuit 40 will be described. The drive circuit 40 controls the drive of the plurality of coils 33 to move the mover 20 along the main surface 31a. As shown in FIG. 2, for example, when the mover 20 is moved in the movement direction, the drive circuit 40 drives the coil 33 a located at the rear of the movement direction, and between the coil 33 a and the permanent magnet 22. Creates a repulsive force. In addition, the drive circuit 40 may drive the coil 33b located in the front in the moving direction to generate an attractive force between the coil 33b and the permanent magnet 22.
 駆動回路40は、例えば、回路基板32上の複数のコイル33の周辺に配置される。駆動回路40は、例えば、マトリクス状に配置された複数のコイル33が形成される矩形の領域の二辺に沿って配置される。つまり、駆動回路40は、L字状の領域に配置される。駆動回路40は、マトリクス状に配置された複数のコイル33が形成される矩形の領域を囲むように配置されてもよい。つまり、駆動回路40は、矩形環状の領域に配置されてもよい。 The drive circuit 40 is arranged around the plurality of coils 33 on the circuit board 32, for example. For example, the drive circuit 40 is arranged along two sides of a rectangular region in which the plurality of coils 33 arranged in a matrix are formed. That is, the drive circuit 40 is disposed in an L-shaped region. The drive circuit 40 may be arranged so as to surround a rectangular region where the plurality of coils 33 arranged in a matrix are formed. That is, the drive circuit 40 may be disposed in a rectangular annular region.
 以下、駆動回路40の具体的構成について説明する。図3は、駆動回路40の具体的構成を示す図である。 Hereinafter, a specific configuration of the drive circuit 40 will be described. FIG. 3 is a diagram showing a specific configuration of the drive circuit 40.
 図3において、複数のコイル33は、4行×7列にマトリクス状に配置されている。以下の実施の形態では、4つの行は数字によって区別され、行1~行4のように記載される。7つの列はアルファベットによって区別され、列A~列Gのように記載される。複数のコイル33は、行を示す数字及び列を示すアルファベットによって定められるアドレスによって区別される。例えば、行1に属し、かつ、列Aに属するコイル33には、アドレス1-Aに対応するコイル33である。 3, the plurality of coils 33 are arranged in a matrix of 4 rows × 7 columns. In the following embodiment, the four rows are distinguished by numbers and are described as row 1 to row 4. The seven columns are distinguished by alphabets and are described as column A to column G. The plurality of coils 33 are distinguished by addresses defined by numbers indicating rows and alphabets indicating columns. For example, the coil 33 belonging to row 1 and belonging to column A is the coil 33 corresponding to address 1-A.
 図3に示される駆動回路40は、第一配線R1~R4と、第二配線CA~CGと、複数のスイッチング素子(第一スイッチング素子s1~s4及び第二スイッチング素子SA~SG)と、第一デコーダ41と、第二デコーダ42と、制御部43と、直流電源44と、複数の電流センサ45とを備える。 The driving circuit 40 shown in FIG. 3 includes first wirings R1 to R4, second wirings CA to CG, a plurality of switching elements (first switching elements s1 to s4 and second switching elements SA to SG), One decoder 41, a second decoder 42, a control unit 43, a DC power supply 44, and a plurality of current sensors 45 are provided.
 第一配線R1~R4は、行ごとに1つずつ配置される、行方向に延在する配線である。第一配線R1~R4は、例えば、回路基板32(図3では図示せず)上に、銅などの金属材料によってパターン形成される。 The first wirings R1 to R4 are wirings arranged in the row direction, one for each row. For example, the first wirings R1 to R4 are patterned on a circuit board 32 (not shown in FIG. 3) using a metal material such as copper.
 第一配線R1~R4のそれぞれは、複数のコイル33のうち同一の行に属する第一コイル群に電気的に接続される。例えば、第一配線R1は、行1に属する第一コイル群に電気的に接続される。行1に属する第一コイル群は、アドレス1-A~アドレス1-Gに対応する7つのコイル33によって構成される。 Each of the first wirings R1 to R4 is electrically connected to a first coil group belonging to the same row among the plurality of coils 33. For example, the first wiring R1 is electrically connected to the first coil group belonging to the row 1. The first coil group belonging to row 1 is composed of seven coils 33 corresponding to addresses 1-A to 1-G.
 第二配線CA~CGは、列ごとに1つずつ配置される、列方向に延在する配線である。第二配線CA~CGは、例えば、回路基板32(図3では図示せず)上に、銅などの金属材料によってパターン形成される。 The second wirings CA to CG are wirings arranged in the column direction, one for each column. For example, the second wirings CA to CG are patterned on a circuit board 32 (not shown in FIG. 3) using a metal material such as copper.
 第二配線CA~CGのそれぞれは、複数のコイル33のうち同一の列に属する第二コイル群に電気的に接続される。例えば、第二配線CAは、列Aに属する第二コイル群に電気的に接続される。列Aに属する第二コイル群は、アドレス1-A~アドレス4-Aに対応する4つのコイル33によって構成される。 Each of the second wirings CA to CG is electrically connected to a second coil group belonging to the same column among the plurality of coils 33. For example, the second wiring CA is electrically connected to the second coil group belonging to the row A. The second coil group belonging to the column A is composed of four coils 33 corresponding to the addresses 1-A to 4-A.
 このように、マトリクス状に配置された複数のコイル33のそれぞれは、一端が当該コイル33が属する行に対応する第一配線に電気的に接続され、他端が当該コイル33が属する列に対応する第二配線に電気的に接続される。 Thus, each of the plurality of coils 33 arranged in a matrix form has one end electrically connected to the first wiring corresponding to the row to which the coil 33 belongs, and the other end corresponding to the column to which the coil 33 belongs. Electrically connected to the second wiring.
 また、駆動回路40は、複数のコイル33への電力供給をオン及びオフするための複数のスイッチング素子を有する。複数のスイッチング素子には、複数のコイル33のうち同一の行に属する第一コイル群への電力供給をオン及びオフするための第一スイッチング素子s1~s4と、複数のコイル33のうち同一の列に属する第二コイル群への電力供給をオン及びオフするための第二スイッチング素子SA~SGが含まれる。 Further, the drive circuit 40 has a plurality of switching elements for turning on and off the power supply to the plurality of coils 33. The plurality of switching elements include first switching elements s1 to s4 for turning on and off power supply to the first coil group belonging to the same row among the plurality of coils 33, and the same among the plurality of coils 33. Second switching elements SA to SG for turning on and off the power supply to the second coil group belonging to the column are included.
 例えば、第一スイッチング素子s1は、第一配線R1及び直流電源44の間に位置し、第一配線R1と直流電源44の負極端子との電気的な接続をオン及びオフする。第二スイッチング素子SAは、第二配線CA及び直流電源44の間に位置し、第二配線CAと直流電源44の正極端子との電気的な接続をオン及びオフする。 For example, the first switching element s1 is located between the first wiring R1 and the DC power supply 44, and turns on and off the electrical connection between the first wiring R1 and the negative terminal of the DC power supply 44. The second switching element SA is located between the second wiring CA and the DC power supply 44, and turns on and off the electrical connection between the second wiring CA and the positive terminal of the DC power supply 44.
 以上のような第一スイッチング素子s1~s4及び第二スイッチング素子SA~SGのそれぞれは、例えば、FET(Field Effect Transistor)であるが、その他のスイッチング素子(トランジスタ)であってもよい。第一スイッチング素子s1~s4及び第二スイッチング素子SA~SGは、回路基板32上に配置されてもよいし、回路基板32外に配置されてもよい。なお、第一スイッチング素子s1~s4及び第二スイッチング素子SA~SGが回路基板32上に配置される場合、第一スイッチング素子s1~s4及び第二スイッチング素子SA~SGのそれぞれは、薄膜トランジスタ(TFT:Thin Film Transistor)であってもよい。この場合、回路基板32は、複数のコイル33及び複数のスイッチング素子(薄膜トランジスタ)を含む薄膜状の基板となる。 Each of the first switching elements s1 to s4 and the second switching elements SA to SG as described above is, for example, an FET (Field Effect Transistor), but may be other switching elements (transistors). The first switching elements s1 to s4 and the second switching elements SA to SG may be arranged on the circuit board 32 or may be arranged outside the circuit board 32. When the first switching elements s1 to s4 and the second switching elements SA to SG are disposed on the circuit board 32, each of the first switching elements s1 to s4 and the second switching elements SA to SG is a thin film transistor (TFT). : Thin Film Transistor). In this case, the circuit board 32 is a thin film substrate including a plurality of coils 33 and a plurality of switching elements (thin film transistors).
 第一デコーダ41は、制御部43から通知された行アドレスに対応する第一スイッチング素子をオンする。第一デコーダ41は、第一スイッチング素子s1~s4の制御端子(つまり、ゲート)に電気的に接続される。第一デコーダ41は、例えば、回路によって実現されるが、プロセッサまたはマイクロコンピュータを含んでもよい。第一デコーダ41は、言い換えれば、第一電流ドライバである。 The first decoder 41 turns on the first switching element corresponding to the row address notified from the control unit 43. The first decoder 41 is electrically connected to control terminals (that is, gates) of the first switching elements s1 to s4. The first decoder 41 is realized by a circuit, for example, but may include a processor or a microcomputer. In other words, the first decoder 41 is a first current driver.
 第二デコーダ42は、制御部43から通知された列アドレスに対応する第二スイッチング素子をオンする。第二デコーダ42は、第二スイッチング素子SA~SGの制御端子(つまり、ゲート)に電気的に接続される。第二デコーダ42は、例えば、回路によって実現されるが、プロセッサまたはマイクロコンピュータを含んでもよい。第二デコーダ42は、言い換えれば、第二電流ドライバである。 The second decoder 42 turns on the second switching element corresponding to the column address notified from the control unit 43. The second decoder 42 is electrically connected to control terminals (that is, gates) of the second switching elements SA to SG. The second decoder 42 is realized by a circuit, for example, but may include a processor or a microcomputer. In other words, the second decoder 42 is a second current driver.
 制御部43は、第一デコーダ41及び第二デコーダ42にアドレスを通知する制御装置である。制御部43は、例えば、マイクロコンピュータによって実現されるが、プロセッサまたは回路によって実現されてもよい。制御部43は、マイクロコンピュータ、プロセッサ、及び、回路のうち2つ以上の組み合わせによって実現されてもよい。 The control unit 43 is a control device that notifies the first decoder 41 and the second decoder 42 of an address. The control unit 43 is realized by, for example, a microcomputer, but may be realized by a processor or a circuit. The control unit 43 may be realized by a combination of two or more of a microcomputer, a processor, and a circuit.
 なお、直流電源44は、電流制限回路などを備え、制御部43の制御に基づいてコイル33に供給する電流値を変更可能な構成であってもよい。つまり、コイル33が発する磁束密度は、変更可能であってもよい。この場合、電流はアナログ制御されてもよいし、PWM(Pulse Width Modulation)制御されてもよい。 The DC power supply 44 may include a current limiting circuit and the like, and may be configured to change the current value supplied to the coil 33 based on the control of the control unit 43. That is, the magnetic flux density generated by the coil 33 may be changeable. In this case, the current may be analog-controlled or PWM (Pulse Width Modulation) controlled.
 複数の電流センサ45は、第一配線R1~R4、及び、第二配線CA~CGに1対1で対応し、対応する配線に流れる電流を検出する。複数の電流センサ45は、可動子20の位置の検出に用いられる。電流センサ45のそれぞれは、例えば、駆動回路40に組み込まれた電流計測回路(つまり、電流計)であるが、非接触型の電流センサであってもよい。 The plurality of current sensors 45 correspond to the first wirings R1 to R4 and the second wirings CA to CG on a one-to-one basis, and detect currents flowing through the corresponding wirings. The plurality of current sensors 45 are used for detecting the position of the mover 20. Each of the current sensors 45 is, for example, a current measurement circuit (that is, an ammeter) incorporated in the drive circuit 40, but may be a non-contact type current sensor.
 [平面モータの動作]
 次に、平面モータ10の動作について説明する。平面モータ10では、1つのコイル33に流れる電流の向きを制御することにより当該コイル33の磁極(N極及びS極)を切り替える方法は採用されていない。図3に示されるように、平面モータ10では、複数のコイル33のそれぞれに流れる電流の向きは一定である。ここで、上述のように複数のコイル33には、巻回方向が互いに異なる第一コイル及び第二コイルの2種類が含まれ、第一コイル及び第二コイルの一方は、可動子20側がN極の電磁石として機能し、第一コイル及び第二コイルの他方は、可動子20側がS極の電磁石として機能する。
[Operation of planar motor]
Next, the operation of the planar motor 10 will be described. The planar motor 10 does not employ a method of switching the magnetic poles (N pole and S pole) of the coil 33 by controlling the direction of the current flowing in one coil 33. As shown in FIG. 3, in the planar motor 10, the direction of the current flowing through each of the plurality of coils 33 is constant. Here, as described above, the plurality of coils 33 include two types of first and second coils having different winding directions. One of the first coil and the second coil is N on the mover 20 side. The other of the first coil and the second coil functions as an S-pole electromagnet on the movable element 20 side.
 そして、平面モータ10は、例えば、4つのコイル33を1つの単位として、当該1つの単位をN極の電磁石として機能させる場合には、当該1つの単位に含まれるN極として機能する2つのコイルに時分割で電流を流す。同様に、当該1つの単位をS極の電磁石として機能させる場合には、当該1つの単位に含まれるS極として機能する2つのコイルに時分割で電流を流す。図4は、このような平面モータ10の動作のフローチャートである。 The planar motor 10 has, for example, two coils that function as N poles included in one unit when the four coils 33 are used as one unit and the one unit functions as an N pole electromagnet. Current in a time-sharing manner. Similarly, when the one unit functions as an S-pole electromagnet, a current is passed through the two coils functioning as the S-pole included in the one unit in a time-sharing manner. FIG. 4 is a flowchart of the operation of such a planar motor 10.
 まず、制御部43は、複数の第一スイッチング素子s1~s4を1つずつ順番にオンする制御を所定の周期で繰り返す(S11)。制御部43は、具体的には、行アドレスを第一デコーダ41に通知することにより、第一デコーダ41を介して複数の第一スイッチング素子s1~s4のうち第一スイッチング素子s1だけをオンする。その後、第一スイッチング素子s1をオフして第一スイッチング素子s2だけをオンする。以降同様に、第一スイッチング素子s3だけをオンし、第一スイッチング素子s4だけをオンし、第一スイッチング素子s1だけをオンし・・というように複数の第一スイッチング素子s1~s4を、選択的に、かつ、所定の順序でオンする制御を周期的に繰り返す。所定の順序は、s1、s2、s3、s4の順に限定されず、どのような順序であってもよい。このような制御は、スキャン制御とも記載される。 First, the control unit 43 repeats the control to turn on the plurality of first switching elements s1 to s4 one by one in a predetermined cycle (S11). Specifically, the control unit 43 notifies the first decoder 41 of the row address, thereby turning on only the first switching element s1 among the plurality of first switching elements s1 to s4 via the first decoder 41. . Thereafter, the first switching element s1 is turned off and only the first switching element s2 is turned on. Subsequently, similarly, only the first switching element s3 is turned on, only the first switching element s4 is turned on, only the first switching element s1 is turned on, and so on. In addition, the control to turn on in a predetermined order is periodically repeated. The predetermined order is not limited to the order of s1, s2, s3, and s4, and may be any order. Such control is also described as scan control.
 制御部43は、第一スイッチング素子s1~s4を対象としてスキャン制御を行う一方で、駆動対象のコイル33に対応する第一スイッチング素子がオンされている期間に駆動対象のコイル33に対応する第二スイッチング素子をオンする(S12)。駆動対象のコイル33に対応する第二スイッチング素子をオンする制御は、アドレス制御とも記載される。制御部43は、具体的には、駆動対象のコイル33の列アドレスを第二デコーダ42に通知することにより、第二デコーダ42を介して駆動対象のコイル33に対応する第二スイッチング素子をオンする。例えば、図5に示されるように、アドレス2-Eに対応するコイル33が駆動対象のコイルである場合、第一スイッチング素子s2がオンされている期間に第二スイッチング素子SEをオンする。図5は、コイル33の駆動例を示す図である。この結果、アドレス2-Eのコイル33に電流が流れ、当該コイル33は、例えば、S極の電磁石として機能する。なお、駆動対象のコイルは、言い換えれば、直流電源44の電力供給の対象となるコイルであり、以下の実施の形態では、単に対象のコイルとも記載される。 The control unit 43 performs scan control on the first switching elements s1 to s4, while the first switching element corresponding to the driving target coil 33 is in a period in which the first switching element corresponding to the driving target coil 33 is on. The two switching elements are turned on (S12). Control for turning on the second switching element corresponding to the coil 33 to be driven is also referred to as address control. Specifically, the control unit 43 notifies the column address of the driving target coil 33 to the second decoder 42, thereby turning on the second switching element corresponding to the driving target coil 33 via the second decoder 42. To do. For example, as shown in FIG. 5, when the coil 33 corresponding to the address 2-E is a coil to be driven, the second switching element SE is turned on while the first switching element s2 is turned on. FIG. 5 is a diagram illustrating an example of driving the coil 33. As a result, a current flows through the coil 33 at address 2-E, and the coil 33 functions as an S-pole electromagnet, for example. In addition, the coil to be driven is, in other words, a coil that is a target of power supply of the DC power supply 44, and in the following embodiments, it is also simply referred to as a target coil.
 このように、駆動回路40は複数のコイル33をパッシブマトリクス駆動することができる。 Thus, the drive circuit 40 can passively drive the plurality of coils 33.
 [可動子の位置検出動作]
 ところで、図5のようにアドレス2-Eに対応するコイル33に電流が流れているときに、アドレス2-E以外の他のコイル33に永久磁石22が近づくと、当該他のコイル33には、永久磁石22によって生じる磁束の変化を打ち消すように誘導電流が発生する。
[Mover position detection operation]
By the way, when the permanent magnet 22 approaches another coil 33 other than the address 2-E when a current is flowing through the coil 33 corresponding to the address 2-E as shown in FIG. An induced current is generated so as to cancel the change in magnetic flux generated by the permanent magnet 22.
 そこで、制御部43は、このような誘導電流に基づいて可動子20の位置を検出する。図6は、可動子20の位置検出動作のフローチャートである。 Therefore, the control unit 43 detects the position of the mover 20 based on such an induced current. FIG. 6 is a flowchart of the position detection operation of the mover 20.
 制御部43は、複数のコイル33のうち駆動対象のコイル33(例えば、アドレス2-Eに対応するコイル33)に電力を供給しているときに(S21)、駆動対象のコイル33以外の他のコイル33に永久磁石22に起因して流れる誘導電流に基づいて可動子20の位置を検出する(S22)。つまり、制御部43は、直流電源44から電力供給を受けていないコイル33(以下、空きコイル33とも記載される)に流れる誘導電流に基づいて可動子20の位置を検出する。 The controller 43 supplies power to the drive target coil 33 (for example, the coil 33 corresponding to the address 2-E) among the plurality of coils 33 (S21). The position of the mover 20 is detected based on the induced current flowing in the coil 33 due to the permanent magnet 22 (S22). That is, the control unit 43 detects the position of the mover 20 based on the induced current flowing in the coil 33 that is not supplied with power from the DC power supply 44 (hereinafter also referred to as the empty coil 33).
 制御部43は、具体的には、複数の電流センサ45を用いて誘導電流により電流の変化が生じた第一配線及び第二配線を特定する。制御部43は、特定された第一配線及び第二配線に接続されたコイル33の近傍に可動子20が位置することを検出することができる。 Specifically, the control unit 43 uses the plurality of current sensors 45 to identify the first wiring and the second wiring in which a change in current has occurred due to the induced current. The control unit 43 can detect that the mover 20 is positioned in the vicinity of the coil 33 connected to the identified first wiring and second wiring.
 例えば、平面モータにおいて、2×2のマトリクス状に配置された、互いに隣り合う4つのコイル33からなるコイル群34(図5に図示)を1つの単位として1ステップの制御が行われる場合が考えられる。コイル群34には、2つの第一コイル、及び、2つの第二コイルが含まれる。第一コイルは、例えば、S極の電磁石として機能するコイル33であり、第二コイルは、例えば、N極の電磁石として機能するコイル33である。 For example, in a planar motor, a case where one step of control is performed using a coil group 34 (shown in FIG. 5) composed of four adjacent coils 33 arranged in a 2 × 2 matrix as one unit. It is done. The coil group 34 includes two first coils and two second coils. The first coil is, for example, a coil 33 that functions as an S-pole electromagnet, and the second coil is, for example, a coil 33 that functions as an N-pole electromagnet.
 この場合、制御部43は、2つの第一コイルの少なくとも一方(例えば、アドレス2-Eに対応するコイル33)が駆動対象のコイル33であるときに、2つの第二コイルの少なくとも一方に永久磁石22に起因して流れる誘導電流に基づいて可動子20の位置を検出する。 In this case, when at least one of the two first coils (for example, the coil 33 corresponding to the address 2-E) is the driving target coil 33, the control unit 43 permanently sets at least one of the two second coils. The position of the mover 20 is detected based on the induced current that flows due to the magnet 22.
 制御部43は、検出した可動子20の位置に基づいて次の駆動対象のコイル33を決定する。可動子20が移動すると、複数のコイル33の一部のコイルに、順次、誘導電流による電流の変化が生じる。制御部43は、例えば、誘導電流により電流の変化が生じたコイル33の順番をモニタして次の駆動対象のコイル33を決定する。次の駆動対象のコイル33は、例えば、移動方向の前方に位置するコイル33または移動方向の後方に位置するコイル33である。 The control unit 43 determines the next drive target coil 33 based on the detected position of the mover 20. When the mover 20 moves, a change in current due to an induced current is sequentially generated in some of the plurality of coils 33. For example, the controller 43 determines the next drive target coil 33 by monitoring the order of the coils 33 in which a change in current has occurred due to the induced current. The next coil 33 to be driven is, for example, a coil 33 positioned in front of the moving direction or a coil 33 positioned rearward in the moving direction.
 なお、誘導電流は、駆動回路40が備えるスイッチング素子がオフの場合であっても発生する。この場合、誘導電流は、スイッチング素子(例えば、FET)のソースドレイン間に挿入される保護ダイオードに流れる。 The induced current is generated even when the switching element included in the drive circuit 40 is off. In this case, the induced current flows through a protection diode inserted between the source and drain of the switching element (for example, FET).
 [変形例1]
 なお、上記の動作では、第一スイッチング素子s1~s4がスキャン制御の対象とされ、第二スイッチング素子SA~SGがアドレス制御の対象とされた。しかしながら、第一スイッチング素子s1~s4がアドレス制御の対象とされ、第二スイッチング素子SA~SGがスキャン制御の対象とされてもよい。つまり、制御部43は、第一スイッチング素子s1~s4、及び、第二スイッチング素子SA~SGの一方をスキャン制御の対象とすればよい。
[Modification 1]
In the above operation, the first switching elements s1 to s4 are the targets of scan control, and the second switching elements SA to SG are the targets of address control. However, the first switching elements s1 to s4 may be subject to address control, and the second switching elements SA to SG may be subject to scan control. That is, the control unit 43 may set one of the first switching elements s1 to s4 and the second switching elements SA to SG as a target for scan control.
 また、スキャン制御においては、原則としてスイッチング素子が1つずつ順番にオンされる。しかしながら、一定の条件下で一部のスイッチング素子のオンがスキップされてもよいし、スイッチング素子が順番を無視してランダムにオンされてもよい。 In scan control, switching elements are turned on one by one in principle. However, turning on some of the switching elements may be skipped under certain conditions, or the switching elements may be turned on randomly ignoring the order.
 ところで、平面モータ10において、複数のコイル33に、S極の電磁石として機能するコイル33、及び、N極の電磁石として機能するコイル33を含める方法は、巻回方向を異ならせる方法に限定されない。例えば、複数のコイル33の巻回方向が全て同一であっても、直流電源44との電気的な接続関係を異ならせることによって、複数のコイル33に、S極の電磁石として機能するコイル33、及び、N極の電磁石として機能するコイル33を含めることができる。 By the way, in the planar motor 10, the method of including the coil 33 functioning as the S pole electromagnet and the coil 33 functioning as the N pole electromagnet in the plurality of coils 33 is not limited to the method of making the winding direction different. For example, even if the winding directions of the plurality of coils 33 are all the same, by making the electrical connection relationship with the DC power supply 44 different, the coils 33 functioning as S-pole electromagnets are made to the plurality of coils 33, And the coil 33 which functions as an electromagnet of N pole can be included.
 また、複数のコイル33に、S極の電磁石として機能するコイル33、及び、N極の電磁石として機能するコイル33が含まれることは必須ではない。複数のコイル33は、全てS極の電磁石として機能するコイル33であってもよい。複数のコイル33は、全てN極の電磁石として機能するコイル33であってもよい。 It is not essential that the plurality of coils 33 include the coil 33 that functions as an S-pole electromagnet and the coil 33 that functions as an N-pole electromagnet. The plurality of coils 33 may be coils 33 that function as S-pole electromagnets. The plurality of coils 33 may be coils 33 that function as N-pole electromagnets.
 [変形例2]
 平面モータ10に用いられる駆動回路は、パッシブマトリクス駆動方式の駆動回路40に限定されない。平面モータ10には、例えば、複数のコイル33のそれぞれを完全に独立して駆動できる駆動回路が用いられてもよい。図7は、このような変形例2に係る駆動回路の具体的構成を示す図である。
[Modification 2]
The drive circuit used for the planar motor 10 is not limited to the passive matrix drive type drive circuit 40. For the planar motor 10, for example, a drive circuit that can drive each of the plurality of coils 33 completely independently may be used. FIG. 7 is a diagram showing a specific configuration of the drive circuit according to the second modification.
 図7に示される駆動回路40aは、制御部43aと、複数の単位回路47とを備える。複数の単位回路47は、複数のコイル33に1対1で対応する。複数の単位回路47のそれぞれは、スイッチング素子S、第一の極性の直流電源44p、第二の極性の直流電源44n、及び、電流センサ45を有する。 7 includes a control unit 43a and a plurality of unit circuits 47. The drive circuit 40a shown in FIG. The plurality of unit circuits 47 correspond to the plurality of coils 33 on a one-to-one basis. Each of the plurality of unit circuits 47 includes a switching element S, a first polarity DC power supply 44p, a second polarity DC power supply 44n, and a current sensor 45.
 駆動回路40aにおいて、制御部43aは、スイッチング素子Sを制御することにより、複数のコイル33のそれぞれに対して、(a)電力を供給しない、(b)第一の極性(例えば、正極性)の直流電圧を供給する、及び、(c)第一の極性の逆の第二の極性(例えば、負極性)の直流電圧を供給する、のいずれかを行うことができる。また、制御部43aは、スイッチング素子Sを開放状態とすることにより、コイル33に生じる誘導電流による電流の変化を検出することができる。 In the drive circuit 40a, the control unit 43a controls the switching element S so that (a) power is not supplied to each of the plurality of coils 33, (b) first polarity (for example, positive polarity). And (c) a DC voltage having a second polarity (for example, negative polarity) opposite to the first polarity can be supplied. Moreover, the control part 43a can detect the change of the electric current by the induced current which arises in the coil 33 by making the switching element S into an open state.
 なお、単位回路47に2種類の直流電源が含まれることは必須ではなく、単位回路47には、少なくとも1種類の直流電源が含まれればよい。例えば、上記実施の形態で説明されたように、固定子30において第一コイル及び第二コイルがチェッカーフラッグ状に配置されるような場合には、単位回路47には、1種類の直流電源のみが含まれればよい。 Note that it is not essential that the unit circuit 47 includes two types of DC power supplies, and the unit circuit 47 only needs to include at least one type of DC power supply. For example, as described in the above embodiment, when the first coil and the second coil are arranged in a checkered flag shape in the stator 30, the unit circuit 47 has only one type of DC power supply. May be included.
 [効果等]
 以上説明したように、平面モータ10は、永久磁石22を有する可動子20と、可動子20と対向する主面31a、及び、主面31aに沿ってマトリクス状に配置される、可動子20に推力を与えるための複数のコイル33を有する固定子30と、複数のコイル33のうち対象のコイル33に電力が供給されているときに、複数のコイル33のうち対象のコイル33以外の他のコイル33に永久磁石22の磁束に起因して流れる誘導電流に基づいて可動子20の位置を検出する制御部43とを備える。永久磁石22は、磁石の一例である。
[Effects]
As described above, the planar motor 10 includes the mover 20 having the permanent magnet 22, the main surface 31a facing the mover 20, and the mover 20 arranged in a matrix along the main surface 31a. When power is supplied to the target coil 33 among the plurality of coils 33 and the stator 30 having the plurality of coils 33 for applying thrust, the other coils other than the target coil 33 among the plurality of coils 33 The coil 33 includes a control unit 43 that detects the position of the mover 20 based on the induced current that flows due to the magnetic flux of the permanent magnet 22. The permanent magnet 22 is an example of a magnet.
 このような平面モータ10は、可動子20に推力を与えるための複数のコイル33のうち、電力が供給されていない空きコイル33を利用して可動子20の位置を検出することができる。つまり、平面モータ10は、既存の構成要素を利用して可動子20の位置を検出することができる。 Such a planar motor 10 can detect the position of the mover 20 by using the empty coil 33 to which power is not supplied among the plurality of coils 33 for applying thrust to the mover 20. That is, the planar motor 10 can detect the position of the mover 20 using existing components.
 また、例えば、平面モータ10は、制御部43を含む駆動回路40を備える。駆動回路40は、複数のコイル33に電力を供給する直流電源を備える。直流電源44は、電源の一例である。駆動回路40は、複数のコイル33のうち同一の行に属するコイル群に電気的に接続された第一配線、及び、第一配線と直流電源44との電気的な接続をオン及びオフする第一スイッチング素子を複数組備える。駆動回路40は、複数のコイル33のうち同一の列に属するコイル群に電気的に接続された第二配線、及び、第二配線と直流電源44との電気的な接続をオン及びオフする第二スイッチング素子を複数組備える。制御部43は、複数の第一スイッチング素子、及び、複数の第二スイッチング素子の一方を1つずつ順番にオンする制御を所定の周期で繰り返す。 For example, the planar motor 10 includes a drive circuit 40 including a control unit 43. The drive circuit 40 includes a DC power supply that supplies power to the plurality of coils 33. The DC power supply 44 is an example of a power supply. The drive circuit 40 turns on and off the first wiring electrically connected to the coil group belonging to the same row among the plurality of coils 33 and the electrical connection between the first wiring and the DC power supply 44. A plurality of sets of one switching element are provided. The drive circuit 40 turns on and off the second wiring electrically connected to the coil group belonging to the same column among the plurality of coils 33 and the electrical connection between the second wiring and the DC power supply 44. A plurality of two switching elements are provided. The control unit 43 repeats the control of turning on one of the plurality of first switching elements and the plurality of second switching elements one by one in a predetermined cycle.
 このような平面モータ10では、第一配線が同一の行に属するコイル群によって共用され、第二配線が同一の列に属するコイル群によって共用されるため、コイル33を駆動するための配線の本数を減らすことができる。したがって、配線パターンの簡素化が可能となる。 In such a planar motor 10, the first wiring is shared by the coil groups belonging to the same row, and the second wiring is shared by the coil groups belonging to the same column, so that the number of wirings for driving the coil 33 is increased. Can be reduced. Therefore, the wiring pattern can be simplified.
 また、例えば、複数のコイル33には、第一コイル、及び、第一コイルと巻回方向が逆の第二コイルが含まれ、マトリクス状の配置の行方向及び列方向のそれぞれにおいては、第一コイル及び第二コイルが交互に位置する。 Further, for example, the plurality of coils 33 include a first coil and a second coil whose winding direction is opposite to that of the first coil, and in each of the row direction and the column direction of the matrix arrangement, One coil and second coil are located alternately.
 このような平面モータ10では、N極の電磁石として機能するコイル33と、S極の電磁石として機能するコイル33とを行方向及び列方向のそれぞれにおいて交互に配置することが容易となる。 In such a planar motor 10, it becomes easy to alternately arrange the coil 33 functioning as an N-pole electromagnet and the coil 33 functioning as an S-pole electromagnet in each of the row direction and the column direction.
 また、例えば、複数のコイル33には、2×2のマトリクス状に配置された4つのコイル33が含まれ、4つのコイル33には、2つの第一コイル、及び、2つの第二コイルが含まれる。制御部43は、2つの第一コイルの少なくとも一方が対象のコイルであるときに、2つの第二コイルの少なくとも一方に永久磁石22の磁束に起因して流れる誘導電流に基づいて可動子20の位置を検出する。 For example, the plurality of coils 33 include four coils 33 arranged in a 2 × 2 matrix, and the four coils 33 include two first coils and two second coils. included. When at least one of the two first coils is a target coil, the control unit 43 controls the movement of the movable element 20 based on an induced current flowing in at least one of the two second coils due to the magnetic flux of the permanent magnet 22. Detect position.
 このような平面モータ10は、4つのコイル33からなるコイル群34のうち電力が供給されていない空きコイル33を利用して可動子20の位置を検出することができる。 Such a planar motor 10 can detect the position of the mover 20 by using the empty coil 33 to which no power is supplied from the coil group 34 including the four coils 33.
 また、固定子30は、複数のコイル33が形成される回路基板32を備え、駆動回路40は、回路基板32上の複数のコイル33の周辺に配置される。 The stator 30 includes a circuit board 32 on which a plurality of coils 33 are formed, and the drive circuit 40 is arranged around the plurality of coils 33 on the circuit board 32.
 このような平面モータ10は、複数のコイル33の周辺に配置された駆動回路40によって複数のコイル33を駆動することができる。 Such a planar motor 10 can drive the plurality of coils 33 by the drive circuit 40 disposed around the plurality of coils 33.
 また、複数のコイル33は、回路基板32上の矩形の領域に形成され、駆動回路40は、矩形の領域の周辺に、矩形の領域の2辺に沿って配置される。 Further, the plurality of coils 33 are formed in a rectangular area on the circuit board 32, and the drive circuit 40 is disposed along the two sides of the rectangular area around the rectangular area.
 このような平面モータ10は、複数のコイル33が形成された矩形の領域の2辺に沿って配置された駆動回路40によって複数のコイル33を駆動することができる。 Such a planar motor 10 can drive the plurality of coils 33 by the drive circuit 40 arranged along two sides of the rectangular region where the plurality of coils 33 are formed.
 また、複数のコイル33は、回路基板32上の矩形の領域に形成され、駆動回路40は、矩形の領域を囲むように配置される。 Further, the plurality of coils 33 are formed in a rectangular area on the circuit board 32, and the drive circuit 40 is disposed so as to surround the rectangular area.
 このような平面モータ10は、複数のコイル33が形成された矩形の領域を囲むように配置された駆動回路40によって複数のコイル33を駆動することができる。 Such a planar motor 10 can drive the plurality of coils 33 by the drive circuit 40 arranged so as to surround a rectangular region where the plurality of coils 33 are formed.
 また、本発明は、平面モータ10の制御方法として実現されてもよい。このような制御方法は、複数のコイル33のうち対象のコイル33に電力を供給しているときに、複数のコイル33のうち対象のコイル33以外の他のコイル33に永久磁石22の磁束に起因して流れる誘導電流に基づいて可動子20の位置を検出する。 Further, the present invention may be realized as a method for controlling the planar motor 10. In such a control method, when power is supplied to the target coil 33 among the plurality of coils 33, the magnetic flux of the permanent magnet 22 is applied to the other coil 33 other than the target coil 33 among the plurality of coils 33. The position of the mover 20 is detected based on the induced current that flows.
 これにより、平面モータ10と同様の効果が得られる。 Thereby, the same effect as the planar motor 10 can be obtained.
 (その他の実施の形態)
 以上、実施の形態に係る平面モータについて説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other embodiments)
The planar motor according to the embodiment has been described above, but the present invention is not limited to the above embodiment.
 例えば、上記実施の形態では、平面モータは、物流倉庫における荷物の搬送に使用されたが、荷物の搬送以外の用途で使用されてもよい。また、上記実施の形態では、コイルは薄膜状のパターンコイルであったが、コイルは巻線コイルであってもよい。 For example, in the above-described embodiment, the planar motor is used for transporting luggage in a distribution warehouse, but may be used for purposes other than the transportation of luggage. Moreover, in the said embodiment, although the coil was a thin film pattern coil, a coil | winding coil may be sufficient as a coil.
 また、上記実施の形態において、複数のコイルのそれぞれには、ダイオードなどの整流素子が直列接続されてもよい。これにより、コイルに逆方向の電流が流れることが抑制される。 In the above embodiment, a rectifying element such as a diode may be connected in series to each of the plurality of coils. Thereby, it is suppressed that the electric current of a reverse direction flows into a coil.
 また、上記実施の形態の固定子の模式断面図に示される積層構造は一例である。平面モータは、本発明の特徴的な機能を実現できる他の積層構造を有する固定子を備えてもよい。平面モータは、例えば、上記実施の形態で説明された積層構造と同様の機能を実現できる範囲で、上記実施の形態の積層構造の層間に別の層が設けられた固定子を備えてもよい。 Also, the laminated structure shown in the schematic cross-sectional view of the stator of the above embodiment is an example. The planar motor may include a stator having another laminated structure that can realize the characteristic function of the present invention. The planar motor may include, for example, a stator in which another layer is provided between layers of the stacked structure of the above embodiment as long as the same function as the stacked structure described in the above embodiment can be realized. .
 また、上記実施の形態では、固定子が有する積層構造の各層を構成する主たる材料について例示しているが、固定子が有する積層構造の各層には、上記実施の形態の積層構造と同様の機能を実現できる範囲で他の材料が含まれてもよい。 In the above embodiment, the main material constituting each layer of the laminated structure of the stator is illustrated, but each layer of the laminated structure of the stator has the same function as the laminated structure of the above embodiment. Other materials may be included to the extent that can be realized.
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。 In the above embodiment, another processing unit may execute a process executed by a specific processing unit. Further, the order of the plurality of processes may be changed, and the plurality of processes may be executed in parallel.
 また、上記実施の形態において、制御部などの構成要素は、当該構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。制御部などの構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Further, in the above embodiment, the components such as the control unit may be realized by executing a software program suitable for the components. The components such as the control unit may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 また、制御部などの構成要素は、ハードウェアによって実現されてもよい。例えば、制御部などの構成要素は、回路(または集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 Further, the components such as the control unit may be realized by hardware. For example, the component such as the control unit may be a circuit (or an integrated circuit). These circuits may constitute one circuit as a whole, or may be separate circuits. Each of these circuits may be a general-purpose circuit or a dedicated circuit.
 また、本発明の全般的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。例えば、本発明は、平面モータの制御方法(つまり、平面モータを制御する方法)として実現されてもよい。本発明は、このような制御方法をコンピュータに実行させるためのプログラムとして実現されてもよい。本発明は、当該プログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。 The general or specific aspect of the present invention may be realized by a recording medium such as a system, apparatus, method, integrated circuit, computer program, or computer-readable CD-ROM. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium. For example, the present invention may be realized as a planar motor control method (that is, a method of controlling a planar motor). The present invention may be realized as a program for causing a computer to execute such a control method. The present invention may be realized as a computer-readable non-transitory recording medium in which the program is recorded.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, it is realized by variously conceiving various modifications conceived by those skilled in the art for each embodiment, or by arbitrarily combining the components and functions in each embodiment without departing from the spirit of the present invention. This form is also included in the present invention.
 10 平面モータ
 20 可動子
 22 永久磁石
 30 固定子
 31a 主面
 32 回路基板(基板)
 33、33a、33b コイル
 40、40a 駆動回路
 43、43a 制御部
 44、44n、44p 直流電源(電源)
 CA~CG 第二配線
 R1~R4 第一配線
 s1~s4 第一スイッチング素子
 SA~SG 第二スイッチング素子
DESCRIPTION OF SYMBOLS 10 Planar motor 20 Movable element 22 Permanent magnet 30 Stator 31a Main surface 32 Circuit board (board | substrate)
33, 33a, 33b Coil 40, 40a Drive circuit 43, 43a Control unit 44, 44n, 44p DC power supply (power supply)
CA to CG Second wiring R1 to R4 First wiring s1 to s4 First switching element SA to SG Second switching element

Claims (8)

  1.  磁石を有する可動子と、
     前記可動子と対向する主面、及び、前記主面に沿ってマトリクス状に配置される、前記可動子に推力を与えるための複数のコイルを有する固定子と、
     前記複数のコイルのうち対象のコイルに電力が供給されているときに、前記複数のコイルのうち前記対象のコイル以外の他のコイルに前記磁石の磁束に起因して流れる誘導電流に基づいて前記可動子の位置を検出する制御部とを備える
     平面モータ。
    A mover having a magnet;
    A stator having a plurality of coils for providing thrust to the mover, arranged in a matrix along the principal surface, and a main surface facing the mover;
    When electric power is supplied to the target coil among the plurality of coils, based on the induced current flowing due to the magnetic flux of the magnet to the other coils other than the target coil among the plurality of coils. A planar motor comprising a control unit for detecting the position of the mover.
  2.  前記平面モータは、前記制御部を含む駆動回路を備え、
     前記駆動回路は、
     前記複数のコイルに電力を供給する電源を備え、
     前記複数のコイルのうち同一の行に属するコイル群に電気的に接続された第一配線、及び、前記第一配線と前記電源との電気的な接続をオン及びオフする第一スイッチング素子を複数組備え、
     前記複数のコイルのうち同一の列に属するコイル群に電気的に接続された第二配線、及び、前記第二配線と前記電源との電気的な接続をオン及びオフする第二スイッチング素子を複数組備え、
     前記制御部は、複数の前記第一スイッチング素子、及び、複数の前記第二スイッチング素子の一方を1つずつ順番にオンする制御を所定の周期で繰り返す
     請求項1に記載の平面モータ。
    The planar motor includes a drive circuit including the control unit,
    The drive circuit is
    A power supply for supplying power to the plurality of coils;
    A first wiring electrically connected to a coil group belonging to the same row among the plurality of coils, and a plurality of first switching elements for turning on and off the electrical connection between the first wiring and the power source Set up,
    A plurality of second wirings electrically connected to a coil group belonging to the same row among the plurality of coils, and a plurality of second switching elements that turn on and off the electrical connection between the second wiring and the power source. Set up,
    The planar motor according to claim 1, wherein the control unit repeats a control for sequentially turning on one of the plurality of first switching elements and the plurality of second switching elements one by one in a predetermined cycle.
  3.  前記複数のコイルには、第一コイル、及び、前記第一コイルと巻回方向が逆の第二コイルが含まれ、
     前記マトリクス状の配置の行方向及び列方向のそれぞれにおいては、前記第一コイル及び前記第二コイルが交互に位置する
     請求項2に記載の平面モータ。
    The plurality of coils include a first coil and a second coil whose winding direction is opposite to that of the first coil,
    The planar motor according to claim 2, wherein the first coil and the second coil are alternately positioned in each of the row direction and the column direction of the matrix arrangement.
  4.  前記複数のコイルには、2×2のマトリクス状に配置された4つのコイルが含まれ、
     前記4つのコイルには、2つの前記第一コイル、及び、2つの前記第二コイルが含まれ、
     前記制御部は、2つの前記第一コイルの少なくとも一方が前記対象のコイルであるときに、2つの前記第二コイルの少なくとも一方に前記磁石の磁束に起因して流れる誘導電流に基づいて前記可動子の位置を検出する
     請求項3に記載の平面モータ。
    The plurality of coils includes four coils arranged in a 2 × 2 matrix,
    The four coils include two first coils and two second coils,
    When the at least one of the two first coils is the target coil, the control unit is movable based on an induced current flowing in at least one of the two second coils due to the magnetic flux of the magnet. The planar motor according to claim 3, wherein the position of the child is detected.
  5.  前記固定子は、前記複数のコイルが形成される基板を備え、
     前記駆動回路は、前記基板上の前記複数のコイルの周辺に配置される
     請求項2~4のいずれか1項に記載の平面モータ。
    The stator includes a substrate on which the plurality of coils are formed,
    The planar motor according to any one of claims 2 to 4, wherein the drive circuit is arranged around the plurality of coils on the substrate.
  6.  前記複数のコイルは、前記基板上の矩形の領域に形成され、
     前記駆動回路は、前記矩形の領域の周辺に、前記矩形の領域の2辺に沿って配置される
     請求項5に記載の平面モータ。
    The plurality of coils are formed in a rectangular region on the substrate,
    The planar motor according to claim 5, wherein the drive circuit is disposed along two sides of the rectangular area around the rectangular area.
  7.  前記複数のコイルは、前記基板上の矩形の領域に形成され、
     前記駆動回路は、前記矩形の領域を囲むように配置される
     請求項5に記載の平面モータ。
    The plurality of coils are formed in a rectangular region on the substrate,
    The planar motor according to claim 5, wherein the drive circuit is disposed so as to surround the rectangular region.
  8.  平面モータの制御方法であって、
     前記平面モータは、
     磁石を有する可動子と、
     前記可動子と対向する主面、及び、前記主面に沿ってマトリクス状に配置される、前記可動子に推力を与えるための複数のコイルを有する固定子とを備え、
     前記制御方法は、前記複数のコイルのうち対象のコイルに電力を供給しているときに、前記複数のコイルのうち前記対象のコイル以外の他のコイルに前記磁石の磁束に起因して流れる誘導電流に基づいて前記可動子の位置を検出する
     制御方法。
    A method for controlling a planar motor,
    The planar motor is
    A mover having a magnet;
    A main surface opposed to the mover, and a stator having a plurality of coils arranged in a matrix along the main surface for applying thrust to the mover,
    In the control method, when electric power is supplied to a target coil among the plurality of coils, the induction that flows due to the magnetic flux of the magnet to a coil other than the target coil among the plurality of coils. A control method for detecting a position of the mover based on an electric current.
PCT/JP2019/017555 2018-05-25 2019-04-25 Planar motor and control method WO2019225284A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018100939 2018-05-25
JP2018-100939 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019225284A1 true WO2019225284A1 (en) 2019-11-28

Family

ID=68616386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017555 WO2019225284A1 (en) 2018-05-25 2019-04-25 Planar motor and control method

Country Status (1)

Country Link
WO (1) WO2019225284A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157280A1 (en) * 2020-02-05 2021-08-12 株式会社日立ハイテク Specimen transport system and specimen transport method
WO2021250978A1 (en) * 2020-06-10 2021-12-16 株式会社日立ハイテク Specimen carrying device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004117052A (en) * 2002-09-24 2004-04-15 Polymatech Co Ltd Film sensor, electric actuator, and input device
JP2005080422A (en) * 2003-09-01 2005-03-24 Advanced Telecommunication Research Institute International Multi-pole motor drive device and multi-pole motor
JP2016163480A (en) * 2015-03-04 2016-09-05 カルソニックカンセイ株式会社 Compressor motor control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004117052A (en) * 2002-09-24 2004-04-15 Polymatech Co Ltd Film sensor, electric actuator, and input device
JP2005080422A (en) * 2003-09-01 2005-03-24 Advanced Telecommunication Research Institute International Multi-pole motor drive device and multi-pole motor
JP2016163480A (en) * 2015-03-04 2016-09-05 カルソニックカンセイ株式会社 Compressor motor control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157280A1 (en) * 2020-02-05 2021-08-12 株式会社日立ハイテク Specimen transport system and specimen transport method
JP7459145B2 (en) 2020-02-05 2024-04-01 株式会社日立ハイテク Specimen transport system and specimen transport method
WO2021250978A1 (en) * 2020-06-10 2021-12-16 株式会社日立ハイテク Specimen carrying device
JP7465727B2 (en) 2020-06-10 2024-04-11 株式会社日立ハイテク Sample transport device

Similar Documents

Publication Publication Date Title
JP5895774B2 (en) motor
JP5515478B2 (en) Periodic magnetic field generator and linear motor and rotary motor using the same
JP5211593B2 (en) Brushless electric machine
JP2007006545A (en) Periodical magnetic filed generator and linear motor employing it, rotatory motor, oscillating motor
WO2019225284A1 (en) Planar motor and control method
JP2007312449A (en) Periodic magnetic field generator and motor employing the same
US20140197823A1 (en) Motor unit
WO2015092922A1 (en) Linear motor device
US11276518B2 (en) Haptic engine module with array-riddled-of-dual (AROD) magnets
JP2004117052A (en) Film sensor, electric actuator, and input device
WO2019208144A1 (en) Planar motor and control method
WO2019239797A1 (en) Planar motor and control method
KR100720942B1 (en) Linear motor of delivery system
JP6846722B2 (en) Plane motor
WO2017047783A1 (en) Linear motor
JP2019193329A (en) Flat surface motor system
JP2008278596A5 (en)
JP2019193458A (en) Planar motor
US20180278130A1 (en) Brushless motor
US7394975B2 (en) Drive circuit for a sensored brushless DC motor
JPWO2019058735A1 (en) Flat motor
KR20180126040A (en) Motor structure
JP2020089109A (en) Magnetic carrier, and control method
WO2019176507A1 (en) Flat motor
WO2019198428A1 (en) Planar motor and planar motor system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP