WO2019198428A1 - Planar motor and planar motor system - Google Patents

Planar motor and planar motor system Download PDF

Info

Publication number
WO2019198428A1
WO2019198428A1 PCT/JP2019/011039 JP2019011039W WO2019198428A1 WO 2019198428 A1 WO2019198428 A1 WO 2019198428A1 JP 2019011039 W JP2019011039 W JP 2019011039W WO 2019198428 A1 WO2019198428 A1 WO 2019198428A1
Authority
WO
WIPO (PCT)
Prior art keywords
planar motor
control signal
power supply
drive circuit
supply line
Prior art date
Application number
PCT/JP2019/011039
Other languages
French (fr)
Japanese (ja)
Inventor
沙季 青木
西森 泰輔
稔博 秋山
若林 俊一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019198428A1 publication Critical patent/WO2019198428A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type

Definitions

  • the present invention relates to a planar motor that moves a mover two-dimensionally along a plane, and a planar motor system including the same.
  • Patent Document 1 discloses a displacement device including a stator and a movable stage.
  • a planar motor when a plurality of coils provided on a stator are controlled based on a control signal, there is room for study on a method for acquiring a control signal. For example, when a signal line for acquiring a control signal is added, the circuit scale of the planar motor increases.
  • the present invention provides a planar motor that can acquire a control signal while suppressing an increase in circuit scale, and a planar motor system including the planar motor.
  • a planar motor includes a mover having a plurality of magnets, a main surface facing the mover, and a stator having a plurality of coils arranged along the main surface, A drive circuit that supplies power to the plurality of coils, and the drive circuit supplies power to at least some of the plurality of coils based on a control signal obtained via a power supply line connected to the drive circuit. By doing so, the mover is moved along the main surface.
  • a planar motor system includes the planar motor and a control device that outputs the control signal to the power supply line.
  • the planar motor of the present invention can acquire a control signal while suppressing an increase in circuit scale.
  • the planar motor system of the present invention can transmit and receive control signals while suppressing an increase in circuit scale.
  • FIG. 1 is a diagram illustrating a schematic configuration of a planar motor system according to an embodiment.
  • FIG. 2 is a cross-sectional view of the planar motor according to the embodiment.
  • FIG. 3 is a diagram showing signal waveforms related to the control signal.
  • FIG. 4 is a block diagram showing a circuit configuration of the demodulation circuit.
  • FIG. 5 is a diagram illustrating an example of the format of the data signal.
  • FIG. 6 is a flowchart of the operation of the planar motor system according to the embodiment.
  • FIG. 7 is a block diagram illustrating a circuit configuration of a demodulation circuit according to a modification.
  • plan view means viewing from a direction perpendicular to the main surface of the stator.
  • N pole of the magnet is described as “N”
  • S pole of the magnet is described as “S”.
  • FIG. 1 is a diagram illustrating a schematic configuration of a planar motor system according to an embodiment.
  • FIG. 2 is a cross-sectional view of the planar motor according to the embodiment.
  • a plan view of the mover 20 and the stator 30 is shown.
  • the cover member 31 is not shown in order to show the arrangement of the plurality of coils 33.
  • the drive circuit 40 is not shown.
  • the planar motor system 100 includes a planar motor 10, a power supply device 200, a control device 300, and a power supply line 400.
  • the planar motor 10 includes a mover 20, a stator 30, and a drive circuit 40.
  • the planar motor system 100 is a linear motor (in other words, electromagnetic actuator) system that moves the mover 20 two-dimensionally along the main surface 31 a of the stator 30.
  • the planar motor system 100 is used, for example, for transporting luggage in a distribution warehouse.
  • each component of the planar motor system 100 will be described in detail.
  • the mover 20 is a moving object in the planar motor system 100. As shown in FIG. 2, the mover 20 includes a mover main body 21, a permanent magnet 22, and a ball caster 23.
  • the mover body 21 is a substantially rectangular plate-shaped member.
  • the mover main body 21 is made of, for example, a resin material.
  • the mover main body 21 may be formed of a metal material having a relatively low permeability such as aluminum.
  • the permanent magnet 22 is a magnet for the mover 20 to obtain thrust from the stator 30, and is attached to the mover main body 21.
  • the permanent magnet 22 is, for example, a flat cylindrical neodymium magnet.
  • the shape and material of the permanent magnet 22 are not particularly limited.
  • the permanent magnet 22 may be, for example, a ferrite magnet or an alnico magnet.
  • the mover 20 includes a plurality of permanent magnets 22, for example, but may include at least one permanent magnet 22. In FIG. 2, the permanent magnet 22 is embedded in the mover main body 21. However, the permanent magnet 22 may be attached to the upper surface of the mover main body 21 or attached to the lower surface of the mover main body 21. Also good.
  • the permanent magnet 22 is arranged so that the arrangement direction of the S pole and the N pole intersects the main surface 31a, and the S pole is located closer to the main surface 31a than the N pole.
  • the permanent magnet 22 may be arranged such that the N pole is located closer to the main surface 31a than the S pole.
  • the permanent magnet 22 may be arrange
  • the mover 20 may have an electromagnet instead of the permanent magnet 22.
  • the electromagnet is driven by, for example, a dry battery or a storage battery.
  • the electromagnet may be supplied with power from the coil 33 that does not contribute to the movement of the mover 20.
  • mover 20 should just have the permanent magnet 22 or the electromagnet. That is, the needle
  • the ball caster 23 is a moving mechanism for moving the mover main body 21 along the main surface 31a of the stator 30.
  • the ball caster 23 is attached to the lower surface of the mover main body 21 and abuts on the main surface 31 a of the stator 30.
  • the mover 20 may include a moving mechanism other than the ball caster 23 such as a free caster or a wheel.
  • the stator 30 is a structure for moving the mover 20.
  • the stator 30 is a sheet-like member.
  • the stator 30 includes a cover member 31 and a circuit board 32.
  • the cover member 31 is a sheet-like protective member that suppresses wear and the like of the circuit board 32 and smoothes the surface of the stator 30.
  • the cover member 31 covers the entire top surface of the circuit board 32.
  • the cover member 31 has a rectangular shape in plan view, but may be other shapes such as a circle.
  • the upper surface of the cover member 31 is a main surface 31a of the stator 30.
  • the main surface 31 a faces the mover 20.
  • the cover member 31 is formed of an organic material such as melamine resin, urethane resin, or acrylic resin, for example.
  • the cover member 31 may be formed of a silane compound or a metal oxide.
  • Such an organic material, a silane compound, or a metal oxide is suitable for the cover member 31 in terms of wear resistance. If an organic material is employed for the cover member 31, the cover member 31 can be formed by a low-temperature manufacturing process. Further, if an organic material is employed for the cover member 31, it is easy to increase the area of the cover member 31.
  • the circuit board 32 is a thin film-like (in other words, sheet-like) board on which a plurality of coils 33 are formed on the upper surface.
  • the planar view shape of the circuit board 32 is rectangular, but may be other shapes such as a circle.
  • the base material of the circuit board 32 is formed of, for example, a resin material such as glass epoxy.
  • a plurality of coils 33 are formed on the upper surface of the circuit board 32. As shown in FIG. 1, the plurality of coils 33 are spread in a matrix in a plan view. In FIG. 1, in order to distinguish a plurality of rows and a plurality of columns in a matrix arrangement, numbers are assigned to the plurality of rows and alphabets are assigned to the plurality of columns. The number of the plurality of coils 33 is not particularly limited.
  • the plurality of coils 33 are coils for applying thrust to the mover 20.
  • the plurality of coils 33 are magnetized when power is supplied by the drive circuit 40.
  • Each of the plurality of coils 33 is a thin pattern coil that is patterned on the upper surface of the circuit board 32.
  • Each of the plurality of coils 33 is a rectangular winding wire whose winding axis extends in a direction perpendicular to the main surface 31a, but may be another winding shape such as a circular winding shape.
  • Each of the plurality of coils 33 may have, for example, a triangular shape or a wound shape along a polygon such as a hexagon.
  • the winding directions of the plurality of coils 33 are the same, but may be different.
  • the coil 33 is formed of a metal material such as copper, for example.
  • the coil 33 is formed by etching, for example.
  • the drive circuit 40 supplies power to the plurality of coils 33 based on a control signal transmitted from the control device 300.
  • the drive circuit 40 specifically includes a plurality of control circuits, a control unit 41, a demodulation circuit 42, and a modulation circuit 43.
  • the plurality of control circuits correspond to the plurality of coils 33 on a one-to-one basis.
  • the control circuit corresponding to the coil 33 belonging to one row and belonging to the column A among the plurality of coils 33 arranged in a matrix is the control circuit 1A.
  • Each of the plurality of control circuits is, for example, a full bridge inverter circuit.
  • the plurality of control circuits operate based on the control of the control unit 41.
  • the control unit 41 moves the mover 20 along the main surface 31a using a plurality of control circuits based on a control signal transmitted from the control device 300.
  • the control unit 41 is realized by a microcomputer, but may be realized by a processor or a dedicated circuit. Although not shown, the control unit 41 executes a control program stored in a storage unit (not shown) such as a semiconductor memory included in the drive circuit 40.
  • Each of the plurality of control circuits based on the control of the control unit 41, (a) does not supply power to the coil 33 corresponding to the control circuit, (b) first polarity (for example, positive polarity) And (c) supplying a DC voltage having a second polarity (for example, negative polarity) opposite to the first polarity.
  • first polarity for example, positive polarity
  • second polarity for example, negative polarity
  • the coil 33a (shown in FIG. 2) supplied with the first polarity DC voltage functions as an S-pole electromagnet on the main surface 31a side. If it does so, the needle
  • FIG. the coil 33b (shown in FIG. 2) supplied with the DC voltage of the second polarity functions as an N-pole electromagnet on the main surface 31a side. Then, the mover 20 moves in the moving direction by the attractive force generated between the coil 33b and the permanent magnet 22.
  • the drive circuit 40 can supply a DC voltage to each of the plurality of coils 33 and switch the polarity of the DC voltage for each coil 33.
  • the control part 41 can cancel
  • the drive circuit 40 may be formed integrally with the stator 30.
  • the drive circuit 40 may be mounted on the circuit board 32.
  • the power supply device 200 is a DC power supply that supplies a DC voltage of about 5V to 12V.
  • the power supply device 200 is electrically connected to the control unit 41 and the control device 300 via the power supply line 400 and supplies a DC voltage to each of the control unit 41 and the control device 300 via the power supply line 400.
  • the power supply voltage of the power supply device 200 is not particularly limited.
  • the power supply line 400 is, for example, a Vcc line, but may be a ground line.
  • the control device 300 is an information communication terminal such as a server device, for example, and transmits a control signal to the control unit 41 via the power supply line 400. That is, the control device 300 communicates with the control unit 41 in parallel with the supply of the DC voltage by the power supply device 200 by superimposing the control signal on the DC voltage supplied by the power supply device 200. More specifically, the communication between the control device 300 and the control unit 41 is serial communication.
  • the control signal transmitted by the control device 300 is a signal obtained by multiplexing two modulated signals.
  • One of the two modulated signals is a first signal obtained by AM (Amplitude Modulation) modulation of a carrier having a first frequency in accordance with a clock signal.
  • AM Amplitude Modulation
  • ASK Amplitude-Shift Keying
  • 3A and 3B are diagrams showing signal waveforms related to the control signal.
  • FIG. 3A shows the waveform of the first signal
  • FIG. 3B shows the waveform of the clock signal.
  • the first frequency is 10 MHz, for example.
  • Another one of the two modulated signals is a second signal obtained by AM-modulating a carrier wave having a second frequency different from the first frequency in accordance with the data signal.
  • FIG. 3C shows the waveform of the second signal
  • FIG. 3D shows the waveform of the data signal.
  • the second frequency is 1 MHz, for example.
  • the second frequency is lower than the first frequency, but may be higher than the first frequency.
  • the control signal may be a signal obtained by multiplexing three or more modulated signals. Further, it is not essential that the signals are multiplexed.
  • the first signal and the second signal may be signals in which a carrier wave is modulated by a method other than AM modulation.
  • control signal is a signal in which the first signal and the second signal are multiplexed.
  • the control signal transmitted by the control device 300 is demodulated by the demodulation circuit 42 provided in the drive circuit 40.
  • FIG. 4 is a block diagram showing a circuit configuration of the demodulation circuit 42.
  • the demodulation circuit 42 includes a DC cut capacitor 51, a first detection circuit 52, a first waveform shaping circuit 53, a low-pass filter 54, a second detection circuit 55, and a second waveform shaping. Circuit 56.
  • the DC cut capacitor 51 cuts the DC component of the control signal and outputs it to each of the first detection circuit 52 and the low-pass filter 54.
  • the first detection circuit 52 is a so-called diode detection circuit (in other words, an envelope detection circuit).
  • the control signal that has passed through the first detection circuit 52 is shaped by the first waveform shaping circuit 53. As a result, a clock signal is obtained.
  • the second detection circuit 55 is a so-called diode detection circuit (in other words, an envelope detection circuit).
  • the second signal that has passed through the second detection circuit 55 is shaped by the second waveform shaping circuit 56. As a result, a data signal is obtained.
  • FIG. 5 is a diagram illustrating an example of the format of the data signal.
  • the data signal includes information indicating the coil address, information indicating the direction of the current, information indicating the magnitude of the current, information for bidirectional communication, and parity bits for error detection.
  • the information indicating the coil address is 12-bit information, and is information for instructing the control unit 41 of the address (position in the row direction and position in the column direction) of the coil 33 to be controlled.
  • the information indicating the direction of the current is information for instructing the control unit 41 the direction of the current flowing through the coil 33 to be controlled.
  • the information indicating the direction of the current is information for instructing the control unit 41 of the polarity (N pole or S pole) of the coil 33 that is the target of power supply of the drive circuit 40.
  • the information indicating the direction of current is 2-bit information. Therefore, the information indicating the direction of the current can indicate two more controls in addition to the two types of current directions.
  • the information indicating the direction of the current indicates, for example, two controls of turning off the power supply to the coil 33 and increasing the impedance of the coil 33.
  • the information indicating the magnitude of the current is information for instructing the control unit 41 the direction of the current flowing through the coil 33 that is the target of power supply of the drive circuit 40. Since the information indicating the magnitude of the current is 4 bits, the magnitude of the current can be indicated with 16 levels of resolution.
  • the information for bidirectional communication is information transmitted from the drive circuit 40 to the control device 300.
  • the control unit 41 included in the drive circuit 40 can modulate the carrier wave according to the 8-bit signal using the modulation circuit 43 and transmit the modulated carrier wave information to the control device 300 as information for bidirectional communication.
  • the information for two-way communication is information indicating the current position of the mover 20 or information indicating the contents of the load placed on the mover main body 21.
  • the current position of the mover 20 is detected by, for example, an optical sensor (not shown).
  • FIG. 6 is a flowchart of the operation of the planar motor system 100.
  • the drive circuit 40 acquires a control signal from the control device 300 (S11).
  • the drive circuit 40 acquires a control signal via the power supply line 400.
  • the control signal is acquired and demodulated by the demodulation circuit 42.
  • the demodulation method is as described with reference to FIG.
  • the drive circuit 40 supplies power to at least some of the plurality of coils 33 based on the control signal acquired in step S11 and demodulated by the demodulation circuit 42 (S12). As a result, the mover 20 moves along the main surface 31a.
  • the control unit 41 of the drive circuit 40 supplies power to the coil 33 connected to the control circuit 1A using the control circuit 1A.
  • the direction of the current flowing through the coil 33 located at the address 1A is specified by information indicating the direction of the current included in the control signal.
  • the magnitude of the current flowing through the coil 33 located at the address 1A is specified by information indicating the magnitude of the current included in the control signal.
  • FIG. 7 is a block diagram showing a circuit configuration of the demodulation circuit 42 when the control signal is differentially transmitted.
  • the demodulation circuit 42 includes a first DC cut capacitor 57, a second DC cut capacitor 58, a differential amplifier circuit 59, a first detection circuit 52, and a first waveform.
  • a shaping circuit 53, a low-pass filter 54, a second detection circuit 55, and a second waveform shaping circuit 56 are provided.
  • the first DC cut capacitor 57 cuts the direct current component of the first control signal obtained through the first power supply line and outputs it to the differential amplifier circuit 59.
  • the second DC cut capacitor 58 cuts the DC component of the second control signal obtained via the second power supply line and outputs the cut DC component to the differential amplifier circuit 59.
  • the differential amplifier circuit 59 generates a differential signal of the first control signal and the second control signal.
  • the amplification factor of the differential amplifier circuit is not particularly limited.
  • the amplification factor of the differential amplifier circuit 59 may be less than 1.
  • the differential signal is output to each of the first detection circuit 52 and the low-pass filter 54.
  • the subsequent processing is the same as that of the demodulation circuit 42 shown in FIG.
  • control signal is differentially transmitted as described above, noise contained in the control signal can be reduced.
  • the planar motor 10 includes the mover 20 having the plurality of permanent magnets 22, the main surface 31a facing the mover 20, and the plurality of coils 33 disposed along the main surface 31a.
  • a stator 30 and a drive circuit 40 that supplies power to the plurality of coils 33 are provided.
  • the permanent magnet 22 is an example of a magnet.
  • the drive circuit 40 supplies the power to at least a part of the plurality of coils 33 based on a control signal obtained via the power supply line 400 connected to the drive circuit 40, thereby moving the mover 20 along the main surface 31a. Move.
  • Such a planar motor 10 can acquire a control signal using the power supply line 400.
  • Such a planar motor 10 does not require the addition of a signal line for acquiring a control signal, so that an increase in circuit scale is suppressed.
  • control signal is a signal obtained by multiplexing a plurality of modulated signals.
  • Such a planar motor 10 can acquire a plurality of signals from the control signal.
  • control signal is a signal obtained by multiplexing an AM modulated signal.
  • the plurality of modulation signals include a data signal and a clock signal.
  • Such a planar motor 10 can acquire a data signal and a clock signal from a control signal.
  • control signal includes information indicating the address of the coil to be controlled among the plurality of coils 33 and information indicating the content of control on the coil to be controlled.
  • information indicating the control content for the coil to be controlled is information indicating the direction of the current, information indicating the magnitude of the current, and the like.
  • Such a planar motor 10 can identify a coil to be controlled based on a control signal, and can control the identified coil according to the control content.
  • the drive circuit 40 transmits a signal via the power supply line 400.
  • the drive circuit 40 is connected to the first power supply line, which is the power supply line, and the second power supply line that is paired with the first power supply line.
  • One of the first power supply line and the second power supply line is a Vcc line
  • the other of the first power supply line and the second power supply line is a ground line.
  • the drive circuit 40 has a plurality of coils 33 based on a first control signal which is a control signal obtained via the first power supply line and a differential signal of the second control signal obtained via the second power supply line.
  • the mover 20 is moved along the main surface 31a by supplying electric power to at least a part.
  • the drive circuit 40 can move the mover 20 along the main surface 31a based on the differential signal with reduced noise.
  • the power supply line 400 is a power supply line for supplying DC power to the drive circuit 40.
  • Such a planar motor 10 can acquire a control signal through a power supply line 400 for supplying DC power.
  • the planar motor system 100 includes the planar motor 10 and a control device 300 that outputs a control signal to the power supply line 400.
  • Such a planar motor system 100 can transmit and receive control signals using the power supply line 400. In such a planar motor system 100, it is not necessary to add a signal line for acquiring a control signal, so that an increase in circuit scale is suppressed.
  • planar motor system according to the embodiment has been described above, but the present invention is not limited to the above embodiment.
  • planar motor system is used as a cargo transport system in a distribution warehouse, but may be used for purposes other than the cargo transport system.
  • the coil is a thin-film pattern coil, but the coil may be a wound coil.
  • the some coil was arrange
  • the plurality of pattern coils may be arranged in a honeycomb shape.
  • the planar motor system may include a stator having another laminated structure that can realize the characteristic function of the present invention.
  • the planar motor system may include, for example, a stator in which another layer is provided between the layers of the stacked structure of the above embodiment as long as the same function as the stacked structure described in the above embodiment can be realized. Good.
  • each layer of the laminated structure of the stator has the same function as the laminated structure of the above embodiment.
  • Other materials may be included to the extent that can be realized.
  • another processing unit may execute a process executed by a specific processing unit. Further, the order of the plurality of processes may be changed, and the plurality of processes may be executed in parallel.
  • the components such as the control unit may be realized by executing a software program suitable for the components.
  • the components such as the control unit may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the components such as the control unit may be realized by hardware.
  • the component such as the control unit may be a circuit (or an integrated circuit). These circuits may constitute one circuit as a whole, or may be separate circuits. Each of these circuits may be a general-purpose circuit or a dedicated circuit.
  • the general or specific aspect of the present invention may be realized by a recording medium such as a system, apparatus, method, integrated circuit, computer program, or computer-readable CD-ROM. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • the present invention may be realized as a control device included in a planar motor system, or may be realized as a method for moving a mover in the above embodiment.
  • the present invention may be realized as a program for causing a computer such as a control device to execute the moving method.
  • the present invention may be realized as a computer-readable non-transitory recording medium in which the program is recorded.
  • planar motor system may be realized as a single device or may be realized by a plurality of devices.
  • the components included in the planar motor system described in the above embodiment may be distributed to the plurality of devices in any way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)

Abstract

A planar motor (10) according to the present invention is provided with: a movable element (20) which has a plurality of permanent magnets (22); a stator (30) that has a main surface (31a), which faces the movable element (20), and a plurality of coils (33) that are arranged along the main surface (31a); and a drive circuit (40) which supplies electric power to the plurality of coils (33). The drive circuit (40) moves the movable element (20) along the main surface (31a) by supplying electric power to at least some of the plurality of coils (33) in accordance with the control signals which are obtained via a power supply line (400) that is connected to the drive circuit (40).

Description

平面モータ、及び、平面モータシステムPlanar motor and planar motor system
 本発明は、可動子を平面に沿って二次元的に移動させる平面モータ、及び、これを備える平面モータシステムに関する。 The present invention relates to a planar motor that moves a mover two-dimensionally along a plane, and a planar motor system including the same.
 可動子を平面に沿って二次元的に移動させる平面モータが知られている。このような平面モータとして、特許文献1には、固定子と、可動式ステージとを備える変位装置が開示されている。 A planar motor that moves a mover two-dimensionally along a plane is known. As such a planar motor, Patent Document 1 discloses a displacement device including a stator and a movable stage.
特表2014-531189号公報Special table 2014-531189 gazette
 平面モータにおいて、固定子に設けられた複数のコイルが制御信号に基づいて制御される場合、制御信号の取得方法には検討の余地がある。例えば、制御信号を取得するための信号ラインが追加されると、平面モータの回路規模が増大してしまう。 In a planar motor, when a plurality of coils provided on a stator are controlled based on a control signal, there is room for study on a method for acquiring a control signal. For example, when a signal line for acquiring a control signal is added, the circuit scale of the planar motor increases.
 本発明は、回路規模の増大を抑制して制御信号を取得することができる平面モータ、及び、これを備える平面モータシステムを提供する。 The present invention provides a planar motor that can acquire a control signal while suppressing an increase in circuit scale, and a planar motor system including the planar motor.
 本発明の一態様に係る平面モータは、複数の磁石を有する可動子と、前記可動子と対向する主面、及び、前記主面に沿って配置される複数のコイルを有する固定子と、前記複数のコイルに電力を供給する駆動回路とを備え、前記駆動回路は、前記駆動回路に接続された電源ラインを介して得られる制御信号に基づいて前記複数のコイルの少なくとも一部に電力を供給することにより前記可動子を前記主面に沿って移動させる。 A planar motor according to one aspect of the present invention includes a mover having a plurality of magnets, a main surface facing the mover, and a stator having a plurality of coils arranged along the main surface, A drive circuit that supplies power to the plurality of coils, and the drive circuit supplies power to at least some of the plurality of coils based on a control signal obtained via a power supply line connected to the drive circuit. By doing so, the mover is moved along the main surface.
 本発明の一態様に係る平面モータシステムは、前記平面モータと、前記制御信号を前記電源ラインに出力する制御装置とを備える。 A planar motor system according to an aspect of the present invention includes the planar motor and a control device that outputs the control signal to the power supply line.
 本発明の平面モータは、回路規模の増大を抑制して制御信号を取得することができる。本発明の平面モータシステムは、回路規模の増大を抑制して制御信号を送受信することができる。 The planar motor of the present invention can acquire a control signal while suppressing an increase in circuit scale. The planar motor system of the present invention can transmit and receive control signals while suppressing an increase in circuit scale.
図1は、実施の形態に係る平面モータシステムの概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a planar motor system according to an embodiment. 図2は、実施の形態に係る平面モータの断面図である。FIG. 2 is a cross-sectional view of the planar motor according to the embodiment. 図3は、制御信号に関連する信号波形を示す図である。FIG. 3 is a diagram showing signal waveforms related to the control signal. 図4は、復調回路の回路構成を示すブロック図である。FIG. 4 is a block diagram showing a circuit configuration of the demodulation circuit. 図5は、データ信号のフォーマットの一例を示す図である。FIG. 5 is a diagram illustrating an example of the format of the data signal. 図6は、実施の形態に係る平面モータシステムの動作のフローチャートである。FIG. 6 is a flowchart of the operation of the planar motor system according to the embodiment. 図7は、変形例に係る復調回路の回路構成を示すブロック図である。FIG. 7 is a block diagram illustrating a circuit configuration of a demodulation circuit according to a modification.
 以下、実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments will be described with reference to the drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. The numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化される場合がある。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, and the overlapping description may be abbreviate | omitted or simplified.
 また、以下の実施の形態において、「平面視」とは、固定子の主面に垂直な方向から見ることを意味する。図面において、磁石のN極は、「N」と記載され、磁石のS極は、「S」と記載される。 In the following embodiments, “plan view” means viewing from a direction perpendicular to the main surface of the stator. In the drawing, the N pole of the magnet is described as “N”, and the S pole of the magnet is described as “S”.
 (実施の形態)
 [全体構成]
 以下、実施の形態に係る平面モータシステムの構成について図面を用いて説明する。図1は、実施の形態に係る平面モータシステムの概略構成を示す図である。図2は、実施の形態に係る平面モータの断面図である。図1において、可動子20及び固定子30については平面図が示されている。図1においては、複数のコイル33の配置を示すために、カバー部材31は図示が省略されている。図2において、駆動回路40は図示が省略されている。
(Embodiment)
[overall structure]
Hereinafter, the configuration of the planar motor system according to the embodiment will be described with reference to the drawings. FIG. 1 is a diagram illustrating a schematic configuration of a planar motor system according to an embodiment. FIG. 2 is a cross-sectional view of the planar motor according to the embodiment. In FIG. 1, a plan view of the mover 20 and the stator 30 is shown. In FIG. 1, the cover member 31 is not shown in order to show the arrangement of the plurality of coils 33. In FIG. 2, the drive circuit 40 is not shown.
 図1及び図2に示されるように、実施の形態に係る平面モータシステム100は、平面モータ10と、電源装置200と、制御装置300と、電源ライン400とを備える。平面モータ10は、可動子20と、固定子30と、駆動回路40とを備える。平面モータシステム100は、固定子30が有する主面31aに沿って可動子20を2次元的に移動させるリニアモータ(言い換えれば、電磁アクチュエータ)システムである。平面モータシステム100は、例えば、物流倉庫内で荷物の運搬に用いられる。以下、このような平面モータシステム100の各構成要素について詳細に説明する。 As shown in FIGS. 1 and 2, the planar motor system 100 according to the embodiment includes a planar motor 10, a power supply device 200, a control device 300, and a power supply line 400. The planar motor 10 includes a mover 20, a stator 30, and a drive circuit 40. The planar motor system 100 is a linear motor (in other words, electromagnetic actuator) system that moves the mover 20 two-dimensionally along the main surface 31 a of the stator 30. The planar motor system 100 is used, for example, for transporting luggage in a distribution warehouse. Hereinafter, each component of the planar motor system 100 will be described in detail.
 [平面モータ:可動子]
 まず、可動子20について説明する。可動子20は、平面モータシステム100における移動対象物である。図2に示されるように、可動子20は、可動子本体21と、永久磁石22と、ボールキャスタ23とを備える。
[Plane motor: Mover]
First, the mover 20 will be described. The mover 20 is a moving object in the planar motor system 100. As shown in FIG. 2, the mover 20 includes a mover main body 21, a permanent magnet 22, and a ball caster 23.
 可動子本体21は、略矩形板状の部材である。可動子本体21は、例えば、樹脂材料によって形成される。可動子本体21は、アルミニウムなどの比較的透磁率の低い金属材料によって形成されてもよい。 The mover body 21 is a substantially rectangular plate-shaped member. The mover main body 21 is made of, for example, a resin material. The mover main body 21 may be formed of a metal material having a relatively low permeability such as aluminum.
 永久磁石22は、可動子20が固定子30から推力を得るための磁石であり、可動子本体21に取り付けられる。永久磁石22は、例えば、平たい円柱状のネオジム磁石である。永久磁石22の形状及び材料は特に限定されない。永久磁石22は、例えば、フェライト磁石、または、アルニコ磁石などであってもよい。可動子20は、例えば、複数の永久磁石22を備えるが、少なくとも1つの永久磁石22を備えればよい。図2では、永久磁石22は、可動子本体21内に埋め込まれているが、永久磁石22は、可動子本体21の上面に取り付けられてもよいし、可動子本体21の下面に取り付けられてもよい。 The permanent magnet 22 is a magnet for the mover 20 to obtain thrust from the stator 30, and is attached to the mover main body 21. The permanent magnet 22 is, for example, a flat cylindrical neodymium magnet. The shape and material of the permanent magnet 22 are not particularly limited. The permanent magnet 22 may be, for example, a ferrite magnet or an alnico magnet. The mover 20 includes a plurality of permanent magnets 22, for example, but may include at least one permanent magnet 22. In FIG. 2, the permanent magnet 22 is embedded in the mover main body 21. However, the permanent magnet 22 may be attached to the upper surface of the mover main body 21 or attached to the lower surface of the mover main body 21. Also good.
 図2の例では、永久磁石22は、S極及びN極の並び方向が主面31aに交差し、S極がN極よりも主面31a寄りに位置するように配置されている。しかしながら、永久磁石22は、N極がS極よりも主面31a寄りに位置するように配置されてもよい。また、永久磁石22は、S極及びN極の並び方向が主面31aに沿うように配置されてもよい。 In the example of FIG. 2, the permanent magnet 22 is arranged so that the arrangement direction of the S pole and the N pole intersects the main surface 31a, and the S pole is located closer to the main surface 31a than the N pole. However, the permanent magnet 22 may be arranged such that the N pole is located closer to the main surface 31a than the S pole. Moreover, the permanent magnet 22 may be arrange | positioned so that the arrangement direction of a south pole and a north pole may follow the main surface 31a.
 なお、可動子20は、永久磁石22に代えて電磁石を有してもよい。この場合、電磁石は、例えば、乾電池または蓄電池によって駆動される。電磁石は、可動子20の移動に寄与していないコイル33から給電されてもよい。このように、可動子20は、永久磁石22または電磁石を有していればよい。つまり、可動子20は、磁石を有していればよい。 The mover 20 may have an electromagnet instead of the permanent magnet 22. In this case, the electromagnet is driven by, for example, a dry battery or a storage battery. The electromagnet may be supplied with power from the coil 33 that does not contribute to the movement of the mover 20. Thus, the needle | mover 20 should just have the permanent magnet 22 or the electromagnet. That is, the needle | mover 20 should just have a magnet.
 ボールキャスタ23は、可動子本体21を固定子30の主面31aに沿って移動させるための移動機構である。ボールキャスタ23は、可動子本体21の下面に取り付けられ、固定子30の主面31aに当接する。なお、可動子20は、自在キャスタまたは車輪など、ボールキャスタ23以外の移動機構を備えてもよい。 The ball caster 23 is a moving mechanism for moving the mover main body 21 along the main surface 31a of the stator 30. The ball caster 23 is attached to the lower surface of the mover main body 21 and abuts on the main surface 31 a of the stator 30. The mover 20 may include a moving mechanism other than the ball caster 23 such as a free caster or a wheel.
 [平面モータ:固定子]
 次に、固定子30について説明する。固定子30は、可動子20を移動させるための構造体である。実施の形態では、固定子30は、シート状の部材である。図2に示されるように、固定子30は、カバー部材31と、回路基板32とを有する。
[Flat motor: Stator]
Next, the stator 30 will be described. The stator 30 is a structure for moving the mover 20. In the embodiment, the stator 30 is a sheet-like member. As shown in FIG. 2, the stator 30 includes a cover member 31 and a circuit board 32.
 カバー部材31は、回路基板32の摩耗等を抑制し、かつ、固定子30の表面を平滑化するためのシート状の保護部材である。カバー部材31は、回路基板32の上面の全部を覆う。カバー部材31の平面視形状は、矩形であるが、円形等その他の形状であってもよい。カバー部材31の上面は、固定子30が有する主面31aとなる。主面31aは、可動子20と対向する。 The cover member 31 is a sheet-like protective member that suppresses wear and the like of the circuit board 32 and smoothes the surface of the stator 30. The cover member 31 covers the entire top surface of the circuit board 32. The cover member 31 has a rectangular shape in plan view, but may be other shapes such as a circle. The upper surface of the cover member 31 is a main surface 31a of the stator 30. The main surface 31 a faces the mover 20.
 カバー部材31は、例えば、メラミン樹脂、ウレタン樹脂、または、アクリル樹脂などの有機材料によって形成される。カバー部材31は、シラン化合物または金属酸化物によって形成されてもよい。このような有機材料、シラン化合物、または金属酸化物は、摩耗耐性の点でカバー部材31に適している。カバー部材31に有機材料が採用されれば、カバー部材31が低温の製造プロセスで形成できる。また、カバー部材31に有機材料が採用されれば、カバー部材31の大面積化が容易である。 The cover member 31 is formed of an organic material such as melamine resin, urethane resin, or acrylic resin, for example. The cover member 31 may be formed of a silane compound or a metal oxide. Such an organic material, a silane compound, or a metal oxide is suitable for the cover member 31 in terms of wear resistance. If an organic material is employed for the cover member 31, the cover member 31 can be formed by a low-temperature manufacturing process. Further, if an organic material is employed for the cover member 31, it is easy to increase the area of the cover member 31.
 回路基板32は、上面にコイル33が複数形成される薄膜状(言い換えれば、シート状)の基板である。回路基板32の平面視形状は、矩形であるが、円形等その他の形状であってもよい。回路基板32の基材は、例えば、ガラエポなどの樹脂材料によって形成される。 The circuit board 32 is a thin film-like (in other words, sheet-like) board on which a plurality of coils 33 are formed on the upper surface. The planar view shape of the circuit board 32 is rectangular, but may be other shapes such as a circle. The base material of the circuit board 32 is formed of, for example, a resin material such as glass epoxy.
 回路基板32の上面には、複数のコイル33が形成される。図1に示されるように、平面視において、複数のコイル33は、マトリクス状に敷き詰められている。図1においては、マトリクス状の配置の複数の行及び複数の列を区別するために、複数の行には数字が付与され、複数の列にはアルファベットが付与されている。なお、複数のコイル33の数は、特に限定されない。 A plurality of coils 33 are formed on the upper surface of the circuit board 32. As shown in FIG. 1, the plurality of coils 33 are spread in a matrix in a plan view. In FIG. 1, in order to distinguish a plurality of rows and a plurality of columns in a matrix arrangement, numbers are assigned to the plurality of rows and alphabets are assigned to the plurality of columns. The number of the plurality of coils 33 is not particularly limited.
 複数のコイル33は、可動子20に推力を与えるためのコイルである。複数のコイル33は、駆動回路40によって電力が供給されて磁化する。複数のコイル33のそれぞれは、回路基板32の上面にパターン形成された薄膜状のパターンコイルである。 The plurality of coils 33 are coils for applying thrust to the mover 20. The plurality of coils 33 are magnetized when power is supplied by the drive circuit 40. Each of the plurality of coils 33 is a thin pattern coil that is patterned on the upper surface of the circuit board 32.
 複数のコイル33のそれぞれは、巻回軸が主面31aに垂直な方向に沿う矩形巻回状の配線であるが、円形巻回状等、他の巻回状であってもよい。複数のコイル33のそれぞれは、例えば、三角形、または、六角形等の多角形に沿う巻回形状であってもよい。複数のコイル33の巻回方向は、同一であるが、異なってもよい。コイル33は、例えば、銅などの金属材料によって形成される。コイル33は、例えば、エッチングによって形成される。 Each of the plurality of coils 33 is a rectangular winding wire whose winding axis extends in a direction perpendicular to the main surface 31a, but may be another winding shape such as a circular winding shape. Each of the plurality of coils 33 may have, for example, a triangular shape or a wound shape along a polygon such as a hexagon. The winding directions of the plurality of coils 33 are the same, but may be different. The coil 33 is formed of a metal material such as copper, for example. The coil 33 is formed by etching, for example.
 [平面モータ:駆動回路]
 次に、駆動回路40について説明する。駆動回路40は、制御装置300から送信される制御信号に基づいて、複数のコイル33へ電力を供給する。図1に示されるように、駆動回路40は、具体的には、複数の制御回路と、制御部41と、復調回路42と、変調回路43とを有する。
[Plane motor: Drive circuit]
Next, the drive circuit 40 will be described. The drive circuit 40 supplies power to the plurality of coils 33 based on a control signal transmitted from the control device 300. As shown in FIG. 1, the drive circuit 40 specifically includes a plurality of control circuits, a control unit 41, a demodulation circuit 42, and a modulation circuit 43.
 複数の制御回路は、複数のコイル33に1対1で対応する。例えば、マトリクス状に配置された複数のコイル33のうち1行に属し、かつ、列Aに属するコイル33に対応する制御回路は、制御回路1Aである。複数の制御回路のそれぞれは、例えば、フルブリッジインバータ回路である。複数の制御回路は、制御部41の制御に基づいて動作する。 The plurality of control circuits correspond to the plurality of coils 33 on a one-to-one basis. For example, the control circuit corresponding to the coil 33 belonging to one row and belonging to the column A among the plurality of coils 33 arranged in a matrix is the control circuit 1A. Each of the plurality of control circuits is, for example, a full bridge inverter circuit. The plurality of control circuits operate based on the control of the control unit 41.
 制御部41は、制御装置300から送信される制御信号に基づいて、複数の制御回路を用いて可動子20を主面31aに沿って移動させる。制御部41は、マイクロコンピュータによって実現されるが、プロセッサ、または、専用回路などによって実現されてもよい。なお、図示されないが、制御部41は、駆動回路40が備える半導体メモリなどの記憶部(図示せず)に記憶された制御プログラムを実行する。 The control unit 41 moves the mover 20 along the main surface 31a using a plurality of control circuits based on a control signal transmitted from the control device 300. The control unit 41 is realized by a microcomputer, but may be realized by a processor or a dedicated circuit. Although not shown, the control unit 41 executes a control program stored in a storage unit (not shown) such as a semiconductor memory included in the drive circuit 40.
 複数の制御回路のそれぞれは、制御部41の制御に基づいて、当該制御回路に対応するコイル33に対して、(a)電力を供給しない、(b)第一の極性(例えば、正極性)の直流電圧を供給する、及び、(c)第一の極性の逆の第二の極性(例えば、負極性)の直流電圧を供給する、のいずれかを行う。 Each of the plurality of control circuits, based on the control of the control unit 41, (a) does not supply power to the coil 33 corresponding to the control circuit, (b) first polarity (for example, positive polarity) And (c) supplying a DC voltage having a second polarity (for example, negative polarity) opposite to the first polarity.
 例えば、第一の極性の直流電圧が供給されたコイル33a(図2に図示)は、主面31a側がS極の電磁石として機能する。そうすると、可動子20は、コイル33aと永久磁石22との間に生じる反発力によって移動方向に移動する。また、例えば、第二の極性の直流電圧が供給されたコイル33b(図2に図示)は、主面31a側がN極の電磁石として機能する。そうすると、コイル33bと永久磁石22との間に生じる吸引力によって可動子20が移動方向に移動する。 For example, the coil 33a (shown in FIG. 2) supplied with the first polarity DC voltage functions as an S-pole electromagnet on the main surface 31a side. If it does so, the needle | mover 20 will move to a moving direction by the repulsive force which arises between the coil 33a and the permanent magnet 22. FIG. Further, for example, the coil 33b (shown in FIG. 2) supplied with the DC voltage of the second polarity functions as an N-pole electromagnet on the main surface 31a side. Then, the mover 20 moves in the moving direction by the attractive force generated between the coil 33b and the permanent magnet 22.
 このように、駆動回路40は、複数のコイル33のそれぞれに直流電圧を供給し、当該直流電圧の極性をコイル33ごとに切り替えることができる。なお、制御部41は、コイル33と当該コイル33に対応する制御回路との電気的接続を解除し、コイル33をハイピーダンス状態とすることもできる。なお、駆動回路40は、固定子30と一体的に形成されてもよい。例えば、回路基板32に駆動回路40が実装されてもよい。 As described above, the drive circuit 40 can supply a DC voltage to each of the plurality of coils 33 and switch the polarity of the DC voltage for each coil 33. In addition, the control part 41 can cancel | release the electrical connection of the coil 33 and the control circuit corresponding to the said coil 33, and can also make the coil 33 a high impedance state. Note that the drive circuit 40 may be formed integrally with the stator 30. For example, the drive circuit 40 may be mounted on the circuit board 32.
 [電源装置、及び、制御装置]
 電源装置200は、5V~12V程度の直流電圧を供給する直流電源である。電源装置200は、電源ライン400によって制御部41及び制御装置300と電気的に接続され、電源ライン400を介して制御部41及び制御装置300のそれぞれに直流電圧を供給する。なお、電源装置200の電源電圧は特に限定されない。電源ライン400は、例えば、Vccラインであるが、グランドラインであってもよい。
[Power supply device and control device]
The power supply device 200 is a DC power supply that supplies a DC voltage of about 5V to 12V. The power supply device 200 is electrically connected to the control unit 41 and the control device 300 via the power supply line 400 and supplies a DC voltage to each of the control unit 41 and the control device 300 via the power supply line 400. Note that the power supply voltage of the power supply device 200 is not particularly limited. The power supply line 400 is, for example, a Vcc line, but may be a ground line.
 制御装置300は、例えば、サーバ装置などの情報通信端末であり、電源ライン400を介して制御部41に制御信号を送信する。つまり、制御装置300は、電源装置200によって供給される直流電圧に制御信号を重畳することにより、電源装置200による直流電圧の供給と並行して制御部41と通信を行う。制御装置300及び制御部41の間の通信は、より具体的には、シリアル通信である。 The control device 300 is an information communication terminal such as a server device, for example, and transmits a control signal to the control unit 41 via the power supply line 400. That is, the control device 300 communicates with the control unit 41 in parallel with the supply of the DC voltage by the power supply device 200 by superimposing the control signal on the DC voltage supplied by the power supply device 200. More specifically, the communication between the control device 300 and the control unit 41 is serial communication.
 ここで、制御装置300が送信する制御信号は、変調された2つの信号が多重化された信号である。変調された2つの信号の1つは、第一周波数の搬送波がクロック信号に応じてAM(Amplitude Modulation)変調された第一信号である。AM変調は、言い換えれば、振幅偏移変調(ASK:Amplitude-Shift Keying)である。図3は、制御信号に関連する信号波形を示す図であり、図3の(a)は、第一信号の波形を示し、図3の(b)は、クロック信号の波形を示す図である。第一周波数は、例えば、10MHzである。 Here, the control signal transmitted by the control device 300 is a signal obtained by multiplexing two modulated signals. One of the two modulated signals is a first signal obtained by AM (Amplitude Modulation) modulation of a carrier having a first frequency in accordance with a clock signal. In other words, the AM modulation is amplitude-shift keying (ASK: Amplitude-Shift Keying). 3A and 3B are diagrams showing signal waveforms related to the control signal. FIG. 3A shows the waveform of the first signal, and FIG. 3B shows the waveform of the clock signal. . The first frequency is 10 MHz, for example.
 変調された2つの信号のもう1つは、第一周波数と異なる第二周波数の搬送波がデータ信号に応じてAM変調された第二信号である。図3の(c)は、第二信号の波形を示し、図3の(d)は、データ信号の波形を示す。第二周波数は、例えば、1MHzである。このように、第二周波数は第一周波数よりも低いが、第一周波数よりも高くてもよい。 Another one of the two modulated signals is a second signal obtained by AM-modulating a carrier wave having a second frequency different from the first frequency in accordance with the data signal. FIG. 3C shows the waveform of the second signal, and FIG. 3D shows the waveform of the data signal. The second frequency is 1 MHz, for example. Thus, the second frequency is lower than the first frequency, but may be higher than the first frequency.
 なお、制御信号は、変調された3つ以上の信号が多重化された信号であってもよい。また、信号が多重化されることは必須ではない。第一信号及び第二信号は、搬送波がAM変調以外の方式で変調された信号であってもよい。 The control signal may be a signal obtained by multiplexing three or more modulated signals. Further, it is not essential that the signals are multiplexed. The first signal and the second signal may be signals in which a carrier wave is modulated by a method other than AM modulation.
 [制御信号の復調]
 上述のように、制御信号は、第一信号及び第二信号が多重化された信号である。制御装置300によって送信された制御信号は、駆動回路40が備える復調回路42によって復調される。図4は、復調回路42の回路構成を示すブロック図である。
[Demodulation of control signal]
As described above, the control signal is a signal in which the first signal and the second signal are multiplexed. The control signal transmitted by the control device 300 is demodulated by the demodulation circuit 42 provided in the drive circuit 40. FIG. 4 is a block diagram showing a circuit configuration of the demodulation circuit 42.
 図4に示されるように、復調回路42は、DCカットコンデンサ51と、第一検波回路52と、第一波形整形回路53と、ローパスフィルタ54と、第二検波回路55と、第二波形整形回路56とを備える。 As shown in FIG. 4, the demodulation circuit 42 includes a DC cut capacitor 51, a first detection circuit 52, a first waveform shaping circuit 53, a low-pass filter 54, a second detection circuit 55, and a second waveform shaping. Circuit 56.
 DCカットコンデンサ51は、制御信号の直流成分をカットし、第一検波回路52及びローパスフィルタ54のそれぞれに出力する。 The DC cut capacitor 51 cuts the DC component of the control signal and outputs it to each of the first detection circuit 52 and the low-pass filter 54.
 第一検波回路52は、いわゆるダイオード検波回路(言い換えれば、包落線検波回路)である。第一検波回路52を通過した制御信号は、第一波形整形回路53によって整形される。この結果、クロック信号が得られる。 The first detection circuit 52 is a so-called diode detection circuit (in other words, an envelope detection circuit). The control signal that has passed through the first detection circuit 52 is shaped by the first waveform shaping circuit 53. As a result, a clock signal is obtained.
 一方、DCカットコンデンサ51から出力された制御信号であって、ローパスフィルタ54を透過した制御信号は、第一信号の成分がカットされ、第二信号の成分のみを含む。第二検波回路55は、いわゆるダイオード検波回路(言い換えれば、包落線検波回路)である。第二検波回路55を通過した第二信号は、第二波形整形回路56によって整形される。この結果、データ信号が得られる。 On the other hand, in the control signal output from the DC cut capacitor 51 and transmitted through the low-pass filter 54, the component of the first signal is cut and only the component of the second signal is included. The second detection circuit 55 is a so-called diode detection circuit (in other words, an envelope detection circuit). The second signal that has passed through the second detection circuit 55 is shaped by the second waveform shaping circuit 56. As a result, a data signal is obtained.
 [データ信号のフォーマット]
 図5は、データ信号のフォーマットの一例を示す図である。データ信号には、コイルアドレスを示す情報、電流の向きを示す情報、電流の大きさを示す情報、双方向通信用の情報、及び、誤り検出用のパリティビットが含まれる。
[Data signal format]
FIG. 5 is a diagram illustrating an example of the format of the data signal. The data signal includes information indicating the coil address, information indicating the direction of the current, information indicating the magnitude of the current, information for bidirectional communication, and parity bits for error detection.
 コイルアドレスを示す情報は、12ビットの情報であり、制御対象となるコイル33のアドレス(行方向の位置及び列方向の位置)を制御部41に指示するための情報である。 The information indicating the coil address is 12-bit information, and is information for instructing the control unit 41 of the address (position in the row direction and position in the column direction) of the coil 33 to be controlled.
 電流の向きを示す情報は、制御対象となるコイル33に流す電流の向きを制御部41に指示するための情報である。電流の向きを示す情報は、言い換えれば、駆動回路40の電力供給の対象となるコイル33の極性(N極またはS極)を制御部41に指示するための情報である。なお、電流の向きを示す情報は、2ビットの情報である。したがって、電流の向きを示す情報は、2種類の電流の向き加えて、さらに2つの制御を示すことができる。電流の向きを示す情報は、例えば、コイル33への電力の供給をオフすること、及び、コイル33のハイインピーダンス化の2つの制御を示す。 The information indicating the direction of the current is information for instructing the control unit 41 the direction of the current flowing through the coil 33 to be controlled. In other words, the information indicating the direction of the current is information for instructing the control unit 41 of the polarity (N pole or S pole) of the coil 33 that is the target of power supply of the drive circuit 40. The information indicating the direction of current is 2-bit information. Therefore, the information indicating the direction of the current can indicate two more controls in addition to the two types of current directions. The information indicating the direction of the current indicates, for example, two controls of turning off the power supply to the coil 33 and increasing the impedance of the coil 33.
 電流の大きさを示す情報は、駆動回路40の電力供給の対象となるコイル33に流す電流の向きを制御部41に指示するための情報である。電流の大きさを示す情報は4ビットであるため、16段階の分解能で電流の大きさを示すことができる。 The information indicating the magnitude of the current is information for instructing the control unit 41 the direction of the current flowing through the coil 33 that is the target of power supply of the drive circuit 40. Since the information indicating the magnitude of the current is 4 bits, the magnitude of the current can be indicated with 16 levels of resolution.
 双方向通信用の情報は、駆動回路40から制御装置300へ送信される情報である。駆動回路40が備える制御部41は、変調回路43を用いて搬送波を8ビットの信号に応じて変調し、双方向通信用の情報として制御装置300に送信することができる。なお、双方向通信用の情報は、可動子20の現在位置を示す情報、または、可動子本体21に載置された荷物の内容を示す情報などである。なお、可動子20の現在位置は、例えば、図示されない光学式センサなどによって検出される。 The information for bidirectional communication is information transmitted from the drive circuit 40 to the control device 300. The control unit 41 included in the drive circuit 40 can modulate the carrier wave according to the 8-bit signal using the modulation circuit 43 and transmit the modulated carrier wave information to the control device 300 as information for bidirectional communication. The information for two-way communication is information indicating the current position of the mover 20 or information indicating the contents of the load placed on the mover main body 21. The current position of the mover 20 is detected by, for example, an optical sensor (not shown).
 [平面モータシステムの動作]
 以上説明したような、平面モータシステム100の動作について説明する。図6は、平面モータシステム100の動作のフローチャートである。
[Operation of planar motor system]
The operation of the planar motor system 100 as described above will be described. FIG. 6 is a flowchart of the operation of the planar motor system 100.
 まず、駆動回路40は、制御装置300から制御信号を取得する(S11)。駆動回路40は、電源ライン400を介して制御信号を取得する。制御信号は、具体的には、復調回路42によって取得及び復調される。復調の方法は、図4を用いて説明した通りである。 First, the drive circuit 40 acquires a control signal from the control device 300 (S11). The drive circuit 40 acquires a control signal via the power supply line 400. Specifically, the control signal is acquired and demodulated by the demodulation circuit 42. The demodulation method is as described with reference to FIG.
 次に、駆動回路40は、ステップS11において取得された制御信号であって、復調回路42によって復調された制御信号に基づいて、複数のコイル33の少なくとも一部に電力を供給する(S12)。この結果、可動子20が主面31aに沿って移動する。 Next, the drive circuit 40 supplies power to at least some of the plurality of coils 33 based on the control signal acquired in step S11 and demodulated by the demodulation circuit 42 (S12). As a result, the mover 20 moves along the main surface 31a.
 駆動回路40の制御部41は、例えば、制御信号に含まれるコイルアドレスを示す情報がアドレス「1A」を示す場合、制御回路1Aを用いて制御回路1Aに接続されたコイル33へ電力を供給する。このとき、アドレス1Aに位置するコイル33に流す電流の向きは、制御信号に含まれる電流の向きを示す情報によって指定される。また、アドレス1Aに位置するコイル33に流す電流の大きさは、制御信号に含まれる電流の大きさを示す情報によって指定される。 For example, when the information indicating the coil address included in the control signal indicates the address “1A”, the control unit 41 of the drive circuit 40 supplies power to the coil 33 connected to the control circuit 1A using the control circuit 1A. . At this time, the direction of the current flowing through the coil 33 located at the address 1A is specified by information indicating the direction of the current included in the control signal. Further, the magnitude of the current flowing through the coil 33 located at the address 1A is specified by information indicating the magnitude of the current included in the control signal.
 [変形例]
 電源ライン400としては、Vccラインとグランドラインの2つが用いられる。そこで、制御信号は、2つのラインを用いて差動伝送されてもよい。Vccライン及びグランドラインの一方は、第一電源ラインと記載され、Vccライン及びグランドラインの他方は、第二電源ラインと記載される。図7は、制御信号が差動伝送される場合の復調回路42の回路構成を示すブロック図である。
[Modification]
As the power supply line 400, a Vcc line and a ground line are used. Therefore, the control signal may be differentially transmitted using two lines. One of the Vcc line and the ground line is described as a first power supply line, and the other of the Vcc line and the ground line is described as a second power supply line. FIG. 7 is a block diagram showing a circuit configuration of the demodulation circuit 42 when the control signal is differentially transmitted.
 図7に示されるように、変形例に係る復調回路42は、第一DCカットコンデンサ57と、第二DCカットコンデンサ58と、差動増幅回路59と、第一検波回路52と、第一波形整形回路53と、ローパスフィルタ54と、第二検波回路55と、第二波形整形回路56とを備える。 As shown in FIG. 7, the demodulation circuit 42 according to the modified example includes a first DC cut capacitor 57, a second DC cut capacitor 58, a differential amplifier circuit 59, a first detection circuit 52, and a first waveform. A shaping circuit 53, a low-pass filter 54, a second detection circuit 55, and a second waveform shaping circuit 56 are provided.
 第一DCカットコンデンサ57は、第一電源ラインを介して得られる第一制御信号の直流成分をカットし、差動増幅回路59に出力する。 The first DC cut capacitor 57 cuts the direct current component of the first control signal obtained through the first power supply line and outputs it to the differential amplifier circuit 59.
 第二DCカットコンデンサ58は、第二電源ラインを介して得られる第二制御信号の直流成分をカットし、差動増幅回路59に出力する。 The second DC cut capacitor 58 cuts the DC component of the second control signal obtained via the second power supply line and outputs the cut DC component to the differential amplifier circuit 59.
 差動増幅回路59は、第一制御信号及び第二制御信号の差動信号を生成する。なお、差動増幅回路の増幅率は、特に限定されない。差動増幅回路59の増幅率は1未満であってもよい。 The differential amplifier circuit 59 generates a differential signal of the first control signal and the second control signal. The amplification factor of the differential amplifier circuit is not particularly limited. The amplification factor of the differential amplifier circuit 59 may be less than 1.
 差動信号は、第一検波回路52及びローパスフィルタ54のそれぞれに出力される。以降の処理は、図4に示される復調回路42と同様である。 The differential signal is output to each of the first detection circuit 52 and the low-pass filter 54. The subsequent processing is the same as that of the demodulation circuit 42 shown in FIG.
 以上のように制御信号が差動伝送されれば、制御信号に含まれるノイズを低減することができる。 If the control signal is differentially transmitted as described above, noise contained in the control signal can be reduced.
 [効果等]
 以上説明したように、平面モータ10は、複数の永久磁石22を有する可動子20と、可動子20と対向する主面31a、及び、主面31aに沿って配置される複数のコイル33を有する固定子30と、複数のコイル33に電力を供給する駆動回路40とを備える。永久磁石22は、磁石の一例である。駆動回路40は、駆動回路40に接続された電源ライン400を介して得られる制御信号に基づいて複数のコイル33の少なくとも一部に電力を供給することにより可動子20を主面31aに沿って移動させる。
[Effects]
As described above, the planar motor 10 includes the mover 20 having the plurality of permanent magnets 22, the main surface 31a facing the mover 20, and the plurality of coils 33 disposed along the main surface 31a. A stator 30 and a drive circuit 40 that supplies power to the plurality of coils 33 are provided. The permanent magnet 22 is an example of a magnet. The drive circuit 40 supplies the power to at least a part of the plurality of coils 33 based on a control signal obtained via the power supply line 400 connected to the drive circuit 40, thereby moving the mover 20 along the main surface 31a. Move.
 このような平面モータ10は、電源ライン400を利用して制御信号を取得することができる。このような平面モータ10は、制御信号を取得するための信号ラインの追加が不要であるため、回路規模の増大が抑制される。 Such a planar motor 10 can acquire a control signal using the power supply line 400. Such a planar motor 10 does not require the addition of a signal line for acquiring a control signal, so that an increase in circuit scale is suppressed.
 また、例えば、制御信号は、変調された複数の信号が多重化された信号である。 Also, for example, the control signal is a signal obtained by multiplexing a plurality of modulated signals.
 このような平面モータ10は、制御信号から複数の信号を取得することができる。 Such a planar motor 10 can acquire a plurality of signals from the control signal.
 また、例えば、制御信号は、AM変調された信号が多重化された信号である。 Also, for example, the control signal is a signal obtained by multiplexing an AM modulated signal.
 これにより、制御信号に比較的シンプルなAM変調が用いられているため、制御信号の復調が容易となる。 This makes it easy to demodulate the control signal because a relatively simple AM modulation is used for the control signal.
 また、例えば、複数の変調信号には、データ信号及びクロック信号が含まれる。 Also, for example, the plurality of modulation signals include a data signal and a clock signal.
 このような平面モータ10は、制御信号からデータ信号及びクロック信号を取得することができる。 Such a planar motor 10 can acquire a data signal and a clock signal from a control signal.
 また、例えば、制御信号には、複数のコイル33のうち制御対象のコイルのアドレスを示す情報と、当該制御対象のコイルへの制御内容を示す情報とが含まれる。制御対象のコイルへの制御内容を示す情報は、上記実施の形態においては、電流の向きを示す情報、及び、電流の大きさを示す情報などである。 Further, for example, the control signal includes information indicating the address of the coil to be controlled among the plurality of coils 33 and information indicating the content of control on the coil to be controlled. In the above embodiment, the information indicating the control content for the coil to be controlled is information indicating the direction of the current, information indicating the magnitude of the current, and the like.
 このような平面モータ10は、制御信号に基づいて制御対象のコイルを特定し、特定したコイルを制御内容にしたがって制御することができる。 Such a planar motor 10 can identify a coil to be controlled based on a control signal, and can control the identified coil according to the control content.
 また、例えば、駆動回路40は、電源ライン400を介して信号を送信する。 For example, the drive circuit 40 transmits a signal via the power supply line 400.
 これにより、電源ライン400を介した双方向通信が実現される。 Thereby, bidirectional communication via the power line 400 is realized.
 また、例えば、駆動回路40には、上記電源ラインである第一電源ライン、及び、第一電源ラインと対になる第二電源ラインとが接続される。第一電源ライン及び第二電源ラインの一方は、Vccラインであり、第一電源ライン及び第二電源ラインの他方は、グランドラインである。駆動回路40は、第一電源ラインを介して得られる制御信号である第一制御信号、及び、第二電源ラインを介して得られる第二制御信号の差動信号に基づいて複数のコイル33の少なくとも一部に電力を供給することにより可動子20を主面31aに沿って移動させる。 Also, for example, the drive circuit 40 is connected to the first power supply line, which is the power supply line, and the second power supply line that is paired with the first power supply line. One of the first power supply line and the second power supply line is a Vcc line, and the other of the first power supply line and the second power supply line is a ground line. The drive circuit 40 has a plurality of coils 33 based on a first control signal which is a control signal obtained via the first power supply line and a differential signal of the second control signal obtained via the second power supply line. The mover 20 is moved along the main surface 31a by supplying electric power to at least a part.
 これにより、駆動回路40は、ノイズが低減された差動信号に基づいて可動子20を主面31aに沿って移動させることができる。 Thereby, the drive circuit 40 can move the mover 20 along the main surface 31a based on the differential signal with reduced noise.
 また、電源ライン400は、駆動回路40に直流電力を供給するための電源ラインである。 Further, the power supply line 400 is a power supply line for supplying DC power to the drive circuit 40.
 このような平面モータ10は、直流電力を供給するための電源ライン400を介して制御信号を取得することができる。 Such a planar motor 10 can acquire a control signal through a power supply line 400 for supplying DC power.
 また、平面モータシステム100は、平面モータ10と、制御信号を電源ライン400に出力する制御装置300とを備える。 The planar motor system 100 includes the planar motor 10 and a control device 300 that outputs a control signal to the power supply line 400.
 このような平面モータシステム100は、電源ライン400を利用して制御信号を送受信することができる。このような平面モータシステム100は、制御信号を取得するための信号ラインの追加が不要であるため、回路規模の増大が抑制される。 Such a planar motor system 100 can transmit and receive control signals using the power supply line 400. In such a planar motor system 100, it is not necessary to add a signal line for acquiring a control signal, so that an increase in circuit scale is suppressed.
 (その他の実施の形態)
 以上、実施の形態に係る平面モータシステムについて説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other embodiments)
The planar motor system according to the embodiment has been described above, but the present invention is not limited to the above embodiment.
 例えば、上記実施の形態では、平面モータシステムは、物流倉庫における荷物の搬送システムとして使用されたが、荷物の搬送システム以外の用途で使用されてもよい。 For example, in the above embodiment, the planar motor system is used as a cargo transport system in a distribution warehouse, but may be used for purposes other than the cargo transport system.
 また、上記実施の形態では、コイルは薄膜状のパターンコイルであったが、コイルは巻線コイルであってもよい。また、上記実施の形態では、複数のコイルは、マトリクス状に配置されたが、マトリクス状以外のレイアウトで配置されてもよい。例えば、コイルが六角形に沿う巻回形状を有する場合には、複数のパターンコイルは、ハニカム状に配置されてもよい。 In the above embodiment, the coil is a thin-film pattern coil, but the coil may be a wound coil. Moreover, in the said embodiment, although the some coil was arrange | positioned in matrix form, you may arrange | position with layouts other than a matrix form. For example, when the coil has a winding shape along a hexagon, the plurality of pattern coils may be arranged in a honeycomb shape.
 また、上記実施の形態の固定子の模式断面図に示される積層構造は一例である。平面モータシステムは、本発明の特徴的な機能を実現できる他の積層構造を有する固定子を備えてもよい。平面モータシステムは、例えば、上記実施の形態で説明された積層構造と同様の機能を実現できる範囲で、上記実施の形態の積層構造の層間に別の層が設けられた固定子を備えてもよい。 Also, the laminated structure shown in the schematic cross-sectional view of the stator of the above embodiment is an example. The planar motor system may include a stator having another laminated structure that can realize the characteristic function of the present invention. The planar motor system may include, for example, a stator in which another layer is provided between the layers of the stacked structure of the above embodiment as long as the same function as the stacked structure described in the above embodiment can be realized. Good.
 また、上記実施の形態では、固定子が有する積層構造の各層を構成する主たる材料について例示しているが、固定子が有する積層構造の各層には、上記実施の形態の積層構造と同様の機能を実現できる範囲で他の材料が含まれてもよい。 In the above embodiment, the main material constituting each layer of the laminated structure of the stator is illustrated, but each layer of the laminated structure of the stator has the same function as the laminated structure of the above embodiment. Other materials may be included to the extent that can be realized.
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。 In the above embodiment, another processing unit may execute a process executed by a specific processing unit. Further, the order of the plurality of processes may be changed, and the plurality of processes may be executed in parallel.
 また、上記実施の形態において、制御部などの構成要素は、当該構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。制御部などの構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Further, in the above embodiment, the components such as the control unit may be realized by executing a software program suitable for the components. The components such as the control unit may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 また、制御部などの構成要素は、ハードウェアによって実現されてもよい。例えば、制御部などの構成要素は、回路(または集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 Further, the components such as the control unit may be realized by hardware. For example, the component such as the control unit may be a circuit (or an integrated circuit). These circuits may constitute one circuit as a whole, or may be separate circuits. Each of these circuits may be a general-purpose circuit or a dedicated circuit.
 また、本発明の全般的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。例えば、本発明は、平面モータシステムに含まれる制御装置として実現されてもよいし、上記実施の形態の可動子の移動方法として実現されてもよい。本発明は、移動方法を制御装置等のコンピュータに実行させるためのプログラムとして実現されてもよい。本発明は、当該プログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。 The general or specific aspect of the present invention may be realized by a recording medium such as a system, apparatus, method, integrated circuit, computer program, or computer-readable CD-ROM. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium. For example, the present invention may be realized as a control device included in a planar motor system, or may be realized as a method for moving a mover in the above embodiment. The present invention may be realized as a program for causing a computer such as a control device to execute the moving method. The present invention may be realized as a computer-readable non-transitory recording medium in which the program is recorded.
 また、上記実施の形態に係る平面モータシステムは、単一の装置として実現されてもよいし、複数の装置によって実現されてもよい。平面モータシステムが複数の装置によって実現される場合、上記実施の形態で説明された平面モータシステムが備える構成要素は、複数の装置にどのように振り分けられてもよい。 Further, the planar motor system according to the above embodiment may be realized as a single device or may be realized by a plurality of devices. When the planar motor system is realized by a plurality of devices, the components included in the planar motor system described in the above embodiment may be distributed to the plurality of devices in any way.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, it is realized by variously conceiving various modifications conceived by those skilled in the art for each embodiment, or by arbitrarily combining the components and functions in each embodiment without departing from the spirit of the present invention. This form is also included in the present invention.
 10 平面モータ
 20 可動子
 22 永久磁石(磁石)
 30 固定子
 31a 主面
 33 コイル
 40 駆動回路
 100 平面モータシステム
 300 制御装置
 400 電源ライン
10 plane motor 20 mover 22 permanent magnet (magnet)
30 Stator 31a Main surface 33 Coil 40 Drive circuit 100 Planar motor system 300 Controller 400 Power supply line

Claims (9)

  1.  複数の磁石を有する可動子と、
     前記可動子と対向する主面、及び、前記主面に沿って配置される複数のコイルを有する固定子と、
     前記複数のコイルに電力を供給する駆動回路とを備え、
     前記駆動回路は、前記駆動回路に接続された電源ラインを介して得られる制御信号に基づいて前記複数のコイルの少なくとも一部に電力を供給することにより前記可動子を前記主面に沿って移動させる
     平面モータ。
    A mover having a plurality of magnets;
    A main surface facing the mover, and a stator having a plurality of coils arranged along the main surface;
    A drive circuit for supplying power to the plurality of coils,
    The drive circuit moves the mover along the main surface by supplying power to at least a part of the plurality of coils based on a control signal obtained via a power supply line connected to the drive circuit. Let the flat motor.
  2.  前記制御信号は、変調された複数の信号が多重化された信号である
     請求項1に記載の平面モータ。
    The planar motor according to claim 1, wherein the control signal is a signal obtained by multiplexing a plurality of modulated signals.
  3.  前記制御信号は、AM(Amplitude Modulation)変調された信号が多重化された信号である
     請求項2に記載の平面モータ。
    The planar motor according to claim 2, wherein the control signal is a signal obtained by multiplexing an AM (Amplitude Modulation) modulated signal.
  4.  前記複数の変調信号には、データ信号及びクロック信号が含まれる
     請求項2または3に記載の平面モータ。
    The planar motor according to claim 2, wherein the plurality of modulation signals include a data signal and a clock signal.
  5.  前記制御信号には、前記複数のコイルのうち制御対象のコイルのアドレスと、当該制御対象のコイルへの制御内容とが含まれる
     請求項1~4のいずれか1項に記載の平面モータ。
    The planar motor according to any one of claims 1 to 4, wherein the control signal includes an address of a coil to be controlled among the plurality of coils and a control content to the coil to be controlled.
  6.  前記駆動回路は、前記電源ラインを介して信号を送信する
     請求項1~5のいずれか1項に記載の平面モータ。
    The planar motor according to any one of claims 1 to 5, wherein the drive circuit transmits a signal via the power supply line.
  7.  前記駆動回路には、前記電源ラインである第一電源ライン、及び、前記第一電源ラインと対になる第二電源ラインとが接続され、
     前記駆動回路は、前記第一電源ラインを介して得られる前記制御信号である第一制御信号、及び、前記第二電源ラインを介して得られる第二制御信号の差動信号に基づいて前記複数のコイルの少なくとも一部に電力を供給することにより前記可動子を前記主面に沿って移動させる
     請求項1~6のいずれか1項に記載の平面モータ。
    The drive circuit is connected to a first power line that is the power line, and a second power line that is paired with the first power line,
    The drive circuit includes the first control signal, which is the control signal obtained via the first power supply line, and the plurality of differential signals based on the second control signal obtained via the second power supply line. The planar motor according to any one of claims 1 to 6, wherein the movable element is moved along the main surface by supplying electric power to at least a part of the coil.
  8.  前記電源ラインは、前記駆動回路に直流電力を供給するための電源ラインである
     請求項1~7のいずれか1項に記載の平面モータ。
    The planar motor according to any one of claims 1 to 7, wherein the power supply line is a power supply line for supplying DC power to the drive circuit.
  9.  請求項1~8のいずれか1項に記載の平面モータと、
     前記制御信号を前記電源ラインに出力する制御装置とを備える
     平面モータシステム。
    A planar motor according to any one of claims 1 to 8,
    A planar motor system comprising: a control device that outputs the control signal to the power supply line.
PCT/JP2019/011039 2018-04-11 2019-03-18 Planar motor and planar motor system WO2019198428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018076339 2018-04-11
JP2018-076339 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019198428A1 true WO2019198428A1 (en) 2019-10-17

Family

ID=68164063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011039 WO2019198428A1 (en) 2018-04-11 2019-03-18 Planar motor and planar motor system

Country Status (1)

Country Link
WO (1) WO2019198428A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168283A (en) * 1994-12-09 1996-06-25 Fanuc Ltd Position detecting system
JP2000341993A (en) * 1999-05-28 2000-12-08 Jidosha Denki Kogyo Co Ltd Controller of motor for vehicle
JP2003037992A (en) * 2001-07-24 2003-02-07 Fuji Electric Corp Res & Dev Ltd Linear electromagnetic type micro actuator
JP2013509150A (en) * 2009-10-22 2013-03-07 コンティネンタル オートモーティブ システムズ ユーエス, インコーポレイティッド Stepper motor controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168283A (en) * 1994-12-09 1996-06-25 Fanuc Ltd Position detecting system
JP2000341993A (en) * 1999-05-28 2000-12-08 Jidosha Denki Kogyo Co Ltd Controller of motor for vehicle
JP2003037992A (en) * 2001-07-24 2003-02-07 Fuji Electric Corp Res & Dev Ltd Linear electromagnetic type micro actuator
JP2013509150A (en) * 2009-10-22 2013-03-07 コンティネンタル オートモーティブ システムズ ユーエス, インコーポレイティッド Stepper motor controller

Similar Documents

Publication Publication Date Title
US10404143B2 (en) Apparatus for detecting angular displacement, system for controlling rotation angle of motor, gimbal, and aircraft
CN101245982B (en) Rotary encoder and method for its operation
CN112444191B (en) Inductive angle sensor
US4547714A (en) Low magnetic leakage flux brushless pulse controlled d-c motor
US7095228B2 (en) Sensor system and method for operating the sensor system
RU2180129C2 (en) Detector detecting presence of magnetic mark
WO2012157558A1 (en) Magnetic sensor device
GB1565537A (en) Electric motor
JP2004117052A (en) Film sensor, electric actuator, and input device
US10295369B2 (en) Sensor module and motor comprising same
WO2019198428A1 (en) Planar motor and planar motor system
CN1339863A (en) Motor
WO2019225284A1 (en) Planar motor and control method
JP6846722B2 (en) Plane motor
JP2019030067A (en) Planar motor
JP2019193329A (en) Flat surface motor system
JPWO2019058735A1 (en) Flat motor
US20180278130A1 (en) Brushless motor
JP2020089109A (en) Magnetic carrier, and control method
WO2019239797A1 (en) Planar motor and control method
WO2019208144A1 (en) Planar motor and control method
JPS6173567A (en) Electronic commutation dc machine
JPWO2003056276A1 (en) Direction sensor and manufacturing method thereof
JP2019193458A (en) Planar motor
JP2008014954A (en) Magnetic sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP