WO2019220662A1 - Curable composition, curable composition set, heat storage material, and article - Google Patents

Curable composition, curable composition set, heat storage material, and article Download PDF

Info

Publication number
WO2019220662A1
WO2019220662A1 PCT/JP2018/042155 JP2018042155W WO2019220662A1 WO 2019220662 A1 WO2019220662 A1 WO 2019220662A1 JP 2018042155 W JP2018042155 W JP 2018042155W WO 2019220662 A1 WO2019220662 A1 WO 2019220662A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
group
heat storage
isocyanate group
compound
Prior art date
Application number
PCT/JP2018/042155
Other languages
French (fr)
Japanese (ja)
Inventor
古川 直樹
森本 剛
温子 佐野
望 松原
晃 永井
木沢 桂子
弘 横田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020518950A priority Critical patent/JP7276329B2/en
Publication of WO2019220662A1 publication Critical patent/WO2019220662A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a curable composition, a curable composition set, a heat storage material, and an article.
  • the heat storage material is a material that can take out the stored energy as heat if necessary. This heat storage material is used in applications such as air conditioning equipment, floor heating equipment, electronic parts such as refrigerators and IC chips, automobile interior and exterior materials, automobile parts such as canisters, and heat insulation containers.
  • latent heat storage using phase change of a substance is widely used from the viewpoint of the amount of heat.
  • Water-ice is well known as a latent heat storage material.
  • Water-ice is a substance with a large amount of heat, but its phase change temperature is limited to 0 ° C. in the atmosphere, so the application range is also limited. Therefore, paraffin is used as a latent heat storage material having a phase change temperature higher than 0 ° C. and lower than 100 ° C.
  • paraffin becomes liquid when it changes phase by heating, and there is a risk of ignition and ignition. Therefore, in order to use paraffin as a heat storage material, it is stored in a sealed container such as a bag, and paraffin is removed from the heat storage material. Need to be prevented from leaking, subject to restrictions in the field of application.
  • Patent Document 1 discloses a method using a gelling agent. The gel produced by this method can maintain a gel-like molded product even after the phase change of paraffin.
  • an object of the present invention is to provide a curable composition or a curable composition set that is suitably used for a heat storage material.
  • the present inventors have found that a curable composition or a curable composition set containing a specific component is suitably used as a heat storage material, that is, the curable composition or the curable composition.
  • the present inventors have found that a heat storage material obtained by using an object set is excellent in heat storage amount, and completed the present invention.
  • the present invention provides the following [1] to [29].
  • the curable composition according to [1], wherein the compound having an isocyanate group includes a monomer having an isocyanate group.
  • a curable composition containing a compound having a blocked isocyanate group, a capsule containing a heat storage component, and a curing agent [8] The curable composition according to [7], wherein the compound having a blocked isocyanate group includes a monomer having a blocked isocyanate group. [9] The curable composition according to [7], wherein the compound having a blocked isocyanate group includes a polymer having a blocked isocyanate group. [10] The curable composition according to [9], wherein the polymer having a blocked isocyanate group includes a structural unit represented by the following formula (4).
  • R 7 represents a hydrogen atom or a methyl group
  • R 8 represents an organic group having a blocked isocyanate group.
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain.
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain.
  • the curable composition according to any one of [1] to [15] which is used for forming a heat storage material.
  • a heat storage material comprising a cured product of the curable composition according to any one of [1] to [16].
  • a capsule comprising a first liquid containing a compound having an isocyanate group and a second liquid containing a curing agent, wherein at least one of the first liquid and the second liquid contains a heat storage component.
  • a curable composition set containing [19] The curable composition set according to [18], wherein the compound having an isocyanate group includes a monomer having an isocyanate group. [20] The curable composition set according to [18] or [19], wherein the compound having an isocyanate group includes a polymer having an isocyanate group. [21] The curable composition set according to [20], wherein the polymer having an isocyanate group includes a structural unit represented by the following formula (1).
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain.
  • (meth) acryl means “acryl” and “methacryl” corresponding to it.
  • the weight average molecular weight (Mw) in the present specification means a value determined using gel permeation chromatography (GPC) under the following conditions and determined using polystyrene as a standard substance.
  • GPC gel permeation chromatography
  • Measuring instrument HLC-8320GPC (product name, manufactured by Tosoh Corporation)
  • Analytical column TSKgel SuperMultipore HZ-H (consolidated 3) (product name, manufactured by Tosoh Corporation)
  • Guard column TSK guard column SuperMP (HZ) -H (product name, manufactured by Tosoh Corporation)
  • Eluent THF ⁇ Measurement temperature: 25 °C
  • the curable composition according to the first embodiment contains a compound having an isocyanate group and a capsule containing a heat storage component (hereinafter also referred to as “heat storage capsule”).
  • the compound having an isocyanate group according to this embodiment is a compound having at least one isocyanate group in the molecule.
  • the compound having an isocyanate group has a property of curing at room temperature (for example, 25 ° C.) by the reaction of the isocyanate group with water.
  • the water may be moisture contained in the air, for example. Since the curable composition concerning this embodiment has the above-mentioned property, it can also be called moisture hardening type or room temperature hardening type curable composition.
  • the compound having an isocyanate group may contain a monomer having an isocyanate group.
  • the monomer having an isocyanate group is preferably a diisocyanate having two isocyanate groups in the molecule.
  • the diisocyanate include tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate, or a mixture thereof) (TDI), phenylene diisocyanate (m- or p-phenylene diisocyanate, or a mixture thereof), 4,4 '-Diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'- or 2,2'-diphenylmethane diisocyanate, or mixtures thereof) (MDI), 4,4' -Toluidine diisocyanate (TODI), aromatic diisocyanates such as 4,4'-diphenyl ether diisocyanate, trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene di
  • the compound having an isocyanate group may contain a polymer having an isocyanate group.
  • the polymer having an isocyanate group may be a polymer (polymer (A)) containing a structural unit represented by the following formula (1).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an organic group having an isocyanate group.
  • the content of the structural unit represented by the formula (1) is the total structure constituting the polymer (A). It may be 2 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the unit.
  • the polymer (A) further includes a structural unit represented by the following formula (2) in addition to the structural unit represented by the formula (1) from the viewpoint of further excellent heat storage properties when the heat storage material is formed. May be.
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain.
  • R 4 When R 4 is an alkyl group, the alkyl group may be linear or branched.
  • the number of carbon atoms of the alkyl group represented by R 4 is preferably 12 to 28, more preferably 12 to 26, still more preferably 12 to 24, and particularly preferably 12 to 22.
  • Examples of the alkyl group represented by R 4 include dodecyl group (lauryl group), tetradecyl group, hexadecyl group), octadecyl group (stearyl group), docosyl group (behenyl group), tetracosyl group, hexacosyl group, octacosyl group, and the like. Is mentioned.
  • the alkyl group represented by R 4 is preferably at least one selected from the group consisting of a dodecyl group (lauryl group), a hexadecyl group, an octadecyl group (stearyl group), and a docosyl group (behenyl group).
  • R 4 is a group having a polyoxyalkylene chain
  • the group having a polyoxyalkylene chain is a group represented by the following formula (5), that is, a polyoxyethylene chain, a polyoxypropylene chain and a polyoxybutylene chain. It may be a group having at least one polyoxyalkylene chain selected from the group consisting of:
  • R a represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms
  • m represents an integer of 2 to 4
  • n represents an integer of 2 to 90
  • * represents a bond.
  • a plurality of (CH 2 ) m present in the group represented by R 4 may be the same as or different from each other. That is, the group having a polyoxyalkylene chain represented by R 4 may have only one kind of a polyoxyethylene chain, a polyoxypropylene chain, and a polyoxybutylene chain, and has two or more kinds. May be.
  • the alkyl group represented by R a may be linear or branched.
  • the number of carbon atoms of the alkyl group represented by R a is preferably 1 to 15, more preferably 1 to 10, and still more preferably 1 to 5.
  • R a is particularly preferably a hydrogen atom or a methyl group.
  • M is preferably 2 or 3, more preferably 2.
  • n is preferably an integer of 4 to 80, 6 to 60, 9 to 40, 9 to 30, 10 to 30, 15 to 30, or 15 to 25 from the viewpoint of further improving the heat storage amount of the heat storage material.
  • the content of the structural unit represented by the formula (2) is 100 parts by mass with respect to all the structural units constituting the polymer (A).
  • the amount is preferably 60 parts by mass or more, more preferably 80 parts by mass or more, for example, 98 parts by mass or less.
  • content of the structural unit represented by the formula (1) described above may be 2 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of all the structural units constituting the polymer (A).
  • it is 20 mass parts or less, More preferably, it is 15 mass parts or less, More preferably, it is 13 mass parts or less, Most preferably, it is 10 mass parts or less.
  • the weight average molecular weight of the polymer (A) is preferably 100,000 or less, more preferably 70,000 or less, still more preferably 40000 or less, for example, 5000 or more.
  • the polymer having an isocyanate group may be a polyurethane, polyol, polyester or the like having an isocyanate group at the terminal in addition to the polymer (A) described above.
  • the above-mentioned compound having an isocyanate group may be used alone or in combination of two or more.
  • the content of the compound having an isocyanate group is preferably 10% by mass or more, more preferably 15% by mass based on the total amount of the curable composition from the viewpoint of suppressing the drop of the heat-storable capsules from the cured product of the curable composition.
  • a capsule containing a heat storage component has a heat storage component and an outer shell (shell) containing the heat storage component.
  • the heat storage component may be any component that can store heat, and may be, for example, a component having heat storage properties associated with phase transition.
  • As the heat storage component one having a phase transition temperature suitable for the target temperature is appropriately selected according to the purpose of use. From the viewpoint of obtaining a heat storage effect in a practical range, the heat storage component has a solid phase / liquid phase transition point (melting point) indicating a solid phase / liquid phase transition at, for example, ⁇ 30 to 120 ° C.
  • the heat storage component examples include chain saturated hydrocarbon compounds (paraffinic hydrocarbon compounds), organic compounds such as natural wax, petroleum wax, polyethylene glycol, and sugar alcohol, or hydrates of inorganic compounds and crystal structure changes. It may be an inorganic compound such as an inorganic compound shown.
  • the heat storage component is preferably a chain-like saturated hydrocarbon compound (paraffinic hydrocarbon compound) from the viewpoint that it is inexpensive, has low toxicity, and can easily select one having a desired phase transition temperature.
  • chain means linear or branched (branched).
  • the chain-like saturated hydrocarbon compound includes n-decane (C10 (carbon number, hereinafter the same), ⁇ 29 ° C. (transition point (melting point), the same hereinafter)), n-undecane (C11, ⁇ 25).
  • n-dodecane C12, -9 ° C
  • n-tridecane C13, -5 ° C
  • n-tetradecane C14, 6 ° C
  • n-pentadecane C15, 9 ° C
  • n-hexadecane C16
  • n-heptadecane C17, 21 ° C
  • n-octadecane C18, 28 ° C
  • n-nanodecane C19, 32 ° C
  • n-eicosane C20, 37 ° C
  • n-henicosane C21) 41 ° C
  • n-docosane C22, 46 ° C
  • n-tricosane C23, 47 ° C
  • n-tetracosane C24, 50 ° C
  • n-pentacosane C25, 54 ° C
  • n-dodecane C12
  • the outer shell (shell) enclosing these heat storage components is preferably formed of a material having a heat resistance temperature sufficiently higher than the transition point (melting point) of the heat storage components.
  • the material forming the outer shell has a heat resistant temperature of, for example, 30 ° C. or higher, preferably 50 ° C. or higher, with respect to the transition point (melting point) of the heat storage component.
  • the heat-resistant temperature is defined as the temperature at which 1% weight was reduced when the weight loss of the capsule was measured using a differential thermothermal gravimetric simultaneous measurement device (eg TG-DTA6300 (manufactured by Hitachi High-Tech Science Co., Ltd.)). Is done.
  • the outer shell may preferably be formed of melamine resin, acrylic resin, urethane resin, silica or the like.
  • capsules having an outer shell made of melamine resin for example, BA410xxP, 18C, BA410xxP, 37C manufactured by Outlast Technology, Thermomemory FP-16, FP-25, FP-31, FP manufactured by Mitsubishi Paper Industries Co., Ltd. -39, Riken Resin PMCD-15SP, 25SP, 32SP manufactured by Miki Riken Kogyo Co., Ltd.
  • capsules having an outer shell made of an acrylic resin include MicroDS5001X and 5040X manufactured by BASF.
  • examples of the capsule having an outer shell made of silica include Riken Resins LA-15, LA-25, LA-32 manufactured by Miki Riken Kogyo Co., Ltd.
  • the content of the heat storage component is preferably 20% by mass or more, more preferably 60% by mass or more, based on the total amount of the heat storage capsule, and suppresses capsule breakage due to volume change of the heat storage component. From this viewpoint, the content is preferably 80% by mass or less.
  • the heat storage capsule may further contain graphite, metal powder, alcohol or the like in the outer shell for the purpose of adjusting the thermal conductivity, specific gravity and the like of the capsule.
  • the particle diameter (average particle diameter) of the heat storage capsule is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. .
  • the particle size (average particle size) of the heat storage capsule is measured using a laser diffraction type particle size distribution measuring device (for example, SALD-2300 (manufactured by Shimadzu Corporation)).
  • the heat storage capacity of the heat storage capsule is preferably 150 J / g or more from the viewpoint of obtaining a heat storage material having a higher heat storage density.
  • the heat storage capacity is measured by differential scanning calorimetry (DSC).
  • the method for producing the heat storage capsule it is suitable from the conventional known production methods such as interfacial polymerization method, in-situ polymerization method, submerged curing coating method, coacervate method, etc. You just have to choose a method.
  • the content of the heat storage capsule is preferably 40% by mass or more, more preferably 50% by mass or more, and further preferably 55% by mass or more, based on the total amount of the curable composition.
  • the content of the heat storage capsule is preferably 90% by mass or less, more preferably 85% by mass or less, and still more preferably 80% by mass or less from the viewpoint of suppressing the drop of the heat storage capsule from the curable composition.
  • the curable composition is also referred to as a polymer containing a structural unit (structural unit (A)) represented by the following formula (3) (hereinafter referred to as “heat storage (meth) acrylic polymer”). ) May be further contained.
  • the polymer containing the structural unit (A) is a polymer having no isocyanate group in the molecule.
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain.
  • the group having an alkyl group represented by R 6 or a polyoxyalkylene chain is the same group as the group having an alkyl group represented by R 4 in formula (2) or a group having a polyoxyalkylene chain described above. Good.
  • the content of the structural unit (A) is preferably 60 parts by mass or more, more preferably 100 parts by mass or more with respect to 100 parts by mass of all structural units constituting the heat storage (meth) acrylic polymer, from the viewpoint of further improving the heat storage amount of the heat storage material. Is 80 parts by mass or more, for example, 98 parts by mass or less.
  • the weight average molecular weight of the heat storage (meth) acrylic polymer is preferably 100,000 or less, more preferably 70,000 or less, still more preferably 40,000 or less, for example, 5000 or more.
  • the content is preferably 10% by mass or more, more preferably 20% by mass based on the total amount of the curable composition from the viewpoint of further enhancing the heat storage effect.
  • the curable composition can further contain other additives as required.
  • Other additives include, for example, curing accelerators, antioxidants, colorants, fillers, crystal nucleating agents, thermal stabilizers, thermal conductive materials, plasticizers, foaming agents, flame retardants, vibration damping agents, dehydrating agents, Examples include flame retardant aids (for example, metal oxides).
  • flame retardant aids for example, metal oxides.
  • Other additives may be used alone or in combination of two or more.
  • the content of other additives may be, for example, 0.1% by mass or more and 30% by mass or less based on the total amount of the curable composition.
  • the curable composition may be liquid at 50 ° C. Thereby, a curable composition can be easily provided by methods, such as filling, between the members which have a complicated shape.
  • the viscosity at 50 ° C. of the curable composition is preferably 100 Pa ⁇ s or less, more preferably 50 Pa ⁇ s or less, still more preferably 20 Pa ⁇ s or less, and particularly preferably 10 Pa ⁇ s, from the viewpoint of excellent fluidity and handling properties. It is as follows.
  • the viscosity of the curable composition at 50 ° C. may be, for example, 0.5 Pa ⁇ s or more.
  • the viscosity of the curable composition means a value measured based on JIS Z 8803, and specifically measured by an E type viscometer (for example, PE-80L manufactured by Toki Sangyo Co., Ltd.). Mean value.
  • the viscometer can be calibrated based on JIS Z 8809-JS14000.
  • the curable composition according to the second embodiment contains a compound having a blocked isocyanate group, a capsule containing a heat storage component (heat storage capsule), and a curing agent.
  • a thermal storage capsule since it is the same as that of the aspect used for the curable composition which concerns on 1st Embodiment, description is abbreviate
  • the blocked isocyanate group is an isocyanate group blocked (protected) by a blocking agent (protecting group) that can be removed by heat, and is represented by the following formula (6).
  • B represents a protecting group
  • * represents a bond.
  • the protective group in the blocked isocyanate group may be a protective group that can be removed (deprotected) by heating (for example, heating at 80 to 160 ° C.).
  • a substitution reaction between the blocking agent forming the protective group and a curing agent described later can occur under deprotection conditions (for example, heating conditions of 80 to 160 ° C.).
  • an isocyanate group is generated by deprotection, and the isocyanate group can react with a curing agent described later.
  • Examples of the blocking agent for the blocked isocyanate group include oxime compounds such as formaldoxime, acetoaldoxime, acetoxime, methylethylketoxime, cyclohexanone oxime; pyrazole compounds such as pyrazole, 3-methylpyrazole, 3,5-dimethylpyrazole; ⁇ - Lactam compounds such as caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam and ⁇ -propiolactam; mercaptan compounds such as thiophenol, methylthiophenol and ethylthiophenol; acid amide compounds such as acetate amide and benzamide; succinimide and malee Examples include imide compounds such as acid imides.
  • the blocking agent is preferably a pyrazole compound.
  • the compound having a blocked isocyanate group may contain a monomer having a blocked isocyanate group.
  • the monomer having a blocked isocyanate group is preferably a compound in which the isocyanate group is protected with the above-mentioned blocking agent in the monomer having an isocyanate group in the first embodiment.
  • the compound having a blocked isocyanate group may contain a polymer having a blocked isocyanate group.
  • the polymer having a blocked isocyanate group is preferably a compound in which the isocyanate group is protected with the above-mentioned blocking agent in the polymer having an isocyanate group in the first embodiment. That is, in one embodiment, the polymer having a blocked isocyanate group is a polymer (polymer (B)) including a structural unit represented by the following formula (4). In the formula, R 7 represents a hydrogen atom or a methyl group, and R 8 represents an organic group having a blocked isocyanate group.
  • the blocked isocyanate group is a group represented by the above formula (6).
  • the content of the structural unit represented by the formula (4) is the total content of the polymer (A).
  • the amount may be 2 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the structural unit.
  • the polymer (B) further includes a structural unit represented by the above-described formula (2) in addition to the structural unit represented by the formula (4) from the viewpoint of further excellent heat storage properties when the heat storage material is formed. You can leave. Since the structural unit represented by Formula (2) is the same as the aspect in 1st Embodiment mentioned above, description is abbreviate
  • the weight average molecular weight of the polymer (B) is preferably 100,000 or less, more preferably 70,000 or less, still more preferably 40000 or less, for example, 5000 or more.
  • the content of the compound having a blocked isocyanate is preferably 10% by mass or more, more preferably 15% by mass, based on the total amount of the curable composition, from the viewpoint of suppressing the dropping of the heat storage capsule from the cured product of the curable composition.
  • the curing agent is preferably at least one selected from the group consisting of alcohol compounds, amine compounds and thiol compounds.
  • the curing agent is more preferably an alcohol compound.
  • Examples of the alcohol compound include trifunctional or higher polyhydric alcohols or monomer glycols, glycols, and other high molecular weight polyols.
  • trifunctional or higher polyhydric alcohol or monomer glycol examples include glycerin, trimethylolpropane, trimethylolethane, 1,2,6-hexanetriol, 1,2,4-butanetriol, erythritol, sorbitol, pentaerythritol, And dipentaerythritol.
  • glycol examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2- Methyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propane Diol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, neo Pentyl glycol, 1,3,5-trimethyl-1,3-pentanediol,
  • high molecular weight polyol examples include glycols, polyether polyols, polyester polyols, polyether ester polyols, polycarbonate polyols, and polyacrylic polyols, which are adducts of bisphenol A and ethylene oxide or propylene oxide.
  • the polyether polyol is a hydroxyl group-containing polyether polyol obtained by addition polymerization of an alkylene oxide such as ethylene oxide or propylene oxide to the above-described trifunctional or higher polyhydric alcohol, glycol, or a polyamine compound such as ethylenediamine or toluenediamine. It may be polytetramethylene ether glycol obtained by ring-opening polymerization of tetrahydrofuran.
  • Polyester polyols are dicarboxylic acids (succinic acid, adipic acid, sebacic acid, azelaic acid, phthalic acid, etc.), or tri- or tetracarboxylic acids (trimellitic acid, pyromellitic acid, etc.) and diols (ethylene glycol, propylene glycol).
  • 1,4-butanediol 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,2-diethylpropanediol, 2-ethyl-2-ptylpropanediol, 1,6-hexanediol , Neopentyl glycol, diethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, etc.), triol (trimethylolpropane, glycerin, etc.) or bisphenol (bisphenol A, bisphenol F, etc.) By polycondensation reaction It may be one that is.
  • the polyether ester polyol may be obtained by reacting a mixture with an ether group-containing diol or other glycol with the above-mentioned dicarboxylic acid or an anhydride thereof. Alternatively, it may be obtained by reacting an alkylene oxide with polyester glycol (such as poly (polytetramethylene ether) adipate).
  • Polycarbonate polyol is a dealcoholization condensation reaction between polyhydric alcohol and dialkyl carbonate (dimethyl carbonate, diethyl carbonate, etc.), dephenol condensation reaction between polyhydric alcohol and diphenyl carbonate, deethylene glycol condensation between polyhydric alcohol and ethylene carbonate. It may be obtained by reaction or the like.
  • polyhydric alcohol examples include 1,6-hexanediol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2, Aliphatic diols such as 2-diethylpropanediol, 2-ethyl-2-butylpropanediol, neopentyl glycol, or alicyclic diols such as 1,4-cyclohexanediol and 1,4-cyclohexanedimethanol It may be.
  • the amine compound examples include aliphatic amines such as diethylenetriamine, hexamethylenediamine, and triethylenetetramine, aromatic amines such as xylenediamine, and alicyclic amines such as isophoronediamine.
  • the amine compound may be an amino alcohol such as monoethanolamine or diethanolamine.
  • thiol compound examples include pentaerythritol tetrakis (3-mercaptobutyrate) (for example, “Karenz MT-PE1” (manufactured by Showa Denko KK)), 1,3,5-tris (3-mercaptobutyryloxy). Ethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione (for example, “Karenz MT-NR1” (manufactured by Showa Denko KK)) and the like.
  • pentaerythritol tetrakis for example, “Karenz MT-PE1” (manufactured by Showa Denko KK)
  • 1,3,5-tris (3-mercaptobutyryloxy
  • Ethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione for example, “Karenz MT-NR1” (manufacture
  • the content of the curing agent is preferably 0.01% by mass or more based on the total amount of the curable composition, preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 1% by mass or less. It is.
  • the curable composition which concerns on this embodiment further contains the polymer (thermal storage (meth) acrylic polymer) containing the structural unit (A) represented by Formula (3) mentioned above from a viewpoint which raises a thermal storage effect further. May be. Since the aspect of the structural unit (A) is the same as described above, the description thereof is omitted.
  • the curable composition can further contain other additives as required.
  • Other additives may be the same additives as those used in the curable composition according to the first embodiment.
  • the curable composition according to this embodiment may be liquid at 50 ° C.
  • the viscosity at 50 ° C. of the curable composition may be the same as that of the curable composition according to the first embodiment.
  • the curable composition set which concerns on one Embodiment is equipped with the 1st liquid containing the compound which has the isocyanate group mentioned above, and the 2nd liquid containing a hardening
  • heat storage capsule a heat storage component
  • the first liquid may contain a compound having an isocyanate group, and may contain a compound having an isocyanate group and a heat storage capsule.
  • the second liquid may contain a curing agent, and may contain a curing agent and a heat storage capsule.
  • the curable composition set preferably includes a first liquid containing a compound having an isocyanate group and a heat storage capsule, and a second liquid containing a curing agent and a heat storage capsule.
  • the compound having an isocyanate group reacts with the curing agent to obtain a cured product of a mixture (curable composition) of the first liquid and the second liquid.
  • cured material of the mixture (curable composition) of a 1st liquid and a 2nd liquid is obtained immediately by mixing a 1st liquid and a 2nd liquid. . That is, in the curable composition set according to this embodiment, a mixture containing a compound having an isocyanate group can be cured at a high speed.
  • the content of the compound having an isocyanate group is preferably 2% by mass or more based on the total amount of the first liquid and the second liquid from the viewpoint of suppressing the drop of the heat storage capsules from the cured product of the curable composition. , More preferably 5% by mass or more, further preferably 7% by mass or more, particularly preferably 10% by mass or more, and from the viewpoint of further improving the heat storage property, preferably 50% by mass or less, more preferably 30% by mass or less. More preferably, it is 25% by mass or less, and particularly preferably 20% by mass or less.
  • the content of the heat storage capsule (the total content of the heat storage capsules contained in the first liquid and the second liquid) is the total amount of the first liquid and the second liquid.
  • it is preferably 50% by mass or more, more preferably 55% by mass or more, and further preferably 60% by mass or more.
  • the content of the heat storage capsule is preferably 90% by mass or less, based on the total amount of the first liquid and the second liquid, from the viewpoint of suppressing the drop of the heat storage capsule from the cured product of the curable composition.
  • it is 85 mass% or less, More preferably, it is 80 mass% or less.
  • the curing agent contained in the second liquid is preferably at least one selected from the group consisting of alcohol compounds, amine compounds and thiol compounds.
  • the curing agent is more preferably an alcohol compound.
  • a more specific aspect of the curing agent may be the same as the aspect of the curing agent used in the second embodiment described above.
  • the content of the curing agent is preferably 2% by mass or more, more preferably 5% by mass or more, still more preferably 7% by mass or more, and particularly preferably 10% by mass or more, based on the total amount of the second liquid. Is 50% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, and particularly preferably 20% by mass or less.
  • At least one of the first liquid and the second liquid further contains a polymer (heat storage (meth) acrylic polymer) including the structural unit (A) represented by the above-described formula (3). May be. Since the aspect of the structural unit (A) is the same as described above, the description thereof is omitted.
  • the heat storage (meth) acrylic polymer further includes a structural unit (structural unit (B)) having a reactive group. May be.
  • the structural unit (B) has a reactive group.
  • the reactive group in the structural unit (B) may be a group capable of reacting with the above-described curing agent, for example, It may be an epoxy group, preferably a glycidyl group.
  • the structural unit (B) is preferably a structural unit represented by the following formula (7).
  • R 9 represents a hydrogen atom or a methyl group
  • R 10 represents an organic group having a hydrogen atom or a reactive group.
  • the reactive group in R 10 may be a group having an epoxy group, and is preferably a glycidyl group.
  • the reactive group in the structural unit (B) is selected from the group consisting of, for example, a carboxyl group, a hydroxyl group, and an amino group. At least one group.
  • the structural unit (B) is preferably a structural unit represented by the following formula (8).
  • R 11 represents a hydrogen atom or a methyl group
  • R 12 represents an organic group having a hydrogen atom or a reactive group.
  • the reactive group in R 12 may be a carboxyl group, a hydroxyl group, or an amino group.
  • the content (heat storage (meth) acrylic contained in the first liquid and the second liquid when at least one of the first liquid and the second liquid contains a heat storage (meth) acrylic polymer, the content (heat storage (meth) acrylic contained in the first liquid and the second liquid).
  • the total content of the polymer is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 30%, based on the total amount of the first liquid and the second liquid. From the viewpoint of handling properties, it is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably 35% by mass or less.
  • the second liquid is cured as described above from the viewpoint of suppressing liquid leakage and volatilization of the heat storage material and improving heat resistance.
  • a curing agent (second curing agent) that reacts with the reactive group in the structural unit (B) of the heat storage (meth) acrylic polymer may be contained.
  • the second curing agent for example, a phenol compound, an amine compound, an imidazole compound, or an acid anhydride may be used.
  • the amine compound used as the second curing agent may be an amine compound (second amine compound) different from the amine compound (first amine compound) in the first curing agent described above.
  • phenol compound examples include bisphenol A, bisphenol F, bisphenol S, 4,4′-biphenylphenol, tetramethyl bisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, dimethyl bisphenol S.
  • Examples of the amine compound (second amine compound) include diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 1,5-diaminonaphthalene, and m-xylylene diene.
  • Aromatic amines such as amines, aliphatic amines such as ethylenediamine, diethylenediamine, hexamethylenediamine, isophoronediamine, bis (4-amino-3-methyldicyclohexyl) methane, polyetherdiamine; dicyandiamide, 1- (o-tolyl) ) Guanidine compounds such as biguanides.
  • imidazole compound examples include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl.
  • Examples of the acid anhydride include aromatics such as phthalic acid anhydride, trimellitic acid anhydride, pyromellitic acid anhydride, benzophenone tetracarboxylic acid anhydride, ethylene glycol trimellitic acid anhydride, and biphenyltetracarboxylic acid anhydride.
  • Carboxylic anhydrides anhydrides of aliphatic carboxylic acids such as azelaic acid, sebacic acid, dodecanedioic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, nadic acid anhydride, het acid anhydride, highmic acid anhydride And alicyclic carboxylic acid anhydrides.
  • the content of the second curing agent is preferably based on the total amount of the first liquid and the second liquid. Is 0.01% by mass or more, preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less.
  • the first liquid and / or the second liquid can further contain other additives as necessary.
  • Other additives include, for example, curing accelerators, antioxidants, colorants, fillers, crystal nucleating agents, thermal stabilizers, thermal conductive materials, plasticizers, foaming agents, flame retardants, vibration damping agents, dehydrating agents, Examples include flame retardant aids (for example, metal oxides).
  • flame retardant aids for example, metal oxides.
  • Other additives may be used alone or in combination of two or more.
  • the content of other additives may be, for example, 0.1% by mass or more and 30% by mass or less based on the total amount of the first liquid and the second liquid.
  • the cured product of the curable composition described above and the cured product of the mixture of the first liquid and the second liquid of the curable composition set are suitably used as a heat storage material (suitable as a curable composition for a heat storage material. is there). That is, the heat storage material according to one embodiment includes a cured product of the curable composition described above. Moreover, the heat storage material which concerns on other embodiment contains the hardened
  • Thermal storage materials can be used in various fields. Thermal storage materials include, for example, air conditioning equipment (improvement of efficiency of air conditioning equipment) in automobiles, buildings, public facilities, underground malls, etc., piping in pipes (heat storage in piping), automobile engines (heat retention around the engine), electronic components (Prevents temperature rise of electronic parts), used for fibers of underwear.
  • air conditioning equipment improvement of efficiency of air conditioning equipment
  • buildings public facilities, underground malls, etc.
  • piping in pipes heat storage in piping
  • automobile engines heat retention around the engine
  • electronic components Prevents temperature rise of electronic parts
  • FIG. 1 is a schematic cross-sectional view illustrating a method for forming a heat storage material (a method for manufacturing an article including a heat storage material) according to an embodiment.
  • a method for forming a heat storage material a method for manufacturing an article including a heat storage material
  • FIG. 1A an electronic component 1 is prepared as an article on which a heat storage material is provided.
  • the electronic component 1 includes, for example, a substrate (for example, a circuit substrate) 2, a semiconductor chip (heat source) 3 provided on the substrate 2, and a plurality of connection portions (for example, solder) 4 that connect the semiconductor chip 3 to the substrate 2. It has.
  • the semiconductor chip 3 serves as a heat source.
  • the plurality of connection portions 4 are provided between the substrate 2 and the semiconductor chip 3 so as to be separated from each other. In other words, there are gaps separating the plurality of connecting portions 4 between the substrate 2 and the semiconductor chip 3.
  • the curable composition 6 is filled between the substrate 2 and the semiconductor chip 3 using, for example, a syringe 5.
  • the curable composition 6 may be a curable composition according to one embodiment described above or a mixture of the first liquid and the second liquid in the curable composition set according to one embodiment.
  • the curable composition 6 may be in a completely uncured state or may be partially cured.
  • the curable composition 6 When the curable composition 6 is in a liquid state at room temperature (for example, 25 ° C.), the curable composition 6 can be filled at room temperature. When curable composition 6 is solid at room temperature, it can be filled after curable composition 6 is heated (for example, 50 ° C. or higher) to be liquid.
  • the curable composition 6 is placed in the gap between the substrate 2 and the semiconductor chip 3 as shown in FIG. 2. It arrange
  • the heat storage material 7 is formed in the above-described gap existing between the substrate 2 and the semiconductor chip 3 as shown in FIG. 1 (d).
  • the curable composition 6 is cured by allowing it to react with water in the air by allowing the arranged curable composition to stand. It may be a method to make it.
  • the curing method of the curable composition 6 is a method of curing the curable composition 6 by heating the curable composition 6 arranged when the curable composition according to the second embodiment is used. It may be.
  • the curing method of the curable composition 6 may be a method of proceeding curing by mixing the first liquid and the second liquid.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of a method for forming a heat storage material.
  • the electronic component 11 is prepared as an article on which the heat storage material is provided.
  • the electronic component 11 includes, for example, a substrate 2 and a semiconductor chip (heat source) 3 provided on the substrate 2.
  • the sheet-like curable composition 16 is disposed on the substrate 2 and the semiconductor chip 3 so as to be in thermal contact with each of the substrate 2 and the semiconductor chip 3.
  • the curable composition 16 is, for example, a composition that has been B-staged (semi-cured) by the above-described curing method. That is, the method for forming the heat storage material of the present embodiment includes a step of preparing the second curable composition (sheet-like curable composition 16) by converting the first curable composition into a B-stage. Good.
  • the curable composition 16 is cured to form the heat storage material 17 on the substrate 2 and the semiconductor chip 3 as shown in FIG.
  • the curing method of the curable composition 6 may be the same as the curing method described above.
  • the heat storage material is formed so as to cover the entire exposed surface of the heat source.
  • the heat storage material may be disposed so as to cover a part of the exposed surface of the heat source.
  • Fig.3 (a) is a schematic cross section which shows other one Embodiment of the articles
  • the thermal storage material 17 may be arrange
  • the curable compositions 6 and 16 for forming the heat storage materials 7 and 17 are placed in contact with the semiconductor chip 3 as a heat source in an uncured or semi-cured state.
  • the curable compositions 6 and 16 are cured. Therefore, the heat storage materials 7 and 17 are suitably formed following the shape of the semiconductor chip 3 and the like. Therefore, the heat generated in the semiconductor chip 3 as a heat source and the heat conducted from the semiconductor chip 3 to the substrate 2 are also efficiently conducted to the heat storage materials 7 and 17 and are suitably stored in the heat storage materials 7 and 17.
  • the curable compositions 6 and 16 are arranged so as to be in direct contact with the semiconductor chip 3 which is a heat source, and the heat storage materials 7 and 17 are formed.
  • the curable composition and the heat storage material are
  • the curable composition is disposed so as to be in thermal contact with the heat source via a heat conductive member (such as a heat radiating member).
  • a heat storage material may be formed.
  • FIG. 3B is a schematic cross-sectional view showing another embodiment of an article on which a heat storage material is formed.
  • the heat storage material 17 is disposed on the surface of the substrate 2 opposite to the surface on which the semiconductor chip 3 is provided.
  • the heat storage material 17 is not in direct contact with the semiconductor chip 3, but is in thermal contact with the semiconductor chip 3 through the substrate 2.
  • the place where the heat storage material 17 is disposed may be on any surface of the substrate 2 as long as it is in thermal contact with the semiconductor chip 3. Even in this case, the heat generated by the heat source (semiconductor chip 3) is efficiently conducted to the heat storage material 17 through the substrate 2 and is suitably stored in the heat storage material 17.
  • the heat storage material 17 is formed using the B-staged sheet-like curable composition 16 as the curable composition.
  • the curable composition may be a liquid curable composition.
  • a liquid curable composition is applied to part or all of the exposed surface of the semiconductor chip (heat source) 3 or the surface of the substrate 2 opposite to the surface on which the semiconductor chip 3 is provided. Then, the heat storage material may be formed by curing.
  • the heat storage (meth) acrylic polymer B was synthesized by the same method as the synthesis example of the heat storage (meth) acrylic polymer A except that the MOI was changed to hydroxyethyl acrylate.
  • the obtained heat storage (meth) acrylic polymer B had a weight average molecular weight (Mw) of 15000.
  • Example 1 Hexamethylene diisocyanate (HDI) 40 g, BA410xxP, C37 (capsule A) (manufactured by Outlast Technology Co., Ltd.) 60 g as heat storage capsules, and dibutyltin dilaurate 0.2 g were blended to obtain a curable composition.
  • the viscosity of this curable composition at 50 ° C. was measured based on JIS Z 8803 using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., PE-80L). The results are shown in Table 1.
  • the curable composition was applied onto a polyethylene terephthalate (PET) film and cured at room temperature for 24 hours. Thereafter, the PET film was removed to obtain a film-like heat storage material having a thickness of 100 ⁇ m.
  • PET polyethylene terephthalate
  • Example 2 83 g of MF-K60B (solid content 60%, manufactured by Asahi Kasei Co., Ltd.) which is a compound having a blocked isocyanate group was mixed with 50 g of BA410xxP, C37, and the solvent was removed. Thereafter, 2.0 g of diethylenetriamine and 0.25 g of dibutyltin dilaurate were further mixed to obtain a curable composition.
  • the viscosity of this curable composition at 50 ° C. was measured based on JIS Z 8803 using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., PE-80L). The results are shown in Table 1.
  • the curable composition was filled in a 10 cm ⁇ 10 cm ⁇ 1 mm mold (SUS plate) and cured at 150 ° C. for 5 minutes to obtain a sheet-like heat storage material having a thickness of 1 mm.
  • Example 3 45 g of A201H (produced by Asahi Kasei Co., Ltd.), which is a compound having an isocyanate group, and 55 g of BA410xxP, C37 were mixed to obtain a first liquid. Moreover, 45 g of GP1000 (curing agent) (manufactured by Sanyo Chemical Co., Ltd.), 55 g of BA410xxP, C37, and 0.16 g of dibutyltin dilaurate as a polyol were mixed to obtain a second liquid. The viscosities at 25 ° C.
  • Example 4 Except for changing the composition of the curable composition as shown in Table 2, the viscosity measurement of the curable composition and the production of the heat storage material were performed in the same manner as in Example 3. The results are shown in Table 2.
  • Each heat storage material produced in the examples was measured using a differential scanning calorimeter (manufactured by Perkin Elmer, model number DSC8500), and a melting point and a heat storage amount were calculated. Specifically, the temperature was raised to 100 ° C. at 20 ° C./minute, held at 100 ° C. for 3 minutes, then lowered to ⁇ 30 ° C. at a rate of 10 ° C./minute, and then held at ⁇ 30 ° C. for 3 minutes. The temperature was raised again to 100 ° C. at a rate of 10 ° C./min, and the thermal behavior was measured. The melting peak was the melting point of the heat storage material, and the area was the heat storage amount. The results are shown in Tables 1 and 2. In addition, if the heat storage amount is 30 J / g or more, it can be said that the heat storage amount is excellent.

Abstract

A curable composition according to one aspect of the present invention contains: a compound having an isocyanate group; and a capsule containing a heat storage component. A curable composition according to another aspect of the present invention contains: a compound having a blocked isocyanate group; a capsule containing a heat storage component; and a curing agent.

Description

硬化性組成物、硬化性組成物セット、蓄熱材、及び物品Curable composition, curable composition set, heat storage material, and article
 本発明は、硬化性組成物、硬化性組成物セット、蓄熱材、及び物品に関する。 The present invention relates to a curable composition, a curable composition set, a heat storage material, and an article.
 蓄熱材は、蓄えたエネルギーを必要に応じて熱として取り出すことのできる材料である。この蓄熱材は、空調設備、床暖房設備、冷蔵庫、ICチップ等の電子部品、自動車内外装材、キャニスター等の自動車部品、保温容器などの用途で利用されている。 The heat storage material is a material that can take out the stored energy as heat if necessary. This heat storage material is used in applications such as air conditioning equipment, floor heating equipment, electronic parts such as refrigerators and IC chips, automobile interior and exterior materials, automobile parts such as canisters, and heat insulation containers.
 蓄熱の方式としては、物質の相変化を利用した潜熱蓄熱が、熱量の大きさの点から広く利用されている。潜熱蓄熱物質としては、水-氷がよく知られている。水-氷は、熱量の大きい物質であるが、相変化温度が大気下において0℃と限定されてしまうため、適用範囲も限定されてしまう。そのため、0℃より高く100℃以下の相変化温度を有する潜熱蓄熱物質として、パラフィンが利用されている。しかし、パラフィンは加熱により相変化すると液体になり、引火及び発火の危険性があるため、パラフィンを蓄熱材に用いるためには、袋等の密閉容器中に収納するなどして、蓄熱材からパラフィンが漏えいすることを防ぐ必要があり、適用分野の制限を受ける。 As a heat storage method, latent heat storage using phase change of a substance is widely used from the viewpoint of the amount of heat. Water-ice is well known as a latent heat storage material. Water-ice is a substance with a large amount of heat, but its phase change temperature is limited to 0 ° C. in the atmosphere, so the application range is also limited. Therefore, paraffin is used as a latent heat storage material having a phase change temperature higher than 0 ° C. and lower than 100 ° C. However, paraffin becomes liquid when it changes phase by heating, and there is a risk of ignition and ignition. Therefore, in order to use paraffin as a heat storage material, it is stored in a sealed container such as a bag, and paraffin is removed from the heat storage material. Need to be prevented from leaking, subject to restrictions in the field of application.
 そこで、パラフィンを含む蓄熱材を改良する方法として、例えば特許文献1には、ゲル化剤を用いる方法が開示されている。この方法で作られるゲルは、パラフィンの相変化後もゲル状の成形体を保つことが可能である。 Therefore, as a method for improving the heat storage material containing paraffin, for example, Patent Document 1 discloses a method using a gelling agent. The gel produced by this method can maintain a gel-like molded product even after the phase change of paraffin.
特開2000-109787号公報JP 2000-109787 A
 本発明は、一側面において、蓄熱材に好適に用いられる硬化性組成物又は硬化性組成物セットを提供することを目的とする。 In one aspect, an object of the present invention is to provide a curable composition or a curable composition set that is suitably used for a heat storage material.
 本発明者らは、鋭意研究を行った結果、特定の成分を含有する硬化性組成物又は硬化性組成物セットが蓄熱材に好適に用いられること、すなわち、当該硬化性組成物又は硬化性組成物セットを用いて得られる蓄熱材が蓄熱量に優れることを見出し、本発明を完成させた。本発明は、いくつかの側面において、下記の[1]~[29]を提供する。
[1] イソシアネート基を有する化合物と、蓄熱性成分を内包したカプセルと、を含有する硬化性組成物。
[2] イソシアネート基を有する化合物が、イソシアネート基を有するモノマを含む、[1]に記載の硬化性組成物。
[3] イソシアネート基を有する化合物が、イソシアネート基を有するポリマを含む、[1]又は[2]に記載の硬化性組成物。
[4] イソシアネート基を有するポリマが、下記式(1)で表される構造単位を含む、[3]に記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000010
[式中、Rは水素原子又はメチル基を表し、Rはイソシアネート基を有する有機基を表す。]
[5] イソシアネート基を有するポリマが、下記式(2)で表される構造単位を更に含む、[4]に記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000011
[式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。]
[6] 下記式(3)で表される構造単位を含み、イソシアネート基を有さないポリマを更に含有する、[1]~[5]のいずれかに記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000012
[式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。]
As a result of intensive studies, the present inventors have found that a curable composition or a curable composition set containing a specific component is suitably used as a heat storage material, that is, the curable composition or the curable composition. The present inventors have found that a heat storage material obtained by using an object set is excellent in heat storage amount, and completed the present invention. In some aspects, the present invention provides the following [1] to [29].
[1] A curable composition containing an isocyanate group-containing compound and a capsule containing a heat storage component.
[2] The curable composition according to [1], wherein the compound having an isocyanate group includes a monomer having an isocyanate group.
[3] The curable composition according to [1] or [2], wherein the compound having an isocyanate group includes a polymer having an isocyanate group.
[4] The curable composition according to [3], wherein the polymer having an isocyanate group includes a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000010
[Wherein, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an organic group having an isocyanate group. ]
[5] The curable composition according to [4], wherein the polymer having an isocyanate group further includes a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000011
[Wherein R 3 represents a hydrogen atom or a methyl group, and R 4 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain. ]
[6] The curable composition according to any one of [1] to [5], further comprising a polymer containing a structural unit represented by the following formula (3) and having no isocyanate group.
Figure JPOXMLDOC01-appb-C000012
[Wherein, R 5 represents a hydrogen atom or a methyl group, and R 6 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain. ]
[7] ブロックイソシアネート基を有する化合物と、蓄熱性成分を内包したカプセルと、硬化剤と、を含有する硬化性組成物。
[8] ブロックイソシアネート基を有する化合物が、ブロックイソシアネート基を有するモノマを含む、[7]に記載の硬化性組成物。
[9] ブロックイソシアネート基を有する化合物が、ブロックイソシアネート基を有するポリマを含む、[7]に記載の硬化性組成物。
[10] ブロックイソシアネート基を有するポリマが、下記式(4)で表される構造単位を含む、[9]に記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000013
[式中、Rは水素原子又はメチル基を表し、Rはブロックイソシアネート基を有する有機基を表す。]
[11] ブロックイソシアネート基を有するポリマが、下記式(2)で表される構造単位を更に含む、[10]に記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000014
[式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。]
[12] 下記式(3)で表される構造単位を含み、ブロックイソシアネート基を有さないポリマを更に含有する、[7]~[11]のいずれかに記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000015
[式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。]
[13] 硬化剤が、アルコール化合物、アミン化合物及びチオール化合物からなる群より選ばれる少なくとも1種である、[7]~[12]のいずれかに記載の硬化性組成物。
[14] 硬化剤がアルコール化合物である、[7]~[12]のいずれかに記載の硬化性組成物。
[15] 50℃において液体状である、[1]~[14]のいずれかに記載の硬化性組成物。
[16] 蓄熱材の形成に用いられる、[1]~[15]のいずれかに記載の硬化性組成物。
[17] [1]~[16]のいずれかに記載の硬化性組成物の硬化物を含む、蓄熱材。
[7] A curable composition containing a compound having a blocked isocyanate group, a capsule containing a heat storage component, and a curing agent.
[8] The curable composition according to [7], wherein the compound having a blocked isocyanate group includes a monomer having a blocked isocyanate group.
[9] The curable composition according to [7], wherein the compound having a blocked isocyanate group includes a polymer having a blocked isocyanate group.
[10] The curable composition according to [9], wherein the polymer having a blocked isocyanate group includes a structural unit represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000013
[Wherein, R 7 represents a hydrogen atom or a methyl group, and R 8 represents an organic group having a blocked isocyanate group. ]
[11] The curable composition according to [10], wherein the polymer having a blocked isocyanate group further includes a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000014
[Wherein R 3 represents a hydrogen atom or a methyl group, and R 4 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain. ]
[12] The curable composition according to any one of [7] to [11], further comprising a polymer containing a structural unit represented by the following formula (3) and having no blocked isocyanate group.
Figure JPOXMLDOC01-appb-C000015
[Wherein, R 5 represents a hydrogen atom or a methyl group, and R 6 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain. ]
[13] The curable composition according to any one of [7] to [12], wherein the curing agent is at least one selected from the group consisting of alcohol compounds, amine compounds, and thiol compounds.
[14] The curable composition according to any one of [7] to [12], wherein the curing agent is an alcohol compound.
[15] The curable composition according to any one of [1] to [14], which is liquid at 50 ° C.
[16] The curable composition according to any one of [1] to [15], which is used for forming a heat storage material.
[17] A heat storage material comprising a cured product of the curable composition according to any one of [1] to [16].
[18] イソシアネート基を有する化合物を含有する第一液と、硬化剤を含有する第二液と、を備え、第一液及び第二液の少なくとも一方が、蓄熱性成分を内包したカプセルを更に含有する、硬化性組成物セット。
[19] イソシアネート基を有する化合物が、イソシアネート基を有するモノマを含む、[18]に記載の硬化性組成物セット。
[20] イソシアネート基を有する化合物が、イソシアネート基を有するポリマを含む、[18]又は[19]に記載の硬化性組成物セット。
[21] イソシアネート基を有するポリマが、下記式(1)で表される構造単位を含む、[20]に記載の硬化性組成物セット。
Figure JPOXMLDOC01-appb-C000016
[式中、Rは水素原子又はメチル基を表し、Rはイソシアネート基を有する有機基を表す。]
[22] イソシアネート基を有するポリマが、下記式(2)で表される構造単位を更に含む、[21]に記載の硬化性組成物セット。
Figure JPOXMLDOC01-appb-C000017
[式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。]
[23] 第一液及び第二液の少なくとも一方が、下記式(3)で表される構造単位を含み、イソシアネート基を有さないポリマを更に含有する、[18]~[22]のいずれかに記載の硬化性組成物セット。
Figure JPOXMLDOC01-appb-C000018
[式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。]
[24] 硬化剤が、アルコール化合物、アミン化合物及びチオール化合物からなる群より選ばれる少なくとも1種である、[18]~[23]のいずれかに記載の硬化性組成物セット。
[25] 硬化剤がアルコール化合物である、[18]~[23]のいずれかに記載の硬化性組成物セット。
[26] 第一液及び第二液の両方がカプセルを含有する、[18]~[25]のいずれかに記載の硬化性組成物セット。
[27] 蓄熱材の形成に用いられる、[18]~[26]のいずれかに記載の硬化性組成物セット。
[28] [18]~[27]のいずれかに記載の硬化性組成物セットにおける、第一液及び第二液の混合物の硬化物を含む、蓄熱材。
[29] 熱源と、熱源と熱的に接触するように設けられた、[17]又は[28]に記載の蓄熱材と、を備える、物品。
[18] A capsule comprising a first liquid containing a compound having an isocyanate group and a second liquid containing a curing agent, wherein at least one of the first liquid and the second liquid contains a heat storage component. A curable composition set containing.
[19] The curable composition set according to [18], wherein the compound having an isocyanate group includes a monomer having an isocyanate group.
[20] The curable composition set according to [18] or [19], wherein the compound having an isocyanate group includes a polymer having an isocyanate group.
[21] The curable composition set according to [20], wherein the polymer having an isocyanate group includes a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000016
[Wherein, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an organic group having an isocyanate group. ]
[22] The curable composition set according to [21], wherein the polymer having an isocyanate group further includes a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000017
[Wherein R 3 represents a hydrogen atom or a methyl group, and R 4 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain. ]
[23] Any of [18] to [22], wherein at least one of the first liquid and the second liquid further contains a polymer containing a structural unit represented by the following formula (3) and having no isocyanate group The curable composition set of crab.
Figure JPOXMLDOC01-appb-C000018
[Wherein, R 5 represents a hydrogen atom or a methyl group, and R 6 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain. ]
[24] The curable composition set according to any one of [18] to [23], wherein the curing agent is at least one selected from the group consisting of an alcohol compound, an amine compound, and a thiol compound.
[25] The curable composition set according to any one of [18] to [23], wherein the curing agent is an alcohol compound.
[26] The curable composition set according to any one of [18] to [25], wherein both the first liquid and the second liquid contain capsules.
[27] The curable composition set according to any one of [18] to [26], which is used for forming a heat storage material.
[28] A heat storage material comprising a cured product of a mixture of the first liquid and the second liquid in the curable composition set according to any one of [18] to [27].
[29] An article comprising: a heat source; and the heat storage material according to [17] or [28], provided to be in thermal contact with the heat source.
 本発明の一側面によれば、蓄熱材に好適に用いられる硬化性組成物又は硬化性組成物セットを提供することができる。 According to one aspect of the present invention, it is possible to provide a curable composition or a curable composition set that is suitably used for a heat storage material.
蓄熱材の形成方法の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the formation method of a thermal storage material. 蓄熱材の形成方法の他の一実施形態を示す模式断面図である。It is a schematic cross section which shows other one Embodiment of the formation method of a thermal storage material. 蓄熱材が形成された物品の他の一実施形態を示す模式断面図である。It is a schematic cross section which shows other one Embodiment of the articles | goods in which the thermal storage material was formed.
 以下、図面を適宜参照しながら、本発明の実施形態について詳細に説明する。なお、本発明は、以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described in detail with appropriate reference to the drawings. The present invention is not limited to the following embodiment.
 本明細書における「(メタ)アクリル」とは、「アクリル」及びそれに対応する「メタクリル」を意味する。 In this specification, “(meth) acryl” means “acryl” and “methacryl” corresponding to it.
 本明細書における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定され、ポリスチレンを標準物質として決定される値を意味する。
・測定機器:HLC-8320GPC(製品名、東ソー(株)製)
・分析カラム:TSKgel SuperMultipore HZ-H(3本連結)(製品名、東ソー(株)製)
・ガードカラム:TSKguardcolumn SuperMP(HZ)-H(製品名、東ソー(株)製)
・溶離液:THF
・測定温度:25℃
The weight average molecular weight (Mw) in the present specification means a value determined using gel permeation chromatography (GPC) under the following conditions and determined using polystyrene as a standard substance.
Measuring instrument: HLC-8320GPC (product name, manufactured by Tosoh Corporation)
・ Analytical column: TSKgel SuperMultipore HZ-H (consolidated 3) (product name, manufactured by Tosoh Corporation)
Guard column: TSK guard column SuperMP (HZ) -H (product name, manufactured by Tosoh Corporation)
・ Eluent: THF
・ Measurement temperature: 25 ℃
[硬化性組成物]
<第1実施形態>
 第1実施形態に係る硬化性組成物は、イソシアネート基を有する化合物と、蓄熱性成分を内包したカプセル(以下、「蓄熱性カプセル」ともいう。)と、を含有する。
[Curable composition]
<First Embodiment>
The curable composition according to the first embodiment contains a compound having an isocyanate group and a capsule containing a heat storage component (hereinafter also referred to as “heat storage capsule”).
 本実施形態に係るイソシアネート基を有する化合物は、分子内に少なくとも1つのイソシアネート基を有する化合物である。イソシアネート基を有する化合物は、イソシアネート基が水と反応することによって、室温下(例えば25℃)で硬化する性質を持つ。水は、例えば空気中に含まれる湿気であってもよい。本実施形態に係る硬化性組成物は上述の性質を有するため、湿気硬化型、又は室温硬化型の硬化性組成物ということもできる。 The compound having an isocyanate group according to this embodiment is a compound having at least one isocyanate group in the molecule. The compound having an isocyanate group has a property of curing at room temperature (for example, 25 ° C.) by the reaction of the isocyanate group with water. The water may be moisture contained in the air, for example. Since the curable composition concerning this embodiment has the above-mentioned property, it can also be called moisture hardening type or room temperature hardening type curable composition.
 イソシアネート基を有する化合物は、イソシアネート基を有するモノマを含んでいてよい。 The compound having an isocyanate group may contain a monomer having an isocyanate group.
 イソシアネート基を有するモノマは、好ましくは分子内に2つのイソシアネート基を有するジイソシアネートである。ジイソシアネートとしては、例えば、トリレンジイソシアネート(2,4-若しくは2,6-トリレンジイソシアネート、又はその混合物)(TDI)、フェニレンジイソシアネート(m-若しくはp-フェニレンジイソシアネート、又はその混合物)、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート(NDI)、ジフェニルメタンジイソシアネート(4,4’-、2,4’-若しくは2,2’-ジフェニルメタンジイソシアネート、又はその混合物)(MDI)、4,4’-トルイジンジイソシアネート(TODI)、4,4’-ジフェニルエーテルジイソシアネート等の芳香族ジイソシアネート、トリメチレンジイソシアネート、1,2-プロピレンジイソシアネート、ブチレンジイソシアネート(テトラメチレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート)、1,5-ペンタメチレンジイソシアネート(PDI)、1,6-ヘキサメチレンジイソシアネート(HDI)、2,4,4-または2,2,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアネートメチルカプエート等の脂肪族ジイソシアネート、1,3-シクロペンタンジイソシアネート、1,3-シクロペンテンジイソシアネート、シクロヘキサンジイソシアネート(1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート)、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート)(IPDI)、メチレンビス(シクロヘキシルイソシアネート)(4,4’-、2,4’-又は2,2’-メチレンビス(シクロヘキシルイソシアネート、これらのtrans,trans-体、trans,cis-体、cis,cis-体、又はその混合物)(H12MDI)、メチルシクロヘキサンジイソシアネート(メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート)、ノルボルナンジイソシアネート(各種異性体又はその混合物)(NBDI)、ビス(イソシアナトメチル)シクロヘキサン(1,3-若しくは1,4-ビス(イソシアナトメチル)シクロヘキサン又はその混合物)(H6XDI)等の脂環族ジイソシアネートなどが挙げられる。イソシアネート基を有するモノマは、これらのイソシアヌレート変性体、ビュレット変性体であってもよい。 The monomer having an isocyanate group is preferably a diisocyanate having two isocyanate groups in the molecule. Examples of the diisocyanate include tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate, or a mixture thereof) (TDI), phenylene diisocyanate (m- or p-phenylene diisocyanate, or a mixture thereof), 4,4 '-Diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'- or 2,2'-diphenylmethane diisocyanate, or mixtures thereof) (MDI), 4,4' -Toluidine diisocyanate (TODI), aromatic diisocyanates such as 4,4'-diphenyl ether diisocyanate, trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (teto) Methylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), 1,5-pentamethylene diisocyanate (PDI), 1,6-hexamethylene diisocyanate (HDI), 2,4 , 4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanate methylcapate and other aliphatic diisocyanates, 1,3-cyclopentane diisocyanate, 1,3-cyclopentene diisocyanate, cyclohexane diisocyanate (1,4 -Cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate) ) (IPDI), methylene bis (cyclohexyl isocyanate) (4,4′-, 2,4′- or 2,2′-methylene bis (cyclohexyl isocyanate, their trans, trans-form, trans, cis-form, cis, cis) -Isomers or mixtures thereof) (H12MDI), methylcyclohexane diisocyanate (methyl-2,4-cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate), norbornane diisocyanate (various isomers or mixtures thereof) (NBDI), bis ( And alicyclic diisocyanates such as isocyanatomethyl) cyclohexane (1,3- or 1,4-bis (isocyanatomethyl) cyclohexane or mixtures thereof) (H6XDI), etc. Monomers may be these isocyanurate-modified products and burette-modified products.
 イソシアネート基を有する化合物は、イソシアネート基を有するポリマを含んでいてよい。 The compound having an isocyanate group may contain a polymer having an isocyanate group.
 イソシアネート基を有するポリマは、下記式(1)で表される構造単位を含むポリマ(ポリマ(A))であってよい。
Figure JPOXMLDOC01-appb-C000019
式中、Rは水素原子又はメチル基を表し、Rはイソシアネート基を有する有機基を表す。
The polymer having an isocyanate group may be a polymer (polymer (A)) containing a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000019
In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an organic group having an isocyanate group.
 イソシアネート基を有するポリマが式(1)で表される構造単位を含むポリマ(A)である場合、式(1)で表される構造単位の含有量は、ポリマ(A)を構成する全構造単位100質量部に対して、2質量部以上であってよく、95質量部以下であってよい。 When the polymer having an isocyanate group is the polymer (A) containing the structural unit represented by the formula (1), the content of the structural unit represented by the formula (1) is the total structure constituting the polymer (A). It may be 2 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the unit.
 ポリマ(A)は、蓄熱材を形成した際の蓄熱性に更に優れる観点から、式(1)で表される構造単位に加えて、下記式(2)で表される構造単位を更に含んでいてよい。
Figure JPOXMLDOC01-appb-C000020
式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。
The polymer (A) further includes a structural unit represented by the following formula (2) in addition to the structural unit represented by the formula (1) from the viewpoint of further excellent heat storage properties when the heat storage material is formed. May be.
Figure JPOXMLDOC01-appb-C000020
In the formula, R 3 represents a hydrogen atom or a methyl group, and R 4 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain.
 Rがアルキル基である場合、アルキル基は、直鎖状であっても分岐状であってもよい。Rで表されるアルキル基の炭素数は、好ましくは12~28、より好ましくは12~26、更に好ましくは12~24、特に好ましくは12~22である。Rで表されるアルキル基としては、例えば、ドデシル基(ラウリル基)、テトラデシル基、ヘキサデシル基)、オクタデシル基(ステアリル基)、ドコシル基(ベヘニル基)、テトラコシル基、ヘキサコシル基、オクタコシル基等が挙げられる。Rで表されるアルキル基は、好ましくは、ドデシル基(ラウリル基)、ヘキサデシル基、オクタデシル基(ステアリル基)、及びドコシル基(ベヘニル基)からなる群より選ばれる少なくとも1種である。 When R 4 is an alkyl group, the alkyl group may be linear or branched. The number of carbon atoms of the alkyl group represented by R 4 is preferably 12 to 28, more preferably 12 to 26, still more preferably 12 to 24, and particularly preferably 12 to 22. Examples of the alkyl group represented by R 4 include dodecyl group (lauryl group), tetradecyl group, hexadecyl group), octadecyl group (stearyl group), docosyl group (behenyl group), tetracosyl group, hexacosyl group, octacosyl group, and the like. Is mentioned. The alkyl group represented by R 4 is preferably at least one selected from the group consisting of a dodecyl group (lauryl group), a hexadecyl group, an octadecyl group (stearyl group), and a docosyl group (behenyl group).
 Rがポリオキシアルキレン鎖を有する基である場合、ポリオキシアルキレン鎖を有する基は、下記式(5)で表される基、すなわち、ポリオキシエチレン鎖、ポリオキシプロピレン鎖及びポリオキシブチレン鎖からなる群より選ばれる少なくとも一種のポリオキシアルキレン鎖を有する基であってよい。
Figure JPOXMLDOC01-appb-C000021
式中、Rは水素原子又は炭素数1~18のアルキル基を表し、mは2~4の整数を表し、nは2~90の整数を表し、*は結合手を表す。Rで表される基に複数存在する(CHは、互いに同一でも異なっていてもよい。つまり、Rで表されるポリオキシアルキレン鎖を有する基は、ポリオキシエチレン鎖、ポリオキシプロピレン鎖及びポリオキシブチレン鎖のいずれか一種のみを有していてよく、二種以上を有していてもよい。
When R 4 is a group having a polyoxyalkylene chain, the group having a polyoxyalkylene chain is a group represented by the following formula (5), that is, a polyoxyethylene chain, a polyoxypropylene chain and a polyoxybutylene chain. It may be a group having at least one polyoxyalkylene chain selected from the group consisting of:
Figure JPOXMLDOC01-appb-C000021
In the formula, R a represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, m represents an integer of 2 to 4, n represents an integer of 2 to 90, and * represents a bond. A plurality of (CH 2 ) m present in the group represented by R 4 may be the same as or different from each other. That is, the group having a polyoxyalkylene chain represented by R 4 may have only one kind of a polyoxyethylene chain, a polyoxypropylene chain, and a polyoxybutylene chain, and has two or more kinds. May be.
 Rで表されるアルキル基は、直鎖状でも分岐状であってもよい。Rで表されるアルキル基の炭素数は、好ましくは1~15、より好ましくは1~10、更に好ましくは1~5である。Rは、特に好ましくは水素原子又はメチル基である。 The alkyl group represented by R a may be linear or branched. The number of carbon atoms of the alkyl group represented by R a is preferably 1 to 15, more preferably 1 to 10, and still more preferably 1 to 5. R a is particularly preferably a hydrogen atom or a methyl group.
 mは、好ましくは2又は3であり、より好ましくは2である。nは、蓄熱材の蓄熱量に更に優れる観点から、好ましくは、4~80、6~60、9~40、9~30、10~30、15~30、又は15~25の整数である。 M is preferably 2 or 3, more preferably 2. n is preferably an integer of 4 to 80, 6 to 60, 9 to 40, 9 to 30, 10 to 30, 15 to 30, or 15 to 25 from the viewpoint of further improving the heat storage amount of the heat storage material.
 ポリマ(A)が式(2)で表される構造単位を含む場合、式(2)で表される構造単位の含有量は、ポリマ(A)を構成する全構造単位100質量部に対して、好ましくは60質量部以上、より好ましくは80質量部以上であり、例えば98質量部以下であってよい。その場合、上述した式(1)で表される構造単位の含有量は、ポリマ(A)を構成する全構造単位100質量部に対して、2質量部以上であってよく、25質量部以下であってよく、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは13質量部以下、特に好ましくは10質量部以下である。 When the polymer (A) includes a structural unit represented by the formula (2), the content of the structural unit represented by the formula (2) is 100 parts by mass with respect to all the structural units constituting the polymer (A). The amount is preferably 60 parts by mass or more, more preferably 80 parts by mass or more, for example, 98 parts by mass or less. In that case, content of the structural unit represented by the formula (1) described above may be 2 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of all the structural units constituting the polymer (A). Preferably, it is 20 mass parts or less, More preferably, it is 15 mass parts or less, More preferably, it is 13 mass parts or less, Most preferably, it is 10 mass parts or less.
 ポリマ(A)の重量平均分子量は、好ましくは100000以下、より好ましくは70000以下、更に好ましくは40000以下であり、例えば5000以上であってよい。 The weight average molecular weight of the polymer (A) is preferably 100,000 or less, more preferably 70,000 or less, still more preferably 40000 or less, for example, 5000 or more.
 イソシアネート基を有するポリマは、上述したポリマ(A)以外に、末端にイソシアネート基を有するポリウレタン、ポリオール、ポリエステル等であってもよい。 The polymer having an isocyanate group may be a polyurethane, polyol, polyester or the like having an isocyanate group at the terminal in addition to the polymer (A) described above.
 上述したイソシアネート基を有する化合物は、1種を単独で又は2種以上を組み合わせて用いられてよい。イソシアネート基を有する化合物の含有量は、硬化性組成物の硬化物からの蓄熱性カプセルの脱落を抑制する観点から、硬化性組成物全量基準で、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上であり、また、蓄熱性を更に向上させる観点から、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは35質量%以下である。 The above-mentioned compound having an isocyanate group may be used alone or in combination of two or more. The content of the compound having an isocyanate group is preferably 10% by mass or more, more preferably 15% by mass based on the total amount of the curable composition from the viewpoint of suppressing the drop of the heat-storable capsules from the cured product of the curable composition. % Or more, more preferably 20% by mass or more, and from the viewpoint of further improving the heat storage property, it is preferably 60% by mass or less, more preferably 50% by mass or less, and still more preferably 35% by mass or less.
 蓄熱成分を内包したカプセル(蓄熱性カプセル)は、蓄熱成分と、蓄熱成分を内包する外殻(シェル)とを有している。蓄熱成分は、蓄熱可能な成分であればよく、例えば、相転移に伴う蓄熱性を有する成分であってよい。蓄熱成分としては、使用目的に応じて目標温度に適合する相転移温度を有するものが適宜選択される。蓄熱成分は、実用範囲で蓄熱効果を得る観点から、例えば-30~120℃に固相/液相の相転移を示す固相/液相転移点(融点)を有する。 A capsule containing a heat storage component (heat storage capsule) has a heat storage component and an outer shell (shell) containing the heat storage component. The heat storage component may be any component that can store heat, and may be, for example, a component having heat storage properties associated with phase transition. As the heat storage component, one having a phase transition temperature suitable for the target temperature is appropriately selected according to the purpose of use. From the viewpoint of obtaining a heat storage effect in a practical range, the heat storage component has a solid phase / liquid phase transition point (melting point) indicating a solid phase / liquid phase transition at, for example, −30 to 120 ° C.
 蓄熱成分は、例えば、鎖状の飽和炭化水素化合物(パラフィン系炭化水素化合物)、天然ワックス、石油ワックス、ポリエチレングリコール、糖アルコール等の有機化合物、又は、無機化合物の水和物、結晶構造変化を示す無機化合物等の無機化合物であってよい。蓄熱成分は、安価で毒性が低く、所望の相転移温度を有するものを容易に選択できる観点から、好ましくは鎖状の飽和炭化水素化合物(パラフィン系炭化水素化合物)である。なお、本明細書において、「鎖状」とは、直鎖状又は分岐状(分岐鎖状)を意味する。 Examples of the heat storage component include chain saturated hydrocarbon compounds (paraffinic hydrocarbon compounds), organic compounds such as natural wax, petroleum wax, polyethylene glycol, and sugar alcohol, or hydrates of inorganic compounds and crystal structure changes. It may be an inorganic compound such as an inorganic compound shown. The heat storage component is preferably a chain-like saturated hydrocarbon compound (paraffinic hydrocarbon compound) from the viewpoint that it is inexpensive, has low toxicity, and can easily select one having a desired phase transition temperature. In this specification, “chain” means linear or branched (branched).
 鎖状の飽和炭化水素化合物は、具体的には、n-デカン(C10(炭素数、以下同様)、-29℃(転移点(融点)、以下同様))、n-ウンデカン(C11、-25℃)、n-ドデカン(C12、-9℃)、n-トリデカン(C13、-5℃)、n-テトラデカン(C14、6℃)、n-ペンタデカン(C15、9℃)、n-ヘキサデカン(C16、18℃)、n-ヘプタデカン(C17、21℃)、n-オクタデカン(C18、28℃)、n-ナノデカン(C19、32℃)、n-エイコサン(C20、37℃)、n-ヘンイコサン(C21、41℃)、n-ドコサン(C22、46℃)、n-トリコサン(C23、47℃)、n-テトラコサン(C24、50℃)、n-ペンタコサン(C25、54℃)、n-ヘキサコサン(C26、56℃)、n-ヘプタコサン(C27、60℃)、n-オクタコサン(C28、65℃)、n-ノナコサン(C29、66℃)、n-トリアコンタン(C30、67℃)、n-テトラコンタン(C40、81℃)、n-ペンタコンタン(C50、91℃)、n-ヘキサコンタン(C60、98℃)、n-ヘクタン(C100、115℃)等であってよい。鎖状の飽和炭化水素化合物は、これらの直鎖状の飽和炭化水素化合物と同様の炭素数を有する分岐状の飽和炭化水素化合物であってもよい。鎖状の飽和炭化水素化合物は、これらの1種又は2種以上であってよい。 Specifically, the chain-like saturated hydrocarbon compound includes n-decane (C10 (carbon number, hereinafter the same), −29 ° C. (transition point (melting point), the same hereinafter)), n-undecane (C11, −25). ° C), n-dodecane (C12, -9 ° C), n-tridecane (C13, -5 ° C), n-tetradecane (C14, 6 ° C), n-pentadecane (C15, 9 ° C), n-hexadecane (C16) 18 ° C), n-heptadecane (C17, 21 ° C), n-octadecane (C18, 28 ° C), n-nanodecane (C19, 32 ° C), n-eicosane (C20, 37 ° C), n-henicosane (C21) 41 ° C), n-docosane (C22, 46 ° C), n-tricosane (C23, 47 ° C), n-tetracosane (C24, 50 ° C), n-pentacosane (C25, 54 ° C), n-hexacosane (C26) 56 ° C), n-heptacosane (C27, 60 ° C), n-octacosane (C28, 65 ° C), n-nonacosane (C29, 66 ° C), n-triacontane (C30, 67 ° C), n-tetracontane ( C40, 81 ° C), n-pentacontane (C50, 91 ° C), n-hexacontane (C60, 98 ° C), n-hexane (C100, 115 ° C), and the like. The chain-like saturated hydrocarbon compound may be a branched saturated hydrocarbon compound having the same carbon number as these linear saturated hydrocarbon compounds. The chain-like saturated hydrocarbon compound may be one or more of these.
 これらの蓄熱成分を内包する外殻(シェル)は、好ましくは、蓄熱成分の転移点(融点)よりも十分に高い耐熱温度を有する材料で形成されている。外殻を形成する材料は、蓄熱成分の転移点(融点)に対して、例えば30℃以上、好ましくは50℃以上の耐熱温度を有する。なお、耐熱温度は、示差熱熱重量同時測定装置(例えばTG-DTA6300((株)日立ハイテクサイエンス製))を用いて、カプセルの重量減少を測定した際に、1%重量減少した温度として定義される。 The outer shell (shell) enclosing these heat storage components is preferably formed of a material having a heat resistance temperature sufficiently higher than the transition point (melting point) of the heat storage components. The material forming the outer shell has a heat resistant temperature of, for example, 30 ° C. or higher, preferably 50 ° C. or higher, with respect to the transition point (melting point) of the heat storage component. The heat-resistant temperature is defined as the temperature at which 1% weight was reduced when the weight loss of the capsule was measured using a differential thermothermal gravimetric simultaneous measurement device (eg TG-DTA6300 (manufactured by Hitachi High-Tech Science Co., Ltd.)). Is done.
 外殻を形成する材料としては、硬化性組成物により形成される蓄熱材の用途に応じた強度を有する材料が適宜選択される。外殻は、好ましくは、メラミン樹脂、アクリル樹脂、ウレタン樹脂、シリカ等で形成されていてよい。メラミン樹脂からなる外殻を有するカプセルとしては、例えば、アウトラストテクノロジー社製のBA410xxP,18C、BA410xxP,37C、三菱製紙(株)製のサーモメモリーFP-16、FP-25、FP-31、FP-39、三木理研工業(株)製のリケンレジンPMCD-15SP、25SP、32SP等が例示される。アクリル樹脂(ポリメチルメタクリレート樹脂)からなる外殻を有するカプセルとしては、BASF社製のMicronalDS5001X,5040X等が例示される。シリカからなる外殻を有するカプセルとしては、三木理研工業(株)製のリケンレジンLA-15,LA-25,LA-32等が例示される。 As the material for forming the outer shell, a material having strength corresponding to the use of the heat storage material formed by the curable composition is appropriately selected. The outer shell may preferably be formed of melamine resin, acrylic resin, urethane resin, silica or the like. As capsules having an outer shell made of melamine resin, for example, BA410xxP, 18C, BA410xxP, 37C manufactured by Outlast Technology, Thermomemory FP-16, FP-25, FP-31, FP manufactured by Mitsubishi Paper Industries Co., Ltd. -39, Riken Resin PMCD-15SP, 25SP, 32SP manufactured by Miki Riken Kogyo Co., Ltd. Examples of capsules having an outer shell made of an acrylic resin (polymethyl methacrylate resin) include MicroDS5001X and 5040X manufactured by BASF. Examples of the capsule having an outer shell made of silica include Riken Resins LA-15, LA-25, LA-32 manufactured by Miki Riken Kogyo Co., Ltd.
 蓄熱成分の含有量は、蓄熱効果を更に高める観点から、蓄熱性カプセル全量基準で、好ましくは20質量%以上、より好ましくは60質量%以上であり、蓄熱成分の体積変化によるカプセルの破損を抑制する観点から、好ましくは80質量%以下である。 From the viewpoint of further enhancing the heat storage effect, the content of the heat storage component is preferably 20% by mass or more, more preferably 60% by mass or more, based on the total amount of the heat storage capsule, and suppresses capsule breakage due to volume change of the heat storage component. From this viewpoint, the content is preferably 80% by mass or less.
 蓄熱性カプセルは、カプセルの熱伝導性、比重等を調節する目的で、外殻内に、黒鉛、金属粉、アルコール等を更に含んでいてもよい。 The heat storage capsule may further contain graphite, metal powder, alcohol or the like in the outer shell for the purpose of adjusting the thermal conductivity, specific gravity and the like of the capsule.
 蓄熱性カプセルの粒子径(平均粒径)は、好ましくは0.1μm以上、より好ましくは0.2μm以上、より好ましくは0.5μm以上であり、好ましくは100μm以下、より好ましくは50μm以下である。蓄熱性カプセルの粒子径(平均粒径)は、レーザ回折式粒子径分布測定装置(例えばSALD-2300((株)島津製作所製)を用いて測定される。 The particle diameter (average particle diameter) of the heat storage capsule is preferably 0.1 μm or more, more preferably 0.2 μm or more, more preferably 0.5 μm or more, preferably 100 μm or less, more preferably 50 μm or less. . The particle size (average particle size) of the heat storage capsule is measured using a laser diffraction type particle size distribution measuring device (for example, SALD-2300 (manufactured by Shimadzu Corporation)).
 蓄熱性カプセル(粉体状態)の蓄熱容量は、より高い蓄熱密度を有する蓄熱材を得ることができる観点から、好ましくは150J/g以上である。蓄熱容量は、示差走査熱量測定(DSC)により測定される。 The heat storage capacity of the heat storage capsule (powder state) is preferably 150 J / g or more from the viewpoint of obtaining a heat storage material having a higher heat storage density. The heat storage capacity is measured by differential scanning calorimetry (DSC).
 蓄熱性カプセルの製造方法については、界面重合法、in-situ重合法、液中硬化被覆法、コアセルベート法等の従来の公知の製造方法から、蓄熱成分、外殻の材質等に応じて適切な方法を選択すればよい。 As for the method for producing the heat storage capsule, it is suitable from the conventional known production methods such as interfacial polymerization method, in-situ polymerization method, submerged curing coating method, coacervate method, etc. You just have to choose a method.
 蓄熱性カプセルの含有量は、蓄熱効果を更に高める観点から、硬化性組成物全量基準で、好ましくは40質量%以上、より好ましくは50質量%以上、更に好ましくは55質量%以上である。蓄熱性カプセルの含有量は、硬化性組成物からの蓄熱性カプセルの脱落を抑制する観点から、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。 From the viewpoint of further enhancing the heat storage effect, the content of the heat storage capsule is preferably 40% by mass or more, more preferably 50% by mass or more, and further preferably 55% by mass or more, based on the total amount of the curable composition. The content of the heat storage capsule is preferably 90% by mass or less, more preferably 85% by mass or less, and still more preferably 80% by mass or less from the viewpoint of suppressing the drop of the heat storage capsule from the curable composition.
 硬化性組成物は、蓄熱効果を更に高める観点から、下記式(3)で表される構造単位(構造単位(A))を含むポリマ(以下、「蓄熱性(メタ)アクリルポリマ」ともいう。)を更に含有してもよい。構造単位(A)を含むポリマは、分子内にイソシアネート基を有さないポリマである。
Figure JPOXMLDOC01-appb-C000022
式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。
From the viewpoint of further enhancing the heat storage effect, the curable composition is also referred to as a polymer containing a structural unit (structural unit (A)) represented by the following formula (3) (hereinafter referred to as “heat storage (meth) acrylic polymer”). ) May be further contained. The polymer containing the structural unit (A) is a polymer having no isocyanate group in the molecule.
Figure JPOXMLDOC01-appb-C000022
In the formula, R 5 represents a hydrogen atom or a methyl group, and R 6 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain.
 Rで表されるアルキル基、又はポリオキシアルキレン鎖を有する基は、上述した式(2)におけるRで表されるアルキル基、又はポリオキシアルキレン鎖を有する基と同様の基であってよい。 The group having an alkyl group represented by R 6 or a polyoxyalkylene chain is the same group as the group having an alkyl group represented by R 4 in formula (2) or a group having a polyoxyalkylene chain described above. Good.
 構造単位(A)の含有量は、蓄熱材の蓄熱量に更に優れる観点から、蓄熱性(メタ)アクリルポリマを構成する全構造単位100質量部に対して、好ましくは60質量部以上、より好ましくは80質量部以上であり、例えば98質量部以下であってよい。 The content of the structural unit (A) is preferably 60 parts by mass or more, more preferably 100 parts by mass or more with respect to 100 parts by mass of all structural units constituting the heat storage (meth) acrylic polymer, from the viewpoint of further improving the heat storage amount of the heat storage material. Is 80 parts by mass or more, for example, 98 parts by mass or less.
 蓄熱性(メタ)アクリルポリマの重量平均分子量は、好ましくは100000以下、より好ましくは70000以下、更に好ましくは40000以下であり、例えば5000以上であってよい。 The weight average molecular weight of the heat storage (meth) acrylic polymer is preferably 100,000 or less, more preferably 70,000 or less, still more preferably 40,000 or less, for example, 5000 or more.
 硬化性組成物が蓄熱性(メタ)アクリルポリマを含有する場合、その含有量は、蓄熱効果を更に高める観点から、硬化性組成物全量基準で、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上であり、また、ハンドリング性の観点から、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは35質量%以下である。 When the curable composition contains a heat storage (meth) acrylic polymer, the content is preferably 10% by mass or more, more preferably 20% by mass based on the total amount of the curable composition from the viewpoint of further enhancing the heat storage effect. % Or more, more preferably 30% by mass or more, and from the viewpoint of handling properties, it is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 35% by mass or less.
 硬化性組成物は、必要に応じて、その他の添加剤を更に含有することができる。その他の添加剤としては、例えば、硬化促進剤、酸化防止剤、着色剤、フィラー、結晶核剤、熱安定剤、熱伝導材、可塑剤、発泡剤、難燃剤、制振剤、脱水剤、難燃助剤(例えば金属酸化物)等が挙げられる。その他の添加剤は、1種単独で又は2種以上を組み合わせて用いられてよい。その他の添加剤の含有量は、硬化性組成物全量基準で、例えば、0.1質量%以上であってよく、30質量%以下であってよい。 The curable composition can further contain other additives as required. Other additives include, for example, curing accelerators, antioxidants, colorants, fillers, crystal nucleating agents, thermal stabilizers, thermal conductive materials, plasticizers, foaming agents, flame retardants, vibration damping agents, dehydrating agents, Examples include flame retardant aids (for example, metal oxides). Other additives may be used alone or in combination of two or more. The content of other additives may be, for example, 0.1% by mass or more and 30% by mass or less based on the total amount of the curable composition.
 硬化性組成物は、50℃において液体状であってよい。これにより、複雑な形状を有する部材間等においても、充填等の方法により硬化性組成物を容易に設けることができる。 The curable composition may be liquid at 50 ° C. Thereby, a curable composition can be easily provided by methods, such as filling, between the members which have a complicated shape.
 硬化性組成物の50℃における粘度は、流動性及びハンドリング性に優れる観点から、好ましくは100Pa・s以下、より好ましくは50Pa・s以下、更に好ましくは20Pa・s以下、特に好ましくは10Pa・s以下である。硬化性組成物の50℃における粘度は、例えば0.5Pa・s以上であってよい。 The viscosity at 50 ° C. of the curable composition is preferably 100 Pa · s or less, more preferably 50 Pa · s or less, still more preferably 20 Pa · s or less, and particularly preferably 10 Pa · s, from the viewpoint of excellent fluidity and handling properties. It is as follows. The viscosity of the curable composition at 50 ° C. may be, for example, 0.5 Pa · s or more.
 硬化性組成物の粘度は、JIS Z 8803に基づいて測定された値を意味し、具体的には、E型粘度計(例えば、東機産業(株)製、PE-80L)により測定された値を意味する。なお、粘度計の校正は、JIS Z 8809-JS14000に基づいて行うことができる。 The viscosity of the curable composition means a value measured based on JIS Z 8803, and specifically measured by an E type viscometer (for example, PE-80L manufactured by Toki Sangyo Co., Ltd.). Mean value. The viscometer can be calibrated based on JIS Z 8809-JS14000.
<第2実施形態>
 第2実施形態に係る硬化性組成物は、ブロックイソシアネート基を有する化合物と、蓄熱性成分を内包したカプセル(蓄熱性カプセル)と、硬化剤と、を含有する。蓄熱性カプセルの態様については、第1実施形態に係る硬化性組成物に用いられる態様と同様であるため説明を省略する。
Second Embodiment
The curable composition according to the second embodiment contains a compound having a blocked isocyanate group, a capsule containing a heat storage component (heat storage capsule), and a curing agent. About the aspect of a thermal storage capsule, since it is the same as that of the aspect used for the curable composition which concerns on 1st Embodiment, description is abbreviate | omitted.
 ブロックイソシアネート基は、熱により脱離可能なブロック剤(保護基)によってブロック(保護)されたイソシアネート基であり、下記式(6)で表される。
Figure JPOXMLDOC01-appb-C000023
式中、Bは保護基を表し、*は結合手を表す。
The blocked isocyanate group is an isocyanate group blocked (protected) by a blocking agent (protecting group) that can be removed by heat, and is represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000023
In the formula, B represents a protecting group, and * represents a bond.
 ブロックイソシアネート基における保護基は、加熱(例えば80~160℃の加熱)によって脱離(脱保護)可能な保護基であってよい。ブロックイソシアネート基においては、脱保護条件下(例えば80~160℃の加熱条件下)で、保護基を形成するブロック剤と後述する硬化剤との置換反応が生じ得る。あるいは、ブロックイソシアネート基においては、脱保護によりイソシアネート基が生成し、イソシアネート基が後述する硬化剤と反応することもできる。 The protective group in the blocked isocyanate group may be a protective group that can be removed (deprotected) by heating (for example, heating at 80 to 160 ° C.). In the blocked isocyanate group, a substitution reaction between the blocking agent forming the protective group and a curing agent described later can occur under deprotection conditions (for example, heating conditions of 80 to 160 ° C.). Alternatively, in the blocked isocyanate group, an isocyanate group is generated by deprotection, and the isocyanate group can react with a curing agent described later.
 ブロックイソシアネート基におけるブロック剤としては、ホルムアルドオキシム、アセトアルドオキシム、アセトオキシム、メチルエチルケトオキシム、シクロヘキサノンオキシム等のオキシム化合物;ピラゾール、3-メチルピラゾール、3,5-ジメチルピラゾール等のピラゾール化合物;ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム及びβ-プロピオラクタム等のラクタム化合物;チオフェノール、メチルチオフェノール、エチルチオフェノール等のメルカプタン化合物;酢酸アミド、ベンズアミド等の酸アミド化合物;コハク酸イミド及びマレイン酸イミド等のイミド化合物が挙げられる。ブロック剤は、好ましくはピラゾール化合物である。 Examples of the blocking agent for the blocked isocyanate group include oxime compounds such as formaldoxime, acetoaldoxime, acetoxime, methylethylketoxime, cyclohexanone oxime; pyrazole compounds such as pyrazole, 3-methylpyrazole, 3,5-dimethylpyrazole; ε- Lactam compounds such as caprolactam, δ-valerolactam, γ-butyrolactam and β-propiolactam; mercaptan compounds such as thiophenol, methylthiophenol and ethylthiophenol; acid amide compounds such as acetate amide and benzamide; succinimide and malee Examples include imide compounds such as acid imides. The blocking agent is preferably a pyrazole compound.
 ブロックイソシアネート基を有する化合物は、ブロックイソシアネート基を有するモノマを含んでいてよい。 The compound having a blocked isocyanate group may contain a monomer having a blocked isocyanate group.
 ブロックイソシアネート基を有するモノマは、好ましくは、第1実施形態におけるイソシアネート基を有するモノマにおいて、イソシアネート基が上述のブロック剤で保護された化合物である。 The monomer having a blocked isocyanate group is preferably a compound in which the isocyanate group is protected with the above-mentioned blocking agent in the monomer having an isocyanate group in the first embodiment.
 ブロックイソシアネート基を有する化合物は、ブロックイソシアネート基を有するポリマを含んでいてもよい。 The compound having a blocked isocyanate group may contain a polymer having a blocked isocyanate group.
 ブロックイソシアネート基を有するポリマは、好ましくは、第1実施形態におけるイソシアネート基を有するポリマにおいて、イソシアネート基が上述のブロック剤で保護された化合物である。すなわち、ブロックイソシアネート基を有するポリマは、一実施形態において、下記式(4)で表される構造単位を含むポリマ(ポリマ(B))である。
Figure JPOXMLDOC01-appb-C000024
式中、Rは水素原子又はメチル基を表し、Rはブロックイソシアネート基を有する有機基を表す。ブロックイソシアネート基は、上述した式(6)で表される基である。
The polymer having a blocked isocyanate group is preferably a compound in which the isocyanate group is protected with the above-mentioned blocking agent in the polymer having an isocyanate group in the first embodiment. That is, in one embodiment, the polymer having a blocked isocyanate group is a polymer (polymer (B)) including a structural unit represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000024
In the formula, R 7 represents a hydrogen atom or a methyl group, and R 8 represents an organic group having a blocked isocyanate group. The blocked isocyanate group is a group represented by the above formula (6).
 ブロックイソシアネート基を有するポリマが式(4)で表される構造単位を含むポリマ(B)である場合、式(4)で表される構造単位の含有量は、ポリマ(A)を構成する全構造単位100質量部に対して、2質量部以上であってよく、95質量部以下であってよい。 When the polymer having a blocked isocyanate group is a polymer (B) containing a structural unit represented by the formula (4), the content of the structural unit represented by the formula (4) is the total content of the polymer (A). The amount may be 2 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the structural unit.
 ポリマ(B)は、蓄熱材を形成した際の蓄熱性に更に優れる観点から、式(4)で表される構造単位に加えて、上述した式(2)で表される構造単位を更に含んでいてよい。式(2)で表される構造単位は、上述した第1実施形態における態様と同様であるため説明を省略する。 The polymer (B) further includes a structural unit represented by the above-described formula (2) in addition to the structural unit represented by the formula (4) from the viewpoint of further excellent heat storage properties when the heat storage material is formed. You can leave. Since the structural unit represented by Formula (2) is the same as the aspect in 1st Embodiment mentioned above, description is abbreviate | omitted.
 ポリマ(B)の重量平均分子量は、好ましくは100000以下、より好ましくは70000以下、更に好ましくは40000以下であり、例えば5000以上であってよい。 The weight average molecular weight of the polymer (B) is preferably 100,000 or less, more preferably 70,000 or less, still more preferably 40000 or less, for example, 5000 or more.
 ブロックイソシアネートを有する化合物の含有量は、硬化性組成物の硬化物からの蓄熱性カプセルの脱落を抑制する観点から、硬化性組成物全量基準で、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上であり、また、蓄熱性を更に向上させる観点から、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは35質量%以下である。 The content of the compound having a blocked isocyanate is preferably 10% by mass or more, more preferably 15% by mass, based on the total amount of the curable composition, from the viewpoint of suppressing the dropping of the heat storage capsule from the cured product of the curable composition. % Or more, more preferably 20% by mass or more, and from the viewpoint of further improving the heat storage property, it is preferably 60% by mass or less, more preferably 50% by mass or less, and still more preferably 35% by mass or less.
 硬化剤は、好ましくは、アルコール化合物、アミン化合物及びチオール化合物からなる群より選ばれる少なくとも1種である。硬化剤は、より好ましくはアルコール化合物である。 The curing agent is preferably at least one selected from the group consisting of alcohol compounds, amine compounds and thiol compounds. The curing agent is more preferably an alcohol compound.
 アルコール化合物としては、3官能以上の多価アルコール又は単量体グリコール、グリコール、並びに、これら以外の高分子量のポリオールが挙げられる。 Examples of the alcohol compound include trifunctional or higher polyhydric alcohols or monomer glycols, glycols, and other high molecular weight polyols.
 3官能以上の多価アルコール又は単量体グリコールとしては、グリセリン、トリメチロールプロパン、トリメチロールエタン、1,2,6-ヘキサントリオール、1,2,4-ブタントリオール、エリスリトール、ソルビトール、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。 Examples of the trifunctional or higher polyhydric alcohol or monomer glycol include glycerin, trimethylolpropane, trimethylolethane, 1,2,6-hexanetriol, 1,2,4-butanetriol, erythritol, sorbitol, pentaerythritol, And dipentaerythritol.
 グリコールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-メチル-1,3-プロパンジオール、2,2-ジエチル-1、3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、1,6-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、ネオペンチルグリコール、1,3,5-トリメチル-1,3-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール等の脂肪族グリコール、1,4-シクロへキサンジオール、1,4-シクロへキサンジメタノール等の脂環族グリコール、キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコールなどが挙げられる。 Examples of the glycol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2- Methyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propane Diol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, neo Pentyl glycol, 1,3,5-trimethyl-1,3-pentanediol, 2,2,4 Aliphatic glycols such as trimethyl-1,3-pentanediol, 1,8-octanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,4-cyclohexanediol, 1, Examples include alicyclic glycols such as 4-cyclohexanedimethanol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene.
 高分子量のポリオールとしては、ビスフェノールAとエチレンオキサイド又はプロピレンオキサイドとの付加物であるグリコール、ポリエーテルポリオール、ポリエステルポリオール、ポリエーテルエステルポリオール、ポリカーボネートポリオール、ポリアクリルポリオール等が挙げられる。 Examples of the high molecular weight polyol include glycols, polyether polyols, polyester polyols, polyether ester polyols, polycarbonate polyols, and polyacrylic polyols, which are adducts of bisphenol A and ethylene oxide or propylene oxide.
 ポリエーテルポリオールは、上述した3官能以上の多価アルコール、グリコール、又はエチレンジアミン、トルエンジアミン等のポリアミン化合物に、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加重合させた水酸基含有ポリエーテルポリオールであってよく、テトラヒドロフランを開環重合して得られるポリテトラメチレンエーテルグリコールであってもよい。 The polyether polyol is a hydroxyl group-containing polyether polyol obtained by addition polymerization of an alkylene oxide such as ethylene oxide or propylene oxide to the above-described trifunctional or higher polyhydric alcohol, glycol, or a polyamine compound such as ethylenediamine or toluenediamine. It may be polytetramethylene ether glycol obtained by ring-opening polymerization of tetrahydrofuran.
 ポリエステルポリオールは、ジカルボン酸(コハク酸、アジピン酸、セバシン酸、アゼライン酸、フタル酸等)、又は、トリ若しくはテトラカルボン酸(トリメリット酸、ピロメリット酸等)と、ジオール(エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5ペンタンジオール、2,2-ジエチルプロパンジオール、2-エチル-2-プチルプロパンジオール、1,6-へキサンジオール、ネオペンチルグリコール、ジエチレングリコール、1,4-シクロへキサンジオール、1,4-シクロへキサンジメタノール等)、トリオール(トリメチロールプロパン、グリセリン等)又は、ビスフェノール(ビスフェノールA、ビスフェノールF等)との重縮合反応によって得られるものであってよい。 Polyester polyols are dicarboxylic acids (succinic acid, adipic acid, sebacic acid, azelaic acid, phthalic acid, etc.), or tri- or tetracarboxylic acids (trimellitic acid, pyromellitic acid, etc.) and diols (ethylene glycol, propylene glycol). 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,2-diethylpropanediol, 2-ethyl-2-ptylpropanediol, 1,6-hexanediol , Neopentyl glycol, diethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, etc.), triol (trimethylolpropane, glycerin, etc.) or bisphenol (bisphenol A, bisphenol F, etc.) By polycondensation reaction It may be one that is.
 ポリエーテルエステルポリオールは、エーテル基含有ジオール若しくは他のグリコールとの混合物を、上述のジカルボン酸又はそれらの無水物と反応させて得られるものであってよい。または、ポリエステルグリコールにアルキレンオキシドを反応させることによって得られるもの(ポリ(ポリテトラメチレンエーテル)アジペート等)であってもよい。 The polyether ester polyol may be obtained by reacting a mixture with an ether group-containing diol or other glycol with the above-mentioned dicarboxylic acid or an anhydride thereof. Alternatively, it may be obtained by reacting an alkylene oxide with polyester glycol (such as poly (polytetramethylene ether) adipate).
 ポリカーボネートポリオールは、多価アルコールとジアルキルカーボネート(ジメチルカーボネート、ジエチルカーボネート等)との脱アルコール縮合反応、多価アルコールとジフェニルカーボネートとの脱フェノール縮合反応、多価アルコールとエチレンカーボネートとの脱エチレングリコール縮合反応等で得られるものであってよい。この場合の多価アルコールとしては、例えば、1,6-ヘキサンジオール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2-ジエチルプロパンジオール、2-エチル2-ブチルプロパンジオール、ネオペンチルグリコール等の脂肪族ジオール、あるいは、1,4-シクロへキサンジオール、1,4-シクロヘキサンジメタノール等の脂環族ジオールなどであってよい。 Polycarbonate polyol is a dealcoholization condensation reaction between polyhydric alcohol and dialkyl carbonate (dimethyl carbonate, diethyl carbonate, etc.), dephenol condensation reaction between polyhydric alcohol and diphenyl carbonate, deethylene glycol condensation between polyhydric alcohol and ethylene carbonate. It may be obtained by reaction or the like. Examples of the polyhydric alcohol in this case include 1,6-hexanediol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2, Aliphatic diols such as 2-diethylpropanediol, 2-ethyl-2-butylpropanediol, neopentyl glycol, or alicyclic diols such as 1,4-cyclohexanediol and 1,4-cyclohexanedimethanol It may be.
 アミン化合物としては、ジエチレントリアミン、ヘキサメチレンジアミン、トリエチレンテトラミン等の脂肪族アミン、キシレンジアミン等の芳香族アミン、イソホロンジアミン等の脂環式アミンなどが挙げられる。本明細書において、アミン化合物は、モノエタノールアミン、ジエタノールアミン等のアミノアルコールであってもよい。 Examples of the amine compound include aliphatic amines such as diethylenetriamine, hexamethylenediamine, and triethylenetetramine, aromatic amines such as xylenediamine, and alicyclic amines such as isophoronediamine. In the present specification, the amine compound may be an amino alcohol such as monoethanolamine or diethanolamine.
 チオール化合物としては、例えば、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(例えば、「カレンズMT-PE1」(昭和電工(株)製))、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(例えば、「カレンズMT-NR1」(昭和電工(株)製))等が挙げられる。 Examples of the thiol compound include pentaerythritol tetrakis (3-mercaptobutyrate) (for example, “Karenz MT-PE1” (manufactured by Showa Denko KK)), 1,3,5-tris (3-mercaptobutyryloxy). Ethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione (for example, “Karenz MT-NR1” (manufactured by Showa Denko KK)) and the like.
 硬化剤の含有量は、硬化性組成物全量基準で、好ましくは0.01質量%以上であり、また、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは1質量%以下である。 The content of the curing agent is preferably 0.01% by mass or more based on the total amount of the curable composition, preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 1% by mass or less. It is.
 本実施形態に係る硬化性組成物も、蓄熱効果を更に高める観点から、上述した式(3)で表される構造単位(A)を含むポリマ(蓄熱性(メタ)アクリルポリマ)を更に含有してもよい。構造単位(A)の態様は上述したものと同様であるため説明を省略する。 The curable composition which concerns on this embodiment further contains the polymer (thermal storage (meth) acrylic polymer) containing the structural unit (A) represented by Formula (3) mentioned above from a viewpoint which raises a thermal storage effect further. May be. Since the aspect of the structural unit (A) is the same as described above, the description thereof is omitted.
 硬化性組成物は、必要に応じて、その他の添加剤を更に含有することができる。その他の添加剤は、第1実施形態に係る硬化性組成物に用いられる添加剤と同様の添加剤であってよい。 The curable composition can further contain other additives as required. Other additives may be the same additives as those used in the curable composition according to the first embodiment.
 本実施形態に係る硬化性組成物は、50℃において液体状であってよい。硬化性組成物の50℃における粘度は、第1実施形態に係る硬化性組成物と同様であってよい。 The curable composition according to this embodiment may be liquid at 50 ° C. The viscosity at 50 ° C. of the curable composition may be the same as that of the curable composition according to the first embodiment.
[硬化性組成物セット]
 一実施形態に係る硬化性組成物セットは、上述したイソシアネート基を有する化合物を含有する第一液と、硬化剤を含有する第二液と、を備え、第一液及び第二液の少なくとも一方が、蓄熱性成分を内包したカプセル(蓄熱性カプセル)を更に含有する。イソシアネート基を有する化合物、及び蓄熱性カプセルの態様については、第1実施形態に係る硬化性組成物に用いられる態様と同様であるため説明を省略する。
[Curable composition set]
The curable composition set which concerns on one Embodiment is equipped with the 1st liquid containing the compound which has the isocyanate group mentioned above, and the 2nd liquid containing a hardening | curing agent, At least one of a 1st liquid and a 2nd liquid However, it further contains a capsule containing a heat storage component (heat storage capsule). About the aspect of the compound which has an isocyanate group, and a thermal storage capsule, since it is the same as the aspect used for the curable composition which concerns on 1st Embodiment, description is abbreviate | omitted.
 すなわち、硬化性組成物セットにおいて、第一液は、イソシアネート基を有する化合物を含有してよく、イソシアネート基を有する化合物及び蓄熱性カプセルを含有してもよい。第二液は、硬化剤を含有してよく、硬化剤及び蓄熱性カプセルを含有してもよい。硬化性組成物セットは、好ましくは、イソシアネート基を有する化合物及び蓄熱性カプセルを含有する第一液と、硬化剤及び蓄熱性カプセルを含有する第二液と、を備える。 That is, in the curable composition set, the first liquid may contain a compound having an isocyanate group, and may contain a compound having an isocyanate group and a heat storage capsule. The second liquid may contain a curing agent, and may contain a curing agent and a heat storage capsule. The curable composition set preferably includes a first liquid containing a compound having an isocyanate group and a heat storage capsule, and a second liquid containing a curing agent and a heat storage capsule.
 第一液及び第二液を混合することにより、イソシアネート基を有する化合物と硬化剤とが反応して、第一液及び第二液の混合物(硬化性組成物)の硬化物が得られる。本実施形態に係る硬化性組成物セットによれば、第一液及び第二液を混合することにより、直ちに第一液と第二液との混合物(硬化性組成物)の硬化物が得られる。すなわち、本実施形態に係る硬化性組成物セットにおいては、速い速度でイソシアネート基を有する化合物を含む混合物を硬化させることができる。 By mixing the first liquid and the second liquid, the compound having an isocyanate group reacts with the curing agent to obtain a cured product of a mixture (curable composition) of the first liquid and the second liquid. According to the curable composition set which concerns on this embodiment, the hardened | cured material of the mixture (curable composition) of a 1st liquid and a 2nd liquid is obtained immediately by mixing a 1st liquid and a 2nd liquid. . That is, in the curable composition set according to this embodiment, a mixture containing a compound having an isocyanate group can be cured at a high speed.
 イソシアネート基を有する化合物の含有量は、硬化性組成物の硬化物からの蓄熱性カプセルの脱落を抑制する観点から、第一液及び第二液の合計量を基準として、好ましくは2質量%以上、より好ましくは5質量%以上、更に好ましくは7質量%以上、特に好ましくは10質量%以上であり、蓄熱性を更に向上させる観点から、好ましくは50質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下、特に好ましくは20質量%以下である。 The content of the compound having an isocyanate group is preferably 2% by mass or more based on the total amount of the first liquid and the second liquid from the viewpoint of suppressing the drop of the heat storage capsules from the cured product of the curable composition. , More preferably 5% by mass or more, further preferably 7% by mass or more, particularly preferably 10% by mass or more, and from the viewpoint of further improving the heat storage property, preferably 50% by mass or less, more preferably 30% by mass or less. More preferably, it is 25% by mass or less, and particularly preferably 20% by mass or less.
 蓄熱性カプセルの含有量(第一液及び第二液に含まれる蓄熱性カプセルの合計の含有量)は、蓄熱材の蓄熱効果を更に高める観点から、第一液及び第二液の合計量を基準として、好ましくは50質量%以上、より好ましくは55質量%以上、更に好ましくは60質量%以上である。蓄熱性カプセルの含有量は、硬化性組成物の硬化物からの蓄熱性カプセルの脱落を抑制する観点から、第一液及び第二液の合計量を基準として、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。 From the viewpoint of further enhancing the heat storage effect of the heat storage material, the content of the heat storage capsule (the total content of the heat storage capsules contained in the first liquid and the second liquid) is the total amount of the first liquid and the second liquid. As a reference, it is preferably 50% by mass or more, more preferably 55% by mass or more, and further preferably 60% by mass or more. The content of the heat storage capsule is preferably 90% by mass or less, based on the total amount of the first liquid and the second liquid, from the viewpoint of suppressing the drop of the heat storage capsule from the cured product of the curable composition. Preferably it is 85 mass% or less, More preferably, it is 80 mass% or less.
 第二液に含まれる硬化剤は、好ましくは、アルコール化合物、アミン化合物及びチオール化合物からなる群より選ばれる少なくとも1種である。硬化剤は、より好ましくはアルコール化合物である。硬化剤のより具体的な態様は、上述した第2実施形態で用いられる硬化剤の態様と同様であってよい。 The curing agent contained in the second liquid is preferably at least one selected from the group consisting of alcohol compounds, amine compounds and thiol compounds. The curing agent is more preferably an alcohol compound. A more specific aspect of the curing agent may be the same as the aspect of the curing agent used in the second embodiment described above.
 硬化剤の含有量は、第二液全量基準で、好ましくは2質量%以上、より好ましくは5質量%以上、更に好ましくは7質量%以上、特に好ましくは10質量%以上であり、また、好ましくは50質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下、特に好ましくは20質量%以下である。 The content of the curing agent is preferably 2% by mass or more, more preferably 5% by mass or more, still more preferably 7% by mass or more, and particularly preferably 10% by mass or more, based on the total amount of the second liquid. Is 50% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, and particularly preferably 20% by mass or less.
 硬化性組成物セットにおいて、第一液及び第二液の少なくとも一方は、上述した式(3)で表される構造単位(A)を含むポリマ(蓄熱性(メタ)アクリルポリマ)を更に含有してもよい。構造単位(A)の態様は上述したものと同様であるため説明を省略する。 In the curable composition set, at least one of the first liquid and the second liquid further contains a polymer (heat storage (meth) acrylic polymer) including the structural unit (A) represented by the above-described formula (3). May be. Since the aspect of the structural unit (A) is the same as described above, the description thereof is omitted.
 第一液及び第二液の少なくとも一方が蓄熱性(メタ)アクリルポリマを含有する場合、蓄熱性(メタ)アクリルポリマは、反応性基を有する構造単位(構造単位(B))を更に含んでいてもよい。 When at least one of the first liquid and the second liquid contains a heat storage (meth) acrylic polymer, the heat storage (meth) acrylic polymer further includes a structural unit (structural unit (B)) having a reactive group. May be.
 構造単位(B)は、反応性基を有している。第一液が構造単位(B)を有する蓄熱性(メタ)アクリルポリマを含有する場合、構造単位(B)における反応性基は、上述の硬化剤と反応し得る基であってよく、例えば、エポキシ基であってよく、好ましくはグリシジル基である。 The structural unit (B) has a reactive group. When the first liquid contains a heat storage (meth) acrylic polymer having the structural unit (B), the reactive group in the structural unit (B) may be a group capable of reacting with the above-described curing agent, for example, It may be an epoxy group, preferably a glycidyl group.
 第一液が構造単位(B)を有する蓄熱性(メタ)アクリルポリマを含有する場合、構造単位(B)は、好ましくは、好ましくは、下記式(7)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000025
式中、Rは水素原子又はメチル基を表し、R10は水素原子又は反応性基を有する有機基を表す。R10における反応性基はエポキシ基を有する基であってよく、好ましくはグリシジル基である。
When the first liquid contains a heat storage (meth) acrylic polymer having the structural unit (B), the structural unit (B) is preferably a structural unit represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000025
In the formula, R 9 represents a hydrogen atom or a methyl group, and R 10 represents an organic group having a hydrogen atom or a reactive group. The reactive group in R 10 may be a group having an epoxy group, and is preferably a glycidyl group.
 第二液が構造単位(B)を有する蓄熱性(メタ)アクリルポリマを含有する場合、構造単位(B)における反応性基は、例えば、カルボキシル基、ヒドロキシル基及びアミノ基からなる群より選ばれる少なくとも1種の基である。 When the second liquid contains a heat storage (meth) acrylic polymer having the structural unit (B), the reactive group in the structural unit (B) is selected from the group consisting of, for example, a carboxyl group, a hydroxyl group, and an amino group. At least one group.
 第二液が構造単位(B)を有する蓄熱性(メタ)アクリルポリマを含有する場合、構造単位(B)は、好ましくは、下記式(8)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000026
式中、R11は水素原子又はメチル基を表し、R12は水素原子又は反応性基を有する有機基を表す。R12における反応性基は、カルボキシル基、ヒドロキシル基、又はアミノ基であってよい。
When the second liquid contains a heat storage (meth) acrylic polymer having a structural unit (B), the structural unit (B) is preferably a structural unit represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000026
In the formula, R 11 represents a hydrogen atom or a methyl group, and R 12 represents an organic group having a hydrogen atom or a reactive group. The reactive group in R 12 may be a carboxyl group, a hydroxyl group, or an amino group.
 硬化性組成物セットにおいて、第一液及び第二液の少なくとも一方が蓄熱性(メタ)アクリルポリマを含有する場合、その含有量(第一液及び第二液に含まれる蓄熱性(メタ)アクリルポリマの合計の含有量)は、蓄熱効果を更に高める観点から、第一液及び第二液の合計量を基準として、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上であり、また、ハンドリング性の観点から、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは35質量%以下である。 In the curable composition set, when at least one of the first liquid and the second liquid contains a heat storage (meth) acrylic polymer, the content (heat storage (meth) acrylic contained in the first liquid and the second liquid). From the viewpoint of further enhancing the heat storage effect, the total content of the polymer is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 30%, based on the total amount of the first liquid and the second liquid. From the viewpoint of handling properties, it is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably 35% by mass or less.
 第一液が構造単位(B)を含む蓄熱性(メタ)アクリルポリマを含有する場合、第二液は、蓄熱材の液漏れ及び揮発を抑制し、耐熱性を向上させる観点から、上述した硬化剤(第一の硬化剤)に加えて、蓄熱性(メタ)アクリルポリマの構造単位(B)における反応性基と反応する硬化剤(第二の硬化剤)を含有してもよい。 When the first liquid contains a heat storage (meth) acrylic polymer containing the structural unit (B), the second liquid is cured as described above from the viewpoint of suppressing liquid leakage and volatilization of the heat storage material and improving heat resistance. In addition to the agent (first curing agent), a curing agent (second curing agent) that reacts with the reactive group in the structural unit (B) of the heat storage (meth) acrylic polymer may be contained.
 第二の硬化剤としては、例えば、フェノール化合物、アミン化合物、イミダゾール化合物、酸無水物であってよい。第二の硬化剤として用いられるアミン化合物は、上述した第一の硬化剤におけるアミン化合物(第一のアミン化合物)とは異なるアミン化合物(第二のアミン化合物)であってよい。 As the second curing agent, for example, a phenol compound, an amine compound, an imidazole compound, or an acid anhydride may be used. The amine compound used as the second curing agent may be an amine compound (second amine compound) different from the amine compound (first amine compound) in the first curing agent described above.
 フェノール化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4’-ビフェニルフェノール、テトラメチルビスフェノールA、ジメチルビスフェノールA、テトラメチルビスフェノールF、ジメチルビスフェノールF、テトラメチルビスフェノールS、ジメチルビスフェノールS、テトラメチル-4,4’-ビフェノール、ジメチル-4,4’-ビフェニルフェノール、1-(4-ヒドロキシフェニル)-2-[4-(1,1-ビス-(4-ヒドロキシフェニル)エチル)フェニル]プロパン、2,2’-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェノール)、トリスヒドロキシフェニルメタン、レゾルシノール、ハイドロキノン、ピロガロール、ジイソプロピリデン骨格を有するフェノール化合物;1,1-ジ-4-ヒドロキシフェニルフルオレン等のフルオレン骨格を有するフェノール化合物;クレゾール化合物;エチルフェノール化合物;ブチルフェノール化合物;オクチルフェノール化合物;ビスフェノールA、ビスフェノールF、ビスフェノールS、ナフトール化合物等の各種フェノールを原料とするノボラック樹脂、キシリレン骨格含有フェノールノボラック樹脂、ジシクロペンタジエン骨格含有フェノールノボラック樹脂、ビフェニル骨格含有フェノールノボラック樹脂、フルオレン骨格含有フェノールノボラック樹脂、フラン骨格含有フェノールノボラック樹脂等の各種ノボラック樹脂などが挙げられる。 Examples of the phenol compound include bisphenol A, bisphenol F, bisphenol S, 4,4′-biphenylphenol, tetramethyl bisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, dimethyl bisphenol S. Tetramethyl-4,4′-biphenol, dimethyl-4,4′-biphenylphenol, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis- (4-hydroxyphenyl) ethyl) Phenyl] propane, 2,2′-methylene-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (3-methyl-6-tert-butylphenol), trishydroxyphenylmethane, resor Phenol compounds having a fluorene skeleton such as 1,1-di-4-hydroxyphenylfluorene; cresol compounds; ethylphenol compounds; butylphenol compounds; octylphenol compounds; bisphenol A , Novolak resins made from various phenols such as bisphenol F, bisphenol S, naphthol compounds, xylylene skeleton-containing phenol novolak resins, dicyclopentadiene skeleton-containing phenol novolak resins, biphenyl skeleton-containing phenol novolak resins, fluorene skeleton-containing phenol novolak resins, Examples include various novolak resins such as a furan skeleton-containing phenol novolac resin.
 アミン化合物(第二のアミン化合物)としては、例えば、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、ジアミノジフェニルエーテル、p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、1,5-ジアミノナフタレン、m-キシリレンジアミン等の芳香族アミン、エチレンジアミン、ジエチレンジアミン、ヘキサメチレンジアミン、イソフォロンジアミン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ポリエーテルジアミン等の脂肪族アミン;ジシアンジアミド、1-(o-トリル)ビグアニド等のグアニジン化合物などが挙げられる。 Examples of the amine compound (second amine compound) include diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 1,5-diaminonaphthalene, and m-xylylene diene. Aromatic amines such as amines, aliphatic amines such as ethylenediamine, diethylenediamine, hexamethylenediamine, isophoronediamine, bis (4-amino-3-methyldicyclohexyl) methane, polyetherdiamine; dicyandiamide, 1- (o-tolyl) ) Guanidine compounds such as biguanides.
 イミダゾール化合物としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,3-ジヒドロ-1H-ピロロ-[1,2-a]ベンズイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル-4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾール等が挙げられる。 Examples of the imidazole compound include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl. -2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,3-dihydro-1H -Pyrrolo- [1,2-a] benzimidazole, 2,4-diamino-6 (2'-methylimidazole (1 ')) ethyl-s-triazine, 2,4-diamino-6 (2'-undecyl) Imidazole (1 ′)) ethyl-s-triazine, 2,4 Diamino-6 (2′-ethyl-4-methylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ethyl-s-triazine isocyanuric acid Adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 1-cyanoethyl Examples include -2-phenyl-3,5-dicyanoethoxymethylimidazole.
 酸無水物としては、例えば、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールトリメリット酸無水物、ビフェニルテトラカルボン酸無水物等の芳香族カルボン酸無水物;アゼライン酸、セバシン酸、ドデカン二酸等の脂肪族カルボン酸の無水物、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、ナジック酸無水物、ヘット酸無水物、ハイミック酸無水物等の脂環式カルボン酸無水物などが挙げられる。 Examples of the acid anhydride include aromatics such as phthalic acid anhydride, trimellitic acid anhydride, pyromellitic acid anhydride, benzophenone tetracarboxylic acid anhydride, ethylene glycol trimellitic acid anhydride, and biphenyltetracarboxylic acid anhydride. Carboxylic anhydrides: anhydrides of aliphatic carboxylic acids such as azelaic acid, sebacic acid, dodecanedioic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, nadic acid anhydride, het acid anhydride, highmic acid anhydride And alicyclic carboxylic acid anhydrides.
 第二液が、第一の硬化剤とは異なる種類の第二の硬化剤を含有する場合、第二の硬化剤の含有量は、第一液及び第二液の合計量を基準として、好ましくは0.01質量%以上であり、また、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは1質量%以下である。 When the second liquid contains a second curing agent of a different type from the first curing agent, the content of the second curing agent is preferably based on the total amount of the first liquid and the second liquid. Is 0.01% by mass or more, preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less.
 第一液及び/又は第二液は、必要に応じて、その他の添加剤を更に含有することができる。その他の添加剤としては、例えば、硬化促進剤、酸化防止剤、着色剤、フィラー、結晶核剤、熱安定剤、熱伝導材、可塑剤、発泡剤、難燃剤、制振剤、脱水剤、難燃助剤(例えば金属酸化物)等が挙げられる。その他の添加剤は、1種単独で又は2種以上を組み合わせて用いられてよい。その他の添加剤の含有量は、第一液及び第二液の合計量を基準として、例えば、0.1質量%以上であってよく、30質量%以下であってよい。 The first liquid and / or the second liquid can further contain other additives as necessary. Other additives include, for example, curing accelerators, antioxidants, colorants, fillers, crystal nucleating agents, thermal stabilizers, thermal conductive materials, plasticizers, foaming agents, flame retardants, vibration damping agents, dehydrating agents, Examples include flame retardant aids (for example, metal oxides). Other additives may be used alone or in combination of two or more. The content of other additives may be, for example, 0.1% by mass or more and 30% by mass or less based on the total amount of the first liquid and the second liquid.
[蓄熱材]
 以上説明した硬化性組成物の硬化物、及び硬化性組成物セットの第一液及び第二液の混合物の硬化物は、蓄熱材として好適に用いられる(蓄熱材用硬化性組成物として好適である)。すなわち、一実施形態に係る蓄熱材は、上述した硬化性組成物の硬化物を含んでいる。また、他の実施形態に係る蓄熱材は、上述した硬化性組成物セットの第一液及び第二液の混合物の硬化物を含んでいる。
[Heat storage material]
The cured product of the curable composition described above and the cured product of the mixture of the first liquid and the second liquid of the curable composition set are suitably used as a heat storage material (suitable as a curable composition for a heat storage material. is there). That is, the heat storage material according to one embodiment includes a cured product of the curable composition described above. Moreover, the heat storage material which concerns on other embodiment contains the hardened | cured material of the mixture of the 1st liquid and 2nd liquid of the curable composition set mentioned above.
 蓄熱材は、様々な分野に活用され得る。蓄熱材は、例えば、自動車、建築物、公共施設、地下街等における空調設備(空調設備の効率向上)、工場等における配管(配管の蓄熱)、自動車のエンジン(当該エンジン周囲の保温)、電子部品(電子部品の昇温防止)、下着の繊維などに用いられる。 Thermal storage materials can be used in various fields. Thermal storage materials include, for example, air conditioning equipment (improvement of efficiency of air conditioning equipment) in automobiles, buildings, public facilities, underground malls, etc., piping in pipes (heat storage in piping), automobile engines (heat retention around the engine), electronic components (Prevents temperature rise of electronic parts), used for fibers of underwear.
[蓄熱材を備える物品]
 次に、蓄熱材を備える物品を得る方法について、蓄熱材を設ける対象として電子部品を例に挙げて説明する。図1は、一実施形態に係る蓄熱材の形成方法(蓄熱材を備える物品の製造方法)を示す模式断面図である。本実施形態に係る形成方法(製造方法)では、まず、図1(a)に示すように、蓄熱材を設ける対象である物品として電子部品1を用意する。電子部品1は、例えば、基板(例えば回路基板)2と、基板2上に設けられた半導体チップ(熱源)3と、半導体チップ3を基板2に接続する複数の接続部(例えば半田)4とを備えている。この電子部品1では、半導体チップ3が熱源となる。複数の接続部4は、互いに離間して基板2と半導体チップ3との間に設けられている。すなわち、基板2と半導体チップ3との間には、複数の接続部4同士を隔てる隙間が存在している。
[Articles with heat storage materials]
Next, a method for obtaining an article provided with a heat storage material will be described by taking an electronic component as an example as an object for providing the heat storage material. FIG. 1 is a schematic cross-sectional view illustrating a method for forming a heat storage material (a method for manufacturing an article including a heat storage material) according to an embodiment. In the forming method (manufacturing method) according to the present embodiment, first, as shown in FIG. 1A, an electronic component 1 is prepared as an article on which a heat storage material is provided. The electronic component 1 includes, for example, a substrate (for example, a circuit substrate) 2, a semiconductor chip (heat source) 3 provided on the substrate 2, and a plurality of connection portions (for example, solder) 4 that connect the semiconductor chip 3 to the substrate 2. It has. In the electronic component 1, the semiconductor chip 3 serves as a heat source. The plurality of connection portions 4 are provided between the substrate 2 and the semiconductor chip 3 so as to be separated from each other. In other words, there are gaps separating the plurality of connecting portions 4 between the substrate 2 and the semiconductor chip 3.
 続いて、図1(b)に示すように、例えばシリンジ5を用いて、基板2と半導体チップ3との間に硬化性組成物6を充填する。硬化性組成物6は、上述した一実施形態に係る硬化性組成物、又は一実施形態に係る硬化性組成物セットにおける第一液及び第二液の混合物であってよい。硬化性組成物6は、完全に未硬化の状態であってよく、一部が硬化している状態であってもよい。 Subsequently, as shown in FIG. 1B, the curable composition 6 is filled between the substrate 2 and the semiconductor chip 3 using, for example, a syringe 5. The curable composition 6 may be a curable composition according to one embodiment described above or a mixture of the first liquid and the second liquid in the curable composition set according to one embodiment. The curable composition 6 may be in a completely uncured state or may be partially cured.
 硬化性組成物6は、室温(例えば25℃)で液体状の状態である場合は、室温において硬化性組成物6を充填することができる。硬化性組成物6が室温で固体状である場合は、硬化性組成物6を加熱して(例えば50℃以上)液体状にした上で充填することができる。 When the curable composition 6 is in a liquid state at room temperature (for example, 25 ° C.), the curable composition 6 can be filled at room temperature. When curable composition 6 is solid at room temperature, it can be filled after curable composition 6 is heated (for example, 50 ° C. or higher) to be liquid.
 以上のように硬化性組成物6を充填することにより、図1(c)に示すように、硬化性組成物6は、基板2と半導体チップ3との間に存在する上記の隙間に、基板2、半導体チップ3及び接続部4のそれぞれと熱的に接するように配置される。 By filling the curable composition 6 as described above, the curable composition 6 is placed in the gap between the substrate 2 and the semiconductor chip 3 as shown in FIG. 2. It arrange | positions so that each of the semiconductor chip 3 and the connection part 4 may be contact | connected thermally.
 続いて、硬化性組成物6を硬化させることにより、図1(d)に示すように、基板2と半導体チップ3との間に存在する上記の隙間に、蓄熱材7が形成される。 Subsequently, by curing the curable composition 6, the heat storage material 7 is formed in the above-described gap existing between the substrate 2 and the semiconductor chip 3 as shown in FIG. 1 (d).
 硬化性組成物6の硬化方法は、第1実施形態に係る硬化性組成物を用いた場合には、配置された硬化性組成物を静置することにより、空気中の水と反応させて硬化させる方法であってよい。硬化性組成物6の硬化方法は、第2実施形態に係る硬化性組成物を用いた場合には、配置された硬化性組成物6を加熱することによって硬化性組成物6を硬化させる方法であってよい。硬化性組成物6の硬化方法は、硬化性組成物セットを用いる場合には、第一液と第二液を混合することによって硬化を進行させる方法であってもよい。 When the curable composition according to the first embodiment is used, the curable composition 6 is cured by allowing it to react with water in the air by allowing the arranged curable composition to stand. It may be a method to make it. The curing method of the curable composition 6 is a method of curing the curable composition 6 by heating the curable composition 6 arranged when the curable composition according to the second embodiment is used. It may be. When using the curable composition set, the curing method of the curable composition 6 may be a method of proceeding curing by mixing the first liquid and the second liquid.
 上記実施形態では、硬化性組成物6は液体状であるが、他の一実施形態では、硬化性組成物はシート状であってよい。図2は、蓄熱材の形成方法の他の一実施形態を示す模式断面図である。本実施形態の蓄熱材の形成方法(製造方法)では、まず、図2(a)に示すように、蓄熱材を設ける対象である物品として電子部品11を用意する。電子部品11は、例えば、基板2と、基板2上に設けられた半導体チップ(熱源)3とを備えている。 In the above embodiment, the curable composition 6 is in a liquid form, but in another embodiment, the curable composition may be in a sheet form. FIG. 2 is a schematic cross-sectional view showing another embodiment of a method for forming a heat storage material. In the heat storage material forming method (manufacturing method) of the present embodiment, first, as shown in FIG. 2A, the electronic component 11 is prepared as an article on which the heat storage material is provided. The electronic component 11 includes, for example, a substrate 2 and a semiconductor chip (heat source) 3 provided on the substrate 2.
 続いて、図2(b)に示すように、シート状の硬化性組成物16を、基板2及び半導体チップ3上に、基板2及び半導体チップ3のそれぞれと熱的に接するように配置する。硬化性組成物16は、例えば、上述した硬化方法によりBステージ化(半硬化)された組成物である。すなわち、本実施形態の蓄熱材の形成方法は、第一の硬化性組成物をBステージ化して第二の硬化性組成物(シート状の硬化性組成物16)を用意する工程を備えていてよい。 Subsequently, as illustrated in FIG. 2B, the sheet-like curable composition 16 is disposed on the substrate 2 and the semiconductor chip 3 so as to be in thermal contact with each of the substrate 2 and the semiconductor chip 3. The curable composition 16 is, for example, a composition that has been B-staged (semi-cured) by the above-described curing method. That is, the method for forming the heat storage material of the present embodiment includes a step of preparing the second curable composition (sheet-like curable composition 16) by converting the first curable composition into a B-stage. Good.
 続いて、硬化性組成物16を硬化させることにより、図2(c)に示すように、基板2及び半導体チップ3上に蓄熱材17が形成される。硬化性組成物6の硬化方法は、上述した硬化方法と同様であってよい。 Subsequently, the curable composition 16 is cured to form the heat storage material 17 on the substrate 2 and the semiconductor chip 3 as shown in FIG. The curing method of the curable composition 6 may be the same as the curing method described above.
 上記実施形態では、熱源における露出した表面の全部を覆うように蓄熱材を形成したが、他の一実施形態では、熱源における露出した表面の一部を覆うように蓄熱材を配置してもよい。図3(a)は、蓄熱材が形成された物品の他の一実施形態を示す模式断面図である。図3(a)に示すように、蓄熱材17は、例えば半導体チップ(熱源)3における露出した表面の一部に接触して(一部を覆うように)配置されていてよい。蓄熱材17が配置される場所(蓄熱材17が半導体チップ3に接触する場所)は、図3(a)では半導体チップ3の側面部分であるが、半導体チップ3のいずれの表面上であってもよい。 In the above embodiment, the heat storage material is formed so as to cover the entire exposed surface of the heat source. However, in another embodiment, the heat storage material may be disposed so as to cover a part of the exposed surface of the heat source. . Fig.3 (a) is a schematic cross section which shows other one Embodiment of the articles | goods in which the heat storage material was formed. As shown to Fig.3 (a), the thermal storage material 17 may be arrange | positioned, for example in contact with a part of exposed surface in the semiconductor chip (heat source) 3, so that a part may be covered. The place where the heat storage material 17 is disposed (the place where the heat storage material 17 contacts the semiconductor chip 3) is the side surface portion of the semiconductor chip 3 in FIG. 3A, but on any surface of the semiconductor chip 3. Also good.
 以上説明した各実施形態においては、蓄熱材7,17を形成するための硬化性組成物6,16を未硬化又は半硬化の状態で、熱源である半導体チップ3に接するように配置した上で、硬化性組成物6,16を硬化させている。したがって、蓄熱材7,17は、半導体チップ3等の形状に好適に追従して形成される。よって、熱源である半導体チップ3で発生する熱、及び半導体チップ3から基板2へ伝導する熱は、蓄熱材7,17にも効率良く伝導し、蓄熱材7,17で好適に蓄えられる。 In each of the embodiments described above, the curable compositions 6 and 16 for forming the heat storage materials 7 and 17 are placed in contact with the semiconductor chip 3 as a heat source in an uncured or semi-cured state. The curable compositions 6 and 16 are cured. Therefore, the heat storage materials 7 and 17 are suitably formed following the shape of the semiconductor chip 3 and the like. Therefore, the heat generated in the semiconductor chip 3 as a heat source and the heat conducted from the semiconductor chip 3 to the substrate 2 are also efficiently conducted to the heat storage materials 7 and 17 and are suitably stored in the heat storage materials 7 and 17.
 上記の各実施形態では、熱源である半導体チップ3に直接接するように、硬化性組成物6,16を配置し、蓄熱材7,17を形成しているが、硬化性組成物及び蓄熱材は、熱源に熱的に接していればよく、他の一実施形態では、例えば、熱伝導性の部材(放熱部材等)を介して熱源に熱的に接するように硬化性組成物を配置し、蓄熱材を形成してもよい。 In each of the above embodiments, the curable compositions 6 and 16 are arranged so as to be in direct contact with the semiconductor chip 3 which is a heat source, and the heat storage materials 7 and 17 are formed. However, the curable composition and the heat storage material are In another embodiment, for example, the curable composition is disposed so as to be in thermal contact with the heat source via a heat conductive member (such as a heat radiating member). A heat storage material may be formed.
 図3(b)は、蓄熱材が形成された物品の他の一実施形態を示す模式断面図である。図3(b)に示すように、蓄熱材17は、基板2における半導体チップ3が設けられた面とは反対側の面に配置されている。本実施形態では、蓄熱材17は、半導体チップ3に直接接していないが、基板2を介して半導体チップ3と熱的に接触している。蓄熱材17が配置される場所は、半導体チップ3に熱的に接触していれば、基板2のいずれの表面上であってもよい。この場合でも、熱源(半導体チップ3)で発生する熱は、基板2を介して蓄熱材17に効率良く伝導し、蓄熱材17で好適に蓄えられる。 FIG. 3B is a schematic cross-sectional view showing another embodiment of an article on which a heat storage material is formed. As shown in FIG. 3B, the heat storage material 17 is disposed on the surface of the substrate 2 opposite to the surface on which the semiconductor chip 3 is provided. In the present embodiment, the heat storage material 17 is not in direct contact with the semiconductor chip 3, but is in thermal contact with the semiconductor chip 3 through the substrate 2. The place where the heat storage material 17 is disposed may be on any surface of the substrate 2 as long as it is in thermal contact with the semiconductor chip 3. Even in this case, the heat generated by the heat source (semiconductor chip 3) is efficiently conducted to the heat storage material 17 through the substrate 2 and is suitably stored in the heat storage material 17.
 図2~図3により説明した各実施形態においては、硬化性組成物としてBステージ化されたシート状の硬化性組成物16を用いて蓄熱材17を形成しているが、各実施形態の変形例では、硬化性組成物が液体状の硬化性組成物であってもよい。この場合、例えば、半導体チップ(熱源)3における露出した表面の一部若しくは全部、又は、基板2における半導体チップ3が設けられた面とは反対側の面に液体状の硬化性組成物を塗布し、硬化させることにより蓄熱材が形成されてもよい。 In each of the embodiments described with reference to FIGS. 2 to 3, the heat storage material 17 is formed using the B-staged sheet-like curable composition 16 as the curable composition. In an example, the curable composition may be a liquid curable composition. In this case, for example, a liquid curable composition is applied to part or all of the exposed surface of the semiconductor chip (heat source) 3 or the surface of the substrate 2 opposite to the surface on which the semiconductor chip 3 is provided. Then, the heat storage material may be formed by curing.
以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.
[蓄熱性(メタ)アクリルポリマの合成]
 以下のとおり、公知の溶液重合方法により、実施例3~4で用いた蓄熱性(メタ)アクリルポリマA及びBを合成した。
[Synthesis of heat storage (meth) acrylic polymer]
As described below, the heat storage (meth) acrylic polymers A and B used in Examples 3 to 4 were synthesized by a known solution polymerization method.
(蓄熱性(メタ)アクリルポリマAの合成)
 撹拌機、温度計、窒素ガス導入管、排出管及び加熱ジャケットから構成された500mLフラスコを反応器とし、モノマとしてメトキシポリエチレングリコール#1000アクリレート93g及び2-イソシアナトエチルメタクリレート(MOI)7g、溶媒として2-プロパノール81.8gを混合し、反応器に加え、室温下(25℃)、撹拌し、1時間、窒素を流した。
 その後、70℃に昇温し、昇温完了後、アゾビスイソブチロニトリル0.35gをメチルエチルケトンに溶解した溶液を反応器に添加し、反応を開始させた。その後、反応器内温度70℃で撹拌し、5時間反応させた。その後、アゾビスイソブチロニトリル0.05gをメチルエチルケトンに溶解した溶液を反応器に添加し、90℃まで昇温し、更に2時間反応させた。その後、溶媒を除去、乾燥し、蓄熱性(メタ)アクリルポリマAを得た。蓄熱性(メタ)アクリルポリマAの重量平均分子量(Mw)は、15000であった。
(Synthesis of heat storage (meth) acrylic polymer A)
A 500 mL flask composed of a stirrer, a thermometer, a nitrogen gas inlet tube, a discharge tube and a heating jacket is used as a reactor, 93 g of methoxypolyethylene glycol # 1000 acrylate and 7 g of 2-isocyanatoethyl methacrylate (MOI) as monomers, and as a solvent. 81.8 g of 2-propanol was mixed, added to the reactor, stirred at room temperature (25 ° C.), and flushed with nitrogen for 1 hour.
Thereafter, the temperature was raised to 70 ° C., and after the temperature raising was completed, a solution of 0.35 g of azobisisobutyronitrile dissolved in methyl ethyl ketone was added to the reactor to start the reaction. Then, it stirred at the reactor internal temperature of 70 degreeC, and was made to react for 5 hours. Thereafter, a solution in which 0.05 g of azobisisobutyronitrile was dissolved in methyl ethyl ketone was added to the reactor, the temperature was raised to 90 ° C., and the reaction was further continued for 2 hours. Then, the solvent was removed and dried to obtain a heat storage (meth) acrylic polymer A. The weight average molecular weight (Mw) of the heat storage (meth) acrylic polymer A was 15000.
(蓄熱性(メタ)アクリルポリマBの合成)
 蓄熱性(メタ)アクリルポリマBについては、MOIをヒドロキシエチルアクリレートに変更した以外は、蓄熱性(メタ)アクリルポリマAの合成例と同様の方法で合成した。得られた蓄熱性(メタ)アクリルポリマBの重量平均分子量(Mw)は、15000であった。
(Synthesis of heat storage (meth) acrylic polymer B)
The heat storage (meth) acrylic polymer B was synthesized by the same method as the synthesis example of the heat storage (meth) acrylic polymer A except that the MOI was changed to hydroxyethyl acrylate. The obtained heat storage (meth) acrylic polymer B had a weight average molecular weight (Mw) of 15000.
[蓄熱材の作製]
(実施例1)
 ヘキサメチレンジイソシアネート(HDI)40g、蓄熱性カプセルとしてBA410xxP,C37(カプセルA)(アウトラストテクノロジー社製)60g、ジラウリン酸ジブチルスズ0.2gを配合し、硬化性組成物を得た。この硬化性組成物の50℃における粘度を、E型粘度計(東機産業(株)製、PE-80L)を用いて、JIS Z 8803に基づいて測定した。結果を表1に示す。次に、硬化性組成物をポリエチレンテレフタレート(PET)フィルム上に塗布し、室温下、24時間養生した。その後、PETフィルムを除去し、厚さ100μmのフィルム状の蓄熱材を得た。
[Production of heat storage material]
(Example 1)
Hexamethylene diisocyanate (HDI) 40 g, BA410xxP, C37 (capsule A) (manufactured by Outlast Technology Co., Ltd.) 60 g as heat storage capsules, and dibutyltin dilaurate 0.2 g were blended to obtain a curable composition. The viscosity of this curable composition at 50 ° C. was measured based on JIS Z 8803 using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., PE-80L). The results are shown in Table 1. Next, the curable composition was applied onto a polyethylene terephthalate (PET) film and cured at room temperature for 24 hours. Thereafter, the PET film was removed to obtain a film-like heat storage material having a thickness of 100 μm.
(実施例2)
 ブロックイソシアネート基を有する化合物であるMF-K60B(固形分60%、旭化成(株)製)83gと、BA410xxP,C37 50gとを混合し、溶媒を除去した。その後、ジエチレントリアミン2.0g及びジラウリン酸ジブチルスズ0.25gを更に混合し、硬化性組成物を得た。この硬化性組成物の50℃における粘度を、E型粘度計(東機産業(株)製、PE-80L)を用いて、JIS Z 8803に基づいて測定した。結果を表1に示す。
 次に、硬化性組成物を10cm×10cm×1mmの型枠(SUS板)中に充填し、150℃で5分硬化させ、厚さ1mmのシート状の蓄熱材を得た。
(Example 2)
83 g of MF-K60B (solid content 60%, manufactured by Asahi Kasei Co., Ltd.) which is a compound having a blocked isocyanate group was mixed with 50 g of BA410xxP, C37, and the solvent was removed. Thereafter, 2.0 g of diethylenetriamine and 0.25 g of dibutyltin dilaurate were further mixed to obtain a curable composition. The viscosity of this curable composition at 50 ° C. was measured based on JIS Z 8803 using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., PE-80L). The results are shown in Table 1.
Next, the curable composition was filled in a 10 cm × 10 cm × 1 mm mold (SUS plate) and cured at 150 ° C. for 5 minutes to obtain a sheet-like heat storage material having a thickness of 1 mm.
(実施例3)
 イソシアネート基を有する化合物であるA201H(旭化成(株)製)45g、及びBA410xxP,C37 55gを混合し、第一液を得た。また、ポリオールであるGP1000(硬化剤)(三洋化成(株)製)45g、BA410xxP,C37 55g、及びジラウリン酸ジブチルスズ0.16gを混合し、第二液を得た。この第一液と第二液の25℃における粘度を、E型粘度計(東機産業(株)製、PE-80L)を用いて、JIS Z 8803に基づいて測定した。結果を表2に示す。次に、ポリエチレンテレフタレート(PET)フィルムの上に10cm×10cm×1mmの型枠(SUS板)をスペーサとして設置し、その中に第一液及び第二液をミキシングノズル(トミタエンジニアリング(株)製)を用いて混合しながら充填し、別のPETフィルムを被せ、室温下、24時間養生した。養生後、PETフィルム及び型枠を除去し厚さ1mmのシート状の蓄熱材を得た。
(Example 3)
45 g of A201H (produced by Asahi Kasei Co., Ltd.), which is a compound having an isocyanate group, and 55 g of BA410xxP, C37 were mixed to obtain a first liquid. Moreover, 45 g of GP1000 (curing agent) (manufactured by Sanyo Chemical Co., Ltd.), 55 g of BA410xxP, C37, and 0.16 g of dibutyltin dilaurate as a polyol were mixed to obtain a second liquid. The viscosities at 25 ° C. of the first and second liquids were measured based on JIS Z 8803 using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., PE-80L). The results are shown in Table 2. Next, a 10 cm × 10 cm × 1 mm formwork (SUS plate) is installed as a spacer on a polyethylene terephthalate (PET) film, and the first and second liquids are mixed into the mixing nozzle (manufactured by Tomita Engineering Co., Ltd.). ), While mixing, covered with another PET film, and cured at room temperature for 24 hours. After curing, the PET film and the mold were removed to obtain a sheet-like heat storage material having a thickness of 1 mm.
(実施例4)
 硬化性組成物の組成を表2に示すとおりに変更した以外は、実施例3と同様の方法で硬化性組成物の粘度測定及び蓄熱材の作製を実施した。結果を表2に示す。
Example 4
Except for changing the composition of the curable composition as shown in Table 2, the viscosity measurement of the curable composition and the production of the heat storage material were performed in the same manner as in Example 3. The results are shown in Table 2.
[融点及び蓄熱量の評価]
 実施例で作製した各蓄熱材を、示差走査熱量測定計(パーキンエルマー社製、型番DSC8500)を用いて測定し、融点と蓄熱量を算出した。具体的には、20℃/分で100℃まで昇温し、100℃で3分間保持した後、10℃/分の速度で-30℃まで降温し、次いで-30℃で3分間保持した後、10℃/分の速度で100℃まで再び昇温して熱挙動を測定した。融解ピークを蓄熱材の融点とし、面積を蓄熱量とした。結果を表1、2に示す。なお、蓄熱量が30J/g以上であれば、蓄熱量に優れているといえる。
[Evaluation of melting point and heat storage]
Each heat storage material produced in the examples was measured using a differential scanning calorimeter (manufactured by Perkin Elmer, model number DSC8500), and a melting point and a heat storage amount were calculated. Specifically, the temperature was raised to 100 ° C. at 20 ° C./minute, held at 100 ° C. for 3 minutes, then lowered to −30 ° C. at a rate of 10 ° C./minute, and then held at −30 ° C. for 3 minutes. The temperature was raised again to 100 ° C. at a rate of 10 ° C./min, and the thermal behavior was measured. The melting peak was the melting point of the heat storage material, and the area was the heat storage amount. The results are shown in Tables 1 and 2. In addition, if the heat storage amount is 30 J / g or more, it can be said that the heat storage amount is excellent.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 1,11…電子部品、2…基板、3…半導体チップ(熱源)、4…接続部、5…シリンジ、6,16…硬化性組成物、7,17…蓄熱材。 DESCRIPTION OF SYMBOLS 1,11 ... Electronic component, 2 ... Board | substrate, 3 ... Semiconductor chip (heat source), 4 ... Connection part, 5 ... Syringe, 6,16 ... Curable composition, 7, 17 ... Heat storage material.

Claims (29)

  1.  イソシアネート基を有する化合物と、蓄熱性成分を内包したカプセルと、を含有する硬化性組成物。 A curable composition containing a compound having an isocyanate group and a capsule containing a heat storage component.
  2.  前記イソシアネート基を有する化合物が、イソシアネート基を有するモノマを含む、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the compound having an isocyanate group contains a monomer having an isocyanate group.
  3.  前記イソシアネート基を有する化合物が、イソシアネート基を有するポリマを含む、請求項1又は2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the compound having an isocyanate group contains a polymer having an isocyanate group.
  4.  前記イソシアネート基を有するポリマが、下記式(1)で表される構造単位を含む、請求項3に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは水素原子又はメチル基を表し、Rはイソシアネート基を有する有機基を表す。]
    The curable composition of Claim 3 in which the polymer which has the said isocyanate group contains the structural unit represented by following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an organic group having an isocyanate group. ]
  5.  前記イソシアネート基を有するポリマが、下記式(2)で表される構造単位を更に含む、請求項4に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。]
    The curable composition of Claim 4 in which the polymer which has the said isocyanate group further contains the structural unit represented by following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R 3 represents a hydrogen atom or a methyl group, and R 4 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain. ]
  6.  下記式(3)で表される構造単位を含み、イソシアネート基を有さないポリマを更に含有する、請求項1~5のいずれか一項に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000003
    [式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。]
    The curable composition according to any one of claims 1 to 5, further comprising a polymer containing a structural unit represented by the following formula (3) and having no isocyanate group.
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, R 5 represents a hydrogen atom or a methyl group, and R 6 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain. ]
  7.  ブロックイソシアネート基を有する化合物と、蓄熱性成分を内包したカプセルと、硬化剤と、を含有する硬化性組成物。 A curable composition containing a compound having a blocked isocyanate group, a capsule containing a heat storage component, and a curing agent.
  8.  前記ブロックイソシアネート基を有する化合物が、ブロックイソシアネート基を有するモノマを含む、請求項7に記載の硬化性組成物。 The curable composition according to claim 7, wherein the compound having a blocked isocyanate group contains a monomer having a blocked isocyanate group.
  9.  前記ブロックイソシアネート基を有する化合物が、ブロックイソシアネート基を有するポリマを含む、請求項7に記載の硬化性組成物。 The curable composition according to claim 7, wherein the compound having a blocked isocyanate group contains a polymer having a blocked isocyanate group.
  10.  前記ブロックイソシアネート基を有するポリマが、下記式(4)で表される構造単位を含む、請求項9に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、Rは水素原子又はメチル基を表し、Rはブロックイソシアネート基を有する有機基を表す。]
    The curable composition of Claim 9 in which the polymer which has the said block isocyanate group contains the structural unit represented by following formula (4).
    Figure JPOXMLDOC01-appb-C000004
    [Wherein, R 7 represents a hydrogen atom or a methyl group, and R 8 represents an organic group having a blocked isocyanate group. ]
  11.  前記ブロックイソシアネート基を有するポリマが、下記式(2)で表される構造単位を更に含む、請求項10に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。]
    The curable composition of Claim 10 in which the polymer which has the said block isocyanate group further contains the structural unit represented by following formula (2).
    Figure JPOXMLDOC01-appb-C000005
    [Wherein R 3 represents a hydrogen atom or a methyl group, and R 4 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain. ]
  12.  下記式(3)で表される構造単位を含み、ブロックイソシアネート基を有さないポリマを更に含有する、請求項7~11のいずれか一項に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000006
    [式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。]
    The curable composition according to any one of claims 7 to 11, further comprising a polymer containing a structural unit represented by the following formula (3) and having no blocked isocyanate group.
    Figure JPOXMLDOC01-appb-C000006
    [Wherein, R 5 represents a hydrogen atom or a methyl group, and R 6 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain. ]
  13.  前記硬化剤が、アルコール化合物、アミン化合物及びチオール化合物からなる群より選ばれる少なくとも1種である、請求項7~12のいずれか一項に記載の硬化性組成物。 The curable composition according to any one of claims 7 to 12, wherein the curing agent is at least one selected from the group consisting of an alcohol compound, an amine compound, and a thiol compound.
  14.  前記硬化剤がアルコール化合物である、請求項7~12のいずれか一項に記載の硬化性組成物。 The curable composition according to any one of claims 7 to 12, wherein the curing agent is an alcohol compound.
  15.  50℃において液体状である、請求項1~14のいずれか一項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 14, which is liquid at 50 ° C.
  16.  蓄熱材の形成に用いられる、請求項1~15のいずれか一項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 15, which is used for forming a heat storage material.
  17.  請求項1~16のいずれか一項に記載の硬化性組成物の硬化物を含む、蓄熱材。 A heat storage material comprising a cured product of the curable composition according to any one of claims 1 to 16.
  18.  イソシアネート基を有する化合物を含有する第一液と、硬化剤を含有する第二液と、を備え、
     前記第一液及び前記第二液の少なくとも一方が、蓄熱性成分を内包したカプセルを更に含有する、硬化性組成物セット。
    A first liquid containing a compound having an isocyanate group, and a second liquid containing a curing agent,
    The curable composition set in which at least one of the first liquid and the second liquid further contains a capsule containing a heat storage component.
  19.  前記イソシアネート基を有する化合物が、イソシアネート基を有するモノマを含む、請求項18に記載の硬化性組成物セット。 The curable composition set according to claim 18, wherein the compound having an isocyanate group contains a monomer having an isocyanate group.
  20.  前記イソシアネート基を有する化合物が、イソシアネート基を有するポリマを含む、請求項18又は19に記載の硬化性組成物セット。 The curable composition set according to claim 18 or 19, wherein the compound having an isocyanate group contains a polymer having an isocyanate group.
  21.  前記イソシアネート基を有するポリマが、下記式(1)で表される構造単位を含む、請求項20に記載の硬化性組成物セット。
    Figure JPOXMLDOC01-appb-C000007
    [式中、Rは水素原子又はメチル基を表し、Rはイソシアネート基を有する有機基を表す。]
    The curable composition set of Claim 20 in which the polymer which has the said isocyanate group contains the structural unit represented by following formula (1).
    Figure JPOXMLDOC01-appb-C000007
    [Wherein, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an organic group having an isocyanate group. ]
  22.  前記イソシアネート基を有するポリマが、下記式(2)で表される構造単位を更に含む、請求項21に記載の硬化性組成物セット。
    Figure JPOXMLDOC01-appb-C000008
    [式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。]
    The curable composition set according to claim 21, wherein the polymer having an isocyanate group further includes a structural unit represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000008
    [Wherein R 3 represents a hydrogen atom or a methyl group, and R 4 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain. ]
  23.  前記第一液及び前記第二液の少なくとも一方が、下記式(3)で表される構造単位を含み、イソシアネート基を有さないポリマを更に含有する、請求項18~22のいずれか一項に記載の硬化性組成物セット。
    Figure JPOXMLDOC01-appb-C000009
    [式中、Rは水素原子又はメチル基を表し、Rは炭素数12~30のアルキル基、又はポリオキシアルキレン鎖を有する基を表す。]
    23. At least one of the first liquid and the second liquid further contains a polymer containing a structural unit represented by the following formula (3) and having no isocyanate group. The curable composition set described in 1.
    Figure JPOXMLDOC01-appb-C000009
    [Wherein, R 5 represents a hydrogen atom or a methyl group, and R 6 represents an alkyl group having 12 to 30 carbon atoms or a group having a polyoxyalkylene chain. ]
  24.  前記硬化剤が、アルコール化合物、アミン化合物及びチオール化合物からなる群より選ばれる少なくとも1種である、請求項18~23のいずれか一項に記載の硬化性組成物セット。 The curable composition set according to any one of claims 18 to 23, wherein the curing agent is at least one selected from the group consisting of alcohol compounds, amine compounds and thiol compounds.
  25.  前記硬化剤がアルコール化合物である、請求項18~23のいずれか一項に記載の硬化性組成物セット。 The curable composition set according to any one of claims 18 to 23, wherein the curing agent is an alcohol compound.
  26.  前記第一液及び前記第二液の両方が前記カプセルを含有する、請求項18~25のいずれか一項に記載の硬化性組成物セット。 The curable composition set according to any one of claims 18 to 25, wherein both the first liquid and the second liquid contain the capsule.
  27.  蓄熱材の形成に用いられる、請求項18~26のいずれか一項に記載の硬化性組成物セット。 The curable composition set according to any one of claims 18 to 26, which is used for forming a heat storage material.
  28.  請求項18~27のいずれか一項に記載の硬化性組成物セットにおける、前記第一液及び前記第二液の混合物の硬化物を含む、蓄熱材。 A heat storage material comprising a cured product of the mixture of the first liquid and the second liquid in the curable composition set according to any one of claims 18 to 27.
  29.  熱源と、
     前記熱源と熱的に接触するように設けられた、請求項17又は28に記載の蓄熱材と、を備える、物品。
    A heat source,
    The heat storage material according to claim 17 or 28 provided so as to be in thermal contact with the heat source.
PCT/JP2018/042155 2018-05-15 2018-11-14 Curable composition, curable composition set, heat storage material, and article WO2019220662A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020518950A JP7276329B2 (en) 2018-05-15 2018-11-14 Curable composition, curable composition set, heat storage material, and article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018093540 2018-05-15
JP2018-093540 2018-05-15
JP2018167247 2018-09-06
JP2018-167247 2018-09-06

Publications (1)

Publication Number Publication Date
WO2019220662A1 true WO2019220662A1 (en) 2019-11-21

Family

ID=68539865

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/042155 WO2019220662A1 (en) 2018-05-15 2018-11-14 Curable composition, curable composition set, heat storage material, and article
PCT/JP2018/042164 WO2019220665A1 (en) 2018-05-15 2018-11-14 Curable composition, curable composition set, heat storage material, and article
PCT/JP2018/042161 WO2019220664A1 (en) 2018-05-15 2018-11-14 Curable composition, curable composition set, heat storage material, and article

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/042164 WO2019220665A1 (en) 2018-05-15 2018-11-14 Curable composition, curable composition set, heat storage material, and article
PCT/JP2018/042161 WO2019220664A1 (en) 2018-05-15 2018-11-14 Curable composition, curable composition set, heat storage material, and article

Country Status (4)

Country Link
JP (3) JP7276329B2 (en)
KR (1) KR102579988B1 (en)
CN (1) CN112135888A (en)
WO (3) WO2019220662A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152275A (en) * 2004-11-02 2006-06-15 Sk Kaken Co Ltd Heat-storing thermal insulation body
JP2009079115A (en) * 2007-09-26 2009-04-16 Achilles Corp Heat-storable urethane resin sheet molding
JP2011132421A (en) * 2009-12-25 2011-07-07 Kansai Paint Co Ltd Hydrophilization-treated composition
JP2014129467A (en) * 2012-12-28 2014-07-10 Toho Chem Ind Co Ltd Two-liquid type curable polyurethane resin composition

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109787A (en) 1998-10-06 2000-04-18 Hope Seiyaku Kk Gelling agent for paraffins and gelling
JP2004026971A (en) * 2002-06-25 2004-01-29 Idemitsu Kosan Co Ltd Crosslinked heat-reserving material
CN1318536C (en) * 2003-12-13 2007-05-30 鸿富锦精密工业(深圳)有限公司<Del/> Heat sink and phase change conducting strip
JP2007029312A (en) * 2005-07-25 2007-02-08 Matsushita Denko Bath & Life Kk Bathtub
CN101117572B (en) * 2007-07-25 2011-05-11 中南大学 Composite phase-change heat-storing material using gel as carrier and method for making same
JP2009029985A (en) 2007-07-30 2009-02-12 Achilles Corp Heat storage acrylic resin sheet-like molded product
EP2490265A1 (en) * 2009-10-15 2012-08-22 Hitachi Chemical Company, Ltd. Conductive adhesive, solar cell, method for manufacturing solar cell, and solar cell module
CN103183922B (en) * 2011-12-27 2015-09-02 比亚迪股份有限公司 For the carrier of phase-change accumulation energy and phase-changing energy storage material and their preparation method
CN104059615A (en) * 2013-03-18 2014-09-24 南京工业大学 Preparation method of binary aliphatic acid/PMMA shape-stabilized phase change material
JP6438740B2 (en) * 2014-11-06 2018-12-19 共同技研化学株式会社 Method for producing heat storage adhesive sheet
JP2017132899A (en) * 2016-01-27 2017-08-03 Jxtgエネルギー株式会社 Curable resin composition, method for producing cured product, and article having the cured product
WO2017200936A1 (en) 2016-05-19 2017-11-23 Kemet Electronics Corporation Polyanion copolymers for use with conducting polymers in solid electrolytic capacitors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152275A (en) * 2004-11-02 2006-06-15 Sk Kaken Co Ltd Heat-storing thermal insulation body
JP2009079115A (en) * 2007-09-26 2009-04-16 Achilles Corp Heat-storable urethane resin sheet molding
JP2011132421A (en) * 2009-12-25 2011-07-07 Kansai Paint Co Ltd Hydrophilization-treated composition
JP2014129467A (en) * 2012-12-28 2014-07-10 Toho Chem Ind Co Ltd Two-liquid type curable polyurethane resin composition

Also Published As

Publication number Publication date
JP7255590B2 (en) 2023-04-11
JP7276329B2 (en) 2023-05-18
KR20210010446A (en) 2021-01-27
JPWO2019220662A1 (en) 2021-06-17
CN112135888A (en) 2020-12-25
JPWO2019220664A1 (en) 2021-07-08
JPWO2019220665A1 (en) 2021-06-17
WO2019220664A1 (en) 2019-11-21
WO2019220665A1 (en) 2019-11-21
JP7235048B2 (en) 2023-03-08
KR102579988B1 (en) 2023-09-18

Similar Documents

Publication Publication Date Title
TWI785042B (en) Resin composition, heat storage material, and article including heat source and cured product
JP7375750B2 (en) Resin compositions, heat storage materials, and articles
WO2019220662A1 (en) Curable composition, curable composition set, heat storage material, and article
JP7375819B2 (en) Resin compositions, heat storage materials, and articles
WO2020183917A1 (en) Curable composition, heat storage material, and article
US20230312824A1 (en) Curable composition, heat storage material, and article
JP7439753B2 (en) Heat storage molded bodies, curable compositions and articles
JP2021172698A (en) Curable composition, heat storage material, and article
CN113825787A (en) Method for manufacturing heat storage sheet
TWI829723B (en) Use of resin compositions for heat storage materials, heat storage materials and articles including heat storage materials
KR20230164383A (en) Curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518950

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918440

Country of ref document: EP

Kind code of ref document: A1