WO2020248558A1 - 一种激光光源的光学*** - Google Patents

一种激光光源的光学*** Download PDF

Info

Publication number
WO2020248558A1
WO2020248558A1 PCT/CN2019/125972 CN2019125972W WO2020248558A1 WO 2020248558 A1 WO2020248558 A1 WO 2020248558A1 CN 2019125972 W CN2019125972 W CN 2019125972W WO 2020248558 A1 WO2020248558 A1 WO 2020248558A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
specific wavelength
dichroic mirror
light source
optical system
Prior art date
Application number
PCT/CN2019/125972
Other languages
English (en)
French (fr)
Inventor
陈国平
Original Assignee
广州光联电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州光联电子科技有限公司 filed Critical 广州光联电子科技有限公司
Publication of WO2020248558A1 publication Critical patent/WO2020248558A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam

Definitions

  • the present invention relates to the technical field of laser light sources, and more specifically, to an optical system of laser light sources.
  • laser has the advantages of concentrated energy and good collimation, making laser lighting as a new light source gradually widely used in some special lighting fields, such as laser projection, stage lighting, urban landmark searchlights, etc. Whether it is the most widely used laser projection or other special lighting, to a large extent what is required is not a simple monochromatic laser light source, but a non-monochromatic light source such as white light.
  • Traditional technical means usually use the three primary colors of red, green and blue. This solution is not only costly, but also a strong coherent laser will produce a speckle effect, which will seriously affect the quality of lighting.
  • the prior art has begun to use blue lasers to excite phosphors to generate red light and green light, so that white light with better light quality can be obtained with relatively low cost.
  • the blue laser excitation phosphor solution is divided into two types: transmissive and reflective.
  • the transmissive solution has the advantage of higher optical efficiency.
  • the optical system after the phosphor is excited is simple and convenient for design and debugging.
  • the disadvantage is that it is limited by materials. It can only be used in a system with low blue illuminance per unit area.
  • the reflective scheme is just the opposite. As shown in Figure 2, it can be used in high-power laser light source systems. If the phosphor is applied to the color wheel device, the input blue light power can reach higher, but its optical efficiency does not have the transmissive scheme height of.
  • Figure 3 is a commonly used optical path design for the reflective scheme.
  • the blue light 401 emitted by the laser tube 6 passes through the reflector, the blue light 301 reflected by the blue and yellow dichroic mirror 11 is guided to the phosphor 8, and The transmitted blue light 302 is guided to the side of the Lambertian scatterer 9, and the yellow light 501 excited by the phosphor 8 penetrates the dichroic mirror 11 and merges with the blue light 303 reflected by the Lambertian scatterer 9 into a beam White light 7, at this time, part of the yellow light 501 is reflected to form the reflected yellow light 502, and part of the blue light 303 is transmitted through the dichroic mirror to form the transmitted blue light 304.
  • This solution uses a dichroic mirror to split and combine the incident blue light and the excited yellow light, so as to achieve the purpose of finally mixing into white light.
  • the disadvantage of this scheme is that it is subject to the requirements for the setting of the reflection/transmission ratio of the dichroic mirror, that is, it is necessary to ensure that the yellow light generated by the excited phosphor can be mixed with the corresponding blue and yellow light when it returns to the dichroic mirror.
  • the dichroic mirror sets a ratio of reflection/transmission of blue light. Basically, the sum of the ratio of reflected blue light R 1 and the ratio of transmitted blue light T 1 is 1. Generally, R 1 is about 80% and T 1 is about 20%.
  • the loss ratio of light output through the dichroic mirror is equivalent to the ratio of reflection/transmission set at the time of input.
  • the yellow light and blue light After the yellow light and blue light enter the dichroic mirror for the second time, there will be a certain proportion of loss, that is, the transmission and Part of the yellow light mixed with blue light is lost by reflection, namely yellow light 502, and part of the blue light that should be reflected and mixed with yellow light is lost by transmission, namely blue light 304.
  • the yellow light and blue light after the blue light is excited by phosphors are not efficient Output, resulting in lower optical efficiency.
  • the present invention provides a laser light source optical system, which improves the optical conversion efficiency of the laser light source mixing to generate white light without changing the original system optical path structure.
  • an optical system of a laser light source comprising a laser light source, a dichroic mirror, a wavelength conversion device and a Lambertian scatterer arranged in sequence, the dichroic mirror comprising
  • a regional reflective film is used to receive the first specific wavelength light emitted by the laser light source, and can completely reflect the first specific wavelength light irradiated on it.
  • the area reflection film includes a plurality of hollow transmission holes, part of the first specific wavelength light can be injected into the rear of the dichroic mirror through the transmission holes, and/or, the dichroic mirror does not completely block the first For light of a specific wavelength, part of the light of the first specific wavelength can enter the back of the dichroic mirror through the unshielded position of the dichroic mirror.
  • the wavelength conversion device is used for receiving the first specific wavelength light reflected by the area reflection film, converting it into a second specific wavelength light and reflecting back along the incident light path.
  • the area reflection film has a complete transmission function for the second specific wavelength light.
  • the Lambertian scatterer is used to make part of the light of the first specific wavelength transmitted by the dichroic mirror form a sub-Lambertian light source and reflect back along the incident light path.
  • the total reflection reflectance is higher than 95%, and the total transmission transmittance is higher than 95%.
  • the first specific wavelength light and the second specific wavelength light reflected by the Lambertian scatterer are mixed at the dichroic mirror, and white light can be generated when the ratio is appropriate.
  • Lambertian scatterer refers to the phenomenon that when the incident light is uniformly reflected in all directions, that is, the incident light is centered at the incident point, and the light is reflected isotropically to the surroundings in the entire hemispherical space.
  • diffuse reflection occurs on the Lambertian scatterer, forming a secondary light source that is different from the incident light, that is, the sub-Lambertian light source.
  • the dichroic mirror area reflective film sets the reflectance and transmittance of the first specific wavelength light, reflects most of the first specific wavelength light and transmits a small part of the first specific wavelength light, and finally realizes at the dichroic mirror Mixed into white light, in the process of multiple reflection and transmission, the light of the other kind is lost due to the choice of one of the reflected and transmitted light.
  • the principle that the technical solution of the present invention can reduce light loss is as follows: establish a rectangular coordinate system on the plane of the dichroic mirror, use the x-axis and y-axis as the horizontal and vertical axes, and set the first specific wavelength in the light beam emitted by the laser light source
  • the illuminance distribution curve of the first light irradiated on the plane of the dichroic mirror in the rectangular coordinate system is f(x,y)
  • the irradiation area is S 00
  • the optical power of the first specific wavelength light irradiated on the plane of the dichroic mirror is Q 0
  • Q 0 can be expressed as:
  • the optical power is the integral of the light distribution on the distribution area.
  • the two have provided a number of transmission holes pierced dichroic mirrors, the transmission area of each hole is respectively S 1, S 2, — S a, the first specific wavelength of light through the first region of the reflective film transmittance
  • the optical power Q 3 is:
  • the first specific wavelength light passes through the dichroic mirror and enters the side of the Lambertian scatterer.
  • Lambertian scatterer refers to the phenomenon that the incident light is uniformly reflected in all directions, that is, the incident light is centered at the incident point, and the light is reflected isotropically to the surroundings in the entire hemispherical space. It is also called Lambertian. When light is incident on the Lambertian scatterer, diffuse reflection occurs on the Lambertian scatterer, forming a secondary light source that is different from the incident light.
  • the first specific wavelength light passes through the dichroic mirror, and after being reflected on the side of the Lambertian scatterer, it enters the collimating system with a larger divergence angle, and after the collimating system, a larger cross-sectional area is formed
  • the light beam is irradiated on the dichroic mirror again, assuming that the first specific wavelength light with a larger cross-sectional area that is irradiated on the dichroic mirror again has the irradiation area of the dichroic mirror S 01 , S 01 Should be greater than S 00 .
  • the illuminance distribution curve of the dichroic mirror can be expressed as g(x,y), because S 01 > S 00 , and suppose that The total optical power of the first specific wavelength light with the larger cross-sectional area is Q 4 , and Q 4 is obviously smaller than Q 0 , therefore: g(x,y) ⁇ f(x,y), at this time, since S 01 >S 00 , the first specific wavelength light with a larger cross-sectional area irradiated on the dichroic mirror again completely covers the S 00 area, then the first specific wavelength light irradiated on the dichroic mirror again will also pass through the dichroic mirror The transmission hole on the reflective film in the mirror area causes a certain light loss, and the lost optical power at this time is Q S1 :
  • the number and size of the transmission holes are fixed. As the area of the light irradiated on the dichroic mirror increases, the transmittance will gradually decrease. Since S 01 > S 00 , therefore: ⁇ 1 > ⁇ 2 .
  • the dichroic mirror achieves the corresponding function by setting a ratio of reflection/transmission of light of a specific wavelength, so its transmittance is constant, set to ⁇ , and according to the same transmission of light of the first specific wavelength, it passes through Lambertian
  • the scatterer reflects and amplifies the first specific wavelength light transmitted from the dichroic mirror.
  • a second transmission occurs.
  • the first specific wavelength light and the second specific wavelength light require a certain ratio when mixing, under the same circumstances, the total area of the transmission hole of the present invention is within a certain range, let ⁇ 1 ⁇
  • the light power of the first specific wavelength light transmitted through the dichroic mirror for the first time in the prior art and the present invention is the same, and ⁇ 1 > ⁇ 2 , ⁇ 1 ⁇ , then the generated light
  • the loss Q S1 ⁇ Q S0 that is, under the same or similar conditions, the present invention has higher optical efficiency than the prior art.
  • all the light beams are within the range of the reflection film of the dichroic mirror region.
  • the dichroic mirror and the first specific wavelength light emitted by the laser light source are arranged at an angle of 45°.
  • optical axes of the first specific wavelength light reflected by the area reflection film and the first specific wavelength light emitted by the laser light source are perpendicular to each other.
  • the transmission holes are all located within the irradiation range when the light of the first specific wavelength is irradiated on the plane of the dichroic mirror for the first time.
  • the total area of the transmission hole can be set according to the mixing ratio of the first specific wavelength light and the second specific wavelength light reflected by the Lambertian scatterer at the dichroic mirror.
  • the ratio of the total area of the transmission hole to the irradiation area of the first specific wavelength light irradiated on the dichroic mirror plane for the first time after removing the total area of the transmission hole is equal to or approximately equal to the first specific
  • the ratio of the optical power of the two is equal to or approximately equal to the first specific
  • the total area of the transmission hole accounts for 30% to 36% of the irradiation area of the first specific wavelength light irradiated on the dichroic mirror plane for the first time, so that the first specific wavelength light and the second specific wavelength light When the light is mixed at the dichroic mirror, the ratio is about 1:2.
  • the light of the first specific wavelength is blue light, and the spectral range is 400-500 nm.
  • the total area of the transmission holes is constant, their number, single area, and shape are not limited.
  • the transmission hole is square or circular.
  • the transmission holes are a plurality of small holes with the same unit area, arranged in a regular shape.
  • the wavelength conversion device includes a wavelength converter, a reflecting mirror, and a collimating lens system, and the reflecting mirror is used to reflect the second specific wavelength light after the wavelength conversion by the wavelength converter to the incident light path.
  • the collimating lens system is composed of several condenser lenses.
  • the wavelength converter is a phosphor sheet.
  • the wavelength converter is a yellow phosphorous phosphor sheet
  • the second specific wavelength light is yellow light
  • the yellow light has a spectral component greater than 500 nm.
  • the area reflection film is a dielectric reflection film.
  • an optical system of a laser light source comprising a laser light source and a dichroic mirror arranged in sequence, characterized in that the dichroic mirror includes a regional reflection
  • the film is used to receive the first specific wavelength light emitted by the laser light source and completely reflect it.
  • the dichroic mirror does not completely block the first specific wavelength light, and part of the first specific wavelength light can pass through the dichroic mirror
  • the unshielded position is incident behind the dichroic mirror
  • the optical system of the laser light source also includes a wavelength conversion device for receiving the first specific wavelength light completely reflected by the area reflection film, and It is converted into the second specific wavelength light and then reflected back from the incident light path.
  • the area reflective film has a complete transmission function for the second specific wavelength light.
  • the optical system of the laser light source also includes a Lambertian scatterer for The part of the first specific wavelength light transmitted by the dichroic mirror forms a sub-Lambertian light source and reflects back along the incident light path.
  • the area reflection film includes a plurality of hollow transmission holes, part of the first specific wavelength light can be injected into the rear of the dichroic mirror through the holes.
  • the optical efficiency of the present invention is higher, and compared with the setting of the reflection/transmission ratio of the dichroic mirror in the prior art, the arrangement of the transmission hole in this solution reduces the process difficulty and improves the The flexibility of adjusting the light transmittance of the first specific wavelength.
  • Fig. 1 is a schematic diagram of wavelength conversion of a blue laser excited phosphor transmission scheme in the prior art.
  • Fig. 2 is a schematic diagram of wavelength conversion of a blue laser excitation phosphor reflection type scheme in the prior art.
  • FIG. 3 is a schematic diagram of an optical system of one of the blue laser excitation phosphor reflective solutions in the prior art.
  • Fig. 4 is a schematic diagram of an optical system according to the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a transmission hole and a part of an enlarged view of a regional reflective film according to the present invention.
  • FIG. 6 is a schematic diagram of the transmission hole and part of the second-region reflective film in the implementation of the present invention.
  • FIG. 7 is a schematic diagram of the transmission hole and part of the three-region reflective film according to the present invention.
  • this embodiment provides an optical system for a laser light source, which includes laser light sources 601, 602, 603, and 604 arranged in sequence, corresponding to the laser light source one by one and at a 45° angle to the emitted laser light.
  • the dichroic mirror 111 includes a regional reflective film 151 for receiving the blue light 401 emitted by the laser light sources 601, 602, 603, and 604, and Reflect it completely, the blue light 401 and the dichroic mirror 111 are arranged at an angle of 45°, the blue light reflected by the regional reflective film 151 is perpendicular to the received blue light 401, and the regional reflective film 151 includes a number of hollow transmission holes 161, all located in the blue light Within the irradiated range of 401, part of the blue light 401 can be injected 161 into the back of the dichroic mirror 111 through the transmission hole.
  • the optical system of the laser light source also includes a wavelength conversion device for receiving the reflection from the area.
  • the film 151 completely reflects the blue light after the blue light 401, and converts it into yellow light and then reflects back on the incident light path.
  • the area reflective film 151 has a complete transmission function for yellow light.
  • the optical system of the laser light source also includes a lang
  • the Burbert scatterer 901 is used to scatter part of the blue light 401 transmitted by the dichroic mirror 111 by Lambertian scatter. There is a collimating system between the Lambertian scatterer 901 and the dichroic mirror 111, including condenser lenses 133 and 134.
  • the wavelength conversion device includes a wavelength converter, a reflecting mirror 801 and condenser lenses 131, 132.
  • the wavelength converter is a yellow phosphorous phosphor sheet attached to the reflecting mirror 801.
  • the reflecting mirror 801 is used to convert the wavelength by the wavelength converter.
  • the condenser lenses 131 and 132 are used to form a collimating system to converge parallel or near-parallel light, and diverge the reflected yellow light into parallel or near-parallel light.
  • the shape of the transmission holes 161 is circular. As shown in FIG. 5, the transmission holes 161 are regularly arranged in a matrix shape on the regional reflection film 151.
  • the yellow light reflected by the reflecting mirror 801 and the blue light amplified by the Lambertian scatterer 901 are mixed at the dichroic mirror 111 to produce white light, which is emitted along the optical axis 142.
  • the second embodiment is basically the same as the first embodiment.
  • the difference is that the shape of the transmission holes 161 is square.
  • the transmission holes 162 are regularly arranged in a matrix shape on the regional reflection film 152.
  • the third embodiment is basically the same as the first embodiment.
  • the difference is that the shape of the transmission holes 163 is an unconventional pattern similar to a four-pointed star. As shown in FIG. 7, the transmission holes 163 are regularly arranged in a matrix shape on the regional reflective film 153.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)

Abstract

一种激光光源的光学***,包括依次设置的激光光源(601-604)、二向色镜(111)、波长转换装置和朗伯型散射体(901),二向色镜(111)包括一个区域反射膜(151、152、153),可将照射在其上的激光光源发出的第一特定波长光完全反射,区域反射膜(151、152、153)上包括若干镂空的透射孔(161、162、163),使部分第一特定波长光穿过该孔(161、162、163),波长转换装置用于将接收到的第一特定波长光转换成第二特定波长光并反射回去,朗伯型散射体(901)用于使二向色镜(111)透射的第一特定波长光形成次朗伯型光源并反射回去,经朗伯型散射体(901)反射后的第一特定波长光与第二特定波长光在二向色镜(111)处混合,比例合适时,可产生白光,与现有技术比较,光学效率更高,且降低了工艺难度,并提高了二向色镜(111)针对第一特定波长光透过率调节的灵活性。

Description

一种激光光源的光学*** 技术领域
本发明涉及激光光源的技术领域,更具体地,涉及一种激光光源的光学***。
背景技术
随着激光技术的不断发展,由于激光具有能量集中,准直性好等优势,使得激光照明作为新型光源逐渐在一些特种照明领域得到广泛应用,如激光投影,舞台灯照明,城市地标探照灯等。无论是应用最广泛的激光投影还是其他的特种照明,在很大程度上要求的不是简单的单色激光光源,而是需要如白色光等的非单色光源。传统技术手段通常采用红绿蓝三基色,这种方案不仅成本高,而且强相干的激光会产生散斑效应,严重影响照明的质量。为解决这一问题,现有技术中开始采用蓝色激光激发荧光粉产生红光和绿光,这样即能获取光质较好的白光,成本又相对低廉。
蓝色激光激发荧光粉的方案,又分为透射式和反射式两种,透射式方案优点是光学效率较高,荧光粉受激后的光学***简单,方便设计调试,缺点是受材料限制,只能用于单位面积蓝光照度较低的***,如图1所示,入射蓝光4穿过荧光粉片后,部分作为出射蓝光3直接射出,另一部分经荧光粉改变波长形成出射红光2射出,以及部分经荧光粉改变波长形成出射绿光1射出,最终通过混合三种颜色形成所需白光。而反射式方案刚好相反,如图2所示,能用于大功率的激光光源***,若荧光粉涂抹在色轮装置上,输入的蓝光功率可以达到更高,但其光学效率没有透射式方案的高。
图3为反射式方案常用的光路设计,激光管6发出蓝色的光401经反射镜后,由反蓝透黄的二向色镜11把反射出的蓝光301引导至荧光粉8,并把透射出的蓝光302引导至朗伯型散射体9一侧,荧光粉8受激发出黄色的光501穿透二向色镜11,与朗伯型散射体9反射回的蓝光303光汇合成一束白光7,此时,有部分黄光501被反射,形成反射出的黄光502,也有部分蓝光303透射出二向色镜,形成透射出的蓝光304。
该方案使用二向色镜将入射的蓝光与受激发出的黄光进行分光与合光,以实现最终混合成白光的目的。该方案的缺点是,受制于对二向色镜反射/透射比例设置的要求,即需要保 证荧光粉受激发产生的黄光在返回二向色镜时,可以有相应蓝光与黄光混合,要求二向色镜设置一个反射/透射蓝光的比例,基本上反射蓝光的比例R 1与透射蓝光的比例T 1之和为1,通常情况R 1为80%左右,T 1为20%左右。光线经由二向色镜输出的损失比例与输入时设置的比例反射/透射是等效的,在黄光和蓝光第二次进入二向色镜后均会有一定比例的损失,即应透射与蓝光混合的黄光有部分被反射损失掉,即黄光502,应反射与黄光混合的蓝光有部分被透射损失掉,即蓝光304,蓝光经由荧光粉激发后的黄光及蓝光都不能高效输出,导致光学效率较低。
发明内容
为克服现有的技术缺陷,本发明提供了一种激光光源的光学***,该***在不需要改变原有***光路结构同时,提高激光光源混合生成白光的光学转换效率。
为实现本发明的目的,采用以下技术方案予以实现:一种激光光源的光学***,包括依次设置的激光光源、二向色镜、波长转换装置和朗伯型散射体,所述二向色镜包括一个区域反射膜,用于接收激光光源发出的第一特定波长光,并可将照射在其上的第一特定波长光完全反射。所述区域反射膜上包括若干镂空的透射孔,部分所述第一特定波长光可通过该透射孔射入二向色镜后方,和/或,所述二向色镜不完全遮挡所述第一特定波长光,部分第一特定波长光可通过二向色镜未遮挡位置射入二向色镜后方。所述波长转换装置用于接收由所述区域反射膜反射的第一特定波长光,并将其转换成第二特定波长光再沿入射的光路反射回去。所述区域反射膜对第二特定波长光具有完全透射功能。所述朗伯型散射体,用于使二向色镜透射的部分第一特定波长光形成次朗伯型光源并沿入射的光路反射回去。所述完全反射反射率高于95%,所述完全透射透射率为95%以上。经朗伯型散射体反射后的第一特定波长光与第二特定波长光在二向色镜处混合,比例合适时,可产生白光。
朗伯型散射体是指当入射的光线在所有的方向均匀反射,即入射光线以入射点为中心,在整个半球空间内向四周各向同性的反射光线的现象。当光线入射到朗伯型散射体上时,在朗伯型散射体上发生漫反射,形成一个与入射光不一样的次光源,即次朗伯型光源。
现有技术二向色镜区域反射膜通过对第一特定波长光设置反射率、透射率,反射大部分第一特定波长光并透射小部分第一特定波长光,最终实现在二向色镜处混合成白光,在多次反射、透射过程中,由于对反射、透射的光选择其一利用,造成另一种光的光损失。
本发明的技术方案可降低光损失的原理如下:在二向色镜平面建立一个平面直角坐标 系,用x轴、y轴作为横纵坐标轴,设激光光源发出的光束中的第一特定波长光第一次照射在二向色镜平面直角坐标系的照度分布曲线为f(x,y),照射面积为S 00,第一特定波长光照射在二向色镜平面的光功率为Q 0,此时Q 0可表示为:
Figure PCTCN2019125972-appb-000001
即光功率为光分布在分布面积上的积分。
假设第一次经二向色镜区域反射膜反射的第一特定波长光的光功率为Q 1,光功率为Q 1的第一特定波长光经波长转换装置转换成第二特定波长光,光功率为Q 2由于该转换过程与现有技术一致,可以在不考虑各影响因素的理想状态下讨论,即完全转换时:Q 2=Q 1
设所述二向色镜有a个镂空的透射孔,每个透射孔的面积分别为S 1、S 2、……S a,则第一次经区域反射膜透射的第一特定波长光的光功率Q 3为:
Figure PCTCN2019125972-appb-000002
由上述过程可知,第一次透射过程中二向色镜的第一特定波长光透过率即可表示为:η 1=Q 3/Q 0
所述第一特定波长光透过二向色镜,入射朗伯型散射体一侧。朗伯型散射体是指入射的光线在所有的方向均匀反射,即入射光线以入射点为中心,在整个半球空间内向四周各向同性的反射光线的现象,也称为朗伯体。当光线入射到朗伯型散射体上时,在朗伯型散射体上发生漫反射,形成一个与入射光不一样的次光源。
因此所述第一特定波长光透过二向色镜,在朗伯型散射体一侧经过反射后,以较大的发散角进入准直***,经准直***后的形成较大截面积的光束再次照射在所述二向色镜上,假设此时所述再次照射在二向色镜上的较大截面积的第一特定波长光在二向色镜的照射面积为S 01,S 01应大于S 00
假设再次照射在二向色镜上的较大截面积的第一特定波长光在二向色镜的照度分布曲线可表示为g(x,y),由于S 01>S 00,且假设此时所述较大截面积的第一特定波长光总光功率为Q 4,Q 4显然小于Q 0,因此:g(x,y)<f(x,y),此时,由于S 01>S 00,再次照射在二向色镜上的较大截面积的第一特定波长光完全覆盖S 00区域,则所述再次照射在二向色镜上的第一特定波长光同样会通过二向色镜区域反射膜上的透射孔,造成一定光损失,此时损失的光功率为Q S1
Figure PCTCN2019125972-appb-000003
由上述过程可知,第二次透射过程中二向色镜的第一特定波长光透过率即可表示为:η 2=Q S1/Q 3
根据已知条件,透射孔数量、大小是一定的,随着照射在二向色镜的光的面积的增大,其透射率会逐渐减小,由于S 01>S 00,因此:η 1>η 2
现有技术中,二向色镜是通过设置一个反射/透射特定波长光的比例实现相应功能,因此其透射率恒定,设为η,根据同样的透射第一特定波长光,再经朗伯型散射体反射并放大从二向色镜透射的第一特定波长光,再次经过二向色镜时,出现第二次透射,此时损失的光功率为Q S0,则:Q S0=Q 0η 2
由于所述第一特定波长光与所述第二特定波长光在混合时要求一定比例,因此在等同情况下,使本发明所述透射孔总面积在某一特定范围内,让η 1≈η,Q 0一致时,现有技术和本发明所述第一特定波长光第一次透过二向色镜的光功率大小一致,而η 1>η 2,η 1≈η,则产生的光损失Q S1≤Q S0,即同样或近似条件下,本发明较现有技术的光学效率更高。
进一步的,所述第一特定波长光、第二特定波长光照射在二向色镜平面时,光束全部位于二向色镜区域反射膜范围内。
进一步的,所述二向色镜与激光光源发出的第一特定波长光呈45°夹角设置。
进一步的,由所述区域反射膜反射的第一特定波长光与激光光源发出的第一特定波长光光轴互相垂直。
进一步的,所述透射孔全部位于所述第一特定波长光第一次照射在二向色镜平面时的照射范围内。
进一步的,所述透射孔总面积可根据经朗伯型散射体反射后的第一特定波长光与第二特定波长光在二向色镜处的混合比例设置。
进一步的,所述透射孔总面积与去除所述透射孔总面积后所述第一特定波长光第一次照射在二向色镜平面的照射面积的比值,等于或约等于所述第一特定波长光与所述第二特定波长光在二向色镜处混合时,二者光功率的比值。
进一步的,所述透射孔总面积占所述第一特定波长光第一次照射在二向色镜平面的照射面积的30%到36%,使得所述第一特定波长光与第二特定波长光在二向色镜处混合时比例约为1:2。
进一步的,所述第一特定波长光为蓝光,光谱范围为400-500nm。
进一步的,所述透射孔总面积一定时,其数量、单个面积、形状不受限制。
进一步的,所述透射孔为正方形或圆形。
进一步的,所述透射孔为多个单位面积相同的小孔,成规则形状排布。
进一步的,所述波长转换装置包括波长转换器、反射镜和准直透镜***,反射镜用于将经波长转换器转换波长后的所述第二特定波长光延入射光路反射回去。
进一步的,所述准直透镜***由若干聚光透镜组成。
进一步的,所述波长转换器为荧光粉片。
进一步的,所述波长转换器为黄磷荧光粉片,所述第二特定波长光为黄光,所述黄光为大于500nm的光谱成分。
进一步的,所述区域反射膜为介质反射膜。
为实现本发明的目的,还可采用以下技术方案予以实现:一种激光光源的光学***,包括依次设置的激光光源、二向色镜,其特征在于,所述二向色镜包括一个区域反射膜,用于接收激光光源发出的第一特定波长光,并将其完全反射,所述二向色镜不完全遮挡所述第一特定波长光,部分第一特定波长光可通过二向色镜未遮挡位置射入二向色镜后方,所述激光光源的光学***还包括一个波长转换装置,所述波长转换装置用于接收由所述区域反射膜完全反射的第一特定波长光,并将其转换成第二特定波长光再延入射的光路反射回去,所述区域反射膜对第二特定波长光具有完全透射功能,所述激光光源的光学***还包括一个朗伯型散射体,用于使二向色镜透射的部分第一特定波长光形成次朗伯型光源并沿入射的光路反射回去。
进一步的,所述区域反射膜上包括若干镂空的透射孔,部分第一特定波长光可通过该孔射入二向色镜后方。
与现有技术相比,本发明的光学效率更高,且相较现有技术对二向色镜反射/透射比例的设置,本方案对透射孔的设置同时降低了工艺难度,并提高了针对所述第一特定波长光透过率调节的灵活性。
附图说明
图1为现有技术中的蓝色激光激发荧光粉透射式方案波长转换示意图。
图2为现有技术中的蓝色激光激发荧光粉反射式方案波长转换示意图。
图3为现有技术中的蓝色激光激发荧光粉反射式方案之一的光学***示意图。
图4为本发明实施例一的光学***示意图。
图5为本发明实施一区域反射膜透射孔及部分放大示意图。
图6为本发明实施二区域反射膜透射孔及部分放大示意图。
图7为本发明实施三区域反射膜透射孔及部分放大示意图。
具体实施方式
本发明附图仅用于示例性说明,不能理解为对本发明的限制。为了更好说明以下实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
实施例一
如图4、图5所示,本实施例提供了一种激光光源的光学***,包括依次设置的激光光源601、602、603、604,与激光光源一一对应并与发射激光呈45°夹角设置的反射镜121、122、123、124,以及二向色镜111,二向色镜111包括一个区域反射膜151,用于接收激光光源601、602、603、604发出的蓝光401,并将其完全反射,蓝光401与二向色镜111呈45°夹角设置,区域反射膜151反射的蓝光与接收的蓝光401垂直,区域反射膜151上包括若干镂空的透射孔161,全部位于蓝光401照射范围内,部分蓝光401可通过该透射孔射161入二向色镜111后方,所述激光光源的光学***还包括一个波长转换装置,所述波长转换装置用于接收由所述区域反射膜151完全反射蓝光401后的蓝光,并将其转换成黄光再延入射的光路反射回去,所述区域反射膜151对黄光具有完全透射功能,所述激光光源的光学***还包括一个朗伯型散射体901,用于将由二向色镜111透射的部分蓝光401发生朗伯型散射。所述朗伯型散射体901与二向色镜111之间有一个准直***,包括聚光透镜133、134。
所述波长转换装置包括波长转换器、反射镜801和聚光透镜131、132,波长转换器为黄磷荧光粉片,贴于反射镜801上,反射镜801用于将经波长转换器转换波长后的黄光光延入射光路反射回去,聚光透镜131、132用于形成一个准直***,将平行光或***行光汇聚,并将反射后的黄光发散成平行光或***行光。
本实施例中透射孔161形状为圆形,如图5所示,透射孔161在区域反射膜151上规则排列成矩阵形状。
经反射镜801反射后的黄光与经朗伯型散射体901反射放大后的蓝光在二向色镜111处混合,产生白光,延光轴142出射。
实施例二
本实施例二基本与实施例一相同,其区别在于,透射孔161形状为方形,如图6所示,透射孔162在区域反射膜152上规则排列成矩阵形状。
实施例三
本实施例三基本与实施例一相同,其区别在于,透射孔163形状为近似于四角星的非常规图形,如图7所示,透射孔163在区域反射膜153上规则排列成矩阵形状。
显然,本发明的上述实施例仅仅是为清楚地说明本发明技术方案所作的举例,而并非是对本发明的具体实施方式的限定。凡在本发明权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (19)

  1. 一种激光光源的光学***,包括依次设置的激光光源、二向色镜、波长转换装置和朗伯型散射体,其特征在于,所述二向色镜包括一个区域反射膜,用于接收激光光源发出的第一特定波长光,并可将照射在其上的第一特定波长光完全反射,所述区域反射膜上包括若干镂空的透射孔,部分第一特定波长光可通过该透射孔射入二向色镜后方。
  2. 根据权利要求1所述的一种激光光源的光学***,其特征在于,所述波长转换装置用于接收由所述区域反射膜完全反射的第一特定波长光,并将其转换成第二特定波长光再沿入射的光路反射回去,所述区域反射膜对第二特定波长光具有完全透射功能,所述朗伯型散射体,用于使二向色镜透射的部分第一特定波长光形成次朗伯型光源并沿入射的光路反射回去。
  3. 根据权利要求2所述的一种激光光源的光学***,其特征在于,所述完全反射反射率为95%以上,所述完全透射透射率为95%以上。
  4. 根据权利要求2所述的一种激光光源的光学***,其特征在于,经所述朗伯型散射体反射后的第一特定波长光与第二特定波长光在二向色镜处混合,比例合适时,可产生白光。
  5. 根据权利要求1所述的一种激光光源的光学***,其特征在于,所述二向色镜与激光光源发出的第一特定波长光呈45°夹角设置,由所述区域反射膜反射的第一特定波长光与激光光源发出的第一特定波长光光轴互相垂直。
  6. 根据权利要求2所述的一种激光光源的光学***,其特征在于,所述第一特定波长光、第二特定波长光照射在二向色镜平面时,其光束全部位于二向色镜区域反射膜范围内。
  7. 根据权利要求6所述的一种激光光源的光学***,其特征在于,所述透射孔全部位于所述第一特定波长光第一次照射在二向色镜平面时的照射范围内。
  8. 根据权利要求4所述的一种激光光源的光学***,其特征在于,所述透射孔总面积与去除所述透射孔总面积后所述第一特定波长光第一次照射在二向色镜平面的照射面积的比值,等于或约等于所述第一特定波长光与所述第二特定波长光在二向色镜处混合时,二者光功率的比值。
  9. 根据权利要求4所述的一种激光光源的光学***,其特征在于,所述透射孔总面积占所述第一特定波长光第一次照射在二向色镜平面的照射面积的30%到36%,使得所述第一特定波长光与第二特定波长光在二向色镜处混合时比例约为1:2。
  10. 根据权利要求1所述的一种激光光源的光学***,其特征在于,所述透射孔总面积一定时,其数量、单个面积、形状不受限制。
  11. 根据权利要求1所述的一种激光光源的光学***,其特征在于,所述透射孔为正方形或圆形。
  12. 根据权利要求1所述的一种激光光源的光学***,其特征在于,所述透射孔为多个单位面积相同的小孔,成规则形状排布。
  13. 根据权利要求2所述的一种激光光源的光学***,其特征在于,所述第一特定波长光为蓝光,光谱范围为400-500nm。
  14. 根据权利要求2所述的一种激光光源的光学***,其特征在于,所述波长转换装置包括波长转换器、反射镜和准直透镜***,反射镜用于将经波长转换器转换波长后的所述第二特定波长光延入射光路反射回去。
  15. 根据权利要求14所述的一种激光光源的光学***,其特征在于,所述波长转换器为荧光粉片。
  16. 根据权利要求15所述的一种激光光源的光学***,其特征在于,所述波长转换器为黄磷荧光粉片,所述第二特定波长光为黄光,所述黄光为大于500nm的光谱成分。
  17. 根据权利要求1所述的一种激光光源的光学***,其特征在于,所述区域反射膜为介质反射膜。
  18. 一种激光光源的光学***,包括依次设置的激光光源、二向色镜,其特征在于,所述二向色镜包括一个区域反射膜,用于接收激光光源发出的第一特定波长光,并将其完全反射,所述二向色镜不完全遮挡所述第一特定波长光,部分第一特定波长光可通过二向色镜未遮挡位置射入二向色镜后方,所述激光光源的光学***还包括一个波长转换装置,所述波长转换装置用于接收由所述区域反射膜完全反射的第一特定波长光,并将其转换成第二特定波长光再延入射的光路反射回去,所述区域反射膜对第二特定波长光具有完全透射功能,所述激光光源的光学***还包括一个朗伯型散射体,用于使二向色镜透射的部分第一特定波长光形成次朗伯型光源并沿入射的光路反射回去。
  19. 根据权利要求18所述的一种激光光源的光学***,其特征在于,所述区域反射膜上包括若干镂空的透射孔,部分第一特定波长光可通过该孔射入二向色镜后方。
PCT/CN2019/125972 2019-06-13 2019-12-17 一种激光光源的光学*** WO2020248558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910511868.0A CN110347009A (zh) 2019-06-13 2019-06-13 一种激光光源的光学***
CN201910511868.0 2019-06-13

Publications (1)

Publication Number Publication Date
WO2020248558A1 true WO2020248558A1 (zh) 2020-12-17

Family

ID=68181916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125972 WO2020248558A1 (zh) 2019-06-13 2019-12-17 一种激光光源的光学***

Country Status (2)

Country Link
CN (1) CN110347009A (zh)
WO (1) WO2020248558A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110347009A (zh) * 2019-06-13 2019-10-18 广州光联电子科技有限公司 一种激光光源的光学***
CN113835285A (zh) * 2020-06-08 2021-12-24 深圳光峰科技股份有限公司 光源结构及投影设备
CN112162356B (zh) * 2020-09-29 2023-06-27 武汉中科医疗科技工业技术研究院有限公司 光耦合装置、光源***及其光通量的控制方法
CN112628621A (zh) * 2021-01-14 2021-04-09 苏州视奥光电科技有限公司 激光发光光源装置
CN113057592B (zh) * 2021-03-18 2022-11-01 南京诺源医疗器械有限公司 一种光源混合装置及混合方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100309439A1 (en) * 2007-11-30 2010-12-09 Phoebus Vision Opto-Elec Tech Co., Ltd. Light source for projection system and projection display apparatus
CN104345535A (zh) * 2014-10-12 2015-02-11 杨毅 激光光源和投影装置
CN105388691A (zh) * 2015-12-30 2016-03-09 海信集团有限公司 一种激光光源装置和激光投影设备
CN205353549U (zh) * 2016-01-07 2016-06-29 深圳市绎立锐光科技开发有限公司 一种光源装置及照明装置
CN107561836A (zh) * 2016-07-01 2018-01-09 深圳市光峰光电技术有限公司 一种光源和投影***
CN110347009A (zh) * 2019-06-13 2019-10-18 广州光联电子科技有限公司 一种激光光源的光学***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913936B (zh) * 2012-12-28 2016-12-07 深圳市绎立锐光科技开发有限公司 发光装置及投影***
CN107272312A (zh) * 2016-04-06 2017-10-20 上海蓝湖照明科技有限公司 发光装置及相关投影***与照明***
CN108008593B (zh) * 2016-10-28 2020-02-28 深圳光峰科技股份有限公司 光源***及显示设备
CN210072301U (zh) * 2019-06-13 2020-02-14 广州光联电子科技有限公司 一种激光光源的光学***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100309439A1 (en) * 2007-11-30 2010-12-09 Phoebus Vision Opto-Elec Tech Co., Ltd. Light source for projection system and projection display apparatus
CN104345535A (zh) * 2014-10-12 2015-02-11 杨毅 激光光源和投影装置
CN105388691A (zh) * 2015-12-30 2016-03-09 海信集团有限公司 一种激光光源装置和激光投影设备
CN205353549U (zh) * 2016-01-07 2016-06-29 深圳市绎立锐光科技开发有限公司 一种光源装置及照明装置
CN107561836A (zh) * 2016-07-01 2018-01-09 深圳市光峰光电技术有限公司 一种光源和投影***
CN110347009A (zh) * 2019-06-13 2019-10-18 广州光联电子科技有限公司 一种激光光源的光学***

Also Published As

Publication number Publication date
CN110347009A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2020248558A1 (zh) 一种激光光源的光学***
US11243460B2 (en) Light source device and projection system
US11402736B2 (en) Light source system and projection device
TWI591418B (zh) 光源系統
CN104049445A (zh) 发光装置及投影***
TWM552112U (zh) 光源裝置及投影系統
WO2020216263A1 (zh) 光源***和显示设备
WO2019214273A1 (zh) 光源***、投影设备及照明设备
US11822222B2 (en) Non-coaxial projection light source system
CN219302865U (zh) 混合光源模组和投影设备
CN108107658B (zh) 光源***、投影***及照明装置
CN110275373A (zh) 一种三色激光光源及激光投影装置
CN210072301U (zh) 一种激光光源的光学***
CN113970871A (zh) 一种光源***及投影***
US11543741B2 (en) Illumination system and projection device
US11874590B2 (en) Illumination system and projection device
WO2021143438A1 (zh) 波长转换装置、光源装置及投影***
CN114326139B (zh) 一种消散斑装置、激光光源及投影设备
WO2020216262A1 (zh) 一种光源***及投影***
CN210894973U (zh) 一种激光光源***
CN110376833B (zh) 光源***和投影***
CN219831602U (zh) 一种光源***及投影设备
US20210352250A1 (en) Display apparatus and display system
CN201698090U (zh) 微型投影光源***
CN206352734U (zh) Rgb全激光光源模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932849

Country of ref document: EP

Kind code of ref document: A1