WO2019206279A1 - 智能设备控制方法 - Google Patents

智能设备控制方法 Download PDF

Info

Publication number
WO2019206279A1
WO2019206279A1 PCT/CN2019/084556 CN2019084556W WO2019206279A1 WO 2019206279 A1 WO2019206279 A1 WO 2019206279A1 CN 2019084556 W CN2019084556 W CN 2019084556W WO 2019206279 A1 WO2019206279 A1 WO 2019206279A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage signal
touch
signal
elastic wave
value
Prior art date
Application number
PCT/CN2019/084556
Other languages
English (en)
French (fr)
Original Assignee
北京钛方科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京钛方科技有限责任公司 filed Critical 北京钛方科技有限责任公司
Publication of WO2019206279A1 publication Critical patent/WO2019206279A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures

Definitions

  • the application relates to the field of human-computer interaction, and in particular to a smart device control method.
  • the prior art provides a solution for opening a specific function of a smart device having a capacitive screen and an acceleration sensor through a knuckle joint, in which only a smart device having a capacitive screen and an acceleration sensor can be used.
  • the cost is relatively high; it mainly uses the capacitive screen to perform contact detection and the acceleration sensor to measure the screen acceleration caused by the external force impact; therefore, based on this situation, this solution cannot realize the identification of other signal sources other than the finger joint tapping; The frequent use also greatly increases the manufacturing cost and power consumption of smart devices.
  • the purpose of the present application is to provide a smart device control method, so that the smart device can recognize the category of the input source according to the touch signal, effectively identify the tap of different modes, and input it as a command to enable the next function, such as booting, Wake up screens, screenshots, access to specific applications, etc.; provide users with more diverse control schemes.
  • a smart device control method specifically includes: acquiring an elastic wave signal generated by a touch on a substrate, converting the elastic wave signal into a voltage signal; and calculating the obtained signal according to the voltage signal.
  • the touch object information and the touch command corresponding to the voltage signal are obtained; the corresponding control category information is obtained according to the touch object information; and the corresponding control command is obtained in the control category information by the touch command.
  • the application further provides a smart device control device, the control device comprising a substrate, a piezoelectric sensing module, a signal analysis module and a processing module; the piezoelectric sensing module is configured to acquire an elastic wave generated by the touch on the substrate a signal, the elastic wave signal is converted into a voltage signal; the signal analysis module is configured to calculate, according to the voltage signal, the touch object information and the touch command corresponding to the voltage signal; And touching the object information to obtain corresponding control category information; and obtaining a corresponding control instruction in the control category information by using the touch instruction.
  • the control device comprising a substrate, a piezoelectric sensing module, a signal analysis module and a processing module; the piezoelectric sensing module is configured to acquire an elastic wave generated by the touch on the substrate a signal, the elastic wave signal is converted into a voltage signal; the signal analysis module is configured to calculate, according to the voltage signal, the touch object information and the touch command corresponding to the voltage signal; And touching the object information to obtain corresponding control category information
  • the application also provides an electronic device comprising a memory, a processor, and a computer program stored on the memory and executable on the processor, the processor executing the method described above.
  • the application also provides a computer readable storage medium storing a computer program for performing the method described above.
  • the intelligent device control method provided by the present application uses an elastic wave sensor to collect different tapping signals on the screen of the smart device, such as a stylus pen, a finger joint, and a finger pad, and extracts a signal characteristic according to an algorithm to determine an input source, thereby identifying a knocking of different modes. Click and use it as a command to enable the next function, such as booting, waking up the screen, taking screenshots, entering a specific application, etc.; achieving precise identification of multiple input sources and modes, combined with piezoelectric elastic wave sensors, not only can be used Mobile phones and tablets can also be applied to a variety of other operating panels, such as home appliances, automobiles, and other button control panels that can be fitted with elastic wave sensors.
  • FIG. 1 is a schematic flowchart of a smart device control method provided by the present application.
  • FIG. 2 is a schematic structural diagram of a smart device control apparatus provided by the present application.
  • 3A is a schematic diagram of waveforms of a finger touch substrate collected by a smart device control method according to an embodiment of the present application
  • FIG. 3B is a schematic diagram of waveforms of a finger joint touch substrate collected by the smart device control method according to an embodiment of the present application.
  • 3C is a schematic diagram of waveforms of a touch pen touched substrate collected by the smart device control method according to an embodiment of the present application;
  • FIG. 4 is a schematic block diagram of a system configuration of an electronic device according to an embodiment of the present application.
  • an embodiment means that the specific features, structures, materials, or characteristics described in connection with the embodiments or examples are included in the present application. At least one embodiment or example.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.
  • the order of the steps involved in the embodiments is used to schematically illustrate the implementation of the present application, and the order of the steps is not limited, and may be appropriately adjusted as needed.
  • a smart device control method specifically includes: S101 acquiring an elastic wave signal generated by a touch on a substrate, converting the elastic wave signal into a voltage signal; S102 according to the voltage The signal calculation obtains the touch object information and the touch command corresponding to the voltage signal; S103 obtains corresponding control category information according to the touch object information; S104 obtains corresponding information in the control category information by using the touch command Control instruction.
  • the touch object information includes: finger touch information, knuckle touch information, object touch information, etc.; the substrate may be a rigid medium or a combination thereof, and the external object
  • a substrate is touched (such as a finger, a knuckle, a stylus, etc.)
  • an elastic wave signal is generated, and the elastic wave signal is captured by the sensor such as the piezoelectric sensing module, and converted into the same frequency as the elastic wave signal.
  • the voltage signal is only for the convenience of the later calculation, so the converted voltage signal can be the same as the frequency of the elastic wave signal, and can be converted into a voltage signal of a different frequency in actual operation, and the corresponding adjustment can be performed in the later calculation.
  • the conversion process is not further defined; thereafter, please refer to FIG. 3A to FIG. 3C, the principle that different elastic materials are different in material or structure of different touch objects;
  • the voltage signal is further calculated and analyzed to obtain the touch object information of the elastic wave signal and the touch command input by the user during the touch process, for example: multiple tapping, hard knocking
  • pre-set control category information is obtained, for example, an application such as an artboard or a tablet is called when the stylus is tapped, and photography and photography are started when the knuckle is tapped.
  • the application then, according to the touch command, confirming what kind of operation is performed in the previously opened application, for example, if the tap is continuously tapped twice by the stylus to call up the drawing board; if the tap is performed three times in succession, the tablet is called up, etc.
  • the pre-stored application can also be opened by using a tap command, and the corresponding preset operation can be entered according to the touch object information, and those skilled in the art can select and use according to actual needs, and the present application is here. No longer detailed.
  • converting the elastic wave signal into a voltage signal in the step S101 may further include: generating a voltage signal having the same or equal frequency as the frequency of the elastic wave signal according to the frequency of the elastic wave signal. .
  • step S102 further calculates, according to the voltage signal, the touch object information corresponding to the voltage signal; specifically, the signal characteristic value of the voltage signal is obtained according to the voltage signal; and the signal of the voltage signal is obtained. The feature value is compared with the pre-stored reference feature value to obtain touch object information corresponding to the voltage signal.
  • obtaining a signal characteristic value of the voltage signal may be based on a voltage signal converted by a predetermined touch object touching the substrate, through a machine learning algorithm and/or a depth learning algorithm.
  • Establishing a feature model; and calculating a signal characteristic value of the voltage signal according to the voltage signal and the feature model; in this embodiment, the voltage signal converted by the substrate touched by the predetermined touch object and the corresponding reference may also be The feature value establishes the feature model by the support vector machine algorithm; specifically, in actual work, the staff can collect the elastic wave signal generated by the different objects touching the substrate in advance, and convert the elastic wave signal into a voltage signal according to the voltage.
  • the signal is trained as an input signal by a machine learning algorithm and/or a deep learning algorithm to obtain a feature model for extracting signal feature values in the voltage signal, and a feature portion having a higher difference in the voltage signal may be manually analyzed.
  • Obtaining a characteristic value corresponding to the voltage signal that is, the voltage signal Corresponding reference feature value; at this time, the voltage signal can be taken as an input, and the reference feature value is used as an output, and the feature model is established by a deep learning algorithm or a machine learning algorithm; then when the actual user touches the substrate through different objects Then, the converted voltage signal can be calculated and calculated by the feature model to obtain a corresponding signal characteristic value.
  • the voltage signal generated by the massive touch can also be collected, and the characteristic signal can be obtained by the machine learning algorithm and/or the deep learning algorithm by using the voltage signal, and the feature model can be passed later, and the user actually touches the
  • the generated voltage signal is calculated to obtain the signal characteristic value of the touch, and the related information of the touch object is obtained according to the characteristic value of the signal; the present application is not specifically limited herein, and those skilled in the art may select and use according to actual needs.
  • comparing the signal characteristic value of the voltage signal with the pre-stored reference feature value, and obtaining the touch object information corresponding to the voltage signal includes: comparing the signal feature value with the pre-stored reference feature value. Obtaining a similarity value; determining a reference feature value corresponding to the signal feature value according to the similarity value, and obtaining pre-stored touch object information according to the reference feature value.
  • the feature values of the predetermined touch object in the voltage signal may be extracted according to actual needs, such as a peak in a specific wavelength range, a fluctuation change value or a phase feature, and a time difference feature, etc., and then the extraction is performed.
  • the signal characteristic value is compared with the feature value in the preset feature database, and the similarity between the two is obtained by calculating the mean square error and cosine correlation algorithm between the two, and then further confirming the signal according to the similarity.
  • the reference feature value corresponding to the feature value is obtained. After confirming the closest reference feature value, the corresponding touch object information can be obtained according to the reference feature value, thereby confirming which object touches the substrate.
  • obtaining the touch command corresponding to the voltage signal according to the voltage signal in the step S102 may include: calculating a touch force corresponding to the voltage signal according to the voltage signal and/or Or touching the position; obtaining a pre-stored touch command according to the touch force and/or the touch position.
  • the touch force may be calculated according to a difference between the voltage signal and the voltage reference value to obtain a fluctuation change value of the voltage signal, and the touch force is obtained according to the fluctuation change value.
  • the one or more piezoelectric sensors C 1 to C n disposed on the substrate may be used to convert the respective received elastic wave signals into voltage signals D 1 corresponding to the frequency of the elastic wave signals received thereto.
  • the method of calculating the touch strength according to the voltage signal can be mainly calculated by the following formula: or
  • E is the energy value of the voltage signal
  • m is the number of signal points collected
  • n is the number of signal points determined by selecting the wavelength of the voltage signal of a predetermined length according to actual conditions, and those skilled in the art can select settings according to actual needs.
  • the application is not subject to further restrictions here.
  • the touch corresponding to the voltage signal is calculated according to the voltage signal in the above step S102.
  • the command may further include: obtaining, according to the voltage signal, a number of times of the elastic wave signal generated by the touch on the substrate in a predetermined time period, and obtaining a pre-stored touch command according to the number of times of the elastic wave signal.
  • the corresponding control command is given according to the number of touches, and the condition such as the touch force in actual work can also be used as the trigger condition of the control command, and those skilled in the art can select the setting according to actual needs. This is not a further limitation.
  • the present application further provides a smart device control device, which includes a substrate 101 , a piezoelectric sensing module 102 , a signal analysis module 103 , and a processing module 104 ; the piezoelectric sensing module 102
  • the elastic wave signal is converted into a voltage signal by the elastic wave signal generated by the touch on the substrate 101.
  • the signal analysis module 103 is configured to calculate the touch object corresponding to the voltage signal according to the voltage signal.
  • the information and the touch command; the processing module 104 is configured to obtain corresponding control category information according to the touch object information; and obtain a corresponding control instruction in the control category information by using the touch command.
  • the piezoelectric sensing module 102 can also be configured to generate a voltage signal having the same or equal frequency as the frequency of the elastic wave signal according to the frequency of the elastic wave signal.
  • the signal analysis module 103 is configured to obtain a signal characteristic value of the voltage signal according to the voltage signal, and compare a signal characteristic value of the voltage signal with a pre-stored reference feature value to obtain a Touching object information corresponding to the voltage signal; and calculating, according to the voltage signal, a touch force and/or a touch position corresponding to the voltage signal; according to the touch force and/or the touch position Get pre-stored touch commands.
  • the manner in which the signal analysis module 103 obtains the touch force may be calculated according to a difference between the voltage signal and the voltage reference value to obtain a fluctuation change value of the voltage signal, and the calculation is performed according to the fluctuation change value. The touch force is obtained. This process has been described in detail in the above description and will not be explained here.
  • the intelligent device control method provided by the present application uses an elastic wave sensor to collect different tapping signals on the screen of the smart device, such as a stylus pen, a finger joint, and a finger pad, and extracts a signal characteristic according to an algorithm to determine an input source, thereby identifying a knocking of different modes. Click and use it as a command to enable the next function, such as booting, waking up the screen, taking screenshots, entering a specific application, etc.; achieving precise identification of multiple input sources and modes, combined with piezoelectric elastic wave sensors, not only can be used Mobile phones and tablets can also be applied to a variety of other operating panels, such as home appliances, automobiles, and other button control panels that can be fitted with elastic wave sensors.
  • the present application further provides an electronic device, which may be a desktop computer, a tablet computer, a mobile terminal, etc., and the embodiment is not limited thereto.
  • the electronic device may refer to the implementation of the foregoing method and the foregoing apparatus, and the content thereof is incorporated herein, and the details are not described again.
  • FIG. 4 is a schematic block diagram of a system configuration of an electronic device 600 according to an embodiment of the present application.
  • the electronic device 600 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • processes such as voltage signal analysis and subsequent control scheme output may be integrated into central processor 100.
  • the central processing unit 100 may be configured to perform the following control: calculating, according to the voltage signal, the touch object information and the touch instruction corresponding to the voltage signal; and obtaining corresponding control category information according to the touch object information; Corresponding control instructions are obtained in the control category information by the touch command.
  • the converting the elastic wave signal into a voltage signal comprises: generating a voltage signal having the same or equal frequency as the frequency of the elastic wave signal according to the frequency of the elastic wave signal.
  • the obtaining, by the voltage signal, the touch object information corresponding to the voltage signal comprises: obtaining a signal characteristic value of the voltage signal according to the voltage signal; and using a signal characteristic value of the voltage signal and a pre-stored reference feature The value is compared to obtain touch object information corresponding to the voltage signal.
  • the obtaining, according to the signal waveform characteristic of the voltage signal, the signal characteristic value of the voltage signal comprises: establishing a feature model by using a machine learning algorithm and/or a deep learning algorithm according to a voltage signal converted by a predetermined touch object touching the substrate; And calculating a signal characteristic value of the voltage signal according to the voltage signal and the feature model; or establishing a feature by using a support vector machine algorithm according to a voltage signal converted by a predetermined touch object touching the substrate and a corresponding reference feature value; model.
  • Comparing the signal characteristic value of the voltage signal with the pre-stored reference feature value, and obtaining the touch object information corresponding to the voltage signal comprises: comparing the signal feature value with the pre-stored reference feature value to obtain a similarity value; Determining a reference feature value corresponding to the signal feature value according to the similarity value, and obtaining pre-stored touch object information according to the reference feature value.
  • the obtaining, according to the voltage signal, the touch command corresponding to the voltage signal includes: calculating, according to the voltage signal, a touch force and/or a touch position corresponding to the voltage signal; according to the touch force And/or the touch location obtains a pre-stored touch command.
  • the calculating the touch force corresponding to the voltage signal according to the voltage signal comprises: obtaining a fluctuation change value of the voltage signal according to a difference between the voltage signal and the voltage reference value, according to the fluctuation
  • the change value calculation obtains the touch strength.
  • the electronic device 600 may further include: a communication module 110, an input unit 120, a piezoelectric sensor 130, a display 160, and a power source 170. It should be noted that the electronic device 600 does not necessarily have to include all the components shown in FIG. 4; in addition, the electronic device 600 may further include components not shown in FIG. 4, and reference may be made to the prior art.
  • central processor 100 also sometimes referred to as a controller or operational control, can include a microprocessor or other processor device and/or logic device that receives input and controls each of electronic devices 600. The operation of the part.
  • the memory 140 may be, for example, one or more of a buffer, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable device.
  • the above-mentioned information related to the failure can be stored, and a program for executing the related information can be stored.
  • the central processing unit 100 can execute the program stored by the memory 140 to implement information storage or processing and the like.
  • Input unit 120 provides input to central processor 100.
  • the input unit 120 is, for example, a button or a touch input device.
  • the power source 170 is used to provide power to the electronic device 600.
  • the display 160 is used to display a display object such as an image or a character.
  • the display device 160 can be, for example, a touch device such as an LCD display.
  • the input unit 120 can be integrated with the display device 160 to implement a touch display function, but is not limited thereto.
  • the memory 140 can be a solid state memory such as a read only memory (ROM), a random access memory (RAM), a SIM card, and the like. It is also possible to store a memory that can be selectively erased and provided with more data even when the power is turned off, and an example of the memory is sometimes referred to as an EPROM or the like. Memory 140 can also be some other type of device. Memory 140 includes a buffer memory 141 (sometimes referred to as a buffer). The memory 140 may include an application/function storage section 142 for storing an application and a function program or a flow for executing an operation of the electronic device 600 by the central processing unit 100.
  • the memory 140 may also include a data storage portion 143 for storing data such as contacts, digital data, pictures, sounds, and/or any other data used by the electronic device.
  • the driver storage portion 144 of the memory 140 may include various drivers for the communication function of the electronic device and/or for performing other functions of the electronic device such as a messaging application, an address book application, and the like.
  • the communication module 110 is a transmitter/receiver 110 that transmits and receives signals via the antenna 111.
  • a communication module (transmitter/receiver) 110 is coupled to the central processing unit 100 to provide an input signal and receive an output signal, which may be the same as in the case of a conventional mobile communication terminal, including but not limited to WIFI, 3G, 4G, 5G or GPRS network.
  • a plurality of communication modules 110 such as a cellular network module, a Bluetooth module, and/or a wireless local area network module, may be provided in the same electronic device.
  • the communication module (transmitter/receiver) 110 also issues a designated signal after obtaining a corresponding command via the central processing unit 100, thereby implementing a general telecommunication function.
  • Piezoelectric sensor 130 can include any suitable piezoelectric sensing element, such as a thin film piezoelectric sensor or the like.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种智能设备控制方法,所述方法:获取基板上因触碰产生的弹性波信号,将所述弹性波信号转化为电压信号(S101);根据所述电压信号计算获得所述电压信号对应的触碰物体信息及触碰指令(S102);根据所述触碰物体信息获得对应的控制类别信息(S103);通过所述触碰指令于所述控制类别信息中获得对应的控制指令(S104);以此,实现了多种输入来源和模式的精准识别,结合压电式弹性波传感器,不仅可用于手机、平板电脑,还可以应用于其它多种操作面板,如家电、汽车以及其余可安装弹性波传感器的按钮控制面板,为用户提供更多样化的操作模式。

Description

智能设备控制方法 技术领域
本申请涉及人机交互领域,尤指一种智能设备控制方法。
背景技术
随着科技的不断发展,智能设备已逐渐进入人们的各个生活领域,而且其功能也越来越强大,特别是多任务并行处理技术的应用,为用户提供了极大的便利;但也仅为多任务的并行,导致智能设备在使用不同应用时需要进行大量重复的切换操作才能给打开或操作不同的应用,操作较为复杂,且使用时间较长,给用户带来了较差的使用体验。
针对该问题,现有技术中提供一种通过指关节开启具备电容屏和加速度传感器的智能设备上一特定功能的解决方案,在该方案中仅能在具备电容屏和加速度传感器的智能设备上使用,成本较高;其主要利用电容屏执行接触检测、加速度传感器测量外力冲击导致的屏幕加速度;因此,基于该情况,这一方案无法实现手指关节敲击之外其余信号源的识别;同时电容屏的频繁使用也大大增加了智能设备的制造成本和使用功耗。
综上,如何在保证智能设备制造成本和使用成本较低的基础上,增加智能设备的控制方式的多样性,提高用户的便利性,便于智能设备的推广这一问题成为业内人士亟欲解决的一大难题。
发明内容
本申请目的在于提供一种智能设备控制方法,使得智能设备可根据触碰信号识别输入来源的类别,有效识别出不同模式的敲击,并将其作为开启下一功能的命令输入,如开机、唤醒屏幕、截图、进入特定应用等;提供用户更多样化的控制方案。
为达上述目的,本申请所提供的一种智能设备控制方法具体包含:获取基板上因触碰产生的弹性波信号,将所述弹性波信号转化为电压信号;根据所述电压信号计算获得所述电压信号对应的触碰物体信息及触碰指令;根据所述触碰物体信息获得对应的控制类别信息;通过所述触碰指令于所述控制类别信息中获得对应的控制指令。
本申请还提供一种智能设备控制装置,所述控制装置包含基板、压电传感模块、信号分析模块和处理模块;所述压电传感模块用于获取基板上因触碰产生的弹性波信号,将所述弹性波信号转化为电压信号;所述信号分析模块用于根据所述电压信号计算获得 所述电压信号对应的触碰物体信息及触碰指令;所述处理模块用于根据所述触碰物体信息获得对应的控制类别信息;以及通过所述触碰指令于所述控制类别信息中获得对应的控制指令。
本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行上述的方法。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述的方法的计算机程序。
本申请所提供的智能设备控制方法利用弹性波传感器采集智能设备屏幕上不同的敲击信号,如手写笔、手指关节、指腹,根据算法提取信号特征判断输入来源,从而识别出不同模式的敲击,并将其作为开启下一功能的命令输入,如开机、唤醒屏幕、截图、进入特定应用等;实现了多种输入来源和模式的精准识别,结合压电式弹性波传感器,不仅可用于手机、平板电脑,还可以应用于其它多种操作面板,如家电、汽车以及其余可安装弹性波传感器的按钮控制面板。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,并不构成对本申请的限定。在附图中:
图1为本申请所提供的智能设备控制方法的流程示意图;
图2为本申请所提供的智能设备控制装置的结构示意图;
图3A为本申请一实施例所提供的智能设备控制方法采集的指腹触碰基板的波形示意图;
图3B为本申请一实施例所提供的智能设备控制方法采集的指关节触碰基板的波形示意图;
图3C为本申请一实施例所提供的智能设备控制方法采集的触碰笔触碰基板的波形示意图;
图4为本申请一实施例所提供的电子设备的***构成的示意框图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本申请做进一步详细说明。在此,本申请的示意性实施例及其说明用于解释本申请, 但并不作为对本申请的限定。
在本说明书的描述中,参考术语“一实施例”、“一具体实施例”、“例如”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。各实施例中涉及的步骤顺序用于示意性说明本申请的实施,其中的步骤顺序不作限定,可根据需要作适当调整。
请参考图1所示,本申请所提供的一种智能设备控制方法具体包含:S101获取基板上因触碰产生的弹性波信号,将所述弹性波信号转化为电压信号;S102根据所述电压信号计算获得所述电压信号对应的触碰物体信息及触碰指令;S103根据所述触碰物体信息获得对应的控制类别信息;S104通过所述触碰指令于所述控制类别信息中获得对应的控制指令。在上述实施例中,所述触碰物体信息包含:指腹触碰信息、指关节触碰信息、物件触碰信息等;所述基板可为一硬性介质或其结合体,作用在于当外部物体(如手指、指关节、触控笔等)触碰基板时,产生一弹性波信号,该弹性波信号经由所述压电传感模块等传感器捕获后,转换为与该弹性波信号频率相同的电压信号,当然该处仅为便于后期计算因此所转换的电压信号可与所述弹性波信号频率相同,实际工作中也可转化为不同频率的电压信号,后期计算时对应调整即可,本申请在此并不对其转化过程做进一步限定;其后,请参考图3A至图3C所示可知,不同的触碰物件各自的材质或结构不同,所产生的弹性波形也不同的原理;根据所述电压信号进一步计算分析获得该弹性波信号的触碰物体信息及触碰过程中的用户输入的触碰指令,例如:多次敲击,用力敲击等指令;最后根据所述触碰物体信息获得预设置的控制类别信息,例如:当触控笔敲击时即调出画板或手写板等应用,用指关节敲击时则开启照相、摄影等应用;接着根据所述触碰指令确认在前述打开的应用中执行何种操作,例如:通过触控笔连续敲击两次,则调出画板;连续敲击三次,则调出手写板等;当然,值得说明的是,实际工作中,也可利用敲击指令打开预存应用,根据触碰物体信息进入对应的预设操作,本领域相关技术人员可根据实际需要选择使用,本申请在此不再详述。
在本申请一实施例中,上述步骤S101中将所述弹性波信号转化为电压信号还可包含:根据所述弹性波信号的频率,生成与所述弹性波信号频率相同或等比的电压信号。其后,步骤S102再根据所述电压信号计算获得所述电压信号对应的触碰物体信息;具体的,可根据所述电压信号获得所述电压信号的信号特征值;将所述电压信号的信号特征 值与预存的参考特征值比较,获得所述电压信号对应的触碰物体信息。在该实施例中,根据所述电压信号的信号波形特征,获得所述电压信号的信号特征值可根据预定触碰物体触碰基板所转化的电压信号,通过机器学习算法和/或深度学习算法建立特征模型;以及根据所述电压信号和所述特征模型计算获得所述电压信号的信号特征值;该实施例中,也可根据预定触碰物体触碰基板所转化的电压信号与对应的参考特征值通过支持向量机算法建立特征模型;具体的,在实际工作中,工作人员可提前采集不同物体触碰基板所产生的弹性波信号,并将该弹性波信号转化为电压信号,根据该电压信号作为输入信号通过机器学习算法和/或深度学习算法进行训练,获得用于提取所述电压信号中信号特征值的特征模型,也可人工分析所述电压信号中具有较高区别的特征部分,获得该电压信号对应的特征值,该特征值亦即所述电压信号所对应的参考特征值;此时即可将所述电压信号作为输入,所述参考特征值作为输出,通过深度学习算法或机器学习算法建立特征模型;其后当实际用户通过不同物体触碰基板时,则可将转化的电压信号通过所述特征模型分析计算获得其所对应的信号特征值。当然实际工作中,也可通过采集海量触碰所产生的电压信号,利用该电压信号通过机器学习算法和/或深度学习算法得到一特征模型,后期即可通过该特征模型,和用户实际触摸所产生的电压信号计算获得该触碰的信号特征值,再根据该信号特征值获得触碰物件的相关信息;本申请在此并不做具体限制,本领域相关技术人员可根据实际需要选择使用。
在本申请一实施例中,将所述电压信号的信号特征值与预存的参考特征值比较,获得所述电压信号对应的触碰物体信息包含:比较所述信号特征值与预存的参考特征值,获得相似度值;根据所述相似度值确定所述信号特征值对应的参考特征值,根据所述参考特征值获得预存的触碰物体信息。具体的,实际工作中,可根据实际需要提取所述电压信号中预定触碰物体的特征值,如特定波长范围内的峰值、波动变化值或相位特征及时间差特征等,其后将所述提取的信号特征值与预置的特征库里的特征值比较,通过对两者之间求均方差、余弦相关等比对算法求得两者之间的相似度,其后根据相似度进一步确认信号特征值所对应的参考特征值为哪一个,当确认最为相近的参考特征值后,即可根据所述参考特征值获得其所对应的触碰物体信息,以此确认是何种物体触碰基板所产生的弹性波。
在本申请一实施例中,上述步骤S102中根据所述电压信号计算获得所述电压信号对应的触碰指令可包含:根据所述电压信号计算获得所述电压信号所对应的触碰力度和/或触碰位置;根据所述触碰力度和/或所述触碰位置获得预存的触碰指令。其中,所述触 碰力度可根据所述电压信号与电压参考值之间的差值计算获得所述电压信号的波动变化值,根据所述波动变化值计算获得所述触碰力度。具体的,可利用安置于所述基板上的一个或多个压电传感器C 1至C n将各自接收到的弹性波信号分别转化为与其接收到的弹性波信号频率一致的电压信号D 1至D n,再根据各电压信号D 1至D n的波动变化值分别计算各电压信号的能量值E 1至E n,最后再将能量值E 1至E n中一个或多个值的累加和/或平均,获得最终的弹性波总体能量值(当仅获得一个能量值E 1时则不再进行累加及平均或1*E 1/1),此时该弹性波总体能量值即可反应基板在触碰状态下所述产生的压力信息,由此获得触碰力度;值得说明的是,在上述过程中,根据电压信号计算触碰力度的方法主要可通过以下公式计算:
Figure PCTCN2019084556-appb-000001
Figure PCTCN2019084556-appb-000002
在上式中,E为电压信号的能量值,m为采集的信号点数;n为根据实际情况选择预定长度的电压信号波长确定的信号点数,本领域相关技术人员可根据实际需要选择设置,本申请在此并不做进一步限制。
在实际工作中,因个人习惯不同,所喜欢的操作方式也不相同;为此,在本申请一实施例中,上述步骤S102中的根据所述电压信号计算获得所述电压信号对应的触碰指令还可包含:根据所述电压信号获得预定时间周期内,所述基板上因触碰产生的弹性波信号的次数,根据所述弹性波信号的次数获得预存的触碰指令。该实施例中则为根据触碰的次数给出相应的控制指令,实际工作中触碰力度等条件亦可作为控制指令的触发条件,本领域相关技术人员可根据实际需要选择设置,本申请在此并不做进一步限制。
请参考图2所示,本申请还提供一种智能设备控制装置,所述控制装置包含基板101、压电传感模块102、信号分析模块103和处理模块104;所述压电传感模块102用于获取基板101上因触碰产生的弹性波信号,将所述弹性波信号转化为电压信号;所述信号分析模块103用于根据所述电压信号计算获得所述电压信号对应的触碰物体信息及触碰指令;所述处理模块104用于根据所述触碰物体信息获得对应的控制类别信息;以及通过所述触碰指令于所述控制类别信息中获得对应的控制指令。其中,所述压电传感模块102还可用于根据所述弹性波信号的频率,生成与所述弹性波信号频率相同或等比的电压信号。
在本申请一实施例中,所述信号分析模块103用于根据所述电压信号获得所述电压信号的信号特征值;将所述电压信号的信号特征值与预存的参考特征值比较,获得所述电压信号对应的触碰物体信息;以及,根据所述电压信号计算获得所述电压信号所对应 的触碰力度和/或触碰位置;根据所述触碰力度和/或所述触碰位置获得预存的触碰指令。其中,所述信号分析模块103获取所述触碰力度的方式具体可根据所述电压信号与电压参考值之间的差值计算获得所述电压信号的波动变化值,根据所述波动变化值计算获得所述触碰力度。该流程已在上述说明中详细描述,在此就不再一一解释。
本申请所提供的智能设备控制方法利用弹性波传感器采集智能设备屏幕上不同的敲击信号,如手写笔、手指关节、指腹,根据算法提取信号特征判断输入来源,从而识别出不同模式的敲击,并将其作为开启下一功能的命令输入,如开机、唤醒屏幕、截图、进入特定应用等;实现了多种输入来源和模式的精准识别,结合压电式弹性波传感器,不仅可用于手机、平板电脑,还可以应用于其它多种操作面板,如家电、汽车以及其余可安装弹性波传感器的按钮控制面板。
本申请还提供一种电子设备,该电子设备可以是台式计算机、平板电脑及移动终端等,本实施例不限于此。在本实施例中,该电子设备可以参照上述方法的实施及上述装置,其内容被合并于此,重复之处不再赘述。
图4为本申请实施例的电子设备600的***构成的示意框图。如图4所示,该电子设备600可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
一实施例中,电压信号分析及后续的控制方案输出等过程可以被集成到中央处理器100中。其中,中央处理器100可以被配置为进行如下控制:根据所述电压信号计算获得所述电压信号对应的触碰物体信息及触碰指令;根据所述触碰物体信息获得对应的控制类别信息;通过所述触碰指令于所述控制类别信息中获得对应的控制指令。
其中,将所述弹性波信号转化为电压信号包含:根据所述弹性波信号的频率,生成与所述弹性波信号频率相同或等比的电压信号。
其中,根据所述电压信号计算获得所述电压信号对应的触碰物体信息包含:根据所述电压信号获得所述电压信号的信号特征值;将所述电压信号的信号特征值与预存的参考特征值比较,获得所述电压信号对应的触碰物体信息。
其中,根据所述电压信号的信号波形特征,获得所述电压信号的信号特征值包含:根据预定触碰物体触碰基板所转化的电压信号,通过机器学习算法和/或深度学习算法建立特征模型;以及根据所述电压信号和所述特征模型计算获得所述电压信号的信号特征值;或根据预定触碰物体触碰基板所转化的电压信号与对应的参考特征值通过支持向量 机算法建立特征模型。
其中,将所述电压信号的信号特征值与预存的参考特征值比较,获得所述电压信号对应的触碰物体信息包含:比较所述信号特征值与预存的参考特征值,获得相似度值;根据所述相似度值确定所述信号特征值对应的参考特征值,根据所述参考特征值获得预存的触碰物体信息。
其中,根据所述电压信号计算获得所述电压信号对应的触碰指令包含:根据所述电压信号计算获得所述电压信号所对应的触碰力度和/或触碰位置;根据所述触碰力度和/或所述触碰位置获得预存的触碰指令。
其中,根据所述电压信号计算获得所述电压信号所对应的触碰力度包含:根据所述电压信号与电压参考值之间的差值计算获得所述电压信号的波动变化值,根据所述波动变化值计算获得所述触碰力度。
其中,根据所述电压信号计算获得所述电压信号对应的触碰指令:根据所述电压信号获得预定时间周期内,所述基板上因触碰产生的弹性波信号的次数,根据所述弹性波信号的次数获得预存的触碰指令。
如图4所示,该电子设备600还可以包括:通信模块110、输入单元120、压电传感器130、显示器160、电源170。值得注意的是,电子设备600也并不是必须要包括图4中所示的所有部件;此外,电子设备600还可以包括图4中没有示出的部件,可以参考现有技术。
如图4所示,中央处理器100有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该中央处理器100接收输入并控制电子设备600的各个部件的操作。
其中,存储器140,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存上述与失败有关的信息,此外还可存储执行有关信息的程序。并且中央处理器100可执行该存储器140存储的该程序,以实现信息存储或处理等。
输入单元120向中央处理器100提供输入。该输入单元120例如为按键或触摸输入装置。电源170用于向电子设备600提供电力。显示器160用于进行图像和文字等显示对象的显示。该显示器160例如可为LCD显示器等触控装置;其中,该输入单元120可与该显示器160集成为一触控显示屏予以实现触控显示的功能,但并不限于此。
该存储器140可以是固态存储器,例如,只读存储器(ROM)、随机存取存储器(RAM)、 SIM卡等。还可以是这样的存储器,其即使在断电时也保存信息,可被选择性地擦除且设有更多数据,该存储器的示例有时被称为EPROM等。存储器140还可以是某种其它类型的装置。存储器140包括缓冲存储器141(有时被称为缓冲器)。存储器140可以包括应用/功能存储部142,该应用/功能存储部142用于存储应用程序和功能程序或用于通过中央处理器100执行电子设备600的操作的流程。
存储器140还可以包括数据存储部143,该数据存储部143用于存储数据,例如联系人、数字数据、图片、声音和/或任何其他由电子设备使用的数据。存储器140的驱动程序存储部144可以包括电子设备的用于通信功能和/或用于执行电子设备的其他功能(如消息传送应用、通讯录应用等)的各种驱动程序。
通信模块110即为经由天线111发送和接收信号的发送机/接收机110。通信模块(发送机/接收机)110耦合到中央处理器100,以提供输入信号和接收输出信号,这可以和常规移动通信终端的情况相同,所述通信模块,包括但不限于WIFI、3G、4G、5G或GPRS网络。
基于不同的通信技术,在同一电子设备中,可以设置有多个通信模块110,如蜂窝网络模块、蓝牙模块和/或无线局域网模块等。通信模块(发送机/接收机)110还经由中央处理器100获得对应指令后发出指定信号,从而实现通常的电信功能。压电传感器130可以包括任何合适的压电感应元件,如薄膜压电传感器等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述的具体实施例,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施例而已,并不用于限定本申请的保护范围,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种智能设备控制方法,其特征在于,所述方法:
    获取基板上因触碰产生的弹性波信号,将所述弹性波信号转化为电压信号;
    根据所述电压信号计算获得所述电压信号对应的触碰物体信息及触碰指令;
    根据所述触碰物体信息获得对应的控制类别信息;
    通过所述触碰指令于所述控制类别信息中获得对应的控制指令。
  2. 根据权利要求1所述的智能设备控制方法,其特征在于,将所述弹性波信号转化为电压信号包含:根据所述弹性波信号的频率,生成与所述弹性波信号频率相同或等比的电压信号。
  3. 根据权利要求1的所述智能设备控制方法,其特征在于,根据所述电压信号计算获得所述电压信号对应的触碰物体信息包含:根据所述电压信号获得所述电压信号的信号特征值;将所述电压信号的信号特征值与预存的参考特征值比较,获得所述电压信号对应的触碰物体信息。
  4. 根据权利要求3的所述智能设备控制方法,其特征在于,根据所述电压信号的信号波形特征,获得所述电压信号的信号特征值包含:根据预定触碰物体触碰基板所转化的电压信号,通过机器学习算法和/或深度学习算法建立特征模型;以及根据所述电压信号和所述特征模型计算获得所述电压信号的信号特征值。
  5. 根据权利要求3的所述智能设备控制方法,其特征在于,根据预定触碰物体触碰基板所转化的电压信号与对应的参考特征值通过支持向量机算法建立特征模型。
  6. 根据权利要求3的所述智能设备控制方法,其特征在于,将所述电压信号的信号特征值与预存的参考特征值比较,获得所述电压信号对应的触碰物体信息包含:比较所述信号特征值与预存的参考特征值,获得相似度值;根据所述相似度值确定所述信号特征值对应的参考特征值,根据所述参考特征值获得预存的触碰物体信息。
  7. 根据权利要求1的所述智能设备控制方法,其特征在于,根据所述电压信号计算获得所述电压信号对应的触碰指令包含:根据所述电压信号计算获得所述电压信号所对应的触碰力度和/或触碰位置;根据所述触碰力度和/或所述触碰位置获得预存的触碰指令。
  8. 根据权利要求7的所述智能设备控制方法,其特征在于,根据所述电压信号计算获得所述电压信号所对应的触碰力度包含:根据所述电压信号与电压参考值之间的差值计算获得所述电压信号的波动变化值,根据所述波动变化值计算获得所述触碰力度。
  9. 根据权利要求1的所述智能设备控制方法,其特征在于,根据所述电压信号计算获得所述电压信号对应的触碰指令:根据所述电压信号获得预定时间周期内,所述基板上因触碰产生的弹性波信号的次数,根据所述弹性波信号的次数获得预存的触碰指令。
  10. 根据权利要求1所述的智能设备控制方法,其特征在于,所述触碰物体信息包含:指腹触碰信息、指甲触碰信号、指关节触碰信息、物件触碰信息。
  11. 一种电子设备,包括存储器、处理器、压电传感器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,
    所述压电传感器用于获取基板上因触碰产生的弹性波信号,将所述弹性波信号转化为电压信号;
    所述处理器执行如下方法:根据所述电压信号计算获得所述电压信号对应的触碰物体信息及触碰指令;根据所述触碰物体信息获得对应的控制类别信息;通过所述触碰指令于所述控制类别信息中获得对应的控制指令。
  12. 根据权利要求11所述的电子设备,其特征在于,所述处理器还用于根据所述电压信号获得所述电压信号的信号特征值;将所述电压信号的信号特征值与预存的参考特征值比较,获得所述电压信号对应的触碰物体信息。
  13. 根据权利要求11所述的电子设备,其特征在于,所述处理器还用于根据所述电压信号计算获得所述电压信号所对应的触碰力度和/或触碰位置;根据所述触碰力度和/或所述触碰位置获得预存的触碰指令。
  14. 根据权利要求11所述的电子设备,其特征在于,所述处理器还用于根据所述电压信号获得预定时间周期内,所述基板上因触碰产生的弹性波信号的次数,根据所述弹性波信号的次数获得预存的触碰指令。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有执行权利要求1所述的方法的计算机程序。
PCT/CN2019/084556 2018-04-28 2019-04-26 智能设备控制方法 WO2019206279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810403056.XA CN110413188A (zh) 2018-04-28 2018-04-28 智能设备控制方法及装置
CN201810403056.X 2018-04-28

Publications (1)

Publication Number Publication Date
WO2019206279A1 true WO2019206279A1 (zh) 2019-10-31

Family

ID=68295853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084556 WO2019206279A1 (zh) 2018-04-28 2019-04-26 智能设备控制方法

Country Status (2)

Country Link
CN (1) CN110413188A (zh)
WO (1) WO2019206279A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507539B (zh) * 2020-03-24 2022-09-02 华为技术有限公司 一种获取终端设备跌落信息的方法和终端设备
CN112327783A (zh) * 2020-11-17 2021-02-05 深圳Tcl新技术有限公司 设备的控制方法、装置、终端和计算机可读存储介质
CN114690977B (zh) * 2021-04-22 2023-11-21 广州创知科技有限公司 一种基于弹性波的交互唤起方法及装置
CN114690976B (zh) * 2021-04-22 2024-06-18 广州创知科技有限公司 基于弹性波的***首页界面交互操作方法及装置
WO2022222385A1 (zh) * 2021-04-22 2022-10-27 广州创知科技有限公司 一种触摸数据处理方法及交互平板
CN113138696B (zh) * 2021-04-30 2023-09-12 北京钛方科技有限责任公司 一种触摸物触头规格的识别方法、装置和存储介质
CN114115558B (zh) * 2021-11-04 2024-06-11 北京钛方科技有限责任公司 一种触控笔识别方法、装置、***、存储介质和触控笔

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833397A (zh) * 2010-05-21 2010-09-15 汉王科技股份有限公司 多手指触控定位装置及方法
CN102298462A (zh) * 2011-05-31 2011-12-28 汉王科技股份有限公司 基于振动感应的电子装置及其控制方法
CN102436332A (zh) * 2010-09-29 2012-05-02 汉王科技股份有限公司 一种触控方法及装置
US20120293441A1 (en) * 2009-03-03 2012-11-22 Eldering Charles A Elastomeric Wave Tactile Interface
CN104007850A (zh) * 2013-02-26 2014-08-27 联想(北京)有限公司 一种信号处理方法及电子设备
CN104407793A (zh) * 2014-11-26 2015-03-11 深圳市华星光电技术有限公司 触摸信号处理方法及设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3929672B2 (ja) * 2000-03-10 2007-06-13 独立行政法人科学技術振興機構 弾性波を用いたコンピュータ入出力装置
CN101644978A (zh) * 2009-05-27 2010-02-10 北京中星微电子有限公司 一种触摸屏检测方法及装置
CN101859211B (zh) * 2010-05-21 2013-05-29 汉王科技股份有限公司 手指触控定位装置及方法
CN101995996B (zh) * 2010-11-30 2012-10-17 汉王科技股份有限公司 一种触摸屏的机械波定位方法及装置
CN104881195B (zh) * 2015-06-18 2018-03-27 京东方科技集团股份有限公司 一种阵列基板的驱动方法
CN106960099B (zh) * 2017-03-28 2019-07-26 清华大学 一种基于深度学习的机械手抓取稳定性识别方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120293441A1 (en) * 2009-03-03 2012-11-22 Eldering Charles A Elastomeric Wave Tactile Interface
CN101833397A (zh) * 2010-05-21 2010-09-15 汉王科技股份有限公司 多手指触控定位装置及方法
CN102436332A (zh) * 2010-09-29 2012-05-02 汉王科技股份有限公司 一种触控方法及装置
CN102298462A (zh) * 2011-05-31 2011-12-28 汉王科技股份有限公司 基于振动感应的电子装置及其控制方法
CN104007850A (zh) * 2013-02-26 2014-08-27 联想(北京)有限公司 一种信号处理方法及电子设备
CN104407793A (zh) * 2014-11-26 2015-03-11 深圳市华星光电技术有限公司 触摸信号处理方法及设备

Also Published As

Publication number Publication date
CN110413188A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2019206279A1 (zh) 智能设备控制方法
US10296136B2 (en) Touch-sensitive button with two levels
KR101932210B1 (ko) 터치 신호에 의하여 이동 단말기의 조작을 실현하는 방법, 시스템 및 이동 단말기
CN106462348B (zh) 设备的可调参数的调整方法和设备
CN103870190A (zh) 一种控制电子设备的方法及电子设备
CN108055405B (zh) 唤醒终端的方法及终端
EP2521959A2 (en) User interface methods and systems for providing force-sensitive input
JP5856313B2 (ja) 荷重感知ジェスチャ認識のための方法及び機器
WO2018177157A1 (zh) 一种移动终端的字符输入方法及移动终端
TW201203037A (en) Touch controlled electric apparatus and control method thereof
CN105844241A (zh) 一种触控压力检测方法及终端
WO2019206280A1 (zh) 一种虚拟键盘控制方法
US20120068958A1 (en) Portable electronic device and control method thereof
CN104407774A (zh) 一种屏幕切换设备、方法以及移动终端
TWI502411B (zh) 觸控偵測方法與觸控偵測裝置
CN111665985B (zh) 触控采样控制方法、装置、终端和存储介质
TWI709876B (zh) 可切換輸入法的電子裝置及其輸入法切換方法、系統
CN105824566A (zh) 一种控制终端的方法及终端
CN112015291B (zh) 电子设备控制方法及装置
CN112639695B (zh) 自适应数字笔和触敏设备
CN107707731B (zh) 一种智能终端及其控制方法和具有存储功能的装置
CN102478995B (zh) 手指辨识方法及***
CN105528134A (zh) 手持装置及运动操作方法介质
US20200050314A1 (en) Touch sensing method, electronic device and non-transitory computer readable recording medium device
TWI573044B (zh) 觸控控制器裝置及喚醒電子裝置的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.04.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19793167

Country of ref document: EP

Kind code of ref document: A1