WO2019205622A1 - 换热器及空调器 - Google Patents

换热器及空调器 Download PDF

Info

Publication number
WO2019205622A1
WO2019205622A1 PCT/CN2018/117924 CN2018117924W WO2019205622A1 WO 2019205622 A1 WO2019205622 A1 WO 2019205622A1 CN 2018117924 W CN2018117924 W CN 2018117924W WO 2019205622 A1 WO2019205622 A1 WO 2019205622A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
fins
slit
adjacent
flat
Prior art date
Application number
PCT/CN2018/117924
Other languages
English (en)
French (fr)
Inventor
张振富
乔光宝
朱百发
王若峰
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019205622A1 publication Critical patent/WO2019205622A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Definitions

  • the invention relates to the technical field of air conditioners, in particular to heat exchangers and air conditioners.
  • the heat exchanger is a key component for heat exchange inside the air conditioner.
  • the heat exchange efficiency of the heat exchanger is one of the important parameters affecting the running performance of the air conditioner.
  • Existing heat exchangers mostly use equally spaced slit fin structures, as shown in Figure 1.
  • the middle position of the heat exchanger corresponds to the motor, so that the air diffuses from the intermediate position to the two sides.
  • the air is more likely to form a lateral flow, so that the wind resistance on both sides of the heat exchanger is increased.
  • the air volume is reduced, which affects the heat exchange effect of the heat exchanger and reduces the overall heat exchange efficiency of the heat exchanger.
  • the operating power of the motor is increased to increase the air volume to improve the heat exchange efficiency of the heat exchanger, and the heat exchange amount is increased. This method has high energy consumption and cannot change the air flow direction.
  • Embodiments of the present invention provide a heat exchanger and an air conditioner.
  • a brief summary is given below. This generalization is not a general comment, nor is it intended to identify key/critical constituent elements or to describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simplified form as a prelude to the following detailed description.
  • a heat exchanger comprising: one or more slit fins, each of which is provided with one or more through holes for passing a heat exchange tube, the adjacent through holes being communicated by a slit such that air can flow between the slits of the adjacent slit fins; one or more flat fins, each of the One or more through holes are provided in the flat fins for passing through the heat exchange tubes, and each of the flat fins is disposed between adjacent one or more of the slit fins so that two One or more of the slit fins between adjacent ones of the flat fins form an air flow area.
  • the spacing between adjacent flat fins is the same, and the number of said slit fins between adjacent flat fins is the same.
  • the spacing between adjacent flat fins is the same, and the number of said slit fins between adjacent flat fins is gradually reduced from the middle to the both sides of the heat exchanger.
  • a slit stamping sheet is reserved between the through holes of one or more of the flat fins, the slit stamping sheet being removed to form the crack, the crack communicating with the adjacent through holes.
  • the density of the slit fins decreases stepwise from the outlet side of the heat exchanger to the inlet side of the heat exchanger.
  • the distance between adjacent slit fins gradually increases from the middle to the both sides of the heat exchanger.
  • the distance between adjacent flat fins is gradually reduced from the middle to the both sides of the heat exchanger.
  • the density of the slit fins is stepwise reduced by two or more gradients from the outlet side of the heat exchanger to the inlet side of the heat exchanger.
  • one or more of said slit fins and/or one or more of said flat fins of said heat exchanger are movably mounted with an adjustable spacing.
  • an air conditioner comprising any of the above heat exchangers.
  • the heat exchanger according to the embodiment of the present invention optimizes the heat exchange effect of the heat exchanger and improves the heat exchange efficiency by inserting the flat fins in the slit fins to optimize the flow path of the air.
  • FIG. 1 is a schematic structural view of a prior art heat exchanger
  • FIG. 2 is a schematic structural view of a heat exchanger according to an exemplary embodiment
  • FIG. 3 is a front elevational view showing a heat exchanger flat fin according to an exemplary embodiment
  • FIG. 4 is a front elevational view showing a fin plate fin of a heat exchanger according to another exemplary embodiment
  • FIG. 5 is a schematic structural view of a heat exchanger according to another exemplary embodiment.
  • relational terms such as first and second are used merely to distinguish one entity or operation from another entity or operation, and do not require or imply any actual relationship between the entities or operations or order.
  • the terms “comprises” or “comprising” or “comprising” or any other variations are intended to encompass a non-exclusive inclusion, such that a process, method, or device that includes a plurality of elements includes not only those elements but also other items not specifically listed. Elements, or elements that are inherent to such a process, method, or device. An element that is defined by the phrase “comprising a " does not exclude the presence of additional equivalent elements in the process, method, or device that comprises the element.
  • FIG. 1 is a schematic view showing the structure of a prior art heat exchanger.
  • the prior art heat exchanger 1 shown in FIG. 1 includes one or more equally spaced slit fins 11.
  • the rotation of the motor 2 drives the fan to rotate, so that the air enters the heat exchanger 1 in the direction indicated by the arrow in the figure.
  • the heat exchange tubes penetrate the through holes of the slit fins perpendicular to the slit fins of the heat exchanger 1, and the slits on the slit fins 11 communicate with the respective through holes, so that the air/wind can be laterally disposed between the respective slit fins 11. Flow, as shown in Fig.
  • the present invention proposes an exemplary heat exchanger structure in which an air flow path is optimized and heat exchange efficiency is improved on the basis of the existing heat exchanger.
  • a heat exchanger 1 according to an embodiment of the present invention includes: one or more slit fins 11, each of which is provided with one or more through holes, and the through holes are used for Through the heat exchange tubes, adjacent through holes are communicated by the slits so that air can flow between the slits of the adjacent slit fins 11; one or more flat fins 12, each One or more through holes are provided in the flat fins, and the through holes are used to pass through a heat exchange tube, and each of the flat fins is disposed between adjacent one or more of the slit fins 11 One or more of the slit fins 11 between two adjacent ones of the flat fins 12 form an air flow area.
  • FIG. 3 is a schematic structural view of a flat fin of a heat exchanger according to an embodiment of the present invention, according to an exemplary embodiment.
  • the heat exchanger of the embodiment of the present invention can effectively improve the heat exchangers for the heat exchangers which are all formed by the slit fins.
  • the air flow on both sides caused by the lateral flow of the side air is lost, the air circulation path is optimized, the heat exchange effect of the heat exchanger is improved, and the heat exchange efficiency is improved.
  • the mounting structure of the slit fins and the flat fins of the heat exchanger can be various.
  • the spacing between adjacent flat fins is the same, and the number of said slit fins between adjacent flat fins is the same.
  • the heat exchanger of the embodiment of the present invention replaces one flat plate fin with the structure of the existing equal-spaced slit fin heat exchanger. Or a plurality of slit fins such that one or more of the same air flow zones are formed such that the air is evenly distributed with the fins of the respective air flow zones. Improve the lateral flow of air flow on both sides, optimize the air flow path on both sides of the heat exchanger, improve the overall heat transfer effect of the heat exchanger, and improve the heat exchange efficiency.
  • the spacing between adjacent flat fins is the same, and the number of the slit fins between adjacent flat fins gradually increases from the middle to the both sides of the heat exchanger. cut back.
  • the number of slit fins between two adjacent flat fins of the heat exchanger from the middle to the both sides is gradually reduced, and the wind resistance of the air flow is reduced, so that the amount of air/air volume on both sides is increased.
  • Improve the heat exchange efficiency on both sides improve the heat exchange efficiency of the heat exchanger as a whole, and improve the heat transfer effect.
  • FIG. 4 is a schematic structural view of a flat fin of a heat exchanger according to an embodiment of the present invention, according to another exemplary embodiment.
  • a slit stamping sheet 13 is reserved between the through holes of one or more of the flat fins, and the slit stamping sheet 13 is removed to form The crack, the crack communicating with the adjacent through hole.
  • the slit stamping sheet 13 is formed by a stamping process, and is not completely broken during the stamping process, and an external force can be applied to the slit stamping sheet 13 along the punching slit to remove the slit stamping sheet 13 to form a part of the through-hole communicating flat fin. Or, the slit punching sheets 13 between all the through holes of the flat fins 12 are removed to form the same structure as the slit fins 11.
  • the slit punching piece is reserved between the through holes of the flat fins, and after the cracked punching piece is removed, the same structure as the cracked fin is formed, and in the installation and use, it may be necessary according to actual operating conditions.
  • the cracked stamping piece of the flat fin is removed, the adjacent air circulation area is connected, the air circulation path of the heat exchanger is changed, and the working mode of the heat exchanger is flexibly adjusted to suit different scenes/environments, so that the heat exchange The application of the device is more extensive.
  • FIG. 5 is a schematic structural view of a heat exchanger according to an embodiment of the present invention, according to an exemplary embodiment. As shown in FIG. 5, in the heat exchanger according to an embodiment of the present invention, the density of the slit fins 11 is stepwise reduced from the air outlet side of the heat exchanger to the air inlet side of the heat exchanger. small.
  • the fins of the heat exchanger are gradually reduced from the air outlet side to the air inlet side, and the spacing is gradually increased to reduce the negative influence of the fin spacing caused by the condensation of the condensed water on the inlet side, so that the air /The wind reduces the wind resistance on the air inlet side, smoothly enters the fins of the heat exchanger, and smoothly flows out from the air outlet side, improves the air circulation capacity of the heat exchanger, improves the heat exchange effect, and improves the heat exchange efficiency.
  • the distance between adjacent slit fins is gradually increased from the middle to the both sides of the heat exchanger (not shown).
  • the arrangement of the crack fins of the above example is beneficial to reduce the wind resistance on both sides of the heat exchanger, increase the air volume on both sides of the heat exchanger, increase the heat exchange amount on both sides of the heat exchanger, improve the heat exchange efficiency, and improve the exchange. Thermal effect.
  • the distance between adjacent flat fins is gradually reduced from the middle to the both sides of the heat exchanger (not shown).
  • the flat fins of the above example are arranged in such a manner that the air/wind is brought closer to the intermediate position from both sides of the heat exchanger, so that the lateral flow of air/wind is small in the middle of the heat exchanger, and two in the heat exchanger On the side, the lateral flow of air/wind is more obvious, and the smaller flat fin spacing is set on both sides, the blocking effect of the lateral flow of air/wind between the fins is more obvious, the wind resistance is reduced, the air volume is increased, and the heat exchange is further improved. The effect is to improve the heat transfer effect.
  • the density of the slit fins is stepwise reduced by two or more gradients from the outlet side of the heat exchanger to the inlet side of the heat exchanger.
  • the density of the slit fins is set to be stepped down according to three gradients, the fin pitch is set to D1 on the air inlet side of the heat exchanger, and the fin pitch is set to D3 on the wind side, on the inlet side and The area between the outlet sides is set to a fin spacing of D2, where D1 > D2 > D3.
  • one or more of the slit fins and/or one or more of the flat fins of the heat exchanger are movably mounted, and the spacing is adjustable.
  • each of the slit fins and/or the flat fins is not fixedly mounted, and can be laterally moved along the through holes, so that the spacing between the fins can be adjusted, suitable for different installation environments, and different performance parameters.
  • the air conditioner improves the versatility of the heat exchanger.
  • an air conditioner comprising any of the above heat exchangers.
  • the disclosed methods, products may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种换热器(1)及空调器,换热器(1)包括:一个或多个裂隙翅片(11),每个裂隙翅片(11)上设置一个或多个通孔,通孔用于通过换热管,相邻的通孔之间通过裂隙连通,以使得空气可以在相邻的裂隙翅片(11)的裂隙之间流通;一个或多个平板翅片(12),每个平板翅片(12)上设置一个或多个通孔,通孔用于通过换热管,每个平板翅片(12)设置在相邻的一个或多个裂隙翅片(11)之间,以使得两个相邻的平板翅片(12)之间的一个或多个裂隙翅片(11)形成空气流通区。通过在裂隙翅片(11)中穿插设置平板翅片(12),优化空气的流动路径,改善换热器的换热效果,提高换热效率。

Description

换热器及空调器
本申请基于申请号为201810374346.6、申请日为2018年04月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及空调技术领域,特别涉及换热器及空调器。
背景技术
换热器是空调器内部进行热交换的关键部件,换热器的换热效率是影响空调器运行性能的重要参数之一。现有的换热器多采用等间距裂隙翅片结构,如图1所示。此种结构的换热器,换热器中间位置对应电机,使得空气从中间位置向两侧扩散,在换热器的两侧,空气较易形成横向流动,使得换热器两侧的风阻增加,风量减小,影响换热器的换热效果,使换热器的整体换热效率降低。现有技术多采用增加电机运行功率来增加风量以提高换热器的换热效率,增加换热量,此种方式耗能较高,且仍无法改变空气流动方向。
发明内容
本发明实施例提供了一种换热器及空调器。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明实施例的第一方面,提供了一种换热器,包括:一个或多个裂隙翅片,每个所述裂隙翅片上设置一个或多个通孔,所述通孔用于通过换热管,相邻的所述通孔之间通过裂隙连通,以使得空气可以在相邻的所述裂隙翅片的所述裂隙之间流通;一个或多个平板翅片,每个所述平板翅片上设置一个或多个通孔,所述通孔用于通过换热管,每个所述平板翅片设置在相 邻的一个或多个所述裂隙翅片之间,以使得两个相邻的所述平板翅片之间的一个或多个所述裂隙翅片形成空气流通区。
在一些可选实施例中,相邻的所述平板翅片之间的间距相同,相邻的所述平板翅片之间的所述裂隙翅片的数量相同。
优选地,相邻的所述平板翅片之间的间距相同,从所述换热器的中间到两侧,相邻的所述平板翅片之间的所述裂隙翅片的数量逐渐减少。
优选地,一个或多个所述平板翅片的所述通孔之间预留裂隙冲压片,所述裂隙冲压片移除后形成所述裂隙,所述裂隙连通相邻的所述通孔。
优选地,从所述换热器的出风侧到所述换热器的进风侧,所述裂隙翅片的密度成阶梯式减小。
优选地,从所述换热器的中间到两侧,相邻的所述裂隙翅片之间的距离逐渐增大。
优选地,从所述换热器的中间到两侧,相邻的所述平板翅片之间的距离逐渐减小。
优选地,从所述换热器的出风侧到所述换热器的进风侧,所述裂隙翅片的密度按照大于或等于两个梯度成阶梯式减小。
优选地,所述换热器的一个或多个所述裂隙翅片和/或一个或多个所述平板翅片活动安装,间距可调节。
根据本发明实施例的第一方面,提供了一种空调器,包括上述任一种换热器。
本发明实施例的换热器,通过在裂隙翅片中穿插设置平板翅片,优化空气的流动路径,改善换热器的换热效果,提高换热效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是现有技术的换热器结构示意图;
图2是根据一示例性实施例示出的一种换热器的结构示意图;
图3是根据一示例性实施例示出的一种换热器平板翅片的正视结构示意图;
图4是根据另一示例性实施例示出的一种换热器平板翅片的正视结构示意图;
图5是根据另一示例性实施例示出的一种换热器的结构示意图。
附图标记
图中:1、换热器;11、裂隙翅片;12、平板翅片;13、裂隙冲压片;2、电机。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法、产品等而言,由于其与实施例公开的方法部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
图1是现有技术的换热器结构示意图。如图1所示的现有技术的换热器1包括一个或多个等间距设置的裂隙翅片11,电机2转动带动风机转动,使空气沿图中箭头所示方向进入换热器1,换热管垂直于换热器1的裂隙翅片方向穿入裂隙翅片的通孔中,裂隙翅片11上的裂隙联通各个通孔,使得空气/风可以在各个裂隙翅片11之间横向流动,如图1所示的,在换热器1的两侧,空气/风的横向流动增强,使得空气和换热器的翅片接触面积减小,同时,两侧的横向流动使两侧的风阻增大,风速降低,风量下降,造成换热量下降,影响换热效果和换热效率。针对上述技术问题,本发明提出了如下示例性的换热器结构,在现有换热器的基础上,优化空气流动路径,提高换热效率。
图2是根据一示例性实施例示出的本发明一种实施方式的换热器结构示意图。如图2所示,本发明一种实施方式的换热器1,包括:一个或多个裂隙翅片11,每个所述裂隙翅片上设置一个或多个通孔,所述通孔用于通过换热管,相邻的所述通孔之间通过裂隙连通,以使得空气可以在相邻的所述裂隙翅片11的所述裂隙之间流通;一个或多个平板翅片12,每个所述平板翅片上设置一个或多个通孔,所述通孔用于通过换热管,每个所述平板翅片设置在相邻的一个或多个所述裂隙翅片11之间,以使得两个相邻的所述平板翅片12之间的一个或多个所述裂隙翅片11形成空气流通区。
上述方案中,平板翅片12之间设置一个或多个裂隙翅11片,例如裂隙翅片11和平板翅片12可以平行安装,在裂隙翅片11和平板翅片12的通孔中安装换热管。图3是根据一示例性实施例示出的本发明一种实施方式的换热器的平板翅片的结构示意图。如图3所示的换热器的平板翅片12设置和裂隙翅片相对应的通孔,和裂隙翅片相比较的区别在于,平板翅片12的相邻的通孔之间无裂隙,空气仅能在两个平板翅片12之间的各个裂隙翅片11之间进行流通,使得两个相邻的平板翅片11之间形成独立的空气流通区,在换热器的垂直于空气流向的方向上,形成一个或多个由两两的平板翅片形成的空气流通区,空气在各个空气流通区内流动。和图1所示的现有技术的换热器的空气流向相比,对于现有的均是裂隙翅片构成的换热器,本发明实施例的换热器,可有效改善换热器两侧空气横向流动造成的两侧的风量流失,优化空气流通路径,改善换热器换热效果,提高换热效率。
换热器的裂隙翅片和平板翅片的安装结构可以有多种。作为示例,相邻 的所述平板翅片之间的间距相同,相邻的所述平板翅片之间的所述裂隙翅片的数量相同。
上述方案中,和现有的等间距裂隙翅片换热器相比,本发明实施例的换热器在现有的等间距裂隙翅片换热器的结构基础上,使用平板翅片替换一个或多个裂隙翅片,使得形成一个或多个相同的空气流通区,使得空气与各个空气流通区的翅片的接触均匀分布。改善两侧风量的横向流动,优化尤其是换热器两侧的空气流动路径,提高换热器的整体的换热效果,提高换热效率。
作为另一示例,相邻的所述平板翅片之间的间距相同,从所述换热器的中间到两侧,相邻的所述平板翅片之间的所述裂隙翅片的数量逐渐减少。
上述方案中,设置换热器从中间向两侧的两个相邻的平板翅片之间的裂隙翅片的数量逐渐减少,空气流动的风阻减小,使得两侧的空气量/风量增加,改善两侧的换热效率,整体提高换热器的换热效率,改善换热效果。
图4是根据另一示例性实施例示出的本发明一种实施方式的换热器的平板翅片的结构示意图。如图4所示,本发明一种实施方式的换热器,一个或多个所述平板翅片的所述通孔之间预留裂隙冲压片13,所述裂隙冲压片13移除后形成所述裂隙,所述裂隙连通相邻的所述通孔。
上述方案中,裂隙冲压片13通过冲压工艺形成,冲压过程中不完全冲断,可以沿冲压切口对裂隙冲压片13施加外力,使裂隙冲压片13移除,形成一部分通孔联通的平板翅片,或将平板翅片12的所有通孔之间的裂隙冲压片13均移除,形成与裂隙翅片11相同的结构。
上述示例中,平板翅片的通孔之间预留裂隙冲压片,在移除裂隙冲压片之后,形成与裂隙翅片相同的结构,在安装使用中,可以根据实际运行的工况,在必要时,移除平板翅片的裂隙冲压片,使得相邻的空气流通区连通,变换换热器的空气流通路径,灵活调节换热器的工作模式以适用于不同的场景/环境,使得换热器的应用范围更加广泛。
图5是根据一示例性实施例示出的本发明一种实施方式的换热器结构示意图。如图5所示,本发明一种实施方式的换热器,从所述换热器的出风侧到所述换热器的进风侧,所述裂隙翅片11的密度成阶梯式减小。
上述方案中,在换热器的进风侧易聚集较多的凝结水,凝结水膜导致进风侧翅片间距减小,风量下降,出风侧的风量将明显减少,影响换热器的换 热效果。本实施例通过设置换热器的翅片从出风侧到进风侧逐渐减少,间距逐渐增大来降低进风侧的凝结水形成水桥造成得翅片间距减小的负面影响,使得空气/风在进风侧的风阻降低,顺利进入换热器的翅片之间,并从出风侧顺利流出,提高换热器的空气流通能力,改善换热效果,提高换热效率。
上述方案中,从所述换热器的中间到两侧,相邻的所述裂隙翅片之间的距离逐渐增大(图中未示出)。
上述示例的裂缝翅片的排布方式,利于减小换热器两侧的风阻,增加换热器两侧的风量,使得换热器两侧的换热量增加,提高换热效率,改善换热效果。
作为另一示例,从所述换热器的中间到两侧,相邻的所述平板翅片之间的距离逐渐减小(图中未示出)。
上述示例的平板翅片的排布方式,因为空气/风由换热器的两侧向中间位置靠拢,使得在换热器中间位置,空气/风的横向流动较小,而在换热器两侧,空气/风的横向流动较明显,在两侧设置较小的平板翅片间距,对翅片间空气/风的横向流动的阻隔作用更加明显,减小风阻,增加风量,进一步改善换热效果,提高换热效果。
上述方案中,从所述换热器的出风侧到所述换热器的进风侧,所述裂隙翅片的密度按照大于或等于两个梯度成阶梯式减小。
作为示例,设置裂隙翅片的密度按照三个梯度成阶梯式减小,在换热器的进风侧设置翅片间距为D1,在出风侧设置翅片间距为D3,在进风侧和出风侧之间的区域设置翅片间距为D2,其中,D1>D2>D3。
作为进一步示例,所述D1、D2和D3的关系为:3*D1=4*D2=6*D3。
上述方案中,所述换热器的一个或多个所述裂隙翅片和/或一个或多个所述平板翅片活动安装,间距可调节。
上述示例性实施例的换热器,各个裂隙翅片和/或平板翅片不固定安装,可沿通孔横向移动,实现翅片间的间距可调节,适用于不同安装环境,及不同性能参数的空调器,提高换热器的通用性。
根据本发明实施例的第一方面,提供了一种空调器,包括上述任一种换热器。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。所属技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,应该理解到,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。

Claims (10)

  1. 一种换热器,其特征在于,包括:
    一个或多个裂隙翅片,每个所述裂隙翅片上设置一个或多个通孔,所述通孔用于通过换热管,相邻的所述通孔之间通过裂隙连通,以使得空气可以在相邻的所述裂隙翅片的所述裂隙之间流通;
    一个或多个平板翅片,每个所述平板翅片上设置一个或多个通孔,所述通孔用于通过换热管,每个所述平板翅片设置在相邻的一个或多个所述裂隙翅片之间,以使得两个相邻的所述平板翅片之间的一个或多个所述裂隙翅片形成空气流通区。
  2. 根据权利要求1所述的换热器,其特征在于,相邻的所述平板翅片之间的间距相同,相邻的所述平板翅片之间的所述裂隙翅片的数量相同。
  3. 根据权利要求1所述的换热器,其特征在于,相邻的所述平板翅片之间的间距相同,从所述换热器的中间到两侧,相邻的所述平板翅片之间的所述裂隙翅片的数量逐渐减少。
  4. 根据权利要求1或2或3所述的换热器,其特征在于,一个或多个所述平板翅片的所述通孔之间预留裂隙冲压片,所述裂隙冲压片移除后形成所述裂隙,所述裂隙连通相邻的所述通孔。
  5. 根据权利要求1或2或3所述的换热器,其特征在于,从所述换热器的出风侧到所述换热器的进风侧,所述裂隙翅片的密度成阶梯式减小。
  6. 根据权利要求1所述的换热器,其特征在于,从所述换热器的中间到两侧,相邻的所述裂隙翅片之间的距离逐渐增大。
  7. 根据权利要求1或6所述的换热器,其特征在于,从所述换热器的中间到两侧,相邻的所述平板翅片之间的距离逐渐减小。
  8. 根据权利要求所5述的换热器,其特征在于,从所述换热器的出风侧到所述换热器的进风侧,所述裂隙翅片的密度按照大于或等于两个梯度成阶梯式减小。
  9. 根据权利要求1所述的换热器,其特征在于,所述换热器的一个或多个所述裂隙翅片和/或一个或多个所述平板翅片活动安装,间距可调节。
  10. 一种空调器,其特征在于,包括权利要求1或2或3或8或9所述的换热器。
PCT/CN2018/117924 2018-04-24 2018-11-28 换热器及空调器 WO2019205622A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810374346.6A CN108895861B (zh) 2018-04-24 2018-04-24 换热器及空调器
CN201810374346.6 2018-04-24

Publications (1)

Publication Number Publication Date
WO2019205622A1 true WO2019205622A1 (zh) 2019-10-31

Family

ID=64342506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117924 WO2019205622A1 (zh) 2018-04-24 2018-11-28 换热器及空调器

Country Status (2)

Country Link
CN (1) CN108895861B (zh)
WO (1) WO2019205622A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108895861B (zh) * 2018-04-24 2020-08-25 青岛海尔空调器有限总公司 换热器及空调器
CN109708340B (zh) * 2018-09-30 2021-01-05 合肥海尔电冰箱有限公司 一种蒸发器使用方法
CN110006156A (zh) * 2019-03-05 2019-07-12 青岛海尔空调电子有限公司 空调出风装置和空调器
CN110207256B (zh) * 2019-06-27 2021-03-16 广东美的暖通设备有限公司 空调室内机及空调
CN110657690A (zh) * 2019-11-05 2020-01-07 广东美的白色家电技术创新中心有限公司 换热器及其加工方法、制冷设备和模具
CN111412691B (zh) * 2020-03-13 2021-09-07 珠海格力电器股份有限公司 一种换热器和空调器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363498A (ja) * 1989-07-28 1991-03-19 Matsushita Refrig Co Ltd 熱交換器
JPH0518636A (ja) * 1991-07-09 1993-01-26 Showa Alum Corp 熱交換器
JPH05240534A (ja) * 1992-02-28 1993-09-17 Showa Alum Corp 熱交換器
KR20020086143A (ko) * 2001-05-11 2002-11-18 주식회사 엘지이아이 냉장고용 열교환기
JP2003075087A (ja) * 2001-08-31 2003-03-12 Mitsubishi Electric Corp 冷凍冷蔵庫
CN100451494C (zh) * 2002-02-28 2009-01-14 Lg电子株式会社 用于冰箱的热交换器
CN101886860A (zh) * 2009-05-11 2010-11-17 松下电器产业株式会社 冷却器和物品储藏装置
CN202254504U (zh) * 2011-08-02 2012-05-30 合肥雪祺电气有限公司 冰箱翅片蒸发器
CN202630520U (zh) * 2012-05-11 2012-12-26 河南科隆集团有限公司 一种翅片蒸发器
CN108895861A (zh) * 2018-04-24 2018-11-27 青岛海尔空调器有限总公司 换热器及空调器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101520484B1 (ko) * 2008-07-04 2015-05-14 엘지전자 주식회사 열교환기
CN102003907B (zh) * 2010-11-19 2013-09-25 高克联管件(上海)有限公司 一种提高传热管管束效果的方法
WO2013123144A1 (en) * 2012-02-14 2013-08-22 Delphi Technologies, Inc. Evaporator having separate air flow paths and method of manufacturing the same
CN103438745B (zh) * 2013-09-17 2016-04-13 杭州三花微通道换热器有限公司 一种热交换器及其翅片
CN106288913B (zh) * 2016-07-28 2019-01-29 海信(广东)空调有限公司 一种管翅式换热器及空调室内机
CN106352720B (zh) * 2016-10-10 2019-02-05 青岛海尔空调器有限总公司 热交换器及具有该热交换器的空调室内机
CN106931538A (zh) * 2017-03-10 2017-07-07 海信(山东)空调有限公司 一种翅片换热器组件及空调器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363498A (ja) * 1989-07-28 1991-03-19 Matsushita Refrig Co Ltd 熱交換器
JPH0518636A (ja) * 1991-07-09 1993-01-26 Showa Alum Corp 熱交換器
JPH05240534A (ja) * 1992-02-28 1993-09-17 Showa Alum Corp 熱交換器
KR20020086143A (ko) * 2001-05-11 2002-11-18 주식회사 엘지이아이 냉장고용 열교환기
JP2003075087A (ja) * 2001-08-31 2003-03-12 Mitsubishi Electric Corp 冷凍冷蔵庫
CN100451494C (zh) * 2002-02-28 2009-01-14 Lg电子株式会社 用于冰箱的热交换器
CN101886860A (zh) * 2009-05-11 2010-11-17 松下电器产业株式会社 冷却器和物品储藏装置
CN202254504U (zh) * 2011-08-02 2012-05-30 合肥雪祺电气有限公司 冰箱翅片蒸发器
CN202630520U (zh) * 2012-05-11 2012-12-26 河南科隆集团有限公司 一种翅片蒸发器
CN108895861A (zh) * 2018-04-24 2018-11-27 青岛海尔空调器有限总公司 换热器及空调器

Also Published As

Publication number Publication date
CN108895861A (zh) 2018-11-27
CN108895861B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2019205622A1 (zh) 换热器及空调器
WO2019205621A1 (zh) 换热器及空调器
KR100577209B1 (ko) 환기 시스템
CN101871740A (zh) 一种热交换器、热交换器的散热方法以及通信设备
CN101001514A (zh) 液冷式散热装置及散热单元
CN107577305A (zh) 一种电脑机箱通风散热装置
CN107072118B (zh) 一种机柜抽屉隔板式热管散热装置
CN208753300U (zh) 一种散热片交错排列式的散热模块
CN210515205U (zh) 一种用于笔记本电路板的散热片
CN208207725U (zh) 一种计算机网络控制器散热装置
CN107438349A (zh) 一种利用烟囱效应的自然散热装置
CN218442868U (zh) 采用独立风***提高翅片式冷凝器换热效果的结构
CN110545648A (zh) 一种散热器、电子设备及汽车
CN202889856U (zh) 散热装置
CN103732037B (zh) 热交换装置及应用其的电子装置
JP3992953B2 (ja) ヒートシンク
CN106839852A (zh) 一种高性能散热器及其翅片布置方法
TWI615090B (zh) 散熱裝置
CN101677503A (zh) 散热装置
CN110726322A (zh) 用于换热器的散热翅片、散热组件和制冷设备
JP2016017695A (ja) フィンチューブ熱交換器
CN215011216U (zh) 一种用于5g通信柜的散热器
CN219160484U (zh) 一种散热结构及空调室外机
CN218495185U (zh) 散热器及空调室外机
TW201304672A (zh) 散熱裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915902

Country of ref document: EP

Kind code of ref document: A1