WO2019202819A1 - 透明酸化物積層膜、透明酸化物積層膜の製造方法、スパッタリングターゲット及び透明樹脂基板 - Google Patents

透明酸化物積層膜、透明酸化物積層膜の製造方法、スパッタリングターゲット及び透明樹脂基板 Download PDF

Info

Publication number
WO2019202819A1
WO2019202819A1 PCT/JP2019/004021 JP2019004021W WO2019202819A1 WO 2019202819 A1 WO2019202819 A1 WO 2019202819A1 JP 2019004021 W JP2019004021 W JP 2019004021W WO 2019202819 A1 WO2019202819 A1 WO 2019202819A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent oxide
oxide
transparent
less
Prior art date
Application number
PCT/JP2019/004021
Other languages
English (en)
French (fr)
Inventor
正和 ▲桑▼原
茂生 仁藤
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201980025233.8A priority Critical patent/CN111954726A/zh
Priority to KR1020207026051A priority patent/KR20200141987A/ko
Publication of WO2019202819A1 publication Critical patent/WO2019202819A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention provides an amorphous transparent oxide multilayer film containing Zn and Sn, a method for producing the same, a sputtering target used for forming the transparent oxide multilayer film, and a transparent oxide multilayer film as a base material.
  • the present invention relates to a formed transparent resin substrate.
  • Resin substrates covered with a metal oxide film such as silicon oxide or aluminum oxide on the surface of transparent plastic substrates or film substrates are used for packaging in order to prevent the entry of water vapor and oxygen and prevent the deterioration of food and chemicals. It is used for. In recent years, they are also used for liquid crystal display elements, solar cells, electroluminescence display elements (EL elements), quantum dot (QD) display elements, quantum dot sheets (QD sheets), and the like.
  • EL elements electroluminescence display elements
  • QD quantum dot
  • QD sheets quantum dot sheets
  • transparent resin substrates having water vapor barrier performance or oxygen barrier performance used in electronic devices, especially display elements have been freed from shapes in addition to demands for lighter and larger sizes in accordance with the development of display elements. There is also a demand for flexibility such as degree and curved surface display.
  • the glass substrates that have been used up to now are strict and the adoption of transparent resin substrates has begun.
  • the base material of the transparent resin substrate is inferior to the base material of the glass substrate in water vapor barrier performance or oxygen barrier performance, water vapor, oxygen, or the like permeates the base material, and EL display elements, QD display elements, etc. There was a problem of deteriorating.
  • a transparent resin substrate having a water vapor barrier performance or an oxygen barrier performance improved by forming a metal oxide film on the base material of the transparent resin substrate has been developed.
  • Water vapor transmission rate be used in these displays are required to the transparent resin substrate can (WVTR) is, 0.01g / m 2 / day or less, preferably 0.005g / m 2 / day, oxygen permeability ( OTR) is 0.1cc / m 2 / day / atm or less, preferably it is said that less 0.05cc / m 2 / day / atm .
  • WVTR transparent resin substrate can
  • OTR oxygen permeability
  • these displays have demands for flexibility and the like, and there are many requests for thinning a transparent resin substrate having water vapor barrier performance or oxygen barrier performance.
  • the barrier film thickness is required to be 100 nm or less.
  • Patent Document 1 proposes an inorganic gas barrier film formed by an atomic layer deposition film method. According to this, it is stated that the water vapor transmission rate at 40 ° C. and 90% RH can be 5 ⁇ 10 ⁇ 4 g / (m 2 ⁇ day) or less.
  • the film thickness is 25 nm or more and 100 nm or less.
  • Patent Document 2 proposes a barrier film having an organic film layer and a gas barrier layer, and forming the gas barrier layer by a plasma CVD method.
  • the water vapor transmission rate at this time is described as the water vapor transmission rate at 40 ° C. and 90% RH being 0.005 g / m 2 / day or less.
  • the thickness of the gas barrier layer is 0.2 to 2 ⁇ m.
  • Patent Document 3 introduces a gas barrier transparent resin substrate (film) in which a tin oxide-based transparent conductive film is formed on a transparent resin substrate (film) by a sputtering method.
  • the water vapor transmission rate is less than 0.01 g / m 2 / day
  • the transparent resin substrate (film) used is 200 ⁇ m
  • the thickness of the barrier film is 100 to 200 nm.
  • Patent Document 4 describes a silicon nitride oxide film applied to a resin film substrate by a sputtering method.
  • Patent Document 5 proposes a laminated high barrier film using fluorine, silicon oxide, aluminum oxide film or the like. It is described that the oxygen permeability at this time is 0.5 cc / m 2 / day / atm or less, and further, the water vapor permeability is 0.5 g / m 2 / day or less. The thickness of the barrier layer at this time is 200 to 1000 mm.
  • JP 2017-121721 A Japanese Unexamined Patent Publication No. 2016-155241 JP 2005-103768 A Japanese Patent Laid-Open No. 2002-100409 Japanese Patent No. 2892793
  • the film thickness is thin and the water vapor transmission rate can be 0.005 g / m 2 / day or less
  • the atomic layer deposition film method which is a film forming method
  • the plasma CVD method which is a film forming method of Patent Document 2
  • the film forming speed is high, the film thickness and characteristics of the formed gas barrier film tend to vary and the stability is low.
  • the versatility is also inferior.
  • the film thickness is as thick as 0.2 to 2 ⁇ m, and the flexibility of the film is poor.
  • Patent Document 3 using a sputtering method widely used industrially, the water vapor transmission rate is measured by the mocon method, but in the mocon method measurement, 0.01 g / m 2 / day or less is measured. It is difficult to measure accurately, and the water vapor barrier performance of actual membranes remains questionable. Furthermore, since the thickness of the film is as thick as 100 to 200 nm, the flexibility is inferior.
  • a silicon nitride film has better gas barrier performance than a silicon oxide film or an aluminum oxide film, but since it is generally a colored film, it is used as a gas barrier film for a transparent resin substrate for a display that requires transparency. Cannot be used.
  • Patent Document 5 there is a description of a film having both oxygen permeability and water vapor permeability using a plurality of films such as aluminum oxide, but the present state is not sufficient.
  • a thin film with good water vapor transmission rate or oxygen transmission rate is further used. High performance is required.
  • the present invention was made paying attention to such a demand, and is a transparent oxide laminated film having excellent transparency, good water vapor barrier performance or oxygen barrier performance by direct current sputtering with high mass productivity, It aims at providing the manufacturing method of a transparent oxide laminated film, a sputtering target, and a transparent resin substrate.
  • the present inventors have intensively analyzed the film composition suitable for the water vapor barrier performance or the oxygen barrier performance with respect to the above-mentioned problems, and paid attention to stacking a plurality of such films. It came.
  • one embodiment of the present invention is a transparent oxide stacked film in which a plurality of transparent oxide films containing Zn and Sn are stacked, and the Sn / (Zn + Sn) of the metal atom number ratio of Zn and Sn is 0. Two or more amorphous films of 18 to 0.29 are included.
  • the composition range described above has a favorable water vapor barrier performance or oxygen barrier performance, and the amorphous transparent oxide film having the composition range described above is laminated.
  • the second layer can cover the defective portion that is formed when the single layer is formed, and a transparent oxide multilayer film having better water vapor barrier performance or oxygen barrier performance than a single film can be obtained.
  • the transparent oxide laminated film may have a thickness of 100 nm or less.
  • the transparent oxide film of at least one of the layers contains Ta and Ge, and Ta / (Zn + Sn + Ge + Ta) is 0.1 in the atomic ratio of Zn, Sn, Ta, and Ge. 01 or less, Ge / (Zn + Sn + Ge + Ta) may be 0.04 or less.
  • Ta and Ge are components derived from the target, which improves the conductivity of the target itself, thereby increasing the deposition rate, and increasing the target density enables stable deposition. It becomes like this.
  • the water vapor transmission rate according to the differential pressure method specified according to the JIS standard K7129 method is 0.0008 g / m 2 / day or less when the total thickness of the transparent oxide laminated film is 50 to 100 nm.
  • the total film thickness of the transparent oxide multilayer film is less than 50 nm, it can be 0.004 g / m 2 / day or less.
  • the transparent oxide laminated film has excellent water vapor barrier performance.
  • the oxygen transmission rate by the differential pressure method specified in accordance with the K7126 method of JIS standard is 0.008 cc / m 2 / day / when the total thickness of the transparent oxide laminated film is 50 to 100 nm. If the total film thickness of the transparent oxide laminated film is less than 50 nm, it can be 0.04 cc / m 2 / day / atm or less.
  • Another aspect of the present invention is a sputtering target used for forming the above-described transparent oxide laminated film by a sputtering method, comprising a Sn—Zn—O-based oxide sintered body, a bonding material, Sn / (Zn + Sn), which is composed of a backing plate and is contained in the oxide sintered body, is the metal atom number ratio of Zn and Sn is 0.18 or more and 0.29 or less.
  • a transparent oxide laminated film having good water vapor barrier performance or oxygen barrier performance can be formed by sputtering using a sputtering target having such a composition.
  • the oxide sintered body of the sputtering target further contains Ta and Ge, and Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta, Zn, Sn, and Ge is 0.00. 01 or less, Ge / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ge and Zn, Sn, and Ta may be 0.04 or less.
  • the film forming speed is improved by improving the conductivity of the oxide sintered body of the sputtering target, and the film is stably formed by increasing the sintered density of the oxide sintered body.
  • a transparent oxide laminated film having better water vapor barrier performance or oxygen barrier performance can be formed.
  • Another aspect of the present invention is a method for producing a transparent oxide multilayer film by sputtering using a target composed of a Sn—Zn—O-based oxide sintered body, wherein the target is Sn in terms of the number of metal atoms. / (Zn + Sn) having an oxide sintered body with 0.18 to 0.29 and transparent having at least two amorphous films by interrupting sputtering at least once during film formation An oxide stacked film is formed.
  • the first layer and the second layer are not continuously formed, but the film stress is relieved by creating an interval for interrupting discharge once, and the amorphous composition range described above is achieved.
  • the second layer By laminating with this oxide film, it becomes possible for the second layer to cover the defective part that is formed when the first layer is formed, and it has a water vapor barrier performance or oxygen barrier performance better than a single film. An oxide stacked film can be obtained.
  • the transparent oxide laminated film may have a thickness of 100 nm or less.
  • Another aspect of the present invention is a transparent resin substrate in which the transparent oxide laminated film described above is formed on at least one surface of a transparent resin base material.
  • a transparent resin substrate having excellent transparency, good water vapor barrier performance or oxygen barrier performance can be obtained by forming the transparent oxide laminated film described above.
  • a transparent oxide laminate film a method for producing a transparent oxide laminate film, a sputtering target, and a transparent oxide laminate film having excellent transparency, good water vapor barrier performance or oxygen barrier performance by direct current sputtering with high mass productivity.
  • a transparent resin substrate can be provided.
  • the transparent oxide laminate film the method for producing the transparent oxide laminate film, the sputtering target, and the transparent resin substrate according to the present invention will be described in the following order.
  • this invention is not limited to the following examples, In the range which does not deviate from the summary of this invention, it can change arbitrarily.
  • 1. Transparent oxide laminated film 2.
  • Transparent oxide laminated film> is a transparent oxide stacked film in which a plurality of transparent oxide films containing Zn and Sn are stacked, and Sn / (Zn + Sn) of the metal atom number ratio of Zn and Sn is 0.18. It has two or more amorphous films of 0.29 or less. By having such a composition range, it has good water vapor barrier performance or oxygen barrier performance, and further, it can be formed at the time of forming the first layer by laminating an amorphous transparent oxide film having the above composition range. It becomes possible for the second layer to cover the defective portion, which results in a transparent oxide laminated film having better water vapor barrier performance or oxygen barrier performance than a single film.
  • the transparent oxide laminated film according to an embodiment of the present invention is an oxide laminated film (oxide sputtered laminated film) formed by sputtering.
  • the transparent oxide multilayer film according to an embodiment of the present invention has a water vapor barrier performance and an oxygen barrier performance, and is used as a water vapor barrier film or an oxygen barrier film.
  • Such a transparent oxide laminated film is formed by covering a surface of a flexible display element such as a plastic substrate or a film substrate, for example, a liquid crystal display element, a solar cell, or an electroluminescence (EL) display element as a metal oxide film by a sputtering method. It is used for the purpose of preventing alterations such as by blocking oxygen.
  • the transparent oxide laminated film according to one embodiment of the present invention needs to block water vapor and oxygen. Therefore, it is preferable that the barrier film is as dense as possible, has a thin and uniform thickness, and has few defects (gap) through which moisture and oxygen pass. For this reason, a transparent oxide laminated film is formed by the sputtering method mentioned later.
  • the transparent oxide laminated film formed by this sputtering method is preferably amorphous as disclosed in Patent Document 3.
  • the oxide film is a crystalline film, there is a crystal grain boundary in this film, and water vapor and oxygen permeate through the crystal grain boundary, so that the water vapor barrier performance or oxygen barrier performance deteriorates. Because. Moreover, in the said patent document 3, although the tin oxide type film
  • this tin oxide target material generally has high acid resistance, the relative density of the target material is low, and there are many problems such that the target material cannot be stably formed due to cracking of the target material during sputtering.
  • the said concern was solved by forming into a film using the Sn-Zn-O type
  • the transparent oxide multilayer film according to an embodiment of the present invention is an amorphous transparent oxide multilayer film having two or more layers of water vapor barrier performance or oxygen barrier performance containing Zn and Sn,
  • Each layer (for example, in the case of a laminated film of two layers, the first layer and the second layer) is characterized in that Sn / (Zn + Sn) of the metal atom number ratio of Zn and Sn is 0.18 or more and 0.29 or less.
  • the metal atom number ratio Sn / (Zn + Sn) 0.18 or more and 0.29 or less good water vapor transmission rate or oxygen barrier performance can be obtained.
  • an amorphous transparent oxide film containing Sn By laminating an amorphous transparent oxide film containing Sn, it is possible to obtain better water vapor barrier performance or oxygen barrier performance.
  • the defect portion once formed due to the characteristics of sputtering is continuously formed and remains even if the film thickness is increased.
  • the defect layer formed in the first layer can be supplemented by the newly formed second layer.
  • by stacking amorphous transparent oxide films containing the same kind of Zn and Sn very high adhesion can be obtained. Therefore, it is possible to obtain a good dense film such as a laminated but single layer while complementing the defective portion.
  • the film thickness is better.
  • the metal atom number ratio Sn / (Zn + Sn) is less than 0.18, the SnO 2 ratio decreases, so that the precipitation of strong crystalline ZnO increases, and a part of the film crystallizes (microcrystalline state) ) And the inflow of water vapor or oxygen from the crystal grain boundary increases, and a transparent oxide laminated film having a desired water vapor barrier performance or oxygen barrier performance cannot be obtained.
  • the transparent oxide multilayer film according to one embodiment of the present invention further contains Ta and Ge, Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta and Zn, Sn and Ge is 0.01 or less, and Ge and Zn.
  • Sn / Ta metal atom number ratio Ge / (Zn + Sn + Ge + Ta) is preferably 0.04 or less.
  • the crystallization temperature is 600 ° C. or higher, so that an amorphous film structure is easily obtained.
  • the crystallization temperature is high, the amorphous state can be easily maintained even when there is a thermal influence in the mass production process.
  • Ta and Ge at the above ratio, there is an effect of further improving the characteristics of the sputtering target containing Zn and Sn. Details will be described later.
  • Sn / (Zn + Sn) is 0.18 or more and 0.29 or less
  • Ta is 0 / Ta / (Zn + Sn + Ge + Ta) in terms of the number of metal atoms.
  • a laminated film can be obtained.
  • the total film thickness (total film thickness of each oxide film) of the transparent oxide multilayer film according to an embodiment of the present invention is preferably 100 nm or less. In this way, it is possible to provide a transparent oxide laminated film having good water vapor barrier performance or oxygen barrier performance of 100 nm or less and more excellent flexibility.
  • the total film thickness is more preferably 90 nm or less.
  • the lower limit of the film thickness of the transparent oxide laminated film which concerns on one Embodiment of this invention is 10 nm.
  • the film thickness is preferably 100 nm or less, and more preferably 90 nm or less. Therefore, the film thickness of 10 to 100 nm matches the needs for flexibility, weight reduction and thinning, and is the optimum film thickness for device assembly and mass production.
  • the transparent oxide multilayer film according to an embodiment of the present invention has a water vapor transmission rate by a differential pressure method specified in accordance with the K7129 method of JIS standard, and is 0 when the total film thickness of the transparent oxide multilayer film is 50 to 100 nm. .0008g / m is preferably from 2 / day, transparent total thickness of the layered oxide film is less than 50nm is preferably less 0.004g / m 2 / day.
  • an oxide film having a single film Sn / (Zn + Sn) in the range of 0.18 or more and 0.29 or less is conventionally 3 ⁇ 10 ⁇ 3 g at 100 nm. It was possible to reach only up to / m 2 / day, but for the first time in the present invention, a water vapor transmission rate of 3.0 ⁇ 10 ⁇ 4 g / m 2 / day was realized. Furthermore, when the single film is 50 nm, 4.7 ⁇ 10 ⁇ 3 g / m 2 / day is laminated to 8 ⁇ 10 ⁇ 4 g / m 2 / day, and when the single film is 10 nm, it is 8.
  • the oxygen transmission rate by the differential pressure method specified according to the K7126 method of JIS standard is 0 when the total film thickness of the transparent oxide multilayer film is 50 to 100 nm. preferably .008cc / m 2 / day / atm or less, the total film thickness is less than 50nm transparent oxide multilayer film, 0.04cc / m 2 / day / atm or less.
  • oxygen transmission rate by the differential pressure method specified in accordance with the JIS standard K7126 method is 0.1 cc / m 2 / day / atm or more
  • oxygen is mixed in the OLED display element or QD display element, and the internal display element Deterioration due to oxygen is accelerated at the interface of the layers and the like, and peeling occurs at an early stage, making it difficult to use the device for a long time.
  • an oxide film having a single film Sn / (Zn + Sn) range of 0.18 or more and 0.29 or less is also conventionally used.
  • Sn / (Zn + Sn) range 0.18 or more and 0.29 or less.
  • the transparent oxide laminated film which concerns on one Embodiment of this invention, it can have the outstanding transparency, favorable water vapor
  • a sputtering target used for forming the transparent oxide laminated film by a sputtering method includes a Sn—Zn—O-based oxide sintered body, a bonding material, and a backing plate.
  • Sn / (Zn + Sn) in the metal atom number ratio of Zn and Sn contained in the oxide sintered body is 0.18 or more and 0.29 or less.
  • the characteristics of the oxide sintered body are inherited by the oxide film (oxide sputtering film) to be formed.
  • the transparent oxide layered film having the desired water vapor barrier performance or oxygen barrier performance is obtained by increasing the amount of water vapor or oxygen flowing from the crystal grain boundary by increasing the portion of the film that is partially crystallized (microcrystalline state). The film cannot be formed.
  • an oxide sintered body composed only of Sn—Zn has insufficient conductivity and may have a large specific resistance value. This is because it is necessary to perform sputtering with a larger energy as the specific resistance value is larger at the time of sputtering, and the deposition rate cannot be increased. Therefore, it is necessary to reduce the electrical conductivity of the sintered body used for the target. Since Zn 2 SnO 4 , ZnO, and SnO 2 are poorly conductive materials in the oxide sintered body, even if the compounding ratio is adjusted to adjust the amount of the compound phase and ZnO, SnO 2 Cannot be improved significantly.
  • Ta tantalum
  • Ta is substituted for Zn in the ZnO phase, Zn in the Zn 2 SnO 4 phase or Sn, and Sn in the SnO 2 phase, it dissolves, so that the ZnO phase of the wurtzite crystal structure, Zn of the spinel crystal structure A compound phase other than the 2 SnO 4 phase and the SnO 2 phase having a rutile crystal structure is not formed.
  • the conductivity is improved while maintaining the density of the oxide sintered body.
  • the sintered density of the oxide sintered body composed only of Sn—Zn is around 90%, which is not sufficient. If the density of the oxide sintered body is low, there is a problem that the oxide sintered body is broken during sputtering, and thus the film cannot be stably formed.
  • Ge germanium
  • Ge germanium
  • Ge is substituted for Zn in the ZnO phase, Zn in the Zn 2 SnO 4 phase, or Sn in the Zn 2 SnO 2 phase and is dissolved in solid solution, so that ZnO having a wurtzite crystal structure No compound phase other than the phase, the Zn 2 SnO 4 phase having the spinel crystal structure, and the SnO 2 phase having the rutile crystal structure is formed.
  • the addition of Ge has the effect of densifying the oxide sintered body. Thereby, the sintered density of the oxide sintered body can be further increased.
  • the oxide sintered body further contains Ta and Ge, and Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta and Zn, Sn, Ge is 0.01 or less, and the Ge, Zn, Sn, It is preferable that Ge / (Zn + Sn + Ge + Ta) of the Ta metal atom number ratio is 0.04 or less.
  • the approximate lower limit value for obtaining the above effect by addition of Ta and Ge is 0.0005 in terms of the number of metal atoms for both Ta and Ge.
  • Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta and Zn, Sn, Ge is larger than 0.01, another compound phase, for example, a compound phase such as Ta 2 O 5 or ZnTa 2 O 6 is generated. The conductivity cannot be improved significantly. Further, when Ge / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ge and Zn, Sn, Ta is larger than 0.04, another compound phase, for example, a compound phase such as Zn 2 Ge 3 O 8 is generated. The density of the oxide sintered body is reduced, and the target is easily broken during sputtering.
  • the sputtering target according to an embodiment of the present invention is not limited to the following, but a specific target manufacturing method will be given.
  • the oxide powder containing Zn oxide powder, Sn oxide powder and, if necessary, the additive elements of Ta and Ge have the preferred metal atom number ratio described above. Adjust to mix.
  • the granulated powder is mixed with pure water or ultrapure water, an organic binder, a dispersant, and an antifoaming agent.
  • the raw material powder is wet pulverized using a bead mill apparatus or the like into which hard ZrO 2 balls are charged, and then mixed and stirred to obtain a slurry.
  • a granulated powder can be obtained by spraying and drying the obtained slurry with a spray dryer or the like.
  • the granulated powder is pressure-molded to obtain a molded body.
  • pressure molding is performed at a pressure of about 294 MPa (3.0 ton / cm 2 ), for example.
  • the method of pressure molding is not particularly limited, but for example, it is preferable to use a cold isostatic press (CIP) capable of filling the granulated powder into a rubber mold and applying a high pressure. .
  • CIP cold isostatic press
  • the molded body is fired to obtain an oxide sintered body.
  • the above-mentioned compact is fired at a predetermined temperature rise rate in the firing furnace at a predetermined temperature and for a predetermined time to obtain an oxide sintered body.
  • the firing is performed in an atmosphere in a firing furnace in the air.
  • the molded body is preferably fired at a rate of temperature increase from 700 ° C. to a predetermined sintering temperature in the sintering furnace at a rate of 0.3 to 1.0 ° C./min. This is because there is an effect of promoting diffusion of ZnO, SnO 2 and Zn 2 SnO 4 compound, improving sinterability and improving conductivity. Further, by such a heating rate in the high temperature region, there is also the effect of suppressing the volatilization of the ZnO and Zn 2 SnO 4.
  • the sintering temperature after the temperature rise is preferably 1300 ° C. or higher and 1400 ° C. or lower.
  • the sintering temperature is less than 1300 ° C., the temperature is too low and the grain boundary diffusion of sintering in the ZnO, SnO 2 , Zn 2 SnO 4 compound does not proceed.
  • the temperature exceeds 1400 ° C., grain boundary diffusion is promoted and sintering proceeds, but volatilization of the Zn component cannot be suppressed, leaving large voids in the oxide sintered body. become.
  • the holding time after the temperature rise is preferably 15 hours or more and 25 hours or less.
  • the holding time is less than 15 hours, sintering is incomplete, resulting in a sintered body with large distortion and warpage, and grain boundary diffusion does not proceed and sintering does not proceed. As a result, a dense sintered body cannot be produced.
  • it exceeds 25 hours the volatilization of ZnO and Zn 2 SnO 4 increases, resulting in a decrease in the density of the oxide sintered body, a deterioration in work efficiency, and a high cost.
  • the sputtering target composed of the oxidized sintered body produced as described above is produced, for example, as follows. First, a processed body (target material) is obtained by mechanically grinding the above-described oxide sintered body to obtain a desired size. A sputtering target is obtained by bonding the obtained processed body to a backing plate made of a copper material, a stainless material, or the like using a bonding material such as indium (In). The sputtering target may be a laminate of a plurality of oxide sintered bodies. In addition to the flat plate-shaped sputtering target, a cylindrical sputtering target in which an oxide sintered body formed in a cylindrical shape and a backing tube are bonded using a bonding material such as indium may be used.
  • a transparent oxide multilayer film having excellent transparency, good water vapor barrier performance or oxygen barrier performance is formed by DC sputtering with high mass productivity. I can do it.
  • a method for producing a transparent oxide multilayer film according to an embodiment of the present invention includes sputtering using a Sn—Zn—O-based oxide sintered body and performing amorphous transparent water vapor containing Zn and Sn. A film having barrier performance or oxygen barrier performance is obtained.
  • a transparent oxide multilayer film having two or more amorphous films is formed by interrupting sputtering at least once when forming a film.
  • the film thickness of the oxide sputtered laminated film is preferably 100 nm or less, more preferably 90 nm or less. In this way, it is possible to provide a transparent oxide laminated film having good water vapor barrier performance or oxygen barrier performance and more excellent flexibility.
  • Sputtering may be performed using a sputtering target composed of the above-described oxide sintered body.
  • the sputtering apparatus is not particularly limited, and a direct current magnetron sputtering apparatus or the like can be used.
  • the degree of vacuum in the chamber is adjusted to 1 ⁇ 10 ⁇ 4 Pa or less.
  • An inert gas is introduced into the atmosphere in the chamber.
  • the inert gas is argon gas or the like, and preferably has a purity of 99.999% by mass or more.
  • the inert gas contains 4 to 10% by volume of oxygen with respect to the total gas flow rate. Since the oxygen concentration affects the surface resistance value of the film, the oxygen concentration is set to a predetermined resistance value. Thereafter, using a predetermined direct current power source, it is introduced between the sputtering target and the base material, plasma is generated by direct current pulsing, and sputtering is performed to form a first layer.
  • the shutter is closed and the film formation is interrupted once, and then the shutter is opened again to form a film under the same conditions to form the second layer. It is possible to reduce the film stress by interrupting the discharge once and making a certain interval.
  • the first layer may be sputtered and wound, and then reversed and the second layer may be sputtered to form a film. Note that the film thickness is controlled by the film formation time.
  • the first layer and the second layer are not continuously formed, but the film stress is alleviated by creating an interval for interrupting the discharge once, and the amorphous oxide film having the above composition range is used.
  • the second layer By laminating, it becomes possible for the second layer to cover the defective portion that is formed when the first layer is formed.
  • the water vapor barrier performance or oxygen barrier performance of the transparent oxide laminated film can be obtained without largely depending on the sputtering conditions. Even when the conditions are adjusted in consideration of the necessary transmittance and resistance, it is possible to easily form a film having good water vapor barrier performance or oxygen barrier performance.
  • transparent oxide laminated film As described above, according to the method for producing a transparent oxide laminated film according to an embodiment of the present invention, transparent oxidation having excellent transparency, good water vapor barrier performance or oxygen barrier performance in high-productivity direct current sputtering. A laminated product film can be obtained.
  • a transparent resin substrate according to an embodiment of the present invention is formed by forming a transparent oxide multilayer film having the above-described amorphous transparent water vapor barrier performance or oxygen barrier performance containing Zn and Sn on a transparent base material. It has been done. That is, the transparent oxide laminated film is formed on at least one surface of the base material, and an oxide layer having a Sn / (Zn + Sn) ratio of metal atoms of Zn and Sn of 0.18 or more and 0.29 or less. Are formed in two or more layers.
  • the film thickness of the transparent oxide multilayer film is preferably 100 nm or less, and more preferably 90 nm or less.
  • the transparent substrate polyethylene terephthalate, polyethylene, naphthalate, polycarbonate, polysulfone, polyethersulfone, polyarylate, cycloolefin polymer, fluororesin, polypropylene, polyimide resin, epoxy resin, etc.
  • the thickness of the transparent resin substrate is not particularly limited, but is preferably 50 to 150 ⁇ m in view of flexibility, cost, and device needs.
  • the sputtering method for the transparent resin substrate may be performed as described in the method for producing the transparent oxide laminated film.
  • the technical significance such as the preferred metal atom number ratio and film thickness of Zn and Sn is as described above.
  • a transparent resin substrate is an oxide sputter laminate having an amorphous transparent water vapor barrier performance or oxygen barrier performance containing Zn and Sn on at least one surface of the base material.
  • a film is formed, the film may be stacked via another film.
  • a silicon oxide film, a silicon nitride oxide film, a resin film, a wet coat film, a metal film, an oxide film, or the like is formed on the base material for the purpose of planarizing the surface or improving light characteristics. Then, you may form said transparent oxide laminated film in at least one as a water vapor
  • a flexible OLED display element, a flexible QD display element, or a QD sheet, which is one of flexible display elements can be formed using the transparent resin substrate according to an embodiment of the present invention.
  • the transparent resin substrate according to one embodiment of the present invention has excellent transparency, good water vapor barrier performance or oxygen barrier performance by high-productivity direct current sputtering.
  • SnO 2 powder and ZnO powder were used.
  • Ta 2 O 5 powder was used as the additive element Ta
  • GeO 2 powder was used as the additive element Ge.
  • Example 1 In Example 1, a sputtering target (manufactured by Sumitomo Metal Mining Co., Ltd.) was formed using a sintered body made mainly of zinc oxide and tin oxide having a metal atom number ratio Sn / (Zn + Sn) of 0.23. It was prepared and formed into a film by sputtering with this sputtering target using a sputtering apparatus. As this sputtering apparatus, a direct current magnetron sputtering apparatus (manufactured by ULVAC, SH-550 type) was used.
  • a direct current magnetron sputtering apparatus manufactured by ULVAC, SH-550 type
  • the amorphous oxide film was formed under the following conditions.
  • a target was attached to the cathode, and a resin film substrate was disposed immediately above the cathode. The distance between the target and the resin film substrate was 80 mm.
  • the resin film base material on which the film was formed was stationary on the opposite surface of the cathode, and the film formation was performed on the stationary surface.
  • As the resin film substrate a PEN film (manufactured by Teijin, thickness 50 ⁇ m) was used. When the degree of vacuum in the chamber reached 2 ⁇ 10 ⁇ 4 Pa or less, argon gas having a purity of 99.9999% by mass was introduced into the chamber to a gas pressure of 0.6 Pa, and 5% by volume of oxygen was contained.
  • DC power source DCX, MDX
  • DC power 1500W adopting 20kHz DC pulsing is applied between sputtering target and Teijin PEN film substrate
  • DC pulsing Plasma was generated.
  • An oxide sputtered film with a thickness of 50 nm is formed as a first layer on a Teijin PEN film substrate by sputtering, the shutter is closed, the film formation is interrupted once, the shutter is opened again, and a film thickness of 50 nm is formed as a second layer.
  • An oxide sputtered film was formed by sputtering to obtain a transparent oxide laminated film having a total film thickness of 100 nm.
  • the crystallinity, water vapor transmission rate (WVTR), and oxygen transmission rate (OTR) of the transparent oxide laminated film prepared above were confirmed. Crystallinity was measured by X-ray diffraction, and diffraction peaks were observed. Water vapor permeability was measured by a differential pressure method (DELTATAPRM-UH manufactured by Technolox). The oxygen permeability was also measured by the differential pressure method (GTR-2000X manufactured by GTR Tech). Moreover, the transmittance
  • Example 2 Example 2 was performed in the same manner as Example 1 except that a sputtering target manufactured by Sumitomo Metal Mining was prepared at a ratio of Sn / Zn atomic number Sn / (Zn + Sn) of 0.18. The transparent oxide laminated film concerning was obtained. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 3 Example 3 was performed in the same manner as in Example 1 except that a sputtering target manufactured by Sumitomo Metal Mining was prepared at a ratio where the atomic ratio Sn / (Zn + Sn) of Sn and Zn was 0.29. The transparent oxide laminated film concerning was obtained. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 4 the first layer uses a sputtering target manufactured by Sumitomo Metal Mining with a ratio of Sn / Zn atomic number Sn / (Zn + Sn) being 0.29, and the second layer is made of Sn and Zn.
  • a transparent oxide multilayer film according to Example 4 is obtained in the same manner as in Example 1 except that a sputtering target made by Sumitomo Metal Mining is prepared at a ratio of atomic number ratio Sn / (Zn + Sn) of 0.18. It was. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 5 the first layer uses a sputtering target made of Sumitomo Metal Mining with the ratio of Sn and Zn atom number ratio Sn / (Zn + Sn) being 0.18, and the second layer is made of Sn and Zn.
  • a transparent oxide multilayer film according to Example 5 is obtained in the same manner as in Example 1 except that a sputtering target manufactured by Sumitomo Metal Mining is prepared at a ratio of atomic number ratio Sn / (Zn + Sn) of 0.29. It was. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 6 An oxide sputtered film with a film thickness of 25 nm was formed on the first layer by sputtering, the shutter was closed, the film formation was interrupted once, the shutter was opened again, and an oxide with a film thickness of 25 nm was formed as the second layer.
  • a transparent oxide multilayer film according to Example 6 was obtained in the same manner as in Example 1 except that the sputtered film was formed by sputtering to obtain a total film thickness of 50 nm. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 7 a sputtering target manufactured by Sumitomo Metal Mining, which was prepared at a ratio of Sn / Zn atomic number ratio Sn / (Zn + Sn) of 0.18, was used, and an oxide sputtered film having a film thickness of 25 nm was used as the first layer.
  • the film is formed by sputtering, the shutter is closed, the film formation is interrupted once, the shutter is opened again, and an oxide sputtered film having a film thickness of 25 nm is formed by sputtering as the second layer, so that the total film thickness is 50 nm.
  • a transparent oxide multilayer film according to Example 7 was obtained. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 8 In Example 8, a sputtering target manufactured by Sumitomo Metal Mining, which was prepared at a ratio of Sn / Zn atomic number Sn / (Zn + Sn) of 0.29, was used, and an oxide sputtered film having a film thickness of 25 nm was used as the first layer. The film is formed by sputtering, the shutter is closed, the film formation is interrupted once, the shutter is opened again, and an oxide sputtered film having a film thickness of 25 nm is formed by sputtering as the second layer, so that the total film thickness is 50 nm. In the same manner as in Example 1, a transparent oxide multilayer film according to Example 8 was obtained. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 9 the first layer uses a sputtering target made of Sumitomo Metal Mining with a ratio of Sn / Zn atomic number Sn / (Zn + Sn) being 0.29, and the second layer is made of Sn and Zn.
  • a sputtering target manufactured by Sumitomo Metal Mining with a ratio of atomic ratio Sn / (Zn + Sn) of 0.18 an oxide sputtered film having a thickness of 25 nm is formed by sputtering, and a shutter is formed.
  • Example 9 A transparent oxide multilayer film according to Example 9 was obtained. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 10 the first layer uses a sputtering target made of Sumitomo Metal Mining with a ratio of Sn / Zn atomic number ratio Sn / (Zn + Sn) being 0.18, and the second layer is made of Sn and Zn.
  • a sputtering target manufactured by Sumitomo Metal Mining with a ratio of atomic ratio Sn / (Zn + Sn) of 0.29 an oxide sputtered film having a thickness of 25 nm is formed by sputtering, and a shutter is formed.
  • Example 10 A transparent oxide multilayer film according to Example 10 was obtained. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 11 In Example 11, an oxide sputtered film having a film thickness of 5 nm was formed on the first layer by sputtering, the shutter was closed, the film formation was interrupted once, the shutter was opened again, and an oxide sputter having a film thickness of 5 nm was formed as the second layer.
  • a transparent oxide multilayer film according to Example 11 was obtained in the same manner as in Example 1 except that the film was formed by sputtering to obtain a total film thickness of 10 nm. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 12 In Example 12, a sputtering target made by Sumitomo Metal Mining, which was prepared at a ratio of Sn / Zn atomic number Sn / (Zn + Sn) of 0.18, was used, and an oxide sputtered film having a thickness of 5 nm was used as the first layer. The film is formed by sputtering, the shutter is closed, the film formation is interrupted once, the shutter is opened again, and an oxide sputtered film having a film thickness of 5 nm is formed by sputtering as the second layer, so that the total film thickness is 10 nm. In the same manner as in Example 1, a transparent oxide multilayer film according to Example 12 was obtained. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 13 uses a sputtering target manufactured by Sumitomo Metal Mining with a ratio of Sn / Zn atomic number Sn / (Zn + Sn) being 0.29, and the first layer is an oxide sputtered film having a thickness of 5 nm.
  • the film is formed by sputtering, the shutter is closed, the film formation is interrupted once, the shutter is opened again, and an oxide sputtered film having a film thickness of 5 nm is formed by sputtering as the second layer, so that the total film thickness is 10 nm.
  • a transparent oxide multilayer film according to Example 13 was obtained.
  • the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 14 the first layer uses a sputtering target made of Sumitomo Metal Mining with a ratio of Sn / Zn atomic number ratio Sn / (Zn + Sn) being 0.29, and the second layer is made of Sn and Zn.
  • a sputtering target manufactured by Sumitomo Metal Mining with a ratio of atomic ratio Sn / (Zn + Sn) of 0.18 an oxide sputtered film having a thickness of 5 nm is formed by sputtering, and a shutter is formed.
  • Example 14 A transparent oxide multilayer film according to Example 14 was obtained. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 15 the first layer uses a sputtering target made of Sumitomo Metal Mining with a ratio of Sn / Zn atomic number Sn / (Zn + Sn) being 0.18, and the second layer is made of Sn and Zn.
  • a sputtering target manufactured by Sumitomo Metal Mining with a ratio of atomic ratio Sn / (Zn + Sn) of 0.29 an oxide sputtered film having a thickness of 5 nm is formed by sputtering, and a shutter is formed.
  • Example 15 A transparent oxide multilayer film according to Example 15 was obtained. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 16 In Example 16, the atomic ratio Sn / (Zn + Sn) between Sn and Zn is 0.23, the atomic number Ta / (Zn + Sn + Ge + Ta) is 0.01, and the atomic ratio Ge / (Zn + Sn + Ge + Ta) is 0.04.
  • a transparent oxide multilayer film according to Example 16 having a total film thickness of 100 nm was obtained in the same manner as in Example 1 using a sputtering target manufactured by Sumitomo Metal Mining, which was prepared at a ratio of: As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 17 In Example 17, the atomic ratio Sn / (Zn + Sn) between Sn and Zn is 0.23, the atomic number Ta / (Zn + Sn + Ge + Ta) is 0.01, and the atomic ratio Ge / (Zn + Sn + Ge + Ta) is 0.04.
  • a transparent oxide multilayer film according to Example 17 having a total film thickness of 50 nm was obtained in the same manner as in Example 6 using a sputtering target manufactured by Sumitomo Metal Mining, which was prepared at a ratio of As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 18 In Example 18, the atomic ratio Sn / (Zn + Sn) of Sn and Zn was 0.23, the atomic number Ta / (Zn + Sn + Ge + Ta) was 0.01, and the atomic ratio Ge / (Zn + Sn + Ge + Ta) was 0.04.
  • a transparent oxide multilayer film according to Example 18 having a total film thickness of 10 nm was obtained in the same manner as Example 11 using a sputtering target manufactured by Sumitomo Metal Mining, which was prepared at a ratio of As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 19 In Example 19, a sputtering target manufactured by Sumitomo Metal Mining was prepared at a ratio of Sn / Zn atomic number Sn / (Zn + Sn) of 0.23, and the first layer was formed on a Teijin PEN film substrate. A sputtered oxide film with a thickness of 45 nm was formed by sputtering, the shutter was closed, the film formation was interrupted once, the shutter was opened again, and a sputtered oxide film with a thickness of 45 nm was formed by sputtering as the second layer, A transparent oxide multilayer film according to Example 19 was obtained in the same manner as in Example 1 except that the total film thickness was 90 nm. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 20 In Example 20, a sputtering target manufactured by Sumitomo Metal Mining was prepared at a ratio of Sn / Zn atomic number Sn / (Zn + Sn) of 0.18, and the first layer was formed on a Teijin PEN film substrate. A 20 nm-thick oxide sputtered film is formed by sputtering, the shutter is closed, the film formation is interrupted once, the shutter is opened again, and a 20 nm-thick oxide sputtered film is formed by sputtering as the second layer, A transparent oxide multilayer film according to Example 20 was obtained in the same manner as in Example 1 except that the total film thickness was 40 nm. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 21 In Example 21, a sputtering target made by Sumitomo Metal Mining was prepared at a ratio of Sn / Zn atomic number Sn / (Zn + Sn) of 0.29, and the first layer was formed on a Teijin PEN film substrate. A 20 nm-thick oxide sputtered film is formed by sputtering, the shutter is closed, the film formation is interrupted once, the shutter is opened again, and a 20 nm-thick oxide sputtered film is formed by sputtering as the second layer, A transparent oxide multilayer film according to Example 21 was obtained in the same manner as in Example 1 except that the total film thickness was 40 nm. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 22 the transparent oxide laminate according to Example 22 was carried out in the same manner as in Example 6 except that a substrate having a 100 nm thick SiON film formed on a Teijin PEN film substrate was used. A membrane was obtained. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Example 23 In Example 23, except that SiO 2 film having a thickness of 100nm was used a substrate are deposited onto Teijin PEN film substrate were performed in the same manner as in Example 6, a transparent oxide according to Example 23 A laminated film was obtained. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Comparative Example 1 was performed in the same manner as in Example 1 except that a sputtering target made by Sumitomo Metal Mining was prepared at a ratio where the atomic ratio Sn / (Zn + Sn) of Sn and Zn was 0.15. Comparative Example 1 The transparent oxide laminated film concerning was obtained. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Comparative Example 2 Comparative Example 2 was performed in the same manner as in Example 1 except that a sputtering target manufactured by Sumitomo Metal Mining was prepared at a ratio where the atomic ratio Sn / (Zn + Sn) of Sn and Zn was 0.30. Comparative Example 2 The transparent oxide laminated film concerning was obtained. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Comparative Example 3 a sputtering target made by Sumitomo Metal Mining was prepared with a ratio of Sn / Zn atomic number Sn / (Zn + Sn) of 0.17, and the first layer was formed on a Teijin PEN film substrate. A sputtered oxide film with a thickness of 2.5 nm was formed by sputtering, the shutter was closed, the film formation was interrupted once, the shutter was opened again, and a sputtered oxide film with a thickness of 2.5 nm was sputtered as the second layer.
  • a transparent oxide multilayer film according to Comparative Example 3 was obtained in the same manner as in Example 1 except that the film was formed and an oxide sputtered multilayer film having a total film thickness of 5 nm was sputtered. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Comparative Example 4 a sputtering target made by Sumitomo Metal Mining was prepared at a ratio of Sn / Zn atomic number Sn / (Zn + Sn) of 0.30, and the first layer was formed on a Teijin PEN film substrate. A sputtered oxide film with a thickness of 2.5 nm was formed by sputtering, the shutter was closed, the film formation was interrupted once, the shutter was opened again, and a sputtered oxide film with a thickness of 2.5 nm was sputtered as the second layer.
  • a transparent oxide laminated film according to Comparative Example 4 was obtained in the same manner as in Example 1 except that the film was formed and an oxide sputtered laminated film having a total film thickness of 5 nm was sputtered. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Comparative Example 5 a sputtering target made by Sumitomo Metal Mining, which was prepared at a ratio of Sn / Zn atomic number Sn / (Zn + Sn) of 0.18, was used as a single film on a Teijin PEN film substrate.
  • a transparent oxide laminated film according to Comparative Example 5 was obtained in the same manner as in Example 1 except that a 100 nm thick oxide sputtered film was sputtered. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Comparative Example 6 a sputtering target manufactured by Sumitomo Metal Mining, which was prepared at a ratio of Sn / Zn atomic number Sn / (Zn + Sn) of 0.23, was formed as a single film on a Teijin PEN film substrate.
  • a transparent oxide laminated film according to Comparative Example 6 was obtained in the same manner as in Example 1 except that a 50 nm thick oxide sputtered film was sputtered. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • Comparative Example 7 a sputtering target made by Sumitomo Metal Mining was prepared at a ratio of Sn / Zn atomic number Sn / (Zn + Sn) of 0.29, and a single film was formed on a Teijin PEN film substrate.
  • a transparent oxide multilayer film according to Comparative Example 7 was obtained in the same manner as in Example 1 except that a 10 nm thick oxide sputtered film was sputtered. As in Example 1, the crystallinity, water vapor transmission rate, and oxygen transmission rate were confirmed.
  • the total film thickness of the material laminated film is 50 to 100 nm, it is 0.008 cc / m 2 / day / atm or less, and when the total film thickness of the transparent oxide laminated film is less than 50 nm, 0.04 cc / m 2 / day / It can be seen that it has an oxygen barrier performance of atm or less. Therefore, in all the examples, the water vapor barrier performance and the good oxygen barrier performance were in the above ranges, and the water vapor barrier performance and the good oxygen barrier performance were obtained. Further, the transmittance measured at a wavelength of 550 nm is 90% or more and has transparency. Thus, the transparent oxide laminated film which has said performance and was more excellent in flexibility was obtained.
  • the sputtering target prepared in such a ratio that Ta atom number Ta / (Zn + Sn + Ge + Ta) is 0.01 and Ge atom number ratio Ge / (Zn + Sn + Ge + Ta) is 0.04 is used. Even so, both the water vapor transmission rate and the oxygen transmission rate are good values.
  • the crystallinity was amorphous in all of Examples 1 to 23 as a result of X-ray diffraction measurement.
  • Comparative Examples 1 to 4 in which Sn / (Zn + Sn) was outside the range of 0.18 or more and 0.29 or less, the above numerical range was exceeded, and the water vapor barrier performance or oxygen barrier performance was inferior to the examples. It was. Also in Comparative Examples 5 to 7 in which only one layer was formed, the above numerical range was exceeded, and the water vapor barrier performance or oxygen barrier performance was inferior to the Examples.
  • the direct current sputtering with high mass productivity has excellent transparency, good water vapor barrier performance or oxygen barrier performance, a transparent oxide laminated film, a method for producing the transparent oxide laminated film, A sputtering target and a transparent resin substrate could be provided.
  • the transparent oxide multilayer film, the transparent oxide multilayer film manufacturing method, the sputtering target, and the configuration of the transparent resin substrate are not limited to those described in the embodiments and examples of the present invention, and various modifications can be made. It is.
  • the present invention is an oxide sputtered laminated film having excellent transparency, good water vapor barrier performance or oxygen barrier performance, and excellent in water vapor barrier performance or oxygen barrier performance and flexibility, and high productivity.
  • a transparent conductive film substrate (flexible display element or the like) using a manufacturing method of a material sputtered laminated film, an oxide sintered body, and a transparent resin substrate is extremely useful as a member such as an OLED display element, a QD display element, or a QD sheet. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

量産性の高い直流スパッタリングにて、優れた透明性、良好な水蒸気バリア性能もしくは酸素バリア性能を有する、透明酸化物積層膜、透明酸化物積層膜の製造方法、スパッタリングターゲット及び透明樹脂基板を提供する。 ZnとSnとを含有する透明酸化物膜を複数層積層した透明酸化物積層膜で あって、ZnとSnの金属原子数比のSn/(Zn+Sn)が0.18以上0.29以下である非晶質の膜を2層以上有する。

Description

透明酸化物積層膜、透明酸化物積層膜の製造方法、スパッタリングターゲット及び透明樹脂基板
 本発明は、ZnとSnとを含有する非晶質の透明酸化物積層膜とその製造方法、透明酸化物積層膜を成膜するために用いられるスパッタリングターゲット及び透明酸化物積層膜が基材に成膜された透明樹脂基板に関する。本出願は、日本国において2018年4月16日に出願された日本特許出願番号特願2018-078442を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 透明なプラスチック基板やフィルム基板等の表面に酸化珪素や酸化アルミニウム等の金属酸化物膜で覆った樹脂基板は、水蒸気、酸素の侵入を防ぎ、食品や薬品などの劣化を防止する目的で包装用途に用いられている。近年では、液晶表示素子、太陽電池、エレクトロルミネッセンス表示素子(EL素子)、量子ドット(QD)表示素子、量子ドットシート(QDシート)などにも利用されている。
 電子機器、特に表示素子に使用されている水蒸気バリア性能もしくは酸素バリア性能を有する透明な樹脂基板には、近年、表示素子の展開に合わせて、軽量化、大型化という要求に加え、形状の自由度、曲面表示等フレキシブル化などへの要求も求められている。今まで使用してきたガラス基板では対応が厳しく、透明な樹脂基板の採用が始まっている。
 しかしながら、透明な樹脂基板の基材は、ガラス基板の基材と比べて水蒸気バリア性能もしくは酸素バリア性能が劣る為、水蒸気または酸素などが基材を透過し、EL表示素子、QD表示素子等を劣化させてしまうという問題があった。このような問題を改善するために、透明樹脂基板の基材上に金属酸化物膜を形成して、水蒸気バリア性能もしくは酸素バリア性能を高めた透明樹脂基板の開発が行われている。
 特に、EL表示素子やQD表示素子の実用化に伴い、これらを用いたディスプレイ、例えば有機ELディスプレイの場合では、有機EL表示素子に水蒸気や酸素が混入すると、陰極層と有機層との界面で水分や酸化によるダメージが大きく影響し、有機層と陰極部間での剥離や、発光しない部分のダークスポットが発生し、性能が著しく低下するという問題があることが知られている。これらのディスプレイに使用することが出来る透明樹脂基板に要求される水蒸気透過率(WVTR)は、0.01g/m/day以下、好ましくは0.005g/m/day以下、酸素透過率(OTR)は0.1cc/m/day/atm以下、好ましくは0.05cc/m/day/atm以下と言われている。また、これらディスプレイはフレキシブル化などへの要求もあり水蒸気バリア性能もしくは酸素バリア性能を有する透明樹脂基板の薄型化の要望も多く挙がっている。例えば、バリア膜の膜厚としては、100nm以下の要求がある。
 例えば、特許文献1では、原子層堆積膜法により成膜した無機ガスバリア膜が提案されている。これによれば、40℃、90%RHにおける水蒸気透過率が5×10-4g/(m・day)以下を達成できると記載している。膜厚は、25nm以上100nm以下である。
 また、特許文献2では、有機膜層とガスバリア層を有し、ガスバリア層をプラズマCVD法により成膜するバリア膜が提案されている。この時の水蒸気透過率は、40℃、90%RHにおける水蒸気透過率が、0.005g/m/day以下であると記載されている。ガスバリア層の厚みは、0.2~2μmである。
 また、特許文献3では、透明樹脂基板(フィルム)上に、酸化スズ系の透明導電膜をスパッタリング法にて形成した、ガスバリア性透明樹脂基板(フィルム)が紹介されている。水蒸気透過率が0.01g/m/day未満であり、使用している透明樹脂基板(フィルム)が200μm、バリア膜の厚さは100~200nmである。
 また、特許文献4では、窒化酸化珪素膜を樹脂フィルム基材にスパッタリング法にて施したものが記載されている。
 また、特許文献5では、フッ素、酸化ケイ素、アルミ酸化膜等を利用した、積層ハイバリアフィルムが提案されている。この時の酸素透過率が0.5cc/m/day/atm以下で、さらには水蒸気透過率が、0.5g/m/day以下であると記載されている。この時のバリア層の厚みは200~1000Åである。
特開2017-121721号公報 特開2016-155241号公報 特開2005-103768号公報 特開2002-100469号公報 特許第2892793号公報
 しかしながら、特許文献1の成膜方法では、膜厚は薄くかつ水蒸気透過率は0.005g/m/day以下には出来るものの、成膜方法である原子層堆積膜法は、装置が特殊であり高価な装置を購入する必要がある。また、成膜速度も遅く生産性が悪い等の理由より、量産には採用されていない。特許文献2の成膜方法であるプラズマCVD法では、成膜速度は速いものの、成膜したガスバリア膜の膜厚や特性がバラツキやすく安定性が低い。汎用性も劣る。かつ膜厚が0.2~2μmと厚く膜のフレキシブル性に劣る。
 また、工業的に広範に利用されているスパッタリング法を用いた特許文献3では、水蒸気透過率はモコン法により測定しているが、モコン法の測定では、0.01g/m/day以下を正確に測ることは難しく、実際の膜の水蒸気バリア性能には疑問が残る。さらに膜の厚さが100~200nmと厚いことでフレキシブル性に劣っている。特許文献4では、窒化珪素膜は酸化珪素膜や酸化アルミニウム膜と比べてガスバリア性能が良いが、一般的には着色膜であるため、透明性を必要とするディスプレイ用透明樹脂基板のガスバリア膜として用いることはできない。また、窒化珪素の窒素の一部を酸素で置換し無着色にした場合でも、膜厚が200nmと厚くフレキシブル性に劣っている。特許文献5ではアルミニウム酸化物など複数の膜を利用した、酸素透過率、水蒸気透過率を両立した膜の記載があるが、現状十分な特性ではない。
 EL表示素子、QD表示素子などに使用するバリア膜として、工業的に広範に利用されているスパッタリング法で成膜した膜を用いるには、更に、薄膜で良好な水蒸気透過率もしくは酸素透過率の高特性が求められている。
 そこで本発明は、このような要請に着目してなされたもので、量産性の高い直流スパッタリングにて、優れた透明性、良好な水蒸気バリア性能もしくは酸素バリア性能を有する、透明酸化物積層膜、透明酸化物積層膜の製造方法、スパッタリングターゲット及び透明樹脂基板を提供することを目的とする。
 本発明者らは、上述した課題に対して水蒸気バリア性能もしくは酸素バリア性能に適した膜組成について鋭意分析し、また、そのような膜を複数積層させることに着目し、その結果、本発明に至った。
 すなわち、本発明の一態様は、ZnとSnとを含有する透明酸化物膜を複数層積層した透明酸化物積層膜であって、ZnとSnの金属原子数比のSn/(Zn+Sn)が0.18以上0.29以下である非晶質の膜を2層以上有する。
 本発明の一態様によれば、上記組成範囲とすることで良好な水蒸気バリア性能もしくは酸素バリア性能を有し、さらに非晶質の上記組成範囲の透明酸化物膜を積層とすることで、第1層成膜時に出来てしまう欠陥部分を、第2層が覆うことが可能となり、単膜よりも良好な水蒸気バリア性能もしくは酸素バリア性能を有する透明酸化物積層膜を得ることができる。
 このとき、本発明の一態様では、透明酸化物積層膜の膜厚は、100nm以下としてもよい。
 このようにすれば、フレキシブル性にも優れた透明酸化物積層膜を提供することができる。
 また、本発明の一態様では、少なくともいずれかの層の透明酸化物膜は、Ta及びGeを含有し、Zn、Sn、Ta、及びGeの原子数比において、Ta/(Zn+Sn+Ge+Ta)が0.01以下、Ge/(Zn+Sn+Ge+Ta)が0.04以下であるとしても良い。
 Ta及びGeは、ターゲット由来の成分であり、これにより、ターゲット自体の電導性が改善されることで成膜速度が向上し、またターゲット密度が向上することで安定して成膜することができるようになる。
 また、本発明の一態様では、JIS規格のK7129法に従って指定された差圧法による水蒸気透過率が、透明酸化物積層膜のトータル膜厚が50~100nmでは、0.0008g/m/day以下であり、透明酸化物積層膜のトータル膜厚が50nm未満では、0.004g/m/day以下とすることができる。
 上記要件を満たすことにより、優れた水蒸気バリア性能を有する透明酸化物積層膜であると言える。
 また、本発明の一態様では、JIS規格のK7126法に従って指定された差圧法による酸素透過率が、透明酸化物積層膜のトータル膜厚が50~100nmでは、0.008cc/m/day/atm以下であり、透明酸化物積層膜のトータル膜厚が50nm未満では、0.04cc/m/day/atm以下とすることができる。
 上記要件を満たすことにより、優れた酸素バリア性能を有する透明酸化物積層膜であると言える。
 本発明の他の態様は、上述した透明酸化物積層膜をスパッタリング法により成膜するために用いられるスパッタリングターゲットであって、Sn-Zn-O系の酸化物焼結体と、接合材と、バッキングプレートにより構成され、酸化物焼結体に含有するZnとSnの金属原子数比のSn/(Zn+Sn)が0.18以上0.29以下である。
 このような組成のスパッタリングターゲットを用いてスパッタリングすることにより、良好な水蒸気バリア性能もしくは酸素バリア性能を有する透明酸化物積層膜を成膜することができる。
 この時、本発明の他の態様では、スパッタリングターゲットの酸化物焼結体は、さらにTa及びGeを含有し、TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01以下、GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04以下であるとしても良い。
 このようにすれば、スパッタリングターゲットの酸化物焼結体の電導性が改善されることで成膜速度が向上し、また酸化物焼結体の焼結密度が向上することで安定して成膜することができ、さらに良好な水蒸気バリア性能もしくは酸素バリア性能を有する透明酸化物積層膜を成膜することができる。
 本発明の他の態様は、Sn-Zn-O系の酸化物焼結体からなるターゲットを用いてスパッタリングする透明酸化物積層膜の製造方法であって、ターゲットは、金属原子数比で、Sn/(Zn+Sn)が0.18以上0.29以下である酸化物焼結体を有し、成膜する際に少なくとも1度スパッタリングを中断することにより、非晶質の膜を2層以上有する透明酸化物積層膜を形成する。
 本発明の他の態様によれば、1層目と2層目を連続成膜するのではなく、放電を1度遮断する間隔を作ることで膜応力も緩和され、非晶質の上記組成範囲の酸化物膜にて積層をすることで、第1層成膜時に出来てしまう欠陥部分を、第2層が覆うことが可能となり、単膜より良好な水蒸気バリア性能もしくは酸素バリア性能を有する透明酸化物積層膜を得ることが可能である。
 このとき、本発明の他の態様では、透明酸化物積層膜の膜厚は、100nm以下としてもよい。
 このようにすれば、フレキシブル性にも優れた透明酸化物積層膜を提供することができる。
 本発明の他の態様は、上述した透明酸化物積層膜が透明な樹脂基材の少なくとも一方の面に形成されている透明樹脂基板である。
 本発明の他の態様によれば、上述した透明酸化物積層膜を形成することで優れた透明性、良好な水蒸気バリア性能もしくは酸素バリア性能を有する透明樹脂基板とすることが出来る。
 本発明によれば、量産性の高い直流スパッタリングにて、優れた透明性、良好な水蒸気バリア性能もしくは酸素バリア性能を有する、透明酸化物積層膜、透明酸化物積層膜の製造方法、スパッタリングターゲット及び透明樹脂基板を提供することができる。
 以下、本発明に係る透明酸化物積層膜、透明酸化物積層膜の製造方法、スパッタリングターゲット及び透明樹脂基板について以下の順序で説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能である。
 1.透明酸化物積層膜
 2.スパッタリングターゲット
 3.透明酸化物積層膜の製造方法
 4.透明樹脂基板
<1.透明酸化物積層膜>
 本発明の一態様は、ZnとSnとを含有する透明酸化物膜を複数層積層した透明酸化物積層膜であって、ZnとSnの金属原子数比のSn/(Zn+Sn)が0.18以上0.29以下である非晶質の膜を2層以上有する。このような組成範囲とすることで良好な水蒸気バリア性能もしくは酸素バリア性能を有し、さらに非晶質の上記組成範囲の透明酸化物膜を積層とすることで、第1層成膜時に出来てしまう欠陥部分を、第2層が覆うことが可能となり、単膜よりも良好な水蒸気バリア性能もしくは酸素バリア性能を有する透明酸化物積層膜となる。
 本発明の一実施形態に係る透明酸化物積層膜は、スパッタリングにより形成される酸化物積層膜(酸化物スパッタ積層膜)である。本発明の一実施形態に係る透明酸化物積層膜は、水蒸気バリア性能と酸素バリア性能を有し、水蒸気バリア膜もしくは酸素バリア膜として使用される。このような透明酸化物積層膜は、プラスチック基板やフィルム基板、例えば液晶表示素子や太陽電池、エレクトロルミネッセンス(EL)表示素子等のフレキシブル表示素子の表面にスパッタリング法により金属酸化物膜として覆って水蒸気や酸素の遮断などによる変質を防止する目的で利用される。
 本発明の一実施形態に係る透明酸化物積層膜は、水蒸気や酸素を遮断する必要がある。そのためにバリア膜は、出来るだけ、緻密な膜であり、かつ厚みは薄く均一、そして水分や酸素が通る欠陥(隙間)が少ないことが好ましい。このため、透明酸化物積層膜は、後述するスパッタリング法により形成される。このスパッタリング法で形成された透明酸化物積層膜は、特許文献3にあるように非晶質であることが好まれる。
 これは、酸化物膜が結晶質膜である場合には、この膜に結晶粒界が存在し、結晶粒界を介して水蒸気や酸素が透過するため、水蒸気バリア性能もしくは酸素バリア性能が低下するからである。また、上記特許文献3では、この非晶質膜として酸化スズ系膜を提案しているが、酸化スズ系膜をスパッタリング法により成膜する場合、スパッタリングに用いるスパッタリングターゲットを構成するターゲット材は、膜と同成分である酸化スズ系が用いられる。この酸化スズ系のターゲット材は、一般に耐酸性は高いがターゲット材の相対密度が低く、スパッタリング中にターゲット材が割れる等により安定して成膜ができない等課題が多い。本発明の一実施形態に係る透明酸化物積層膜では、後述するSn-Zn-O系スパッタリングターゲットを使用して成膜することで、上記懸念事項は解消に至った。
 つまり、本発明の一実施形態に係る透明酸化物積層膜は、ZnとSnとを含有する2層以上の水蒸気バリア性能もしくは酸素バリア性能を有する非晶質の透明酸化物積層膜であって、各層(例えば2層の積層膜の場合、第1層と第2層)は、ZnとSnの金属原子数比のSn/(Zn+Sn)が0.18以上0.29以下であることを特徴とする。
 このように、金属原子数比で、Sn/(Zn+Sn)で0.18以上0.29以下にすることで、良好な水蒸気透過率もしくは酸素バリア性能を得ることができるが、さらに同種のZnとSnとを含有する非晶質な透明酸化物膜を積層することで、より良好な水蒸気バリア性能もしくは酸素バリア性能を得ることが可能である。単膜では、スパッタリングの特性上1度出来た欠陥部分は、連続的に成膜されるため膜厚を厚くしても残ってしまう。膜を積層する事で、まず第1層で出来た欠陥部分は、新たに成膜される第2層が補完することが出来ると考えられる。また同種のZnとSnとを含有する非晶質な透明酸化物膜同士を積層することにより、非常に高い密着性を得られる。そのため欠陥部分を補完しつつ、積層だが単層の様な良好な緻密な膜を得ることが可能である。各々の膜厚に関しては特に制限はないが、好ましくは膜厚が均等の方がよい。
 金属原子数比Sn/(Zn+Sn)が0.18未満の場合はSnO比率が少なくなることで、結晶性の強いZnOの析出が多くなり、膜内に一部結晶化する部分(微結晶状態)が増え、結晶粒界から水蒸気や酸素の流入が多くなり、所望の水蒸気バリア性能もしくは酸素バリア性能を有する透明酸化物積層膜を得ることが出来ない。
 一方、金属原子数比Sn/(Zn+Sn)が0.29より大きい場合は、SnO比率が多くなることで、膜の応力が強くなり、さらには成膜時の熱の発生が大きくなり、膜の剥がれや基材へのダメージが発生し、OLED、QDなどに使用可能な水蒸気バリア性能もしくは酸素バリア性能を有する透明酸化物積層膜を得ることが出来ない。
 本発明の一実施形態に係る透明酸化物積層膜は、さらにTa及びGeを含有し、TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01以下、GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04以下であることが好ましい。
 TaやGeが含まれても、結晶化温度が600℃以上となるため、非晶質膜構造が得やすい。また、結晶化温度が高いため量産工程プロセス内での熱影響があった場合でも、非結晶状態を容易に維持することが可能である。また、Ta、Geを上記比率で添加することで、ZnとSnとを含有するスパッタリングターゲットの特性をより向上させる効果がある。詳細は後述する。
 なお、Ta及びGeを添加したターゲットを使用してスパッタリングして成膜した酸化物膜(酸化物スパッタ膜)への影響はない。例えば、水蒸気透過率、酸素透過率等の影響は確認されない。よって、本発明の一実施形態に係る透明酸化物積層膜では、金属原子数比で、Sn/(Zn+Sn)が0.18以上0.29以下であり、Taが、Ta/(Zn+Sn+Ge+Ta)が0.01以下、Ge/(Zn+Sn+Ge+Ta)が0.04以下の割合で含まれても、水蒸気バリア性能もしくは酸素バリア性能を悪化させることはなく、良好な特性を持った、非晶質な透明酸化物積層膜を得ることが可能である。
 本発明の一実施形態に係る透明酸化物積層膜のトータル膜厚(各酸化物膜の膜厚の合計)は、100nm以下であることが好ましい。このようにすれば、100nm以下の良好な水蒸気バリア性能もしくは酸素バリア性能を有し、かつよりフレキシブル性に優れた透明酸化物積層膜を提供することが出来る。トータル膜厚は、さらに好ましくは、90nm以下である。また、本発明の一実施形態に係る透明酸化物積層膜の膜厚の下限値は10nmである。
 透明酸化物積層膜の厚みが10nmより薄くなると、酸化物膜がうす過ぎる為、後述する透明樹脂基板のフィルム全体の品質保証が難しい膜厚となり、少しの欠陥で水蒸気もしくは酸素が通りやすくなってしまう。一方で、透明酸化物積層膜の厚さが厚いことでフレキシブル性が悪化する。生産性、コストを鑑みると膜厚は100nm以下が好ましく、90nm以下がさらに好ましい。よって10~100nmにて使用することが、フレキシブル性、軽量化や薄膜化のニーズにマッチし、デバイス組立時や量産時の使用に最適な膜厚である。
 また、本発明の一実施形態に係る透明酸化物積層膜は、JIS規格のK7129法に従って指定された差圧法による水蒸気透過率が、透明酸化物積層膜のトータル膜厚が50~100nmでは、0.0008g/m/day以下が好ましく、透明酸化物積層膜のトータル膜厚が50nm未満では、0.004g/m/day以下が好ましい。
 JIS規格のK7129法に従って指定された差圧法による水蒸気透過率が0.01g/m/day以上であると、OLED表示素子やQD表示素子においては、水蒸気が混入され、内部の表示素子層等の界面で水分による劣化が早まり、早期に剥離等が生じてしまい、デバイスとして長時間使用することが困難となる。
 膜を積層しない単膜とで水蒸気透過率を比較した場合、単膜のSn/(Zn+Sn)で0.18以上0.29以下の範囲の酸化物膜では、従来100nmでは3×10-3g/m/dayまでしか到達できなかったが、本発明で初めて、3.0×10-4g/m/dayの水蒸気透過率を実現した。さらには、単膜50nmでは、4.7×10-3g/m/dayが、積層にすることで、8×10-4g/m/dayに、10nmでは単膜だと8.5×10-3g/m/dayであったが、積層にすることで、3.3×10-3g/m/dayとなり、単膜と比べ、積層膜の方が良好な水蒸気透過率を得ることが可能である。
 また、本発明の一実施形態に係る透明酸化物積層膜では、JIS規格のK7126法に従って指定された差圧法による酸素透過率は、透明酸化物積層膜のトータル膜厚が50~100nmでは、0.008cc/m/day/atm以下が好ましく、透明酸化物積層膜のトータル膜厚が50nm未満では、0.04cc/m/day/atm以下が好ましい。
 JIS規格のK7126法に従って指定された差圧法による酸素透過率が0.1cc/m/day/atm以上であると、OLED表示素子やQD表示素子においては、酸素が混入され、内部の表示素子層等の界面で酸素による劣化が早まり、早期に剥離等が生じてしまい、デバイスとして長時間使用することが困難となる。
 膜を積層しない単膜と積層膜とで酸素透過率を比較した場合、酸素透過率でも、単膜のSn/(Zn+Sn)で0.18以上0.29以下の範囲の酸化物膜では、従来100nmでは3.5×10-2cc/m/day/atmまでしか到達できなかったが、本発明で初めて、2.8×10-3cc/m/day/atmの酸素透過率を実現した。さらには、単膜50nmでは、4.3×10-2cc/m/day/atmが、積層にすることで、8×10-3cc/m/day/atmに、10nmでは単膜だと8.3×10-2cc/m/day/atmであったが、積層にすることで、3.4×10-2cc/m/day/atmとなり、水蒸気透過率と同じく、単膜と比べ積層膜の方が良好な酸素透過率を得ることが可能である。
 以上より、本発明の一実施形態に係る透明酸化物積層膜によれば、優れた透明性、良好な水蒸気バリア性能もしくは酸素バリア性能を有することができる。
<2.スパッタリングターゲット>
 次に、上記透明酸化物積層膜をスパッタリング法により成膜するために用いられるスパッタリングターゲットについて説明する。本発明の一実施形態に係るスパッタリングターゲットは、Sn-Zn-O系の酸化物焼結体と、接合材と、バッキングプレートにより構成される。
 そして、酸化物焼結体に含有するZnとSnの金属原子数比のSn/(Zn+Sn)が0.18以上0.29以下であることを特徴とする。酸化物焼結体の特性が、成膜する酸化物膜(酸化物スパッタ膜)に引き継がれる。
 そのため、酸化物焼結体に含有するZnとSnの金属原子数比Sn/(Zn+Sn)が0.18未満の場合はSnO比率が少なくなることで、結晶性の強いZnOの析出が多くなり、膜内に一部結晶化する部分(微結晶状態)が増えることで、結晶粒界から水蒸気や酸素の流入が多くなり、所望の水蒸気バリア性能もしくは酸素バリア性能を有する透明酸化物積層膜を成膜することが出来ない。
 一方、金属原子数比Sn/(Zn+Sn)が0.29より大きい場合は、SnO比率が多くなることで、膜の応力が強くなり、さらには成膜時の熱の発生が大きくなり、膜の剥がれや基材へのダメージが発生し、OLED、QDなどに使用可能な水蒸気バリア性能もしくは酸素バリア性能を有する透明酸化物積層膜を成膜することが出来ない。
 また、Sn-Znのみ組成で構成された酸化物焼結体では、導電性が不十分であり、比抵抗値が大きい場合がある。これは、スパッタリング時、比抵抗値が大きい程、大きなエネルギーでスパッタリングする必要があり、成膜速度を上げることが出来ない。よって、ターゲットに用いられる焼結体の導電率を小さくする必要がある。酸化物焼結体中でZnSnO、ZnO、SnOは導電性に乏しい物質であることから、配合比を調整して化合物相やZnO、SnOの量を調整したとしても、導電性を大幅に改善することは出来ない。
 そこで、Ta(タンタル)を所定量添加することが好ましい。Taは、ZnO相中のZn、ZnSnO相中のZn又はSn、SnO相中のSnと置換して固溶するため、ウルツ鉱型結晶構造のZnO相、スピネル型結晶構造のZnSnO相、及び、ルチル型結晶構造のSnO相以外の化合物相は形成されない。Taの添加により酸化物焼結体の密度を維持したまま、導電性が改善される。
 また、Sn-Znのみ組成で構成された酸化物焼結体の焼結密度は90%前後であり十分とは言えない場合がある。酸化物焼結体の密度が低いとスパッタリング中に酸化物焼結体が割れる等により安定して成膜が出来ない等課題がある。
 そこで、Ge(ゲルマニウム)を所定量添加することが好ましい。Geは、酸化物焼結体中で、ZnO相中のZn、ZnSnO相中のZn又はSn、SnO相中のSnと置換して固溶するため、ウルツ鉱型結晶構造のZnO相、スピネル型結晶構造のZnSnO相、及び、ルチル型結晶構造のSnO相以外の化合物相は形成されない。Geの添加により酸化物焼結体を緻密にする作用がある。これにより、酸化物焼結体の焼結密度をより高密度にすることが出来る。
 従って、上記酸化物焼結体は、さらにTa及びGeを含有し、上記TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01以下、上記GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04以下であることが好ましい。なお、Ta及びGeの添加による上記効果が得られるおおよその下限値は、Ta、Ge共に、上記金属原子数比で0.0005である。
 上記TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01より大きい場合、別の化合物相、例えばTa、ZnTa等の化合物相を生成するため、導電性を大幅に改善することは出来ない。また、上記GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04より大きい場合、別の化合物相、例えばZnGe等の化合物相を生成するため、酸化物焼結体の密度が低くなり、スパッタリング中にターゲットが割れ易くなる。
 本発明の一実施形態に係るスパッタリングターゲットに関して、以下に限定はされないが、具体的なターゲット製造方法を挙げる。まず、酸化物焼結体について、Znの酸化物粉末、Snの酸化物粉末と必要に応じてTa及びGeの添加元素を含有する酸化物粉末を、上記に説明した好ましい金属原子数比となるように調整し混合する。そして、上記の造粒粉末を純水又は超純水、有機バインダー、分散剤、消泡剤を入れて混合する。
 次いで、硬質ZrOボールが投入されたビーズミル装置等を用いて、原料粉末を湿式粉砕した後、混合撹拌してスラリーを得る。得られたスラリーをスプレードライヤー装置等にて噴霧及び乾燥することで造粒粉末を得ることが出来る。
 次に、上記の造粒粉末を加圧成形して成形体を得る。造粒粉末の粒子間の空孔を除去するために、例えば294MPa(3.0ton/cm)程度の圧力で加圧成形を行う。加圧成形の方法については特に限定されないが、例えば、上記造粒粉末をゴム型へ充填し、高圧力を加えることが可能な冷間静水圧プレス(CIP:Cold Isostatic Press)を用いることが好ましい。
 次に、上記の成形体を焼成して酸化物焼結体を得る。焼成炉内の所定の昇温速度において、所定の温度でかつ所定の時間の条件において、上記の成形体を焼成して酸化物焼結体を得る。焼成は、例えば、大気中の焼成炉内雰囲気において焼成する。この焼結炉内における700℃から所定の焼結温度までの昇温速度は、0.3~1.0℃/minの速度で成形体を焼成することが好ましい。これは、ZnO、SnOやZnSnO化合物の拡散を促進させ、焼結性を向上させると共に導電性を向上させる効果があるためである。また、このような昇温速度とすることで、高温域では、ZnOやZnSnOの揮発を抑制する効果もある。
 焼結炉内における昇温速度が0.3℃/min未満の場合においては、化合物の拡散が低下する。一方、1.0℃/minを超える場合は、昇温速度が速いため、化合物の形成が不完全となり、緻密な酸化物焼結体を作製することが出来ない。
 昇温後の焼結温度は、1300℃以上1400℃以下とすることが好ましい。焼結温度が1300℃未満の場合、温度が低過ぎて、ZnO、SnO、ZnSnO化合物における焼結の粒界拡散が進まない。一方、1400℃を超える場合でも、粒界拡散が促進されて焼結は進むが、Zn成分の揮発を抑制することが出来ず、酸化物焼結体の内部に空孔を大きく残してしまうことになる。
 昇温後の保持時間は、15時間以上25時間以下とすることが好ましい。保持時間が15時間未満の場合には、焼結が不完全なため、歪や反りの大きい焼結体になると共に、粒界拡散が進まず、焼結が進まない。この結果、緻密な焼結体を作製することが出来ない。一方、25時間を超える場合、ZnOやZnSnOの揮発が多くなり、酸化物焼結体の密度の低下や作業効率の悪化、及びコスト高の結果を招く。
 上述の通り作製された酸化焼結体から構成されるスパッタリングターゲットは、例えば以下により作製する。まず、上述した酸化物焼結体を機械研削加工し所望のサイズにすることで、加工体(ターゲット材)が得られる。得られた加工体を銅材、ステンレス材等からなるバッキングプレートにインジウム(In)等の接合材等を用いて張合わせる(ボンディング)ことによって、スパッタリングターゲットが得られる。スパッタリングターゲットは、酸化物焼結体が複数枚貼り合わされたものであっても構わない。また、平板状のスパッタリングターゲットの他にも、円筒形に形成した酸化物焼結体とバッキングチューブをインジウム等の接合材を用いて接合した円筒形スパッタリングターゲットであっても良い。
 以上より、本発明の一実施形態に係るスパッタリングターゲットによれば、量産性の高い直流スパッタリングにて、優れた透明性、良好な水蒸気バリア性能もしくは酸素バリア性能を有する透明酸化物積層膜を成膜することが出来る。
 <3.透明酸化物積層膜の製造方法>
 次に、本発明の一実施形態に係る透明酸化物積層膜の製造方法について説明する。本発明の一実施形態に係る透明酸化物積層膜の製造方法は、Sn-Zn-O系の酸化物焼結体を用いてスパッタリングし、ZnとSnとを含有する非晶質の透明な水蒸気バリア性能もしくは酸素バリア性能を有する膜を得るものである。
 そして、上記スパッタ時に用いられる前記酸化物焼結体に含有するZnとSnの金属原子数比のSn/(Zn+Sn)が0.18以上0.29以下である酸化物焼結体を有し、成膜する際に少なくとも1度スパッタリングを中断することにより、非晶質の膜を2層以上有する透明酸化物積層膜を形成することを特徴とする。なお、上記の範囲の技術的意義は、上述した通りである。
 また、上記酸化物スパッタ積層膜の膜厚は、トータル膜厚100nm以下であることが好ましく、90nm以下であることがより好ましい。このようにすれば、良好な水蒸気バリア性能もしくは酸素バリア性能を有し、かつよりフレキシブル性に優れた透明酸化物積層膜を提供することが出来る。
 スパッタリングとしては、上述した酸化物焼結体から構成されたスパッタリングターゲットを用いてスパッタリングを行えばよい。スパッタリング装置は、特に限定はないが、直流マグネトロンスパッタ装置等を用いることが出来る。
 スパッタリングの条件としては、チャンバー内の真空度を1×10-4Pa以下に調整する。チャンバー内の雰囲気は、不活性ガスを導入する。不活性ガスは、アルゴンガス等であり、純度99.999質量%以上が好ましい。また、不活性ガスには全ガス流量に対して酸素を4~10容量%含有させる。酸素濃度は、膜の表面抵抗値に影響を及ぼすため、所定の抵抗値になるように酸素濃度を設定する。その後、所定の直流電源を用い、スパッタリングターゲット-基材間に投入して、直流パルシングによるプラズマを発生させ、スパッタリングを行い成膜し第1層を得る。その後シャッターを閉じ、成膜を1度中断したのち、再度シャッターを開き同条件にて成膜を行い第2層を成膜する。一度、放電を中断し一定の間隔を開けることで、膜応力を低減することが可能である。また、スパッタリングをRTR方式で連続で行う装置の場合、第1層をスパッタリングして巻き取り後、反転して第2層をスパッタリングして成膜してもよい。なお、膜厚は、成膜時間で制御する。
 このように、第1層と第2層を連続成膜するのではなく、放電を1度遮断する間隔を作ることで膜応力も緩和され、非晶質の上記組成範囲の酸化物膜にて積層をすることで、第1層成膜時に出来てしまう欠陥部分を、第2層が覆うことが可能となる。
 透明酸化物積層膜の水蒸気バリア性能もしくは酸素バリア性能等は、スパッタ条件には大きく依存せず得られる。必要な透過率、抵抗値を踏まえた状態で条件を調整した場合でも、容易に良好な水蒸気バリア性能もしくは酸素バリア性能を有する膜を作ることが可能である。
 以上より、本発明の一実施形態に係る透明酸化物積層膜の製造方法によれば、量産性の高い直流スパッタリングにて、優れた透明性、良好な水蒸気バリア性能もしくは酸素バリア性能を有する透明酸化物積層膜を得ることが出来る。
 <4.透明樹脂基板>
 本発明の一実施形態に係る透明樹脂基板は、上述したZnとSnとを含有する非晶質の透明な水蒸気バリア性能もしくは酸素バリア性能を有する透明酸化物積層膜が透明な基材に成膜されたものである。すなわち、上記透明酸化物積層膜は、上記基材の少なくとも一方の面に成膜され、ZnとSnの金属原子数比のSn/(Zn+Sn)が0.18以上0.29以下の酸化物層が2層以上形成されている。透明酸化物積層膜の膜厚は、100nm以下であることが好ましく、90nm以下であることがより好ましい。
 透明な基材としては、ポリエチレンテレフタレート、ポリエチレン、ナフタレート、ポリカーボネイト、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、シクロオレフィンポリマー、フッ素樹脂、ポリプロピレン、ポリイミド樹脂、エポキシ樹脂、などが使用出来る。また、透明樹脂基材の厚みは特に制限はないが、フレキシブル性、コストやデバイスのニーズを鑑みると50~150μmであることが好ましい。
 透明樹脂基板へのスパッタ方法は、透明酸化物積層膜の製造方法で説明したようにスパッタリングすれば良い。なお、上記ZnとSnの好適な金属原子数比や膜厚等の技術的意義は、上述した通りである。
 また、本発明の一実施形態に係る透明樹脂基板は、上記基材の少なくとも一方の面にZnとSnとを含有する非晶質の透明な水蒸気バリア性能もしくは酸素バリア性能を有する酸化物スパッタ積層膜が形成されたものであるが、他の膜を介して積層してもよい。例えば、上記基材上に、表面の平坦化や、光の特性向上等を目的に酸化珪素膜や、窒化酸化珪素膜、樹脂膜、ウェットコート膜、金属膜、酸化物膜などが形成され、その後、水蒸気バリア層もしくは酸素バリア層として、上記の透明酸化物積層膜を少なくとも一方に形成してもよい。
 本発明の一実施形態に係る透明樹脂基板を用いて、例えばフレキシブル表示素子の一つであるフレキシブルOLED表示素子やフレキシブルQD表示素子、QDシートを形成することが可能である。
 以上より、本発明の一実施形態に係る透明樹脂基板によれば、量産性の高い直流スパッタリングにて、優れた透明性、良好な水蒸気バリア性能もしくは酸素バリア性能を有する。
 以下、本発明の実施例について比較例も挙げて具体的に説明するが、本発明に係る技術的範囲が下記実施例の記載内容に限定されることはなく、本発明に適合する範囲で変更を加えて実施することも当然のことながら可能である。
 以下の実施例及び比較例では、SnO粉と、ZnO粉とを使用した。また、添加元素を加える場合には、添加元素TaとしてTa粉と、添加元素GeとしてGeO粉とをそれぞれ使用した。
(実施例1)
 実施例1では、酸化亜鉛を主成分とし、酸化スズを金属原子数比Sn/(Zn+Sn)として0.23となる様に製造された焼結体を用いてスパッタリングターゲット(住友金属鉱山製)を作製し、このスパッタリングターゲットを用いてスパッタリング装置によりスパッタリングして成膜した。このスパッタリング装置は、直流マグネトロンスパッタ装置(アルバック社製、SH-550型)を使用した。
 非晶質の酸化物膜の成膜は、以下の条件で行った。カソードに、ターゲットを取り付け、カソードの直上に樹脂フィルム基材を配置した。ターゲットと樹脂フィルム基材との距離を80mmとした。成膜を行う樹脂フィルム基材は、カソードの対向面に静止させ、成膜は静止対向で行った。樹脂フィルム基材には、PENフィルム(帝人製、厚さ50μm)を用いた。チャンバー内の真空度が2×10-4Pa以下に達した時点で、純度99.9999質量%のアルゴンガスをチャンバー内に導入してガス圧0.6Paとし、酸素を5容量%含有させたアルゴンガス中で、直流電源としてDC電源装置(DELTA社製、MDX)を用い、20kHzの直流パルシングを採用した直流電力1500Wを、スパッタリングターゲット-帝人製PENフィルム基材間に投入して、直流パルシングによるプラズマを発生させた。帝人製PENフィルム基材上に第1層として膜厚50nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚50nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚100nmの透明酸化物積層膜とした。
 上記で作成した透明酸化物積層膜の結晶性、水蒸気透過率(WVTR)、酸素透過率(OTR)の確認を行った。結晶性は、X線回折測定し、回折ピークの観察を実施し、水蒸気透過率は差圧法(Technolox社製DELTAPERM-UH)にて測定を実施した。酸素透過率も差圧法(GTRテック社製GTR‐2000X)にて測定を実施した。また、透過率を、波長550nmにおける可視光平均透過率とし、分光光度計で測定した。
(実施例2)
 実施例2では、SnとZnの原子数比Sn/(Zn+Sn)が0.18となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用した以外は実施例1と同様に行い、実施例2に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例3)
 実施例3では、SnとZnの原子数比Sn/(Zn+Sn)が0.29となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用した以外は実施例1と同様にして、実施例3に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例4)
 実施例4では、第1層がSnとZnの原子数比Sn/(Zn+Sn)が0.29となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第2層がSnとZnの原子数比Sn/(Zn+Sn)が0.18となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用した以外は実施例1と同様にして、実施例4に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例5)
 実施例5では、第1層がSnとZnの原子数比Sn/(Zn+Sn)が0.18となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第2層がSnとZnの原子数比Sn/(Zn+Sn)が0.29となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用した以外は実施例1と同様にして、実施例5に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例6)
 実施例6では、第1層に膜厚25nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚25nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚50nmとした以外は実施例1と同様に行い、実施例6に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例7)
 実施例7では、SnとZnの原子数比Sn/(Zn+Sn)が0.18となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第1層に膜厚25nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚25nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚50nmとした以外は実施例1と同様にして、実施例7に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例8)
 実施例8では、SnとZnの原子数比Sn/(Zn+Sn)が0.29となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第1層に膜厚25nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚25nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚50nmとした以外は実施例1と同様にして、実施例8に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例9)
 実施例9では、第1層がSnとZnの原子数比Sn/(Zn+Sn)が0.29となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第2層にSnとZnの原子数比Sn/(Zn+Sn)が0.18となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第1層が膜厚25nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚25nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚50nmとした以外は実施例1と同様にして、実施例9に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例10)
 実施例10では、第1層がSnとZnの原子数比Sn/(Zn+Sn)が0.18となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第2層にSnとZnの原子数比Sn/(Zn+Sn)が0.29となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第1層が膜厚25nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚25nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚50nmとした以外は実施例1と同様にして、実施例10に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例11)
 実施例11では、第1層に膜5nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚5nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚10nmとした以外は実施例1と同様に行い、実施例11に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例12)
 実施例12では、SnとZnの原子数比Sn/(Zn+Sn)が0.18となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第1層に膜厚5nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚5nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚10nmとした以外は実施例1と同様にして、実施例12に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例13)
 実施例13では、SnとZnの原子数比Sn/(Zn+Sn)が0.29となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第1層に膜厚5nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚5nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚10nmとした以外は実施例1と同様にして、実施例13に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例14)
 実施例14では、第1層がSnとZnの原子数比Sn/(Zn+Sn)が0.29となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第2層にSnとZnの原子数比Sn/(Zn+Sn)が0.18となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第1層が膜厚5nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚5nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚10nmとした以外は実施例1と同様にして、実施例14に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例15)
 実施例15では、第1層がSnとZnの原子数比Sn/(Zn+Sn)が0.18となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第2層にSnとZnの原子数比Sn/(Zn+Sn)が0.29となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、第1層が膜厚5nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚5nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚10nmとした以外は実施例1と同様にして、実施例15に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例16)
 実施例16では、SnとZnの原子数比Sn/(Zn+Sn)が0.23、Taの原子数Ta/(Zn+Sn+Ge+Ta)が0.01、Geの原子数比Ge/(Zn+Sn+Ge+Ta)が0.04となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、実施例1と同様にして、トータル膜厚100nmの実施例16に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例17)
 実施例17では、SnとZnの原子数比Sn/(Zn+Sn)が0.23、Taの原子数Ta/(Zn+Sn+Ge+Ta)が0.01、Geの原子数比Ge/(Zn+Sn+Ge+Ta)が0.04となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、実施例6と同様にして、トータル膜厚50nmの実施例17に係る透明酸化物積層膜を得た。実施例1と同様に、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例18)
 実施例18では、SnとZnの原子数比Sn/(Zn+Sn)が0.23、Taの原子数Ta/(Zn+Sn+Ge+Ta)が0.01、Geの原子数比Ge/(Zn+Sn+Ge+Ta)が0.04となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、実施例11と同様にして、トータル膜厚10nmの実施例18に係る透明酸化物積層膜を得た。実施例1と同様に、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例19)
 実施例19では、SnとZnの原子数比Sn/(Zn+Sn)が0.23となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、帝人製PENフィルム基材上に第1層が膜厚45nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚45nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚90nmとした以外は実施例1と同様に行い、実施例19に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例20)
 実施例20では、SnとZnの原子数比Sn/(Zn+Sn)が0.18となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、帝人製PENフィルム基材上に第1層が膜厚20nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚20nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚40nmとした以外は実施例1と同様に行い、実施例20に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例21)
 実施例21では、SnとZnの原子数比Sn/(Zn+Sn)が0.29となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、帝人製PENフィルム基材上に第1層が膜厚20nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚20nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚40nmとした以外は実施例1と同様に行い、実施例21に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例22)
 実施例22では、帝人製PENフィルム基材上に膜厚100nmのSiON膜が成膜してある基材を使用した以外は、実施例6と同様に行い、実施例22に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(実施例23)
 実施例23では、帝人製PENフィルム基材上に膜厚100nmのSiO膜が成膜してある基材を使用した以外は、実施例6と同様に行い、実施例23に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(比較例1)
 比較例1では、SnとZnの原子数比Sn/(Zn+Sn)が0.15となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用した以外は実施例1と同様に行い、比較例1に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(比較例2)
 比較例2では、SnとZnの原子数比Sn/(Zn+Sn)が0.30となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用した以外は実施例1と同様に行い、比較例2に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(比較例3)
 比較例3では、SnとZnの原子数比Sn/(Zn+Sn)が0.17となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、帝人製PENフィルム基材上に第1層が膜厚2.5nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚2.5nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚5nmの酸化物スパッタ積層膜をスパッタリングしたこと以外は実施例1と同様にして、比較例3に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(比較例4)
 比較例4では、SnとZnの原子数比Sn/(Zn+Sn)が0.30となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、帝人製PENフィルム基材上に第1層が膜厚2.5nmの酸化物スパッタ膜をスパッタリングにより成膜し、シャッターを閉じ1度成膜を中断し、再度シャッターを開き、第2層として膜厚2.5nmの酸化物スパッタ膜をスパッタリングにより成膜し、トータル膜厚5nmの酸化物スパッタ積層膜をスパッタリングしたこと以外は実施例1と同様にして、比較例4に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(比較例5)
 比較例5では、SnとZnの原子数比Sn/(Zn+Sn)が0.18となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、帝人製PENフィルム基材上に単膜で膜厚100nmの酸化物スパッタ膜をスパッタリングしたこと以外は実施例1と同様にして、比較例5に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(比較例6)
 比較例6では、SnとZnの原子数比Sn/(Zn+Sn)が0.23となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、帝人製PENフィルム基材上に単膜で膜厚50nmの酸化物スパッタ膜をスパッタリングしたこと以外は実施例1と同様にして、比較例6に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
(比較例7)
 比較例7では、SnとZnの原子数比Sn/(Zn+Sn)が0.29となる割合で調合された住友金属鉱山製スパッタリングターゲットを使用し、帝人製PENフィルム基材上に単膜で膜厚10nmの酸化物スパッタ膜をスパッタリングしたこと以外は実施例1と同様にして、比較例7に係る透明酸化物積層膜を得た。実施例1と同様、結晶性、水蒸気透過率、酸素透過率の確認を行った。
 以上の実施例1~15の結果を表1に示し、実施例16~23及び比較例1~7の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1より、Sn/(Zn+Sn)が0.18以上0.29以下の範囲とした全ての実施例では、JIS規格のK7129法に従って指定された差圧法による水蒸気透過率が50~100nmでは、0.0008g/m/day以下となり、50nm未満では、0.004g/m/day以下となり、優れた水蒸気バリア性能を有していることが判る。さらには、表1より、Sn/(Zn+Sn)が0.18以上0.29以下の範囲とした全ての実施例では、JIS規格のK7126法に従って指定された差圧法による酸素透過率は、透明酸化物積層膜のトータル膜厚が50~100nmでは、0.008cc/m/day/atm以下であり、透明酸化物積層膜のトータル膜厚が50nm未満では、0.04cc/m/day/atm以下となり、優れた酸素バリア性能を有していることが判る。よって、全ての実施例においては、水蒸気バリア性能及び良好な酸素バリア性能が上記の範囲となり、良好な水蒸気バリア性能及び良好な酸素バリア性能を有していた。また、波長が550nmで測定した透過率も、90%以上あり透明性を有している。このように、上記の性能を有し、かつよりフレキシブル性に優れた透明酸化物積層膜が得られた。
 また、実施例16~18のように、Taの原子数Ta/(Zn+Sn+Ge+Ta)が0.01、Geの原子数比Ge/(Zn+Sn+Ge+Ta)が0.04となる割合で調合されたスパッタリングターゲットを使用しても、水蒸気透過率、酸素透過率ともに良好な値を示している。なお、結晶性は、X線回折測定した結果、実施例1~23の全てにおいて非晶質であった。
 一方、Sn/(Zn+Sn)が0.18以上0.29以下の範囲外とした比較例1~4では、上記数値範囲を超えており、水蒸気バリア性能もしくは酸素バリア性能が実施例よりも劣っていた。また、1層のみの成膜とした比較例5~7においても、上記数値範囲を超えており、水蒸気バリア性能もしくは酸素バリア性能が実施例よりも劣っていた。
 以上より、本発明によれば、量産性の高い直流スパッタリングにて、優れた透明性、良好な水蒸気バリア性能もしくは酸素バリア性能を有する、透明酸化物積層膜、透明酸化物積層膜の製造方法、スパッタリングターゲット及び透明樹脂基板を提供することができた。
 なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また透明酸化物積層膜、透明酸化物積層膜の製造方法、スパッタリングターゲット及び透明樹脂基板の構成も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。
 本発明は、水蒸気バリア性能もしくは酸素バリア性能と屈曲性に優れた量産性の高い直流スパッタリングにて、優れた透明性、良好な水蒸気バリア性能もしくは酸素バリア性能を有する、酸化物スパッタ積層膜、酸化物スパッタ積層膜の製造方法、酸化物焼結体及び透明樹脂基板を用いた透明導電膜基板(フレキシブル表示素子等)は、OLED表示素子、QD表示素子、QDシート等の部材として極めて有用である。

Claims (10)

  1.  ZnとSnとを含有する透明酸化物膜を複数層積層した透明酸化物積層膜であって、
     ZnとSnの金属原子数比のSn/(Zn+Sn)が0.18以上0.29以下である非晶質の膜を2層以上有する透明酸化物積層膜。
  2.  前記透明酸化物積層膜の膜厚は、100nm以下であることを特徴とする請求項1に記載の透明酸化物積層膜。
  3.  少なくともいずれかの層の透明酸化物膜は、Ta及びGeを含有し、
     前記TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01以下、
     前記GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04以下であることを特徴とする請求項1に記載の透明酸化物積層膜。
  4.  JIS規格のK7129法に従って指定された差圧法による水蒸気透過率が、前記透明酸化物積層膜のトータル膜厚が50~100nmでは、0.0008g/m/day以下であり、
     前記透明酸化物積層膜のトータル膜厚が50nm未満では、0.004g/m/day以下であることを特徴とする請求項1に記載の透明酸化物積層膜。
  5.  JIS規格のK7126法に従って指定された差圧法による酸素透過率が、前記透明酸化物積層膜のトータル膜厚が50~100nmでは、0.008cc/m/day/atm以下であり、前記透明酸化物積層膜のトータル膜厚が50nm未満では、0.04cc/m/day/atm以下であることを特徴とする請求項1に記載の透明酸化物積層膜。
  6.  請求項1乃至請求項5のいずれか1項に記載の透明酸化物積層膜をスパッタリング法により成膜するために用いられるスパッタリングターゲットであって、
     Sn-Zn-O系の酸化物焼結体と、接合材と、バッキングプレートにより構成され、
     前記酸化物焼結体に含有するZnとSnの金属原子数比のSn/(Zn+Sn)が0.18以上0.29以下であることを特徴とするスパッタリングターゲット。
  7.  前記酸化物焼結体は、さらにTa及びGeを含有し、
     前記TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01以下、
     前記GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04以下であることを特徴とする請求項6に記載のスパッタリングターゲット。
  8.  Sn-Zn-O系の酸化物焼結体からなるターゲットを用いてスパッタリングする透明酸化物積層膜の製造方法であって、
     前記ターゲットは、金属原子数比で、Sn/(Zn+Sn)が0.18以上0.29以下である酸化物焼結体を有し、
     成膜する際に少なくとも1度スパッタリングを中断することにより、非晶質の膜を2層以上有する透明酸化物積層膜を形成する透明酸化物積層膜の製造方法。
  9.  前記透明酸化物積層膜の膜厚は、100nm以下であることを特徴とする請求項8に記載の透明酸化物積層膜の製造方法。
  10.  請求項1乃至請求項5のいずれか1項に記載の透明酸化物積層膜が透明な樹脂基材の少なくとも一方の面に形成されている透明樹脂基板。
PCT/JP2019/004021 2018-04-16 2019-02-05 透明酸化物積層膜、透明酸化物積層膜の製造方法、スパッタリングターゲット及び透明樹脂基板 WO2019202819A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980025233.8A CN111954726A (zh) 2018-04-16 2019-02-05 透明氧化物层叠膜、透明氧化物层叠膜的制造方法、溅射靶和透明树脂基板
KR1020207026051A KR20200141987A (ko) 2018-04-16 2019-02-05 투명 산화물 적층막, 투명 산화물 적층막의 제조 방법, 스퍼터링 타겟 및 투명 수지 기판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018078442A JP2019183244A (ja) 2018-04-16 2018-04-16 透明酸化物積層膜、透明酸化物積層膜の製造方法、スパッタリングターゲット及び透明樹脂基板
JP2018-078442 2018-04-16

Publications (1)

Publication Number Publication Date
WO2019202819A1 true WO2019202819A1 (ja) 2019-10-24

Family

ID=68238838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004021 WO2019202819A1 (ja) 2018-04-16 2019-02-05 透明酸化物積層膜、透明酸化物積層膜の製造方法、スパッタリングターゲット及び透明樹脂基板

Country Status (5)

Country Link
JP (1) JP2019183244A (ja)
KR (1) KR20200141987A (ja)
CN (1) CN111954726A (ja)
TW (1) TW201943554A (ja)
WO (1) WO2019202819A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277075A (ja) * 2006-03-15 2007-10-25 Sumitomo Metal Mining Co Ltd 酸化物焼結体、その製造方法、それを用いた透明導電膜の製造方法、及び得られる透明導電膜
JP2013036073A (ja) * 2011-08-05 2013-02-21 Sumitomo Metal Mining Co Ltd Zn−Sn−O系酸化物焼結体とその製造方法
JP2013047361A (ja) * 2011-08-29 2013-03-07 Mitsubishi Materials Corp スパッタリングターゲット及びその製造方法並びに該ターゲットを用いた薄膜、該薄膜を備える薄膜シート、積層シート
JP2017145185A (ja) * 2015-11-20 2017-08-24 住友金属鉱山株式会社 Sn−Zn−O系酸化物焼結体とその製造方法
WO2018207414A1 (ja) * 2017-05-12 2018-11-15 住友金属鉱山株式会社 Sn-Zn-O系酸化物焼結体とその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2892793B2 (ja) 1990-08-07 1999-05-17 尾池工業株式会社 ハイバリヤー性透明フイルム
JP2002100469A (ja) 2000-09-25 2002-04-05 Pioneer Electronic Corp 有機エレクトロルミネッセンス表示パネル
JP4889195B2 (ja) 2003-09-26 2012-03-07 住友金属鉱山株式会社 ガスバリア性透明樹脂基板、ガスバリア性透明樹脂基板を用いたフレキシブル表示素子、およびガスバリア性透明樹脂基板の製造方法
JP6424671B2 (ja) 2015-02-23 2018-11-21 Jnc株式会社 ガスバリアフィルム積層体とそれを用いた電子部品
JP6638401B2 (ja) 2016-01-06 2020-01-29 凸版印刷株式会社 ガスバリアフィルム積層体およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277075A (ja) * 2006-03-15 2007-10-25 Sumitomo Metal Mining Co Ltd 酸化物焼結体、その製造方法、それを用いた透明導電膜の製造方法、及び得られる透明導電膜
JP2013036073A (ja) * 2011-08-05 2013-02-21 Sumitomo Metal Mining Co Ltd Zn−Sn−O系酸化物焼結体とその製造方法
JP2013047361A (ja) * 2011-08-29 2013-03-07 Mitsubishi Materials Corp スパッタリングターゲット及びその製造方法並びに該ターゲットを用いた薄膜、該薄膜を備える薄膜シート、積層シート
JP2017145185A (ja) * 2015-11-20 2017-08-24 住友金属鉱山株式会社 Sn−Zn−O系酸化物焼結体とその製造方法
WO2018207414A1 (ja) * 2017-05-12 2018-11-15 住友金属鉱山株式会社 Sn-Zn-O系酸化物焼結体とその製造方法

Also Published As

Publication number Publication date
TW201943554A (zh) 2019-11-16
KR20200141987A (ko) 2020-12-21
JP2019183244A (ja) 2019-10-24
CN111954726A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
JP4816116B2 (ja) スパッタリングターゲット用酸化物焼結体および、それを用いて得られる酸化物膜、それを含む透明基材
JP4759143B2 (ja) 透明導電積層体、その製造方法及びそれを用いた表示素子
JP5884549B2 (ja) 透明酸化物膜およびその製造方法
JP5760857B2 (ja) スパッタリングターゲット及びその製造方法並びに該ターゲットを用いた薄膜、該薄膜を備える薄膜シート、積層シート
JP2013047361A (ja) スパッタリングターゲット及びその製造方法並びに該ターゲットを用いた薄膜、該薄膜を備える薄膜シート、積層シート
JP3945395B2 (ja) 透明導電性薄膜、その形成方法、それを用いた表示パネル用透明導電性基材及び有機エレクトロルミネッセンス素子
JP4687374B2 (ja) 透明導電膜及びそれを含む透明導電性基材
CN101065239B (zh) 阻气型透明塑料基板、其制造方法和使用其的柔性显示元件
WO2019202819A1 (ja) 透明酸化物積層膜、透明酸化物積層膜の製造方法、スパッタリングターゲット及び透明樹脂基板
JP5741325B2 (ja) スパッタリングターゲット及びその製造方法並びに該ターゲットを用いた薄膜、該薄膜を備える薄膜シート、積層シート
WO2019150821A1 (ja) 酸化物スパッタ膜、酸化物スパッタ膜の製造方法、酸化物焼結体及び透明樹脂基板
TW201621922A (zh) 透明導電膜及透明導電膜之製造方法
JP5747738B2 (ja) スパッタリングターゲット及びその製造方法並びに該ターゲットを用いた薄膜、該薄膜を備える薄膜シート、積層シート
JP5761528B2 (ja) 透明酸化物膜及びその製造方法並びに酸化物スパッタリングターゲット
JP2007284296A (ja) 焼結体及びその製造方法、その焼結体を用いて得られる透明酸化物薄膜およびその製造方法
WO2019181191A1 (ja) 透明酸化物膜、透明酸化物膜の製造方法、酸化物焼結体及び透明樹脂基板
TW202344489A (zh) 濺鍍靶材、濺鍍靶材之製造方法、氧化物半導體薄膜、薄膜半導體裝置及其製造方法
TW201938372A (zh) 透明氧化物層積膜、透明氧化物層積膜之製造方法及透明樹脂基板
JP2019073747A (ja) 非晶質の透明酸化物膜、Sn−Zn−O系酸化物焼結体、非晶質の透明酸化物膜の製造方法、及びSn−Zn−O系酸化物焼結体の製造方法
JP2012072028A (ja) 薄膜形成用の蒸着材及び該薄膜を備える薄膜シート並びに積層シート
JP2012031497A (ja) 薄膜形成用の蒸着材及び該薄膜を備える薄膜シート並びに積層シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788941

Country of ref document: EP

Kind code of ref document: A1