WO2019198779A1 - 1,4-シクロヘキサンジカルボン酸誘導体、1,4-ジシアノシクロヘキサン、及び1,4-ビス(アミノメチル)シクロヘキサンの製造方法 - Google Patents

1,4-シクロヘキサンジカルボン酸誘導体、1,4-ジシアノシクロヘキサン、及び1,4-ビス(アミノメチル)シクロヘキサンの製造方法 Download PDF

Info

Publication number
WO2019198779A1
WO2019198779A1 PCT/JP2019/015726 JP2019015726W WO2019198779A1 WO 2019198779 A1 WO2019198779 A1 WO 2019198779A1 JP 2019015726 W JP2019015726 W JP 2019015726W WO 2019198779 A1 WO2019198779 A1 WO 2019198779A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclohexanedicarboxylic acid
reaction
acid derivative
dicyanocyclohexane
catalyst
Prior art date
Application number
PCT/JP2019/015726
Other languages
English (en)
French (fr)
Inventor
昭文 飯田
葵 山添
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP19784233.9A priority Critical patent/EP3778544A4/en
Priority to CN201980024974.4A priority patent/CN111954656B/zh
Priority to JP2020513443A priority patent/JP7410458B2/ja
Priority to US16/968,011 priority patent/US11472765B2/en
Priority to KR1020207028943A priority patent/KR20200142004A/ko
Publication of WO2019198779A1 publication Critical patent/WO2019198779A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/22Preparation of carboxylic acid nitriles by reaction of ammonia with carboxylic acids with replacement of carboxyl groups by cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/45Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C255/46Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/36Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C61/00Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C61/08Saturated compounds having a carboxyl group bound to a six-membered ring
    • C07C61/09Completely hydrogenated benzenedicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/16Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings
    • C07C211/18Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings containing at least two amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a method for producing 1,4-cyclohexanedicarboxylic acid derivatives, 1,4-dicyanocyclohexane, and 1,4-bis (aminomethyl) cyclohexane.
  • 1,4-bis (aminomethyl) cyclohexane is an industrially important compound used as a raw material for epoxy curing agents, polyamides, polyurethanes and the like.
  • 1,4-bis (aminomethyl) cyclohexane has two isomers, a cis isomer and a trans isomer derived from a cyclohexane ring. It is known that the properties of polymers using 1,4-bis (aminomethyl) cyclohexane vary greatly depending on the isomer ratio between the cis form and the trans form.
  • polyurethanes using 1,4-bisisocyanatomethylcyclohexane derived from 1,4-bis (aminomethyl) cyclohexane have improved physical properties required for various applications as the trans content increases.
  • Patent Document 1 1,4-bisisocyanatomethylcyclohexane derived from 1,4-bis (aminomethyl) cyclohexane have improved physical properties required for various applications as the trans content increases.
  • 1,4-bis (aminomethyl) cyclohexane there are several methods for producing 1,4-bis (aminomethyl) cyclohexane, but 1,4-dicyanocyclohexane is obtained by subjecting 1,4-cyclohexanedicarboxylic acid to amidation and dehydration reaction.
  • a method for producing 1,4-bis (aminomethyl) cyclohexane by performing a nitrile hydrogenation reaction on dicyanocyclohexane is known.
  • 1,4-dicyanocyclohexane is produced from 1,4-cyclohexanedicarboxylic acid, crystals of 1,4-cyclohexanedicarboxylic acid and its derivatives are often used as raw materials.
  • Patent Document 2 and Patent Document 3 nuclear hydrogenation is performed on an alkali metal salt of terephthalic acid, and the resulting reaction solution is separated from the catalyst, and then acid is added to form 1,4-cyclohexanedicarboxylic acid as crystals.
  • a method of recovery is disclosed.
  • Patent Document 4 discloses a method in which nuclear hydrogenation is performed on terephthalic acid, the catalyst is separated by hot filtration, and 1,4-cyclohexanedicarboxylic acid is recovered after purification.
  • Patent Document 5 discloses a method of recovering 1,4-cyclohexanedicarboxylic acid by performing nuclear hydrogenation on terephthalic acid, separating the catalyst from an alkali metal salt after the nuclear hydrogenation, and adding an acid. ing.
  • the present invention has been made in view of the above problems, and is a novel method for producing a 1,4-cyclohexanedicarboxylic acid derivative, in which a salt is generated when the 1,4-cyclohexanedicarboxylic acid derivative is recovered as a crystal.
  • Another object of the present invention is to provide a method for producing a 1,4-cyclohexanedicarboxylic acid derivative that suppresses the above.
  • Another object of the present invention is to provide a method for producing 1,4-dicyanocyclohexane obtained by the production method and a method for producing 1,4-bis (aminomethyl) cyclohexane.
  • the present inventors have found that the above object can be achieved by heating and concentrating an aqueous ammonia solution of 1,4-cyclohexanedicarboxylic acid, thereby completing the present invention. It came.
  • the present invention is as follows.
  • a method for producing a 1,4-cyclohexanedicarboxylic acid derivative comprising a step of precipitating a 1,4-cyclohexanedicarboxylic acid derivative as a crystal by heating and concentrating an aqueous ammonia solution of 1,4-cyclohexanedicarboxylic acid.
  • the ammonia content in the 1,4-cyclohexanedicarboxylic acid ammonium salt is 0.01% by mole relative to the 1,4-cyclohexanedicarboxylic acid content in the 1,4-cyclohexanedicarboxylic acid ammonium salt.
  • the production method of (2) which is ⁇ 2.00.
  • (9) 1,4-bis (aminomethyl) cyclohexane having a step of obtaining 1,4-bis (aminomethyl) cyclohexane by bringing the 1,4-dicyanocyclohexane obtained by the method (8) into contact with hydrogen to cause hydrogenation reaction. Aminomethyl) cyclohexane production method.
  • a novel method for producing a 1,4-cyclohexanedicarboxylic acid derivative which suppresses salt formation when the 1,4-cyclohexanedicarboxylic acid derivative is recovered as a crystal.
  • a method for producing an acid derivative can be provided.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail, but the present invention is not limited to the present embodiment described below.
  • the present invention can be variously modified without departing from the gist thereof.
  • the method for producing a 1,4-cyclohexanedicarboxylic acid derivative of the present embodiment involves heating and concentrating an aqueous ammonia solution of 1,4-cyclohexanedicarboxylic acid, A step of precipitating the 1,4-cyclohexanedicarboxylic acid derivative as crystals (hereinafter also referred to as “heat-concentrated precipitation step”).
  • 1,4-cyclohexanedicarboxylic acid used as a raw material for 1,4-dicyanocyclohexane as crystals
  • 1,4-cyclohexanedicarboxylic acid is used as in the methods described in Patent Documents 2, 3 and 5.
  • the alkali metal salt is neutralized with an acid.
  • this method requires steps such as treatment of a waste liquid containing by-produced salt and washing of the crystal with water to remove the salt from the crystal.
  • 1,4-cyclohexanedicarboxylic acid derivative used as a raw material for 1,4-dicyanocyclohexane is crystallized by heating and concentrating an aqueous ammonia solution of 1,4-cyclohexanedicarboxylic acid. To be precipitated.
  • Patent Documents 2, 3, and 5 it is possible to suppress the production of salt when recovered as crystals, and for example, further, there is no need for a process such as treatment of waste liquid containing salt, Excellent production efficiency.
  • 1,4-cyclohexanedicarboxylic acid derivative used as a raw material for 1,4-dicyanocyclohexane is highly concentrated by heating and concentrating an aqueous ammonia solution of 1,4-cyclohexanedicarboxylic acid. It can be precipitated as crystals with purity. For this reason, the production method of this embodiment is excellent in production efficiency because a purification step for increasing the purity of the 1,4-cyclohexanedicarboxylic acid derivative is unnecessary.
  • the heating concentration precipitation step at least a part of the water is removed by heating the aqueous ammonia solution of the 1,4-cyclohexanedicarboxylic acid derivative.
  • concentration of ammonia in the aqueous ammonia solution before the heat concentration in the heat concentration precipitation step is preferably 0.1 to 10% by mass with respect to the total amount of the aqueous ammonia solution.
  • the temperature during heating concentration is preferably 30 to 200 ° C.
  • the heating temperature is within the above range, water can be effectively removed from the aqueous ammonia solution by volatilization to produce a 1,4-cyclohexanedicarboxylic acid derivative as a crystal, and as a result, 1,1 in the cyanation step described later.
  • the yield of 4-dicyanocyclohexane is further increased.
  • the heating temperature is more preferably 50 to 200 ° C., further preferably 100 to 200 ° C.
  • the heating temperature is preferably 120 to 200 ° C., more preferably 140 to 200 ° C., from the viewpoint of increasing the trans content of the 1,4-cyclohexanedicarboxylic acid derivative as crystals.
  • the 1,4-cyclohexanedicarboxylic acid derivative produced in the heating concentration precipitation step may or may not contain 1,4-cyclohexanedicarboxylic acid in part.
  • the pressure during heating concentration is preferably 0.003 to 2 MPa.
  • the pressure condition may be a normal pressure condition, a reduced pressure condition or a pressurized condition.
  • the heating concentration method is not particularly limited as long as water can be removed from the aqueous ammonia solution of 1,4-cyclohexanedicarboxylic acid by volatilization.
  • the method of heat concentration is preferably a method using an open system from the viewpoint of positively removing water from the aqueous ammonia solution of 1,4-cyclohexanedicarboxylic acid by volatilization.
  • Examples of the method for recovering the 1,4-cyclohexanedicarboxylic acid derivative as crystals from the heat concentrate in the heat concentration precipitation step include a method of recovering the crystals by filtering the heat concentrate.
  • the liquid content of the mother liquor in the 1,4-cyclohexanedicarboxylic acid derivative after filtration is preferably 5 to 35% by weight, and more preferably 10 to 25% by weight from the viewpoint of operability.
  • the 1,4-cyclohexanedicarboxylic acid derivative after filtration can be used for the next step in a state of containing a mother liquor, or can be used for the next step after taking out the crystals once and drying.
  • the concentration of the 1,4-cyclohexanedicarboxylic acid derivative in the mother liquor after filtration is preferably 50 to 100 mol%, more preferably 70 to 100 mol%, relative to 100 mol% of ammonia.
  • the number of heating concentration precipitation steps may be one time or a plurality of times.
  • the aqueous ammonia solution after recovering the crystals in the first heat concentration precipitation step can be repeatedly used in the second and subsequent heat concentration precipitation steps in order to recover further crystals.
  • the 1,4-cyclohexanedicarboxylic acid derivative can be recovered without omission, so that the yield of 1,4-cyclohexanedicarboxylic acid derivative is further increased. It tends to be excellent.
  • Examples of the 1,4-cyclohexanedicarboxylic acid derivative include one or more selected from the group consisting of 1,4-cyclohexanedicarboxylic acid ammonium salt and 4-carboxamidocyclohexane-1-carboxylic acid. From the viewpoint of further increasing the yield of 1,4-dicyanocyclohexane in the step, 1,4-cyclohexanedicarboxylic acid ammonium salt is preferable.
  • 1,4-cyclohexanedicarboxylic acid derivatives also include 1,4-cyclohexanedicarboxamide, but 1,4-cyclohexanedicarboxamide has a high melting point and is difficult to dissolve during the reaction, which reduces the reactivity. Connected. As a result, high boiling point tends to be formed, and the yield tends to deteriorate. Therefore, the content of 1,4-cyclohexanedicarboxamide in the 1,4-cyclohexanedicarboxylic acid derivative is preferably 10% by mass or less, more preferably 5% by mass or less, and more preferably 1% by mass or less. More preferably.
  • the total content of 1,4-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid ammonium salt, and 4-carboxamidocyclohexane-1-carboxylic acid in the 1,4-cyclohexanedicarboxylic acid derivative is the yield and From the viewpoint of reactivity, it is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 99% by mass or more.
  • the content of ammonia in 1,4-cyclohexanedicarboxylic acid ammonium salt is such that the yield of 1,4-dicyanocyclohexane in the cyanation step described later is further increased in 1,4-cyclohexanedicarboxylic acid ammonium salt.
  • the former / the latter (molar ratio) is preferably 0.01 to 2.00 with respect to the 1,4-cyclohexanedicarboxylic acid content of 1.90 or less (for example, 0.10 to 1. 90), more preferably 1.85 or less (for example, 0.10 to 1.85).
  • the trans isomer content of the 1,4-cyclohexanedicarboxylic acid derivative is preferably 70.0 to 99.9% by mass, more preferably 75.0 to 99.0% by mass, and 78.0%.
  • the content is more preferably 98.0% by mass, and particularly preferably 80.0-96.0% by mass.
  • the aqueous ammonia solution of 1,4-cyclohexanedicarboxylic acid used as a raw material in the heating concentration precipitation step is preferably obtained by nuclear hydrogenation of an aqueous ammonia solution of terephthalic acid.
  • the 1,4-CHDA production method of this embodiment is a process for obtaining 1,4-cyclohexanedicarboxylic acid by a hydrogenation reaction to terephthalic acid in an aqueous ammonia solution (hereinafter also simply referred to as “nuclear hydrogenation reaction”).
  • the 1,4-CHDA production method has a nuclear hydrogenation step, at least a part of the aqueous ammonia solution contained in the reaction solution that has undergone the step can be used as the aqueous ammonia solution in the heating concentration precipitation step. Therefore, effective use of ammonia becomes possible.
  • the nuclear hydrogenation step may employ any reaction system of a suspension bed (batch type, semi-batch type) or a fixed bed (continuous type).
  • a catalyst and water are charged into a reactor, and then hydrogen gas is introduced into the reactor until a predetermined pressure is reached.
  • the liquid is stirred and activated by reducing the catalyst.
  • a catalyst used in a normal nuclear hydrogenation reaction can be adopted.
  • one or more metal catalysts such as Ru, Pd, Pt and Rh, preferably A noble metal catalyst can be used.
  • the catalyst is one or more commonly used metal catalysts as the active component, such as carbon, Al 2 O 3 , SiO 2 , SiO 2 —Al 2 O 3 , TiO 2 , and ZrO 2 . It may be supported on a carrier. When the support is used, the supported amount of the metal catalyst as the active component is preferably 0.1 to 10% by mass with respect to 100% by mass of the support.
  • the pressure in the system for activating the catalyst may be normal pressure (gas phase is replaced with hydrogen) or pressurized.
  • the pressure in the system for pressurization is preferably 0.1 to 8 MPa, and hydrogen gas may be appropriately introduced into the reactor so as to maintain such pressure.
  • the activation temperature is preferably 50 to 250 ° C. When the catalyst activation condition is in the above range, the catalyst can be activated more effectively and reliably. Moreover, the stirring time should just be sufficient time to activate a catalyst.
  • the reactor is cooled, and hydrogen gas remaining in the system is discharged from the system.
  • terephthalic acid and an aqueous ammonia solution are charged into the reactor, and hydrogen gas is introduced until a predetermined pressure is reached.
  • the charged amount of terephthalic acid is preferably 2 to 20% by mass with respect to the entire reaction solution.
  • the amount of the aqueous ammonia solution is preferably such that ammonia is 200 to 400 mol% with respect to 100 mol% of terephthalic acid.
  • the amount of the catalyst used is not limited, and may be appropriately determined so as to achieve the target reaction time in consideration of the content of the supported metal catalyst and the amount of terephthalic acid used for the reaction.
  • the yield and selectivity of the resulting 1,4-cyclohexanedicarboxylic acid can be increased by using each raw material or the like in an amount within the above range.
  • reaction temperature at this time is preferably 40 to 150 ° C.
  • reaction pressure is preferably 0.5 to 15 MPa in terms of hydrogen partial pressure.
  • reaction time should just be time when nuclear hydrogenation reaction fully advances.
  • the reactor is first charged with the catalyst.
  • the reactor is not particularly limited as long as the reactor functions as a fixed bed in which a liquid reaction solution passes over the catalyst and gives a gas, liquid, or solid mass transfer state. Hydrogen gas is circulated in the reactor, heated, and activated by reducing the catalyst.
  • a catalyst used in a normal nuclear hydrogenation reaction can be adopted. Specifically, one or more metal catalysts such as Ru, Pd, Pt and Rh, preferably A noble metal catalyst can be used.
  • the catalyst is one or more commonly used metal catalysts as the active component, such as carbon, Al 2 O 3 , SiO 2 , SiO 2 —Al 2 O 3 , TiO 2 , and ZrO 2 . It may be supported on a carrier. When the support is used, the supported amount of the metal catalyst as the active component is preferably 0.1 to 10% by mass with respect to 100% by mass of the support.
  • the pressure in the system for activating the catalyst may be normal pressure or increased pressure.
  • the pressure in the system for pressurization is preferably 0.1 to 8 MPa, and hydrogen gas may be appropriately introduced into the reaction tube so as to maintain such pressure.
  • the activation temperature is preferably 50 to 300 ° C. When the catalyst activation condition is in the above range, the catalyst can be activated more effectively and reliably. Moreover, the heating time should just be sufficient time to activate a catalyst.
  • the reactor is appropriately cooled or heated to a reaction temperature, and hydrogen gas is introduced until a predetermined pressure is reached. Hydrogen gas is then introduced into the reactor at a predetermined flow rate.
  • the pressure in the reactor may be normal pressure or increased pressure. When the pressure is applied, the pressure in the system is preferably 0.5 to 15 MPa, and the reaction temperature is preferably 40 to 150 ° C.
  • the flow rate of hydrogen is preferably an amount such that hydrogen is 300 to 1000 mol%, preferably 300 to 600 mol%, with respect to 100 mol% of terephthalic acid contacting the catalyst per unit time. More preferred.
  • an aqueous ammonia solution of terephthalic acid is prepared and circulated in the reactor using a pump.
  • the concentration of terephthalic acid in the aqueous ammonia solution is preferably 2 to 20% by mass.
  • the amount of the aqueous ammonia solution is preferably such that ammonia is 200 to 400 mol% with respect to 100 mol% of terephthalic acid.
  • the amount of the catalyst used is not limited, and may be appropriately determined so as to achieve the target conversion rate in consideration of the content of the supported metal catalyst and the amount of terephthalic acid used in the reaction.
  • the reaction time should just be time which a nuclear hydrogenation reaction fully advances. By adjusting each reaction condition within the above range, the yield and selectivity of the obtained 1,4-cyclohexanedicarboxylic acid tend to be increased.
  • the resulting reaction solution contains an aqueous ammonia solution and the produced 1,4-cyclohexanedicarboxylic acid.
  • the method for producing 1,4-dicyanocyclohexane according to the present embodiment comprises cyanating a 1,4-cyclohexanedicarboxylic acid derivative obtained by the method for producing 1,4-cyclohexanedicarboxylic acid derivative according to this embodiment with ammonia. It has a step of obtaining 1,4-dicyanocyclohexane by reaction (hereinafter also simply referred to as “cyanation step”).
  • cyanation step By using a 1,4-cyclohexanedicarboxylic acid derivative in the cyanation step, the yield of 1,4-dicyanocyclohexane is increased as compared to the case of cyanation only by introducing ammonia gas into the system, for example. Can do.
  • the cause is not limited to this, but it is considered that an intermediate is formed in the 1,4-cyclohexanedicarboxylic acid derivative by heating in the heating concentration precipitation step, and the intermediate contributes to the cyanation reaction. It is done
  • cyanation step first, a 1,4-cyclohexanedicarboxylic acid derivative, a solvent as necessary, water as needed, and a catalyst are charged into the reactor, and the pressure in the system becomes a predetermined pressure. Inert gas is introduced until. After that, the reactor is heated to a predetermined temperature, and the reactor is stirred while introducing an inert gas as appropriate so that the pressure in the reactor is maintained within a certain range. Then, the cyanation reaction proceeds.
  • no solvent or a solvent may be used, preferably a solvent having a boiling point of 600 ° C. or lower, more preferably a solvent having a boiling point of 500 ° C. or lower, and further preferably a solvent having a boiling point of 420 ° C. or lower.
  • the boiling point of the solvent which is higher than the reaction temperature of the cyanation reaction is preferably 250 ° C. or higher, more preferably 270 ° C. or higher, and further preferably 300 ° C. or higher.
  • the boiling point is 300 ° C. or higher, the cyanation reaction proceeds smoothly, and the generation of impurities such as a trimer of dicyanocyclohexane tends to be suppressed.
  • Solvents used in the cyanation step include aliphatic alkanes such as heptadecane, nonadecane, and docosane; aliphatic alkenes such as heptadecene, nonadecene, and docosene; aliphatic alkynes such as heptadecine, nonadecine, and docosine; undecylbenzene, tridecylbenzene Alkyl substituted aromatics such as tetradecylbenzene, alkylbenzenes such as dialkylbenzene and alkylnaphthalene; acids or acid anhydrides such as 2,5-dichlorobenzoic acid and tetrachlorophthalic anhydride; undecanamide, lauric acid amide, stearin Amide compounds such as acid amides; Nitrile compounds such as tetradecane nitrile, hexadecane nitrile, 2-nap
  • a catalyst used in a usual cyanation reaction can also be adopted, and specifically, silica gel, alumina, silica alumina, hydrotalcite, magnesium oxide, zinc oxide, tin oxide, iron oxide, titanium oxide. Zirconium oxide, hafnium oxide, manganese oxide, tungsten oxide, vanadium pentoxide, niobium pentoxide, tantalum oxide, gallium oxide, indium oxide, scandium oxide, and other metal oxides. It may be supported.
  • supported components include alkali metals such as sodium, lithium, potassium, rubidium, and cesium, tin, rhenium, manganese, molybdenum, tungsten, vanadium, iron, nickel, zinc, chromium, boric acid, hydrochloric acid, and phosphoric acid. Can be mentioned.
  • a metal catalyst as the active ingredient carbon, hydrotalcite, MgO, Al 2 O 3, SiO 2, SiO 2 -Al 2 O 3, TiO 2, and usually 1 used such as ZrO 2 or 2 You may use the catalyst carry
  • the supported amount of the metal catalyst as the active component is preferably 0.1 to 10% by mass with respect to 100% by mass of the carrier.
  • examples of the catalyst include rhenium compounds such as perrhenic acid and rhenium oxide, organotin compounds such as dibutyltin oxide, ruthenium compounds such as dichlorotris (triphenylphosphine) ruthenium (II), and cobalt oxide.
  • the catalyst is preferably a catalyst containing zinc oxide, tin oxide, or iron oxide from the viewpoint of allowing the cyanation reaction to proceed more effectively and reliably.
  • a catalyst is used individually by 1 type or in combination of 2 or more types.
  • the amount of the catalyst used is preferably 0.05 to 20% by mass with respect to 100% by mass of the 1,4-cyclohexanedicarboxylic acid derivative.
  • ammonia gas may be appropriately introduced into the reactor.
  • the flow rate may be appropriately adjusted depending on the scale of the reaction, etc., and is usually 0.1 to 5 times mole per hour, preferably 0.3 to 5 times mole per hour, relative to 1 mole of 1,4-cyclohexanedicarboxylic acid derivative.
  • the amount is 4 times mol, and more preferably 0.5 to 3 times mol per hour.
  • the amount of ammonia gas used is preferably 200 to 1000 mol% with respect to 100 mol% of the 1,4-cyclohexanedicarboxylic acid derivative. This tends to increase the yield and selectivity of the resulting 1,4-dicyanocyclohexane.
  • the reaction temperature in the production method of the present embodiment is not particularly limited as long as the cyanation reaction proceeds, preferably 270 to 400 ° C., more preferably 280 ° C. to 380 ° C., further preferably 290 From °C to 350 °C.
  • the reaction pressure in the production method of the present embodiment may be a negative pressure, a normal pressure, or a positive pressure.
  • the reaction time may be a time that allows the cyanation reaction to proceed sufficiently.
  • the yield of 1,4-dicyanocyclohexane tends to be increased by adjusting the concentration of each raw material and the reaction conditions within the above-mentioned ranges.
  • the reaction solution containing 1,4-dicyanocyclohexane obtained in this manner may be recovered as needed to recover 1,4-dicyanocyclohexane (hereinafter, this step is referred to as “distillation step”). That said.)
  • distillation step for example, by heating the distiller from the bottom and cooling the top so that the pressure in the distiller system is 3.0 kPA to 4.0 kPA and the temperature is 180 to 230 ° C. It is carried out by contacting with liquid. Thereby, 1,4-dicyanocyclohexane can be selectively extracted from the top of the distiller and recovered.
  • 1,4-dicyanocyclohexane obtained as described above is brought into contact with hydrogen to perform a hydrogenation reaction (hereinafter referred to as “nitrile hydrogenation reaction”).
  • nitrile hydrogenation reaction a hydrogenation reaction
  • 1,4-bis (aminomethyl) cyclohexane hereinafter also simply referred to as “nitrile hydrogenation step”.
  • nitrile hydrogenation step first, 1,4-dicyanocyclohexane, a solvent, and a catalyst are charged into a reactor, and hydrogen gas is introduced until the pressure in the system reaches a predetermined pressure. Thereafter, the inside of the reactor is heated to a predetermined temperature, and the nitrile hydrogenation reaction is allowed to proceed while appropriately introducing hydrogen gas into the reactor so that the pressure in the reactor is maintained within a certain range. .
  • a solvent used in a usual nitrile hydrogenation reaction can also be adopted. Specifically, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol are used. And the like, aromatic hydrocarbons such as alcohol, metaxylene, mesitylene, and pseudocumene, liquid ammonia, and aqueous ammonia.
  • a solvent is used individually by 1 type or in combination of 2 or more types.
  • the catalyst used for a normal nitrile hydrogenation reaction can also be employ
  • a catalyst in which Ni and / or Co is supported by Al 2 O 3 , SiO 2 , diatomaceous earth, SiO 2 —Al 2 O 3 , and ZrO 2 by precipitation, Raney nickel, or Raney cobalt is suitable as the catalyst. Used for. Among these, a Raney cobalt catalyst and a Raney nickel catalyst are preferred from the viewpoint of allowing the nitrile hydrogenation reaction to proceed more effectively and reliably.
  • a catalyst is used individually by 1 type or in combination of 2 or more types.
  • the amount of the catalyst used is preferably 0.1 to 150% by mass, more preferably 0.1 to 20% by mass with respect to 100% by mass of 1,4-dicyanocyclohexane, and 0.5 to More preferably, it is 15 mass%.
  • the concentration of 1,4-dicyanocyclohexane is preferably 1 to 50% by mass and more preferably 2 to 40% by mass with respect to the total amount of the reaction solution from the viewpoint of reaction efficiency.
  • the reaction temperature in the nitrile hydrogenation step is preferably 40 to 150 ° C.
  • the reaction pressure is preferably 0.5 to 15 MPa in terms of hydrogen partial pressure.
  • reaction time should just be time which nitrile hydrogenation reaction fully advances. By adjusting the reaction conditions within the above range, the yield and selectivity of the resulting 1,4-bis (aminomethyl) cyclohexane tend to be increased.
  • Reaction solution is HPLC (product name “Prominence” manufactured by Shimadzu Corporation), column: model name “KC-811” manufactured by Shodex, condition: eluent: 0.1% by mass aqueous solution of phosphoric acid, flow rate 0.7 mL / min, column temperature (50 ° C., photodiode array detector).
  • the reaction solution was filtered to recover crystals.
  • the content of ammonia in 1,4-cyclohexanedicarboxylic acid ammonium salt was found to be that of 1,4-cyclohexanedicarboxylic acid in 1,4-cyclohexanedicarboxylic acid ammonium salt.
  • the molar ratio with respect to the content was 1.14.
  • the content of trans in the 1,4-cyclohexanedicarboxylic acid derivative did not change before and after concentration by heating.
  • the reaction solution was filtered to recover crystals.
  • the content of ammonia in 1,4-cyclohexanedicarboxylic acid ammonium salt was found to be that of 1,4-cyclohexanedicarboxylic acid in 1,4-cyclohexanedicarboxylic acid ammonium salt.
  • the molar ratio with respect to the content was 1.61.
  • the content of trans in the 1,4-cyclohexanedicarboxylic acid derivative did not change before and after concentration by heating.
  • the content of ammonia in 1,4-cyclohexanedicarboxylic acid ammonium salt was found to be that of 1,4-cyclohexanedicarboxylic acid in 1,4-cyclohexanedicarboxylic acid ammonium salt.
  • the molar ratio was 1.81 with respect to the content.
  • the content of trans in the 1,4-cyclohexanedicarboxylic acid derivative did not change before and after concentration by heating.
  • Synthesis Example 2--7 (First heat concentration) The reaction solution prepared in Synthesis Example 1-1 in a 300 ml SUS316 pressure vessel having a stirring blade, thermocouple, pressure gauge, cooler, and receiver (periodically between 541 and 962 hours from the start of the reaction) 155.58 g of the extracted reaction solution) was charged. While stirring at 600 rpm, the temperature was raised until the internal temperature reached 180 ° C. After reaching 180 ° C., the purge valve was slightly opened and the gas component was condensed with a cooler to obtain a fraction. The internal pressure after reaching 180 ° C. was 0.91 MPaG, and the internal pressure during distillation was 0.71 MPaG.
  • the reaction solution was filtered to recover crystals and mother liquor.
  • the weight of the obtained crystals after vacuum drying was 10.23 g, and the ammonia content in 1,4-cyclohexanedicarboxylic acid ammonium salt was 1,4-cyclohexanedicarboxylic acid in 1,4-cyclohexanedicarboxylic acid ammonium salt.
  • the molar ratio was 0.33 with respect to the content of cis, and the content of trans in the 1,4-cyclohexanedicarboxylic acid derivative was 89.17%.
  • the weight of the mother liquor obtained was 47.03 g, which was used for the fourth heat concentration almost in total.
  • the reaction solution was filtered to recover crystals and mother liquor.
  • the weight of the obtained crystals after vacuum drying was 8.78 g, and the ammonia content in 1,4-cyclohexanedicarboxylic acid ammonium salt was 1,4-cyclohexanedicarboxylic acid in 1,4-cyclohexanedicarboxylic acid ammonium salt.
  • the molar ratio was 0.30, and the trans content in the 1,4-cyclohexanedicarboxylic acid derivative was 89.22%.
  • the weight of the mother liquor obtained was 46.36 g, which was used for the fifth heating concentration almost in total.
  • the reaction solution was filtered to recover crystals and mother liquor.
  • the weight of the obtained crystals after vacuum drying was 14.75 g, and the content of ammonia in 1,4-cyclohexanedicarboxylic acid ammonium salt was 1,4-cyclohexanedicarboxylic acid in 1,4-cyclohexanedicarboxylic acid ammonium salt.
  • the molar ratio was 0.43, and the trans isomer content in the 1,4-cyclohexanedicarboxylic acid derivative was 83.14%.
  • the weight of the mother liquor obtained was 43.96 g, which was used for the sixth heating concentration.
  • the reaction solution was filtered to recover crystals and mother liquor.
  • the weight of the obtained crystals after vacuum drying was 12.82 g, and the ammonia content in 1,4-cyclohexanedicarboxylic acid ammonium salt was 1,4-cyclohexanedicarboxylic acid in 1,4-cyclohexanedicarboxylic acid ammonium salt.
  • the molar ratio was 0.39, and the trans isomer content in the 1,4-cyclohexanedicarboxylic acid derivative was 80.85%.
  • the weight of the mother liquor obtained was 37.45 g, which was used for the seventh heating concentration.
  • the reaction solution was filtered to recover crystals and mother liquor.
  • the weight of the obtained crystal after vacuum drying was 9.81 g, and the ammonia content in 1,4-cyclohexanedicarboxylic acid ammonium salt was 1,4-cyclohexanedicarboxylic acid in 1,4-cyclohexanedicarboxylic acid ammonium salt.
  • the molar ratio was 0.31, and the trans isomer content in the 1,4-cyclohexanedicarboxylic acid derivative was 87.00%.
  • the weight of the mother liquor thus obtained was 50.33 g, which was used for the eighth heating concentration.
  • the reaction solution was filtered to recover crystals and mother liquor.
  • the weight of the obtained crystals after vacuum drying was 10.29 g, and the ammonia content in 1,4-cyclohexanedicarboxylic acid ammonium salt was 1,4-cyclohexanedicarboxylic acid in 1,4-cyclohexanedicarboxylic acid ammonium salt.
  • the molar ratio was 0.31, and the trans isomer content in the 1,4-cyclohexanedicarboxylic acid derivative was 90.72%.
  • the weight of the mother liquor obtained was 50.97 g, which was used for the ninth heating concentration.
  • the reaction solution was filtered to recover crystals and mother liquor.
  • the weight of the obtained crystals after vacuum drying was 15.80 g, and the ammonia content in 1,4-cyclohexanedicarboxylic acid ammonium salt was 1,4-cyclohexanedicarboxylic acid in 1,4-cyclohexanedicarboxylic acid ammonium salt.
  • the molar ratio was 0.45, and the trans isomer content in the 1,4-cyclohexanedicarboxylic acid derivative was 82.24%.
  • the obtained mother liquor weighed 45.23 g, and was used for the 10th heat concentration in almost the whole amount.
  • the reaction solution was filtered to recover crystals and mother liquor.
  • the weight of the obtained crystals after vacuum drying was 10.89 g, and the ammonia content in 1,4-cyclohexanedicarboxylic acid ammonium salt was 1,4-cyclohexanedicarboxylic acid in 1,4-cyclohexanedicarboxylic acid ammonium salt.
  • the molar ratio was 0.27, and the trans isomer content in the 1,4-cyclohexanedicarboxylic acid derivative was 89.79%.
  • the weight of the mother liquor obtained was 49.05 g.
  • -Ammonia content in cyclohexanedicarboxylic acid ammonium salt is 0.34) in molar ratio with respect to 1,4-cyclohexanedicarboxylic acid content in 1,4-cyclohexanedicarboxylic acid ammonium salt, oxidation as catalyst Zinc (manufactured by Kanto Chemical Co., Inc.) 0.20 g and 1,4-dicyanocyclohexane 50 g were charged. Thereafter, heating was started, and nitrogen gas (flow rate: 34 NmL / min) and ammonia gas (flow rate: 174 NmL / min) were introduced at 170 ° C.
  • -Ammonia content in cyclohexanedicarboxylic acid ammonium salt is 0.34) in molar ratio with respect to 1,4-cyclohexanedicarboxylic acid content in 1,4-cyclohexanedicarboxylic acid ammonium salt, oxidation as catalyst Zinc (manufactured by Kanto Chemical Co., Inc.) 0.20 g was charged. Thereafter, heating was started, and nitrogen gas (flow rate: 34 NmL / min) and ammonia gas (flow rate: 174 NmL / min) were introduced at 170 ° C. The temperature was further raised, bubbling with the reaction solution was started at 270 ° C., and the temperature was raised to 300 ° C.
  • the cyanation reaction was carried out for 7 hours while stirring at 300 rpm. After completion of the reaction, the same operation as in Synthesis Example 3-1 was performed, and analysis was performed by GC. The yield of 1,4-dicyanocyclohexane was 92.8 mol%.
  • the inside of the container is heated to a reaction temperature of 80 ° C., the temperature is kept constant, and an amination reaction (nitrile hydrogenation reaction) by hydrogenation is performed while stirring the inside of the container at 750 rpm with an electromagnetic stirring blade. Allowed to proceed for 1 minute.
  • the catalyst was removed by filtration, followed by gas chromatography (model name “GC2010 PLUS”, manufactured by Shimadzu Corporation), column: product name “HP-5 ms”, manufactured by Agilent Technologies, Inc., length 30 m ⁇ inner diameter 0.25 mm, film thickness 0.25 ⁇ m).
  • the nuclear hydrogenation reaction was allowed to proceed for 360 minutes while stirring at 800 rpm. After completion of the reaction, the catalyst in the reaction solution was removed by filtration. Next, 75 ml of 5N HCl aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) was dropped into the reaction solution to precipitate crystals. The precipitated crystals were collected by filtration, and the collected crystals were washed with pure water. In order to remove NaCl in the crystals, it was necessary to wash with pure water twice. 1,4-Cyclohexanedicarboxylic acid is also dissolved in the mother liquor / cleaning solution, leading to a decrease in yield due to loss. NaCl was produced in amounts corresponding to the charged NaOH and HCl.
  • the 1,4-cyclohexanedicarboxylic acid derivative and 1,4-dicyanocyclohexane obtained by the production method of the present invention are effective as optical materials for plastic lenses, prisms, optical fibers, information recording substrates, filters, etc. used for polyamide, polyurethane, etc. Since it is a raw material for bis (aminomethyl) cyclohexane, it has industrial applicability in such fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

1,4-シクロヘキサンジカルボン酸のアンモニア水溶液を加熱濃縮することにより、1,4-シクロヘキサンジカルボン酸誘導体を結晶として析出させる工程を有する、1,4-シクロヘキサンジカルボン酸誘導体の製造方法。

Description

1,4-シクロヘキサンジカルボン酸誘導体、1,4-ジシアノシクロヘキサン、及び1,4-ビス(アミノメチル)シクロヘキサンの製造方法
 本発明は、1,4-シクロヘキサンジカルボン酸誘導体、1,4-ジシアノシクロヘキサン、及び1,4-ビス(アミノメチル)シクロヘキサンの製造方法に関する。
 1,4-ビス(アミノメチル)シクロヘキサンは、エポキシ硬化剤、ポリアミド、ポリウレタン等の原料として使用される工業的に重要な化合物である。1,4-ビス(アミノメチル)シクロヘキサンは、シクロヘキサン環に由来するシス体とトランス体の2種類の異性体が存在する。1,4-ビス(アミノメチル)シクロヘキサンを使用したポリマーは、シス体とトランス体の異性体比により物性が大きく変化することが知られている。
 例えば、1,4-ビス(アミノメチル)シクロヘキサンから誘導される1,4-ビスイソシアナトメチルシクロヘキサンを用いたポリウレタンは、トランス体の含有率が高いほど各種用途に応じた要求物性が向上することが知られている(特許文献1)。
 1,4-ビス(アミノメチル)シクロヘキサンの製造方法としてはいくつか挙げられるが、1,4-シクロヘキサンジカルボン酸に対してアミド化及び脱水反応を行い1,4-ジシアノシクロヘキサンとし、1,4-ジシアノシクロヘキサンに対してニトリル水添反応を行うことで1,4-ビス(アミノメチル)シクロヘキサンを製造する方法が知られている。1,4-シクロヘキサンジカルボン酸から1,4-ジシアノシクロヘキサンを製造する際に、1,4-シクロヘキサンジカルボン酸やその誘導体の結晶が原料として用いられることが多い。
 1,4-ジシアノシクロヘキサンの原料となる結晶の1,4-シクロヘキサンジカルボン酸やその誘導体の製造方法には以下のような方法が知られている。特許文献2及び特許文献3には、テレフタル酸のアルカリ金属塩に対して核水添し、得られた反応液を触媒と分離後、酸を添加して1,4-シクロヘキサンジカルボン酸を結晶として回収する方法が開示されている。特許文献4には、テレフタル酸に対して核水添を実施し、熱ろ過で触媒を分離後、精製後に1,4-シクロヘキサンジカルボン酸を回収する方法が開示されている。特許文献5には、テレフタル酸に対して核水添を実施し、核水添後にアルカリ金属塩としてから触媒と分離し、酸を添加し1,4-シクロヘキサンジカルボン酸を回収する方法が開示されている。
国際公開第2009/051114号 特公昭50-10581号公報 特表平7-507041号公報 特開2002-69032号公報 特許第5448987号公報
 しかしながら、特許文献2及び特許文献3に記載の方法では、1,4-シクロヘキサンジカルボン酸のアルカリ金属塩を中和し、1,4-シクロヘキサンジカルボン酸を結晶として回収する時に塩が副生する。このため、副生した塩を含む廃液の処理、及び結晶中から塩を除去するための結晶の水洗等の工程が必要となる。特許文献4に記載の方法では、1,4-シクロヘキサンジカルボン酸と触媒を熱ろ過で分離している。このような方法では、得られる1,4-シクロヘキサンジカルボン酸の純度が低いため、1,4-シクロヘキサンジカルボン酸の純度を高めるための精製工程が必要である。特許文献5に記載の方法では、1,4-シクロヘキサンジカルボン酸と触媒を分離する時に一旦アルカリ金属塩とし、その後1,4-シクロヘキサンジカルボン酸を結晶として回収する際に中和している。具体的には、この文献の実施例に記載の方法では1,4-シクロヘキサンジカルボン酸100質量%に対して85質量%のNaClが生成する。このため、この方法もまた、特許文献3に記載の方法と同様に副生した塩を含む廃液の処理、結晶中から塩を除去するための結晶の水洗等の工程が必要となる。
 本発明は、上記課題に鑑みてなされたものであり、新規な1,4-シクロヘキサンジカルボン酸誘導体の製造方法であって、1,4-シクロヘキサンジカルボン酸誘導体を結晶として回収する際の塩の生成を抑制する1,4-シクロヘキサンジカルボン酸誘導体の製造方法を提供することにある。更に本発明は、その製造方法によって得られる1,4-ジシアノシクロヘキサンの製造方法、及び1,4-ビス(アミノメチル)シクロヘキサンの製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、1,4-シクロヘキサンジカルボン酸のアンモニア水溶液を加熱濃縮することにより、上記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記のとおりである。
(1)
 1,4-シクロヘキサンジカルボン酸のアンモニア水溶液を加熱濃縮することにより、1,4-シクロヘキサンジカルボン酸誘導体を結晶として析出させる工程を有する、1,4-シクロヘキサンジカルボン酸誘導体の製造方法。
(2)
 前記1,4-シクロヘキサンジカルボン酸誘導体が1,4-シクロヘキサンジカルボン酸アンモニウム塩、及び/又は4-カルボキサミドシクロヘキサン-1-カルボン酸である、(1)の製造方法。
(3)
 前記1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量が、前記1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.01~2.00である、(2)の製造方法。
(4)
 前記工程において、加熱濃縮時の温度が30~200℃である、(1)~(3)のいずれかの製造方法。
(5)
 前記工程において、加熱濃縮時の圧力が0.003~2MPaである、(1)~(4)のいずれかの製造方法。
(6)
 前記1,4-シクロヘキサンジカルボン酸誘導体のトランス体の含有量が70.0~99.9質量%である、(1)~(5)のいずれかの製造方法。
(7)
 前記1,4-シクロヘキサンジカルボン酸のアンモニア水溶液を、テレフタル酸のアンモニア水溶液を核水添することにより得る、(1)~(6)のいずれかの製造方法。
(8)
 (1)~(7)のいずれかの製造方法により得られた1,4-シクロヘキサンジカルボン酸誘導体をアンモニアと接触させてシアノ化反応させることにより1,4-ジシアノシクロヘキサンを得る工程を有する、1,4-ジシアノシクロヘキサンの製造方法。
(9)
 (8)の方法により得られた1,4-ジシアノシクロヘキサンを水素と接触させて水素添加反応させることにより、1,4-ビス(アミノメチル)シクロヘキサンを得る工程を有する、1,4-ビス(アミノメチル)シクロヘキサンの製造方法。
 本発明によれば、新規な1,4-シクロヘキサンジカルボン酸誘導体の製造方法であって、1,4-シクロヘキサンジカルボン酸誘導体を結晶として回収する際の塩の生成を抑制する1,4-シクロヘキサンジカルボン酸誘導体の製造方法を提供可能である。更に本発明によれば、その製造方法によって得られる1,4-ジシアノシクロヘキサンの製造方法、1,4-ビス(アミノメチル)シクロヘキサンの製造方法を提供可能である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明するが、本発明は下記本実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
 本実施形態の1,4-シクロヘキサンジカルボン酸誘導体の製造方法(以下、「1,4-CHDA製造方法」ともいう。)は、1,4-シクロヘキサンジカルボン酸のアンモニア水溶液を加熱濃縮することにより、1,4-シクロヘキサンジカルボン酸誘導体を結晶として析出させる工程(以下、「加熱濃縮析出工程」ともいう。)を有する。1,4-ジシアノシクロヘキサンの原料として用いられる1,4-シクロヘキサンジカルボン酸を結晶として回収するために、通常、特許文献2、3及び5に記載の方法のように、1,4-シクロヘキサンジカルボン酸のアルカリ金属塩を酸で中和する方法が用いられることが多い。しかしながら、この方法では、副生した塩を含む廃液の処理、結晶中から塩を除去するための結晶の水洗等の工程が必要となる。これに対し、本実施形態の製造方法では、1,4-シクロヘキサンジカルボン酸のアンモニア水溶液を加熱濃縮することにより、1,4-ジシアノシクロヘキサンの原料として用いられる1,4-シクロヘキサンジカルボン酸誘導体を結晶として析出させる。これにより、特許文献2、3及び5に記載の方法のように、結晶として回収する際の塩の生成を抑制でき、例えば、更に、塩を含む廃液の処理等の工程が不要であるため、生産効率に優れる。一方、1,4-ジシアノシクロヘキサンの原料として用いられる1,4-シクロヘキサンジカルボン酸を結晶として回収するために、特許文献4に記載のように、テレフタル酸に対して核水添を実施し、熱ろ過で触媒を分離することも考えられる。しかしながら、このような方法では、1,4-シクロヘキサンジカルボン酸の純度が低いため、1,4-シクロヘキサンジカルボン酸の純度を高めるための精製工程が必要である。これに対し、本実施形態の製造方法では、1,4-シクロヘキサンジカルボン酸のアンモニア水溶液を加熱濃縮することにより、1,4-ジシアノシクロヘキサンの原料として用いられる1,4-シクロヘキサンジカルボン酸誘導体を高い純度で結晶として析出できる。このため、本実施形態の製造方法では、1,4-シクロヘキサンジカルボン酸誘導体の純度を高めるための精製工程が不要であるため、生産効率に優れる。
 加熱濃縮析出工程では、1,4-シクロヘキサンジカルボン酸誘導体のアンモニア水溶液を加熱することにより、水の少なくとも一部が除去される。また、加熱濃縮析出工程における加熱濃縮前のアンモニア水溶液中のアンモニアの濃度は、アンモニア水溶液の全体量に対して、0.1~10質量%であることが好ましい。
 加熱濃縮析出工程において、加熱濃縮時の温度(加熱温度)は、30~200℃であることが好ましい。加熱温度が上記範囲内であることにより、アンモニア水溶液から水を揮発により有効に除去して結晶としての1,4-シクロヘキサンジカルボン酸誘導体を生成でき、その結果、後述するシアノ化工程での1,4-ジシアノシクロヘキサンの収率が一層高くなる。同様の観点から、加熱温度は、50~200℃であることがより好ましく、100~200℃であることが更に好ましい。一方、加熱温度は、結晶としての1,4-シクロヘキサンジカルボン酸誘導体のトランス体の含有量を高める観点から、120~200℃であることが好ましく、140~200℃であることがより好ましい。
 本実施形態において、加熱濃縮析出工程において生成する1,4-シクロヘキサンジカルボン酸誘導体には、その一部に1,4-シクロヘキサンジカルボン酸が含まれていてもよく、含まれてなくてもよい。
 加熱濃縮析出工程において、加熱濃縮時の圧力は、0.003~2MPaであることが好ましい。加熱濃縮時の圧力が上記範囲内であることにより、アンモニア水溶液から水を揮発により有効に除去して結晶としての1,4-シクロヘキサンジカルボン酸誘導体を生成でき、後述するシアノ化工程での1,4-ジシアノシクロヘキサンの収率が一層高くなる。また、圧力条件は、常圧条件であってもよく、減圧条件又は加圧条件であってもよい。ただし、結晶としての1,4-シクロヘキサンジカルボン酸誘導体のトランス体の含有量を高める観点から、加圧条件であることが好ましい。
 加熱濃縮析出工程において、加熱濃縮する方法は1,4-シクロヘキサンジカルボン酸のアンモニア水溶液から水を揮発により除去できる方法であれば、特に限定されない。加熱濃縮する方法は、1,4-シクロヘキサンジカルボン酸のアンモニア水溶液から水を揮発により、積極的に系外へ除去する観点から開放系を利用する方法が好ましい。
 加熱濃縮析出工程において、加熱濃縮物から結晶としての1,4-シクロヘキサンジカルボン酸誘導体を回収する方法としては、例えば、加熱濃縮物をろ過することにより結晶を回収する方法が挙げられる。
 ろ過後の1,4-シクロヘキサンジカルボン酸誘導体中の母液の含液率は、操作性の観点から、5~35重量%が好ましく、10~25重量%であることがより好ましい。ろ過後の1,4-シクロヘキサンジカルボン酸誘導体は母液を含液した状態で次工程に供することもできるし、一旦結晶を取り出し、乾燥した後に次工程に供することもできる。
 ろ過後の母液中の1,4-シクロヘキサンジカルボン酸誘導体の濃度は、アンモニア100モル%に対して、50~100モル%が好ましく、70~100モル%であることがより好ましい。
 本実施形態の製造方法において、加熱濃縮析出工程の回数は、1回であってもよく、複数回であってもよい。本実施形態の製造方法では、1回目の加熱濃縮析出工程により結晶を回収した後のアンモニア水溶液を、更に結晶を回収するために2回目以降の加熱濃縮析出工程に繰り返し用いることができる。本実施形態の製造方法は、加熱濃縮析出工程の回数が複数回であることにより、1,4-シクロヘキサンジカルボン酸誘導体を漏れなく回収できるため、1,4-シクロヘキサンジカルボン酸誘導体の収率に一層優れる傾向にある。
 1,4-シクロヘキサンジカルボン酸誘導体は、例えば、1,4-シクロヘキサンジカルボン酸アンモニウム塩、及び4-カルボキサミドシクロヘキサン-1-カルボン酸からなる群より選択される1種以上が挙げられ、後述するシアノ化工程での1,4-ジシアノシクロヘキサンの収率が一層高くなる観点から、1,4-シクロヘキサンジカルボン酸アンモニウム塩であることが好ましい。一方、1,4-シクロヘキサンジカルボン酸誘導体としては、1,4-シクロヘキサンジカルボキサミドも挙げられるが、1,4-シクロヘキサンジカルボキサミドは融点が高く、反応時に溶解し難いことから、反応性の低下につながる。その結果、高沸を形成し易く、収率が悪化する傾向にある。このため、1,4-シクロヘキサンジカルボン酸誘導体中の1,4-シクロヘキサンジカルボキサミドの含有量は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることが更に好ましい。一方、1,4-シクロヘキサンジカルボン酸誘導体中の1,4-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸アンモニウム塩、及び4-カルボキサミドシクロヘキサン-1-カルボン酸の合計の含有量は、収率及び反応性の観点から、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、99質量%以上であることが更に好ましい。
 1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、後述するシアノ化工程での1,4-ジシアノシクロヘキサンの収率が一層高くなる観点から、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、前者/後者(モル比)で、0.01~2.00であることが好ましく、1.90以下(例えば、0.10~1.90)であることがより好ましく、1.85以下(例えば、0.10~1.85)であることが更に好ましい。
 1,4-シクロヘキサンジカルボン酸誘導体のトランス体の含有量は、70.0~99.9質量%であることが好ましく、75.0~99.0質量%であることがより好ましく、78.0~98.0質量%であることが更に好ましく、80.0~96.0質量%であることが特に好ましい。
 加熱濃縮析出工程において原料として用いられる1,4-シクロヘキサンジカルボン酸のアンモニア水溶液は、テレフタル酸のアンモニア水溶液を核水添することにより得ることが好ましい。本実施形態の1,4-CHDA製造方法は、アンモニア水溶液中のテレフタル酸に対する水素添加反応(以下、単に「核水添反応」ともいう。)によって、1,4-シクロヘキサンジカルボン酸を得る工程(以下、単に「核水添工程」ともいう。)を有することが好ましい。1,4-CHDA製造方法が核水添工程を有することにより、その工程を経た反応液に含まれるアンモニア水溶液の少なくとも一部を、加熱濃縮析出工程におけるアンモニア水溶液として用いることができる。そのため、アンモニアの有効活用も可能になる。
(核水添工程)
 核水添工程は懸濁床(回分式、半回分式)、固定床(連続式)のいずれの反応方式を採用してもよい。懸濁床では、例えば、まず、反応器内に触媒と水とを仕込んだ後に、その反応器内に水素ガスを所定の圧力になるまで導入し、その圧力を維持して加熱しながら懸濁液を撹拌して、触媒を還元することで活性化する。触媒としては、例えば、通常の核水添反応に用いられる触媒を採用することができ、具体的には、Ru、Pd、Pt及びRhのような1種又は2種以上の金属触媒、好ましくは貴金属触媒を用いることができる。触媒は、上記の活性成分としての金属触媒を、カーボン、Al、SiO、SiO-Al、TiO、及びZrOのような通常用いられる1種又は2種以上の担体上に担持したものであってもよい。担体を用いた場合の活性成分である金属触媒の担持量は、担体100質量%に対して、0.1~10質量%であることが好ましい。
 また、触媒の活性化における系内の圧力は常圧(気相部を水素置換)であっても、加圧であってもよい。加圧する場合の系内の圧力は0.1~8MPaであると好ましく、このような圧力を維持するよう適宜水素ガスを反応器内に導入してもよい。さらに、活性化温度は50~250℃であると好ましい。触媒の活性化時の条件が上記範囲にあることにより、更に有効かつ確実に触媒を活性化することができる。また、撹拌時間は触媒を活性化させるのに十分な時間であればよい。
 次に、反応器内を冷却し、さらに系内に残存する水素ガスを系外に排出した後、反応器内に、テレフタル酸及びアンモニア水溶液を仕込み、更に水素ガスを所定の圧力になるまで導入する。このとき、テレフタル酸の仕込み量は、反応液全体に対して2~20質量%であると好ましい。また、アンモニア水溶液の仕込み量は、テレフタル酸100モル%に対して、アンモニアが200~400モル%となるような量であると好ましい。触媒の使用量に制限はなく、担持されている金属触媒の含有量と反応に用いるテレフタル酸の量とを勘案し、目的の反応時間になるよう適宜決めればよい。各原料等を上記の範囲内の量となるように用いることで、得られる1,4-シクロヘキサンジカルボン酸の収率及び選択率を高めることができる。
 次いで、反応器内を所定の温度まで加熱し、核水添反応を進行させる。このときの反応温度は、40~150℃であると好ましく、反応圧力は、水素分圧で0.5~15MPaであると好ましい。なお、反応時間は、核水添反応が十分に進行する時間であればよい。反応条件を上述の範囲内に調整することで、得られる1,4-シクロヘキサンジカルボン酸の収率及び選択率を高めることができる。また、反応圧力を上記の範囲内に維持するよう、適宜水素ガスを反応器内に導入してもよい。
 固定床では、例えば、まず、反応器に触媒を充填する。反応器としては、液体反応液が触媒の上を通過して気体、液体、固体物質移動状態を与えるような固定床として反応器が機能する限り、特に限定されない。その反応器内に水素ガスを流通し、加熱して、触媒を還元することで活性化する。触媒としては、例えば、通常の核水添反応に用いられる触媒を採用することができ、具体的には、Ru、Pd、Pt及びRhのような1種又は2種以上の金属触媒、好ましくは貴金属触媒を用いることができる。触媒は、上記の活性成分としての金属触媒を、カーボン、Al、SiO、SiO-Al、TiO、及びZrOのような通常用いられる1種又は2種以上の担体上に担持したものであってもよい。担体を用いた場合の活性成分である金属触媒の担持量は、担体100質量%に対して、0.1~10質量%であることが好ましい。
 また、触媒の活性化における系内の圧力は常圧であっても、加圧であってもよい。加圧する場合の系内の圧力は0.1~8MPaであると好ましく、このような圧力を維持するよう適宜水素ガスを反応管内に導入してもよい。さらに、活性化温度は50~300℃であると好ましい。触媒の活性化時の条件が上記範囲にあることにより、更に有効かつ確実に触媒を活性化することができる。また、加熱時間は触媒を活性化させるのに十分な時間であればよい。
 次に、反応器を適宜、冷却又は加熱して反応温度とし、水素ガスを所定の圧力になるまで導入する。水素ガスは、その後、所定流量で反応器内に導入される。反応器内の圧力は常圧であっても、加圧であってもよい。加圧する場合の系内の圧力は0.5~15MPaであると好ましく、反応温度は、40~150℃であると好ましい。水素の流量は単位時間に触媒と接触するテレフタル酸100モル%に対して、水素が300~1000モル%となるような量であると好ましく、300~600モル%となるような量であるとより好ましい。
 次いで、テレフタル酸のアンモニア水溶液を調合し、ポンプを用いて反応器内に流通させる。アンモニア水溶液中のテレフタル酸の濃度は2~20質量%であると好ましい。また、アンモニア水溶液の仕込み量は、テレフタル酸100モル%に対して、アンモニアが200~400モル%となるような量であると好ましい。触媒の使用量に制限はなく、担持されている金属触媒の含有量と反応に用いるテレフタル酸の量とを勘案し、目的の転化率になるよう適宜決めればよい。また、反応時間は、核水添反応が十分に進行する時間であればよい。各反応条件を上記の範囲内に調整することで、得られる1,4-シクロヘキサンジカルボン酸の収率及び選択率を高めることができる傾向にある。
 上述のようにして1,4-シクロヘキサンジカルボン酸を製造した場合、得られた反応液は、アンモニア水溶液と、生成した1,4-シクロヘキサンジカルボン酸とを含む。
 本実施形態の1,4-ジシアノシクロヘキサンの製造方法は、本実施形態の1,4-シクロヘキサンジカルボン酸誘導体の製造方法により得られた1,4-シクロヘキサンジカルボン酸誘導体をアンモニアと接触させてシアノ化反応することにより1,4-ジシアノシクロヘキサンを得る工程(以下、単に「シアノ化工程」ともいう。)を有するものである。1,4-シクロヘキサンジカルボン酸誘導体をシアノ化工程に用いることにより、例えばアンモニアガスを系内に導入することのみによってシアノ化させる場合と対比して、1,4-ジシアノシクロヘキサンの収率を高めることができる。その要因は、これに限定されないが、上記加熱濃縮析出工程において加熱することにより、1,4-シクロヘキサンジカルボン酸誘導体中に中間体が生成し、その中間体がシアノ化反応に寄与するためと考えられる。
 シアノ化工程においては、まず、反応器内に1,4-シクロヘキサンジカルボン酸誘導体と、必要に応じて溶媒、必要に応じて水と、触媒とを仕込み、系内の圧力が所定の圧力になるまで不活性ガスを導入する。その後、反応器内を所定の温度になるまで加熱して、反応器内の圧力が一定の範囲内を維持するよう、適宜不活性ガスを反応器内に導入しつつ、かつ反応器内を撹拌しながら、シアノ化反応を進行させる。
 シアノ化工程においては無溶媒、もしくは溶媒を用いてもよく、好ましくは沸点が600℃以下の溶媒、より好ましくは沸点が500℃以下の溶媒、更に好ましくは沸点が420℃以下の溶媒を用いる。また、シアノ化反応の反応温度以上である溶媒の沸点は、好ましくは250℃以上であり、より好ましくは270℃以上であり、更に好ましくは300℃以上である。沸点が300℃以上であることにより、シアノ化反応が円滑に進行し、且つ、ジシアノシクロヘキサンの三量体といったような不純物の生成を抑えることができる傾向にある。シアノ化工程において用いられる溶媒としては、ヘプタデカン、ノナデカン、ドコサン等の脂肪族アルカン;ヘプタデセン、ノナデセン、ドコセン等の脂肪族アルケン;ヘプタデシン、ノナデシン、ドコシン等の脂肪族アルキン;ウンデシルベンゼン、トリデシルベンゼン、テトラデシルベンゼン等のアルキルベンゼン、ジアルキルベンゼン及びアルキルナフタレン等のアルキル置換芳香族;2,5-ジクロロ安息香酸、テトラクロロフタル酸無水物等の酸または酸無水物;ウンデカンアミド、ラウリン酸アミド、ステアリン酸アミド等のアミド化合物;テトラデカンニトリル、ヘキサデカンニトリル、2-ナフチルアセトニトリル、ステアロニトリル、1,4-ジシアノシクロヘキサン等のニトリル化合物;p-クロロジフェニルホスフィン、亜リン酸トリフェニル等のリン化合物;1,2-ジフェニルエチルアミン、トリオクチルアミン等のアミン;2,2’-ビフェノール、トリフェニルメタノール等の水酸化物;安息香酸ベンジル、フタル酸ジオクチル等のエステル;4-ジブロモフェニルエーテル等のエーテル;1,2,4,5-テトラクロロ-3-ニトロベンゼン、4,4’-ジクロロベンゾフェノン等のハロゲン化ベンゼン;2-フェニルアセトフェノン、アントラキノン等のケトン並びにトリフェニルメタン;等が挙げられる。これらのうち、溶媒は、アルキルナフタレン、トリフェニルメタン、及びジシアノシクロヘキサンからなる群より選ばれる1種以上がシアノ化反応の進行を妨げ難いという観点から好ましい。
 触媒としては、通常のシアノ化反応に用いられる触媒を採用することもでき、具体的には、シリカゲル、アルミナ、シリカアルミナ、ハイドロタルサイト、酸化マグネシウム、酸化亜鉛、酸化スズ、酸化鉄、酸化チタン、酸化ジルコニウム、酸化ハフニウム、酸化マンガン、酸化タングステン、五酸化バナジウム、五酸化ニオブ、酸化タンタル、酸化ガリウム、酸化インジウム、酸化スカンジウム等の金属酸化物であり、これらは単体でも複合酸化物でも担体に担持されたものでも良い。担持成分としては、例えば、ナトリウム、リチウム、カリウム、ルビジウム、セシウム等のアルカリ金属、スズ、レニウム、マンガン、モリブデン、タングステン、バナジウム、鉄、ニッケル、亜鉛、クロム、ホウ酸、塩酸、リン酸等が挙げられる。
 上記の活性成分としての金属触媒を、カーボン、ハイドロタルサイト、MgO、Al、SiO、SiO-Al、TiO、及びZrOのような通常用いられる1種又は2種以上の担体上に担持した触媒を用いても良い。担体を用いた場合の活性成分である金属触媒の担持量は、担体100質量%に対して、0.1~10質量%であると好ましい。
 また、触媒としては、過レニウム酸や酸化レニウム等のレニウム化合物、酸化ジブチルスズ等の有機スズ化合物、ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)等のルテニウム化合物、及び酸化コバルト等も挙げられる。
 これらの中でも、触媒は、シアノ化反応をより有効かつ確実に進行させる観点から、酸化亜鉛、酸化スズ、又は、酸化鉄を含む触媒が好ましい。触媒は、1種を単独で、又は2種以上を組み合わせて用いられる。さらに、触媒の使用量は、1,4-シクロヘキサンジカルボン酸誘導体100質量%に対して、好ましくは0.05~20質量%である。触媒を上記の範囲内の量とすることにより、得られる1,4-ジシアノシクロヘキサンの収率を高めることができる傾向にある。
 また、反応器内にアンモニアガスを適宜導入してもよい。その流量は反応のスケール等により適宜調整すればよく、通常1,4-シクロヘキサンジカルボン酸誘導体1モルに対して1時間あたり0.1~5倍モルであり、好ましくは1時間あたり0.3~4倍モルであり、より好ましくは1時間あたり0.5~3倍モルである。アンモニアガスの使用量は、1,4-シクロヘキサンジカルボン酸誘導体100モル%に対して、200~1000モル%であると好ましい。これにより、得られる1,4-ジシアノシクロヘキサンの収率及び選択率を高めることができる傾向にある。
 本実施形態の製造方法における反応温度は、シアノ化反応が進行する温度であれば特に制限されず、好ましくは270~400℃であり、より好ましくは280℃~380℃であり、さらに好ましくは290℃~350℃である。
 本実施形態の製造方法における反応圧力は、陰圧であっても常圧であっても陽圧であってもよい。
 反応時間は、シアノ化反応が十分に進行する時間であればよい。各原料の濃度や反応条件を上述の範囲内に調整することで、1,4-ジシアノシクロヘキサンの収率を高めることができる傾向にある。
 このようにして得られた1,4-ジシアノシクロヘキサンを含む反応液を、必要に応じて蒸留することにより、1,4-ジシアノシクロヘキサンを回収してもよい(以下、この工程を「蒸留工程」という。)。蒸留は、例えば、蒸留器の系内の圧力が3.0kPA~4.0kPA、温度が180~230℃になるよう蒸留器を底部から加熱すると共に頂部で冷却をすることで、器内において気液接触させることで行われる。これにより、蒸留器の頂部から1,4-ジシアノシクロヘキサンを選択的に抜き出して回収することができる。
 本実施形態の1,4-ビス(アミノメチル)シクロヘキサンの製造方法は、上述のようにして得られた1,4-ジシアノシクロヘキサンを水素と接触させて水素添加反応(以下、「ニトリル水添反応」ともいう。)させることにより、1,4-ビス(アミノメチル)シクロヘキサンを得る工程(以下、単に「ニトリル水添工程」ともいう。)を有するものである。
 ニトリル水添工程においては、まず、反応器内に1,4-ジシアノシクロヘキサンと、溶媒と、触媒とを仕込み、系内の圧力が所定の圧力になるまで水素ガスを導入する。その後、反応器内を所定の温度になるまで加熱して、反応器内の圧力が一定の範囲内を維持するよう、適宜水素ガスを反応器内に導入しつつ、ニトリル水添反応を進行させる。
 溶媒としては、通常のニトリル水添反応に用いられる溶媒を採用することもでき、具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、及びtert-ブタノール等のアルコール、メタキシレン、メシチレン、及びプソイドキュメンのような芳香族炭化水素、液体アンモニア、及びアンモニア水が挙げられる。溶媒は1種を単独で又は2種以上を組み合わせて用いられる。また、触媒としては、通常のニトリル水添反応に用いられる触媒を採用することもでき、具体的には、Ni及び/又はCoを含有する触媒を用いることができる。一般には、Ni及び/又はCoを、Al、SiO、けい藻土、SiO-Al、及びZrOに沈殿法で担持した触媒、ラネーニッケル、あるいはラネーコバルトが触媒として好適に用いられる。これらの中では、ニトリル水添反応をより有効かつ確実に進行させる観点から、ラネーコバルト触媒及びラネーニッケル触媒が好ましい。触媒は1種を単独で又は2種以上を組み合わせて用いられる。さらに、触媒の使用量は、1,4-ジシアノシクロヘキサン100質量%に対して、0.1~150質量%であると好ましく、0.1~20質量%であるとより好ましく、0.5~15質量%であるとさらに好ましい。触媒を上記の範囲内の量となるように用いることで、得られる1,4-ビス(アミノメチル)シクロヘキサンの収率及び選択率を高めることができる傾向にある。
 ニトリル水添工程における、1,4-ジシアノシクロヘキサンの濃度は、反応効率の観点から、反応液の全体量に対して、1~50質量%であると好ましく、2~40質量%であるとより好ましい。また、ニトリル水添工程における反応温度は、40~150℃であると好ましく、反応圧力は、水素分圧で0.5~15MPaであると好ましい。なお、反応時間は、ニトリル水添反応が十分に進行する時間であればよい。反応条件を上述の範囲内に調整することで、得られる1,4-ビス(アミノメチル)シクロヘキサンの収率及び選択率を高めることができる傾向にある。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(核水添工程)
(合成例1-1)
 内径17mmφ及び長さ320mmを有するSUS316製の反応管に、事前に250℃で2時間気相水素還元を実施した触媒である2%Ru/C(エヌ・イー ケムキャット製)12.63gを充填した。テレフタル酸8質量%アンモニア水溶液(アンモニア/テレフタル酸=2.3mol比)を、15~27g/時間、圧力3~9MPaG、水素0.9~1.1L/時間の条件で核水添反応を実施した。反応開始から60時間後(90℃、7MPaG、原料流量15.4g/時間、水素0.9L/時間)の段階でテレフタル酸の転化率は100%となり、1,4-シクロヘキサンジカルボン酸の収率は99.9%となった。反応開始から1351時間後(75℃、5MPG、原料流量26.6g/時間、水素1.1L/時間)の段階でテレフタル酸の転化率100%、1,4-シクロヘキサンジカルボン酸の収率99.9%となった。反応中、1,4-シクロヘキサンジカルボン酸のtrans体の含有量は20~24%で推移した。
 反応液はHPLC(島津製作所製 製品名「Prominence」、カラム:ショウデックス製型式名「KC-811」、条件:溶離液:リン酸0.1質量%水溶液、流速0.7mL/min、カラム温度50℃、フォトダイオードアレイ検出器)により分析した。
(加熱濃縮析出工程)
(合成例2-1)
 攪拌羽、熱電対、冷却器、及び受器を有する300mlの4口フラスコ(フラスコ)内に東京化成株式会社製の1,4-シクロヘキサンジカルボン酸16.11g、28%アンモニア水11.38g、及び水172.90gを仕込んだ。300rpmで攪拌しながら、オイルバスにより、フラスコ内を常圧にて150℃に加熱した。フラスコ内の液温が105℃となるときから留出が始まり、留出量が170.7gとなった段階で加熱を停止し、反応液を冷却した。冷却後、反応液を濾過し、結晶を回収した。得られた結晶を真空乾燥後に元素分析を行うと、1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で1.14であった。1,4-シクロヘキサンジカルボン酸誘導体中のtrans体の含有量は加熱濃縮前後で変化は見られなかった。
(合成例2-2)
 攪拌羽、熱電対、冷却器、受器、及び減圧装置を有する300mlの4口フラスコ(フラスコ)内に1,4-シクロヘキサンジカルボン酸16.11g、28%アンモニア水11.38g、及び水172.90gを仕込んだ。300rpmで攪拌しながら、オイルバスにより、フラスコ内を減圧(20kPa)にて90℃に加熱した。フラスコ内の液温が65℃となるとき留出が始まり、留出量が168.7gとなった段階で加熱を停止し、反応液を冷却した。冷却後、反応液を濾過し、結晶を回収した。得られた結晶を真空乾燥後に元素分析を行うと、1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で1.61であった。1,4-シクロヘキサンジカルボン酸誘導体中のtrans体の含有量は加熱濃縮前後で変化は見られなかった。
(合成例2-3)
 攪拌羽、熱電対、冷却器、受器、及び減圧装置を有する300mlの4口フラスコ(フラスコ)内に1,4-シクロヘキサンジカルボン酸16.11g、28%アンモニア水11.38g、及び水172.90gを仕込んだ。300rpmで攪拌しながら、オイルバスにより、フラスコ内を減圧(4.5kPa)にて70℃に加熱した。液温35℃から留出が始まり、留出量が159.2gとなった段階で加熱を停止し、反応液を冷却した。冷却後、反応液を濾過し、結晶を回収した。得られた結晶を真空乾燥後に元素分析を行うと、1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で1.81であった。1,4-シクロヘキサンジカルボン酸誘導体中のtrans体の含有量は加熱濃縮前後で変化は見られなかった。
(合成例2-4)
 攪拌羽、熱電対、圧力計、冷却器、及び受器を有する300mlのSUS316製の耐圧容器内に1,4-シクロヘキサンジカルボン酸16.12g、28%アンモニア水12.55g、及び水171.94gを仕込んだ。600rpmで攪拌しながら、内温が140℃に到達するまで昇温した。140℃到達後、パージバルブを微開とし、ガス成分を冷却器で凝縮させ留分を取得した。140℃到達後の内圧は0.41MPaGであり、留出中の内圧は0.26MPaGであった。留出量が137.05gになった段階で加熱を停止し、反応液を冷却した。冷却後、反応液を濾過し、結晶を回収した。得られた1,4-シクロヘキサンジカルボン酸誘導体は0.89gとなり、trans体の含有量は91.8%となった。
(合成例2-5)
 攪拌羽、熱電対、圧力計、冷却器、及び受器を有する300mlのSUS316製の耐圧容器内に1,4-シクロヘキサンジカルボン酸16.12g、28%アンモニア水12.55g、及び水171.94gを仕込んだ。600rpmで攪拌しながら、内温が160℃に到達するまで昇温した。160℃到達後、パージバルブを微開とし、ガス成分を冷却器で凝縮させ留分を取得した。160℃到達後の内圧は0.57MPaGであり、留出中の内圧は0.47MPaGであった。留出量が131.21gになった段階で加熱を停止し、反応液を冷却した。冷却後、反応液を濾過し、結晶を回収した。得られた1,4-シクロヘキサンジカルボン酸誘導体は1.55gとなり、trans体の含有量は90.9%となった。
(合成例2-6)
 攪拌羽、熱電対、圧力計、冷却器、及び受器を有する300mlのSUS316製の耐圧容器内に1,4-シクロヘキサンジカルボン酸16.12g、28%アンモニア水12.55g、及び水171.94gを仕込んだ。600rpmで攪拌しながら、内温が200℃に到達するまで昇温した。200℃到達後、パージバルブを微開とし、ガス成分を冷却器で凝縮させ留分を取得した。200℃到達後の内圧は1.38MPaGであり、留出中の内圧は1.32MPaGであった。留出量が136.39gになった段階で加熱を停止し、反応液を冷却した。冷却後、反応液を濾過し、結晶を回収した。得られた1,4-シクロヘキサンジカルボン酸誘導体は7.82gとなり、trans体の含有量は98.4%となった。
(合成例2-7)
(1回目の加熱濃縮)
 攪拌羽、熱電対、圧力計、冷却器、及び受器を有する300mlのSUS316製の耐圧容器内に合成例1-1で製造した反応液(反応開始から541~962時間の間に定期的に抽出した反応液)155.58gを仕込んだ。600rpmで攪拌しながら、内温が180℃に到達するまで昇温した。180℃到達後、パージバルブを微開とし、ガス成分を冷却器で凝縮させ留分を取得した。180℃到達後の内圧は0.91MPaGであり、留出中の内圧は0.71MPaGであった。留出量が105.23gになった段階で加熱を停止し、反応液を45℃まで冷却した。内温が45℃到達した後、反応液を濾過し、結晶と母液を回収した。得られた結晶の真空乾燥後の重量は3.04g、1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.06であった。1,4-シクロヘキサンジカルボン酸誘導体中のtrans体の含有量は96.40%となった。得られた母液の重量は40.92gとなり、ほぼ全量2回目の加熱濃縮に用いた。
(2回目の加熱濃縮)
 攪拌羽、熱電対、圧力計、冷却器、及び受器を有する300mlのSUS316製の耐圧容器内に後述する合成例1-1で製造した反応液(反応開始から541~962時間の間に定期的に抽出した反応液)155.58g、1回目の加熱濃縮後の母液40.82gを仕込んだ。600rpmで攪拌しながら、内温が180℃に到達するまで昇温した。180℃到達後、パージバルブを微開とし、ガス成分を冷却器で凝縮させ留分を取得した。180℃到達後の内圧は0.87MPaGであり、留出中の内圧は0.75MPaGであった。留出量が138.16gになった段階で加熱を停止し、反応液を45℃まで冷却した。内温が45℃到達後、反応液を濾過し、結晶と母液を回収した。得られた結晶の真空乾燥後の重量は7.04gであり、1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.14であり、1,4-シクロヘキサンジカルボン酸誘導体中のtrans体の含有量は94.87%となった。得られた母液の重量は47.76gとなり、ほぼ全量3回目の加熱濃縮に用いた。
(3回目の加熱濃縮)
 耐圧容器内に合成例1-1で製造した反応液(反応開始から541~962時間の間に定期的に抽出した反応液)155.61g、2回目の加熱濃縮の母液47.42gを仕込んだ。600rpmで攪拌しながら、内温が180℃に到達するまで昇温した。180℃到達後、パージバルブを微開とし、ガス成分を冷却器で凝縮させ留分を取得した。180℃到達後の内圧は0.86MPaGであり、留出中の内圧は0.70MPaGであった。留出量が141.06gになった段階で加熱を停止し、反応液を45℃まで冷却した。内温が45℃到達後、反応液を濾過し、結晶と母液を回収した。得られた結晶の真空乾燥後の重量は10.23g、1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.33であり、1,4-シクロヘキサンジカルボン酸誘導体中のtrans体の含有量は89.17%となった。得られた母液の重量は47.03gとなり、ほぼ全量4回目の加熱濃縮に用いた。
(4回目の加熱濃縮)
 耐圧容器内に合成例1-1で製造した反応液(反応開始から541~962時間の間に定期的に抽出した反応液)155.62g、3回目の加熱濃縮の母液46.78gを仕込んだ。600rpmで攪拌しながら、内温が180℃に到達するまで昇温した。180℃到達後、パージバルブを微開とし、ガス成分を冷却器で凝縮させ留分を取得した。180℃到達後の内圧は0.85MPaGであり、留出中の内圧は0.70MPaGであった。留出量が138.87gになった段階で加熱を停止し、反応液を45℃まで冷却した。内温が45℃到達後、反応液を濾過し、結晶と母液を回収した。得られた結晶の真空乾燥後の重量は8.78g、1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.30であり、1,4-シクロヘキサンジカルボン酸誘導体中のtrans体の含有量は89.22%となった。得られた母液の重量は46.36gとなり、ほぼ全量5回目の加熱濃縮に用いた。
(5回目の加熱濃縮)
 耐圧容器内に合成例1-1で製造した反応液(反応開始から541~962時間の間に定期的に抽出した反応液)155.88g、4回目の加熱濃縮の母液47.21gを仕込んだ。600rpmで攪拌しながら、内温が180℃に到達するまで昇温した。180℃到達後、パージバルブを微開とし、ガス成分を冷却器で凝縮させ留分を取得した。180℃到達後の内圧は0.85MPaGであり、留出中の内圧は0.69MPaGであった。留出量が139.62gになった段階で加熱を停止し、反応液を45℃まで冷却した。内温が45℃到達後、反応液を濾過し、結晶と母液を回収した。得られた結晶の真空乾燥後の重量は14.75g、1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.43であり、1,4-シクロヘキサンジカルボン酸誘導体中のtrans体の含有量は83.14%となった。得られた母液の重量は43.96gとなり、ほぼ全量6回目の加熱濃縮に用いた。
(6回目の加熱濃縮)
 耐圧容器内に合成例1-1で製造した反応液(反応開始から541~962時間の間に定期的に抽出した反応液)155.61g、5回目の加熱濃縮の母液44.08gを仕込んだ。600rpmで攪拌しながら、内温が180℃に到達するまで昇温した。180℃到達後、パージバルブを微開とし、ガス成分を冷却器で凝縮させ留分を取得した。180℃到達後の内圧は0.85MPaGであり、留出中の内圧は0.65MPaGであった。留出量が141.61gになった段階で加熱を停止し、反応液を45℃まで冷却した。内温が45℃到達後、反応液を濾過し、結晶と母液を回収した。得られた結晶の真空乾燥後の重量は12.82g、1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.39であり、1,4-シクロヘキサンジカルボン酸誘導体中のtrans体の含有量は80.85%となった。得られた母液の重量は37.45gとなり、ほぼ全量7回目の加熱濃縮に用いた。
(7回目の加熱濃縮)
 耐圧容器内に合成例1-1で製造した反応液(反応開始から541~962時間の間に定期的に抽出した反応液)155.58g、6回目の加熱濃縮の母液33.33gを仕込んだ。600rpmで攪拌しながら、内温が180℃に到達するまで昇温した。180℃到達後、パージバルブを微開とし、ガス成分を冷却器で凝縮させ留分を取得した。180℃到達後の内圧は0.85MPaGであり、留出中の内圧は0.65MPaGであった。留出量が125.4gになった段階で加熱を停止し、反応液を45℃まで冷却した。内温が45℃到達後、反応液を濾過し、結晶と母液を回収した。得られた結晶の真空乾燥後の重量は9.81g、1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.31であり、1,4-シクロヘキサンジカルボン酸誘導体中のtrans体の含有量は87.00%となった。得られた母液の重量は50.33gとなり、ほぼ全量8回目の加熱濃縮に用いた。
(8回目の加熱濃縮)
 耐圧容器内に合成例1-1で製造した反応液(反応開始から541~962時間の間に定期的に抽出した反応液)155.62g、7回目の加熱濃縮の母液49.92gを仕込んだ。600rpmで攪拌しながら、内温が180℃に到達するまで昇温した。180℃到達後、パージバルブを微開とし、ガス成分を冷却器で凝縮させ留分を取得した。180℃到達後の内圧は0.85MPaGであり、留出中の内圧は0.65MPaGであった。留出量が138.7gになった段階で加熱を停止し、反応液を45℃まで冷却した。内温が45℃到達後、反応液を濾過し、結晶と母液を回収した。得られた結晶の真空乾燥後の重量は10.29g、1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.31であり、1,4-シクロヘキサンジカルボン酸誘導体中のtrans体の含有量は90.72%となった。得られた母液の重量は50.97gとなり、ほぼ全量9回目の加熱濃縮に用いた。
(9回目の加熱濃縮)
 耐圧容器内に合成例1-1で製造した反応液(反応開始から541~962時間の間に定期的に抽出した反応液)155.67g、8回目の加熱濃縮の母液51.21gを仕込んだ。600rpmで攪拌しながら、内温が180℃に到達するまで昇温した。180℃到達後、パージバルブを微開とし、ガス成分を冷却器で凝縮させ留分を取得した。180℃到達後の内圧は0.85MPaGであり、留出中の内圧は0.65MPaGであった。留出量が140.78gになった段階で加熱を停止し、反応液を45℃まで冷却した。内温が45℃到達後、反応液を濾過し、結晶と母液を回収した。得られた結晶の真空乾燥後の重量は15.80g、1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.45であり、1,4-シクロヘキサンジカルボン酸誘導体中のtrans体の含有量は82.24%となった。得られた母液の重量は45.23gとなり、ほぼ全量10回目の加熱濃縮に用いた。
(10回目の加熱濃縮)
 耐圧容器内に合成例1-1で製造した反応液(反応開始から541~962時間の間に定期的に抽出した反応液)155.68g、9回目の加熱濃縮の母液45.17gを仕込んだ。600rpmで攪拌しながら、内温が180℃に到達するまで昇温した。180℃到達後、パージバルブを微開とし、ガス成分を冷却器で凝縮させ留分を取得した。180℃到達後の内圧は0.85MPaGであり、留出中の内圧は0.65MPaGであった。留出量が135.78gになった段階で加熱を停止し、反応液を45℃まで冷却した。内温が45℃到達後、反応液を濾過し、結晶と母液を回収した。得られた結晶の真空乾燥後の重量は10.89g、1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量は、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.27であり、1,4-シクロヘキサンジカルボン酸誘導体中のtrans体の含有量は89.79%となった。得られた母液の重量は49.05gとなった。
(シアノ化工程)
(合成例3-1)
 撹拌羽根、ガス導入管、熱電対及び脱水装置を有する300mLの5口フラスコ内に、合成例2-7記載の方法で製造した1,4-シクロヘキサンジカルボン酸のアンモニウム塩51.6g(1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量が、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.34)、触媒として酸化亜鉛(関東化学株式会社製)0.20g及び1,4-ジシアノシクロヘキサン50gを仕込んだ。その後、加熱を開始し、170℃で窒素ガス(流量:34NmL/min)と、アンモニアガス(流量:174NmL/min)とを導入した。さらに昇温し、270℃にて反応液でのバブリングを開始し、300℃にまで昇温した。300rpmで撹拌しながら7時間、シアノ化反応を行った。反応終了後、反応生成物をテトラヒドロフランに溶解させ、さらに液中の触媒を濾過にて除去した後、ガスクロマトグラフィー(以下、GCとも記載する。)(島津製作所社製型式名「GC2010 PLUS」、カラム:製品名「HP-5ms」、アジレント・テクノロジー株式会社製、長さ30m×内径0.25mm、膜厚0.25μm)により分析した。その結果、1,4-ジシアノシクロヘキサンの収率は90.8mol%であった。
(合成例3-2)
 撹拌羽根、ガス導入管、熱電対及び脱水装置を有する100mLの5口フラスコ内に、実施例2-7記載の方法で製造した1,4-シクロヘキサンジカルボン酸のアンモニウム塩51.6g(1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量が、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.34)、触媒として酸化亜鉛(関東化学株式会社製)0.20gを仕込んだ。その後、加熱を開始し、170℃で窒素ガス(流量:34NmL/min)と、アンモニアガス(流量:174NmL/min)とを導入した。さらに昇温し、270℃にて反応液でのバブリングを開始し、300℃にまで昇温した。300rpmで撹拌しながら7時間、シアノ化反応を行った。反応終了後、合成例3-1と同様の操作を行い、GCにより分析を行った。1,4-ジシアノシクロヘキサンの収率は92.8mol%であった。
(合成例3-3)
 撹拌羽根、ガス導入管、熱電対及び脱水装置を有する500mLの5口フラスコ内に、実施例2-7記載の方法で製造した1,4-シクロヘキサンジカルボン酸のアンモニウム塩103.2g(1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量が、1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.34)、触媒として酸化亜鉛(関東化学株式会社製)0.40g及びバーレルプロセス油B-28AN(松村石油製)200gを仕込んだ。その後、加熱を開始し、170℃で窒素ガス(流量:34NmL/min)と、アンモニアガス(流量:174NmL/min)とを導入した。さらに昇温し、270℃にて反応液でのバブリングを開始し、300℃にまで昇温した。300rpmで撹拌しながら8時間、シアノ化反応を行った。反応終了後、合成例3-1と同様の操作を行い、GCにより分析を行った。1,4-ジシアノシクロヘキサンの収率は92.1mol%であった。
(ニトリル水添工程)
(合成例4-1)
 300mLのSUS316製耐圧容器内に、1,4-ジシアノシクロヘキサン24.4g、溶媒としてのメタノール37.3gと28%アンモニア水(和光純薬工業株式会社製)28.4g、及び、触媒としてラネーコバルト触媒(和光純薬工業株式会社製)0.56gを仕込み、水素ガスを4.5MPaの反応圧力になるまで導入した。次いで、容器内を80℃の反応温度まで加熱し、温度を一定に保持し、容器内を電磁式攪拌羽根にて750rpmで撹拌しながら、水素添加によるアミノ化反応(ニトリル水添反応)を240分間、進行させた。反応終了後、触媒を濾過にて除去した後、ガスクロマトグラフィー(島津製作所社製型式名「GC2010 PLUS」、カラム:製品名「HP-5ms」、アジレント・テクノロジー株式会社製、長さ30m×内径0.25mm、膜厚0.25μm)により分析した。その結果、1,4-ジシアノシクロヘキサンの転化率は100%、1,4-ビス(アミノメチル)シクロヘキサンの選択率は97.0%、収率は97.0%であった。
(合成例4-2)
 300mLのSUS316製耐圧容器内に、1,4-ジシアノシクロヘキサン38.2g、溶媒としての液体アンモニア111.6g、及び、触媒としてラネーコバルト触媒(和光純薬工業株式会社製)3.31gを仕込み、水素ガスを8.0MPaの反応圧力になるまで導入した。次いで、容器内を90℃の反応温度まで加熱し、温度を一定に保持し、容器内を電磁式攪拌羽根にて750rpmで撹拌しながら、水素添加によるアミノ化反応(ニトリル水添反応)を60分間、進行させた。反応終了後、合成例4-1と同様の操作を行い、GCにより分析を行った。その結果、1,4-ジシアノシクロヘキサンの転化率は100%、1,4-ビス(アミノメチル)シクロヘキサンの選択率は99.4%、収率は99.4%であった。
(比較例1)
 300mLのSUS316製耐圧容器内に、テレフタル酸(東京化成工業社製)25g、触媒として5%Ru/C触媒(エヌ・イーケムキャット株式会社製、Aタイプ、含水率:52.8質量%)5.30g(乾燥ベースで2.5g)、水100g、及び5N NaOH水溶液(和光純薬製)75mlを仕込んだ。次いで、容器内を100℃の反応温度まで加熱し、温度を一定に保持し、水素ガスを8MPaの反応圧力になるまで導入し、水素圧力を一定に保持し、容器内を電磁式攪拌羽根にて800rpmで撹拌しながら、核水添反応を360分間、進行させた。反応終了後、反応液中の触媒を濾過にて除去した。次いで、反応液に5N HCl水溶液(和光純薬製)75mlを滴下し、結晶を析出させた。析出した結晶をろ過にて回収し、回収した結晶を純水で洗浄した。結晶中のNaClを除去するには純水で2回洗浄する必要があった。母液・洗浄液中にも1,4-シクロヘキサンジカルボン酸は溶解しており、ロスによる収率低下に繋がる。NaClは仕込んだNaOHとHClに対応する量が生成した。
 本出願は、2018年4月11日に日本国特許庁へ出願された日本特許出願(特願2018-076270)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の製造方法により得られる1,4-シクロヘキサンジカルボン酸誘導体及び1,4-ジシアノシクロヘキサンは、ポリアミド、ポリウレタン等に用いるプラスチックレンズ、プリズム、光ファイバー、情報記録基板、フィルター等の光学材料として有効なビス(アミノメチル)シクロヘキサンの原料となるため、そのような分野において、産業上の利用可能性がある。

Claims (9)

  1.  1,4-シクロヘキサンジカルボン酸のアンモニア水溶液を加熱濃縮することにより、1,4-シクロヘキサンジカルボン酸誘導体を結晶として析出させる工程を有する、1,4-シクロヘキサンジカルボン酸誘導体の製造方法。
  2.  前記1,4-シクロヘキサンジカルボン酸誘導体が1,4-シクロヘキサンジカルボン酸アンモニウム塩、及び/又は4-カルボキサミドシクロヘキサン-1-カルボン酸である、請求項1記載の製造方法。
  3.  前記1,4-シクロヘキサンジカルボン酸アンモニウム塩中のアンモニアの含有量が、前記1,4-シクロヘキサンジカルボン酸アンモニウム塩中の1,4-シクロヘキサンジカルボン酸の含有量に対して、モル比で0.01~2.00である、請求項2記載の製造方法。
  4.  前記工程において、加熱濃縮時の温度が30~200℃である、請求項1~3のいずれか1項に記載の製造方法。
  5.  前記工程において、加熱濃縮時の圧力が0.003~2MPaである、請求項1~4のいずれか1項に記載の製造方法。
  6.  前記1,4-シクロヘキサンジカルボン酸誘導体のトランス体の含有量が70.0~99.9質量%である、請求項1~5のいずれか1項に記載の製造方法。
  7.  前記1,4-シクロヘキサンジカルボン酸のアンモニア水溶液を、テレフタル酸のアンモニア水溶液を核水添することにより得る、請求項1~6のいずれか1項に記載の製造方法。
  8.  請求項1~7のいずれか1項に記載の製造方法により得られた1,4-シクロヘキサンジカルボン酸誘導体をアンモニアと接触させてシアノ化反応させることにより1,4-ジシアノシクロヘキサンを得る工程を有する、1,4-ジシアノシクロヘキサンの製造方法。
  9.  請求項8記載の方法により得られた1,4-ジシアノシクロヘキサンを水素と接触させて水素添加反応させることにより、1,4-ビス(アミノメチル)シクロヘキサンを得る工程を有する、1,4-ビス(アミノメチル)シクロヘキサンの製造方法。
PCT/JP2019/015726 2018-04-11 2019-04-11 1,4-シクロヘキサンジカルボン酸誘導体、1,4-ジシアノシクロヘキサン、及び1,4-ビス(アミノメチル)シクロヘキサンの製造方法 WO2019198779A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19784233.9A EP3778544A4 (en) 2018-04-11 2019-04-11 PROCESS FOR THE PREPARATION OF 1,4-CYCLOHEXANEDICARBONIC ACID DERIVATIVE, 1,4-DICYANOCYCLOHEXANE AND 1,4-BIS (AMINOMETHYL) CYCLOHEXANE
CN201980024974.4A CN111954656B (zh) 2018-04-11 2019-04-11 1,4-环己烷二羧酸衍生物、1,4-二氰基环己烷和1,4-双(氨基甲基)环己烷的制造方法
JP2020513443A JP7410458B2 (ja) 2018-04-11 2019-04-11 1,4-シクロヘキサンジカルボン酸誘導体、1,4-ジシアノシクロヘキサン、及び1,4-ビス(アミノメチル)シクロヘキサンの製造方法
US16/968,011 US11472765B2 (en) 2018-04-11 2019-04-11 Production method for 1,4-cyclohexanedicarboxylic acid derivative, 1,4-dicyanocyclohexane and 1,4-bis(aminomethyl)cyclohexane
KR1020207028943A KR20200142004A (ko) 2018-04-11 2019-04-11 1,4-시클로헥산디카르본산유도체, 1,4-디시아노시클로헥산, 및 1,4-비스(아미노메틸)시클로헥산의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018076270 2018-04-11
JP2018-076270 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019198779A1 true WO2019198779A1 (ja) 2019-10-17

Family

ID=68163686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015726 WO2019198779A1 (ja) 2018-04-11 2019-04-11 1,4-シクロヘキサンジカルボン酸誘導体、1,4-ジシアノシクロヘキサン、及び1,4-ビス(アミノメチル)シクロヘキサンの製造方法

Country Status (6)

Country Link
US (1) US11472765B2 (ja)
EP (1) EP3778544A4 (ja)
JP (1) JP7410458B2 (ja)
KR (1) KR20200142004A (ja)
CN (1) CN111954656B (ja)
WO (1) WO2019198779A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822756B (zh) 2018-04-11 2023-11-21 日商三菱瓦斯化學股份有限公司 環己烷二羧酸類、二氰基環己烷類、及雙(胺基甲基)環己烷類之製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010581A (ja) 1973-05-25 1975-02-03
JPH08157419A (ja) * 1994-12-01 1996-06-18 Teijin Ltd ジメチル トランス−1,4−シクロヘキサンジカルボキシレートの製造方法
JP2002069032A (ja) 2000-08-28 2002-03-08 Mitsubishi Chemicals Corp トランス−1,4−シクロヘキサンジカルボン酸の精製方法
WO2009051114A1 (ja) 2007-10-15 2009-04-23 Mitsui Chemicals Polyurethanes, Inc. ポリウレタン樹脂
CN101591237A (zh) * 2009-05-21 2009-12-02 江苏康恒化工有限公司 反式-1,4-环己烷二甲酸的合成方法
JP2011006382A (ja) * 2009-04-09 2011-01-13 Mitsui Chemicals Inc トランス−1,4−ビス(アミノメチル)シクロヘキサンの製造方法
WO2012046782A1 (ja) * 2010-10-07 2012-04-12 三井化学株式会社 トランス-1,4-ビス(アミノメチル)シクロヘキサンの製造方法
WO2014080980A1 (ja) * 2012-11-26 2014-05-30 帝人株式会社 1,4-シクロヘキサンジカルボン酸ジメチルのシス体およびトランス体からなる混合物の製造方法
CN105016944A (zh) * 2014-04-16 2015-11-04 中国石化扬子石油化工有限公司 腈及其相应胺的制造方法
JP2018076270A (ja) 2016-11-11 2018-05-17 国立研究開発法人科学技術振興機構 新規な単糖類及びそれを用いた単糖類取り込み細胞検出剤

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3296293A (en) 1963-11-29 1967-01-03 Eastman Kodak Co Preparation of carbocyclic dinitriles
JPH0627108B2 (ja) * 1988-10-03 1994-04-13 昭和電工株式会社 4−カルボキサミドシクロヘキサンカルボン酸エステル類の製造方法
US5202475A (en) 1990-09-27 1993-04-13 Eastman Kodak Company Process for preparation of cyclohexanedicarboxylic acid
MX9301943A (es) * 1992-04-02 1994-08-31 Smithkline Beecham Corp Compuestos.
CN101591263B (zh) * 2009-07-07 2012-08-29 安徽丰乐香料有限责任公司 N-乙基-2-异丙基-5-甲基环己烷甲酰胺的制备方法
KR101828002B1 (ko) * 2016-09-08 2018-02-13 롯데케미칼 주식회사 1,3-사이클로헥산디메탄올의 제조 방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010581A (ja) 1973-05-25 1975-02-03
JPH08157419A (ja) * 1994-12-01 1996-06-18 Teijin Ltd ジメチル トランス−1,4−シクロヘキサンジカルボキシレートの製造方法
JP2002069032A (ja) 2000-08-28 2002-03-08 Mitsubishi Chemicals Corp トランス−1,4−シクロヘキサンジカルボン酸の精製方法
WO2009051114A1 (ja) 2007-10-15 2009-04-23 Mitsui Chemicals Polyurethanes, Inc. ポリウレタン樹脂
JP2011006382A (ja) * 2009-04-09 2011-01-13 Mitsui Chemicals Inc トランス−1,4−ビス(アミノメチル)シクロヘキサンの製造方法
JP5448987B2 (ja) 2009-04-09 2014-03-19 三井化学株式会社 トランス−1,4−ビス(アミノメチル)シクロヘキサンの製造方法
CN101591237A (zh) * 2009-05-21 2009-12-02 江苏康恒化工有限公司 反式-1,4-环己烷二甲酸的合成方法
WO2012046782A1 (ja) * 2010-10-07 2012-04-12 三井化学株式会社 トランス-1,4-ビス(アミノメチル)シクロヘキサンの製造方法
WO2014080980A1 (ja) * 2012-11-26 2014-05-30 帝人株式会社 1,4-シクロヘキサンジカルボン酸ジメチルのシス体およびトランス体からなる混合物の製造方法
CN105016944A (zh) * 2014-04-16 2015-11-04 中国石化扬子石油化工有限公司 腈及其相应胺的制造方法
JP2018076270A (ja) 2016-11-11 2018-05-17 国立研究開発法人科学技術振興機構 新規な単糖類及びそれを用いた単糖類取り込み細胞検出剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778544A4

Also Published As

Publication number Publication date
EP3778544A1 (en) 2021-02-17
CN111954656A (zh) 2020-11-17
CN111954656B (zh) 2023-08-01
KR20200142004A (ko) 2020-12-21
US20210032191A1 (en) 2021-02-04
US11472765B2 (en) 2022-10-18
JP7410458B2 (ja) 2024-01-10
EP3778544A4 (en) 2021-06-09
TW201943686A (zh) 2019-11-16
JPWO2019198779A1 (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
JP5448987B2 (ja) トランス−1,4−ビス(アミノメチル)シクロヘキサンの製造方法
JP5562429B2 (ja) トランス−1,4−ビス(アミノメチル)シクロヘキサンの製造方法
EP2626343B1 (en) Method for producing bis(aminomethyl)cyclohexanes
JP7410458B2 (ja) 1,4-シクロヘキサンジカルボン酸誘導体、1,4-ジシアノシクロヘキサン、及び1,4-ビス(アミノメチル)シクロヘキサンの製造方法
JP7184039B2 (ja) ジシアノシクロヘキサンの製造方法
EP3733643B1 (en) Method for producing dicyanocyclohexane and bis(aminomethyl)cyclohexane
WO2018066447A1 (ja) 1,4-ジシアノシクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、及び1,4-シクロヘキサンジカルボン酸の製造方法
JP7335555B2 (ja) シクロヘキサンジカルボン酸類、ジシアノシクロヘキサン類、及びビス(アミノメチル)シクロヘキサン類の製造方法
TWI845505B (zh) 1,4-環己烷二甲酸衍生物、1,4-二氰基環己烷、及1,4-雙(胺甲基)環己烷之製造方法
JP5564088B2 (ja) トランス−1,4−ジアミノシクロヘキサンの製造方法
JPH07258239A (ja) インデンオキサイドの精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784233

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019784233

Country of ref document: EP

Effective date: 20201111