WO2019196960A1 - 一种可磁化重构的机器人关节电机 - Google Patents

一种可磁化重构的机器人关节电机 Download PDF

Info

Publication number
WO2019196960A1
WO2019196960A1 PCT/CN2019/084717 CN2019084717W WO2019196960A1 WO 2019196960 A1 WO2019196960 A1 WO 2019196960A1 CN 2019084717 W CN2019084717 W CN 2019084717W WO 2019196960 A1 WO2019196960 A1 WO 2019196960A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnetizable
motor
robot joint
reconstruction unit
Prior art date
Application number
PCT/CN2019/084717
Other languages
English (en)
French (fr)
Inventor
白坤
袁密
朱朗
李国民
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US16/961,934 priority Critical patent/US11251689B2/en
Publication of WO2019196960A1 publication Critical patent/WO2019196960A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/028Means for mechanical adjustment of the excitation flux by modifying the magnetic circuit within the field or the armature, e.g. by using shunts, by adjusting the magnets position, by vectorial combination of field or armature sections
    • H02K21/029Vectorial combination of the fluxes generated by a plurality of field sections or of the voltages induced in a plurality of armature sections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/223Rotor cores with windings and permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/09Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators

Definitions

  • the invention belongs to the field of robot driving devices, and more particularly to a magneto-reconfigurable robot joint motor.
  • the actuator In the robot system, the actuator is generally divided into two basic types: hydraulic drive and motor drive, of which motor drive is the most common.
  • motor drive As is well known, conventional motor drives are mainly composed of a stator, a rotor and an output shaft. When in operation, the rotor coil inputs a current that produces a coil magnetic field that interacts with the permanent magnet stator, thereby driving the rotor motion, thereby manipulating the robot to perform the various types of motion required.
  • the solution adopted in the prior art is generally to add a deceleration shaft system such as a gear reduction mechanism between the motor and the output shaft, that is, to combine different different speed reducers to obtain different ratings of the motor. Speed and speed.
  • a deceleration shaft system such as a gear reduction mechanism between the motor and the output shaft, that is, to combine different different speed reducers to obtain different ratings of the motor. Speed and speed.
  • the corresponding technical problems will inevitably still arise: Firstly, the entire volume of the robot joint will be increased, making the whole drive too bulky and complicated, and at the same time, the joint cannot be driven in the reverse direction. Secondly, the gear reduction mechanism is also easy to introduce.
  • the present invention provides a magnetizable reconfigurable robot joint motor in which the entire structural layout is redesigned and based on the addition of a magnetizable reconstruction unit, It is improved in various aspects and working mechanisms between other components, and can achieve high efficiency not only at high and low speeds, but also at a very low speed or even zero speed. Therefore, it is especially suitable for specific applications where the robot joint is directly driven.
  • a magnetizable reconfigurable robot joint motor characterized in that the robot joint motor comprises a coil stator, a permanent magnet rotor and a magnetizable reconstruction unit, wherein:
  • the coil stator is disposed on the motor driver, and the direction of the magnetic field generated when the power is applied is parallel to the direction of the output shaft of the motor driver;
  • the permanent magnet rotor has an annular disk-like structure as a whole, and is formed around the outer circumference of the coil stator and is serially connected by a plurality of permanent magnet blocks, and two permanent magnet blocks adjacent to each other are set as magnetic poles. The directions are opposite to each other;
  • the magnetizable reconstruction unit continues to be disposed around an outer circumference of the permanent magnet rotor, the magnetizable reconstruction unit is made of a hard magnetic material, and has a coil connected to the control circuit at an outer layer thereof;
  • the magnetizable reconstruction unit inputs a current pulse of different intensity through the control circuit to obtain a corresponding degree of permanent magnetization, and then generates a magnetic field and the permanent magnet rotor
  • the magnetic fields cooperate to maintain the torque required for the output; and when the robot joint needs to perform a high speed condition, the magnetizable reconstruction unit maintains the initial state, ie, does not input a current pulse through the control circuit, or passes through the
  • the control circuit inputs a predetermined current pulse and generates a magnetic field for fixed compensation of the static torque of the entire motor.
  • the motor when the robot joint needs to perform a low-speed or zero-speed operation condition, the motor mainly relies on the magnetizable reconstruction unit to output torque; and when the robot joint needs to perform a high-speed working condition, the motor mainly relies on the stator coil output to rotate.
  • the motor when the robot joint needs to perform a low-speed or zero-speed operation condition, the motor mainly relies on the magnetizable reconstruction unit to output torque; and when the robot joint needs to perform a high-speed working condition, the motor mainly relies on the stator coil output to rotate.
  • the above technical solutions conceived by the present invention are more in-depth research and analysis on the actual working condition characteristics of the robot joint and the mechanism of the direct driving of the motor, and the special setting is adopted.
  • the magnetizable reconfigurable unit works in conjunction with other components, and the required torque and efficiency can be accurately obtained regardless of high speed, low speed or even zero speed, and is easy to handle and compact. It has strong applicability and can be highly integrated with various parts of the robot joints. It is especially suitable for all kinds of robot joint drive applications that require high precision and high efficiency motion.
  • FIG. 1 is a schematic view showing the basic composition of a magneto-reconfigurable robot joint motor according to the present invention
  • Fig. 1 is a schematic view showing the basic configuration of a robot joint motor in which a magnetizable reconfigurable according to the present invention is exemplarily shown.
  • the motor is matched with the joint driving application scenarios of various types of robots, and includes the main components such as the coil stator 1, the permanent magnet rotor 2 and the magnetizable reconstruction unit 3. The following will be specifically made one by one. explain.
  • the coil stator 1 can be disposed on a motor driver, and the direction of the magnetic field generated when it is energized is kept parallel with the direction of the output shaft of the motor driver, so that the coil magnetic field can better act forever.
  • Magnet rotor 2 Further, the magnitude of the current in the stator coil 1 also partially determines the magnitude of the torque acting on the permanent magnet rotor.
  • the permanent magnet rotor 2 as a whole preferably has an annular disk-like structure which is disposed around the outer circumference of the coil stator 1 and can be serially connected in series by a plurality of permanent magnet blocks, and two permanent magnet blocks adjacent to each other are set to a magnetic pole direction. Opposite each other. In addition, the permanent magnet rotor is fixed to the output shaft.
  • the magnetizable reconstruction unit 3 continues to be disposed around the outer circumference of the permanent magnet rotor, the magnetizable reconstruction unit is made of a hard magnetic material, and is wound around its outer layer and connected to a control circuit.
  • the magnetizable reconstruction unit inputs a current pulse of different intensity through the control circuit to obtain a corresponding degree of permanent magnetization, and then Generating a magnetic field and cooperating with the magnetic field of the permanent magnet rotor, thereby maintaining the torque required for the output while maintaining a high efficiency; while the robot joint needs to perform a high speed condition, the magnetizable reconstruction unit remains In the initial state, the current pulse is not input through the control circuit, or a predetermined current pulse is input through the control circuit, and a magnetic field is generated for fixed compensation of the static torque of the entire motor.
  • the working process of this motor is basically similar to that of the conventional motor.
  • the stator coil can output torque and maintain high efficiency
  • the magnetizable reconstruction unit is subjected to a power-off process, that is, no magnetization occurs, that is, the joint drive is mainly based on the output torque of the stator coil.
  • a predetermined current pulse can also be input at this time, and the static torque (such as the heavy torque, etc.) is fixedly compensated accordingly, and more actual tests indicate that the motor can also be improved to some extent. effectiveness.
  • the current of the drive coil is calculated by a given torque.
  • the current is then applied by the control system.
  • the static torque can be fixedly compensated to further improve the efficiency of the motor.
  • the motor When the drive is used in low speed conditions (such conditions are more common for robot joint motion), the motor will primarily output torque from the magnetizable reconstruction unit. That is to say, after the control circuit applies a current pulse of a certain intensity to the magnetizable reconstruction unit, the magnetic field generated by the current causes the permanent magnet to be permanently magnetized. This magnetic field interacts with the rotor permanent magnets and plays a major role, ensuring that the entire motor maintains the required torque at low speeds while maintaining high motor efficiency. More specifically, in actual use, during the rotation of the rotor, the magnetization required for each magnetizable reconstruction unit can be calculated according to the rotor position and the torque required for the rotation, and then the magnetization coil is respectively pulsed by the control system. The current magnetizes each magnetizable reconstruction unit.
  • the magnetizable reconstruction unit is made of a hard magnetic material, although the current pulse in the coil is temporary, the residual magnetism generated after the current pulse is applied for a considerable period of time. It is maintained internally to produce the required torque between the magnetizable reconstitution unit and the permanent magnet rotor, but no other current is required for continuous input. Accordingly, as long as the pulse of the magnetizable reconstruction unit is periodically pulsed according to the change in the rotational speed, the required torque output of the robot joint drive can be maintained.
  • the above technical solution is not only compact, easy to operate, easy to modify existing robot joints, and can obtain a higher motor while maintaining the expected torque capacity regardless of the high speed or low speed conditions.
  • Efficiency is therefore especially suitable for all types of robotic joint drive applications that require high precision and high efficiency motion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明属于机器人驱动装置相关领域,并公开了一种可磁化重构的机器人关节电机,其包括线圈定子、永磁体转子和可磁化重构单元,其中可磁化重构单元环绕设置于永磁体转子的外周,并在其外层缠绕有与控制电路相连的线圈。当需要执行低转速或零转速的工况时,该可磁化重构单元可通过述控制电路输入不同强度的电流脉冲而获得对应程度的永久磁化,然后产生磁场并与所述永磁体转子的磁场共同作用,由此维持输出所需的转矩。通过本发明,不仅在高速或低速均能获得所需的转矩,同时能够维持较大的电机效率。

Description

一种可磁化重构的机器人关节电机 [技术领域]
本发明属于机器人驱动装置相关领域,更具体地,涉及一种可磁化重构的机器人关节电机。
[背景技术]
在机器人***中,执行机构一般分为液压驱动和电机驱动两种基本类型,其中又以电机驱动最为常见。众所周知,传统的电机驱动主要由定子、转子和输出轴组成。当工作时,转子线圈输入电流,产生一个线圈磁场;该磁场和永磁体定子相互作用,由此驱动转子运动,进而操控机器人完成所需的各类动作。
研究表明,在转子转动的过程中,由于是在磁场中转动,会产生一个反电动势,而且转速越高,反电动势相应也会越大。另一方面,电机电压和反电动势共同决定了转子线圈的电流大小,在低转速时,由于定子和转子相对速度较低,产生的反电动势较小,会产生较大的电机电流——电流过大则会导致电机产生很大的焦耳热,同时还会使电机的效率非常低,造成很大的能量损失。换而言之,由于反电动势的作用,电机必需在较高的转速下才能保持较高的效率。
然而,在机器人领域尤其是机器人关节驱动这一典型应用场合下,大多数情况是需要在低速甚至零转速的工况下输出转矩。为了解决此问题,现有技术中采取的解决方案一般是在电机与输出轴之间增加譬如齿轮减速机构之类的减速轴系,即通过组合不同的多个减速器来使电机获得不同的额定转速及转速。但这样相应不可避免地仍会产生以下的技术问题:首先,会增加机器人关节的整个体积,使得整个驱动变得过于庞大和复杂,同时导致关节无法反向驱动;其次,齿轮减机构还容易引入反冲,在增加重量 的同时,产生碰撞时的惯性等问题;最后,传统的关节直接驱动方式为了保持转矩,必需输入很大的电流,但在效率非常低的同时,线圈对电流的限制同样会使得驱动无法在低速时输出所需的大转矩。相应地,本领域亟需对此作出进一步的改进和设计,以便更好地满足现代化机器人关节驱动的更高效率需求。
[发明内容]
针对现有技术的以上缺陷或改进需求,本发明提供了一种可磁化重构的机器人关节电机,其中通过对其整个构造布局重新进行设计,并在增设可磁化重构单元的基础上,对其与其他组件之间的具体设置方式和工作机理等多方面做出改进,相应不仅在高低速均能获得高效率,而且在极低速甚至零转速的工况下也能产生所需的转矩,因而尤其适用于机器人关节直接驱动的特定应用场合。
为实现上述目的,按照本发明,提供了一种可磁化重构的机器人关节电机,其特征在于,该机器人关节电机包括线圈定子、永磁体转子和可磁化重构单元,其中:
所述线圈定子设置在电机驱动器上,并且它在通电时所产生的磁场方向与该电机驱动器的输出轴方向保持平行;
所述永磁体转子整体呈环形盘状结构,它环绕设置于所述线圈定子的外周并由多个永磁块依次串接而成,并且彼此相邻的两个永磁块被设定为磁极方向彼此相反;
所述可磁化重构单元继续环绕设置于所述永磁体转子的外周,该可磁化重构单元由硬磁材料制成,并在其外层缠绕有与控制电路相连的线圈;以此方式,当机器人关节需要执行低转速或零转速的工况时,该可磁化重构单元通过所述控制电路输入不同强度的电流脉冲而获得对应程度的永久磁化,然后产生磁场并与所述永磁体转子的磁场共同作用,由此维持输出所需的转矩;而当机器人关节需要执行高速工况时,该可磁化重构单元保 持初始状态也即不通过所述控制电路输入电流脉冲、或者通过所述控制电路输入预定的电流脉冲,并产生磁场用于对整个电机的静态力矩进行固定补偿。
作为进一步优选地,当机器人关节需要执行低转速或零转速的工况时,电机主要依靠可磁化重构单元输出转矩;而当机器人关节需要执行高速工况时,电机主要依靠定子线圈输出转矩。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,通过对机器人关节的实际工况特征及电机直接驱动的机理等方面进行更为深入的研究和分析,并采用设置专门的可磁化重构单元来与其他组件配合发挥作用,相应无论在无论高转速还是低转速甚至零转速的工况下,仅能准确获得所需的转矩和效率,同时具备便于操控、结构紧凑、适用性强,可高度集成机器人关节各部位等特点,因而尤其适用于各类需要高精度高效率运动的机器人关节驱动应用场合。
[附图说明]
图1是用于示范性显示按照本发明的可磁化重构的机器人关节电机的基本组成结构示意图;
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1-线圈定子 2-永磁体转子 3-可磁化重构单元 4-轴承 5-控制电路
[具体实施方式]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
图1是用于示范性显示按照本发明的可磁化重构的机器人关节电机的 基本组成结构示意图。如图1所示,该电机被配套用于各类机器人的关节驱动应用场景,并包括线圈定子1、永磁体转子2和可磁化重构单元3等主要组成部件,下面将逐一对其进行具体解释说明。
如图1所示,所述线圈定子1可设置在电机驱动器上,并且它在通电时所产生的磁场方向与该电机驱动器的输出轴方向保持平行,从而使得线圈磁场可更好地作用于永磁体转子2。此外,定子线圈1中的电流大小也部分决定了作用于永磁体转子的转矩的大小。
永磁体转子2整体优选呈环形盘状结构,它环绕设置于线圈定子1的外周并可由多个永磁块依次串接而成,并且彼此相邻的两个永磁块被设定为磁极方向彼此相反。此外,永磁体转子与输出轴固连。
作为本发明的关键改进所在,可磁化重构单元3继续环绕设置于所述永磁体转子的外周,该可磁化重构单元由硬磁材料制成,并在其外层缠绕有与控制电路相连的一层线圈;以此方式,当机器人关节需要执行低转速或零转速的工况时,该可磁化重构单元通过所述控制电路输入不同强度的电流脉冲而获得对应程度的永久磁化,然后产生磁场并与所述永磁体转子的磁场共同作用,由此维持输出所需的转矩,并且同时保持较高的效率;而当机器人关节需要执行高速工况时,该可磁化重构单元保持初始状态也即不通过所述控制电路输入电流脉冲、或者通过所述控制电路输入预定的电流脉冲,并产生磁场用于对整个电机的静态力矩进行固定补偿。
下面将对按照本发明的机器人关节电机的工作原理进行具体解释。
当驱动器应用于高速工况时,本电机的工作过程与传统电机基本类似。在此情况下,定子线圈可以输出扭矩且保持较高的效率,而可磁化重构单元被执行断电处理,也即不发生磁化,也即关节驱动以定子线圈输出转矩为主。然而,按照本发明的一个优选实施方式,此时也可以输入预定的电流脉冲,相应对静态力矩(如重力矩等)进行固定补偿,较多的实际测试表明其同样可在一定程度上提高电机效率。例如,通过给定的转矩,计算 驱动线圈的电流。再由控制***施加电流。相应可以对静态力矩进行固定补偿以进一步提高电机效率。
当驱动器应用于低速工况时(此类工况对于机器人关节运动而言更为常见),电机将主要由可磁化重构单元来输出转矩。也就是说,控制电路给可磁化重构单元施加一定强度的电流脉冲后,电流产生的磁场会使永磁体永久磁化。此磁场与转子永磁体相互作用并发挥主要作用,进而确保整个电机在低速时候仍然能够维持所需的扭矩而且同时保持较高的电机效率。更具体地,在实际使用时,在转子旋转过程中,可根据转子位置和旋转所需要转矩计算出每个可磁化重构单元所需的磁化强度,再通过控制***分别对磁化线圈施加脉冲电流磁化每个可磁化重构单元。
即便驱动器应用于转速为零的工况时,由于可磁化重构单元是由硬磁材料制成,虽然线圈中的电流脉冲是暂时的,但电流脉冲作用后所产生的剩磁会在相当时间内维持住,从而在可磁化重构单元与永磁体转子之间产生所需的转矩,却无需其他电流持续输入。相应地,只要根据转速的变化情况,周期性地给可磁化重构单元的线圈施加脉冲,就能够保持所需的机器人关节驱动的转矩输出。
综上,采用上述技术方案不仅结构紧凑、便于操控、易于对现有机器人关节进行改造,而且无论处于高速或低速的工况,均可在维持输出预期转矩能力的情况下获得较高的电机效率,因此尤其适用于各类需要高精度高效率运动的机器人关节驱动应用场合。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

  1. 一种可磁化重构的机器人关节电机,其特征在于,该机器人关节电机包括线圈定子(1)、永磁体转子(2)和可磁化重构单元(3),其中:
    所述线圈定子(1)设置在电机驱动器上,并且它在通电时所产生的磁场方向与该电机驱动器的输出轴方向保持平行;所述永磁体转子(2)整体呈环形盘状结构,它环绕设置于所述线圈定子(1)的外周并由多个永磁块依次串接而成,并且彼此相邻的两个永磁块被设定为磁极方向彼此相反;
    所述可磁化重构单元(3)继续环绕设置于所述永磁体转子的外周,该可磁化重构单元由硬磁材料制成,并在其外层缠绕有与控制电路相连的线圈;以此方式,当机器人关节需要执行低转速或零转速的工况时,该可磁化重构单元通过所述控制电路输入不同强度的电流脉冲而获得对应程度的永久磁化,然后产生磁场并与所述永磁体转子的磁场共同作用,由此维持输出所需的转矩;而当机器人关节需要执行高速工况时,该可磁化重构单元保持初始状态也即不通过所述控制电路输入电流脉冲、或者通过所述控制电路输入预定的电流脉冲,并产生磁场用于对整个电机的静态力矩进行固定补偿。
  2. 如权利要求1所述的一种可磁化重构的机器人关节电机,其特征在于,当机器人关节需要执行低转速或零转速的工况时,电机主要依靠可磁化重构单元输出转矩;而当机器人关节需要执行高速工况时,电机主要依靠定子线圈输出转矩。
PCT/CN2019/084717 2018-04-13 2019-04-28 一种可磁化重构的机器人关节电机 WO2019196960A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/961,934 US11251689B2 (en) 2018-04-13 2019-04-28 Magnetically reconfigurable robot joint motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810331770.2A CN108494202B (zh) 2018-04-13 2018-04-13 一种可磁化重构的机器人关节电机
CN201810331770.2 2018-04-13

Publications (1)

Publication Number Publication Date
WO2019196960A1 true WO2019196960A1 (zh) 2019-10-17

Family

ID=63315812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084717 WO2019196960A1 (zh) 2018-04-13 2019-04-28 一种可磁化重构的机器人关节电机

Country Status (3)

Country Link
US (1) US11251689B2 (zh)
CN (1) CN108494202B (zh)
WO (1) WO2019196960A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108494202B (zh) * 2018-04-13 2020-01-03 华中科技大学 一种可磁化重构的机器人关节电机
US11006208B1 (en) * 2019-12-20 2021-05-11 The United States Of America As Represented By The Secretary Of The Navy Compact low-frequency acoustic source
CN110932514B (zh) * 2019-12-30 2021-06-04 深圳市优必选科技股份有限公司 一种无刷电机及电机转子位置的检测方法
CN111277094B (zh) * 2020-03-10 2022-06-10 奇瑞汽车股份有限公司 复合盘式驱动电机
CN114257055A (zh) * 2021-12-22 2022-03-29 杭州万向职业技术学院 机器人关节低速大力矩输出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578477A (zh) * 2014-12-11 2015-04-29 东南大学 一种混合永磁磁极交替式磁通切换型记忆电机及其绕组切换弱磁控制方法
CN105207438A (zh) * 2015-10-15 2015-12-30 东南大学 一种磁场调制式定转子混合永磁记忆电机
CN105337429A (zh) * 2015-11-09 2016-02-17 江苏大学 一种组合励磁型定子分区式混合永磁磁通切换记忆电机
CN108494202A (zh) * 2018-04-13 2018-09-04 华中科技大学 一种可磁化重构的机器人关节电机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3280158B2 (ja) * 1994-04-27 2002-04-30 株式会社安川電機 Dcブラシレスモータ
DE19838378A1 (de) * 1998-08-24 2000-03-02 Magnet Motor Gmbh Elektrische Maschine mit Dauermagneten
US6531798B1 (en) * 1999-02-24 2003-03-11 Tri-Tech, Inc Linear/rotary motor and method of use
WO2004008611A1 (ja) * 2002-07-10 2004-01-22 Nikon Corporation モータ、ロボット、基板ローダ及び露光装置
US7791242B2 (en) * 2004-08-20 2010-09-07 Clearwater Holdings, Ltd. DC induction electric motor-generator
JP5488625B2 (ja) * 2012-02-13 2014-05-14 株式会社デンソー ダブルステータ型同期モータ
CN103051139B (zh) * 2012-12-20 2015-04-15 东南大学 一种磁通切换型永磁记忆电机
CN105141092A (zh) * 2015-10-15 2015-12-09 东南大学 一种磁齿轮型双定子混合永磁记忆电机
CN105553128B (zh) * 2016-01-25 2017-11-17 江苏大学 一种混合励磁磁通切换电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578477A (zh) * 2014-12-11 2015-04-29 东南大学 一种混合永磁磁极交替式磁通切换型记忆电机及其绕组切换弱磁控制方法
CN105207438A (zh) * 2015-10-15 2015-12-30 东南大学 一种磁场调制式定转子混合永磁记忆电机
CN105337429A (zh) * 2015-11-09 2016-02-17 江苏大学 一种组合励磁型定子分区式混合永磁磁通切换记忆电机
CN108494202A (zh) * 2018-04-13 2018-09-04 华中科技大学 一种可磁化重构的机器人关节电机

Also Published As

Publication number Publication date
US20200343799A1 (en) 2020-10-29
CN108494202B (zh) 2020-01-03
US11251689B2 (en) 2022-02-15
CN108494202A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2019196960A1 (zh) 一种可磁化重构的机器人关节电机
CN101946391B (zh) 永久磁铁式旋转电机
JP5085071B2 (ja) 永久磁石式回転電機の回転子
JP5151486B2 (ja) ブラシレス電気機械、装置、移動体、及び、ロボット
CN101946386A (zh) 永久磁铁式旋转电机、永久磁铁式旋转电机的组装方法、永久磁铁式旋转电机的分解方法以及永久磁铁电动机驱动***
JP3427511B2 (ja) 二軸出力型電動機
CN105141092A (zh) 一种磁齿轮型双定子混合永磁记忆电机
CN106357076B (zh) 一种Halbach聚磁型轴向磁场混合永磁记忆电机
JP4619081B2 (ja) 可逆ステッピングモータ
JP2012130223A (ja) 同期モータ
JP2010106940A (ja) 磁気波動歯車装置および磁気伝達減速機
CN109660100A (zh) 一种直线旋转两自由度永磁电机
CN201038194Y (zh) 磁致伸缩装置以及采用该装置的直线电机与振动装置
CN109742874A (zh) 一种直线旋转两自由度磁通切换永磁电机
JP2010172046A (ja) 磁石励磁の磁束量可変回転電機システム
CN109600015B (zh) 一种定子励磁型直线旋转电机结构
CN109304694B (zh) 一种电磁应力驱动的三自由度定位机构及控制方法
Tanaka et al. Optimal design of length factor for cross-coupled 2-DOF motor with Halbach magnet array
Tao et al. Design and analysis of a novel spherical motor based on the principle of reluctance
JPS62221852A (ja) 電動体
JP2016012950A (ja) 永久磁石同期機及びこの永久磁石同期機を用いた圧縮機及び空気調和機
Saati et al. A new hybrid brushless dc motor/generator without permanent magnet
CN104993734B (zh) 一种动磁式磁致微位移驱动器
CN205595913U (zh) 高性能旋转电磁执行器
US20220294311A1 (en) Actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785970

Country of ref document: EP

Kind code of ref document: A1