WO2019192443A1 - 上行时频资源集合的配置、接收方法及装置 - Google Patents

上行时频资源集合的配置、接收方法及装置 Download PDF

Info

Publication number
WO2019192443A1
WO2019192443A1 PCT/CN2019/080907 CN2019080907W WO2019192443A1 WO 2019192443 A1 WO2019192443 A1 WO 2019192443A1 CN 2019080907 W CN2019080907 W CN 2019080907W WO 2019192443 A1 WO2019192443 A1 WO 2019192443A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency resource
time
user
indication
uplink
Prior art date
Application number
PCT/CN2019/080907
Other languages
English (en)
French (fr)
Inventor
曲鑫
黄甦
周欢
Original Assignee
北京展讯高科通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京展讯高科通信技术有限公司 filed Critical 北京展讯高科通信技术有限公司
Priority to US16/975,689 priority Critical patent/US11546081B2/en
Publication of WO2019192443A1 publication Critical patent/WO2019192443A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a method and apparatus for configuring and receiving an uplink time-frequency resource set.
  • an Ultra Reliable & Low Latency Communication (URLLC) user has a short transmission time and is a short time duration user
  • eMBB enhanced mobile broadband
  • Long time duration user For example, an Ultra Reliable & Low Latency Communication (URLLC) user has a short transmission time and is a short time duration user; an enhanced mobile broadband (eMBB) user has a longer transmission time. Long time duration user.
  • URLLC Ultra Reliable & Low Latency Communication
  • eMBB enhanced mobile broadband
  • the base station can schedule the users with shorter transmission durations on the uplink time-frequency resources of the scheduled long-time users, thereby realizing the uplink time-frequency resources of the short-time users multiplexing the long-time users. .
  • the base station schedules the URLLC user to multiplex the uplink time-frequency resources of the eMBB user on the uplink time-frequency resource of the eMBB user.
  • DMRS uplink demodulation reference signal
  • the present invention provides a method and apparatus for configuring and receiving an uplink time-frequency resource set.
  • the problem that the present invention solves is that the eMBB may conflict with the time-frequency resources occupied by the URLLC user to transmit the uplink DMRS when the user performs uplink data transmission, thereby affecting the reliability of the URLLC user.
  • the present invention provides a method for configuring an uplink time-frequency resource set, where the configuration method includes: configuring at least one uplink time-frequency resource set, the uplink, for a user configured with an uplink transmission multiplexing mode.
  • the time-frequency resource set includes a time-frequency resource unit, the time-frequency resource unit is a time-frequency resource on which the user performs rate matching, and the at least one indication group is sent to the user to indicate at least one uplink time-frequency.
  • the set of uplink time-frequency resources is indicated by at least one indication group, where the indication group includes a symbol level indication, a resource block level indication, and a sub-carrier level indication; and the uplink transmission multiplexing mode refers to the user may
  • the same time-frequency resource is multiplexed with other one or more users for uplink transmission.
  • the uplink time-frequency resource set is configured with at least one reference range, where one uplink time-frequency resource set corresponds to one reference range.
  • the symbol level indication is indicated by using a first bit bitmap, where the number of bits in the first bit bitmap is a total number of symbols included in the reference range, and each of the first bit bitmaps The bit indicates a symbol indicating whether rate matching is performed on the symbol.
  • each indication group is cyclically applied in the time domain in units of the length of the first bitmap.
  • the resource block level indication is indicated by using a second bit bitmap, where the number of bits in the second bit bitmap is a total physical resource block number included in the reference range, and the second bit bitmap is in the second bit bitmap.
  • Each bit indicates a physical resource block indicating whether rate matching is performed on the physical resource block.
  • the subcarrier level indication is indicated by using a third bit bitmap, where the number of bits in the third bit bitmap is a number of subcarriers included in one physical resource block in the reference range, and third.
  • Each bit in the bit bitmap indicates a subcarrier indicating whether rate matching is performed on the subcarrier.
  • the subcarrier level indication is indicated by indicating a demodulation reference signal configuration type, demodulating a reference signal port number, and a subcarrier corresponding to the demodulation reference signal, indicating that the demodulation reference signal is sent.
  • Rate matching is performed on the subcarrier index corresponding to the port, where the subcarrier index corresponding to the demodulation reference signal sending port is a subcarrier index in one physical resource block under the user corresponding subcarrier interval, and the subcarrier
  • the carrier index is determined by the user according to the configured demodulation reference signal configuration type, the demodulation reference signal port number, and the corresponding subcarrier spacing of the demodulation reference signal and the subcarrier spacing corresponding to the user.
  • the reference range is configured by the base station to configure the user by using RRC signaling, or configured by default.
  • the default setting is a time slot in the frequency domain for the active bandwidth portion of the user, and a time slot for the user to perform uplink transmission in the time domain.
  • the uplink time-frequency resource set is configured by the base station by using RRC signaling.
  • the uplink time-frequency resource set is configured by the base station by using a combination of RRC signaling and dynamic indication; and the user is configured by RRC signaling before receiving the dynamic indication.
  • Rate matching on the time-frequency resource unit included in the rate-matched time-frequency resource set; after receiving the dynamic indication, the user includes the time-frequency resource unit included in the uplink time-frequency resource set configured by the dynamic indication Rate matching is performed on.
  • the dynamic indication is to indicate to the user at least one uplink time-frequency resource set by using a MAC control unit.
  • the dynamic indication is to indicate to the user at least one uplink time-frequency resource set by using downlink control information.
  • the present invention further provides a method for receiving an uplink time-frequency resource set, where the receiving method includes: receiving at least one uplink time-frequency resource set; performing on a time-frequency resource unit included in the uplink time-frequency resource set Rate matching; wherein one of the uplink time-frequency resource sets is indicated by at least one indication group, the indication group includes a symbol level indication, a resource block level indication, and a sub-carrier level indication.
  • At least one reference range is received while receiving at least one of the uplink time-frequency resource sets; or the at least one reference range is determined according to a default setting.
  • the present invention also provides an apparatus for configuring an uplink time-frequency resource set, comprising a memory and a processor, wherein the memory stores a computer program executable on the processor, wherein the processor implements the program
  • the following steps configuring at least one uplink time-frequency resource set for a user configured with an uplink transmission multiplexing mode, where the uplink time-frequency resource set includes a time-frequency resource unit, where the time-frequency resource unit is the user Performing rate matching time-frequency resources; transmitting at least one indication group to the user to indicate at least one of the uplink time-frequency resource sets; wherein, the one uplink time-frequency resource set is indicated by at least one indication group, the indication The group includes a symbol level indication, a resource block level indication, and a subcarrier level indication.
  • the uplink transmission multiplexing mode refers to that the user can multiplex the same time-frequency resources with other one or more users for uplink transmission.
  • the uplink time-frequency resource set is configured with at least one reference range, where one uplink time-frequency resource set corresponds to one reference range.
  • the symbol level indication is indicated by using a first bit bitmap, where the number of bits in the first bit bitmap is a total number of symbols included in the reference range, and each of the first bit bitmaps The bit indicates a symbol indicating whether rate matching is performed on the symbol.
  • each indication group is cyclically applied in the time domain in units of the length of the first bitmap.
  • the resource block level indication is indicated by using a second bit bitmap, where the number of bits in the second bit bitmap is a total physical resource block number included in the reference range, and the second bit bitmap is in the second bit bitmap.
  • Each bit indicates a physical resource block indicating whether rate matching is performed on the physical resource block.
  • the subcarrier level indication is indicated by using a third bit bitmap, where the number of bits in the third bit bitmap is a number of subcarriers included in one physical resource block in the reference range, and third.
  • Each bit in the bit bitmap indicates a subcarrier indicating whether rate matching is performed on the subcarrier.
  • the subcarrier level indication is indicated by indicating a demodulation reference signal configuration type, demodulating a reference signal port number, and a subcarrier corresponding to the demodulation reference signal, indicating that the demodulation reference signal is sent.
  • Rate matching is performed on the subcarrier index corresponding to the port, where the subcarrier index corresponding to the demodulation reference signal sending port is a subcarrier index in one physical resource block under the user corresponding subcarrier interval, and the subcarrier
  • the carrier index is determined by the user according to the configured demodulation reference signal configuration type, the demodulation reference signal port number, and the corresponding subcarrier spacing of the demodulation reference signal and the subcarrier spacing corresponding to the user.
  • the reference range is configured by the base station to configure the user by using RRC signaling, or configured by default.
  • the default setting is a time slot in the frequency domain for the active bandwidth portion of the user, and a time slot for the user to perform uplink transmission in the time domain.
  • the uplink time-frequency resource set is configured by the base station by using RRC signaling.
  • the uplink time-frequency resource set is configured by the base station by using a combination of RRC signaling and dynamic indication; and the user is configured by RRC signaling before receiving the dynamic indication.
  • Rate matching on the time-frequency resource unit included in the rate-matched time-frequency resource set; after receiving the dynamic indication, the user includes the time-frequency resource unit included in the uplink time-frequency resource set configured by the dynamic indication Rate matching is performed on.
  • the dynamic indication is to indicate to the user at least one uplink time-frequency resource set by using a MAC control unit.
  • the dynamic indication is to indicate to the user at least one uplink time-frequency resource set by using downlink control information.
  • the present invention also provides a receiving device for a set of uplink time-frequency resources, comprising a memory and a processor, wherein the memory stores a computer program executable on the processor, wherein the processor implements the program
  • the indication group includes a symbol level indication, a resource block level indication, and a subcarrier level indication.
  • the base station configures at least one uplink time-frequency resource set for the user configured with the uplink transmission multiplexing mode, where the uplink time-frequency resource set includes a time-frequency resource unit, where the time-frequency resource unit is a rate at which the user performs Matching time-frequency resources, and sending at least one indication group to the user to indicate at least one of the uplink time-frequency resource sets. Therefore, the eMBB user can obtain the time-frequency resource location of the uplink DMRS transmitted by the URLLC user, thereby performing rate matching, and not performing uplink data transmission on the corresponding time-frequency resource. Therefore, the reliability of the URLLC user can be improved.
  • FIG. 1 is a flowchart of a method for configuring an uplink time-frequency resource set according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a rate matching time-frequency resource distribution according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of rate matching time-frequency resource distribution according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a port pattern of an uplink demodulation reference signal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a rate matching time-frequency resource distribution according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of rate matching time-frequency resource distribution according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for receiving an uplink time-frequency resource set according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus for configuring an uplink time-frequency resource set according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a receiving apparatus of an uplink time-frequency resource set according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for configuring an uplink time-frequency resource set according to an embodiment of the present invention.
  • At least one uplink time-frequency resource set is configured for a user that has configured an uplink transmission multiplexing mode, where the uplink time-frequency resource set includes a time-frequency resource unit, where the time-frequency resource unit is Time-frequency resources on which rate matching is performed.
  • At least one indication group is sent to the user to indicate at least one of the uplink time-frequency resource sets.
  • the uplink time-frequency resource set is indicated by at least one indication group, where the indication group includes a symbol level indication, a resource block level indication, and a sub-carrier level indication; and the uplink transmission multiplexing mode refers to that the user can interact with another one. Or multiple users multiplex the same time-frequency resources for uplink transmission.
  • the above method can avoid the conflict between the time-frequency resources occupied by the eMBB user in the uplink data transmission and the time-frequency resource location of the uplink DMRS of the URLLC, thereby ensuring the reliability of the URLLC user.
  • the base station configures at least one reference range for the uplink time-frequency resource set while configuring the at least one uplink time-frequency resource set for the user, where one uplink time-frequency resource set corresponds to one reference. range.
  • “simultaneously” does not mean that the base station configures the uplink time-frequency resource set and the configuration reference range to be exactly the same at the moment.
  • the reference range may be configured by the base station by using RRC signaling, or configured by default. And the base station configures the correspondence between the reference range and the indication group for the user, and after receiving the indication group, the user may determine the uplink time-frequency according to the instruction group indication in the corresponding reference range according to the configured correspondence relationship. Resource collection.
  • one eMBB user may be configured with one or more of the reference ranges; one of the reference time ranges may be configured with one or more of the uplink time-frequency resource sets; and one of the time-frequency resource sets may be configured by One or more indication group indications.
  • FIG. 2 and FIG. 3 are schematic diagrams of rate matching time-frequency resource distribution according to an embodiment of the present invention
  • FIG. 4 is an uplink demodulation reference signal according to an embodiment of the present invention. Schematic diagram of the port pattern.
  • the working subcarrier spacing of the eMBB user is 15 kHz
  • the base station configures the eMBB user as an uplink transmission multiplexing mode, and configures the eMBB user to configure the uplink time-frequency resource set by using RRC signaling.
  • the eMBB user performs rate matching on the time-frequency resource unit included in the uplink time-frequency resource set.
  • the first URLLC user is configured to perform uplink transmission by using a configured grant UL transmission type 1 with a subcarrier spacing of 15 kHz and a transmission resource period of 2 symbols, in each of the periods.
  • the time-frequency resource location of the intra-transmission is as follows: PRB0-PRB2 in the frequency domain, the first two symbols in the period in the time domain, the uplink DMRS occupies one symbol, and the uplink DMRS port of the first URLLC user is configured.
  • the number is port 1 in the uplink DMRS configuration type 2, and is located on four subcarriers 0, 1, 6, and 7 in one PRB.
  • the base station indicates the time-frequency resource location of the uplink DMRS of the first URLLC user to the eMBB user by configuring the first uplink time-frequency resource set, and simultaneously configures the first reference range for the user.
  • the first reference range is a reference range of the uplink time-frequency resource, and is a PRB (physical resource block) 0-PRB9 in the frequency domain, where the PRB index may be a public PRB index at the cell level. It can also be a dedicated PRB index for the active bandwidth portion of the eMBB user.
  • the reference range is a time slot corresponding to the working subcarrier spacing of the eMBB user in the time domain.
  • the first uplink time-frequency resource set is indicated by an indication group, and is marked as a first indication group.
  • the symbol level indication is indicated by using a first bit bitmap, where the size of the first bitmap is the total number of symbols included in the reference range, that is, 14 bits, each bit Corresponding to a symbol in the time domain within the reference range, that is, a symbol corresponding to the working subcarrier spacing of the eMBB user.
  • the first bit bitmap may be determined as [101010101010].
  • the first bit bitmap may be from the most significant bit (Most Significant Bit). , MSB) to the Least Significant Bit (LSB) indicates that the time domain symbol is small to large, or indicates that the time domain symbol is from large to small, so the first bit bitmap can also be [01010101010101].
  • the resource block level indication is indicated by using a second bit bitmap, where the size of the second bit bitmap is the number of PRBs included in the reference range, that is, 10 bits, and each bit corresponds to One PRB in the frequency domain within the reference range.
  • the second bit bitmap may be determined as [1110000000], and similarly, the second bit bitmap may also be [0000000111].
  • the subcarrier level indication is indicated by using a third bit bitmap, where the size of the third bit bitmap is a number of subcarriers included in one PRB, that is, 12 bits, and each bit corresponds to One subcarrier within one PRB within the reference range.
  • the third bit bitmap may be determined as [110000110000] ].
  • the subcarrier level indication may also be indicated by indicating an uplink DMRS configuration type and an uplink DMRS port number and a subcarrier spacing corresponding to the DMRS, and indicating the subcarrier corresponding to the demodulation reference signal sending port.
  • Rate matching is performed on the index, and the subcarrier index is configured by the user according to the configured demodulation reference signal configuration type, and the demodulation reference signal port number and the demodulation reference signal corresponding subcarrier spacing are corresponding to the user.
  • the carrier interval calculation is determined by: using one bit higher to indicate the uplink DMRS configuration type, the upper one bit is 0 to indicate the uplink DMRS configuration type 1; the upper one bit is 1 to indicate the uplink DMRS configuration type 2.
  • the X-bits are used to indicate the uplink DMRS port number.
  • the total number of ports of the uplink DMRS configuration type 2 occupying one symbol is 6, that is, X is 6, and is indicated by the middle six-bit bit.
  • the lower two bits are used to indicate the relationship between the subcarrier spacing corresponding to the DMRS and the eMBB user subcarrier spacing, 00 indicates that the subcarrier spacing is the same, 01 indicates that the subcarrier spacing corresponding to the DMRS is twice the interval of the eMBB user subcarrier, and 10 indicates 4 Times, 11 means 8 times.
  • the port 1 whose uplink DMRS port number is the uplink DMRS configuration type 2 can be represented by 9 bits, that is, [101000000].
  • the eMBB user determines that the DMRS configuration type 2 is determined by the upper one bit according to the received subcarrier level indication. Therefore, as shown in FIG. 4, the port pattern is determined according to the middle six bits, and the DMRS port number is determined to be 1, corresponding to the DMRS.
  • the subcarrier index under the subcarrier spacing is 0, 1, 6, and 7. It can be determined that the subcarrier spacing corresponding to the DMRS is the same as the subcarrier spacing of the eMBB user according to the value of the lower two bits. Therefore, the eMBB user can determine the subcarrier.
  • the carrier level indication is the subcarrier indices 0, 1, 6, and 7 of the next physical resource block of the eMBB user subcarrier interval.
  • the base station sends the first indication group to the eMBB user by using RRC signaling, and the user can determine the symbols 0, 2, 4, 6, 8, 10, and 12 in each time slot according to the first indication group.
  • rate matching is performed on subcarriers 0, 1, 6, and 7 in each PRB, that is, uplink data is not transmitted.
  • the second URLLC user is configured to perform uplink transmission by using the unscheduled type one, the subcarrier spacing is 30 kHz, and the transmission resource period is 7 symbols, and the time domain resource location transmitted in each period is the first 7 in the period. Symbol, the frequency domain resource location transmitted in each cycle is two PRBs. Since the subcarrier spacing of the eMBB user is 15 kHz, one symbol length of the second URLLC user is one half of the symbol length of the eMBB user, and the size of one PRB is twice the size of one PRB of the eMBB user.
  • the base station indicates the time-frequency resource location of the uplink DMRS of the second URLLC user to the eMBB user by using the second uplink time-frequency resource set, and simultaneously configures the first reference range for the eMBB user.
  • the second uplink time-frequency resource set is indicated by an indication group, and is marked as a second indication group.
  • the first PRB of the second URLLC user is in the corresponding frequency domain location PRB3-PRB4 in the first time-frequency reference range, and the corresponding frequency domain location of the second PRB is PRB5-PRB6.
  • the second URLLC user uplink DMRS is configured as one symbol, and the configured uplink DMRS port number is port 2 of the uplink DMRS configuration type 2, and the subcarrier 2 within one PRB of the 30 kHz subcarrier interval, 3, 8 and 9 on four subcarriers.
  • the symbol level indication is indicated by using a first bit bitmap, and includes a total of 14 bits, where each bit corresponds to a symbol in the time domain within the reference range, that is, a working element of the eMBB user.
  • One symbol corresponding to the carrier spacing. Since the transmission period of the second URLLC user is 7 symbols, and the length of one time domain symbol is half of the length of the eMBB user symbol, one time slot of the eMBB user includes 4 transmission periods of the second URLLC user, according to the second URLLC.
  • the resource block level indication is indicated by using a second bit bitmap, where the size of the second bit bitmap is the number of PRBs included in the reference range, that is, 10 bits, and each bit corresponds to One PRB in the frequency domain within the reference range.
  • the second bit bitmap can be determined as [0001111000].
  • the subcarrier level indication is indicated by using a third bit bitmap, where the size of the third bit bitmap is the number of subcarriers included in the next PRB of the subcarrier spacing of the eMBB user, that is, 12 bits, each bit corresponding to one subcarrier within one PRB within the reference range.
  • the subcarrier index in one PRB under the 30 kHz subcarrier interval is: 2, 3, 8, 9.
  • one PRB size under the 30 kHz subcarrier interval is twice the PRB size under the 15 kHz subcarrier interval, after conversion, the subcarrier 2, subcarrier 3, and subcarrier in the first PRB of the second URLLC user are converted.
  • 8 and subcarrier 9 correspond to subcarrier 4, subcarrier 5, subcarrier 6, subcarrier 7 and subcarrier 4 in subcarrier 4, subcarrier 5, subcarrier 6, subcarrier 7 in PRB3 in the first reference range.
  • the second PRB inner subcarrier 2, the subcarrier 3, the subcarrier 8 and the subcarrier 9 of the second URLLC user correspond to the subcarrier 4, the subcarrier 5, the subcarrier 6, and the subcarrier in the PRB5 in the first reference range. 7 and subcarrier 4, subcarrier 5, subcarrier 6, and subcarrier 7 in PRB6. Therefore, the third bit bitmap indicates subcarriers 4-7 in one PRB of the first reference range, which can be determined as [000011110000].
  • the base station sends the second indication group to the eMBB user by using RRC signaling, and the user can determine the symbols 0, 3, 7, and 10 in each time slot according to the second indication group, and the frequency domain PRB3-PRB6 And rate matching is performed on subcarriers 4, 5, 6, and 7 within each PRB, that is, uplink data is not transmitted.
  • the uplink time-frequency resource set may be configured by the base station by combining RRC signaling with dynamic indication; the user is in the RRC letter before receiving the dynamic indication. Performing rate matching on the time-frequency resource unit included in the set of rate matching time-frequency resources; after receiving the dynamic indication, when the user includes the uplink time-frequency resource set configured by the dynamic indication Rate matching is performed on the frequency resource unit.
  • the uplink time-frequency resource set can be configured by the base station by combining RRC signaling with dynamic indication.
  • the working subcarrier spacing of the eMBB user is 15 kHz
  • the base station configures the eMBB user as an uplink transmission multiplexing mode, and configures uplink for the eMBB user by combining RRC signaling with dynamic indication.
  • Time-frequency resource set and reference range is 15 kHz
  • the base station configures an uplink time-frequency resource set for the user by using a combination of the RRC signaling and the dynamic indication, and the dynamic indication is to indicate to the user by using a MAC Control Element (MAC CE).
  • MAC CE MAC Control Element
  • At least one upstream time-frequency resource set As shown in FIG. 2 and FIG. 3, the base station configures two uplink time-frequency resource sets for the eMBB user by using RRC signaling, and marks the first uplink time-frequency resource set and the second uplink time-frequency resource set, and simultaneously is the eMBB. The user configures the first reference range.
  • the first uplink time-frequency resource set and the second uplink time-frequency resource set are respectively indicated by the first indication group and the second indication group, and the first indication group and the second indication group respectively include a first bit bitmap, Two-bit bitmap and third bit bitmap.
  • the first reference range is PRB0-PRB9 in the frequency domain, where the PRB index may be a public PRB index at the cell level, or may be a dedicated PRB index of an active bandwidth portion of the eMBB user.
  • the reference range is a time slot corresponding to the working subcarrier spacing of the eMBB user in the time domain.
  • the first bit bitmap of the first indication group is [101010101010]
  • the second bit bitmap is [1110000000]
  • the third bit bitmap is [110000110000].
  • the first bit bitmap of the second indication group is [10010001001000]
  • the second bit bitmap is [0001111000]
  • the third bit bitmap is [000011110000].
  • each bit bitmap may indicate that the time domain symbol is from small to large from the most significant bit to the least significant bit, or indicates that the time domain symbol is from large to small, and details are not described herein again. .
  • the eMBB user performs the rate on the first uplink time-frequency resource set configured by the RRC signaling and the time-frequency resource unit included in the second uplink time-frequency resource set before receiving the MAC CE indication. match.
  • the eMBB user receives the MAC CE indication, and only indicates the first uplink time-frequency resource set. Therefore, after the first time, the eMBB user will be included in the first uplink time-frequency resource set. Rate matching on time-frequency resource units.
  • the eMBB user receives a new MAC CE indication, and only indicates the second uplink time-frequency resource set. Therefore, after the second time, the eMBB user will be in the second uplink time-frequency resource set. Rate matching is performed on the included time-frequency resource unit.
  • the working subcarrier spacing of the eMBB user is 15 kHz
  • the base station configures the eMBB user as an uplink transmission multiplexing mode, and configures uplink for the eMBB user by combining RRC signaling with dynamic indication.
  • Time-frequency resource set and reference range is 15 kHz
  • the base station configures an uplink time-frequency resource set for the eMBB user by using the RRC signaling and the dynamic indication, and the dynamic indication is to indicate to the user by using Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • At least one upstream time-frequency resource set As shown in FIG. 2 and FIG. 3, the base station configures two uplink time-frequency resource sets for the eMBB user by using RRC signaling, and marks the first uplink time-frequency resource set and the second uplink time-frequency resource set, and simultaneously is the eMBB. The user configures the first reference range.
  • the first uplink time-frequency resource set and the second uplink time-frequency resource set are respectively indicated by the first indication group and the second indication group, and the first indication group and the second indication group respectively include a first bit bitmap, Two-bit bitmap and third bit bitmap.
  • the first reference range is PRB0-PRB9 in the frequency domain, where the PRB index may be a public PRB index at the cell level, or may be a dedicated PRB index of an active bandwidth portion of the eMBB user.
  • the reference range is a time slot corresponding to the working subcarrier spacing of the eMBB user in the time domain.
  • the first bit bitmap of the first indication group is [101010101010]
  • the second bit bitmap is [1110000000]
  • the third bit bitmap is [110000110000].
  • the first bit bitmap of the second indication group is [10010001001000]
  • the second bit bitmap is [0001111000]
  • the third bit bitmap is [000011110000].
  • each bit bitmap may indicate that the time domain symbol is from small to large from the most significant bit to the least significant bit, or indicates that the time domain symbol is from large to small, and details are not described herein again. .
  • the eMBB user performs rate matching on the first uplink time-frequency resource set configured by the RRC signaling and the time-frequency resource unit included in the second uplink time-frequency resource set before receiving any DCI indication. .
  • the eMBB user receives a DCI indication, where the DCI indication includes two information bits. When the two bits are 10, the DCI indicates only the first uplink time-frequency resource set, and therefore, After the first time, the eMBB user performs rate matching on the time-frequency resource unit included in the first uplink time-frequency resource set.
  • the eMBB user receives a new DCI indication, which is 01, and only indicates the second uplink time-frequency resource set. Therefore, after the second time, the eMBB user will be in the second uplink time-frequency. Rate matching is performed on time-frequency resource units included in the resource set.
  • the DCI format for transmitting the uplink time-frequency resource set may be newly designed to be a DCI format or the existing DCI format may be multiplexed, and the listening period of the DCI may be configured by the base station.
  • one eMBB user can be configured with multiple of the reference ranges.
  • FIG. 5 is a schematic diagram of rate matching time-frequency resource distribution according to an embodiment of the present invention.
  • the working subcarrier spacing of the eMBB user is 15 kHz
  • the base station configures the eMBB user as an uplink transmission multiplexing mode, and configures an uplink time-frequency resource set and a reference range for the eMBB user by using RRC signaling.
  • the eMBB user performs rate matching on the time-frequency resource unit included in the uplink time-frequency resource set.
  • the base station configures the first uplink time-frequency resource set and the second uplink time-frequency reference resource set for the eMBB user by using RRC signaling, and simultaneously configures the first reference range and the second reference range.
  • the first uplink time-frequency resource set and the second uplink time-frequency resource set are respectively configured by a first indication group and a second indication group, where the first indication group and the second indication group respectively include a first bit bitmap and a second Bit bitmap and third bit bitmap.
  • the first reference range is PRB0-PRB9 in the frequency domain, where the PRB index may be a public PRB index of a cell level, or may be a dedicated PRB of an active bandwidth part of an eMBB user. index.
  • the reference range is a time slot corresponding to the working subcarrier spacing of the eMBB user in the time domain.
  • the second reference range is PRB20-PRB29 in the frequency domain, where the PRB index may be a common PRB index at the cell level, or may be a dedicated PRB index of an active bandwidth portion of the eMBB user.
  • the reference range is a time slot corresponding to the working subcarrier spacing of the eMBB user in the time domain.
  • the first bit bitmap of the first indication group is [101010101010]
  • the second bit bitmap is [1110000000]
  • the third bit bitmap is [110000110 000].
  • the first bit bitmap of the second indication group is [10010001001000]
  • the second bit bitmap is [0001111000]
  • the third bit bitmap is [000011110000]
  • each bit bitmap may indicate that the time domain symbol is from small to large from the most significant bit to the least significant bit, or indicates that the time domain symbol is from large to small, and details are not described herein again. .
  • the set of uplink time-frequency resources configured for one eMBB user may be indicated by a plurality of indication groups.
  • FIG. 6 is a schematic diagram of rate matching time-frequency resource distribution according to an embodiment of the present invention.
  • the working subcarrier spacing of the eMBB user is 15 kHz
  • the base station configures the eMBB user as an uplink transmission multiplexing mode, and configures an uplink time-frequency resource set and a reference range for the eMBB user by using RRC signaling.
  • the eMBB user performs rate matching on the time-frequency resource unit included in the uplink time-frequency resource set.
  • the base station configures an uplink time-frequency resource set for the eMBB user by using RRC signaling, and corresponds to the time-frequency resource location of the uplink DMRS of the first URLLC user and the second URLLC user, and simultaneously
  • a first reference range is configured for the eMBB user.
  • the first reference range is PRB0-PRB9 in the frequency domain, where the PRB index may be a public PRB index at the cell level, or may be a dedicated PRB index of an active bandwidth portion of the eMBB user.
  • the reference range is a time slot corresponding to the working subcarrier spacing of the eMBB user in the time domain.
  • the uplink time-frequency resource set is jointly indicated by the first indication group and the second indication group, and the first indication group and the second indication group both include a first bit bitmap, a second bit bitmap, and The third bit bitmap.
  • the first bit bitmap of the first indication group is [101010101010]
  • the second bit bitmap is [1110000000]
  • the third bit bitmap is [110000110 000].
  • the first bit bitmap of the second indication group is [10010001001000]
  • the second bit bitmap is [0001111000]
  • the third bit bitmap is [000011110000]
  • each bit bitmap may indicate that the time domain symbol is from small to large from the most significant bit to the least significant bit, or indicates that the time domain symbol is from large to small, and details are not described herein again. .
  • each indication group is cyclically applied in the time domain in units of the length of the first bitmap, that is, the eMBB user is periodically configured in the time domain.
  • the resource set has a period length that is a length of the first bit bitmap, and performs rate matching on the time-frequency resource unit included in the uplink time-frequency resource set.
  • FIG. 7 it is a flowchart of a method for receiving an uplink time-frequency resource set according to an embodiment of the present invention.
  • the receiving method includes the following steps.
  • At least one of the uplink time-frequency resource sets is received.
  • rate matching is performed on the time-frequency resource unit included in the uplink time-frequency resource set.
  • the one set of the uplink time-frequency resources is indicated by at least one indication group, where the indication group includes a symbol level indication, a resource block level indication, and a sub-carrier level indication.
  • the eMBB user receives at least one reference range while receiving at least one of the uplink time-frequency resource sets; or determines the at least one reference range according to a default setting.
  • FIG. 8 provides a configuration apparatus for an uplink time-frequency resource set according to an embodiment of the present invention, including a memory 81 and a processor 82.
  • the memory 81 stores a computer program executable on the processor 82, and the memory is stored in the memory 81.
  • the above computer program is the program that implements the above method steps, and the processor 82 implements the steps described above when the program is executed.
  • the memory 81 may include a ROM, a RAM, a magnetic disk, an optical disk, or the like. For the steps, please refer to the steps above, and details are not described here.
  • FIG. 9 provides a receiving apparatus for an uplink time-frequency resource set according to an embodiment of the present invention.
  • the memory 91 stores a computer program executable on the processor 92, and the computer program stored in the memory 91 implements the above.
  • a program of method steps that, when executed by processor 92, implements the steps described above.
  • the memory 91 may include a ROM, a RAM, a magnetic disk, an optical disk, or the like.
  • the program can be stored in a computer readable storage medium.
  • the storage medium can include: ROM, RAM, disk or CD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行时频资源集合的配置、接收方法以及装置,所述配置方法包括:对已配置上行传输复用模式的用户配置至少一个所述上行时频资源集合,所述上行时频资源集合包括时频资源单元,所述时频资源单元为所述用户在其上进行速率匹配的时频资源;向所述用户发送至少一个指示组,以指示至少一个所述上行时频资源集合;其中,一个所述上行时频资源集合由至少一个指示组指示,所述指示组包括符号级指示,资源块级指示和子载波级指示;所述上行传输复用模式指所述用户可以与其它一个或多个用户复用相同的时频资源进行上行传输。从而使eMBB用户能够获取URLLC用户传输上行DMRS的时频资源位置,不在相应的时频资源上进行上行数据传输,因此,能够提升URLLC用户的可靠性。

Description

上行时频资源集合的配置、接收方法及装置
本申请要求于2018年04月04日提交中国专利局、申请号为201810304944.6、发明名称为“上行时频资源集合的配置、接收方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信领域,特别涉及一种上行时频资源集合的配置、接收方法及装置。
背景技术
在5G通信业务中,为提高资源利用效率,具有不同数据发送时长的用户可以复用相同的时频物理资源。例如,高可靠低延时(Ultra Reliable&Low Latency Communication,URLLC)用户的发送时长较短,为短时长(short time duration)用户;增强移动带宽(enhanced Mobile Broadband,eMBB)用户的发送时长较长,为长时长(long time duration)用户。
为满足短时长用户的低延时需求,基站可以在已调度的长时长用户的上行时频资源上,调度发送时长较短的用户,从而实现短时长用户复用长时长用户的上行时频资源。例如,基站在调度eMBB用户的上行时频资源上,调度URLLC用户复用eMBB用户的上行时频资源。但是,eMBB用户在进行上行数据传输时,可能与URLLC用户传输上行解调参考信号(Demodulation Reference Signal,DMRS)所占用的时频资源发生冲突,从而影响URLLC用户的可靠性。
因此,本发明提出一种上行时频资源集合的配置、接收方法及装置。
发明内容
本发明解决的问题是eMBB在用户进行上行数据传输时,可能与URLLC用户传输上行DMRS所占用的时频资源发生冲突,从而影响URLLC用户的可靠性。
为解决上述问题,本发明提供了一种上行时频资源集合的配置方法,所述配置方法包括:对已配置上行传输复用模式的用户配置至少一个所述上行时频资源集合,所述上行时频资源集合包括时频资源单元,所述时频资源单元为所述用户在其上进行速率匹配的时频资源;向所述用户发送至少一个指示组,以指示至少一个所述上行时频资源集合;其中,一个所述上行时频资源集合由至少一个指示组指示,所述指示组包括符号级指示,资源块级指示和子载波级指示;所述上行传输复用模式指所述用户可以与其它一个或多个用户复用相同的时频资源进行上行传输。
可选地,对所述上行时频资源集合配置至少一个参考范围,其中,一个上行时频资源集合对应一个参考范围。
可选地,所述符号级指示采用第一比特位图进行指示,所述第一比特位图中的比特数为所述参考范围所包含的总符号数,第一比特位图中的每一比特指示一个符号,表示在该符号上进行速率匹配与否。
可选地,每个指示组在时域上以第一比特位图的长度作为单位进行周期重复应用。
可选地,所述资源块级指示采用第二比特位图进行指示,所述第二比特位图中的比特数为所述参考范围所包含的总物理资源块数,第二比特位图中的每一比特指示一个物理资源块,表示在该物理资源块上进行速率匹配与否。
可选地,所述子载波级指示采用第三比特位图进行指示,所述第三比特位图中的比特数为所述参考范围内的一个物理资源块所包含的子载波数,第三比特位图中的每一比特指示一个子载波,表示在该 子载波上进行速率匹配与否。
可选地,所述子载波级指示通过指示解调参考信号配置类型,解调参考信号端口号及所述解调参考信号对应的子载波的方式进行指示,表示在所述解调参考信号发送端口对应的子载波索引上进行速率匹配,其中,所述解调参考信号发送端口对应的子载波索引为所述用户对应子载波间隔下的一个物理资源块内的子载波索引,且所述子载波索引由所述用户根据配置的解调参考信号配置类型,解调参考信号端口号及所述解调参考信号对应子载波间隔与所述用户对应的子载波间隔计算确定。
可选地,所述参考范围由基站通过RRC信令对所述用户进行配置,或采用默认设置的方式对所述用户进行配置。
可选地,所述默认设置在频域上为所述用户的激活带宽部分,在时域上为用户进行上行传输的一个时隙。
可选地,所述上行时频资源集合由基站通过RRC信令对所述用户进行配置。
可选地,所述上行时频资源集合由基站通过RRC信令与动态指示相结合的方式对所述用户进行配置;所述用户在收到所述动态指示之前,在由RRC信令配置的速率匹配时频资源集合所包含的时频资源单元上进行速率匹配;在收到所述动态指示后,所述用户在所述动态指示所配置的上行时频资源集合所包含的时频资源单元上进行速率匹配。
可选地,所述动态指示为通过MAC控制单元对用户指示至少一个上行时频资源集合。
可选地,所述动态指示为通过下行控制信息对用户指示至少一个上行时频资源集合。
本发明还提供了一种上行时频资源集合的接收方法,所述接收方法包括:接收至少一个所述上行时频资源集合;在所述上行时频资源 集合所包含的时频资源单元上进行速率匹配;其中,一个所述上行时频资源集合由至少一个指示组指示,所述指示组包括符号级指示,资源块级指示和子载波级指示。
可选地,在接收至少一个所述上行时频资源集合的同时,接收至少一个参考范围;或根据默认设置确定所述至少一个参考范围。
本发明还提供了一种上行时频资源集合的配置装置,包括存储器、处理器,存储器上存储有可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现以下步骤:对已配置上行传输复用模式的用户配置至少一个所述上行时频资源集合,所述上行时频资源集合包括时频资源单元,所述时频资源单元为所述用户在其上进行速率匹配的时频资源;向所述用户发送至少一个指示组,以指示至少一个所述上行时频资源集合;其中,一个所述上行时频资源集合由至少一个指示组指示,所述指示组包括符号级指示,资源块级指示和子载波级指示;所述上行传输复用模式指所述用户可以与其它一个或多个用户复用相同的时频资源进行上行传输。
可选地,对所述上行时频资源集合配置至少一个参考范围,其中,一个上行时频资源集合对应一个参考范围。
可选地,所述符号级指示采用第一比特位图进行指示,所述第一比特位图中的比特数为所述参考范围所包含的总符号数,第一比特位图中的每一比特指示一个符号,表示在该符号上进行速率匹配与否。
可选地,每个指示组在时域上以第一比特位图的长度作为单位进行周期重复应用。
可选地,所述资源块级指示采用第二比特位图进行指示,所述第二比特位图中的比特数为所述参考范围所包含的总物理资源块数,第二比特位图中的每一比特指示一个物理资源块,表示在该物理资源块上进行速率匹配与否。
可选地,所述子载波级指示采用第三比特位图进行指示,所述第 三比特位图中的比特数为所述参考范围内的一个物理资源块所包含的子载波数,第三比特位图中的每一比特指示一个子载波,表示在该子载波上进行速率匹配与否。
可选地,所述子载波级指示通过指示解调参考信号配置类型,解调参考信号端口号及所述解调参考信号对应的子载波的方式进行指示,表示在所述解调参考信号发送端口对应的子载波索引上进行速率匹配,其中,所述解调参考信号发送端口对应的子载波索引为所述用户对应子载波间隔下的一个物理资源块内的子载波索引,且所述子载波索引由所述用户根据配置的解调参考信号配置类型,解调参考信号端口号及所述解调参考信号对应子载波间隔与所述用户对应的子载波间隔计算确定。
可选地,所述参考范围由基站通过RRC信令对所述用户进行配置,或采用默认设置的方式对所述用户进行配置。
可选地,所述默认设置在频域上为所述用户的激活带宽部分,在时域上为用户进行上行传输的一个时隙。
可选地,所述上行时频资源集合由基站通过RRC信令对所述用户进行配置。
可选地,所述上行时频资源集合由基站通过RRC信令与动态指示相结合的方式对所述用户进行配置;所述用户在收到所述动态指示之前,在由RRC信令配置的速率匹配时频资源集合所包含的时频资源单元上进行速率匹配;在收到所述动态指示后,所述用户在所述动态指示所配置的上行时频资源集合所包含的时频资源单元上进行速率匹配。
可选地,所述动态指示为通过MAC控制单元对用户指示至少一个上行时频资源集合。
可选地,所述动态指示为通过下行控制信息对用户指示至少一个上行时频资源集合。
本发明还提供了一种上行时频资源集合的接收装置,包括存储器、处理器,存储器上存储有可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现以下步骤:接收至少一个所述上行时频资源集合;在所述上行时频资源集合所包含的时频资源单元上进行速率匹配;其中,一个所述上行时频资源集合由至少一个指示组指示,所述指示组包括符号级指示,资源块级指示和子载波级指示。
与现有技术相比,本发明实施例的技术方案具有以下优点:
基站对已配置上行传输复用模式的用户配置至少一个所述上行时频资源集合,所述上行时频资源集合包括时频资源单元,所述时频资源单元为所述用户在其上进行速率匹配的时频资源,并向所述用户发送至少一个指示组,以指示至少一个所述上行时频资源集合。从而使eMBB用户能够获取URLLC用户传输上行DMRS的时频资源位置,从而进行速率匹配,不在相应的时频资源上进行上行数据传输,因此,能够提升URLLC用户的可靠性。
附图说明
图1是本发明的一个实施例的上行时频资源集合的配置方法的流程图;
图2是本发明的一个实施例的速率匹配时频资源分布示意图;
图3是本发明的一个实施例的速率匹配时频资源分布示意图;
图4是本发明的一个实施例的上行解调参考信号的端口图样示意图;
图5是本发明的一个实施例的速率匹配时频资源分布示意图;
图6是本发明的一个实施例的速率匹配时频资源分布示意图;
图7是本发明的一个实施例的上行时频资源集合的接收方法的 流程图;
图8是本发明的一个实施例的上行时频资源集合的配置装置的结构示意图;以及
图9是本发明的一个实施例的上行时频资源集合的接收装置的结构示意图。
具体实施方式
图1是本发明的一个实施例的上行时频资源集合的配置方法的流程图。
在S11中,对已配置上行传输复用模式的用户配置至少一个所述上行时频资源集合,所述上行时频资源集合包括时频资源单元,所述时频资源单元为所述用户在其上进行速率匹配的时频资源。
在S12中,向所述用户发送至少一个指示组,以指示至少一个所述上行时频资源集合。
其中,一个所述上行时频资源集合由至少一个指示组指示,所述指示组包括符号级指示,资源块级指示和子载波级指示;所述上行传输复用模式指所述用户可以与其它一个或多个用户复用相同的时频资源进行上行传输。
通过上述方法,可以避免eMBB用户在上行数据传输时所占用的时频资源与URLLC的上行DMRS的时频资源位置发生冲突,从而保证URLLC用户的可靠性。
在一些实施例中,基站在对所述用户配置至少一个所述上行时频资源集合的同时,对所述上行时频资源集合配置至少一个参考范围,其中,一个上行时频资源集合对应一个参考范围。这里的“同时”并非指基站配置上行时频资源集合和配置参考范围在时刻上要完全相同。
在具体实施中,所述参考范围可以由基站通过RRC信令对所述用户进行配置,或采用默认设置的方式对所述用户进行配置。并且,基站为用户配置所述参考范围与指示组的对应关系,用户在收到指示组后可根据已配置的对应关系,在对应的所述参考范围内根据指示组指示确定所述上行时频资源集合。
在具体实施中,一个eMBB用户可以被配置一个或多个所述参考范围;一个所述参考范围内可以配置有一个或多个所述上行时频资源集合;一个所述时频资源集合可以由一个或多个指示组指示。
具体地,参考图2、图3和图4,图2、图3均为本发明的一个实施例的速率匹配时频资源分布示意图;图4是本发明的一个实施例的上行解调参考信号的端口图样示意图。
在第一实施例中,eMBB用户的工作子载波间隔为15kHz,基站为所述eMBB用户配置为上行传输复用模式,并通过RRC信令对所述eMBB用户进行配置所述上行时频资源集合及参考范围,所述eMBB用户在所述上行时频资源集合包含的时频资源单元上进行速率匹配。
在具体实施中,***中有一个URLLC用户,被标识为第一URLLC用户。参见图2,所述第一URLLC用户被配置为采用免调度类型一(configured grant UL transmission type 1)进行上行传输,子载波间隔为15kHz,且传输资源周期为2符号,在每个所述周期内传输的时频资源位置如下:在频域上为PRB0-PRB2,在时域上为周期内的前两个符号,上行DMRS占一个符号,且所述第一URLLC用户被配置的上行DMRS端口号为上行DMRS配置类型2中的端口1,位于一个PRB内的子载波0,1,6和7四个子载波上。
在本实施例中,基站通过配置第一上行时频资源集合向所述eMBB用户指示第一URLLC用户的上行DMRS的时频资源位置,并同时为该用户配置第一参考范围。所述第一参考范围即为所述上行时频资源的参考范围,在频域上为PRB(physical resource block,物理 资源块)0-PRB9,其中,PRB索引可以为小区级的公共PRB索引,也可以为eMBB用户的激活带宽部分的专用PRB索引。所述参考范围在时域上为所述eMBB用户的工作子载波间隔所对应的一个时隙。所述第一上行时频资源集合由一个指示组来指示,标记为第一指示组。
具体地,在第一指示组中,符号级指示采用第一比特位图进行指示,所述第一比特位图的大小为所述参考范围包含的总符号数,即为14比特,每一比特对应所述参考范围内在时域上的一个符号,即为eMBB用户的工作子载波间隔所对应的一个符号。如图2所示,根据第一URLLC用户上行DMRS的时域传输位置,第一比特位图可以确定为[10101010101010],在具体实施中,第一比特位图可以从最高有效位(Most Significant Bit,MSB)到最低有效位(Least Significant Bit,LSB)指示时域符号由小到大,或者指示时域符号由大到小,因此第一比特位图也可以为[01010101010101]。
进一步,在第一指示组中,资源块级指示采用第二比特位图进行指示,所述第二比特位图的大小为所述参考范围包含的PRB数,即为10比特,每一比特对应所述参考范围内在频域上的一个PRB。如图2所示,根据第一URLLC用户上行DMRS的频域传输位置,第二比特位图可以确定为[1110000000],同样地,第二比特位图也可以为[0000000111]。
进一步,在第一指示组中,子载波级指示采用第三比特位图进行指示,所述第三比特位图的大小为一个PRB内包含的子载波数,即为12比特,每一比特对应所述参考范围内在一个PRB内的一个子载波。参考图4,根据第一URLLC用户上行DMRS端口图样,且由于所述第一URLLC用户被配置的上行DMRS端口号为上行DMRS配置类型2中的端口1,第三比特位图可以确定为[110000110000]。
在本实施例中,子载波级指示还可以采用指示上行DMRS配置类型和上行DMRS端口号的及DMRS对应的子载波间隔的方式进 行指示,表示在所述解调参考信号发送端口对应的子载波索引上进行速率匹配,且所述子载波索引由所述用户根据配置的解调参考信号配置类型,解调参考信号端口号及所述解调参考信号对应子载波间隔与所述用户对应的子载波间隔计算确定,具体方式为:用高一位比特来指示上行DMRS配置类型,高一位比特为0表示上行DMRS配置类型1;高一位比特为1表示上行DMRS配置类型2。并用X个比特来指示上行DMRS端口号,在本实施例中,占用一个符号的上行DMRS配置类型2的总端口数为6,即X为6,用中间六位比特指示。并用低两位比特来指示DMRS对应的子载波间隔与eMBB用户子载波间隔的关系,00表示子载波间隔相同,01表示DMRS对应的子载波间隔为eMBB用户子载波间隔的2倍,10表示4倍,11表示8倍。综上,上行DMRS端口号为上行DMRS配置类型2的端口1可以由9比特来表示,即为[101000000]。eMBB用户根据收到的子载波级指示,由高一比特确定为DMRS配置类型2,因此确定端口图样如图4所示,继续根据中间六比特取值010000可以确定DMRS端口号为1,对应DMRS子载波间隔下的子载波索引为0,1,6和7,继续根据低两比特取值00可以确定为DMRS对应的子载波间隔与eMBB用户的子载波间隔相同,因此,eMBB用户可以确定子载波级指示为eMBB用户子载波间隔下一个物理资源块的子载波索引0,1,6和7。
在具体实施中,基站将第一指示组通过RRC信令发送给eMBB用户,用户根据第一指示组可以确定在每个时隙内的符号0,2,4,6,8,10和12,频域PRB0-PRB3上,且在每个PRB内的子载波0,1,6和7上进行速率匹配,即不发送上行数据。
参考图3,***中有另一个URLLC用户,被标识为第二URLLC用户。所述第二URLLC用户被配置为采用免调度类型一进行上行传输,子载波间隔为30kHz,且传输资源周期为7符号,在每个周期内传输的时域资源位置为周期内的前7个符号,每个周期内传输的频域资源位置为两个PRB。因eMBB用户的子载波间隔为15kHz,因此第二URLLC用户的一个符号长度是eMBB用户一个符号长度的一 半,一个PRB的大小是eMBB用户中一个PRB大小的二倍。
在本实施例中,基站通过第二上行时频资源集合向eMBB用户指示第二URLLC用户的上行DMRS的时频资源位置,并同时为所述eMBB用户配置第一参考范围。所述第二上行时频资源集合由一个指示组来指示,标记为第二指示组。
在本实施例中,第二URLLC用户的第一个PRB在所述第一时频参考范围内的对应频域位置PRB3-PRB4,第二个PRB的对应频域位置为PRB5-PRB6。
在本实施例中,第二URLLC用户上行DMRS配置为一个符号,且被配置的上行DMRS端口号为上行DMRS配置类型2的端口2,位于30kHz子载波间隔下的一个PRB内的子载波2,3,8和9四个子载波上。
具体地,在第二指示组中,符号级指示采用第一比特位图进行指示,共包含14比特,每一比特对应所述参考范围内在时域上的一个符号,即为eMBB用户的工作子载波间隔所对应的一个符号。因第二URLLC用户的一个传输周期为7符号,且一个时域符号的长度是eMBB用户符号长度的一半,eMBB用户的一个时隙内包含第二URLLC用户的4个传输周期,根据第二URLLC用户的上行DMRS的时域传输位置,第一比特位图可以确定为[10010001001000]。同样地,第一比特位图也可以为[00010010001001]。
进一步,在第二指示组中,资源块级指示采用第二比特位图进行指示,所述第二比特位图的大小为所述参考范围包含的PRB数,即为10比特,每一比特对应所述参考范围内在频域上的一个PRB。如图3所示,根据第二URLLC用户上行DMRS的频域传输位置,第二比特位图可以确定为[0001111000]。
进一步,在第二指示组中,子载波级指示采用第三比特位图进行指示,所述第三比特位图的大小为eMBB用户的子载波间隔下一个 PRB内包含的子载波数,即为12比特,每一比特对应所述参考范围内在一个PRB内的一个子载波。
根据第二URLLC用户的上行DMRS端口图样,其在30kHz子载波间隔下的一个PRB内的子载波索引为:2,3,8,9。考虑到30kHz子载波间隔下的一个PRB大小的为15kHz子载波间隔下的一个PRB大小的两倍,经过折算,第二URLLC用户的第一个PRB内的子载波2、子载波3、子载波8和子载波9对应到第一参考范围内的PRB3中的子载波4、子载波5、子载波6、子载波7和PRB4中的子载波4、子载波5、子载波6、子载波7。所述第二URLLC用户的第二个PRB内子载波2、子载波3、子载波8和子载波9对应到第一参考范围内的PRB5中的子载波4、子载波5、子载波6、子载波7和PRB6中的子载波4、子载波5、子载波6、子载波7。因此第三比特位图指示第一参考范围的一个PRB中的子载波4-7,可以确定为[000011110000]。
在具体实施中,基站将第二指示组通过RRC信令发送给eMBB用户,用户根据第二指示组可以确定在每个时隙内的符号0,3,7和10,频域PRB3-PRB6上,且在每个PRB内的子载波4,5,6和7上进行速率匹配,即不发送上行数据。
在一些实施例中,所述上行时频资源集合可以由基站通过RRC信令与动态指示相结合的方式对所述用户进行配置;所述用户在收到所述动态指示之前,在由RRC信令配置的速率匹配时频资源集合所包含的时频资源单元上进行速率匹配;在收到所述动态指示后,所述用户在所述动态指示所配置的上行时频资源集合所包含的时频资源单元上进行速率匹配。
具体地,结合参考图2,图3和图4,通过以下实施例说明所述上行时频资源集合可以由基站通过RRC信令与动态指示相结合的方式对所述用户进行配置。
在第二实施例中,eMBB用户的工作子载波间隔为15kHz,基站为所述eMBB用户配置为上行传输复用模式,并通过RRC信令与动 态指示相结合的方式为所述eMBB用户配置上行时频资源集合及参考范围。
在本实施例中,基站通过RRC信令与动态指示相结合的方式对所述用户配置上行时频资源集合,且所述动态指示为通过MAC控制单元(MAC Control Element,MAC CE)对用户指示至少一个上行时频资源集合。如图2、图3所示,基站通过RRC信令为eMBB用户配置两个上行时频资源集合,标记为第一上行时频资源集合和第二上行时频资源集合,并同时为所述eMBB用户配置第一参考范围。所述第一上行时频资源集合和第二上行时频资源集合分别由第一指示组和第二指示组指示,所述第一指示组和第二指示组均包括第一比特位图、第二比特位图和第三比特位图。所述第一参考范围在频域上为PRB0-PRB9,其中,PRB索引可以为小区级的公共PRB索引,也可以为eMBB用户的激活带宽部分的专用PRB索引。所述参考范围在时域上为所述eMBB用户的工作子载波间隔所对应的一个时隙。
由上述第一实施例可知,所述第一指示组的第一比特位图为[10101010101010],第二比特位图为[1110000000],第三比特位图为[110000110000]。所述第二指示组的第一比特位图为[10010001001000],第二比特位图为[0001111000],第三比特位图为[000011110000]。
同样地,在具体实施中,所述各比特位图均可以从最高有效位到最低有效位指示时域符号由小到大,或者指示时域符号由大到小,具体细节在此不再赘述。
在本实施例中,eMBB用户在未收到任何MAC CE指示之前,在由RRC信令配置的第一上行时频资源集合和第二上行时频资源集合所包含的时频资源单元上进行速率匹配。
在第一时刻,所述eMBB用户收到MAC CE指示,仅指示了第一上行时频资源集合,因此,在第一时刻之后,所述eMBB用户将在第一上行时频资源集合所包含的时频资源单元上进行速率匹配。在第 二时刻,所述eMBB用户收到一个新的MAC CE指示,仅指示了第二上行时频资源集合,因此,在第二时刻之后,所述eMBB用户将在第二上行时频资源集合所包含的时频资源单元上进行速率匹配。
在第三实施例中,eMBB用户的工作子载波间隔为15kHz,基站为所述eMBB用户配置为上行传输复用模式,并通过RRC信令与动态指示相结合的方式为所述eMBB用户配置上行时频资源集合及参考范围。
在本实施例中,基站通过RRC信令与动态指示相结合的方式对所述eMBB用户配置上行时频资源集合,且所述动态指示为通过下行控制信息(Downlink Control Information,DCI)对用户指示至少一个上行时频资源集合。如图2、图3所示,基站通过RRC信令为eMBB用户配置两个上行时频资源集合,标记为第一上行时频资源集合和第二上行时频资源集合,并同时为所述eMBB用户配置第一参考范围。所述第一上行时频资源集合和第二上行时频资源集合分别由第一指示组和第二指示组指示,所述第一指示组和第二指示组均包括第一比特位图、第二比特位图和第三比特位图。所述第一参考范围在频域上为PRB0-PRB9,其中,PRB索引可以为小区级的公共PRB索引,也可以为eMBB用户的激活带宽部分的专用PRB索引。所述参考范围在时域上为所述eMBB用户的工作子载波间隔所对应的一个时隙。
由上述第一实施例可知,所述第一指示组的第一比特位图为[10101010101010],第二比特位图为[1110000000],第三比特位图为[110000110000]。所述第二指示组的第一比特位图为[10010001001000],第二比特位图为[0001111000],第三比特位图为[000011110000]。
同样地,在具体实施中,所述各比特位图均可以从最高有效位到最低有效位指示时域符号由小到大,或者指示时域符号由大到小,具体细节在此不再赘述。
在本实施例中,eMBB用户在未收到任何DCI指示之前,在由 RRC信令配置的第一上行时频资源集合和第二上行时频资源集合所包含的时频资源单元上进行速率匹配。
在第一时刻,所述eMBB用户收到一个DCI指示,所述DCI指示包含两个信息比特,当所述两个比特为10时,DCI仅指示了第一上行时频资源集合,因此,在第一时刻之后,所述eMBB用户将在第一上行时频资源集合所包含的时频资源单元上进行速率匹配。在第二时刻,所述eMBB用户收到一个新的DCI指示,为01,仅指示了第二上行时频资源集合,因此,在第二时刻之后,所述eMBB用户将在第二上行时频资源集合所包含的时频资源单元上进行速率匹配。
在具体实施中,可以为发送所述上行时频资源集合的DCI指示新设计一个DCI格式或复用现有DCI格式,且对该DCI的监听周期可以由基站来配置。
在一些实施例中,一个eMBB用户可以被配置有多个所述参考范围。结合参考图2、图4和图5,图5是本发明的一个实施例的速率匹配时频资源分布示意图。
在第四实施例中,eMBB用户的工作子载波间隔为15kHz,基站为所述eMBB用户配置为上行传输复用模式,并通过RRC信令为所述eMBB用户配置上行时频资源集合及参考范围,所述eMBB用户在所述上行时频资源集合包含的时频资源单元上进行速率匹配。
在本实施例中,基站通过RRC信令对所述eMBB用户配置第一上行时频资源集合和第二上行时频参考资源集合,并同时配置第一参考范围和第二参考范围。所述第一上行时频资源集合和第二上行时频资源集合分别由第一指示组和第二指示组,所述第一指示组和第二指示组均包括第一比特位图、第二比特位图和第三比特位图。
在本实施例中,参考图2,所述第一参考范围在频域上为PRB0-PRB9,其中,PRB索引可以为小区级的公共PRB索引,也可以为eMBB用户的激活带宽部分的专用PRB索引。所述参考范围在 时域上为所述eMBB用户的工作子载波间隔所对应的一个时隙。参考图5,所述第二参考范围在频域上为PRB20-PRB29,其中,PRB索引可以为小区级的公共PRB索引,也可以为eMBB用户的激活带宽部分的专用PRB索引。所述参考范围在时域上为所述eMBB用户的工作子载波间隔所对应的一个时隙。
由上述第一实施例可知,所述第一指示组的第一比特位图为[10101010101010],第二比特位图为[1110000000],第三比特位图为[110000110 000]。所述第二指示组的第一比特位图为[10010001001000],第二比特位图为[0001111000],第三比特位图为[000011110000],具体配置细节不再赘述。
同样地,在具体实施中,所述各比特位图均可以从最高有效位到最低有效位指示时域符号由小到大,或者指示时域符号由大到小,具体细节在此不再赘述。
在一些实施例中,为一个eMBB用户配置的上行时频资源集合可以由多个指示组指示。参考图4和图6,图6是本发明的一个实施例的速率匹配时频资源分布示意图。
在第五实施例中,eMBB用户的工作子载波间隔为15kHz,基站为所述eMBB用户配置为上行传输复用模式,并通过RRC信令为所述eMBB用户配置上行时频资源集合及参考范围,所述eMBB用户在所述上行时频资源集合包含的时频资源单元上进行速率匹配。
在本实施例中,参考图6,基站通过RRC信令对所述eMBB用户进行配置一个上行时频资源集合,对应第一URLLC用户和第二URLLC用户的上行DMRS的时频资源位置,并同时为所述eMBB用户配置第一参考范围。所述第一参考范围在频域上为PRB0-PRB9,其中,PRB索引可以为小区级的公共PRB索引,也可以为eMBB用户的激活带宽部分的专用PRB索引。所述参考范围在时域上为所述eMBB用户的工作子载波间隔所对应的一个时隙。
在本实施例中所述上行时频资源集合由第一指示组和第二指示组共同指示,所述第一指示组和第二指示组均包括第一比特位图、第二比特位图和第三比特位图。
由上述第一实施例可知,所述第一指示组的第一比特位图为[10101010101010],第二比特位图为[1110000000],第三比特位图为[110000110 000]。所述第二指示组的第一比特位图为[10010001001000],第二比特位图为[0001111000],第三比特位图为[000011110000],具体配置细节不再赘述。
同样地,在具体实施中,所述各比特位图均可以从最高有效位到最低有效位指示时域符号由小到大,或者指示时域符号由大到小,具体细节在此不再赘述。
在以上各实施例中,每个指示组在时域上以第一比特位图的长度作为单位进行周期重复应用,也就是说,所述eMBB用户在时域上被周期配置所述上行时频资源集合,其周期长度为第一比特位图的长度,并在所述上行时频资源集合所包含的时频资源单元上进行速率匹配。
参考图7,是本发明的一个实施例的上行时频资源集合的接收方法的流程图。所述接收方法包括以下步骤。
在S21中,接收至少一个所述上行时频资源集合。
在S22中,在所述上行时频资源集合所包含的时频资源单元上进行速率匹配。
其中,一个所述上行时频资源集合由至少一个指示组指示,所述指示组包括符号级指示,资源块级指示和子载波级指示。
在一些实施例中,所述eMBB用户在接收至少一个所述上行时频资源集合的同时,接收至少一个参考范围;或根据默认设置确定所述至少一个参考范围。
本实施例中关于所述上行时频资源集合的接收方法的工作原理和工作方式的更多内容,可以参照图1至图6中的相关描述,这里不再赘述。
图8提供了本发明的一个实施例的上行时频资源集合的配置装置,包括存储器81、处理器82,存储器上81存储有可在处理器82上运行的计算机程序,所述存储在存储器81上的计算机程序即为实现上述方法步骤的程序,所述处理器82执行所述程序时实现上文所述步骤。所述存储器81可以包括:ROM、RAM、磁盘或光盘等。所述步骤请参见上文的步骤,此处不再赘述。
图9提供了本发明的一个实施例的上行时频资源集合的接收装置,存储器91上存储有可在处理器92上运行的计算机程序,所述存储在存储器91上的计算机程序即为实现上述方法步骤的程序,所述处理器92执行所述程序时实现上文所述步骤。所述存储器91可以包括:ROM、RAM、磁盘或光盘等。所述步骤请参见上文的步骤,此处不再赘述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于以计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (30)

  1. 一种上行时频资源集合的配置方法,其特征在于,所述配置方法包括:
    对已配置上行传输复用模式的用户配置至少一个所述上行时频资源集合,所述上行时频资源集合包括时频资源单元,所述时频资源单元为所述用户在其上进行速率匹配的时频资源;
    向所述用户发送至少一个指示组,以指示至少一个所述上行时频资源集合;
    其中,一个所述上行时频资源集合由至少一个指示组指示,所述指示组包括符号级指示,资源块级指示和子载波级指示;所述上行传输复用模式指所述用户可以与其它一个或多个用户复用相同的时频资源进行上行传输。
  2. 根据权利要求1所述的配置方法,其特征在于,还包括:对所述上行时频资源集合配置至少一个参考范围,其中,一个上行时频资源集合对应一个参考范围。
  3. 根据权利要求2所述的配置方法,其特征在于,所述符号级指示采用第一比特位图进行指示,所述第一比特位图中的比特数为所述参考范围所包含的总符号数,第一比特位图中的每一比特指示一个符号,表示在该符号上进行速率匹配与否。
  4. 根据权利要求3所述的配置方法,其特征在于,每个指示组在时域上以第一比特位图的长度作为单位进行周期重复应用。
  5. 根据权利要求2所述的配置方法,其特征在于,所述资源块级指示采用第二比特位图进行指示,所述第二比特位图中的比特数为所述参考范围所包含的总物理资源块数,第二比特位图中的每一比特指示一个物理资源块,表示在该物理资源块上进行速率匹配与否。
  6. 根据权利要求2所述的配置方法,其特征在于,所述子载波级指示采用第三比特位图进行指示,所述第三比特位图中的比特数为所述参考范围内的一个物理资源块所包含的子载波数,第三比特位图中的每一比特指示一个子载波,表示在该子载波上进行速率匹配与否。
  7. 根据权利要求2所述的配置方法,其特征在于,所述子载波级指示通过指示解调参考信号配置类型,解调参考信号端口号及所述解调参考信号对应的子载波的方式进行指示,表示在所述解调参考信号发送端口对应的子载波索引上进行速率匹配,其中,所述解调参考信号发送端口对应的子载波索引为所述用户对应子载波间隔下的一个物理资源块内的子载波索引,且所述子载波索引由所述用户根据配置的解调参考信号配置类型,解调参考信号端口号及所述解调参考信号对应子载波间隔与所述用户对应的子载波间隔计算确定。
  8. 根据权利要求2所述的配置方法,其特征在于,所述参考范围由基站通过RRC信令对所述用户进行配置,或采用默认设置的方式对所述用户进行配置。
  9. 根据权利要求8所述的配置方法,其特征在于,所述默认设置在频域上为所述用户的激活带宽部分,在时域上为用户进行上行传输的一个时隙。
  10. 根据权利要求1所述的配置方法,其特征在于,所述上行时频资源集合由基站通过RRC信令对所述用户进行配置。
  11. 根据权利要求10所述的配置方法,其特征在于,所述上行时频资源集合由基站通过RRC信令与动态指示相结合的方式对所述用户进行配置;所述用户在收到所述动态指示之前,在由RRC信令配置的速率匹配时频资源集合所包含的时频资源单元上进行速率匹配;在收到所述动态指示后,所述用户在所述动态指示所配置的上行时频资源集合所包含的时频资源单元上进行速率匹配。
  12. 根据权利要求11所述的配置方法,其特征在于,所述动态指示为通过MAC控制单元对用户指示至少一个上行时频资源集合。
  13. 根据权利要求11所述的配置方法,其特征在于,所述动态指示为通过下行控制信息对用户指示至少一个上行时频资源集合。
  14. 一种上行时频资源集合的接收方法,其特征在于,所述接收方法包括:
    接收至少一个所述上行时频资源集合;
    在所述上行时频资源集合所包含的时频资源单元上进行速率匹配;
    其中,一个所述上行时频资源集合由至少一个指示组指示,所述指示组包括符号级指示,资源块级指示和子载波级指示。
  15. 根据权利要求14所述的接收方法,其特征在于,还包括:在接收至少一个所述上行时频资源集合的同时,接收至少一个参考范围;或根据默认设置确定所述至少一个参考范围。
  16. 一种上行时频资源集合的配置装置,包括存储器、处理器,存储器上存储有可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现以下步骤:
    对已配置上行传输复用模式的用户配置至少一个所述上行时频资源集合,所述上行时频资源集合包括时频资源单元,所述时频资源单元为所述用户在其上进行速率匹配的时频资源;
    向所述用户发送至少一个指示组,以指示至少一个所述上行时频资源集合;
    其中,一个所述上行时频资源集合由至少一个指示组指示,所述指示组包括符号级指示,资源块级指示和子载波级指示;所述上行传输复用模式指用户可以与其它一个或多个用户复用相同的时频资源进行上行传输。
  17. 根据权利要求16所述的配置装置,其特征在于,还包括:对所述上行时频资源集合配置至少一个参考范围,其中,一个上行时频资源集合对应一个参考范围。
  18. 根据权利要求17所述的配置装置,其特征在于,所述符号级指示采用第一比特位图进行指示,所述第一比特位图中的比特数为所述参考范围所包含的总符号数,第一比特位图中的每一比特指示一个符号,表示在该符号上进行速率匹配与否。
  19. 根据权利要求18所述的配置装置,其特征在于,每个指示组在时域上以第一比特位图的长度作为单位进行周期重复应用。
  20. 根据权利要求17所述的配置装置,其特征在于,所述资源块级指示采用第二比特位图进行指示,所述第二比特位图中的比特数为所述参考范围所包含的总物理资源块数,第二比特位图中的每一比特指示一个物理资源块,表示在该物理资源块上进行速率匹配与否。
  21. 根据权利要求17所述的配置装置,其特征在于,所述子载波级指示采用第三比特位图进行指示,所述第三比特位图中的比特数为所述参考范围内的一个物理资源块所包含的子载波数,第三比特位图中的每一比特指示一个子载波,表示在该子载波上进行速率匹配与否。
  22. 根据权利要求17所述的配置装置,其特征在于,所述子载波级指示通过指示解调参考信号配置类型,解调参考信号端口号及所述解调参考信号对应的子载波的方式进行指示,表示在所述解调参考信号发送端口对应的子载波索引上进行速率匹配,其中,所述解调参考信号发送端口对应的子载波索引为所述用户对应子载波间隔下的一个物理资源块内的子载波索引,且所述子载波索引由所述用户根据配置的解调参考信号配置类型,解调参考信号端口号及所述解调参考信号对应子载波间隔与所述用户对应的子载波间隔计算确定。
  23. 根据权利要求17所述的配置装置,其特征在于,所述参考范围由基站通过RRC信令对所述用户进行配置,或采用默认设置的方式对所述用户进行配置。
  24. 根据权利要求23所述的配置装置,其特征在于,所述默认设置在频域上为所述用户的激活带宽部分,在时域上为用户进行上行传输的一个时隙。
  25. 根据权利要求16所述的配置装置,其特征在于,所述上行时频资源集合由基站通过RRC信令对所述用户进行配置。
  26. 根据权利要求25所述的配置装置,其特征在于,所述上行时频资源集合由基站通过RRC信令与动态指示相结合的方式对所述用户进行配置;所述用户在收到所述动态指示之前,在由RRC信令配置的速率匹配时频资源集合所包含的时频资源单元上进行速率匹配;在收到所述动态指示后,所述用户在所述动态指示所配置的上行时频资源集合所包含的时频资源单元上进行速率匹配。
  27. 根据权利要求26所述的配置装置,其特征在于,所述动态指示为通过MAC控制单元对用户指示至少一个上行时频资源集合。
  28. 根据权利要求26所述的配置装置,其特征在于,所述动态指示为通过下行控制信息对用户指示至少一个上行时频资源集合。
  29. 一种上行时频资源集合的接收装置,包括存储器、处理器,存储器上存储有可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现以下步骤:
    接收至少一个所述上行时频资源集合;
    在所述上行时频资源集合所包含的时频资源单元上进行速率匹配;
    其中,一个所述上行时频资源集合由至少一个指示组指示,所述指示组包括符号级指示,资源块级指示和子载波级指示。
  30. 根据权利要求29所述的接收装置,其特征在于,还包括:在接收至少一个所述上行时频资源集合的同时,接收至少一个参考范围;或根据默认设置确定所述至少一个参考范围。
PCT/CN2019/080907 2018-04-04 2019-04-02 上行时频资源集合的配置、接收方法及装置 WO2019192443A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/975,689 US11546081B2 (en) 2018-04-04 2019-04-02 Method and apparatus for configuring uplink time-frequency resource set, and method and apparatus for receiving uplink time-frequency resource set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810304944.6 2018-04-04
CN201810304944.6A CN110351008B (zh) 2018-04-04 2018-04-04 上行时频资源集合的配置、接收方法及装置

Publications (1)

Publication Number Publication Date
WO2019192443A1 true WO2019192443A1 (zh) 2019-10-10

Family

ID=68099909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080907 WO2019192443A1 (zh) 2018-04-04 2019-04-02 上行时频资源集合的配置、接收方法及装置

Country Status (3)

Country Link
US (1) US11546081B2 (zh)
CN (1) CN110351008B (zh)
WO (1) WO2019192443A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113038610A (zh) * 2021-02-10 2021-06-25 展讯通信(上海)有限公司 数据传输方法、装置、设备、存储介质以及程序产品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020191729A1 (zh) * 2019-03-28 2020-10-01 北京小米移动软件有限公司 非授权频谱上的资源指示方法、装置、***及存储介质
CN114071740A (zh) * 2020-08-06 2022-02-18 北京紫光展锐通信技术有限公司 上行复用时频资源的确定方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101619446B1 (ko) * 2008-12-02 2016-05-10 엘지전자 주식회사 하향링크 mimo시스템에 있어서 rs 전송 방법
WO2013109060A1 (ko) * 2012-01-17 2013-07-25 엘지전자 주식회사 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 장치
CN103220802B (zh) 2012-01-19 2019-04-05 中兴通讯股份有限公司 下行数据处理方法及装置
CN103391624A (zh) * 2012-05-11 2013-11-13 北京三星通信技术研究有限公司 一种处理e-pdcch的方法和设备
WO2016018079A1 (ko) * 2014-08-01 2016-02-04 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
CN107040345B (zh) * 2016-02-03 2020-12-18 华为技术有限公司 传输导频信号的方法和装置
CN107040354B (zh) * 2016-02-04 2020-10-27 中兴通讯股份有限公司 上行dmrs的配置方法、网元、上行dmrs的传输方法和装置
US10721036B2 (en) * 2016-03-29 2020-07-21 Lg Electronics Inc. Method and apparatus for configuring frame structure for new radio access technology in wireless communication system
CN107295659B (zh) * 2016-04-01 2021-07-06 中兴通讯股份有限公司 一种信号传输方法和装置
WO2017179915A2 (ko) * 2016-04-12 2017-10-19 고려대학교 산학협력단 동일한 자원으로 광대역 트래픽과 기계간 통신 트래픽 또는 초저지연 통신 트래픽을 동시에 다중화하여 전송하는 장치 및 그 방법
US10536955B2 (en) * 2016-08-12 2020-01-14 Qualcomm Incorporated Capability coordination across radio access technologies
CN107734676B (zh) * 2016-08-12 2021-06-08 中兴通讯股份有限公司 一种数据传输的方法和装置
CN109328481B (zh) * 2016-09-01 2022-03-18 株式会社Kt 在下一代无线接入网络中发送或接收数据的方法和设备
CN107835063B (zh) * 2016-09-14 2023-10-20 华为技术有限公司 信息传输的方法、发送端设备和接收端设备
US11595948B2 (en) * 2016-09-23 2023-02-28 Qualcomm Incorporated Resource allocation patterns for scheduling services in a wireless network
RU2719350C1 (ru) * 2016-11-04 2020-04-17 Телефонактиеболагет Лм Эрикссон (Пабл) Сигнализация о конфигурации опорного сигнала демодуляции для передач в коротком tti восходящей линии связи
CN106941724B (zh) 2017-05-09 2020-12-22 宇龙计算机通信科技(深圳)有限公司 数据处理方法及装置
US10728002B2 (en) * 2017-08-10 2020-07-28 Huawei Technologies Co., Ltd. System and method for enabling reliable and low latency communication
WO2019096919A1 (en) * 2017-11-17 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Technique for configuring a phase tracking reference signal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "On Pre-Emption Indication for DL Multiplexing of URLLC and eMBB", 3GPP TSG RAN WGI MEETING #90BIS, R1-1717081, 2 October 2017 (2017-10-02), Prague, Czech Republic, XP051352187 *
QUALCOMM INCORPORATED: "eMBB and URLLC Dynamic Multiplexing and Preemption Indication on the Uplink", 3GPP TSG-RAN WG1 #92, R1-1802854, 17 February 2018 (2018-02-17), Athens, Greece, XP051398267 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113038610A (zh) * 2021-02-10 2021-06-25 展讯通信(上海)有限公司 数据传输方法、装置、设备、存储介质以及程序产品

Also Published As

Publication number Publication date
CN110351008A (zh) 2019-10-18
US20210385004A1 (en) 2021-12-09
CN110351008B (zh) 2020-10-02
US11546081B2 (en) 2023-01-03

Similar Documents

Publication Publication Date Title
WO2021063116A1 (zh) 发送及接收第二级sci的方法及装置、存储介质、发送ue及接收ue
US10554468B2 (en) Method for transmitting information in communication system, base station and user equipment
CN102256358B (zh) 一种数据传输和接收方法、装置及***
JP6498707B2 (ja) リソース標識処理方法及び処理装置、アクセスポイント、並びにステーション
KR101079387B1 (ko) Ofdm 통신 환경에서 업링크 액세스 요청
US20140369292A1 (en) Wireless Communication Method and Communication Apparatus
JP6874129B2 (ja) データ通信方法、端末、および基地局
US20190082433A1 (en) Allocating transmission resources in communication networks that provide low latency services
CN110636622B (zh) 一种无线通信中的方法和装置
WO2011009277A1 (zh) 一种定位参考信号的发送方法及***
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、***及装置
KR20170049548A (ko) 준직교 다중 액세스를 위한 시스템 및 방법
WO2019192443A1 (zh) 上行时频资源集合的配置、接收方法及装置
CA2637161A1 (en) Apparatus and method for allocating resources and performing communication in a wireless communication system
CN109803422B (zh) 一种资源激活的方法及相关设备
WO2013097120A1 (zh) 下行控制信道的搜索空间的映射方法和装置
WO2017024582A1 (zh) 上行参考信号传输方法、用户终端及基站
WO2013091234A1 (zh) 下行控制信道的资源映射方法和装置
WO2016183842A1 (zh) 一种数据传输方法、装置、***及接入点
CN101867949B (zh) 信道测量导频与物理资源块的映射方法
WO2019076303A1 (zh) 控制信息的发送方法、检测方法、网络设备及终端
WO2010081426A1 (zh) 多小区协同的数据传输方法、***及装置
JP5079821B2 (ja) 移動局装置及び通信方法
CN108934074B (zh) 一种下行控制信道的配置方法、装置和基站
WO2019114467A1 (zh) 一种信道资源集的指示方法及装置、计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19781282

Country of ref document: EP

Kind code of ref document: A1