WO2013091234A1 - 下行控制信道的资源映射方法和装置 - Google Patents

下行控制信道的资源映射方法和装置 Download PDF

Info

Publication number
WO2013091234A1
WO2013091234A1 PCT/CN2011/084522 CN2011084522W WO2013091234A1 WO 2013091234 A1 WO2013091234 A1 WO 2013091234A1 CN 2011084522 W CN2011084522 W CN 2011084522W WO 2013091234 A1 WO2013091234 A1 WO 2013091234A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
ecces
resource
predetermined number
ecce
Prior art date
Application number
PCT/CN2011/084522
Other languages
English (en)
French (fr)
Inventor
王轶
周华
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2014130240/07A priority Critical patent/RU2589891C2/ru
Priority to MX2015008899A priority patent/MX340469B/es
Priority to KR1020177004867A priority patent/KR101778924B1/ko
Priority to MX2014007640A priority patent/MX2014007640A/es
Priority to EP11877994.1A priority patent/EP2797356A4/en
Priority to IN1173KON2014 priority patent/IN2014KN01173A/en
Priority to PCT/CN2011/084522 priority patent/WO2013091234A1/zh
Priority to CA2859692A priority patent/CA2859692A1/en
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to BR112014013421A priority patent/BR112014013421A2/pt
Priority to JP2014547662A priority patent/JP6209528B2/ja
Priority to CN201180075043.0A priority patent/CN103959853A/zh
Priority to KR1020147018647A priority patent/KR101710671B1/ko
Publication of WO2013091234A1 publication Critical patent/WO2013091234A1/zh
Priority to US14/303,209 priority patent/US9961676B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a wireless communication technology, and more particularly to a resource mapping method and apparatus for a downlink control channel in an LTE (Long Term Evolution) / LTE-A (LTE-Advanced, Enhanced Long Term Evolution) system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced, Enhanced Long Term Evolution
  • the downlink control information (DCI, Downlink Control Information) is transmitted by the base station in the form of a Physical Downlink Control Channel (PDCCH), and the data is shared by the base station by the physical downlink shared channel (PDSCH, Physical Downlink Shared). Channel) Send in form.
  • the PDCCH and the PDSCH appear in each subframe in a time-division manner.
  • the PDCCH supports spatial diversity multi-antenna transmission based on Cell-specific Reference Signal (CRS), and the maximum number of transmitting antennas is 4.
  • the PDCCH region is further divided into a common search space and a user-specific (UE-specific) search space. All users (UE, User Equipment) have the same common search space, and all users search for their own PDCCH in the same space.
  • the user-specific search space is related to the user's RNTI (Radio Network Temporary Identifier), and the user searches for his own PDCCH only in his own space.
  • RNTI Radio Network Temporary Identifier
  • the downlink can support up to eight transmit antennas to achieve IGbps transmission rates.
  • the PDSCH not only increases the transmission rate, but also expands the signal coverage.
  • the PDCCH does not support 8-antenna transmission, and only supports transmission diversity of up to 4 antennas, so the same beamforming gain as the PDSCH cannot be obtained.
  • the multi-point cooperative transmission technology based on the network architecture of multiple geographically separated RRHs (Remote Radio Heads) will be widely used in future wireless communication systems.
  • the cell capacity is increased by simultaneously scheduling the PDSCH of users in the coverage of each RRH to obtain the cell splitting gain.
  • the cell capacity can also be improved by means of PDSCH spatial multiplexing of multiple users.
  • the existing CRS-based PDCCH cannot obtain the cell splitting gain. Therefore, people pay attention to the research of PDCCH based on DM-RS (De Modulation Reference Symbol), that is, the PDCCH from the traditional first N OFDM symbols. Expand to the PDSCH region starting from the N+1th symbol, as shown in Figure 2.
  • DM-RS Demo Modulation Reference Symbol
  • the user can obtain the specific location of the new PDCCH region by using signaling, that is, the subcarrier resources occupied in the frequency domain and/or the information of the OFDM symbols occupied in the time domain, and the user can perform blind detection in this region to correctly
  • the respective PDCCHs are demodulated.
  • An object of the embodiments of the present invention is to provide a resource mapping method and apparatus for a downlink control channel, so that the number of PDCCH resources of each user is uniformized, thereby ensuring that the performance of the PDCCH is not affected by the pilot signal. influences.
  • a resource mapping method for a downlink control channel includes:
  • PDCCH downlink control channel
  • a base station configured to perform resource mapping of a downlink control channel, where the base station includes:
  • a first determining unit configured to determine, according to a size of a resource sub-block in a resource block (RB), a number of resource sub-blocks corresponding to a predetermined number of enhanced control channel elements (eCCEs);
  • a second determining unit configured to determine, according to the number of resource sub-blocks corresponding to the predetermined number of eCCEs, the number of RBs to which the predetermined number of eCCEs need to be mapped;
  • mapping unit which maps an eCCE of a downlink control channel (PDCCH) to an RB according to the number of RBs to which the predetermined number of eCCEs need to be mapped, where the eCCE in the PDCCH or a resource corresponding to a predetermined number of eCCEs
  • the sub-blocks have different positions on the respective RBs.
  • a computer readable program wherein, when the program is executed in a base station, the program causes a computer to perform the aforementioned resource mapping method of the downlink control channel in the base station.
  • a storage medium storing a computer readable program
  • the computer readable program causes a computer to perform a resource mapping method of the aforementioned downlink control channel in a base station.
  • An advantageous effect of the embodiment of the present invention is that the PDCCH resources of each user are equalized by alternately changing the mapping order of the PDCCHs of the respective users in the resource blocks, thereby ensuring that the performance of the PDCCH is not affected by the pilot.
  • the effect of the signal is that the PDCCH resources of each user are equalized by alternately changing the mapping order of the PDCCHs of the respective users in the resource blocks, thereby ensuring that the performance of the PDCCH is not affected by the pilot. The effect of the signal.
  • FIG. 1 is a schematic diagram of a PDCCH and PDSCH transmission area in an LTE system
  • FIG. 2 is a schematic diagram of a new PDCCH and PDSCH transmission area
  • FIG. 3 is a schematic diagram of a pilot signal position of a transmission region of a new PDCCH
  • FIG. 4 is a schematic diagram of a transmission location of a new PDCCH of multiple users
  • FIG. 5 is a flowchart of a resource mapping method of a downlink control channel according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of resource mapping according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of resource mapping according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of resource mapping according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of resource mapping according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention. detailed description
  • the resource mapping of the new PDCCH can be divided into two categories: one is continuous resource mapping, that is, multiple CCEs of one candidate of the PDCCH are mapped to adjacent time-frequency resources.
  • one is continuous resource mapping, that is, multiple CCEs of one candidate of the PDCCH are mapped to adjacent time-frequency resources.
  • the base station can send a PDCCH to the user on the time-frequency resource with better channel quality based on the channel information fed back by the user or the channel information measured by the base station to obtain the frequency selection scheduling gain.
  • the other type is a discrete resource mapping, that is, multiple CCEs of one candidate of the PDCCH are mapped to non-adjacent time-frequency resources. Through this mapping, the base station can obtain the frequency domain diversity gain when the channel information cannot be obtained, so as to ensure the performance of the PDCCH.
  • the PDCCHs of multiple users need to be mapped to different subcarriers of the same resource block, that is, the PDCCHs of multiple users are multiplexed by FDM (Frequency-Division Multiplexing).
  • the PDCCH of each user occupies M subcarriers, which is called an enhanced control channel unit (eCCE), as shown in FIG. 3 and FIG. 4.
  • eCCE enhanced control channel unit
  • 3 is a schematic diagram of possible resource locations of a new PDCCH on one RB
  • FIG. 4 is a schematic diagram of possible resource locations of a new PDCCH of multiple users on one RB.
  • the location of the pilot signal needs to be reserved in the new PDCCH mapping, thus causing the PDCCH resource to change as the pilot signal overhead changes.
  • a cell common pilot such as CRS
  • a demodulation pilot such as DM-RS
  • the embodiment of the present invention provides a method and apparatus for resource mapping of a downlink control channel, which alternately changes the mapping order of new PDCCHs of each user in each resource block (Resource Block, RB), so that each The number of resources of the user's new PDCCH is equalized, thereby ensuring that the performance of the new PDCCH is not affected by the pilot signal.
  • Resource Block Resource Block
  • Example 1 The embodiment of the invention provides a resource mapping method for a downlink control channel.
  • Figure 5 is a flow chart of the method. Referring to Figure 5, the method includes:
  • Step 501 Determine, according to a size of a resource sub-block in a resource block (RB), a number of resource sub-blocks corresponding to a predetermined number of enhanced control channel elements (eCCEs);
  • eCCEs enhanced control channel elements
  • Each RB is divided into a plurality of smaller resource sub-blocks as needed. For example, if four users' PDCCHs are multiplexed by one RB, one RB may be divided into four smaller resource sub-blocks. This embodiment does not limit the specific division strategy and division method.
  • the number of resource sub-blocks corresponding to one eCCE can be determined according to the size of each resource sub-block.
  • the correspondence between the two is determined by using multiple eCCEs corresponding to the integer number of resource sub-blocks. For example, if an eCCE corresponds to 1.5 resource sub-blocks, it is determined that 2 eCCEs correspond to 3 resource sub-blocks.
  • Step 502 Determine, according to the number of resource sub-blocks that are required by the predetermined number of eCCEs, the number of RBs to which the predetermined number of eCCEs need to be mapped;
  • the number of corresponding resource sub-blocks required by the predetermined number of eCCEs is the same as the number of RBs that need to be mapped, for example, if one eCCE corresponds to two resource sub-blocks, then one The eCCE needs to be mapped to two RBs, that is, two resource sub-blocks corresponding to one eCCE are located on two RBs.
  • the number of RBs that the predetermined number of eCCEs need to be mapped may be determined according to the resource configuration. For example, if one eCCE corresponds to three resource sub-blocks, an eCCE may also be used according to resource configuration. It is mapped to two RBs, that is, three resource sub-blocks corresponding to one eCCE are located on two RBs.
  • Step 503 The eCCE of the downlink control channel (PDCCH) is mapped to the RB according to the number of the RBs to be mapped to the predetermined number of eCCEs, where the eCCE in the PDCCH or the resource sub-corresponding to the predetermined number of eCCEs The positions of the blocks on the respective RBs are different.
  • PDCCH downlink control channel
  • one or more eCCEs of the PDCCH may be mapped to corresponding numbers according to the number of RBs to which the predetermined number of eCCEs need to be mapped.
  • the block is mapped to two RBs, and each RB has a resource sub-block corresponding to the eCCE.
  • one PDCCH includes two eCCEs, and the four resources corresponding to the two eCCEs of the PDCCH are used.
  • the sub-blocks are mapped to 4 RBs, and each RB has a resource sub-block corresponding to the eCCE. And so on, no longer repeat them.
  • the eCCEs in the PDCCH or the resource subblocks corresponding to the predetermined number of eCCEs have different locations on the respective RBs.
  • the location of the first resource sub-block corresponding to the eCCE on the first RB is corresponding to the eCCE.
  • the second resource sub-block has a different location on the second RB.
  • the location of the eCCE in the PDCCH or the resource sub-block corresponding to the predetermined number of eCCEs on each RB is periodically cyclically moved. In another embodiment, the location of the eCCE in the PDCCH or the resource sub-block corresponding to the predetermined number of eCCEs on each RB is preset.
  • the cyclic manner of the periodic cyclic movement may be determined according to the size of the eCCE or the overhead of the pilot signal in the RB or the size of the aggregation level, or the preset position may be determined.
  • the size of the eCCE is one eCCE corresponding to several resource sub-blocks; the size of the aggregation level is also the size of the aggregation level, which determines that one PDCCH contains several eCCEs, and then determines that one PDCCH needs to be mapped to several RBs. The following will be explained by specific examples.
  • the cyclic manner of the periodic cyclic movement may also be determined according to a predetermined policy, or the preset position may be determined, that is, no longer varies with the size of the eCCE or the size of the aggregation level.
  • the cyclic mode of the periodic cyclic movement or the preset position is set to be fixed.
  • the number of resources occupied by each PDCCH is equal or substantially equal, as long as the resource sub-blocks corresponding to the eCCEs of the PDCCH are in different positions on the respective RBs.
  • the positions of the resource sub-blocks corresponding to the predetermined number of eCCEs in the PDCCH in the PDCCH are periodically cyclically moved. For example, if one eCCE corresponds to two resource sub-blocks and needs to be mapped to two RBs, if the location of the first resource sub-block corresponding to the eCCE on the first RB is the 2i-1 resource sub-block, The position of the second resource sub-block corresponding to the eCCE on the second RB is the 2ith resource sub-block, where i is a natural number greater than 0.
  • the position of the resource sub-block corresponding to the eCCE in the PDCCH on each RB is periodically cyclically moved.
  • the location is the 4th-2th resource sub-block
  • the location of the third resource sub-block corresponding to the eCCE is the 4i-1th resource sub-block on the third RB
  • the fourth resource corresponding to the eCCE The position of the sub-block on the fourth RB is the 4th resource sub-block, where i is a natural number greater than zero. That is, the position of each resource sub-block corresponding to the eCCE on each RB is a relationship of sequential rotational displacement.
  • the location of the resource sub-block corresponding to the predetermined number of eCCEs in the PDCCH on each RB is preset. For example, if one eCCE corresponds to three resource sub-blocks and needs to be mapped to three RBs, the position of each resource sub-block corresponding to the eCCE on the RB may be preset. Similarly, in the case where the number of eCCEs of the PDCCH is greater than the predetermined number, the mapping manner may be repeated by using the number of RBs corresponding to the predetermined number as one cycle, or the location of each resource sub-block on the RB may be preset.
  • the number of resources occupied by each PDCCH is equal or substantially equal, that is, the number of REs occupied by each PDCCH is substantially equal, that is, the number of REs occupied by each PDCCH is approximately equal, thereby ensuring that the number of REs occupied by each user's PDCCH is substantially equal.
  • the performance of the PDCCH is not affected by the pilot signal.
  • FIG. 6 is a schematic diagram of PDCCH resource mapping according to an embodiment of the present invention.
  • each unit contains 3 subcarriers.
  • the size of the unit it is determined that one eCCE needs to correspond to two units, and is mapped into two RBs respectively.
  • the mapping relationship between the eCCEs of the four users and the time-frequency resources is: If the user j is mapped to the first RB In the 2i-1th unit, the user j is mapped to the 2ith unit of the second RB. That is, the 2i-1th unit and the 2ith unit are exchanged with each other in a period of 2 RBs. Where i is a natural number greater than zero.
  • the PDCCHs of the user 1 and the user 2 are exchanged between unit 1 and unit 2 of different RBs, and the PDCCHs of the user 3 and the user 4 are interchanged between unit 3 and unit 4 of different RBs as an example, but The embodiment is not limited thereto. Regardless of how the mapping is performed, it is only required to ensure that the number of resources occupied by the PDCCH of each user is substantially equal.
  • the PDCCH of the user 1 may occupy the unit1 of the first RB and the unit 4 of the second RB
  • the PDCCH of the user 2 occupies the unit 2 of the first RB and the unit 3 of the second RB
  • the PDCCH of the user 3 occupies the first PDCCH.
  • the unit 3 of the RB and the unit 2 of the second RB, the PDCCH of the user 4 occupies the unit 4 of the first RB and the unit 1 of the second RB.
  • the PDCCH of the user 3 occupies the unit 3 of the first RB and the unit 4 of the second RB,
  • FIG. 7 is a schematic diagram of PDCCH resource mapping according to another embodiment of the present invention.
  • each unit contains two sub-carriers.
  • the size of the unit it is determined that one eCCE needs to correspond to three units, and is mapped to three respectively.
  • the PDCCH of each user includes one eCCE, and the mapping relationship between the eCCEs of the six users and the time-frequency resources is:
  • the PDCCH of the user 1 occupies the first RB.
  • PDCCH of user 2 occupies unit2 of the first RB, unitl of the second RB and the third RB
  • PDCCH of user 3 occupies the first RB Unit2 of the second RB, unit2 of the third RB
  • PDCCH of user 4 occupies unit4 of the first RB, unit5 of the second RB, unit6 of the third RB
  • PDCCH of user 5 occupies the first RB Unit5, unit6 of the second RB, unit4 of the third RB
  • PDCCH of user 6 occupies unit6 of the first RB, unit4 of the second RB, and unit5 of the third RB. It can be seen that the number of resources occupied by each user's PDCCH is 52.
  • the embodiment does not limit the specific cyclic mode or the mapping pattern, as long as the number of resources occupied by the PDCCH of each user is equal or substantially equal. For example, if the three units corresponding to one eCCE are mapped to two RBs respectively, the number of resources occupied by the PDCCH of each user may not be the same, but this dynamic resource mapping method is adopted. Fixing the PDCCH of each user to a certain fixed position of the RB still greatly improves the performance of the PDCCH.
  • the resource mapping manner of the PDCCH shown in FIG. 7 is equal to the number of allocated resources of each user's PDCCH, which ensures that the performance of the PDCCH is not affected by the pilot signal.
  • FIG. 8 is a schematic diagram of PDCCH resource mapping according to another embodiment of the present invention.
  • each unit contains four sub-carriers.
  • the size of the unit it is determined that one eCCE needs to correspond to 1.5 units, and the two eCCEs correspond to three units, and are respectively mapped into three RBs.
  • the pilot signal it is assumed that the DM-RS is a rank that can support the rank and the rank is 4, and the CRS is a supportable antenna.
  • the mapping relationship between the eCCEs of the three users and the time-frequency resources is:
  • the i-th unit of the first RB is mapped to the mod (i+1, 3) units in the second RB, and to the mod (i+2, 3) units in the third RB.
  • i is a natural number greater than zero.
  • the PDCCH of the user 1 occupies the unit1 of the first RB, the unit 2 of the second RB, and the unit 3 of the third RB; the PDCCH of the user 2 occupies the unit 2 of the first RB, and the unit 3 of the second RB
  • the embodiment does not limit the specific cyclic mode or the mapping pattern, as long as the number of resources occupied by the PDCCH of each user is equal or substantially equal.
  • the resource mapping mode of the PDCCH shown in FIG. 8 is that the number of resources allocated to each user's PDCCH is also equal, which ensures that the performance of the PDCCH is not affected by the pilot signal.
  • FIG. 9 is a schematic diagram of PDCCH resource mapping according to another embodiment of the present invention.
  • two users are multiplexed with one RB as an example.
  • An RB is divided into two smaller resource sub-blocks, numbered as unit 1 ⁇ 2, and each unit contains six sub-carriers.
  • the size of the unit it is determined that one eCCE needs to correspond to one unit, because it needs to be mapped to different RBs, so two eCCEs are corresponding to two units, and are respectively mapped into two RBs as an example.
  • the mapping relationship between the eCCEs of the two users and the time-frequency resources is: if the PDCCH is mapped to the first RB For the i-th unit, the second RB is mapped to the mod(i+1, 2) unit, and i is a natural number greater than zero.
  • the PDCCH of the user 1 occupies the unit1 of the first RB and the unit 2 of the second RB; the PDCCH of the user 2 occupies the unit 2 of the first RB and the unit1 of the second RB. It can be seen that the number of resources occupied by each user's PDCCH is 100.
  • the number of RBs corresponding to one PDCCH is greater than 2
  • the above alternate manner may be repeated, that is, 2 RBs are one cycle, and 2 Alternate mapping within RB.
  • the embodiment does not limit the specific cyclic mode or the mapping pattern, as long as the number of resources occupied by the PDCCH of each user is equal or substantially equal.
  • the number of resources allocated to each user's PDCCH is also equal, which ensures that the performance of the PDCCH is not affected by the pilot signal.
  • the present invention further provides a base station, which is similar to the resource mapping method of the downlink control channel of the first embodiment, and the specific implementation of the method is as described in the following Embodiment 2. Embodiments of the method, the same points will not be described again.
  • the embodiment of the invention provides a base station, where the base station user performs resource mapping of a downlink control channel.
  • the base station includes:
  • a first determining unit 101 which determines, according to a size of a resource sub-block in one resource block (RB), a number of resource sub-blocks corresponding to a predetermined number of enhanced control channel units (eCCEs);
  • a second determining unit 102 which determines, according to the number of resource sub-blocks that are required by the predetermined number of eCCEs, the number of RBs to which the predetermined number of eCCEs need to be mapped;
  • mapping unit 103 which maps an eCCE of a downlink control channel (PDCCH) to a corresponding number of RBs according to the number of RBs to which the predetermined number of eCCEs need to be mapped, where the eCCE in the PDCCH or a predetermined number of
  • the resource sub-blocks corresponding to the eCCE have different locations on the respective RBs.
  • the location of the eCCE in the PDCCH or the resource sub-block corresponding to the predetermined number of eCCEs on each RB is periodically cyclically moved.
  • the location of the eCCE in the PDCCH or the resource sub-block corresponding to the predetermined number of eCCEs on each RB is preset.
  • the mapping unit 103 further determines a cyclic manner of the periodic cyclic movement according to the size of the eCCE or the overhead of the pilot symbol in the RB or the size of the aggregation level, or determines the foregoing
  • the set position is such that the number of resources occupied by each PDCCH is equal or substantially equal.
  • the mapping unit 103 further determines a cyclic manner of the periodic cyclic movement according to a predetermined policy, or determines the preset position such that the number of resources occupied by each PDCCH is equal or substantially equal.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a base station, the program causes the computer to perform the resource mapping method of the downlink control channel described in Embodiment 1 in the base station.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the computer to perform the resource mapping method of the downlink control channel described in Embodiment 1 in the base station.
  • the above apparatus and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种下行控制信道的资源映射方法和装置,其中,所述方法包括:根据一个资源块(RB)中资源子块的大小,确定预定数量的增强的控制信道单元(eCCE)所需对应的资源子块的个数;根据所述预定数量的eCCE所需对应的资源子块的个数,确定所述预定数量的eCCE需要映射到的RB的个数;根据所述预定数量的eCCE需要映射到的RB的个数,将下行控制信道(PDCCH)的eCCE映射到RB上,其中,所述PDCCH中的eCCE或者预定数量的eCCE对应的资源子块在各个RB上的位置不同。本发明实施例的方法和装置,通过交替的变化各个用户的PDCCH在各个资源块(Resource Block)内的映射顺序,使得各个用户的PDCCH资源数得以均匀化,从而保证PDCCH的性能不受到导频信号的影响。

Description

下行控制信道的资源映射方法和装置 技术领域
本发明涉及无线通信技术, 更具体地说, 涉及 LTE (Long Term Evolution, 长期 演进) /LTE-A ( LTE- Advanced, 增强的长期演进) ***中下行控制信道的资源映射 方法和装置。 背景技术
在 LTE***中, 各种下行控制信息 (DCI, Downlink Control Information) 由基 站以物理下行控制信道(PDCCH, Physical Downlink Control Channel)形式发送, 数 据则由基站以物理下行共享信道 (PDSCH, Physical Downlink Shared Channel) 形式 发送。 PDCCH与 PDSCH以时分的形式在每个子帧中出现, 如图 1 所示, 第 1~ 个 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用) 符号为 PDCCH 可能的发送区域, N=l,2,3或者 4,由高层配置,从第 N+1个 OFDM符号开始为 PDSCH 的发送区域。 PDCCH支持基于小区导频符号 (CRS, Cell-specific Reference Signal, CRS, 小区专用参考信号) 的空间分集多天线发送, 最大发送天线数为 4。 PDCCH 区域又分为公共 (Common) 搜索空间与用户特有的 (UE-specific) 搜索空间。 所有 用户 (UE, User Equipment) 的公共搜索空间相同, 所有用户在相同的空间内搜索自 己的 PDCCH。 而用户特有的搜索空间则与用户的 RNTI (Radio Network Temporary Identifier, 无线网络临时标识) 有关, 用户仅在自己的空间内搜索自己的 PDCCH。 用户搜索 PDCCH时, 假定有四种可能的 Aggregation level (聚合水平), L=l, 2, 4, 8, 且每种 Aggregation level有多种可能的位置, 称之为多个 candidate (候选)。 每个 candidate的具***置可根据预定的准则计算。如表 1所示, PDCCH的 aggregation level 与控制信道单元 (Control channel element, CCE) 对应, 最小的 aggregation level L=l对应 1个 CCE, 而 1个 CCE对应 36个 RE (resource element, 资源单元)。 搜索空间 (Search space) SiL) PDCCH候选的数量
(Number of
类型 聚合水平 大小 PDCCH candidates
(Type) (Aggregation level) L ( Size [in CCEs] ) M L )
1 6 6
用户专用 2 12 6
( UE-specific ) 4 8 2
8 16 2
4 16 4
公共 (Common)
8 16 2
为提高数据传输速率, 提高频谱效率, 多天线在无线通信***中得到广泛应用。 在 LTE- Advanced***中, 下行链路可支持多达 8根发送天线, 以达到 IGbps的传输 速率。 PDSCH通过预编码、 波束赋行, 不仅可提高传输速率, 还可扩大信号的覆盖 范围。 而 PDCCH尚不支持 8天线发送, 仅可支持最多 4天线的发送分集, 因此不能 获得与 PDSCH相同的波束赋形增益。 为进一步提高小区边缘用户的性能, 基于多个 地理位置上分开的 RRH (Remote Radio Head, 远端无线头) 的网络架构的多点协作 传输技术将在未来无线通信***中广泛应用。 在多个 RRH的网络架构下, 通过同时 调度各个 RRH覆盖范围内的用户的 PDSCH以获得小区***增益, 提高小区容量。 同时, 也可通过多个用户的 PDSCH 空间复用的方式提高小区容量。 而现有的基于 CRS 的 PDCCH 无法获得小区***增益, 因此, 人们开始关注基于 DM-RS ( De Modulation Reference Symbol, 解调参考符号) 的 PDCCH的研究, 即把 PDCCH 从 传统的前 N个 OFDM符号扩展到从第 N+1个符号开始的 PDSCH区域,如图 2所示。 用户可通过信令获得新 PDCCH 区域的具***置, 即在频域上占用的子载波资源及 / 或在时域上占用的 OFDM符号的信息, 用户则可在此区域中进行盲检测, 以正确解 调各自的 PDCCH。
发明人在实现本发明的过程中发现,这种新的 PDCCH的资源映射是当前的研究 方向。
应该注意, 上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。 发明内容
本发明实施例的目的在于提供一种下行控制信道的资源映射方法和装置,以使得 各个用户的 PDCCH资源数得以均匀化, 从而保证 PDCCH的性能不受到导频信号的 影响。
根据本发明实施例的一个方面,提供了一种下行控制信道的资源映射方法,其中, 所述方法包括:
根据一个资源块 (RB ) 中资源子块的大小, 确定预定数量的增强的控制信道单 元 (eCCE) 所需对应的资源子块的个数;
根据所述预定数量的 eCCE所需对应的资源子块的个数, 确定所述预定数量的 eCCE需要映射到的 RB的个数;
根据所述预定数量的 eCCE需要映射到的 RB的个数,将下行控制信道 (PDCCH) 的 eCCE映射到 RB上, 其中, 所述 PDCCH中的 eCCE或者预定数量的 eCCE对应 的资源子块在各个 RB上的位置不同。
根据本发明实施例的另一个方面,提供了一种基站,所述基站用于进行下行控制 信道的资源映射, 其中, 所述基站包括:
第一确定单元, 其根据一个资源块 (RB ) 中资源子块的大小, 确定预定数量的 增强的控制信道单元 (eCCE) 所需对应的资源子块的个数;
第二确定单元, 其根据所述预定数量的 eCCE所需对应的资源子块的个数, 确定 所述预定数量的 eCCE需要映射到的 RB的个数;
映射单元, 其根据所述预定数量的 eCCE需要映射到的 RB的个数, 将下行控制 信道 (PDCCH) 的 eCCE映射到 RB上, 其中, 所述 PDCCH中的 eCCE或者预定数 量的 eCCE对应的资源子块在各个 RB上的位置不同。
根据本发明实施例的再一个方面, 提供了一种计算机可读程序, 其中, 当在基站 中执行该程序时,该程序使得计算机在所述基站中执行前述的下行控制信道的资源映 射方法。
根据本发明实施例的又一个方面, 提供了一种存储有计算机可读程序的存储介 质,其中, 该计算机可读程序使得计算机在基站中执行前述的下行控制信道的资源映 射方法。
本发明实施例的有益效果在于:通过交替的变化各个用户的 PDCCH在各个资源 块 (Resource Block) 内的映射顺序, 使得各个用户的 PDCCH资源数得以均匀化, 从而保证 PDCCH的性能不受到导频信号的影响。
参照后文的说明和附图,详细公开了本发明的特定实施方式, 指明了本发明的原 理可以被采用的方式。应该理解, 本发明的实施方式在范围上并不因而受到限制。在 所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一个或更多 个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中的 特征。
应该强调, 术语"包括 /包含"在本文使用时指特征、 整件、 步骤或组件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存在或附加。 附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘 制的, 而只是为了示出本发明的原理。 为了便于示出和描述本发明的一些部分, 附图 中对应部分可能被放大或縮小。在本发明的一个附图或一种实施方式中描述的元素和 特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在 附图中,类似的标号表示几个附图中对应的部件, 并可用于指示多于一种实施方式中 使用的对应部件。 在附图中:
图 1是 LTE***中 PDCCH和 PDSCH发送区域的示意图;
图 2是新的 PDCCH和 PDSCH发送区域的示意图;
图 3是新的 PDCCH的发送区域的导频信号位置示意图;
图 4是多个用户的新的 PDCCH的发送位置示意图;
图 5是本发明实施例的下行控制信道的资源映射方法流程图;
图 6是本发明一个实施例的资源映射示意图;
图 7是本发明另外一个实施例的资源映射示意图;
图 8是本发明另外一个实施例的资源映射示意图;
图 9是本发明另外一个实施例的资源映射示意图;
图 10是本发明实施例的基站组成示意图。 具体实施方式
参照附图, 通过下面的说明书, 本发明实施例的前述以及其它特征将变得明显。 这些实施方式只是示例性的, 不是对本发明的限制。为了使本领域的技术人员能够容 易地理解本发明的原理和实施方式,本发明的实施方式以 LTE-A***中在 PDSCH区 域发送的 PDCCH (以下称为 PDCCH或者新的 PDCCH或者 ePDCCH) 的资源映射 为例进行说明, 但可以理解, 本发明实施例并不限于上述***, 对于涉及 PDCCH的 资源映射的其他***或场景均适用。
目前, 这种新的 PDCCH的资源映射可以分为两大类, 一类是连续的资源映射, 即 PDCCH的一个 candidate的多个 CCE映射到相邻的时频资源上。 通过这种映射方 式,基站可基于用户反馈的信道信息或基站端自行测量的信道信息在信道质量较好的 时频资源上为用户发送 PDCCH, 以获得频选调度增益。 另一类是离散的资源映射, 即 PDCCH的一个 candidate的多个 CCE映射到不相邻的时频资源上。 通过这种映射 方式,基站可在无法获得信道信息时也能获得频域分集增益,以保证 PDCCH的性能。
发明人在实现本发明的过程中发现, 一种合理的方式是将一个 candidate的多个 CCE 分别映射到不同的资源块 (RB ) 上。 而为了提高频谱效率, 需将多个用户的 PDCCH 映射到同一资源块的不同子载波上, 即多个用户的 PDCCH 以 FDM ( Frequency-division multiplexing , 频分多路复用) 的方式复用, 每个用户的 PDCCH 占用 M个子载波, 称其为增强的控制信道单元 (eCCE), 如图 3、 图 4所示。 其中, 图 3是新的 PDCCH在一个 RB上的可能的资源位置示意图, 图 4是多个用户的新的 PDCCH在一个 RB上的可能的资源位置示意图。
然而, 在新的 PDCCH区域, 存在各种导频信号, 例如小区公共导频 (如 CRS) 和解调导频 (如 DM-RS), 如图 3所示。 因此, 新的 PDCCH映射时需预留出导频信 号的位置, 因而导致 PDCCH资源随着导频信号开销的变化而变化。 如图 4所示, 用 户 4的 PDCCH区域内, 有 12个 RE被导频信号占用, 而用户 2的 PDCCH区域内, 有 8个 RE被导频信号占用, 导致这两个用户的 PDCCH占用的资源数不同, 从而使 得性能随之变化, 影响其鲁棒性, 这是亟待解决的一个问题。
鉴于此,本发明实施例提出了一种下行控制信道的资源映射的方法与装置, 它通 过交替的变化各个用户的新的 PDCCH在各个资源块 (Resource Block, RB) 内的映 射顺序, 使得各个用户的新的 PDCCH的资源数得以均匀化, 从而保证新的 PDCCH 的性能不受到导频信号的影响。
以下通过具体实施例对此加以说明。
实施例 1 本发明实施例提供了一种下行控制信道的资源映射方法。 图 5 是该方法的流程 图, 请参照图 5, 该方法包括:
步骤 501 : 根据一个资源块(RB )中资源子块的大小, 确定预定数量的增强的控 制信道单元 (eCCE) 所需对应的资源子块的个数;
其中, 每一个 RB根据需要被划分为多个更小的资源子块, 例如, 如果 4个用户 的 PDCCH复用一个 RB, 则一个 RB可被划分为 4个更小的资源子块。 本实施例并 不限制具体的划分策略和划分方法。
其中, 由于一个 CCE对应 36个 RE, 因此, 根据每一个资源子块的大小, 即可 确定一个 eCCE对应的资源子块的个数。 其中, 当一个 eCCE对应的资源子块的个数 不是整数时, 以多个 eCCE对应整数个资源子块确定两者之间的对应关系。 例如, 如 果一个 eCCE对应 1.5个资源子块, 则确定 2个 eCCE对应 3个资源子块。
步骤 502: 根据所述预定数量的 eCCE所需对应的资源子块的个数, 确定所述预 定数量的 eCCE需要映射到的 RB的个数;
其中, 在一个较佳实施例中, 预定数量的 eCCE所需对应的资源子块的个数, 与 其需要映射到的 RB的个数相同, 例如, 如果一个 eCCE对应 2个资源子块, 则一个 eCCE需要映射到 2个 RB上,也即一个 eCCE对应的 2个资源子块分别位于 2个 RB 上。 在其他的实施例中, 可以结合资源配置情况, 确定该预定数量的 eCCE需要映射 到的 RB的个数, 例如, 如果一个 eCCE对应 3个资源子块, 根据资源配置情况, 也 可以将一个 eCCE映射到 2个 RB上, 也即, 一个 eCCE对应的 3个资源子块位于 2 个 RB上。
步骤 503: 根据所述预定数量的 eCCE需要映射到的 RB的个数, 将下行控制信 道 (PDCCH) 的 eCCE映射到 RB上, 其中, 所述 PDCCH中的 eCCE或者预定数量 的 eCCE对应的资源子块在各个 RB上的位置不同。
其中,由于 PDCCH的 aggregation level与 CCE/eCCE——对应,根据 Aggregation Level, 可以确定 PDCCH的 eCCE的个数。例如, 如果 aggregation level L=l, 则确定 一个 PDCCH包含 1个 eCCE; 如果 aggregation level L=2, 则确定一个 PDCCH包含 2个 eCCE; 如果 aggregation level L=4, 则确定一个 PDCCH包含 4个 eCCE; 如果 aggregation level L=8, 则确定一个 PDCCH包含 8个 eCCE。 因此, 可以根据预定数 量的 eCCE需要映射到的 RB的个数, 将 PDCCH的一个或多个 eCCE映射到相应数 量的 RB上。 例如, 1个 eCCE对应 2个资源子块, 需要映射到 2个 RB上, 则如果 aggregation level L=l,也即一个 PDCCH包含 1个 eCCE,则将 PDCCH的这一个 eCCE 对应的 2个资源子块映射到 2个 RB上, 每一个 RB上有一个对应该 eCCE的资源子 块; 如果 aggregation level L=2, 则一个 PDCCH包含两个 eCCE, 则将 PDCCH的这 两个 eCCE对应的 4个资源子块映射到 4个 RB上,每一个 RB上有一个对应该 eCCE 的资源子块。 依此类推, 不再赘述。
其中, 根据本实施例, PDCCH中的 eCCE或者预定数量的 eCCE对应的资源子 块在各个 RB上的位置不同。 仍以一个 eCCE对应 2个资源子块, 需要映射到 2个 RB为例, 根据本实施例的方法, 该 eCCE对应的第一个资源子块在第一个 RB上的 位置, 与该 eCCE对应的第二个资源子块在第二个 RB上的位置不同。 由此, 使得每 个 PDCCH所占用的资源数相等或者大致相等。
其中, 在一个实施例中, PDCCH中的 eCCE或者预定数量的 eCCE对应的资源 子块在各个 RB上的位置是周期性循环移动的。 在另外一个实施例中, PDCCH中的 eCCE或者预定数量的 eCCE对应的资源子块在各个 RB上的位置是预先设定的。
在以上实施例中, 可以根据 eCCE的大小或者 RB内导频信号的开销或者聚合水 平的大小, 确定所述周期性循环移动的循环方式, 或者确定所述预先设定的位置。其 中, eCCE的大小也即一个 eCCE对应几个资源子块;聚合水平的大小也即 aggregation level的大小, 其决定了一个 PDCCH包含几个 eCCE, 进而决定了一个 PDCCH需要 映射到几个 RB上。 以下将通过具体的实例加以说明。
在以上实施例中, 也可以根据预定策略确定所述周期性循环移动的循环方式, 或 者确定所述预先设定的位置, 也即不再随着 eCCE 的大小或者聚合水平的大小而变 化。例如,将所述周期性循环移动的循环方式或者所述预先设定的位置设置为固定的。 只要保证根据 PDCCH的 eCCE对应的资源子块在各个 RB上的不同的位置, 每一个 PDCCH所占用的资源数相等或者大致相等即可。
根据本实施例的一个实施方式, PDCCH中预定数量的 eCCE对应的资源子块在 各个 RB上的位置是周期性循环移动的。 例如, 一个 eCCE对应 2个资源子块, 需要 映射到 2个 RB上, 则, 如果该 eCCE对应的第一个资源子块在第一个 RB上的位置 为第 2i-l个资源子块,与该 eCCE对应的第二个资源子块在第二个 RB上的位置为第 2i个资源子块, 其中, i为大于 0的自然数。 也即, 该 eCCE对应的第一个资源子块 在第一个 RB上的位置, 与该 eCCE对应的第二个资源子块在第二个 RB上的位置是 互换的关系。 其中, 对于 PDCCH的 eCCE的个数大于上述预定数量的情况, 则以上 述预定数量对应的 RB数量为一个周期, 重复上述映射方式。 例如, 如果 aggregation level L=2, 则一个 PDCCH包含 2个 eCCE, 对应 4个资源子块, 映射到 4个 RB上, 则以 2个 RB为一个周期, 重复上述映射方式, 此时, 该 PDCCH对应的 4个资源子 块中, 前两个资源子块在前两个 RB上是互换的关系, 后两个资源子块在后两个 RB 上是互换的关系。
根据本实施例的另外一个实施方式, PDCCH中的 eCCE对应的资源子块在各个 RB 上的位置是周期性循环移动的。 例如, 一个 eCCE 对应 2 个资源子块, 如果 aggregation level L=2, 则一个 PDCCH的两个 eCCE对应的 4个资源子块映射到 4个 RB上。 则, 如果与该 eCCE对应的第一个资源子块在第一个 RB上的位置为第 4i-3 个资源子块,与该 eCCE对应的第二个资源子块在第二个 RB上的位置为第 4i-2个资 源子块,与该 eCCE对应的第三个资源子块在第三个 RB上的位置为第 4i-l个资源子 块, 而与该 eCCE对应的第四个资源子块在第四个 RB上的位置为第 4i个资源子块, 其中, i为大于 0的自然数。 也即, 该 eCCE对应的各个资源子块在各个 RB上的位 置是依次旋转位移的关系。
根据本实施例的另外一个实施方式, PDCCH中预定数量的 eCCE对应的资源子 块在各个 RB上的位置是预先设定的。 例如, 一个 eCCE对应 3个资源子块, 需要映 射到 3个 RB上, 则, 可以预先设定该 eCCE对应的每一个资源子块在 RB上的位置 是固定的。 同样的, 对于 PDCCH的 eCCE的个数大于上述预定数量的情况, 可以以 上述预定数量对应的 RB数量为一个周期, 重复上述映射方式, 也可以预先设定各个 资源子块在 RB上的位置。
在以上三个实施方式中, 无论是周期性循环移动还是预先设定, 每一个 PDCCH 所占用的资源数相等或者大致相等, 也即, 每一个用户的 PDCCH所占用的 RE数大 致相等, 从而保证了 PDCCH的性能不受到导频信号的影响。
为了使本实施例的下行控制信道的资源映射方法更加清楚易懂,以下结合一些具 体的示例对此加以说明。
图 6是本发明一个实施例的 PDCCH资源映射示意图。
请参照图 6, 在该实施例中, 是以 4用户复用一个 RB为例。 一个 RB分为 4个 更小的资源子块, 分别编号为 unitl~4, 每一个 unit (单元) 包含 3个子载波。 根据 本实施例的方法, 根据 unit的大小, 确定一个 eCCE需要对应 2个 unit, 并分别映射 到 2个 RB内。在本实施例中,关于导频信号,假设 DM-RS为可支持秩的值为 mnk=4, CRS为可支持 2天线。
根据本实施例的方法, 如果 Aggregation Level L=l, 则由于每个用户的 PDCCH 包含 1个 eCCE, 则 4个用户的 eCCE与时频资源的映射关系为: 若用户 j映射至第 一个 RB的第 2i-l个 unit中, 则用户 j映射至第二个 RB的第 2i个 unit中。 即以 2个 RB为周期, 将第 2i-l个 unit与第 2i个 unit相互交换。 其中, i为大于 0的自然数。
根据本实施例的方法, 如果 Aggregation Level L>1, 例如 L=2或 4或 8, 则一个 PDCCH对应的 RB数大于 2, 则可以重复以上交替方式, 即以 2个 RB为一个周期, 在 2个 RB内交替映射。
在图 6的实施例中, 是以用户 1和用户 2的 PDCCH在不同 RB的 unitl和 unit2 互换, 用户 3和用户 4的 PDCCH在不同 RB的 unit3和 unit4互换为例进行说明, 但 本实施例并不以此作为限制, 无论如何映射, 只要保证每个用户的 PDCCH所占用的 资源数大致相等即可。 例如, 也可以是用户 1的 PDCCH占用第 1个 RB的 unitl和 第 2个 RB的 unit4,用户 2的 PDCCH占用第 1个 RB的 unit2和第 2个 RB的 unit3, 用户 3的 PDCCH占用第 1个 RB的 unit3和第 2个 RB的 unit2, 用户 4的 PDCCH 占用第 1个 RB的 unit4和第 2个 RB的 unitl。
通过图 6所示的 PDCCH的资源映射方式, 用户 1的 PDCCH占用第 1个 RB的 unitl和第 2个 RB的 unit2, 则其被分配的资源数为 24+28=52; 用户 2的 PDCCH占 用第 1个 RB的 unit2和第 2个 RB的 unitl , 则其被分配的资源数为 28+24=52; 用户 3的 PDCCH占用第 1个 RB的 unit3和第 2个 RB的 unit4, 则其被分配的资源数为 28+24=52; 用户 4的 PDCCH占用第 1个 RB的 unit4和第 2个 RB的 unit3, 则其被 分配的资源数为 24=28=52。 可见, 每个用户的 PDCCH被分配的资源数相等, 保证 了 PDCCH的性能不受到导频信号的影响。
图 7是本发明另外一个实施例的 PDCCH资源映射示意图。
请参照图 7, 在该实施例中, 是以 6用户复用一个 RB为例。 一个 RB分为 6个 更小的资源子块, 分别编号为 unit 1~6, 每一个 unit包含 2个子载波。 根据本实施例 的方法, 根据 unit的大小, 确定一个 eCCE需要对应 3个 unit, 并分别映射到 3个 RB内。在本实施例中, 关于导频信号, 假设 DM-RS为可支持秩的值为 rank=4, CRS 为可支持 2天线。
根据本实施例的方法, 如果 Aggregation Level L=l, 则由于每个用户的 PDCCH 包含 1个 eCCE, 则 6个用户的 eCCE与时频资源的映射关系为: 用户 1的 PDCCH 占用第 1个 RB的 unitl, 第 2个 RB的 unit2, 第 3个 RB的 unit3; 用户 2的 PDCCH 占用第 1个 RB的 unit2, 第 2个 RB和第 3个 RB的 unitl ; 用户 3的 PDCCH占用第 1个 RB和第 2个 RB的 unit3, 第 3个 RB的 unit2; 用户 4的 PDCCH占用第 1个 RB的 unit4, 第 2个 RB的 unit5, 第 3个 RB的 unit6; 用户 5的 PDCCH占用第 1 个 RB的 unit5, 第 2个 RB的 unit6, 第 3个 RB的 unit4; 用户 6的 PDCCH占用第 1 个 RB的 unit6,第 2个 RB的 unit4,第 3个 RB的 unit5。可见,每一个用户的 PDCCH 占用的资源数为都 52。
根据本实施例的方法, 如果 Aggregation Level L>1, 例如 L=2或 4或 8, 则一个 PDCCH对应的 RB数大于 3, 则可以重复以上交替方式, 即以 3个 RB为一个周期, 在 3个 RB内交替映射。
与图 6的实施例相同,本实施例也不限制具体的循环方式或映射的图样, 只要保 证每个用户的 PDCCH所占用的资源数相等或大致相等即可。例如,如果将一个 eCCE 对应的 3个 unit分别映射到 2个 RB上, 则可能无法达到每个用户的 PDCCH所占用 的资源数完全一致, 但由于采用了这种动态的资源映射方式, 相比于将每个用户的 PDCCH固定在 RB的某个固定位置, 仍大大提高了 PDCCH的性能。
通过图 7所示的 PDCCH的资源映射方式, 每个用户的 PDCCH被分配的资源数 相等, 保证了 PDCCH的性能不受到导频信号的影响。
图 8是本发明另外一个实施例的 PDCCH资源映射示意图。
请参照图 8, 在该实施例中, 是以 3用户复用一个 RB为例。 一个 RB分为 3个 更小的资源子块, 分别编号为 unit 1~3, 每一个 unit包含 4个子载波。 根据本实施例 的方法, 根据 unit的大小, 确定一个 eCCE需要对应 1.5个 unit, 则两个 eCCE对应 3个 unit, 并分别映射到 3个 RB 内。 在本实施例中, 关于导频信号, 假设 DM-RS 为可支持秩的值为 rank=4, CRS为可支持 2天线。
根据本实施例的方法, 如果 Aggregation Level L=2, 则由于每个用户的 PDCCH 包含 2个 eCCE, 则 3个用户的 eCCE与时频资源的映射关系为: 若 PDCCH映射至 第 1个 RB的第 i个 unit, 则在第 2个 RB, 映射至第 mod(i+l, 3)个 unit, 在第 3个 RB, 映射至第 mod(i+2, 3)个 unit, i为大于 0的自然数。
如图 8所示, 用户 1的 PDCCH占用第 1个 RB的 unitl , 第 2个 RB的 unit2, 第 3个 RB的 unit3; 用户 2的 PDCCH占用第 1个 RB的 unit2, 第 2个 RB的 unit3, 第 3个 RB的 unitl ; 用户 3的 PDCCH占用第 1个 RB的 unit3, 第 2个 RB的 unitl , 第 3个 RB的 imit2。 可见, 每一个用户的 PDCCH占用的资源数都为 100。
根据本实施例的方法,如果 Aggregation Level L>2,例如 L= 4或 8,则一个 PDCCH 对应的 RB数大于 3, 则可以重复以上交替方式, 即以 3个 RB为一个周期, 在 3个 RB内循环映射。
与图 6和图 7的实施例相同, 本实施例也不限制具体的循环方式或映射的图样, 只要保证每个用户的 PDCCH所占用的资源数相等或大致相等即可。
通过图 8所示的 PDCCH的资源映射方式, 每个用户的 PDCCH被分配的资源数 也是相等的, 保证了 PDCCH的性能不受到导频信号的影响。
图 9是本发明另外一个实施例的 PDCCH资源映射示意图。
请参照图 9, 在该实施例中, 是以 2个用户复用一个 RB为例。 一个 RB分为 2 个更小的资源子块, 分别编号为 unit 1~2, 每一个 unit包含 6个子载波。 根据本实施 例的方法, 根据 unit的大小, 确定一个 eCCE需要对应 1个 unit, 因为需要映射到不 同的 RB上, 因此取两个 eCCE对应 2个 unit, 并分别映射到 2个 RB内为例。 在本 实施例中, 关于导频信号, 假设 DM-RS为可支持秩的值为 mnk=2, CRS为可支持 2 天线。
根据本实施例的方法, 如果 Aggregation Level L=2, 则由于每个用户的 PDCCH 包含 2个 eCCE, 则 2个用户的 eCCE与时频资源的映射关系为: 若 PDCCH映射至 第 1个 RB的第 i个 unit, 则在第 2个 RB映射至第 mod(i+l, 2)个 unit, i为大于 0的 自然数。
如图 9所示, 用户 1的 PDCCH占用第 1个 RB的 unitl , 第 2个 RB的 unit2; 用户 2的 PDCCH占用第 1个 RB的 unit2, 第 2个 RB的 unitl。 可见, 每一个用户 的 PDCCH占用的资源数为都 100。
根据本实施例的方法,如果 Aggregation Level L>2,例如 L= 4或 8,则一个 PDCCH 对应的 RB数大于 2, 则可以重复以上交替方式, 即以 2个 RB为一个周期, 在 2个 RB内交替映射。
与图 6、 图 7和图 8的实施例相同, 本实施例也不限制具体的循环方式或映射的 图样, 只要保证每个用户的 PDCCH所占用的资源数相等或大致相等即可。
通过图 9所示的 PDCCH的资源映射方式, 每个用户的 PDCCH被分配的资源数 也是相等的, 保证了 PDCCH的性能不受到导频信号的影响。
本发明还提供了一种基站, 如下面的实施例 2所述, 由于该基站解决问题的原理 与实施例 1的下行控制信道的资源映射方法类似,因此其具体的实施可以参考实施例 1的方法的实施例, 相同之处不再赘述。
实施例 2
本发明实施例提供了一种基站, 该基站用户进行下行控制信道的资源映射。 图
10为该基站的组成示意图, 请参照图 10, 该基站包括:
第一确定单元 101, 其根据一个资源块(RB )中资源子块的大小, 确定预定数量 的增强的控制信道单元 (eCCE) 所需对应的资源子块的个数;
第二确定单元 102, 其根据所述预定数量的 eCCE所需对应的资源子块的个数, 确定所述预定数量的 eCCE需要映射到的 RB的个数;
映射单元 103, 其根据所述预定数量的 eCCE需要映射到的 RB的个数, 将下行 控制信道(PDCCH)的 eCCE映射到相应数量的 RB上,其中,所述 PDCCH中的 eCCE 或者预定数量的 eCCE对应的资源子块在各个 RB上的位置不同。
在一个实施例中, PDCCH中的 eCCE或者预定数量的 eCCE对应的资源子块在 各个 RB上的位置是周期性循环移动的。
在另外一个实施例中, PDCCH中的 eCCE或者预定数量的 eCCE对应的资源子 块在各个 RB上的位置是预先设定的。
在前述两个实施例中, 映射单元 103还根据所述 eCCE的大小或者所述 RB内导 频符号的开销或者聚合水平的大小,确定所述周期性循环移动的循环方式, 或者确定 所述预先设定的位置, 使得每个 PDCCH所占用的资源数相等或者大致相等。
在前述两个实施例中,映射单元 103还根据预定策略确定所述周期性循环移动的 循环方式, 或者确定所述预先设定的位置, 使得每个 PDCCH所占用的资源数相等或 者大致相等。
通过本实施例的基站, 由于每个 PDCCH所占用的资源数相等或者大致相等, 优 化了 PDCCH的性能, 避免了导频信号对 PDCCH的影响。
本发明实施例还提供了一种计算机可读程序, 其中, 当在基站中执行该程序时, 该程序使得计算机在所述基站中执行实施例 1所述的下行控制信道的资源映射方法。
本发明实施例还提供了一种存储有计算机可读程序的存储介质,其中, 该计算机 可读程序使得计算机在基站中执行实施例 1所述的下行控制信道的资源映射方法。
本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件实现。本发明 涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使该逻辑部件实现 上文所述的装置或构成部件, 或使该逻辑部件实现上文所述的各种方法或步骤。逻辑 部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本发明还涉及 用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器等。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚, 这 些描述都是示例性的, 并不是对本发明保护范围的限制。本领域技术人员可以根据本 发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围 内。

Claims

权 利 要 求 书
1、 一种下行控制信道的资源映射方法, 其中, 所述方法包括:
根据一个资源块(RB)中资源子块的大小, 确定预定数量的增强的控制信道单元 (eCCE) 所需对应的资源子块的个数;
根据所述预定数量的 eCCE 所需对应的资源子块的个数, 确定所述预定数量的 eCCE需要映射到的 RB的个数;
根据所述预定数量的 eCCE需要映射到的 RB的个数,将下行控制信道(PDCCH) 的 eCCE映射到 RB上, 其中, 所述 PDCCH中的 eCCE或者预定数量的 eCCE对应 的资源子块在各个 RB上的位置不同。
2、 根据权利要求 1所述的方法, 其中,
所述 PDCCH中的 eCCE或者预定数量的 eCCE对应的资源子块在各个 RB上的 位置是周期性循环移动的。
3、 根据权利要求 1所述的方法, 其中,
所述 PDCCH中的 eCCE或者预定数量的 eCCE对应的资源子块在各个 RB上的 位置是预先设定的。
4、 根据权利要求 2或 3所述的方法, 其中,
根据所述 eCCE的大小或者所述 RB内导频信号的开销或者聚合水平的大小, 确 定所述周期性循环移动的循环方式, 或者确定所述预先设定的位置。
5、 根据权利要求 2或 3所述的方法, 其中,
根据预定策略确定所述周期性循环移动的循环方式, 或者确定所述预先设定的位 置。
6、 一种基站, 所述基站用于进行下行控制信道的资源映射, 其中, 所述基站包 括:
第一确定单元, 其根据一个资源块(RB )中资源子块的大小, 确定预定数量的增 强的控制信道单元 (eCCE) 所需对应的资源子块的个数;
第二确定单元, 其根据所述预定数量的 eCCE所需对应的资源子块的个数, 确定 所述预定数量的 eCCE需要映射到的 RB的个数;
映射单元, 其根据所述预定数量的 eCCE需要映射到的 RB的个数, 将下行控制 信道 (PDCCH) 的 eCCE映射到 RB上, 其中, 所述 PDCCH中的 eCCE或者预定数 量的 eCCE对应的资源子块在各个 RB上的位置不同。
7、 根据权利要求 6所述的基站, 其中,
所述 PDCCH中的 eCCE或者预定数量的 eCCE对应的资源子块在各个 RB上的 位置是周期性循环移动的。
8、 根据权利要求 6所述的基站, 其中,
所述 PDCCH中的 eCCE或者预定数量的 eCCE对应的资源子块在各个 RB上的 位置是预先设定的。
9、 根据权利要求 7或 8所述的基站, 其中,
所述映射单元还根据所述 eCCE的大小或者所述 RB内导频信号的开销或者聚合 水平的大小, 确定所述周期性循环移动的循环方式, 或者确定所述预先设定的位置。
10、 根据权利要求 7或 8所述的基站, 其中,
所述映射单元还根据预定策略确定所述周期性循环移动的循环方式, 或者确定所 述预先设定的位置。
11、 一种计算机可读程序, 其中, 当在基站中执行该程序时, 该程序使得计算机 在所述基站中执行权利要求 1-5任一项所述的下行控制信道的资源映射方法。
12、一种存储有计算机可读程序的存储介质, 其中, 该计算机可读程序使得计算 机在基站中执行权利要求 1-5任一项所述的下行控制信道的资源映射方法。
PCT/CN2011/084522 2011-12-23 2011-12-23 下行控制信道的资源映射方法和装置 WO2013091234A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
PCT/CN2011/084522 WO2013091234A1 (zh) 2011-12-23 2011-12-23 下行控制信道的资源映射方法和装置
KR1020177004867A KR101778924B1 (ko) 2011-12-23 2011-12-23 물리적 다운링크 제어 채널의 자원 매핑 방법 및 장치
MX2014007640A MX2014007640A (es) 2011-12-23 2011-12-23 Metodo y aparato para la asignacion de recuros de un canal fisico de control de enlace descendente.
EP11877994.1A EP2797356A4 (en) 2011-12-23 2011-12-23 METHOD AND APPARATUS FOR RESOURCE MAPPING FOR DOWNLINK CONTROL CHANNEL
IN1173KON2014 IN2014KN01173A (zh) 2011-12-23 2011-12-23
RU2014130240/07A RU2589891C2 (ru) 2011-12-23 2011-12-23 Способ и устройство для отображения ресурсов физического канала управления нисходящей линии связи
CA2859692A CA2859692A1 (en) 2011-12-23 2011-12-23 Method and apparatus for resource mapping of a physical downlink control channel
MX2015008899A MX340469B (es) 2011-12-23 2011-12-23 Metodo y aparato para la asignacion de recursos de un canal fisico de control de enlace descendente.
BR112014013421A BR112014013421A2 (pt) 2011-12-23 2011-12-23 método e aparelho para mapeamento de recursos de um canal de controle de downlink físico
JP2014547662A JP6209528B2 (ja) 2011-12-23 2011-12-23 下り制御チャネルのリソースマッピング方法及び装置
CN201180075043.0A CN103959853A (zh) 2011-12-23 2011-12-23 下行控制信道的资源映射方法和装置
KR1020147018647A KR101710671B1 (ko) 2011-12-23 2011-12-23 물리적 다운링크 제어 채널의 자원 매핑 방법 및 장치
US14/303,209 US9961676B2 (en) 2011-12-23 2014-06-12 Method and apparatus for resource mapping of a physical downlink control channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/084522 WO2013091234A1 (zh) 2011-12-23 2011-12-23 下行控制信道的资源映射方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/303,209 Continuation US9961676B2 (en) 2011-12-23 2014-06-12 Method and apparatus for resource mapping of a physical downlink control channel

Publications (1)

Publication Number Publication Date
WO2013091234A1 true WO2013091234A1 (zh) 2013-06-27

Family

ID=48667681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084522 WO2013091234A1 (zh) 2011-12-23 2011-12-23 下行控制信道的资源映射方法和装置

Country Status (11)

Country Link
US (1) US9961676B2 (zh)
EP (1) EP2797356A4 (zh)
JP (1) JP6209528B2 (zh)
KR (2) KR101778924B1 (zh)
CN (1) CN103959853A (zh)
BR (1) BR112014013421A2 (zh)
CA (1) CA2859692A1 (zh)
IN (1) IN2014KN01173A (zh)
MX (2) MX2014007640A (zh)
RU (1) RU2589891C2 (zh)
WO (1) WO2013091234A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12010661B2 (en) 2015-06-16 2024-06-11 Qualcomm Incorporated Long-term evolution compatible very narrow band design

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101943821B1 (ko) * 2011-06-21 2019-01-31 한국전자통신연구원 무선 통신 시스템에서 제어채널 송수신 방법
US9603140B2 (en) * 2014-09-23 2017-03-21 Intel Corporation Resource allocation
PT3324693T (pt) * 2015-08-12 2021-01-06 Huawei Tech Co Ltd Método de transmissão de dados, aparelho e meio de armazenamento legível por computador
EP3363173A1 (en) * 2015-10-16 2018-08-22 Intel IP Corporation Enhanced resource mapping scheme
CN107889237B (zh) * 2016-09-29 2024-01-02 中兴通讯股份有限公司 一种信息传输方法及装置
US11770795B2 (en) * 2020-06-09 2023-09-26 Qualcomm Incorporated Paging occasion sharing
CN111935823B (zh) * 2020-08-04 2021-08-10 苏州智铸通信科技股份有限公司 一种下行控制信道资源自适应调整方法、装置、基站及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500260A (zh) * 2008-04-29 2009-08-05 华为技术有限公司 为用户分配应答信道的方法、装置和***
US20110299490A1 (en) * 2009-01-16 2011-12-08 Telefonaktiebolaget L M Ericsson Methods and Apparatus for Physical Uplink Control Channel (PUCCH) Load Control by Physical Downlink Control Channel (PDCCH) Restrictions
WO2011159132A2 (en) * 2010-06-17 2011-12-22 Lg Electronics Inc. Method and apparatus for transmitting and receiving r-pdcch

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7353538B2 (en) * 2002-11-08 2008-04-01 Federal Network Systems Llc Server resource management, analysis, and intrusion negation
RU2254611C2 (ru) 2003-03-13 2005-06-20 Общество с ограниченной ответственностью "Мобилити" Способ предоставления пользователям мобильных устройств электронной связи актуальной коммерческой информации на альтернативной основе (варианты) и информационная система для его осуществления (варианты)
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
KR100925441B1 (ko) 2008-01-07 2009-11-06 엘지전자 주식회사 분산형 가상자원블록 스케쥴링 방법
KR20110020708A (ko) * 2009-08-24 2011-03-03 삼성전자주식회사 Ofdm 시스템에서 셀간 간섭 조정을 위한 제어 채널 구성과 다중화 방법 및 장치
CN102014491B (zh) * 2009-09-07 2014-04-09 中兴通讯股份有限公司 一种物理层控制信道资源的分配方法和装置
EP2378703A1 (en) * 2010-04-13 2011-10-19 Panasonic Corporation Mapping of control information to control channel elements
KR101673906B1 (ko) * 2010-04-29 2016-11-22 삼성전자주식회사 Ofdm 시스템에서 공간 다중화 제어 채널 지원을 위한 상향 링크 ack/nack 채널의 맵핑 방법 및 장치
CN102420685B (zh) * 2011-11-07 2014-08-06 电信科学技术研究院 一种传输控制信息的方法及装置
JP5487229B2 (ja) * 2011-11-07 2014-05-07 株式会社Nttドコモ 無線基地局装置、ユーザ端末、無線通信システム及び無線通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500260A (zh) * 2008-04-29 2009-08-05 华为技术有限公司 为用户分配应答信道的方法、装置和***
US20110299490A1 (en) * 2009-01-16 2011-12-08 Telefonaktiebolaget L M Ericsson Methods and Apparatus for Physical Uplink Control Channel (PUCCH) Load Control by Physical Downlink Control Channel (PDCCH) Restrictions
WO2011159132A2 (en) * 2010-06-17 2011-12-22 Lg Electronics Inc. Method and apparatus for transmitting and receiving r-pdcch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2797356A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12010661B2 (en) 2015-06-16 2024-06-11 Qualcomm Incorporated Long-term evolution compatible very narrow band design

Also Published As

Publication number Publication date
BR112014013421A2 (pt) 2017-06-13
CN103959853A (zh) 2014-07-30
EP2797356A1 (en) 2014-10-29
CA2859692A1 (en) 2013-06-27
US9961676B2 (en) 2018-05-01
IN2014KN01173A (zh) 2015-10-16
KR101710671B1 (ko) 2017-02-28
MX2014007640A (es) 2014-09-15
EP2797356A4 (en) 2015-09-09
JP6209528B2 (ja) 2017-10-11
US20140293922A1 (en) 2014-10-02
KR101778924B1 (ko) 2017-09-14
KR20170023210A (ko) 2017-03-02
JP2015506597A (ja) 2015-03-02
RU2014130240A (ru) 2016-02-20
RU2589891C2 (ru) 2016-07-10
KR20140109411A (ko) 2014-09-15
MX340469B (es) 2016-07-07

Similar Documents

Publication Publication Date Title
CN102395206B (zh) 下行控制信息的传输方法和设备
RU2596839C2 (ru) Способ и устройство для передачи и приема управляющей информации в системе беспроводной связи
CN102611524B (zh) 一种传输信息的方法、***及设备
JP6313321B2 (ja) 共通サーチスペース及びue固有サーチスペースをブラインド検出するための方法及び装置
RU2595642C1 (ru) Способ отправки управляющей информации, способ приема и устройство
JP6105716B2 (ja) E−pdcch伝送、ブラインド検出の方法および装置
JP6320370B2 (ja) 下り制御情報送信方法、検出方法、基地局及びユーザ機器
EP3328147B1 (en) Method and device for transmitting control information
KR101767021B1 (ko) 물리적 다운링크 제어 채널의 검색 공간의 매핑 방법 및 장치
WO2013091234A1 (zh) 下行控制信道的资源映射方法和装置
WO2013104305A1 (zh) 一种控制信道传输、接收方法及基站、用户设备
JP5898874B2 (ja) ユーザ端末、無線基地局装置、無線通信システム及び無線通信方法
WO2012152149A1 (zh) 一种物理下行控制信道上的信息收发方法及设备
WO2014019539A1 (zh) 增强的物理下行控制信道的发送及检测方法和设备
WO2013013643A1 (zh) 控制信道的接收和发送方法和装置
WO2013139211A1 (zh) ePDCCH资源确定方法及装置
WO2013178184A2 (zh) ePDCCH发送、接收方法及装置、基站、用户设备
JP6237820B2 (ja) 下り制御チャネルのリソースマッピング方法及び装置
RU2638544C2 (ru) Способ и устройство для отображения ресурсов физического канала управления нисходящей линии связи
WO2013044888A2 (zh) 增强的物理下行控制信道e-pdcch的传输方法及设备方

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014547662

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2859692

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/007640

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201403738

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20147018647

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014130240

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014013421

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014013421

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140603