WO2021063116A1 - 发送及接收第二级sci的方法及装置、存储介质、发送ue及接收ue - Google Patents

发送及接收第二级sci的方法及装置、存储介质、发送ue及接收ue Download PDF

Info

Publication number
WO2021063116A1
WO2021063116A1 PCT/CN2020/109121 CN2020109121W WO2021063116A1 WO 2021063116 A1 WO2021063116 A1 WO 2021063116A1 CN 2020109121 W CN2020109121 W CN 2020109121W WO 2021063116 A1 WO2021063116 A1 WO 2021063116A1
Authority
WO
WIPO (PCT)
Prior art keywords
level sci
symbol
sci
level
dmrs
Prior art date
Application number
PCT/CN2020/109121
Other languages
English (en)
French (fr)
Inventor
张萌
曲鑫
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to EP20872294.2A priority Critical patent/EP4044725A4/en
Priority to JP2022520029A priority patent/JP7432713B2/ja
Priority to US17/765,243 priority patent/US20220312401A1/en
Priority to KR1020227014638A priority patent/KR20220075385A/ko
Publication of WO2021063116A1 publication Critical patent/WO2021063116A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to the field of communication technology, and in particular to a method and device for sending and receiving a second-level SCI, a storage medium, a sending UE and a receiving UE.
  • the direct communication link between the device and the device is called the bypass (Sidelink), similar to the uplink and the downlink, there are also control channels and data channels on the bypass, the former is called the bypass control channel (Physical Sidelink Control CHannel, PSCCH), the latter is called the bypass data channel (Physical Sidelink Shared CHannel, PSSCH).
  • PSCCH Physical Sidelink Control CHannel
  • PSSCH Physical Sidelink Shared CHannel
  • the PSCCH is used to indicate the time-frequency domain resource location for PSSCH transmission, the modulation and coding scheme, and the priority of the data carried in the PSSCH, and the PSSCH is used to carry data.
  • V2X Vehicle to outside communication
  • its control information and data can be transmitted through the bypass, and the transmission resource is selected according to the bypass control information (Sidelink control information, SCI).
  • SCI Seglink control information
  • level 2 SCI scheduling is a hot topic under discussion.
  • the scheduling information of the PSSCH can be stored in the first-level SCI and/or the second-level SCI in the 2-level SCI scheduling.
  • the first level SCI can carry PSSCH frequency domain resource indication information, MCS indication information, QoS indication information, etc.
  • the second level SCI can carry PSSCH time domain resource indication information, CSI request indication information, etc.
  • the technical problem solved by the present invention is to provide a method and device for sending and receiving the second-level SCI, a storage medium, a sending UE and a receiving UE, which can realize the sending and receiving of the second-level SCI between the sending UE and the receiving UE.
  • an embodiment of the present invention provides a method for sending a second-level SCI, which includes the following steps: determining location information of time-frequency resources used to send the second-level SCI; according to the location information, Configure the second level SCI; send the second level SCI.
  • the location information is the starting location of the time-frequency resource used to send the second-level SCI; according to the location information, configuring the second-level SCI includes: configuring according to the starting location The second level SCI.
  • the RE at the start position of the second-level SCI is adjacent to the RE of the DMRS symbol of the PSSCH scheduled by the second-level SCI and located in the same OFDM symbol; or, the start of the second-level SCI
  • the RE at the start position is adjacent to the RE of the DMRS symbol of the PSSCH scheduled by the second-level SCI and is located on the same subcarrier.
  • configuring the second level SCI includes: determining the RE of the DMRS symbol adjacent to the start position of the second level SCI; The RE at the start position is configured with the first second-level SCI symbol; on the same subcarrier that is the same as the first second-level SCI symbol, it is determined that the RE adjacent to the DMRS symbol and the subcarrier are The same other RE, and configure the second second-level SCI symbol; in accordance with the order of the subcarriers of the DMRS symbol from largest to smallest or from smallest to largest, the adjacent RE of the DMRS symbol On the two REs, two second-level SCI symbols are arranged in sequence.
  • configuring the second level SCI includes: determining the RE of the DMRS symbol adjacent to the start position of the second level SCI;
  • the RE at the starting position is configured with the first second-level SCI symbol; on the same OFDM symbol as the first second-level SCI symbol, according to the order of the subcarriers of the DMRS symbol from large to small, or from
  • the second-level SCI symbols are arranged in the order of small to large; another RE adjacent to the RE of the DMRS symbol and the same subcarrier is determined, and on the same OFDM symbol as the other RE, according to
  • the subcarriers of the DMRS symbols are arranged in descending order or descending order, and the second-level SCI symbols are arranged in sequence.
  • the multiple sub-carriers of the RE of the DMRS symbol have spaced sub-carriers between them; according to the starting position, configuring the second-level SCI includes: determining a start position corresponding to the start position of the second-level SCI Adjacent to the RE of the DMRS symbol; the RE at the start position of the second-level SCI, configure the first second-level SCI symbol; in the same place the same as the first second-level SCI symbol On the sub-carrier, determine another RE adjacent to the RE of the DMRS symbol and the same sub-carrier, and configure the second second-level SCI symbol; follow the order of the sub-carrier from large to small or from small to large , Configuring the second-level SCI symbols, where, when the DMRS symbol exists on the subcarrier to be configured, two second-level REs are sequentially configured on the two REs adjacent to the RE of the DMRS symbol SCI symbols, when there are no DMRS symbols on the subcarriers to be configured, three second-level
  • the multiple sub-carriers of the RE of the DMRS symbol have spaced sub-carriers between them; according to the starting position, configuring the second-level SCI includes: determining a start position corresponding to the second-level SCI The adjacent RE of the DMRS symbol; the RE at the start position of the second-level SCI, configure the first second-level SCI symbol; on the same OFDM symbol as the first second-level SCI symbol , According to the order of the sub-carriers of the DMRS symbol from large to small or from small to large, the second-level SCI symbols are arranged in sequence; on the same OFDM symbol as the DMRS symbol, according to the sub-carrier priority In the smallest order or in the smallest to largest order, the second-level SCI symbols are configured in the REs of the spaced subcarriers; another RE adjacent to the RE of the DMRS symbol and the same subcarrier is determined, and On the same OFDM symbol as the other RE, the second-level SCI symbols are sequentially configured according to
  • the multiple sub-carriers of the RE of the DMRS symbol have spaced sub-carriers between them; according to the starting position, configuring the second-level SCI includes: determining a start position corresponding to the start position of the second-level SCI The adjacent RE of the DMRS symbol; on the same OFDM symbol as the DMRS symbol, in the order of the largest or smallest sub-carrier, the REs of the spaced sub-carriers are configured to Second-level SCI symbols; in the RE at the start position of the second-level SCI, configure the second-level SCI symbols; on the same OFDM symbol as the start position of the second-level SCI, according to the The sub-carriers of the DMRS symbols are arranged in descending order or descending order, and the second-level SCI symbols are arranged in sequence; another RE adjacent to the RE of the DMRS symbol and the same sub-carrier is determined, and the On the same OFDM symbol as the other RE, the second-level SCI symbols are sequentially configured according to
  • the location information is used to send all time-frequency resources of the second-level SCI; according to the location information, configuring the second-level SCI includes: Among all the time-frequency resources of the SCI, the originating position is determined; and the second-level SCI is configured according to the originating position.
  • the method for sending the second-level SCI further includes: sending indication information of the time-frequency resource of the second-level SCI.
  • the indication information is selected from: the start subcarrier of the second level SCI, and the time domain start position of the second level SCI; the indication information further includes: the second level SCI Frequency domain range; the time domain range of the second level SCI.
  • the location information is the start position of the time-frequency resource used to send the second-level SCI; the start position of the time-frequency resource of the second-level SCI is the same as that scheduled by the second-level SCI
  • the index number of the DMRS symbol of the PSSCH has a preset one-to-one correspondence; the indication information is an index number indicating the DMRS symbol.
  • an embodiment of the present invention provides a method for receiving a second-level SCI, which includes the following steps: receiving a second-level SCI; determining the location information of the time-frequency resource of the second-level SCI; Information, decode the second-level SCI.
  • the position information is the starting position of the time-frequency resource used to send the second-level SCI; according to the position information, decoding the second-level SCI includes: decoding according to the starting position The second level SCI.
  • the RE at the start position of the second-level SCI is adjacent to the RE of the DMRS symbol of the PSSCH scheduled by the second-level SCI and located in the same OFDM symbol; or, the start of the second-level SCI
  • the RE at the start position is adjacent to the RE of the DMRS symbol of the PSSCH scheduled by the second-level SCI and is located on the same subcarrier.
  • decoding the second-level SCI includes: determining REs of the DMRS symbols adjacent to the start position of the second-level SCI; The RE at the start position determines the first second-level SCI symbol; on the same subcarrier that is the same as the first second-level SCI symbol, determines the RE adjacent to the DMRS symbol and the subcarrier The same other RE, and determine the second second-level SCI symbol; in accordance with the order of the subcarriers of the DMRS symbol from largest to smallest or from smallest to largest, the RE adjacent to the RE of the DMRS symbol On the two REs, two second-level SCI symbols are determined in sequence; the determined second-level SCI symbols are decoded.
  • decoding the second-level SCI includes: determining REs of the DMRS symbols adjacent to the start position of the second-level SCI; The RE at the start position determines the first second-level SCI symbol; on the same OFDM symbol as the first second-level SCI symbol, in accordance with the order of the subcarriers of the DMRS symbol from large to small or from The second-level SCI symbols are determined in sequence from small to large; another RE adjacent to the RE of the DMRS symbol and the same subcarrier is determined, and on the same OFDM symbol as the other RE, according to The subcarriers of the DMRS symbols are determined in descending order or descending order, and the second-level SCI symbols are sequentially determined; and the determined second-level SCI symbols are decoded.
  • determining the second-level SCI includes: determining a start position corresponding to the second-level SCI Adjacent to the RE of the DMRS symbol; the RE at the start position of the second-level SCI determines the first second-level SCI symbol; in the same place the same as the first second-level SCI symbol On the sub-carrier, determine another RE adjacent to the RE of the DMRS symbol and the same sub-carrier, and determine the second second-level SCI symbol; follow the order of the sub-carrier from large to small or small to large , Determining the second-level SCI symbol, wherein when the DMRS symbol exists on the subcarrier to be determined, two second-level REs are determined in sequence on two REs adjacent to the RE of the DMRS symbol For the SCI symbol, when there is no DMRS symbol on the subcarrier to be determined, three second-level SCI symbols are
  • the multiple sub-carriers of the RE of the DMRS symbol have spaced sub-carriers between them; according to the starting position, determining the second-level SCI includes: determining a start position corresponding to the second-level SCI The RE of the adjacent DMRS symbol; the RE at the start position of the second-level SCI, determine the first second-level SCI symbol; on the same OFDM symbol as the first second-level SCI symbol , According to the order of the sub-carriers of the DMRS symbol from large to small or from small to large, the second-level SCI symbols are determined in sequence; on the same OFDM symbol as the DMRS symbol, according to the sub-carrier priority In the smallest order or in the smallest to largest order, determine the second-level SCI symbol at the REs of the spaced subcarriers; determine another RE that is adjacent to the RE of the DMRS symbol and has the same subcarrier, and On the same OFDM symbol as the other RE, the second-level SCI symbols are determined in sequence according to
  • the multiple sub-carriers of the RE of the DMRS symbol have spaced sub-carriers between them; according to the starting position, determining the second-level SCI includes: determining a start position corresponding to the second-level SCI The RE of the adjacent DMRS symbol; on the same OFDM symbol as the DMRS symbol, in accordance with the order of subcarriers from large to small or small to large, the REs of the spaced subcarriers are determined The second-level SCI symbol; the RE at the start position of the second-level SCI determines the second-level SCI symbol; on the same OFDM symbol as the start position of the second-level SCI, according to the The sub-carriers of the DMRS symbol are determined in descending order or descending order, and the second-level SCI symbols are determined in sequence; another RE adjacent to the RE of the DMRS symbol and the same sub-carrier is determined, and the On the same OFDM symbol as the other RE, the second-level SCI symbols are sequentially determined according to the order
  • the location information is used to send all time-frequency resources of the second-level SCI; according to the location information, decoding the second-level SCI includes: Among all the time-frequency resources of the SCI, the originating position is determined; according to the originating position, the second-level SCI is decoded.
  • determining the start position of the time-frequency resource of the second-level SCI includes: receiving indication information of the time-frequency resource of the second-level SCI.
  • the indication information is selected from: the start subcarrier of the second level SCI, and the time domain start position of the second level SCI; the indication information further includes: the second level SCI Frequency domain range; the time domain range of the second level SCI.
  • the location information is the start position of the time-frequency resource used to send the second-level SCI; the start position of the time-frequency resource of the second-level SCI is the same as that scheduled by the second-level SCI
  • the index number of the DMRS symbol of the PSSCH has a preset one-to-one correspondence; the indication information is an index number indicating the DMRS symbol.
  • an embodiment of the present invention provides an apparatus for sending a second-level SCI, including: a first location determining module, adapted to determine location information of time-frequency resources used to send the second-level SCI; configuration The module is adapted to configure the second-level SCI according to the location information; the sending module is adapted to send the second-level SCI.
  • an embodiment of the present invention provides a method for receiving a second-level SCI, which is characterized in that it includes: a receiving module adapted to receive the second-level SCI; and a second position determining module adapted to determine the second-level SCI Position information of the time-frequency resources of the second-level SCI; a decoding module adapted to decode the second-level SCI according to the position information.
  • an embodiment of the present invention provides a storage medium on which computer instructions are stored, and the computer instructions execute the steps of the method for sending the second-level SCI when running, or execute the above-mentioned receiving second-level method.
  • the steps of the SCI method are stored, and the computer instructions execute the steps of the method for sending the second-level SCI when running, or execute the above-mentioned receiving second-level method. The steps of the SCI method.
  • an embodiment of the present invention provides a sending UE, including a memory and a processor, the memory stores computer instructions that can run on the processor, and when the processor runs the computer instructions Perform the steps of the method for sending the second-level SCI described above.
  • an embodiment of the present invention provides a receiving UE, including a memory and a processor, the memory stores computer instructions that can run on the processor, and when the processor runs the computer instructions Perform the steps of the method for receiving the second-level SCI described above.
  • the present invention by first determining the location information of the time-frequency resource used to transmit the second-level SCI, and then configuring the second-level SCI, it is possible to realize the transmission and reception between the sending UE and the receiving UE.
  • the second level SCI is described.
  • the RE at the start position of the second-level SCI and the RE of the DMRS symbol of the PSSCH scheduled by the second-level SCI adjacent to and located in the same OFDM symbol, or the start of the second-level SCI
  • the RE at the start position is adjacent to the RE of the DMRS symbol of the PSSCH scheduled by the second-level SCI and is located on the same subcarrier, and the second-level SCI can be mapped around the DMRS of the PSSCH, thereby improving the channel estimation of the second-level SCI Accuracy helps to improve decoding accuracy and reduce bit error rate.
  • the time-frequency resource of the second-level SCI may be indicated to the receiving UE by a direct indication method, thereby improving the accuracy and comprehensiveness of the indication information.
  • the time-frequency resource of the second-level SCI may be indicated to the receiving UE through an indirect indication method, thereby reducing signaling overhead.
  • Fig. 1 is a flowchart of a method for sending a second-level SCI in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the position configuration of a second-stage SCI in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the first position configuration sequence of the second level SCI in FIG. 2;
  • FIG. 4 is a schematic diagram of the second position configuration sequence of the second level SCI in FIG. 2;
  • FIG. 5 is a schematic diagram of the position configuration of another second-stage SCI in an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the first positional arrangement sequence of the second level SCI in Fig. 5;
  • FIG. 7 is a schematic diagram of the second position configuration sequence of the second level SCI in FIG. 5;
  • FIG. 8 is a schematic diagram of the third position configuration sequence of the second level SCI in FIG. 5;
  • FIG. 9 is a schematic diagram of the fourth position configuration sequence of the second level SCI in FIG. 5;
  • FIG. 10 is a schematic diagram of the position configuration of yet another second-level SCI in an embodiment of the present invention.
  • Figure 11 is a flowchart of a method for receiving a second-level SCI in an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a device for transmitting a second-level SCI in an embodiment of the present invention.
  • Fig. 13 is a schematic structural diagram of an apparatus for receiving a second-level SCI in an embodiment of the present invention.
  • V2X its control information and data can be transmitted through the bypass, and the transmission resource is selected according to the bypass control information SCI.
  • the existing NR V2X there are no rules for receiving and sending time-frequency resources of the second-level SCI.
  • the sending and receiving between the sending UE and the receiving UE can be realized.
  • the second level SCI by first determining the start position of the time-frequency resource used to send the second-level SCI, and then configuring the second-level SCI, the sending and receiving between the sending UE and the receiving UE can be realized.
  • the second level SCI by first determining the start position of the time-frequency resource used to send the second-level SCI, and then configuring the second-level SCI.
  • Fig. 1 is a flowchart of a method for sending a second-level SCI in an embodiment of the present invention.
  • the method for sending the second-level SCI may include step S11 to step S13:
  • Step S11 Determine the location information of the time-frequency resource used to send the second-level SCI
  • Step S12 Configure the second level SCI according to the location information
  • Step S13 Send the second level SCI.
  • step S11 the principle of mapping the second-level SCI around the demodulation reference signal (DMRS) of the PSSCH as much as possible can be followed, thereby helping to improve the performance of the second-level SCI.
  • the second-level SCI can be mapped in the time-frequency resource range where the PSSCH is located.
  • the location information is the starting location of the time-frequency resource used to send the second-level SCI; according to the location information, configuring the second-level SCI includes: configuring all the time-frequency resources according to the starting location.
  • the second level SCI is described.
  • the RE at the start position of the second-level SCI can be set to be adjacent to the RE of the DMRS symbol of the PSSCH scheduled by the second-level SCI and located in the same OFDM symbol; or, the second-level SCI
  • the RE at the start position of is adjacent to the RE of the DMRS symbol of the PSSCH scheduled by the second-level SCI and is located on the same subcarrier.
  • the RE at the start position indicates the RE mapped first when the second-level SCI is mapped to the time-frequency resource.
  • the second-level SCI can be mapped around the DMRS of the PSSCH, thereby improving the channel estimation accuracy of the second-level SCI, helping to improve decoding accuracy, and reducing error codes. rate.
  • the location information is used to send all time-frequency resources of the second-level SCI; according to the location information, configuring the second-level SCI includes: Among all the time-frequency resources used to transmit the second-level SCI, an originating position is determined, and the second-level SCI is configured according to the originating position.
  • all time-frequency resources may be, for example, time-frequency resource blocks configured in advance.
  • all time-frequency resources of 100 REs are configured in advance.
  • the way of configuring the SCI through the starting position may be consistent with the way of configuring the SCI through the starting position in the embodiment of the present invention.
  • time-frequency resources may be indicated by high-level signaling (such as RRC signaling).
  • supplementary bits such as "0" may be configured in all time-frequency resources to fill REs other than the second-level SCI.
  • the position of the supplementary bit may be unlimited, and may be at the start position of all the time-frequency resources, may also be at the middle position, or at the end position.
  • the starting position may be located at the starting position of all the time-frequency resources, and may also be located at the middle position after the supplementary bit.
  • FIG. 2 is a schematic diagram of the position configuration of a second-stage SCI in an embodiment of the present invention.
  • demodulation reference signal configuration type 1 (Demodulation reference signal configuration type 1, DMRS configuration type 1) is used as an example for description, and DMRS configuration type 2 can be obtained in the same way, and will not be repeated.
  • the second-level SCI symbol refers to a symbol obtained by encoding and modulating the second-level SCI information, which may be a BPSK symbol, a QPSK symbol, a 16QAM symbol or other modulation symbols.
  • antenna port (antenna port) 0/1 is mapped to a resource element (Resource Element, RE), antenna port 2/3 is mapped to an RE, we assume that a UE is allocated antenna port 2 /3 for transmission, at this time antenna port 0/1 can be used for second-level SCI transmission, or it may not be used for second-level SCI transmission (which can also be subdivided into these antenna ports.
  • Can the 0/1 RE be PSSCH for transmission ).
  • the embodiment of the present invention is also applicable to the case of other antenna ports.
  • DMRS can allocate antenna ports 0, 1, 2, 3, 0/1, 0/2, 0/3, 1/2, 1/3, etc., no more details
  • the frequency domain of the PSSCH is only one resource block (Resource Board, RB) as an example, and it can also be inferred that the frequency domain of the PSSCH is the number of other RBs, which will not be repeated here.
  • the second-level SCI can be mapped on both sides of the DMRS or on the symbol (Symbol) where the DMRS is located.
  • the symbol may be a CP-OFDM symbol or an SC-FDMA symbol or a DFT-s-OFDM symbol or an OFDM symbol.
  • the order of mapping can be first to map around a DMRS symbol, and then to another DMRS symbol. For example, it can be one or two symbols adjacent to the DMRS symbol, or when the DMRS symbol is not used for DMRS transmission. Frequency resources.
  • the DMRS symbol may refer to a CP-OFDM symbol or SC-FDMA symbol or DFT-s-OFDM symbol or OFDM symbol containing DMRS.
  • the REs around one DMRS symbol are not enough to put down all the second-level SCIs, they can also be mapped to the next DMRS symbol in sequence.
  • the unused RE with the symbol of the DMRS can also be used for the second-level SCI transmission in principle.
  • the SCI can be used to indicate whether there is a second-level SCI transmission on the specific DMRS symbol.
  • the base station can use high-layer signaling or DCI to indicate whether REs on the symbol where the DMRS is located that are not used to transmit DMRS can be used for the transmission of the second-level SCI; or, the base station can use high-layer signaling or DCI to indicate the symbol where the DMRS is located. Whether the REs that are not used to transmit DMRS can be used for PSSCH transmission; or, the base station can indicate through high-layer signaling or DCI whether REs that are not used to transmit DMRS on the symbol where the DMRS is located can be used for PSSCH and second-level SCI transmission.
  • the side-chain sending UE may use high-layer signaling or DCI to indicate whether the REs on the symbol where the DMRS is not used to transmit DMRS can be used for the second-level SCI transmission; or, the side-chain sending UE may use high-layer signaling Or DCI to indicate whether REs that are not used to transmit DMRS on the symbol where the DMRS is located can be used for PSSCH transmission; or, the side-chain sending UE can use high-layer signaling or DCI to indicate whether REs that are not used to transmit DMRS on the symbol where the DMRS is located can be used For PSSCH and second-level SCI transmission.
  • these REs can be used for second-level SCI and or PSSCH transmission.
  • step S12 the step of configuring the second-level SCI can be implemented in a variety of configurations according to the starting position.
  • FIG. 3 is a schematic diagram of the first position configuration sequence of the second stage SCI in FIG. 2.
  • the step of configuring the second level SCI may include: determining RE 31 of the DMRS symbol adjacent to the start position of the second level SCI;
  • the RE 32 at the start position of the first-level SCI is configured with the first second-level SCI symbol; on the same subcarrier as the first second-level SCI symbol, it is determined to be the same as the RE of the DMRS symbol.
  • two second-level SCI symbols are arranged in sequence.
  • the second second-level SCI symbol RE32 is arranged on the left side of the time domain of RE31, and RE33 is arranged on the right side of the time domain of RE31.
  • the second second-level SCI symbol is arranged on the right side of the time domain of RE31, that is, it is determined according to the order of the symbols from large to small, which is not limited in the embodiment of the present invention.
  • the RE31 may be the RE with the largest or smallest subcarrier sequence number on the DMRS symbol, or the RE with the largest or smallest subcarrier sequence number within the overlap range of the time-frequency resource area of the DMRS and the second-level SCI, or Indicate the DMRS symbol corresponding to the sub-carrier sequence number through SCI or high-level signaling.
  • the second-level SCI symbols can be arranged in each horizontal direction (time domain) in sequence until the second-level SCI symbol configuration is completed, or until the current two columns are filled. Then, it can be mapped to subsequent DMRS symbols until the second level of SCI symbol configuration is completed.
  • mapping the second-level SCI around the DMRS of the PSSCH it helps to improve the channel estimation accuracy of the second-level SCI, thereby improving the decoding accuracy and reducing the bit error rate.
  • the two REs adjacent to the RE of the DMRS symbol can still be used in sequence.
  • Two second-level SCI symbols are configured, that is, there are no second-level SCI symbols on the spaced subcarriers.
  • FIG. 4 is a schematic diagram of the second position configuration sequence of the second level SCI in FIG. 2.
  • the second-level SCI symbols are sequentially configured according to the order of the subcarriers of the DMRS symbol from large to small or from small to large ;
  • the second-level SCI symbols can be configured in each longitudinal direction (frequency domain) in turn until the second-level SCI symbol configuration is completed, or until the current two columns are filled. Then, it can be mapped to subsequent DMRS symbols until the second level of SCI symbol configuration is completed.
  • the step of determining another RE adjacent to the RE of the DMRS symbol and the same subcarrier may be based on the symbol
  • the order from small to large is determined, and it can also be determined according to the order of symbols from large to small.
  • mapping the second-level SCI around the DMRS of the PSSCH helps to improve the channel estimation accuracy of the second-level SCI, thereby improving the decoding accuracy and reducing the bit error rate.
  • the RE41 may be the RE with the largest or smallest subcarrier sequence number on the DMRS symbol, or the RE with the largest or smallest subcarrier sequence number within the overlap range of the time-frequency resource area of the DMRS and the second-level SCI, or Indicate the DMRS symbol corresponding to the sub-carrier sequence number through SCI or high-level signaling
  • step S12 another position configuration of the second-level SCI can also be used.
  • FIG. 5 is a schematic diagram of the position configuration of another second-stage SCI in an embodiment of the present invention.
  • the second level can be configured on the REs. SCI. Specifically, the multiple subcarriers of the REs of the DMRS symbol have spaced subcarriers between them. In the process of configuring the second type of SCI, the second level of SCI may be configured on the REs of the spaced subcarriers.
  • the second-level SCI may be mapped on both sides of the DMRS or on the symbol where the DMRS is located, and the sequence of mapping may be first to map around one DMRS symbol, and then to map around another DMRS symbol.
  • the REs around one DMRS symbol are not enough to put down all the second-level SCIs, they can also be mapped to the next DMRS symbol in sequence. For example, the symbol on the left of the first DMRS symbol can be mapped first, then the symbol on the right of the first DMRS symbol, then the symbol on the left of the second DMRS symbol, and then the symbol on the right of the second DMRS symbol. Symbols, and so on, until all the second-level SCI symbols are mapped.
  • the first DMRS symbol can be mapped to the RE that is not used for DMRS transmission, then the symbol to the left of the first DMRS symbol, and then the symbol to the right of the first DMRS symbol, and so on. Map around the second DMRS symbol until all the second-level SCI symbols are mapped.
  • the symbol on the left of the first DMRS symbol can be mapped first, then on the RE that is not used for DMRS transmission on the first DMRS symbol, and then mapped on the symbol on the right of the first DMRS symbol, and so on. Map around the second DMRS symbol until all the second-level SCI symbols are mapped.
  • the second-level SCI by configuring the second-level SCI on the REs of the spaced subcarriers, not only can the second-level SCI be mapped around the DMRS of the PSSCH, but also the DMRS closer to the DMRS can be fully utilized. Space the sub-carriers, thereby helping to further improve the channel estimation accuracy of the second-stage SCI, thereby further improving the decoding accuracy and reducing the bit error rate.
  • FIG. 6 is a schematic diagram of the first position configuration sequence of the second stage SCI in FIG. 5.
  • the step of configuring the second-level SCI may include: determining RE 61 of the DMRS symbol adjacent to the starting position of the second-level SCI;
  • the RE 62 at the start position of the first-level SCI is configured with the first second-level SCI symbol; on the same subcarrier as the first second-level SCI symbol, it is determined that the RE is the same as the RE of the DMRS symbol.
  • the second-level SCI symbols can be configured in each horizontal direction (time domain) in turn. Since there is no such DMRS on the spaced subcarriers, three second-level SCI symbols can be configured until Complete the second-level SCI symbol configuration, or until the current two columns are filled. Then, it can be mapped to subsequent DMRS symbols until the second level of SCI symbol configuration is completed.
  • Level SCI can make full use of the spaced sub-carriers closer to the DMRS, thereby further improving the decoding accuracy and reducing the bit error rate.
  • the RE 61 may be the RE with the largest or smallest subcarrier sequence number on the DMRS symbol, or the RE with the largest or smallest subcarrier sequence number within the range where the DMRS and the second-level SCI time-frequency resource area overlap, or It indicates the DMRS symbol corresponding to the sub-carrier sequence number through SCI or high-level signaling.
  • FIG. 7 is a schematic diagram of the second position configuration sequence of the second stage SCI in FIG. 5.
  • the step of configuring the second level SCI includes: determining RE 71 of the DMRS symbol adjacent to the start position of the second level SCI;
  • the RE 72 at the starting position of the SCI is configured with the first second-level SCI symbol; on the same OFDM symbol as the first second-level SCI symbol, the subcarrier of the DMRS symbol is from large to small
  • the second-level SCI symbols are arranged in sequence or from small to large; on the same OFDM symbol as the DMRS symbol, in accordance with the sub-carrier sequence from large to small or small to large,
  • the REs of the spaced subcarriers are configured with the second-level SCI symbols; another RE adjacent to the RE of the DMRS symbol and the same subcarrier is determined, and on the same OFDM as the other RE, according to the The sub-carriers of the DMRS symbols are arranged in a descending order or descending order, and the second-level SCI symbols are arranged in sequence.
  • the second-level SCI symbols can be configured in each longitudinal direction (frequency domain) in turn. Since there is no such DMRS on the spaced subcarriers, the second-level SCI symbols can be configured until the completion of the first Level 2 SCI symbol configuration, or until the current two columns are filled. Then, it can be mapped to subsequent DMRS symbols until the second level of SCI symbol configuration is completed.
  • Level SCI can make full use of the spaced sub-carriers closer to the DMRS, thereby further improving the decoding accuracy and reducing the bit error rate.
  • the RE71 may be the RE with the largest or smallest subcarrier sequence number on the DMRS symbol, or the RE with the largest or smallest subcarrier sequence number within the overlap range of the time-frequency resource area of the DMRS and the second-level SCI, or Indicate the DMRS symbol corresponding to the sub-carrier sequence number through SCI or high-level signaling.
  • FIG. 8 is a schematic diagram of the third position configuration sequence of the second-level SCI in FIG. 5;
  • FIG. 9 is a schematic diagram of the fourth position configuration sequence of the second-level SCI in FIG. 5.
  • configuring the second-level SCI according to the start position includes: determining the RE of the DMRS symbol 80 (90) adjacent to the start position of the second-level SCI; On OFDM symbols with the same symbol, the second-level SCI symbols are configured in the REs of the spaced sub-carriers in the order of subcarriers from large to small or from small to large; The RE 81 (91) at the start position configures the second-level SCI symbol; on the same OFDM symbol as the start position of the second-level SCI, the subcarrier of the DMRS symbol is from large to small In order or from small to large, the second-level SCI symbols are arranged in sequence; another RE that is adjacent to the RE of the DMRS symbol 80 (90) and has the same subcarrier is determined, and is connected to the other RE. On the same OFDM symbol, the second-level SCI symbols are sequentially configured according to the order of the subcarriers of the DMRS symbol from large to small or from small to large.
  • the second-level SCI symbols can be configured in each longitudinal direction (frequency domain) in turn. Since there is no such DMRS on the spaced subcarriers, the second-level SCI symbols can be configured. Until the second level of SCI symbol configuration is completed, or until the current two columns are filled. Then, it can be mapped to subsequent DMRS symbols until the second level of SCI symbol configuration is completed.
  • Level SCI can make full use of the spaced sub-carriers closer to the DMRS, thereby further improving the decoding accuracy and reducing the bit error rate.
  • the RE80 (90) may be the RE with the largest or smallest subcarrier sequence number on the DMRS symbol, or the RE with the largest or smallest subcarrier sequence number within the range where the DMRS and the second-level SCI time-frequency resource area overlap. , Or indicate the DMRS symbol corresponding to the sub-carrier sequence number through SCI or high-level signaling.
  • FIG. 10 is a schematic diagram of the position configuration of yet another second-stage SCI in an embodiment of the present invention.
  • the second-level SCI is configured only on the RE closest to the DMRS symbol (adjacent REs in the up, down, left, and right directions as shown in FIG. 10).
  • the sending UE may send the second-level SCI to the receiving UE.
  • the sending and receiving between the sending UE and the receiving UE can be realized.
  • the second level SCI by first determining the start position of the time-frequency resource used to send the second-level SCI, and then configuring the second-level SCI, the sending and receiving between the sending UE and the receiving UE can be realized.
  • the second level SCI by first determining the start position of the time-frequency resource used to send the second-level SCI, and then configuring the second-level SCI.
  • the method for sending the second-level SCI may further include: sending indication information of the time-frequency resource of the second-level SCI.
  • the indication information may be selected from: the start subcarrier of the second level SCI, and the time domain start position of the second level SCI.
  • RE is used as the minimum unit as described above, however, other units can be selected to replace RE according to specific conditions, for example, RB is used.
  • the granularity of the start position of the SCI time domain may be a symbol.
  • the time-frequency resource of the second-level SCI may be indicated to the receiving UE by a direct indication method.
  • the indication information may further include: the frequency domain range of the second level SCI; and the time domain range of the second level SCI.
  • the frequency domain range of the second-level SCI may be the size of the second-level SCI frequency domain, and the granularity may be RB or RE.
  • the time domain range of the second level SCI may be the second level SCI time domain span, and the granularity is a symbol.
  • the direct indication method is used to indicate the time-frequency resources of the second-level SCI to the receiving UE, which can improve the accuracy and comprehensiveness of the indication information.
  • the time-frequency resource of the second-level SCI may be indicated to the receiving UE through an indirect indication method.
  • the location information is the starting location of the time-frequency resource of the second-level SCI or the time-domain and or frequency-domain resource location information of the time-frequency resource of the second-level SCI; the location information is the same as
  • the index number (index) of the DMRS symbol of the PSSCH scheduled by the second-level SCI has a preset one-to-one correspondence; the indication information may be an index number indicating the DMRS symbol.
  • the UE can determine the position of the time-frequency resource of the second-level SCI or the start position of the time-frequency resource of the second-level SCI according to the index number indication information of the DMRS symbol.
  • mapping rule when the mapping rule is determined (for example, through a protocol or other appropriate predefined method), and when the number of DMRS in a time slot is determined, it can be achieved by indicating the index of the DMRS symbol Indirect indication of the position of the second level SCI can save the indication bits of the first level SCI.
  • the second-level SCI can be specified in a predefined manner to appear on the adjacent symbol of the DMRS symbol closest to the first-level SCI and on the DMRS symbol that is not used for DMRS transmission, or if the second-level SCI
  • the first level SCI is a form of frequency-division multiplexing (Frequency-division multiplexing, FDM), which can appear in a relatively fixed frequency domain position with the first level SCI.
  • FDM frequency-division multiplexing
  • the starting position of the second-level SCI appears at a position that is P RBs or REs in the frequency domain span from the first-level SCI and Q symbols or slots in the time domain span.
  • the reference point of the first-level SCI can be the largest RE or RB sequence number in the control information area where the first-level SCI is located, or the smallest RE or RB sequence number in the control information area where the first-level SCI is located, or the first-level SCI location
  • the largest symbol or slot serial number of the control information area, or the smallest symbol or slot serial number of the control information area where the first-level SCI is located, or the largest RE or RB serial number of the control information area where the first-level SCI is located, and the control where the first-level SCI is located The largest symbol or slot serial number of the information area, or the largest RE or RB serial number in the control information area where the first-level SCI is located, and the smallest symbol or slot serial number in the control information area where the first-level SCI is located,
  • N can be 1, 2, 3 or other positive integers; N can be configured through high-level signaling (such as RRC) or indicated by dynamic signaling (such as DCI or SCI) or determined in a predefined manner.
  • N can be 1, 2, 3 or other positive integers; N can be configured through high-level signaling (such as RRC) or indicated by dynamic signaling (such as DCI or SCI) or determined in a predefined manner.
  • the second-level SCI can be specified in a predefined manner to appear on the adjacent symbol of the M-th DMRS symbol closest to the first-level SCI and or on the M-th DMRS symbol closest to the first-level SCI.
  • DMRS is transmitted on the RE.
  • M can be 1, 2, 3 or other positive integers; M can be configured through high-level signaling (such as RRC) or indicated by dynamic signaling (such as DCI or SCI) or determined in a predefined manner.
  • the second level SCI can be specified in a predefined manner to start on the adjacent symbol of the Mth DMRS symbol closest to the first level SCI and or on the Mth DMRS symbol closest to the first level SCI.
  • M Used on RE for DMRS transmission.
  • M can be 1, 2, 3 or other positive integers; M can be configured through high-level signaling (such as RRC) or indicated by dynamic signaling (such as DCI or SCI) or determined in a predefined manner.
  • the second-level SCI can be specified in a predefined manner to appear on the nearest PSSCH DMRS symbol after the last DMRS symbol of the first-level SCI and or after the last DMRS symbol of the first-level SCI Recently, a PSSCH DMRS symbol is not used on REs for DMRS transmission.
  • M can be 1, 2, 3 or other positive integers; M can be configured through high-level signaling (such as RRC) or indicated by dynamic signaling (such as DCI or SCI) or determined in a predefined manner.
  • the second-level SCI can be specified in a predefined manner to start on the nearest PSSCH DMRS symbol after the last DMRS symbol of the first-level SCI and or to the last DMRS symbol of the first-level SCI.
  • M can be 1, 2, 3 or other positive integers; M can be configured through high-level signaling (such as RRC) or indicated by dynamic signaling (such as DCI or SCI) or determined in a predefined manner.
  • the time-frequency resource of the second-level SCI can be indicated to the receiving UE through an indirect indication method, thereby reducing signaling overhead.
  • FIG. 11 is a flowchart of a method for receiving a second-level SCI in an embodiment of the present invention.
  • the method for receiving the second-level SCI may include step S101 to step S103:
  • Step S101 Receive the second level SCI
  • Step S102 Determine the location information of the time-frequency resource of the second-level SCI
  • Step S103 Decode the second level SCI according to the position information.
  • the position information is the start position of the time-frequency resource used to transmit the second level SCI; according to the position information, decoding the second level SCI includes: decoding the second level SCI according to the start position The second level SCI is described.
  • the RE at the start position of the second-level SCI is adjacent to the RE of the DMRS symbol of the PSSCH scheduled by the second-level SCI and is located in the same OFDM symbol; or, the start of the second-level SCI
  • the located RE is adjacent to the RE of the DMRS symbol of the PSSCH scheduled by the second-level SCI and is located on the same subcarrier.
  • decoding the second-level SCI includes: determining the RE of the DMRS symbol adjacent to the starting position of the second-level SCI; The RE at the start position determines the first second-level SCI symbol; on the same subcarrier that is the same as the first second-level SCI symbol, it is determined that the RE of the DMRS symbol is adjacent to and has the same subcarrier And determine the second second-level SCI symbol; according to the order of the subcarriers of the DMRS symbol from largest to smallest or from smallest to largest, the two adjacent REs of the DMRS symbol On each RE, two second-level SCI symbols are determined in sequence; the determined second-level SCI symbols are decoded.
  • decoding the second-level SCI includes: determining the RE of the DMRS symbol adjacent to the starting position of the second-level SCI; The RE at the start position determines the first second-level SCI symbol; on the same OFDM symbol as the first second-level SCI symbol, according to the order of the subcarriers of the DMRS symbol from large to small or small
  • the second-level SCI symbols are determined in sequence in the highest order; another RE adjacent to the RE of the DMRS symbol and the same subcarrier is determined, and on the same OFDM symbol as the other RE, according to the The sub-carriers of the DMRS symbols are determined in descending order or descending order, and the second-level SCI symbols are sequentially determined; and the determined second-level SCI symbols are decoded.
  • determining the second-level SCI includes: determining that it is adjacent to the starting position of the second-level SCI
  • On the carrier determine another RE that is adjacent to the RE of the DMRS symbol and have the same subcarrier, and determine the second second-level SCI symbol; in accordance with the order of subcarrier from large to small or small to large,
  • the second-level SCI symbol is determined, where, when the DMRS symbol exists on the subcarrier to be determined, two second-level SCIs are sequentially determined on two REs adjacent to the RE of the DMRS symbol Symbol, when there is no DMRS symbol on the subcarrier to be determined, three second-level SCI symbols are determined in sequence
  • determining the second-level SCI includes: determining that it is adjacent to the starting position of the second-level SCI
  • the second-level SCI symbols are determined in sequence according to the order of the sub-carriers of the DMRS symbol from large to small or small to large; on the same OFDM symbol as the DMRS symbol, according to the sub-carrier from large to large Determine the second-level SCI symbol in the REs of the spaced sub-carriers in the smallest order or in the descending order; determine another RE that is adjacent to the RE of the DMRS symbol and have the same sub-carrier, and On the same OFDM symbol as the other RE, the second-level SCI symbols are sequentially determined according to the
  • determining the second-level SCI includes: determining that it is adjacent to the starting position of the second-level SCI
  • the location information is used to send all the time-frequency resources of the second-level SCI; according to the location information, decoding the second-level SCI includes: Among all the time-frequency resources in, determine the originating position; according to the originating position, decode the second-level SCI.
  • determining the start position of the time-frequency resource of the second-level SCI includes: receiving indication information of the time-frequency resource of the second-level SCI.
  • the start indication information is selected from: the start subcarrier of the second level SCI, and the time domain start position of the second level SCI; the indication information further includes: the second level SCI The frequency domain range; the time domain range of the second-level SCI.
  • the location information is the start position of the time-frequency resource used to send the second-level SCI; the start position of the time-frequency resource of the second-level SCI and the PSSCH scheduled by the second-level SCI
  • the index numbers of the DMRS symbols have a preset one-to-one correspondence; the indication information is an index number indicating the DMRS symbols.
  • steps S101 to S103 please refer to the descriptions of steps S11 to S13 in FIG. 1 for execution, and will not be repeated here.
  • Fig. 12 is a schematic structural diagram of an apparatus for transmitting a second-level SCI in an embodiment of the present invention.
  • the device for sending the second-level SCI may include:
  • the first position determining module 111 is adapted to determine the position information of the time-frequency resource used to transmit the second-level SCI;
  • the configuration module 112 is adapted to configure the second level SCI according to the location information
  • the sending module 113 is adapted to send the second level SCI.
  • FIG. 13 is a schematic structural diagram of an apparatus for receiving a second-level SCI in an embodiment of the present invention.
  • the device for receiving the second-level SCI may include:
  • the receiving module 121 is adapted to receive the second-level SCI
  • the second position determining module 122 is adapted to determine the starting position of the time-frequency resource of the second level SCI;
  • the decoding module 123 is adapted to decode the second level SCI according to the starting position.
  • the embodiment of the present invention also provides a storage medium on which computer instructions are stored. When the computer instructions are executed, the steps of the method for sending the second level SCI or the steps of the method for receiving the second level SCI are executed.
  • the storage medium may be a computer-readable storage medium, for example, it may include non-volatile memory (non-volatile) or non-transitory (non-transitory) memory, and may also include optical disks, mechanical hard drives, solid state hard drives, and the like.
  • the embodiment of the present invention also provides a sending UE, including a memory and a processor, the memory stores a computer instruction that can run on the processor, and the processor executes the foregoing sending first when the computer instruction is executed. Steps of the secondary SCI method.
  • the sending UE includes, but is not limited to, terminal equipment such as a vehicle control system, a mobile phone, a computer, and a tablet computer.
  • An embodiment of the present invention also provides a receiving UE, including a memory and a processor, the memory stores computer instructions that can run on the processor, and the processor executes the above-mentioned receiving first when the computer instructions are executed. Steps of the secondary SCI method.
  • the receiving UE includes, but is not limited to, terminal equipment such as a vehicle control system, a mobile phone, a computer, and a tablet computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种发送及接收第二级SCI的方法及装置、存储介质、发送UE及接收UE,所述方法包括以下步骤:确定用于发送所述第二级SCI的时频资源的位置信息;根据所述位置信息,配置所述第二级SCI;发送所述第二级SCI。本发明方案可以实现在发送UE与接收UE之间收发所述第二级SCI。

Description

发送及接收第二级SCI的方法及装置、存储介质、发送UE及接收UE
本申请要求于2019年9月30日提交中国专利局、申请号为201910941108.3、发明名称为“发送及接收第二级SCI的方法及装置、存储介质、发送UE及接收UE”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种发送及接收第二级SCI的方法及装置、存储介质、发送UE及接收UE。
背景技术
在3GPP标准中,设备到设备之间的直接通信链路称为旁路(Sidelink),与上行链路和下行链路类似,旁路上也存在控制信道和数据信道,前者称为旁路控制信道(Physical Sidelink Control CHannel,PSCCH),后者称为旁路数据信道(Physical Sidelink Shared CHannel,PSSCH)。PSCCH用于指示PSSCH传输的时频域资源位置、调制编码方式和PSSCH中承载的数据的优先级等,PSSCH用于承载数据。
在车对外界通信(Vehicle to Vehicle/Pedestrian/Infrastructure/Network,V2X)中,其控制信息和数据可以通过旁路传输,并根据旁路控制信息(Sidelink control information,SCI)选择发送资源。
在现有的NR V2X中,2级SCI调度是一个正在讨论的热点。然而目前尚无关于第二级SCI的时频资源的收发规则。其中,PSSCH的调度信息可以存储于2级SCI调度中的第一级SCI和/或第二级SCI 中。第一级SCI可以承载PSSCH的频域资源指示信息、MCS指示信息、QoS指示信息等,第二级SCI可以承载PSSCH的时域资源指示信息、CSI请求指示信息等。
发明内容
本发明解决的技术问题是提供一种发送及接收第二级SCI的方法及装置、存储介质、发送UE及接收UE,可以实现在发送UE与接收UE之间收发所述第二级SCI。
为解决上述技术问题,本发明实施例提供一种发送第二级SCI的方法,其包括以下步骤:确定用于发送所述第二级SCI的时频资源的位置信息;根据所述位置信息,配置所述第二级SCI;发送所述第二级SCI。
可选的,所述位置信息为用于发送所述第二级SCI的时频资源的起始位置;根据所述位置信息,配置所述第二级SCI包括:根据所述起始位置,配置所述第二级SCI。
可选的,所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个OFDM符号;或者,所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个子载波。
可选的,根据所述起始位置,配置所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在所述第二级SCI的起始位置的RE,配置第一个第二级SCI符号;在同一个在与所述第一个第二级SCI符号相同的子载波上,确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并配置第二个第二级SCI符号;依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,在与所述DMRS符号的RE相邻的两个RE上,依次配置两个第二级SCI符号。
可选的,根据所述起始位置,配置所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在所述第二级SCI的起始位置的RE,配置第一个第二级SCI符号;在与所述第一个第二级SCI符号相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号;确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号。
可选的,所述DMRS符号的RE的多个子载波之间具有间隔子载波;根据所述起始位置,配置所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在所述第二级SCI的起始位置的RE,配置第一个第二级SCI符号;在同一个在与所述第一个第二级SCI符号相同的子载波上,确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并配置第二个第二级SCI符号;依照子载波自大至小的顺序或自小至大的顺序,配置所述第二级SCI符号,其中,当待配置的子载波上存在有所述DMRS符号时,在与所述DMRS符号的RE相邻的两个RE上,依次配置两个第二级SCI符号,当待配置的子载波上没有所述DMRS符号时,依次配置三个第二级SCI符号。
可选的,所述DMRS符号的RE的多个子载波之间具有间隔子载波;根据所述起始位置,配置所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在所述第二级SCI的起始位置的RE,配置第一个第二级SCI符号;在与所述第一个第二级SCI符号相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号;在与所述DMRS符号相同的OFDM符号上,依照子载波自大至小的顺序或自小至大的顺序,在所述间隔子载波的RE,配置所述第二级SCI符号;确定与所述DMRS符号的RE相邻且子载波相同的另一个 RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号。
可选的,所述DMRS符号的RE的多个子载波之间具有间隔子载波;根据所述起始位置,配置所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在与所述DMRS符号相同的OFDM符号上,依照子载波自大至小的顺序或自小至大的顺序,在所述间隔子载波的RE,配置所述第二级SCI符号;在所述第二级SCI的起始位置的RE,配置所述第二级SCI符号;在与所述第二级SCI的起始位置相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号;确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号。
可选的,所述位置信息是用于发送所述第二级SCI的所有时频资源;根据所述位置信息,配置所述第二级SCI包括:在所述用于发送所述第二级SCI的所有时频资源中,确定始发位置;根据所述始发位置,配置所述第二级SCI。
可选的,在发送所述第二级SCI之前,所述的发送第二级SCI的方法还包括:发送所述第二级SCI的时频资源的指示信息。
可选的,所述指示信息选自:所述第二级SCI的起始子载波、所述第二级SCI的时域起始位置;所述指示信息还包括:所述第二级SCI的频域范围;所述第二级SCI的时域范围。
可选的,所述位置信息为用于发送所述第二级SCI的时频资源的起始位置;所述第二级SCI的时频资源的起始位置与所述第二级SCI调度的PSSCH的DMRS符号的索引号具有预设的一一对应关系;所述指示信息为指示所述DMRS符号的索引号。
为解决上述技术问题,本发明实施例提供一种接收第二级SCI的方法,包括以下步骤:接收第二级SCI;确定所述第二级SCI的时频资源的位置信息;根据所述位置信息,解码所述第二级SCI。
可选的,所述位置信息为用于发送所述第二级SCI的时频资源的起始位置;根据所述位置信息,解码所述第二级SCI包括:根据所述起始位置,解码所述第二级SCI。
可选的,所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个OFDM符号;或者,所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个子载波。
可选的,根据所述起始位置,解码所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在所述第二级SCI的起始位置的RE,确定第一个第二级SCI符号;在同一个在与所述第一个第二级SCI符号相同的子载波上,确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并确定第二个第二级SCI符号;依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,在与所述DMRS符号的RE相邻的两个RE上,依次确定两个第二级SCI符号;对确定的第二级SCI符号进行解码。
可选的,根据所述起始位置,解码所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在所述第二级SCI的起始位置的RE,确定第一个第二级SCI符号;在与所述第一个第二级SCI符号相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;对确定的第二级SCI符号进行解码。
可选的,所述DMRS符号的RE的多个子载波之间具有间隔子载 波;根据所述起始位置,确定所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在所述第二级SCI的起始位置的RE,确定第一个第二级SCI符号;在同一个在与所述第一个第二级SCI符号相同的子载波上,确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并确定第二个第二级SCI符号;依照子载波自大至小的顺序或自小至大的顺序,确定所述第二级SCI符号,其中,当待确定的子载波上存在有所述DMRS符号时,在与所述DMRS符号的RE相邻的两个RE上,依次确定两个第二级SCI符号,当待确定的子载波上没有所述DMRS符号时,依次确定三个第二级SCI符号;对确定的第二级SCI符号进行解码。
可选的,所述DMRS符号的RE的多个子载波之间具有间隔子载波;根据所述起始位置,确定所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在所述第二级SCI的起始位置的RE,确定第一个第二级SCI符号;在与所述第一个第二级SCI符号相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;在与所述DMRS符号相同的OFDM符号上,依照子载波自大至小的顺序或自小至大的顺序,在所述间隔子载波的RE,确定所述第二级SCI符号;确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;对确定的第二级SCI符号进行解码。
可选的,所述DMRS符号的RE的多个子载波之间具有间隔子载波;根据所述起始位置,确定所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在与所述DMRS符号相同的OFDM符号上,依照子载波自大至小的顺序或自小至大的顺序,在所述间隔子载波的RE,确定所述第二级SCI符号;在所述第二级SCI的起始位置的RE,确定所述第二级SCI符号;在与所述第二级SCI的起始位置相同的OFDM符号上,依照所述DMRS符 号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;对确定的第二级SCI符号进行解码。
可选的,所述位置信息是用于发送所述第二级SCI的所有时频资源;根据所述位置信息,解码所述第二级SCI包括:在所述用于发送所述第二级SCI的所有时频资源中,确定始发位置;根据所述始发位置,解码所述第二级SCI。
可选的,确定所述第二级SCI的时频资源的起始位置包括:接收所述第二级SCI的时频资源的指示信息。
可选的,所述指示信息选自:所述第二级SCI的起始子载波、所述第二级SCI的时域起始位置;所述指示信息还包括:所述第二级SCI的频域范围;所述第二级SCI的时域范围。
可选的,所述位置信息为用于发送所述第二级SCI的时频资源的起始位置;所述第二级SCI的时频资源的起始位置与所述第二级SCI调度的PSSCH的DMRS符号的索引号具有预设的一一对应关系;所述指示信息为指示所述DMRS符号的索引号。
为解决上述技术问题,本发明实施例提供一种发送第二级SCI的装置,包括:第一位置确定模块,适于确定用于发送所述第二级SCI的时频资源的位置信息;配置模块,适于根据所述位置信息,配置所述第二级SCI;发送模块,适于发送所述第二级SCI。
为解决上述技术问题,本发明实施例提供一种接收第二级SCI的方法,其特征在于,包括:接收模块,适于接收第二级SCI;第二位置确定模块,适于确定所述第二级SCI的时频资源的位置信息;解码模块,适于根据所述位置信息,解码所述第二级SCI。
为解决上述技术问题,本发明实施例提供一种存储介质,其上存 储有计算机指令,所述计算机指令运行时执行上述的发送第二级SCI的方法的步骤,或者执行上述的接收第二级SCI的方法的步骤。
为解决上述技术问题,本发明实施例提供一种发送UE,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述的发送第二级SCI的方法的步骤。
为解决上述技术问题,本发明实施例提供一种接收UE,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述的接收第二级SCI的方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
在本发明实施例中,通过先确定用于发送所述第二级SCI的时频资源的位置信息,进而对所述第二级SCI进行配置,可以实现在发送UE与接收UE之间收发所述第二级SCI。
进一步,通过设置所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个OFDM符号,或者,所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个子载波,可以实现将第二级SCI映射在PSSCH的DMRS周围,从而提高第二级SCI的信道估计精度,有助于提高解码准确度,降低误码率。
进一步,在本发明实施例中,可以通过直接指示的方法,向接收UE指示第二级SCI的时频资源,从而提高指示信息的准确性和全面性。
进一步,在本发明实施例中,可以通过间接指示的方法,向接收UE指示第二级SCI的时频资源,从而降低信令开销。
附图说明
图1是本发明实施例中一种发送第二级SCI的方法的流程图;
图2是本发明实施例中一种第二级SCI的位置配置示意图;
图3是图2中第二级SCI的第一种位置配置顺序示意图;
图4是图2中第二级SCI的第二种位置配置顺序示意图;
图5是本发明实施例中另一种第二级SCI的位置配置示意图;
图6是图5中第二级SCI的第一种位置配置顺序示意图;
图7是图5中第二级SCI的第二种位置配置顺序示意图;
图8是图5中第二级SCI的第三种位置配置顺序示意图;
图9是图5中第二级SCI的第四种位置配置顺序示意图;
图10是本发明实施例中又一种第二级SCI的位置配置示意图;
图11是本发明实施例中一种接收第二级SCI的方法的流程图;
图12是本发明实施例中一种发送第二级SCI的装置的结构示意图;
图13是本发明实施例中一种接收第二级SCI的装置的结构示意图。
具体实施方式
如前所述,在V2X中,其控制信息和数据可以通过旁路传输,并根据旁路控制信息SCI选择发送资源。然而在现有的NR V2X中,尚无关于第二级SCI的时频资源的收发规则。
在本发明实施例中,通过先确定用于发送所述第二级SCI的时频资源的起始位置,进而对所述第二级SCI进行配置,可以实现在发送UE与接收UE之间收发所述第二级SCI。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
参照图1,图1是本发明实施例中一种发送第二级SCI的方法的流程图。所述发送第二级SCI的方法可以包括步骤S11至步骤S13:
步骤S11:确定用于发送所述第二级SCI的时频资源的位置信息;
步骤S12:根据所述位置信息,配置所述第二级SCI;
步骤S13:发送所述第二级SCI。
在步骤S11的具体实施中,可以遵循将第二级SCI尽可能映射在PSSCH的解调参考信号(Demodulation reference signal,DMRS)周围的原则,从而有助于提高第二级SCI的性能。其中,第二级SCI可以映射在PSSCH所在的时频资源范围内。
进一步地,所述位置信息为用于发送所述第二级SCI的时频资源的起始位置;根据所述位置信息,配置所述第二级SCI包括:根据所述起始位置,配置所述第二级SCI。
具体而言,可以设置所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个OFDM符号;或者,所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个子载波。其中,所述起始位置的RE表示的是第二级SCI向时频资源映射的时候第一个映射的RE。
在本发明实施例中,通过设置RE相邻关系,可以实现将第二级SCI映射在PSSCH的DMRS周围,从而提高第二级SCI的信道估计精度,有助于提高解码准确度,降低误码率。在本发明实施例的再一种具体实施方式中,所述位置信息是用于发送所述第二级SCI的所有时频资源;根据所述位置信息,配置所述第二级SCI包括:在所述用于发送所述第二级SCI的所有时频资源中,确定始发位置,根据所述始发位置,配置所述第二级SCI。
具体地,所有时频资源例如可以是提前配置的时频资源块,例如根据待配置的SCI为65个RE,提前配置100个RE的所有时频资源。
其中,在所有时频资源中,通过始发位置配置SCI的方式可以与本发明实施例中通过起始位置配置SCI的方式一致。
进一步地,所述时频资源可以采用高层信令(如RRC信令)进行指示。
在本发明实施例的一种具体应用中,可以在所有时频资源中配置补充比特位,例如“0”,以对除第二级SCI之外的RE进行填充。
其中,补充比特位的位置可以不受限,可以在所述所有时频资源的起始位置,还可以在中间位置,还可以在末尾位置。
进一步地,始发位置可以位于所述所有时频资源的起始位置,还可以位于补充比特位之后的中间位置。
参照图2,图2是本发明实施例中一种第二级SCI的位置配置示意图。
需要指出的是,在图2中,采用解调参考信号配置类型1(Demodulation reference signal configuration type 1,DMRS configuration type 1)为例进行说明,而DMRS configuration type 2同理可得,不再赘述。其中,第二级SCI符号指的是对第二级SCI信息经过编码调制后的符号,其可以是BPSK符号,QPSK符号,16QAM符号或者其他调制符号。
其中,在DMRS configuration type1中,天线端口(antenna port)0/1映射在一个资源元素(Resource Element,RE)上,antenna port 2/3映射在一个RE上,我们假设一个UE分配了antenna port 2/3来传输,此时antenna port 0/1可以用作第二级SCI传输,也可以不用做第二级SCI传输(其中还可以细分为这些antenna port 0/1的RE可否为PSSCH来传输)。需要指出的是,本发明的实施例也适用于其他天线端口时的情况,比如DMRS可以分配天线端口0,1,2,3,0/1,0/2,0/3, 1/2,1/3等,不再赘述。
需要指出的是,图2中仅以PSSCH的频域为1个资源块(Resource Board,RB)为例,还可以推知PSSCH的频域为其他RB数目的情形,此处不再赘述。
如图2所示,可以将第二级SCI映射在DMRS两侧或者DMRS所在符号(Symbol)上。其中,所述符号可以是CP-OFDM符号或者SC-FDMA符号或者DFT-s-OFDM符号或者OFDM符号。
映射的先后顺序可以是先映射一个DMRS符号周围,然后再映射到另一个DMRS符号周围,例如可以是与DMRS符号相邻的一个或者2个符号,或者是DMRS符号上未用于DMRS传输的时频资源。其中,所述DMRS符号可以指的是包含有DMRS的CP-OFDM符号或者SC-FDMA符号或者DFT-s-OFDM符号或者OFDM符号。
进一步地,如果一个DMRS符号周围的RE不足以放下所有的第二级SCI,还可以依次映射到下一个DMRS符号上。
可以理解的是,如果侧链(sidelink)没有多用户(Multi-User,MU)传输操作,则DMRS所在符号未被利用的RE原则上也是可以用于第二级SCI传输的。反之,如果支持MU操作的话,那么可以通过SCI来指示具体DMRS符号上是否有第二级SCI的传输。
作为一个例子,基站可以通过高层信令或者DCI来指示DMRS所在符号上未用于传输DMRS的RE可否用于第二级SCI的传输;或者,基站可以通过高层信令或者DCI来指示DMRS所在符号上未用于传输DMRS的RE可否用于PSSCH的传输;或者,基站可以通过高层信令或者DCI来指示DMRS所在符号上未用于传输DMRS的RE可否用于PSSCH和第二级SCI的传输。作为另一个例子,侧链发送UE可以通过高层信令或者DCI来指示DMRS所在符号上未用于传输DMRS的RE可否用于第二级SCI的传输;或者,侧链发送UE可以通过高层信令或者DCI来指示DMRS所在符号上未用于传输DMRS 的RE可否用于PSSCH的传输;或者,侧链发送UE可以通过高层信令或者DCI来指示DMRS所在符号上未用于传输DMRS的RE可否用于PSSCH和第二级SCI的传输。
作为另一个例子,只要DMRS所在符号上存在未用于传输DMRS的RE,那么这些所述RE就可以用于第二级SCI和或PSSCH的传输。
继续参照图1,在步骤S12的具体实施中,根据所述起始位置,配置所述第二级SCI的步骤可以采用多种配置方式实现。
参照图3,图3是图2中第二级SCI的第一种位置配置顺序示意图。
具体地,根据所述起始位置,配置所述第二级SCI的步骤可以包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE 31;在所述第二级SCI的起始位置的RE 32,配置第一个第二级SCI符号;在同一个在与所述第一个第二级SCI符号相同的子载波上,确定与所述DMRS符号的RE相邻且子载波相同的另一个RE 33,并配置第二个第二级SCI符号;依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,在与所述DMRS符号的RE相邻的两个RE上,依次配置两个第二级SCI符号。
需要指出的是,在图3中,所述第二个第二级SCI符号RE32配置在RE31的时域左侧,RE33配置在RE31的时域右侧,然而在具体实施中,还可以先将所述第二个第二级SCI符号配置于RE31的时域右侧,也即依照符号从大到小的顺序确定的,本发明实施例对此顺序不做限制。
需要指出的是,所述RE31可以是DMRS符号上子载波序号最大或者最小的RE,或者是在DMRS与第二级SCI的时频资源区域重叠的范围内子载波序号最大或者最小的RE,或者是通过SCI或者高层信令指示子载波序号所对应的DMRS符号。
由图3可知,可以如箭头所示,依次在每一横向(时域)上配置 第二级SCI符号,直至完成第二级SCI符号配置,或者直至排满当前两列。然后,可以映射到后续的DMRS符号上,直至完成第二级SCI符号配置。在本发明实施例中,通过将第二级SCI映射在PSSCH的DMRS周围,有助于提高第二级SCI的信道估计精度,从而提高解码准确度,降低误码率。
需要指出的是,如果所述DMRS符号的RE的多个子载波之间具有间隔子载波,则在本发明实施例中,仍然可以在与所述DMRS符号的RE相邻的两个RE上,依次配置两个第二级SCI符号,也即在间隔子载波上不第二级SCI符号。
参照图4,图4是图2中第二级SCI的第二种位置配置顺序示意图。
具体地,确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE 41;在所述第二级SCI的起始位置的RE 42,配置第一个第二级SCI符号;在与所述第一个第二级SCI符号相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号;确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号。
由图4可知,可以如箭头所示,依次在每一纵向(频域)上配置第二级SCI符号,直至完成第二级SCI符号配置,或者直至排满当前两列。然后,可以映射到后续的DMRS符号上,直至完成第二级SCI符号配置。
需要指出的是,在同一个与所述第一个第二级SCI符号相同的子载波上,确定与所述DMRS符号的RE相邻且子载波相同的另一个RE的步骤,可以是依照符号从小到大的顺序确定,还可以是依照符号从大到小的顺序确定的。
在本发明实施例中,通过将第二级SCI映射在PSSCH的DMRS周围,有助于提高第二级SCI的信道估计精度,从而提高解码准确度,降低误码率。
需要指出的是,所述RE41可以是DMRS符号上子载波序号最大或者最小的RE,或者是在DMRS与第二级SCI的时频资源区域重叠的范围内子载波序号最大或者最小的RE,或者是通过SCI或者高层信令指示子载波序号所对应的DMRS符号
继续参照图1,在步骤S12的具体实施中,还可以采用另一种第二级SCI的位置配置。
参照图5,图5是本发明实施例中另一种第二级SCI的位置配置示意图。
需要指出的是,与图2示出的位置相比,所述DMRS符号上有些RE不用于DMRS的传输,在配置第二种SCI过程中,可以在所述RE上,配置所述第二级SCI。具体而言,所述DMRS符号的RE的多个子载波之间具有间隔子载波,在配置第二种SCI过程中,可以在所述间隔子载波的RE上,配置所述第二级SCI。
具体地,可以将第二级SCI映射在DMRS两侧或者DMRS所在符号上,映射的先后顺序可以是先映射一个DMRS符号周围,然后再映射到另一个DMRS符号周围。
进一步地,如果一个DMRS符号周围的RE不足以放下所有的第二级SCI,还可以依次映射到下一个DMRS符号上。例如,可以先映射在第一个DMRS符号左边的符号,再映射在第一个DMRS符号右边的符号,然后再映射在第二个DMRS符号左边的符号,再映射在第二个DMRS符号右边的符号,依次类推,直至映射完所有第二级SCI符号。
又例如,可以先映射在第一个DMRS符号上未用于DMRS传输的RE上,然后是映射在第一个DMRS符号左边的符号,再映射在第 一个DMRS符号右边的符号,然后依次类推映射在第二个DMRS符号周围,直至映射完所有第二级SCI符号。
又例如,可以先映射在第一个DMRS符号左边的符号,然后是映射在第一个DMRS符号上未用于DMRS传输的RE上,再映射在第一个DMRS符号右边的符号,然后依次类推映射在第二个DMRS符号周围,直至映射完所有第二级SCI符号。
在本发明实施例中,通过在所述间隔子载波的RE上,配置所述第二级SCI,不仅可以实现将第二级SCI映射在PSSCH的DMRS周围,而且可以充分利用与DMRS更加邻近的间隔子载波,从而有助于进一步提高第二级SCI的信道估计精度,从而进一步提高解码准确度,降低误码率。
参照图6,图6是图5中第二级SCI的第一种位置配置顺序示意图。
具体地,根据所述起始位置,配置所述第二级SCI的步骤可以包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE 61;在所述第二级SCI的起始位置的RE 62,配置第一个第二级SCI符号;在同一个在与所述第一个第二级SCI符号相同的子载波上,确定与所述DMRS符号的RE相邻且子载波相同的另一个RE 63,并配置第二个第二级SCI符号;依照子载波自大至小的顺序或自小至大的顺序,配置所述第二级SCI符号,其中,当待配置的子载波上存在有所述DMRS时,在与所述DMRS的RE相邻的两个RE上,依次配置两个第二级SCI符号,当待配置的子载波上没有所述DMRS时,依次配置三个第二级SCI符号。
由图6可知,可以如箭头所示,依次在每一横向(时域)上配置第二级SCI符号,在间隔子载波上由于没有所述DMRS,可以配置三个第二级SCI符号,直至完成第二级SCI符号配置,或者直至排满当前两列。然后,可以映射到后续的DMRS符号上,直至完成第二级SCI符号配置。
在本发明实施例中,通过将第二级SCI映射在PSSCH的DMRS周围,有助于提高第二级SCI的信道估计精度,并且通过在所述间隔子载波的RE上,配置所述第二级SCI,可以充分利用与DMRS更加邻近的间隔子载波,从而进一步提高解码准确度,降低误码率。
需要指出的是,所述RE 61可以是DMRS符号上子载波序号最大或者最小的RE,或者是在DMRS与第二级SCI的时频资源区域重叠的范围内子载波序号最大或者最小的RE,或者是通过SCI或者高层信令指示子载波序号所对应的DMRS符号。
参照图7,图7是图5中第二级SCI的第二种位置配置顺序示意图。
具体地,根据所述起始位置,配置所述第二级SCI的步骤包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE 71;在所述第二级SCI的起始位置的RE 72,配置第一个第二级SCI符号;在与所述第一个第二级SCI符号相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号;在与所述DMRS符号相同的OFDM符号上,依照子载波自大至小的顺序或自小至大的顺序,在所述间隔子载波的RE,配置所述第二级SCI符号;确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号。
由图7可知,可以如箭头所示,依次在每一纵向(频域)上配置第二级SCI符号,在间隔子载波上由于没有所述DMRS,可以配置第二级SCI符号,直至完成第二级SCI符号配置,或者直至排满当前两列。然后,可以映射到后续的DMRS符号上,直至完成第二级SCI符号配置。
在本发明实施例中,通过将第二级SCI映射在PSSCH的DMRS周围,有助于提高第二级SCI的信道估计精度,并且通过在所述间隔 子载波的RE上,配置所述第二级SCI,可以充分利用与DMRS更加邻近的间隔子载波,从而进一步提高解码准确度,降低误码率。
需要指出的是,所述RE71可以是DMRS符号上子载波序号最大或者最小的RE,或者是在DMRS与第二级SCI的时频资源区域重叠的范围内子载波序号最大或者最小的RE,或者是通过SCI或者高层信令指示子载波序号所对应的DMRS符号。
结合参照图8和图9,图8是图5中第二级SCI的第三种位置配置顺序示意图;图9是图5中第二级SCI的第四种位置配置顺序示意图。
具体地,根据所述起始位置,配置所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号80(90)的RE;在与所述DMRS符号相同的OFDM符号上,依照子载波自大至小的顺序或自小至大的顺序,在所述间隔子载波的RE,配置所述第二级SCI符号;在所述第二级SCI的起始位置的RE 81(91),配置所述第二级SCI符号;在与所述第二级SCI的起始位置相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号;确定与所述DMRS符号80(90)的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号。
可以理解的是,图8与图9示出的两种位置配置的差别在于先配左边还是先配右边。在图8与图9示出的两种位置配置中,起始点相同,均为A1位置。
由图8及图9可知,可以如箭头所示,依次在每一纵向(频域)上配置第二级SCI符号,在间隔子载波上由于没有所述DMRS,可以配置第二级SCI符号,直至完成第二级SCI符号配置,或者直至排满当前两列。然后,可以映射到后续的DMRS符号上,直至完成第二级SCI符号配置。
在本发明实施例中,通过将第二级SCI映射在PSSCH的DMRS周围,有助于提高第二级SCI的信道估计精度,并且通过在所述间隔子载波的RE上,配置所述第二级SCI,可以充分利用与DMRS更加邻近的间隔子载波,从而进一步提高解码准确度,降低误码率。
需要指出的是,所述RE80(90)可以是DMRS符号上子载波序号最大或者最小的RE,或者是在DMRS与第二级SCI的时频资源区域重叠的范围内子载波序号最大或者最小的RE,或者是通过SCI或者高层信令指示子载波序号所对应的DMRS符号。
参照图10,图10是本发明实施例中又一种第二级SCI的位置配置示意图。
由图10可知,仅在最接近DMRS符号的RE(如图10示出的上下左右各个方向上的相邻RE)上,配置所述第二级SCI。
关于图10中第二级SCI的位置配置的顺序,可以参照前述文字以及图2至图9中的描述进行执行,此处不再赘述。
继续参照图1,在步骤S13的具体实施中,发送UE可以向接收UE发送所述第二级SCI。
在本发明实施例中,通过先确定用于发送所述第二级SCI的时频资源的起始位置,进而对所述第二级SCI进行配置,可以实现在发送UE与接收UE之间收发所述第二级SCI。
进一步地,在发送所述第二级SCI之前,所述发送第二级SCI的方法还可以包括:发送所述第二级SCI的时频资源的指示信息。
其中,所述指示信息可以选自:所述第二级SCI的起始子载波、所述第二级SCI的时域起始位置。
需要指出的是,在本发明实施例中,采用了RE作为最小单元进行如前文描述,然而,可以根据具体情况选择其他单元替代RE,例如采用RB。
其中,所述SCI时域起始位置的颗粒度可以是符号(symbol)。
在本发明实施例的一种具体实施方式中,可以通过直接指示的方法,向接收UE指示第二级SCI的时频资源。
具体地,所述指示信息还可以包括:所述第二级SCI的频域范围;所述第二级SCI的时域范围。
其中,所述第二级SCI的频域范围可以是第二级SCI频域大小,颗粒度可以是RB或RE。
所述第二级SCI的时域范围可以是第二级SCI时域跨度,颗粒度是symbol。
在本发明实施例中,通过直接指示的方法,向接收UE指示第二级SCI的时频资源,可以提高指示信息的准确性和全面性。
在本发明实施例的另一种具体实施方式中,可以通过间接指示的方法,向接收UE指示第二级SCI的时频资源。
具体地,所述位置信息为用于发送所述第二级SCI的时频资源的起始位置或者第二级SCI的时频资源的时域和或频域资源位置信息;所述位置信息与所述第二级SCI调度的PSSCH的DMRS符号的索引号(index)具有预设的一一对应关系;所述指示信息可以为指示所述DMRS符号的索引号。其中,UE根据所述DMRS符号的索引号指示信息就可以确定第二级SCI的时频资源位置或者第二级SCI的时频资源的起始位置。
具体地,在对映射规则确定的情况下(例如通过协议的方式或者其他适当的预定义方式进行确定),以及DMRS在一个时隙中的数目确定的情况下,可以通过指示DMRS symbol的index实现对第二级SCI的位置进行间接的指示,从而可以节省第一级SCI的指示比特。
又例如,可以通过预定义的方式规定第二级SCI出现在距离第一级SCI最近的一个DMRS symbol的邻近symbol上和或DMRS symbol 上未用于DMRS传输的RE上,或者第二级SCI如果和第一级SCI是频分多路复用(Frequency-division multiplexing,FDM)的形式,则可以出现在与第一级SCI相对固定的频域位置上。
例如,第二级SCI的起始位置出现在距离第一级SCI频域跨度为P个RB或者RE和或时域跨度为Q个symbol或者slot的位置上。其中,第一级SCI的参考点可以是第一级SCI所在控制信息区域的最大RE或者RB序号,或者是第一级SCI所在控制信息区域的最小RE或者RB序号,或者是第一级SCI所在控制信息区域的最大symbol或者slot序号,或者是第一级SCI所在控制信息区域的最小symbol或者slot序号,或者是第一级SCI所在控制信息区域的最大RE或者RB序号和第一级SCI所在控制信息区域的最大symbol或者slot序号,或者是第一级SCI所在控制信息区域的最大RE或者RB序号和第一级SCI所在控制信息区域的最小symbol或者slot序号,或者是第一级SCI所在控制信息区域的最小RE或者RB序号和第一级SCI所在控制信息区域的最大symbol或者slot序号,或者是第一级SCI所在控制信息区域的最小RE或者RB序号和第一级SCI所在控制信息区域的最小symbol或者slot序号。
又例如,可以规定第二级SCI出现在PSSCH的第N个DMRS symbol的邻近symbol上和或PSSCH的第N个DMRS symbol上未用于DMRS传输的RE上。其中,N可以是1,2,3或者其他正整数;N可以通过高层信令(如RRC)配置或者动态信令(如DCI或者SCI)指示或者通过预定义的方式确定。
又例如,可以通过预定义的方式规定第二级SCI起始于PSSCH的第N个DMRS symbol的邻近symbol上和或PSSCH的第N个DMRS symbol上未用于DMRS传输的RE上。其中,N可以是1,2,3或者其他正整数;N可以通过高层信令(如RRC)配置或者动态信令(如DCI或者SCI)指示或者通过预定义的方式确定。
又例如,可以通过预定义的方式规定第二级SCI出现在距离第一 级SCI最近的第M个DMRS symbol的邻近symbol上和或距离第一级SCI最近的第M个DMRS symbol上未用于DMRS传输的RE上。其中,M可以是1,2,3或者其他正整数;M可以通过高层信令(如RRC)配置或者动态信令(如DCI或者SCI)指示或者通过预定义的方式确定。
又例如,可以通过预定义的方式规定第二级SCI起始于在距离第一级SCI最近的第M个DMRS symbol的邻近symbol上和或距离第一级SCI最近的第M个DMRS symbol上未用于DMRS传输的RE上。其中,M可以是1,2,3或者其他正整数;M可以通过高层信令(如RRC)配置或者动态信令(如DCI或者SCI)指示或者通过预定义的方式确定。又例如,可以通过预定义的方式规定第二级SCI出现在距离第一级SCI的最后一个DMRS symbol之后的最近一个PSSCH DMRS symbol的邻近symbol上和或距离第一级SCI最后一个DMRS symbol之后的最近一个PSSCH DMRS symbol上未用于DMRS传输的RE上。其中,M可以是1,2,3或者其他正整数;M可以通过高层信令(如RRC)配置或者动态信令(如DCI或者SCI)指示或者通过预定义的方式确定。
又例如,可以通过预定义的方式规定第二级SCI起始于在距离第一级SCI的最后一个DMRS symbol之后的最近一个PSSCH DMRS symbol的邻近symbol上和或距离第一级SCI最后一个DMRS symbol之后的最近一个PSSCH DMRS symbol上未用于DMRS传输的RE上。其中,M可以是1,2,3或者其他正整数;M可以通过高层信令(如RRC)配置或者动态信令(如DCI或者SCI)指示或者通过预定义的方式确定。
在本发明实施例中,可以通过间接指示的方法,向接收UE指示第二级SCI的时频资源,从而降低信令开销。
参照图11,图11是本发明实施例中一种接收第二级SCI的方法的流程图。所述接收第二级SCI的方法可以包括步骤S101至步骤 S103:
步骤S101:接收第二级SCI;
步骤S102:确定所述第二级SCI的时频资源的位置信息;
步骤S103:根据所述位置信息,解码所述第二级SCI。
进一步地,所述位置信息为用于发送所述第二级SCI的时频资源的起始位置;根据所述位置信息,解码所述第二级SCI包括:根据所述起始位置,解码所述第二级SCI。
进一步地,所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个OFDM符号;或者,所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个子载波。
进一步地,根据所述起始位置,解码所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在所述第二级SCI的起始位置的RE,确定第一个第二级SCI符号;在同一个在与所述第一个第二级SCI符号相同的子载波上,确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并确定第二个第二级SCI符号;依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,在与所述DMRS符号的RE相邻的两个RE上,依次确定两个第二级SCI符号;对确定的第二级SCI符号进行解码。
进一步地,根据所述起始位置,解码所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在所述第二级SCI的起始位置的RE,确定第一个第二级SCI符号;在与所述第一个第二级SCI符号相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二 级SCI符号;对确定的第二级SCI符号进行解码。
进一步地,所述DMRS符号的RE的多个子载波之间具有间隔子载波;根据所述起始位置,确定所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在所述第二级SCI的起始位置的RE,确定第一个第二级SCI符号;在同一个在与所述第一个第二级SCI符号相同的子载波上,确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并确定第二个第二级SCI符号;依照子载波自大至小的顺序或自小至大的顺序,确定所述第二级SCI符号,其中,当待确定的子载波上存在有所述DMRS符号时,在与所述DMRS符号的RE相邻的两个RE上,依次确定两个第二级SCI符号,当待确定的子载波上没有所述DMRS符号时,依次确定三个第二级SCI符号;对确定的第二级SCI符号进行解码。
进一步地,所述DMRS符号的RE的多个子载波之间具有间隔子载波;根据所述起始位置,确定所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在所述第二级SCI的起始位置的RE,确定第一个第二级SCI符号;在与所述第一个第二级SCI符号相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;在与所述DMRS符号相同的OFDM符号上,依照子载波自大至小的顺序或自小至大的顺序,在所述间隔子载波的RE,确定所述第二级SCI符号;确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;对确定的第二级SCI符号进行解码。
进一步地,所述DMRS符号的RE的多个子载波之间具有间隔子载波;根据所述起始位置,确定所述第二级SCI包括:确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;在与所述DMRS符号相同的OFDM符号上,依照子载波自大至小的顺序或自小至大 的顺序,在所述间隔子载波的RE,确定所述第二级SCI符号;在所述第二级SCI的起始位置的RE,确定所述第二级SCI符号;在与所述第二级SCI的起始位置相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;对确定的第二级SCI符号进行解码。
进一步地,所述位置信息是用于发送所述第二级SCI的所有时频资源;根据所述位置信息,解码所述第二级SCI包括:在所述用于发送所述第二级SCI的所有时频资源中,确定始发位置;根据所述始发位置,解码所述第二级SCI。
进一步地,确定所述第二级SCI的时频资源的起始位置包括:接收所述第二级SCI的时频资源的指示信息。
进一步地,所述起始指示信息选自:所述第二级SCI的起始子载波、所述第二级SCI的时域起始位置;所述指示信息还包括:所述第二级SCI的频域范围;所述第二级SCI的时域范围。
进一步地,所述位置信息为用于发送所述第二级SCI的时频资源的起始位置;所述第二级SCI的时频资源的起始位置与所述第二级SCI调度的PSSCH的DMRS符号的索引号具有预设的一一对应关系;所述指示信息为指示所述DMRS符号的索引号。
在具体实施中,有关步骤S101至步骤S103的更多详细内容请参照图1中的步骤S11至步骤S13的描述进行执行,此处不再赘述。
参照图12,图12是本发明实施例中一种发送第二级SCI的装置的结构示意图。所述发送第二级SCI的装置可以包括:
第一位置确定模块111,适于确定用于发送所述第二级SCI的时频资源的位置信息;
配置模块112,适于根据所述位置信息,配置所述第二级SCI;
发送模块113,适于发送所述第二级SCI。
关于该发送第二级SCI的装置的原理、具体实现和有益效果请参照前文及图1示出的关于发送第二级SCI的方法的相关描述,此处不再赘述。
参照图13,图13是本发明实施例中一种接收第二级SCI的装置的结构示意图。所述接收第二级SCI的装置可以包括:
接收模块121,适于接收第二级SCI;
第二位置确定模块122,适于确定所述第二级SCI的时频资源的起始位置;
解码模块123,适于根据所述起始位置,解码所述第二级SCI。
关于该接收第二级SCI的装置的原理、具体实现和有益效果请参照前文及图11示出的关于接收第二级SCI的方法的相关描述,此处不再赘述。
本发明实施例还提供了一种存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述发送第二级SCI的方法的步骤,或者执行上述的接收第二级SCI的方法的步骤。所述存储介质可以是计算机可读存储介质,例如可以包括非挥发性存储器(non-volatile)或者非瞬态(non-transitory)存储器,还可以包括光盘、机械硬盘、固态硬盘等。
本发明实施例还提供了一种发送UE,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述发送第二级SCI的方法的步骤。所述发送UE包括但不限于车载控制***、手机、计算机、平板电脑等终端设备。
本发明实施例还提供了一种接收UE,包括存储器和处理器,所 述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述接收第二级SCI的方法的步骤。所述接收UE包括但不限于车载控制***、手机、计算机、平板电脑等终端设备。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (29)

  1. 一种发送第二级SCI的方法,其特征在于,包括以下步骤:
    确定用于发送所述第二级SCI的时频资源的位置信息;
    根据所述位置信息,配置所述第二级SCI;
    发送所述第二级SCI。
  2. 根据权利要求1所述的发送第二级SCI的方法,其特征在于,所述位置信息为用于发送所述第二级SCI的时频资源的起始位置;
    根据所述位置信息,配置所述第二级SCI包括:
    根据所述起始位置,配置所述第二级SCI。
  3. 根据权利要求2所述的发送第二级SCI的方法,其特征在于,
    所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个OFDM符号;
    或者,
    所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个子载波。
  4. 根据权利要求3所述的发送第二级SCI的方法,其特征在于,根据所述起始位置,配置所述第二级SCI包括:
    确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;
    在所述第二级SCI的起始位置的RE,配置第一个第二级SCI符号;
    在同一个在与所述第一个第二级SCI符号相同的子载波上,确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并配置第二个第二级SCI符号;
    依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,在与所述DMRS符号的RE相邻的两个RE上,依次配置两个 第二级SCI符号。
  5. 根据权利要求3所述的发送第二级SCI的方法,其特征在于,根据所述起始位置,配置所述第二级SCI包括:
    确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;
    在所述第二级SCI的起始位置的RE,配置第一个第二级SCI符号;
    在与所述第一个第二级SCI符号相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号;
    确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号。
  6. 根据权利要求3所述的发送第二级SCI的方法,其特征在于,所述DMRS符号的RE的多个子载波之间具有间隔子载波;
    根据所述起始位置,配置所述第二级SCI包括:
    确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;
    在所述第二级SCI的起始位置的RE,配置第一个第二级SCI符号;
    在同一个与所述第一个第二级SCI符号相同的子载波上,确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并配置第二个第二级SCI符号;
    依照子载波自大至小的顺序或自小至大的顺序,配置所述第二级SCI符号,其中,当待配置的子载波上存在有所述DMRS符号时,在与所述DMRS符号的RE相邻的两个RE上,依次配置两个第二级SCI符号,当待配置的子载波上没有所述DMRS符号时,依次配置三个第二级SCI符号。
  7. 根据权利要求3所述的发送第二级SCI的方法,其特征在于,所述DMRS符号的RE的多个子载波之间具有间隔子载波;
    根据所述起始位置,配置所述第二级SCI包括:
    确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;
    在所述第二级SCI的起始位置的RE,配置第一个第二级SCI符号;
    在与所述第一个第二级SCI符号相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号;
    在与所述DMRS符号相同的OFDM符号上,依照子载波自大至小的顺序或自小至大的顺序,在所述间隔子载波的RE,配置所述第二级SCI符号;
    确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号。
  8. 根据权利要求3所述的发送第二级SCI的方法,其特征在于,所述DMRS符号的RE的多个子载波之间具有间隔子载波;
    根据所述起始位置,配置所述第二级SCI包括:
    确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;
    在与所述DMRS符号相同的OFDM符号上,依照子载波自大至小的顺序或自小至大的顺序,在所述间隔子载波的RE,配置所述第二级SCI符号;
    在所述第二级SCI的起始位置的RE,配置所述第二级SCI符号;
    在与所述第二级SCI的起始位置相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配 置所述第二级SCI符号;
    确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次配置所述第二级SCI符号。
  9. 根据权利要求1所述的发送第二级SCI的方法,其特征在于,所述位置信息是用于发送所述第二级SCI的所有时频资源;
    根据所述位置信息,配置所述第二级SCI包括:
    在所述用于发送所述第二级SCI的所有时频资源中,确定始发位置;
    根据所述始发位置,配置所述第二级SCI。
  10. 根据权利要求1所述的发送第二级SCI的方法,其特征在于,在发送所述第二级SCI之前,还包括:
    发送所述第二级SCI的时频资源的指示信息。
  11. 根据权利要求10所述的发送第二级SCI的方法,其特征在于,所述指示信息选自:所述第二级SCI的起始子载波、所述第二级SCI的时域起始位置;
    所述指示信息还包括:
    所述第二级SCI的频域范围;
    所述第二级SCI的时域范围。
  12. 根据权利要求10所述的发送第二级SCI的方法,其特征在于,所述位置信息为用于发送所述第二级SCI的时频资源的起始位置;
    所述第二级SCI的时频资源的起始位置与所述第二级SCI调度的PSSCH的DMRS符号的索引号具有预设的一一对应关系;
    所述指示信息为指示所述DMRS符号的索引号。
  13. 一种接收第二级SCI的方法,其特征在于,包括以下步骤:
    接收第二级SCI;
    确定所述第二级SCI的时频资源的位置信息;
    根据所述位置信息,解码所述第二级SCI。
  14. 根据权利要求13所述的接收第二级SCI的方法,其特征在于,所述位置信息为用于发送所述第二级SCI的时频资源的起始位置;
    根据所述位置信息,解码所述第二级SCI包括:
    根据所述起始位置,解码所述第二级SCI。
  15. 根据权利要求14所述的接收第二级SCI的方法,其特征在于,所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个OFDM符号;
    或者,
    所述第二级SCI的起始位置的RE与所述第二级SCI调度的PSSCH的DMRS符号的RE相邻且位于同一个子载波。
  16. 根据权利要求15所述的接收第二级SCI的方法,其特征在于,根据所述起始位置,解码所述第二级SCI包括:
    确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;
    在所述第二级SCI的起始位置的RE,确定第一个第二级SCI符号;
    在同一个在与所述第一个第二级SCI符号相同的子载波上,确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并确定第二个第二级SCI符号;
    依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,在与所述DMRS符号的RE相邻的两个RE上,依次确定两个第二级SCI符号;
    对确定的第二级SCI符号进行解码。
  17. 根据权利要求15所述的接收第二级SCI的方法,其特征在于,根据所述起始位置,解码所述第二级SCI包括:
    确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;
    在所述第二级SCI的起始位置的RE,确定第一个第二级SCI符号;
    在与所述第一个第二级SCI符号相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;
    确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;
    对确定的第二级SCI符号进行解码。
  18. 根据权利要求15所述的接收第二级SCI的方法,其特征在于,所述DMRS符号的RE的多个子载波之间具有间隔子载波;
    根据所述起始位置,确定所述第二级SCI包括:
    确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;
    在所述第二级SCI的起始位置的RE,确定第一个第二级SCI符号;
    在同一个在与所述第一个第二级SCI符号相同的子载波上,确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并确定第二个第二级SCI符号;
    依照子载波自大至小的顺序或自小至大的顺序,确定所述第二级SCI符号,其中,当待确定的子载波上存在有所述DMRS符号时,在与所述DMRS符号的RE相邻的两个RE上,依次确定两个第二级SCI符号,当待确定的子载波上没有所述DMRS符号时,依次 确定三个第二级SCI符号;
    对确定的第二级SCI符号进行解码。
  19. 根据权利要求15所述的接收第二级SCI的方法,其特征在于,所述DMRS符号的RE的多个子载波之间具有间隔子载波;
    根据所述起始位置,确定所述第二级SCI包括:
    确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;
    在所述第二级SCI的起始位置的RE,确定第一个第二级SCI符号;
    在与所述第一个第二级SCI符号相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;
    在与所述DMRS符号相同的OFDM符号上,依照子载波自大至小的顺序或自小至大的顺序,在所述间隔子载波的RE,确定所述第二级SCI符号;
    确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;
    对确定的第二级SCI符号进行解码。
  20. 根据权利要求15所述的接收第二级SCI的方法,其特征在于,所述DMRS符号的RE的多个子载波之间具有间隔子载波;
    根据所述起始位置,确定所述第二级SCI包括:
    确定与所述第二级SCI的起始位置相邻的所述DMRS符号的RE;
    在与所述DMRS符号相同的OFDM符号上,依照子载波自大至小的顺序或自小至大的顺序,在所述间隔子载波的RE,确定所述第二级SCI符号;
    在所述第二级SCI的起始位置的RE,确定所述第二级SCI符号;
    在与所述第二级SCI的起始位置相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;
    确定与所述DMRS符号的RE相邻且子载波相同的另一个RE,并在与所述另一个RE相同的OFDM符号上,依照所述DMRS符号的子载波自大至小的顺序或自小至大的顺序,依次确定所述第二级SCI符号;
    对确定的第二级SCI符号进行解码。
  21. 根据权利要求15所述的接收第二级SCI的方法,其特征在于,所述位置信息是用于发送所述第二级SCI的所有时频资源;
    根据所述位置信息,解码所述第二级SCI包括:
    在所述用于发送所述第二级SCI的所有时频资源中,确定始发位置;
    根据所述始发位置,解码所述第二级SCI。
  22. 根据权利要求13所述的接收第二级SCI的方法,其特征在于,确定所述第二级SCI的时频资源的起始位置包括:
    接收所述第二级SCI的时频资源的指示信息。
  23. 根据权利要求22所述的接收第二级SCI的方法,其特征在于,所述指示信息选自:所述第二级SCI的起始子载波、所述第二级SCI的时域起始位置;
    所述指示信息还包括:
    所述第二级SCI的频域范围;
    所述第二级SCI的时域范围。
  24. 根据权利要求22所述的接收第二级SCI的方法,其特征在于,所 述位置信息为用于发送所述第二级SCI的时频资源的起始位置;
    所述第二级SCI的时频资源的起始位置与所述第二级SCI调度的PSSCH的DMRS符号的索引号具有预设的一一对应关系;
    所述指示信息为指示所述DMRS符号的索引号。
  25. 一种发送第二级SCI的装置,其特征在于,包括:
    第一位置确定模块,适于确定用于发送所述第二级SCI的时频资源的位置信息;
    配置模块,适于根据所述位置信息,配置所述第二级SCI;
    发送模块,适于发送所述第二级SCI。
  26. 一种接收第二级SCI的装置,其特征在于,包括:
    接收模块,适于接收第二级SCI;
    第二位置确定模块,适于确定所述第二级SCI的时频资源的位置信息;
    解码模块,适于根据所述位置信息,解码所述第二级SCI。
  27. 一种存储介质,其上存储有计算机指令,其特征在于,所述计算机指令运行时执行权利要求1至12任一项所述的发送第二级SCI的方法的步骤,或者执行权利要求13至24任一项所述的接收第二级SCI的方法的步骤。
  28. 一种发送UE,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求1至12任一项所述的发送第二级SCI的方法的步骤。
  29. 一种接收UE,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求13至24任一项所述的接收第二 级SCI的方法的步骤。
PCT/CN2020/109121 2019-09-30 2020-08-14 发送及接收第二级sci的方法及装置、存储介质、发送ue及接收ue WO2021063116A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20872294.2A EP4044725A4 (en) 2019-09-30 2020-08-14 METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING SECOND PHASE SCI, STORAGE MEDIUM, TRANSMITTER USER DEVICE AND RECEIVING USER DEVICE
JP2022520029A JP7432713B2 (ja) 2019-09-30 2020-08-14 第2ステージsciを送信し、受信するための方法および装置、記憶媒体、送信ue、および受信ue
US17/765,243 US20220312401A1 (en) 2019-09-30 2020-08-14 Methods and apparatus for sending and receiving second stage sci, storage medium, sending ue, and receiving ue
KR1020227014638A KR20220075385A (ko) 2019-09-30 2020-08-14 제2단계 sci의 송수신 방법 및 장치, 저장 매체, 송신 ue 및 수신 ue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910941108.3 2019-09-30
CN201910941108.3A CN110505703B (zh) 2019-09-30 2019-09-30 发送及接收第二级旁路控制信息的方法及装置

Publications (1)

Publication Number Publication Date
WO2021063116A1 true WO2021063116A1 (zh) 2021-04-08

Family

ID=68593108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109121 WO2021063116A1 (zh) 2019-09-30 2020-08-14 发送及接收第二级sci的方法及装置、存储介质、发送ue及接收ue

Country Status (6)

Country Link
US (1) US20220312401A1 (zh)
EP (1) EP4044725A4 (zh)
JP (1) JP7432713B2 (zh)
KR (1) KR20220075385A (zh)
CN (1) CN110505703B (zh)
WO (1) WO2021063116A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204642A1 (ko) * 2019-04-02 2020-10-08 엘지전자 주식회사 Pscch 및 pssch를 전송하는 방법 및 장치
CN115412216B (zh) * 2019-05-02 2024-03-19 Oppo广东移动通信有限公司 数据传输方法及装置
CN110505703B (zh) * 2019-09-30 2022-08-12 展讯通信(上海)有限公司 发送及接收第二级旁路控制信息的方法及装置
WO2021112579A1 (ko) * 2019-12-04 2021-06-10 엘지전자 주식회사 Nr v2x에서 제어 정보를 전송하는 방법 및 장치
CN113079579B (zh) * 2020-01-03 2022-12-09 大唐移动通信设备有限公司 一种直通链路控制信令资源映射方法及终端
US20230156744A1 (en) * 2020-02-13 2023-05-18 Panasonic Intellectual Property Corporation Of America Terminal, and communication method
WO2021159538A1 (zh) * 2020-02-14 2021-08-19 华为技术有限公司 一种通信方法及装置
CN113497692B (zh) * 2020-04-07 2022-09-06 维沃移动通信有限公司 一种tbs的确定方法及相关设备
CN113497693B (zh) * 2020-04-07 2023-05-12 维沃移动通信有限公司 资源开销的确定方法及相关设备
US11564227B2 (en) * 2020-04-08 2023-01-24 Apple Inc. Sidelink transport block size calculation scheme and associated apparatuses, systems, and methods
CN113543371B (zh) * 2020-04-17 2023-07-28 华为技术有限公司 一种通信的方法及装置
EP4020861A4 (en) * 2020-04-28 2022-12-14 LG Electronics Inc. METHOD AND DEVICE FOR PERFORMING SL COMMUNICATION BASED ON PSFCH OVERHEAD IN NR V2X
US20230057351A1 (en) * 2020-05-14 2023-02-23 Apple Inc. Sidelink physical layer procedures
US11736984B2 (en) * 2020-05-15 2023-08-22 Qualcomm Incorporated Resource reservation signaling for aperiodic reservations
WO2022011594A1 (en) * 2020-07-15 2022-01-20 Qualcomm Incorporated Transmission of reverse-link grants for anchor based sidelink communication
CN114554601A (zh) * 2020-11-24 2022-05-27 华为技术有限公司 一种通信方法、装置、芯片、存储介质及程序产品
CN115643544A (zh) * 2021-07-19 2023-01-24 夏普株式会社 由用户设备执行的方法以及用户设备
US20230062970A1 (en) * 2021-08-26 2023-03-02 Qualcomm Incorporated Techniques for destination filtering in first-stage sidelink control information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106612561A (zh) * 2015-10-23 2017-05-03 华为技术有限公司 一种资源指示方法、装置及***
CN110505703A (zh) * 2019-09-30 2019-11-26 展讯通信(上海)有限公司 发送及接收第二级sci的方法及装置、存储介质、发送ue及接收ue

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096479B (zh) * 2011-11-03 2016-05-25 ***通信集团公司 一种上行解调参考信号的发送方法和设备
CN103248469B (zh) * 2012-02-03 2018-05-11 中兴通讯股份有限公司 一种控制信令和解调导频的发送、检测方法、***和基站
CN108282325B (zh) * 2012-03-19 2022-03-08 北京三星通信技术研究有限公司 一种lte tdd的特殊子帧信号传输方法和设备
CN105340198B (zh) * 2013-06-26 2018-08-14 Lg电子株式会社 在无线通信***中获取控制信息的方法和设备
CN116015378A (zh) * 2017-05-05 2023-04-25 中兴通讯股份有限公司 信道状态信息的反馈、接收方法及装置、设备、存储介质
CN109586868B (zh) * 2017-09-29 2021-09-14 ***通信有限公司研究院 信息传输方法、装置、发送设备及计算机可读存储介质
CN109586869B (zh) * 2017-09-29 2021-08-06 ***通信有限公司研究院 Srs发送方法、相位差处理方法、通信设备及存储介质
SG11202004385XA (en) * 2017-11-16 2020-06-29 Beijing Xiaomi Mobile Software Co Ltd Physical layer resource mapping method and device, user equipment and base station
US10952266B2 (en) 2018-01-30 2021-03-16 Hyundai Motor Company Method for transmitting and receiving control information including configuration information for transmission and reception in communication system supporting vehicle-to-everything communication and apparatus for the same
WO2020168452A1 (en) * 2019-02-18 2020-08-27 Mediatek Singapore Pte. Ltd. Control channel design for v2x communication
CN115412216B (zh) * 2019-05-02 2024-03-19 Oppo广东移动通信有限公司 数据传输方法及装置
US11690045B2 (en) * 2019-08-16 2023-06-27 Intel Corporation Transport block size (TBS) determination for NR-V2X sidelink with PSCCH signaling for multi transmission time interval (TTI) transmissions
US20210067290A1 (en) * 2019-08-26 2021-03-04 Mediatek Singapore Pte. Ltd. Sidelink communications with two-stage sidelink control information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106612561A (zh) * 2015-10-23 2017-05-03 华为技术有限公司 一种资源指示方法、装置及***
CN110505703A (zh) * 2019-09-30 2019-11-26 展讯通信(上海)有限公司 发送及接收第二级sci的方法及装置、存储介质、发送ue及接收ue

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on physical layer structure for NR sidelink", 3GPP TSG RAN WG1 #97 R1-1907012, 17 May 2019 (2019-05-17), XP051709045 *
See also references of EP4044725A4 *
SPREADTRUM COMMUNICATIONS: "Discussion on physical layer structure for sidelink", 3GPP TSG RAN WG1 #98 R1-1908947, 30 August 2019 (2019-08-30), XP051765553 *
SPREADTRUM COMMUNICATIONS: "Discussion on physical layer structure for sidelink", 3GPP TSG RAN WG1 #98BIS R1-1910005, 20 October 2019 (2019-10-20), XP051788812 *

Also Published As

Publication number Publication date
EP4044725A1 (en) 2022-08-17
US20220312401A1 (en) 2022-09-29
CN110505703B (zh) 2022-08-12
JP2022549961A (ja) 2022-11-29
CN110505703A (zh) 2019-11-26
EP4044725A4 (en) 2022-12-21
JP7432713B2 (ja) 2024-02-16
KR20220075385A (ko) 2022-06-08

Similar Documents

Publication Publication Date Title
WO2021063116A1 (zh) 发送及接收第二级sci的方法及装置、存储介质、发送ue及接收ue
CN107925544B (zh) 无线通信***中的用于通信的方法和装置
CN107343297B (zh) 一种无线通信中的方法和装置
US11395291B2 (en) Allocating transmission resources in communication networks that provide low latency services
JP6498707B2 (ja) リソース標識処理方法及び処理装置、アクセスポイント、並びにステーション
CN117914457A (zh) 用于多发送和接收点传输的下行链路资源分配的方法和装置
US8755806B2 (en) Transmission of feedback information on PUSCH in wireless networks
JP5898180B2 (ja) 広帯域無線通信システムにおけるアップリンク資源割当指示装置及びその方法
WO2018054263A1 (zh) 发送或接收物理下行控制信道的方法和设备
WO2020187281A1 (zh) 一种侧链路反馈控制信息传输方法及装置
US11363618B2 (en) Method and device for narrow band communication in UE and base station
CN111294971B (zh) 用于信道传输的方法、终端设备及网络设备
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、***及装置
WO2019052455A1 (zh) 数据信道参数配置方法及装置
WO2018010184A1 (zh) 基于无线网络的通信方法、终端设备和网络设备
CN107846707B (zh) 一种免授予的ue、基站中的方法和装置
US10368344B2 (en) User equipment, network side device and method for controlling user equipment
CA3030456A1 (en) Method and terminal device for transmitting data
WO2013013643A1 (zh) 控制信道的接收和发送方法和装置
WO2014173292A1 (zh) 一种导频信号的传输方法及设备
CN107666701B (zh) 一种无线传输的ue和基站中的方法和装置
WO2014190792A1 (zh) 灵活子帧的处理方法及装置
TW201115967A (en) Methods and systems for setting CID mask length of a HARQ-MAP/SUB-MAP pointer IE in WiMAX systems
CN112187401B (zh) 多时间单元传输方法及相关装置
WO2018127213A1 (zh) 一种上行传输方法、终端及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022520029

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227014638

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020872294

Country of ref document: EP

Effective date: 20220502