WO2019189468A1 - 磁性粉末の製造方法および磁気記録媒体の製造方法 - Google Patents

磁性粉末の製造方法および磁気記録媒体の製造方法 Download PDF

Info

Publication number
WO2019189468A1
WO2019189468A1 PCT/JP2019/013367 JP2019013367W WO2019189468A1 WO 2019189468 A1 WO2019189468 A1 WO 2019189468A1 JP 2019013367 W JP2019013367 W JP 2019013367W WO 2019189468 A1 WO2019189468 A1 WO 2019189468A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
magnetic
magnetic powder
silica
coating
Prior art date
Application number
PCT/JP2019/013367
Other languages
English (en)
French (fr)
Inventor
奈津貴 豊沢
藤澤 憲克
佑太 秋元
阿部 悟
潤 寺川
前嶋 克紀
淳司 村松
昌史 中谷
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2020509254A priority Critical patent/JP7207399B2/ja
Priority to US17/043,452 priority patent/US11830533B2/en
Priority to CN201980021554.0A priority patent/CN111902869B/zh
Publication of WO2019189468A1 publication Critical patent/WO2019189468A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/842Coating a support with a liquid magnetic dispersion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/04Ferrous oxide (FeO)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70605Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Definitions

  • the present disclosure relates to a method for manufacturing a magnetic powder and a method for manufacturing a magnetic recording medium.
  • ⁇ iron oxide ( ⁇ -Fe 2 O 3 ) is expected to be applied to a magnetic recording material of a coating type magnetic recording medium.
  • ⁇ iron oxide is synthesized by firing precursor particles at a high temperature of 1000 ° C. or higher for a long time. During this synthesis, the precursor particles may aggregate to produce coarse particles. For this reason, in order to suppress aggregation of precursor particles, the technique which coats a precursor particle
  • An object of the present disclosure is to provide a method of manufacturing a magnetic powder and a method of manufacturing a magnetic recording medium that can suppress the formation of coarse particles.
  • the first disclosure is to coat the surface of a silica-coated precursor particle with at least one coating agent of metal chloride and sulfate, and to cover the surface with the coating agent.
  • a method for producing a magnetic powder comprising firing the precursor particles.
  • the surface of the silica-coated precursor particles is coated with at least one coating agent of metal chloride and sulfate, and the precursor particles coated with the coating agent are fired.
  • This is a method for producing a magnetic recording medium, comprising producing magnetic particles, removing the silica coat and coating agent from the magnetic particles, and forming a recording layer using the magnetic particles after the removal.
  • the generation of coarse particles can be suppressed.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure or effects different from those.
  • FIG. 1 is a graph showing an example of an SFD curve.
  • FIG. 2 is a process diagram for describing the method of manufacturing a magnetic powder according to the first embodiment of the present disclosure.
  • FIG. 3A to FIG. 3E are cross-sectional views for explaining the method of manufacturing a magnetic powder according to the first embodiment of the present disclosure.
  • FIG. 4 is a process diagram for explaining a magnetic powder manufacturing method according to the second embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view of a magnetic powder according to the third embodiment of the present disclosure.
  • FIG. 6 is a process diagram for describing a magnetic powder manufacturing method according to the third embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view of a magnetic powder according to the fourth embodiment of the present disclosure.
  • FIG. 1 is a graph showing an example of an SFD curve.
  • FIG. 2 is a process diagram for describing the method of manufacturing a magnetic powder according to the first embodiment of the present disclosure.
  • FIG. 8 is a process diagram for describing a magnetic powder manufacturing method according to the fourth embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view of a magnetic recording medium according to the fifth embodiment of the present disclosure.
  • FIG. 10 is a process diagram for explaining a synthesis process of FeO nanoparticles.
  • FIG. 11 is a process diagram for explaining a silica coat treatment process.
  • FIG. 12 is a process diagram for explaining a coating treatment process.
  • FIG. 13 is a process diagram for explaining the process of removing the silica coat and the coating agent.
  • FIG. 14 is a process diagram for explaining a synthesis process of Fe 3 O 4 nanoparticles.
  • Embodiments of the present disclosure will be described in the following order. 1 First Embodiment (Example of Magnetic Powder) 2 Second embodiment (example of magnetic powder) 3 Third Embodiment (Example of Magnetic Powder) 4 Fourth Embodiment (Example of Magnetic Powder) 5 Fifth Embodiment (Example of Magnetic Recording Medium)
  • the magnetic powder according to the first embodiment of the present disclosure includes powder of hard magnetic nanoparticles containing ⁇ iron oxide (hereinafter referred to as “ ⁇ iron oxide particles”).
  • the magnetic powder according to the first embodiment is suitable for use in a recording layer (magnetic layer) of a high-density magnetic recording medium.
  • the ⁇ iron oxide particles have, for example, a substantially cubic shape or a substantially spherical shape.
  • the ⁇ iron oxide contained in the ⁇ iron oxide particles preferably has ⁇ -Fe 2 O 3 crystals (including those in which a part of the Fe site is substituted with the metal element M) as a main phase, and is a single phase ⁇ More preferably, it is made of -Fe 2 O 3 .
  • the ⁇ -Fe 2 O 3 crystal includes a pure ⁇ -Fe 2 O 3 crystal in which the Fe site is not substituted with another element, and a part of the Fe site is trivalent. And a crystal having the same space group as that of a pure ⁇ -Fe 2 O 3 crystal (that is, the space group is Pna2 1 ).
  • crystallite size of the ⁇ iron oxide particles is preferably 8 nm or more and 30 nm or less, more preferably 12 nm or more and 20 nm or less. If the crystallite size is less than 8 nm, the coercive force Hc may decrease due to the influence of thermal fluctuation. On the other hand, if the crystallite size exceeds 30 nm, it may be difficult to obtain a high recording density magnetic recording medium.
  • the average particle size D ave of the magnetic powder is preferably 8 nm or more and 30 nm or less, more preferably 12 nm or more and 20 nm or less.
  • the average particle size D ave of the magnetic powder is less than 8 nm, it is difficult to disperse the magnetic powder during production of the magnetic recording medium, and the C / N of the magnetic recording medium may be deteriorated.
  • the average particle size D ave of the magnetic powder exceeds 30 nm, it may be difficult to obtain a high recording density magnetic recording medium.
  • TEM transmission electron microscope
  • the coefficient of variation of the magnetic powder represented by the following formula (1) is 30% or less.
  • Coefficient of variation [%] ([standard deviation of particle size] / [average particle size]) ⁇ 100 (1) If the coefficient of variation exceeds 30%, the variation in the particle size of the ⁇ iron oxide particles increases, and the variation in the magnetic characteristics of the magnetic powder may increase.
  • the coefficient of variation of the magnetic powder is determined as follows. First, the particle size distribution of the magnetic powder is obtained in the same manner as the above average particle size calculation method. Next, the median diameter (50% diameter, D50) is obtained from the obtained particle size distribution, and this is set as the average particle size D ave . Further, a standard deviation ⁇ is obtained from the obtained particle size distribution. Next, ⁇ / D ave is calculated from the obtained average particle size D ave and standard deviation ⁇ of the particle size distribution, and this is calculated as a variation coefficient.
  • the ratio B / A between the main peak height A and the sub-peak height B near zero magnetic field is 0.5 or less (see FIG. 1).
  • the ratio B / A exceeds 0.5, the particle size variation of the ⁇ iron oxide particles becomes large, and the magnetic property variation of the magnetic powder may be increased.
  • the ratio B / A is obtained as follows using a vibrating sample magnetometer (VSM) or a superconducting quantum interference device (SQUID).
  • VSM vibrating sample magnetometer
  • SQUID superconducting quantum interference device
  • the magnetic powder is sampled into a predetermined shape.
  • the form of sampling can be freely performed within a range that does not affect the measurement, such as compaction to a measurement capsule and attachment to a measurement tape.
  • the MH loop of the magnetic powder sample is measured, and the SFD curve is calculated from the obtained MH curve.
  • a program attached to the measuring instrument may be used, or another program may be used.
  • the measurement of the MH loop is performed at room temperature (23 ° C.).
  • This method for producing magnetic powder is to synthesize iron oxide particle powder using a powder of nanoparticles containing FeO (ferrous oxide) (hereinafter referred to as “FeO particles”) as a starting material.
  • FeO particles FeO particles
  • a powder of FeO particles (precursor particles) 11a as a starting material shown in FIG. 3A is synthesized in a vacuum by a liquid phase complex thermal decomposition method.
  • the FeO particles may contain, for example, at least one metal selected from Al, Ga, and In.
  • the FeO particle 11a powder it is preferable to synthesize the FeO particle 11a powder so that the particle size distribution of the FeO particle 11a powder is substantially the same as the particle size distribution of the target ⁇ iron oxide particle powder.
  • the coefficient of variation of the powder of the FeO particles 11a represented by the above formula (1) is 30% or less. This is because the coefficient of variation of the magnetic powder can be reduced to 30% or less.
  • the variation coefficient of the powder of the FeO particles 11a is obtained in the same manner as the variation coefficient of the magnetic powder.
  • step S12 in order to suppress the aggregation of the FeO particles 11a during the high-temperature heat treatment in the subsequent process, silica coating is performed on the surface of the FeO particles 11a by the reverse micelle method, and as shown in FIG. 3B, the FeO particles 11a A silica coat layer 11b is formed on the surface. Thereby, the powder of a silica coat particle is produced.
  • step S13 the surface of the silica-coated particles is coated with a coating agent 11c in order to further suppress the aggregation of the FeO particles 11a during the high-temperature heat treatment in the subsequent process.
  • the coating agent 11c may partially cover the surface of the silica-coated particles or may cover the entire surface of the silica-coated particles, but in order to further enhance the effect of suppressing the aggregation of the FeO particles 11a. It is preferable to cover the entire surface of the silica-coated particles.
  • the metal chloride and sulfate contain at least one of Mg and Al.
  • the metal chloride is, for example, at least one of polyaluminum chloride (PAC), aluminum chloride, and magnesium chloride.
  • the sulfate is, for example, at least one of aluminum sulfate, aluminum ammonium sulfate, and magnesium sulfate.
  • the coating of the silica-coated particles with the coating agent 11c is performed, for example, in a solvent using the potential difference between the silica-coated particles and the coating agent 11c as follows. First, after preparing a dispersion by dispersing silica-coated particle powder in a solvent, the coating agent 11c is added to the dispersion. Next, the zeta potential of the silica-coated particles and the coating agent 11c is adjusted so that the zeta potential of the silica-coated particles becomes negative and the zeta potential of the coating agent 11c becomes positive.
  • the pH of the dispersion is adjusted so that the silica-coated particles have a negative zeta potential and the coating agent 11c has a positive zeta potential.
  • the surface of a silica coat particle is coat
  • the pH of the dispersion is preferably adjusted to 6 or more and 10 or less, more preferably 7.5 or more and 8.5 or less by adjusting the pH.
  • the zeta potential of the silica-coated particles can be made negative, and the zeta potential of the coating agent 11c can be made positive. Thereafter, the dispersion is washed and dried to obtain a powder of coated particles.
  • step S14 the powder of the coated particles is fired at a high temperature of 1000 ° C. or higher, thereby transforming the FeO particles 11a into the ⁇ iron oxide particles 11 as shown in FIG. 3D.
  • step S15 the silica coat layer 11b and the coating agent 11c on the surface of the ⁇ iron oxide particles 11 are removed using an alkaline solution. Thereby, the powder of the ⁇ iron oxide particles (hard magnetic particles) 11 shown in FIG. 3E is obtained.
  • the coefficient of variation of the magnetic powder represented by the above formula (1) is 30% or less, and the main peak height A and the magnetic field zero in the SFD curve of the magnetic powder.
  • the ratio B / A with the height B of the nearby sub-peak is 0.5 or less.
  • the surface of silica-coated particles is coated with at least one coating agent 11c of metal chloride and sulfate to produce coated particles.
  • the coated iron particles are heat-treated to produce ⁇ iron oxide particles (hard magnetic particles) 11. Therefore, aggregation of the FeO particles (precursor particles) 11a can be suppressed even after heat treatment for a long time at a high temperature. That is, generation of coarse particles can be suppressed.
  • the phase transformation from FeO particles (precursor particles) 11a to ⁇ -iron oxide particles 11 is achieved. Can be promoted. Therefore, the firing time can be shortened.
  • FeO particle powder is synthesized by a liquid phase complex thermal decomposition method, so that FeO particle powder having a sharper particle size distribution can be obtained. Since the powder of ⁇ iron oxide particles is synthesized by heat-treating the powder of FeO particles having such a particle size distribution (that is, the powder of FeO particles having a small variation in particle size), the formation of ⁇ phase and ⁇ phase is not possible. Suppressed and high-purity ⁇ iron oxide particle powder with few impurities can be obtained. Therefore, a powder of ⁇ iron oxide particles having a single phase or a powder of ⁇ iron oxide particles close to a single phase can be obtained.
  • the powder of the ⁇ iron oxide particles 11 is produced by heat-treating the powder of FeO particles having a sharper particle size distribution, so that the particle size distribution of the ⁇ iron oxide particles 11 is further increased. Can be sharp.
  • the magnetic powder of the FeO particles 11a may be classified to obtain a FeO particle 11a powder having a sharper particle size distribution. In this case, since the variation in the size of the ⁇ iron oxide particles can be further suppressed, a powder of ⁇ iron oxide particles having more excellent magnetic properties can be obtained.
  • Modification 2 In the first embodiment described above, the case where the pH of the dispersion is adjusted after the coating agent 11c is added to the dispersion has been described. However, after the dispersion is prepared by dispersing silica-coated particles in a solvent. The pH of the dispersion may be adjusted before adding the coating agent 11c to the dispersion. Further, the pH of the solvent may be adjusted before the silica-coated particles are added to the solvent.
  • This magnetic powder is produced by synthesizing a powder of ⁇ iron oxide particles using a powder of nanoparticles containing Fe 3 O 4 (triiron tetroxide) (hereinafter referred to as “Fe 3 O 4 particles”) as a starting material. It is.
  • step S21 iron acetylacetonate is mixed with a solvent to prepare a precursor solution, and then the precursor solution is defoamed.
  • a solvent those that also function as a ligand are used, and oleic acid and oleylamine are preferable. This is because Fe 3 O 4 particles with less agglomeration can be synthesized, and thus a powder of Fe 3 O 4 particles having a sharper particle size distribution can be obtained.
  • concentration of iron acetylacetonate in the precursor solution is increased, the size of Fe 3 O 4 particles as the precursor particles can be increased.
  • the method of defoaming treatment is not particularly limited, but a method of heat-treating the prepared solution in a reduced pressure atmosphere is preferable.
  • a method of heat-treating the prepared solution in a reduced pressure atmosphere is preferable.
  • generation of bubbles can be suppressed even when a large amount of Fe 3 O 4 particles are synthesized.
  • impurities contained in the precursor solution it is possible to remove low-boiling impurities and moisture generated when oleic acid and oleylamine are mixed. Therefore, even in a mass synthesis system, Fe has a uniform particle size distribution. It is easy to obtain 3 O 4 particles.
  • generation of bubbles in the next step can also be suppressed by previously dissolving the raw material iron acetylacetonate in a highly soluble solvent (for example, phenylethyl ether).
  • a highly soluble solvent for example, phenylethyl ether.
  • step S22 a powder of Fe 3 O 4 particles (precursor particles) as a starting material is synthesized by a liquid phase complex thermal decomposition method using the defoamed solution. Specifically, the defoamed solution is heated in an inert gas atmosphere such as nitrogen gas. As a result, after nuclei are generated in the precursor solution, the generated nuclei grow and Fe 3 O 4 particles are synthesized.
  • step S12 The subsequent silica coating process (step S12), the coating process (step S13), the high-temperature heat treatment process (step S14), and the silica coating and coating removal process (step S15) are the first implementation. It is the same as that of the manufacturing method of the magnetic powder which concerns on a form.
  • step S14 Fe 3 O 4 particles are transformed into ⁇ iron oxide particles by high-temperature firing.
  • the surface of the silica-coated particles is coated with at least one coating agent of metal chloride and sulfate. As with the method for producing magnetic powder, the generation of coarse particles can be suppressed.
  • the phase transformation from Fe 3 O 4 particles (precursor particles) to ⁇ iron oxide particles is achieved. Can be promoted. Therefore, the firing time can be shortened.
  • Fe 3 O 4 particle powder is synthesized by the liquid phase complex pyrolysis method, so that Fe 3 O 4 particle powder having a sharper particle size distribution is obtained. can get. Due to the synthetic powder ⁇ iron oxide particles by heat treatment such a particle size distribution of Fe 3 O 4 particles (i.e. powder small variation Fe 3 O 4 particles having a particle size), alpha-phase And the formation of the ⁇ phase is suppressed, and a powder of high purity ⁇ iron oxide particles with few impurities can be obtained. Therefore, a powder of ⁇ iron oxide particles having a single phase or a powder of ⁇ iron oxide particles close to a single phase can be obtained.
  • the powder of ⁇ iron oxide particles is produced by heat-treating the powder of Fe 3 O 4 particles having a sharper particle size distribution, so the particle size distribution of the powder of ⁇ iron oxide particles is reduced. It can be sharper.
  • Fe 3 O 4 particles can be synthesized in a shorter time than FeO particles. Therefore, in the magnetic powder manufacturing method according to the second embodiment, the productivity of the powder of ⁇ iron oxide particles can be further improved.
  • Modification 1 After the Fe 3 O 4 particle synthesis step and before the silica coating treatment step, the magnetic powder of Fe 3 O 4 particles is classified to obtain Fe 3 O 4 particle powder having a sharper particle size distribution. It may be. In this case, since the variation in the size of the ⁇ iron oxide particles can be further suppressed, a powder of ⁇ iron oxide particles having more excellent magnetic properties can be obtained.
  • the Fe 3 O 4 particle synthesis method is not limited to the synthesis method described in the second embodiment.
  • any of the following synthesis methods (1) to (3) may be adopted. .
  • Fe 3 O 4 particles are synthesized as follows.
  • the system can operate at a maximum of 850 W / 2.45 GHz.
  • 1 mmol of iron (III) acetylacetonate is added to a mixed solvent of 4 ml of oleic acid, 10 ml of oleylamine and 2 ml of 1-octadecene, and a maximum output of 850 W of a single mode microwave system is applied.
  • the temperature is raised from room temperature to 200 ° C. in 10 minutes and kept in that state for 10 minutes.
  • the solution is then heated to 250 ° C. over 15 minutes and kept for 5 minutes until the reaction is complete.
  • it is cooled to 60 ° C. over about 3 minutes with compressed air, and the resulting solution is washed with ethanol and acetone and finally dried to obtain Fe 3 O 4 particles.
  • the magnetic powder according to the third embodiment of the present disclosure is a powder of ⁇ iron oxide particles having a core-shell structure. As shown in FIG. 5, the core-shell particle includes a core portion 12 and a shell portion 13 provided around the core portion 12. The core portion 12 and the shell portion 13 are exchange coupled. At the interface between the core portion 12 and the shell portion 13, the composition and / or state of both may change discontinuously or may change continuously.
  • the magnetic powder according to the third embodiment is suitable for use in a recording layer (magnetic layer) of a high-density magnetic recording medium.
  • the core part 12 is the same as the ⁇ iron oxide particles in the first embodiment.
  • the shell portion 13 covers at least a part of the periphery of the core portion 12. Specifically, the shell portion 13 may partially cover the periphery of the core portion 12 or may cover the entire periphery of the core portion 12. From the viewpoint of ensuring sufficient exchange coupling between the core portion 12 and the shell portion 13 and improving the magnetic properties, it is preferable to cover the entire surface of the core portion 12.
  • the shell portion 13 includes ⁇ -Fe that is a soft magnetic material.
  • the shell portion 13 can be obtained, for example, by reducing the surface of ⁇ iron oxide particles (hard magnetic particles) as a precursor of core-shell particles.
  • ⁇ -Fe contained in the shell portion 13 can be obtained by reducing ⁇ iron oxide contained in the core portion 12.
  • the method for manufacturing a magnetic powder according to the third embodiment of the present disclosure further includes the following reduction treatment step (step S16) after the coat removal step (step S15). This is different from the magnetic powder manufacturing method according to the first embodiment.
  • step S16 the powder of the ⁇ iron oxide particles 11 obtained by removing the silica coat layer 11b is reduced. Specifically, the particle surface is reduced by heat-treating the powder of the ⁇ iron oxide particles 11 in a high-temperature hydrogen atmosphere for a certain period of time. As a result, a shell portion 13 containing ⁇ -Fe is formed around the core portion 12. As described above, a powder of ⁇ iron oxide particles having a target core-shell structure is obtained.
  • the magnetic powder according to the third embodiment includes a powder of core-shell particles including a core portion 12 containing ⁇ iron oxide and a shell portion 13 containing ⁇ -Fe.
  • core-shell particles including the shell portion 13 containing ⁇ -Fe that is a soft magnetic material are formed by reducing ⁇ iron oxide particles that are hard magnetic particles. .
  • uniform core-shell particles can be produced, and the exchange interaction between the ⁇ -iron oxide particles serving as the core portion 12 and the ⁇ -Fe serving as the shell portion 13 can be expressed uniformly. Therefore, the characteristics of the soft magnetic material having a high saturation magnetization amount ⁇ s can be utilized, and a high saturation magnetization amount ⁇ s can be obtained as the entire core-shell particle.
  • the coercive force Hc of the core part 12 alone can be adjusted to the coercive force Hc suitable for recording while maintaining the coercive force Hc of the core-shell particles as a whole while maintaining a large value in order to ensure thermal stability. Therefore, the ease of recording increases.
  • the ⁇ iron oxide particles serving as the core portion 12 can be made larger than the conventional method, it is easy to maintain a high coercive force Hc, which is advantageous in improving the thermal stability.
  • the surface of the ⁇ iron oxide particles prepared in advance is directly reduced, so that the particle size of the ⁇ iron oxide particles as a precursor is obtained by the reduction treatment.
  • the particle size of the core-shell particles is about the same. Therefore, core-shell particles having a desired particle size can be produced by adjusting the particle size of the ⁇ iron oxide particles serving as the precursor. Therefore, occurrence of variations in particle size distribution can be suppressed.
  • Modification 1 The powder of the ⁇ iron oxide particles 11 may be reduced with calcium hydride (CaH 2 ). It is known that CaH 2 is very reducible. For this reason, when the powder of the ⁇ iron oxide particles 11 is reduced to form ⁇ -Fe, it can be used as an alternative to H 2 . Since CaH 2 is very reducible, it can be reduced at a lower temperature than H 2 . It is also possible to suppress aggregation of the ⁇ iron oxide particles 11 during the reduction.
  • CaH 2 calcium hydride
  • the magnetic powder according to the fourth embodiment of the present disclosure is a powder of core-shell particles including a core portion 12 and a shell portion 14 having a two-layer structure provided around the core portion 12. It is.
  • the same parts as those in the third embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the shell portion 14 having a two-layer structure includes a first shell portion 14a provided on the core portion 12 and a second shell portion 14b provided on the first shell portion 14a.
  • the first shell portion 14a which is a soft magnetic layer, is the same as the shell portion 14 in the third embodiment.
  • the second shell portion 14b is an oxide film as an antioxidant layer.
  • the second shell portion 14b is made of a material obtained by oxidizing ⁇ -Fe (soft magnetic material) contained in the first shell portion 14a, for example, at least one of Fe 3 O 4 , Fe 2 O 3 and FeO. Contains seed iron oxide.
  • the magnetic powder manufacturing method according to the fourth embodiment of the present disclosure includes the following reduction process (step S ⁇ b> 17) and gradual oxidation process after the coat removal process (step S ⁇ b> 15).
  • Step S18 is different from the magnetic powder manufacturing method according to the first embodiment in that it further includes (Step S18).
  • step S17 the powder of the ⁇ iron oxide particles 11 obtained by removing the silica coat layer 11b is reduced. As a result, the first shell portion 14 a containing ⁇ -Fe is formed around the core portion 12. Note that the reduction process in step S17 is the same as the reduction process in step S16 in the third embodiment.
  • step S18 the powder of the ⁇ iron oxide particles 11 whose surface is covered with the first shell portion 14a is subjected to a gradual oxidation treatment. Specifically, after the powder of the ⁇ -iron oxide particles 11 is cooled to room temperature in a nitrogen atmosphere, heat treatment is performed in an O 2 + N 2 mixed gas atmosphere, whereby a second oxide film as an outermost layer is formed. Shell portion 14b is formed. As a result, a powder of core-shell ⁇ iron oxide particles having excellent oxidation resistance can be obtained.
  • the magnetic powder manufacturing method according to the first embodiment further includes a reduction process (step S17) and a gradual oxidation process (step S18).
  • the method for producing magnetic powder according to the second embodiment may further include a reduction treatment step (step S17) and a gradual oxidation treatment step (step S18).
  • the magnetic recording medium according to the fifth embodiment of the present disclosure is a so-called tape-shaped magnetic recording medium, and has a long base 21 and one main surface of the base 21 as shown in FIG.
  • An underlayer (nonmagnetic layer) 22 provided and a recording layer (magnetic layer) 23 provided on the underlayer 22 are provided.
  • the underlayer 22 is provided as necessary, and may not be provided.
  • the magnetic recording medium may further include a protective layer (not shown) or the like provided on the recording layer 23 as necessary. Moreover, you may make it further provide the backcoat layer 24 provided on the other main surface of the base
  • the ratio B / A between the main peak height A and the sub-peak height B near zero magnetic field is 0.5 or less (see FIG. 1).
  • the ratio B / A exceeds 0.5, the particle size variation of the ⁇ iron oxide particles becomes large, the magnetic characteristics of the recording layer 23 are deteriorated, and the C / N (Carrier to Noise Ratio) may be deteriorated. .
  • the above ratio B / A is obtained as follows. First, a measurement sample is cut out from the long magnetic recording medium 10, and the MH loop of the entire measurement sample corresponding to the vertical direction (thickness direction) of the magnetic recording medium is measured using VSM. Next, the coating film (the base layer 22, the recording layer 23, the backcoat layer 24, etc.) is wiped off using acetone, ethanol, or the like, leaving only the base 21 as a sample for background correction, using VSM. The MH loop of the base 21 corresponding to the vertical direction of the base 21 (the vertical direction of the magnetic recording medium) is measured. Thereafter, the MH loop of the substrate 21 is subtracted from the MH loop of the entire measurement sample to obtain the MH loop after background correction.
  • the ratio B / A is obtained in the same manner as in the case of the magnetic powder according to the first embodiment.
  • a SQUID that can obtain a higher applied magnetic field is used. Further, “demagnetizing field correction” is not performed when the MH loop is measured in the vertical direction.
  • ⁇ [nm] is obtained as follows. First, a magnetic recording medium to be measured is processed by an FIB (Focused Ion Beam) method or the like to produce a thin piece for TEM observation, and a cross section of the thin piece is observed by TEM. The observation magnification is preferably at least 100,000 times so that the thickness of the recording layer 23 can be clearly observed. Observation of the cross-section TEM is performed at a total of five positions every 100 m in the longitudinal direction (running direction) of the magnetic recording medium. The observation direction at each of these positions is the horizontal direction (width direction) of the magnetic recording medium. The thickness of the recording layer 23 is observed evenly at 50 points per field, and the average thickness ⁇ [nm] of the recording layer 23 is obtained by simply averaging (arithmetic average) the thicknesses of all five fields.
  • FIB Fluorous Ion Beam
  • Mrt [mA] is obtained as follows. First, in the same manner as the calculation method of the ratio B / A, an MH loop after background correction is obtained. Next, the residual magnetization amount Mr [emu] is obtained from the obtained background-corrected MH loop, and divided by the area of the measurement sample, Mrt [mA] is calculated.
  • the squareness ratio Rs in the direction perpendicular to the recording layer 23 is preferably 60% or more. If the squareness ratio Rs is less than 60%, C / N may decrease.
  • the base body 21 serving as a support is a long nonmagnetic base body having flexibility.
  • the nonmagnetic substrate is a film, and the thickness of the film is, for example, 3 ⁇ m or more and 8 ⁇ m or less.
  • the material of the substrate 21 include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, cellulose derivatives such as cellulose triacetate, cellulose diacetate, and cellulose butyrate, and vinyl-based materials such as polyvinyl chloride and polyvinylidene chloride.
  • Resins, plastics such as polycarbonate, polyimide, and polyamideimide, light metals such as aluminum alloy and titanium alloy, ceramics such as alumina glass, and the like can be used.
  • the recording layer 23 includes, for example, the magnetic powder, the binder, and the conductive particles according to the first embodiment.
  • the recording layer 23 may further contain additives such as a lubricant, an abrasive, and a rust preventive as necessary.
  • the binder a resin having a structure in which a crosslinking reaction is imparted to a polyurethane resin, a vinyl chloride resin, or the like is preferable.
  • the binder is not limited to these, and other resins may be appropriately blended depending on the physical properties required for the magnetic recording medium.
  • the resin to be blended is not particularly limited as long as it is a resin generally used in a coating type magnetic recording medium.
  • polyvinyl chloride polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylate ester-acrylonitrile copolymer, acrylate ester-chloride Vinyl-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylate ester-acrylonitrile copolymer, acrylate ester-vinylidene chloride copolymer, methacrylate ester-vinylidene chloride copolymer, methacrylate ester-chloride Vinyl copolymers, methacrylate-ethylene copolymers, polyvinyl fluoride, vinylidene chloride-acrylonitrile copolymers, acrylonitrile-butadiene copolymers, polyamide resins, polyvinyl butyral, cellulose derivatives Acetate butyrate,
  • thermosetting resins or reactive resins examples include phenol resins, epoxy resins, urea resins, melamine resins, alkyd resins, silicone resins, polyamine resins, urea formaldehyde resins, and the like.
  • Each binder described above is introduced with a polar functional group such as —SO 3 M, —OSO 3 M, —COOM, P ⁇ O (OM) 2 for the purpose of improving the dispersibility of the magnetic powder. It may be.
  • M in the formula is a hydrogen atom or an alkali metal such as lithium, potassium, or sodium.
  • polar functional group -NR1R2, -NR1R2R3 + X - as the side chain type having an end group of,> NR1R2 + X - include those of the main chain type.
  • R1, R2, and R3 are hydrogen atoms or hydrocarbon groups
  • X ⁇ is a halogen element ion such as fluorine, chlorine, bromine, or iodine, or an inorganic or organic ion.
  • polar functional groups include —OH, —SH, —CN, and epoxy groups.
  • the recording layer 23 is made of aluminum oxide ( ⁇ , ⁇ or ⁇ alumina), chromium oxide, silicon oxide, diamond, garnet, emery, boron nitride, titanium carbide, silicon carbide, titanium carbide, titanium oxide (non-magnetic reinforcing particles). Rutile type or anatase type titanium oxide) and the like.
  • the average thickness ⁇ of the recording layer 23 is preferably 30 nm to 120 nm, more preferably 50 nm to 70 nm. If the average thickness ⁇ of the recording layer 23 is less than 30 nm, it may be difficult to form the recording layer 23 with a uniform thickness by coating. On the other hand, if the average thickness ⁇ of the recording layer 23 exceeds 120 nm, the output in the short wavelength region necessary for a high-density magnetic recording medium may be deteriorated due to incoherent magnetization reversal or the like.
  • the method for calculating the average thickness ⁇ of the recording layer 23 is as described in the method for calculating the ratio ⁇ / Mrt.
  • the underlayer 22 is a nonmagnetic layer containing nonmagnetic powder and a binder as main components.
  • the underlayer 22 may further contain at least one additive selected from conductive particles, a lubricant, a curing agent, a rust preventive agent, and the like as necessary.
  • the nonmagnetic powder may be an inorganic substance or an organic substance.
  • the nonmagnetic powder may be carbon black or the like.
  • inorganic substances include metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides, and the like.
  • shape of the nonmagnetic powder include various shapes such as a needle shape, a spherical shape, a cubic shape, and a plate shape, but are not limited thereto.
  • the binder is the same as that of the recording layer 23 described above.
  • the average thickness of the underlayer 22 is preferably 0.6 ⁇ m or more and 2.0 ⁇ m or less, more preferably 0.8 ⁇ m or more and 1.4 ⁇ m or less. If the average thickness of the underlayer 22 is less than 0.6 ⁇ m, the electromagnetic conversion characteristics may be deteriorated due to deterioration of surface properties. On the other hand, when the average thickness of the underlayer 22 exceeds 2.0 ⁇ m, coarse protrusions due to uneven drying of the coating film are generated, and similarly there is a possibility that the electromagnetic conversion characteristics deteriorate.
  • the method for calculating the average thickness of the underlayer 22 is the same as the method for calculating the average thickness ⁇ of the recording layer 23.
  • a base layer-forming coating material is prepared by kneading and dispersing a nonmagnetic powder, a binder and the like in a solvent.
  • the recording powder for forming a recording layer is prepared by kneading and dispersing the magnetic powder and the binder according to the first embodiment in a solvent.
  • the following solvent, dispersing device and kneading device can be used for the preparation of the recording layer forming coating material and the underlayer forming coating material.
  • Examples of the solvent used in the above-mentioned coating preparation include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, alcohol solvents such as methanol, ethanol, and propanol, methyl acetate, ethyl acetate, butyl acetate, and propyl acetate.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • alcohol solvents such as methanol, ethanol, and propanol, methyl acetate, ethyl acetate, butyl acetate, and propyl acetate.
  • Ester solvents such as ethyl lactate and ethylene glycol acetate, ether solvents such as diethylene glycol dimethyl ether, 2-ethoxyethanol, tetrahydrofuran and dioxane, aromatic hydrocarbon solvents such as benzene, toluene and xylene, methylene chloride, ethylene chloride, Halogenated hydrocarbon solvents such as carbon tetrachloride, chloroform, chlorobenzene and the like. These may be used singly or may be mixed as appropriate.
  • Examples of the kneading apparatus used for the coating preparation described above include a continuous biaxial kneader, a continuous biaxial kneader that can be diluted in multiple stages, a kneader, a pressure kneader, a roll kneader, and the like.
  • the present invention is not particularly limited to these devices.
  • dispersing device used for the above-mentioned coating preparation examples include, for example, a roll mill, a ball mill, a horizontal sand mill, a vertical sand mill, a spike mill, a pin mill, a tower mill, a pearl mill (for example, “DCP mill” manufactured by Eirich), a homogenizer, a super
  • a dispersing device such as a sonic disperser can be used, but it is not particularly limited to these devices.
  • the base layer 22 is formed by applying the base layer-forming paint to one main surface of the substrate 21 and drying it.
  • the recording layer 23 is formed on the underlayer 22 by applying a coating for forming the recording layer on the underlayer 22 and drying it.
  • the magnetic powder may be magnetically oriented in the thickness direction of the base 21 by, for example, a solenoid coil.
  • a protective layer and a lubricant layer may be formed on the recording layer 23, or a backcoat layer 24 may be formed on the other main surface of the substrate 21.
  • the substrate 21 on which the base layer 22 and the recording layer 23 are formed is rewound around the large-diameter core, and a curing process is performed.
  • the base 21 on which the base layer 22 and the recording layer 23 are formed is calendered and then cut into a predetermined width. Thus, the intended magnetic recording medium is obtained.
  • the recording layer 23 includes the magnetic powder according to the first embodiment, a magnetic recording medium having excellent magnetic characteristics can be realized. Therefore, a signal recorded with high density can be reproduced with low noise. Therefore, high C / N can be realized.
  • the recording layer 23 may include the magnetic powder according to the second, third, or fourth embodiment instead of the magnetic powder according to the first embodiment.
  • the magnetic powder according to the third or fourth embodiment is used, higher C / N can be achieved than the magnetic recording medium according to the fifth embodiment.
  • FIG. 10 shows an outline of the FeO nanoparticle synthesis process. First, 8.0 mmol of iron acetylacetonate, 20.0 mL of oleic acid, and 20.0 mL of oleylamine were weighed into a 300 ml round bottom three-necked flask, and pre-treatment heating was performed at 210 ° C. for 36 hours in a 100 Pa vacuum atmosphere. .
  • FIG. 11 shows an outline of the silica coating process.
  • 80 mL of cyclohexane, 12 mL of polyoxyethylene (5) nonylphenyl ether (IGEPAL (registered trademark)) and 2 mL of aqueous ammonia are mixed in a 100 mL eggplant-shaped flask and irradiated with ultrasonic waves until a transparent uniform solution is obtained.
  • the mixture was stirred at 600 rpm for 60 minutes.
  • FIG. 12 shows the outline of the coating treatment (PAC treatment) process.
  • PAC treatment coating treatment
  • FIG. 13 shows an overview of the silica coat and coating removal process.
  • a powder of nanoparticles and a NaOH aqueous solution adjusted to 5M were put into a Teflon centrifuge tube (registered trademark), heated to 60 ° C. in an oil bath, and left for 24 hours. Thereafter, the operation of adding ion-exchanged water and separating by centrifugation was repeated a plurality of times. Further, after adding ethanol, the mixture was centrifuged and dried at 60 ° C. to obtain a nanoparticle powder from which the silica coat and coating agent had been removed.
  • Teflon centrifuge tube registered trademark
  • Example 2 A nanoparticle powder was obtained in the same manner as in Example 1 except that the pH was adjusted to 7.0 in the coating treatment step.
  • Example 3 A nanoparticle powder was obtained in the same manner as in Example 1 except that the pH was adjusted to 9.0 in the coating treatment step.
  • Example 4 A nanoparticle powder was obtained in the same manner as in Example 1 except that the pH was adjusted to 10.0 in the coating treatment step.
  • Example 5 A nanoparticle powder was obtained in the same manner as in Example 1 except that the pH was adjusted to 6.1 in the coating treatment step.
  • Example 6 In the step of the coating treatment, a nanoparticle powder was obtained in the same manner as in Example 1 except that aluminum sulfate was used as the coating agent.
  • Nanoparticle powder was obtained in the same manner as in Example 1 except that ammonium aluminum sulfate was used as the coating agent in the coating treatment step.
  • Example 8 In the coating treatment step, nanoparticle powder was obtained in the same manner as in Example 1 except that magnesium sulfate was used as the coating.
  • Nanoparticle powder was obtained in the same manner as in Example 1 except that magnesium chloride was used as a coating agent in the PAC treatment step.
  • Example 10 A nanoparticle powder was obtained in the same manner as in Example 1 except that Fe 3 O 4 nanoparticles were synthesized as precursor particles instead of FeO nanoparticles.
  • the thickness of the silica coat of Example 10 is different from the thickness of the silica coat of Example 1 because it is not due to a change in the conditions of the silica coat treatment, and the particle size of the precursor particles This is due to the difference.
  • the following describes synthetic steps Fe 3 O 4 nanoparticles.
  • Figure 14 shows an outline of Fe 3 O 4 nano-particles synthesis process as a precursor particle.
  • 30.0 mmol of iron acetylacetonate, 20.0 mL of oleic acid, and 30.0 mL of oleylamine were weighed and mixed in a 300 ml round bottom three-necked flask to prepare a solution.
  • defoaming treatment was performed by heating the solution at 130 ° C. for 1 hour under a reduced pressure atmosphere of 100 Pa.
  • Example 12 A nanoparticle powder was obtained in the same manner as in Example 1 except that the pretreatment heating time was 24 hours in the FeO nanoparticle synthesis step.
  • the thickness of the silica coat of Example 12 is different from the thickness of the silica coat of Example 1, not by changing the conditions of the silica coat treatment, but the particle size of the precursor particles This is due to the difference.
  • Example 1 A nanoparticle powder was obtained in the same manner as in Example 1 except that the coating treatment step was omitted.
  • Example 2 A nanoparticle powder was obtained in the same manner as in Example 1 except that the pH was adjusted to 5.0 in the coating treatment step.
  • Example 3 A nanoparticle powder was obtained in the same manner as in Example 6 except that the pH was adjusted to 4.0 in the coating treatment step.
  • Example 4 In the step of the coating treatment, a nanoparticle powder was obtained in the same manner as in Example 1 except that iron chloride was used as the coating.
  • Example 5 A nanoparticle powder was obtained in the same manner as in Example 1 except that the pH was adjusted to 10.5 in the coating treatment process.
  • Table 1 shows the synthesis conditions and evaluation results of the nanoparticles of Examples 1 to 12 and Comparative Examples 1 to 5.
  • ratio B / A The ratio B / A of the nanoparticle powder was determined by the procedure described in the first embodiment.
  • Table 1 shows the following.
  • Examples 1 to 10 including (1) a coating treatment step, (2) using a metal chloride and sulfate containing Mg or Al as the coating, and (3) setting the pH of the dispersion to 6 or more,
  • the powder of ⁇ iron oxide nanoparticles can be synthesized in a short period of 20 hours. This coats the surface of silica-coated precursor particles (silica-coated FeO nanoparticles, silica-coated Fe 3 O 4 nanoparticles) with metal chlorides and sulfates containing at least one of Mg and Al. This is considered to be because the phase transformation from the FeO phase or Fe 3 O 4 phase to the ⁇ -Fe 2 O 3 phase was promoted and the firing time was shortened.
  • the ratio B / A (see FIG. 1) between the main peak height A and the sub-peak height B near the zero magnetic field in the SFD curve of the magnetic particles is set to 0.5 or less. it can. This is because the surface of the silica-coated precursor particles is coated with metal chlorides and sulfates containing at least one of Mg and Al, thereby agglomerating the precursor particles (that is, generating coarse particles). This is considered to be because the variation in the particle size of the ⁇ iron oxide particles was suppressed.
  • Comparative Example 1 that does not include a coating treatment step, mixed phase nanoparticles composed of ⁇ iron oxide and ⁇ iron oxide are synthesized in a short period of 20 hours. This is because the phase transformation from the FeO phase to the ⁇ -Fe 2 O 3 phase is not promoted only by treating the surface of the precursor particles (FeO nanoparticles) with silica coating, and the substantially single-phase ⁇ -Fe 2 O 3 phase is not promoted. This is probably because the phase was not obtained.
  • the crystallite size of the ⁇ iron oxide particles obtained after firing can be adjusted by adjusting the crystallite size of the precursor particles (FeO particles).
  • the ratio B / A in Example 11 is 1 or more is not due to aggregation of the precursor particles in the high-temperature heat treatment step, but superparamagnetism (superparamagnetism) due to finer crystallite size. This is thought to be due to the deterioration of the magnetic properties.
  • the ratio B / A is 1 or more. This is because if the surface of the precursor particles is only silica-coated, aggregation of the precursor particles cannot be sufficiently suppressed in the high-temperature heat treatment step (firing step) (that is, generation of coarse particles cannot be sufficiently suppressed). This is probably because the variation in the particle size of the ⁇ iron oxide particles could not be suppressed, and as described above, the single phase ⁇ -Fe 2 O 3 phase could not be obtained.
  • Comparative Example 2 comprising (1) a coating treatment step, (2) a metal chloride and sulfate containing Mg or Al as the coating, and (3 ′) the pH of the dispersion was less than 6. 3, a powder of ⁇ iron oxide nanoparticles is synthesized. Further, the ratio B / A becomes 1 or more.
  • a coating treatment process is provided, (2) Metal chloride and sulfate containing Mg or Al are used as the coating, but (3 ′) in Comparative Example 5 where the pH of the dispersion exceeds 10. , ⁇ iron oxide and ⁇ iron oxide mixed phase nanoparticles are synthesized. This is because when the pH of the dispersion is adjusted to exceed 10, the zeta potential of the silica-coated precursor particles and the coating agent is negative, so the surface of the silica-coated precursor particles is coated with the coating agent. This is probably because it was not done.
  • the present disclosure can also employ the following configurations.
  • (3) The metal chloride is at least one of polyaluminum chloride (PAC), aluminum chloride and magnesium chloride;
  • (10) The method for producing a magnetic powder according to (9), wherein the precursor particles contain ferrous oxide or triiron tetroxide.
  • (11) The method for producing a magnetic powder according to (9) or (10), wherein the crystallite size of the magnetic particles is 8 nm or more and 30 nm or less.
  • (12) The ratio B / A between the main peak height A and the sub-peak height B in the vicinity of zero magnetic field in the SFD (Switching Field Distribution) curve of the magnetic particles is 0.5 or less, and any of (9) to (11) A method for producing the magnetic powder according to claim 1.
  • the production of the precursor particles by the liquid phase pyrolysis method includes producing the precursor particles by heat treatment after defoaming a solution containing iron acetylacetonate. (13) Manufacturing method. (15) Removing the silica coat and the coating agent from the magnetic particles after the firing; The method for producing magnetic powder according to any one of (9) to (14), further comprising reducing the magnetic particles after the removal. (16) The method for producing a magnetic powder according to (15), further comprising oxidizing the magnetic particles after the reduction treatment.

Abstract

磁性粉末の製造方法は、シリカコートされた前駆体粒子の表面を、金属塩化物および硫酸塩のうちの少なくとも1種の被覆剤で被覆し、被覆剤により被覆された前駆体粒子を焼成することを含む。

Description

磁性粉末の製造方法および磁気記録媒体の製造方法
 本開示は、磁性粉末の製造方法および磁気記録媒体の製造方法に関する。
 ε酸化鉄(ε-Fe23)は、塗布型磁気記録媒体の磁気記録材料への応用が期待されている。ε酸化鉄は、一般的には、前駆体粒子を1000℃以上の高温で長時間焼成することにより合成される。この合成の際に、前駆体粒子同士が凝集してしまい粗大な粒子が生成してしまう虞がある。このため、前駆体粒子同士の凝集を抑制するために、焼成前に前駆体粒子をシリカコートする技術が提案されている(例えば特許文献1参照)。
特開2008-100871号公報
 しかしながら、上述のように焼成前に前駆体粒子をシリカコートするのみでは、粗大粒子の生成を抑制することは困難である。
 本開示の目的は、粗大粒子の生成を抑制することができる磁性粉末の製造方法および磁気記録媒体の製造方法を提供することにある。
 上述の課題を解決するために、第1の開示は、シリカコートされた前駆体粒子の表面を、金属塩化物および硫酸塩のうちの少なくとも1種の被覆剤で被覆し、被覆剤により被覆された前駆体粒子を焼成することを含む磁性粉末の製造方法である。
 第2の開示は、シリカコートされた前駆体粒子の表面を、金属塩化物および硫酸塩のうちの少なくとも1種の被覆剤で被覆し、被覆剤により被覆された前駆体粒子を焼成することにより、磁性粒子を作製し、磁性粒子からシリカコートおよび被覆剤を除去し、除去後の磁性粒子を用いて記録層を形成することを含む磁気記録媒体の製造方法である。
 本開示によれば、粗大粒子の生成を抑制することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果またはそれらと異質な効果であってもよい。
図1は、SFD曲線の一例を示すグラフである。 図2は、本開示の第1の実施形態に係る磁性粉末の製造方法を説明するための工程図である。 図3A~図3Eは、本開示の第1の実施形態に係る磁性粉末の製造方法を説明するための断面図である。 図4は、本開示の第2の実施形態に係る磁性粉末の製造方法を説明するための工程図である。 図5は、本開示の第3の実施形態に係る磁性粉末の断面図である。 図6は、本開示の第3の実施形態に係る磁性粉末の製造方法を説明するための工程図である。 図7は、本開示の第4の実施形態に係る磁性粉末の断面図である。 図8は、本開示の第4の実施形態に係る磁性粉末の製造方法を説明するための工程図である。 図9は、本開示の第5の実施形態に係る磁気記録媒体の断面図である。 図10は、FeOナノ粒子の合成工程を説明するための工程図である。 図11は、シリカコートの処理工程を説明するための工程図である。 図12は、被覆剤の処理工程を説明するための工程図である。 図13は、シリカコートおよび被覆剤の除去工程を説明するための工程図である。 図14は、Fe34ナノ粒子の合成工程を説明するための工程図である。
 本開示の実施形態について以下の順序で説明する。
1 第1の実施形態(磁性粉末の例)
2 第2の実施形態(磁性粉末の例)
3 第3の実施形態(磁性粉末の例)
4 第4の実施形態(磁性粉末の例)
5 第5の実施形態(磁気記録媒体の例)
<1 第1の実施形態>
[磁性粉末の構成]
 本開示の第1の実施形態に係る磁性粉末は、ε酸化鉄を含む硬磁性ナノ粒子(以下「ε酸化鉄粒子」という。)の粉末を含む。第1の実施形態に係る磁性粉末は、高密度の磁気記録媒体の記録層(磁性層)に用いて好適なものである。ε酸化鉄粒子は、例えば、ほぼ立方体状またはほぼ球形状を有している。ε酸化鉄粒子に含まれるε酸化鉄は、ε-Fe23結晶(Feサイトの一部が金属元素Mで置換されたものを含む)を主相とするものが好ましく、単相のε-Fe23からなるものがより好ましい。金属元素Mは、例えば、Al、GaおよびInのうちの少なくとも1種である。但し、鉄酸化物におけるMとFeのモル比をM:Fe=x:(2-x)と表すとき、0≦x<1である。
 本開示において、ε-Fe23結晶には、特に断らない限り、Feサイトが他の元素で置換されていない純粋なε-Fe23結晶の他、Feサイトの一部が3価の金属元素Mで置換されており、純粋なε-Fe23結晶と空間群が同じである(すなわち空間群がPna21である)結晶が含まれる。
(結晶子サイズ)
 ε酸化鉄粒子の結晶子サイズは、好ましくは8nm以上30nm以下、より好ましくは12nm以上20nm以下である。結晶子サイズが8nm未満であると、熱揺らぎの影響で保磁力Hcが低下する虞がある。一方、結晶子サイズが30nmを超えると、高記録密度の磁気記録媒体を得ることが困難となる虞がある。
(平均粒子サイズ)
 磁性粉末の平均粒子サイズDaveは、好ましくは8nm以上30nm以下、より好ましくは12nm以上20nm以下である。磁性粉末の平均粒子サイズDaveが8nm未満であると、磁気記録媒体の作製時に磁性粉末の分散が困難となり、磁気記録媒体のC/Nが悪化する虞がある。一方、磁性粉末の平均粒子サイズDaveが30nmを超えると、高記録密度の磁気記録媒体を得ることが困難となる虞がある。
 上記の磁性粉末の平均粒子サイズDaveは、以下のようにして求められる。まず、透過型電子顕微鏡(Transmission Electron Microscope:TEM)を用いて、磁性粉末を撮影する。次に、撮影したTEM写真から500個のε酸化鉄粒子を無作為に選び出し、それらの各粒子の面積Sを求める。次に、粒子の断面形状が円形であると仮定して、以下の式から各粒子の粒径(直径)Rを粒子サイズとして算出し、磁性粉末の粒度分布を得る。
 R=2×(S/π)1/2
次に、求めた粒度分布からメジアン径(50%径、D50)を求めて、これを平均粒子サイズDaveとする。
(変動係数)
 下記の式(1)で表される磁性粉末の変動係数が30%以下である。
 変動係数[%]=([粒子サイズの標準偏差]/[平均粒子サイズ])×100 ・・・(1)
 変動係数が30%を超えると、ε酸化鉄粒子の粒子サイズのばらつきが大きくなり、磁性粉末の磁気特性のばらつきが大きくなる虞がある。
 上記の磁性粉末の変動係数は、以下のようにして求められる。まず、上記の平均粒子サイズの算出方法と同様にして磁性粉末の粒度分布を得る。次に、求めた粒度分布からメジアン径(50%径、D50)を求めて、これを平均粒子サイズDaveとする。また、求めた粒度分布から標準偏差σを求める。次に、求めた平均粒子サイズDaveおよび粒度分布の標準偏差σからσ/Daveを計算し、これを変動係数として算出する。
(SFD)
 磁性粉末のSFD(Switching Field Distribution)曲線において、メインピーク高さAと磁場ゼロ付近のサブピークの高さBとの比率B/Aが0.5以下である(図1参照)。比率B/Aが0.5を超えると、ε酸化鉄粒子の粒子サイズのばらつきが大きくなり、磁性粉末の磁気特性のばらつきが大きくなる虞がある。
 上記の比率B/Aは、振動試料型磁力計(Vibrating Sample Magnetometer:VSM)または超伝導量子干渉計(Superconducting Quantum Interference Device:SQUID)を用いて、以下のようにして求められる。まず、磁性粉末を所定の形にサンプリングする。サンプリングの形式は、測定用カプセルへの圧密、測定用テープへの貼り付け等、測定に影響を及ぼさない範囲で自由に行うことができる。次に、磁性粉末サンプルのM-Hループを測定し、得られたM-H曲線からSFD曲線を算出する。SFD曲線の算出には測定機に付属のプログラムを用いてもよいし、その他のプログラムを用いてもよい。ここで、M-Hループの測定は、室温(23℃)にて行われる。次に、求めたSFD曲線がY軸(dM/dH)を横切る点の絶対値を「B」とし、M-Hループで言うところの保磁力Hc近傍に見られるメインピークの高さを「A」として、比率B/Aを算出する。
[磁性粉末の製造方法]
 以下、図2、図3A~図3Eを参照して、本開示の第1の実施形態に係る磁性粉末の製造方法について説明する。この磁性粉末の製造方法は、FeO(酸化第一鉄)を含むナノ粒子(以下「FeO粒子」という。)の粉末を出発原料としてε酸化鉄粒子の粉末を合成するものである。
(FeO粒子合成)
 まず、ステップS11において、図3Aに示す、出発原料としてのFeO粒子(前駆体粒子)11aの粉末を真空中で液相錯体熱分解法により合成する。この際、溶媒、兼、配位子としてオレイン酸およびオレイルアミンを使用することが好ましい。凝集が少ないFeO粒子11aを合成することができるため、シャープな粒度分布を有するFeO粒子11aの粉末が得られるからである。FeO粒子が、例えば、Al、GaおよびInのうちの少なくとも1種の金属を含んでいてもよい。
 上記工程において、FeO粒子11aの粉末の粒度分布が、目的とするε酸化鉄粒子の粉末の粒度分布とほぼ同様なものとなるように、FeO粒子11aの粉末を合成することが好ましい。具体的には、上記の式(1)で表されるFeO粒子11aの粉末の変動係数が30%以下であることが好ましい。これにより、磁性粉末の変動係数を30%以下とすることができるからである。なお、FeO粒子11aの粉末の変動係数は、上記の磁性粉末の変動係数と同様にして求められる。
(シリカコート処理)
 次に、ステップS12において、後工程の高温熱処理時にFeO粒子11aの凝集を抑制するために、逆ミセル法によりFeO粒子11aの表面にシリカコート処理を行い、図3Bに示すように、FeO粒子11aの表面にシリカコート層11bを形成する。これにより、シリカコート粒子の粉末が作製される。
(被覆剤処理)
 次に、ステップS13において、後工程の高温熱処理時にFeO粒子11aの凝集をさらに抑制するために、図3Cに示すように、シリカコート粒子の表面を被覆剤11cで被覆する。これにより、被覆粒子の粉末が作製される。被覆剤11cは、シリカコート粒子の表面を部分的に覆っていてもよいし、シリカコート粒子の表面全体を覆っていてもよいが、FeO粒子11aの凝集を抑制する効果をより高めるためには、シリカコート粒子の表面全体を覆っていることが好ましい。
 金属塩化物および硫酸塩が、MgおよびAlのうちの少なくとも1種を含むことが好ましい。金属塩化物は、例えば、ポリ塩化アルミニウム(PAC)、塩化アルミニウムおよび塩化マグネシウムのうちの少なくとも1種である。硫酸塩は、例えば、硫酸アルミニウム、硫酸アルミニウムアンモニウムおよび硫酸マグネシウムのうちの少なくとも1種である。
 被覆剤11cによるシリカコート粒子の被覆は、例えば、以下のようにしてシリカコート粒子と被覆剤11cの電位差を利用して溶媒中にて行われる。まず、シリカコート粒子の粉末を溶媒に分散させることにより分散液を作製したのち、分散液に被覆剤11cを添加する。次に、シリカコート粒子のゼータ電位が負になり、被覆剤11cのゼータ電位が正になるように、シリカコート粒子と被覆剤11cのゼータ電位を調整する。より具体的には、シリカコート粒子のゼータ電位が負になり、被覆剤11cのゼータ電位が正になるように、分散液のpH調整を行う。これにより、シリカコート粒子の表面が被覆剤11cで被覆される。pH調整により分散液のpHは、好ましくは6以上10以下、より好ましくは7.5以上8.5以下に調整される。分散液のpHを6以上10以下に調整することで、シリカコート粒子のゼータ電位を負とし、被覆剤11cのゼータ電位を正とすることができる。その後、分散液を洗浄、乾燥させることにより、被覆粒子の粉末を得る。
(高温熱処理)
 続いて、ステップS14において、被覆粒子の粉末を1000℃以上の高温で焼成することにより、図3Dに示すように、FeO粒子11aをε酸化鉄粒子11に相変態させる。
(シリカコートおよび被覆剤除去)
 最後に、ステップS15において、アルカリ溶液を用いて、ε酸化鉄粒子11の表面のシリカコート層11bおよび被覆剤11cを除去する。これにより、図3Eに示すε酸化鉄粒子(硬磁性粒子)11の粉末が得られる。
[効果]
 第1の実施形態に係る磁性粉末では、上記の式(1)で表される磁性粉末の変動係数が30%以下であり、かつ、磁性粉末のSFD曲線において、メインピーク高さAと磁場ゼロ付近のサブピークの高さBとの比率B/Aが0.5以下である。これにより、ε酸化鉄粒子の粒子サイズのばらつきを抑制し、良好な磁気特性を有する磁性粉末が得られる。この磁性粉は高密度の磁気記録媒体に適用して好適なものである。
 第1の実施形態に係る磁性粉末の製造方法では、シリカコート粒子の表面を、金属塩化物および硫酸塩のうちの少なくとも1種の被覆剤11cで被覆することにより、被覆粒子を作製し、作製した被覆粒子を熱処理することにより、ε酸化鉄粒子(硬磁性粒子)11を作製している。したがって、高温長時間の熱処理後でも、FeO粒子(前駆体粒子)11aの凝集を抑制することができる。すなわち、粗大粒子の生成を抑制することができる。
 また、シリカコート粒子の表面を、金属塩化物および硫酸塩のうちの少なくとも1種の被覆剤11cで被覆することにより、FeO粒子(前駆体粒子)11aからε酸化鉄粒子11への相変態を促進することができる。したがって、焼成時間を短縮することができる。
 第1の実施形態に係る磁性粉末の製造方法では、液相錯体熱分解法によりFeO粒子の粉末を合成しているので、よりシャープな粒度分布を有するFeO粒子の粉末が得られる。このような粒度分布を有するFeO粒子の粉末(すなわち粒子サイズのばらつきが小さいFeO粒子の粉末)を熱処理することでε酸化鉄粒子の粉末を合成しているため、α相やγ相の形成が抑制されて、不純物が少ない高純度なε酸化鉄粒子の粉末を得ることができる。したがって、単相のε酸化鉄粒子の粉末または単相に近いε酸化鉄粒子の粉末を得ることができる。
 また、上述のように、よりシャープな粒度分布を有するFeO粒子の粉末を熱処理することにより、ε酸化鉄粒子11の粉末を作製しているので、ε酸化鉄粒子11の粉末の粒度分布をよりシャープにすることができる。
[変形例]
(変形例1)
 FeO粒子合成の工程後、シリカコート処理の工程前において、FeO粒子11aの磁性粉末を分級処理して、よりシャープな粒度分布を有するFeO粒子11aの粉末を得るようにしてもよい。この場合、ε酸化鉄粒子のサイズのばらつきをさらに抑制できるので、より優れた磁気特性を有するε酸化鉄粒子の粉末を得ることができる。
(変形例2)
 上述の第1の実施形態では、被覆剤11cを分散液に添加したのちに、分散液のpH調整をする場合について説明したが、シリカコート粒子を溶媒に分散させることにより分散液を作製した後、被覆剤11cを分散液に添加する前において、分散液のpH調整をするようにしてもよい。また、シリカコート粒子を溶媒に添加する前に、溶媒のpH調整をするようにしてもよい。
<2 第2の実施形態>
[磁性粉末の製造方法]
 以下、図4を参照して、本開示の第2の実施形態に係る磁性粉末の製造方法について説明する。この磁性粉末の製造方法は、Fe34(四酸化三鉄)を含むナノ粒子(以下「Fe34粒子」という。)の粉末を出発原料としてε酸化鉄粒子の粉末を合成するものである。
(脱泡処理)
 まず、ステップS21において、鉄アセチルアセトナートを溶媒に混合して前駆体溶液を調製したのち、前駆体溶液に脱泡処理を施す。溶媒としては、配位子としても機能するものが使用され、オレイン酸およびオレイルアミンが好ましい。凝集が少ないFe34粒子を合成することができるため、よりシャープな粒度分布を有するFe34粒子の粉末が得られるからである。なお、前駆体溶液中の鉄アセチルアセトナートの濃度を高くするに従って、前駆体粒子としてのFe34粒子のサイズを大きくすることができる。
 脱泡処理の方法は特に限定されるものではないが、調製した溶液を減圧雰囲気下にて加熱処理する方法が好ましい。この方法を採用することで、Fe34粒子を大量合成する場合にも泡の発生を抑制できる。また、前駆体溶液に含まれている不純物のうち、低沸点のものや、オレイン酸およびオレイルアミンを混合した際に発生する水分を取り除くことができるため、大量合成の系でも粒度分布が揃ったFe34粒子を得やすい。
 なお、原材料の鉄アセチルアセトナートを溶解性の高い溶媒(例えばフェニルエチルエーテル)に予め溶解させておくことでも、次工程において気泡の発生を抑制することができる。鉄アセチルアセトナートを溶解性の高い溶媒に予め溶解させておく場合、脱泡処理を行ってもよいし、行わなくてもよい。
(液相熱分解法)
 次に、ステップS22において、脱泡処理した溶液を用いて、出発原料としてのFe34粒子(前駆体粒子)の粉末を液相錯体熱分解法により合成する。具体的には、窒素ガス等の不活性ガス雰囲気下において、脱泡処理した溶液を加熱する。これにより、前駆体溶液中に核が生成したのち、生成した核が成長して、Fe34粒子が合成される。
 これ以降のシリカコート処理の工程(ステップS12)、被覆剤処理の工程(ステップS13)、高温熱処理の工程(ステップS14)およびシリカコートおよび被覆剤除去の工程(ステップS15)は、第1の実施形態に係る磁性粉末の製造方法と同様である。なお、ステップS14の高温熱処理の工程では、高温焼成によりFe34粒子がε酸化鉄粒子に相変態される。
[効果]
 第2の実施形態に係る磁性粉末の製造方法では、シリカコート粒子の表面を、金属塩化物および硫酸塩のうちの少なくとも1種の被覆剤で被覆しているので、第1の実施形態に係る磁性粉末の製造方法と同様に、粗大粒子の生成を抑制することができる。
 また、シリカコート粒子の表面を、金属塩化物および硫酸塩のうちの少なくとも1種の被覆剤11cで被覆することにより、Fe34粒子(前駆体粒子)からε酸化鉄粒子への相変態を促進することができる。したがって、焼成時間を短縮することができる。
 第2の実施形態に係る磁性粉末の製造方法では、液相錯体熱分解法によりFe34粒子の粉末を合成しているので、よりシャープな粒度分布を有するFe34粒子の粉末が得られる。このような粒度分布を有するFe34粒子の粉末(すなわち粒子サイズのばらつきが小さいFe34粒子の粉末)を熱処理することでε酸化鉄粒子の粉末を合成しているため、α相やγ相の形成が抑制されて、不純物が少ない高純度なε酸化鉄粒子の粉末を得ることができる。したがって、単相のε酸化鉄粒子の粉末または単相に近いε酸化鉄粒子の粉末を得ることができる。
 また、上述のように、よりシャープな粒度分布を有するFe34粒子の粉末を熱処理することにより、ε酸化鉄粒子の粉末を作製しているので、ε酸化鉄粒子の粉末の粒度分布をよりシャープにすることができる。
 Fe34粒子はFeO粒子よりも短い時間で合成することが可能である。したがって、第2の実施形態に係る磁性粉末の製造方法では、ε酸化鉄粒子の粉末の生産性をより向上することができる。
[変形例]
(変形例1)
 Fe34粒子の合成の工程後、シリカコート処理の工程前において、Fe34粒子の磁性粉末を分級処理して、よりシャープな粒度分布を有するFe34粒子の粉末を得るようにしてもよい。この場合、ε酸化鉄粒子のサイズのばらつきをさらに抑制できるので、より優れた磁気特性を有するε酸化鉄粒子の粉末を得ることができる。
(変形例2)
 Fe34粒子合成方法は、第2の実施形態にて説明した合成方法に限定されるものではなく、例えば、以下の合成方法(1)~(3)のいずれかを採用してもよい。
<合成方法(1)>
 まず、1mmolのクエン酸三ナトリウム二水和物、4mmolの水酸化ナトリウム(NaOH)、0.2molの硝酸ナトリウム(NaNO3)を19mlのイオン交換水へ投入し、攪拌する。その後、100℃まで加熱し、透明な液体を得る。次いで、2mmolの硫酸鉄四水和物を投入し、100℃のまま一時間キープし、室温まで冷却する。得られた溶液から、数時間かけて磁石によりFe34粒子を回収し、さらに回収したFe34粒子を水中で数分間超音波洗浄し、安定なFe34粒子を得ることができる。
<合成方法(2)>
 まず、鉄(III)アセチルアセトナート1mmol、1,2-ヘキサデカンジオール3mmolをオレイン酸15mlとオレイルアミン15mlの混合溶媒へ投入する。次いで、200Pa程度の減圧雰囲気下で130℃の加熱を30分間行ったのち、その後1気圧の窒素雰囲気下で300℃程度の加熱を6時間行う。加熱終了後、溶液を室温まで冷却し、得られた溶液をエタノールならびにヘキサンで洗浄し、Fe34粒子を得る。
<合成方法(3)>
 シングルモードマイクロ波システム(モノウェーブ300)を用いて、以下のようにしてFe34粒子を合成する。なお、本システムは、最大850W/2.45GHzで作動可能である。まず、鉄(III)アセチルアセトナート1mmolを、4mlのオレイン酸、10mlのオレイルアミンおよび2mlの1-オクタデセンの混合溶媒中に加えて溶液を調製し、シングルモードマイクロ波システムの最大出力850Wを印加することにより、室温状態から10分間で200℃まで昇温させ、その状態で10分間キープする。その後、溶液を15分間かけて250℃まで昇温させ反応が完了するまで5分間キープする。次いで、圧縮空気により約3分間かけて60℃まで冷却し、得られた溶液をエタノールおよびアセトンで洗浄し、最後に乾燥させることにより、Fe34粒子を得る。
(変形例3)
 上述の第1、第2の実施形態では、FeO粒子またはFe34粒子を前駆体粒子とする場合について説明したが、前駆体粒子はこれに限定されるものではなく、特許文献1に記載の前駆体粒子(立方晶酸化鉄の粒子)等を用いてもよい。
<3 第3の実施形態>
[磁性粉末の構成]
 本開示の第3の実施形態に係る磁性粉末は、コアシェル型構造を有するε酸化鉄粒子の粉末である。コアシェル粒子は、図5に示すように、コア部12と、このコア部12の周囲に設けられたシェル部13とを備える。コア部12とシェル部13とは交換結合している。コア部12とシェル部13の界面において、両者の組成および/または状態等が不連続的に変化していてもよいし、連続的に変化していてもよい。第3の実施形態に係る磁性粉末は、高密度の磁気記録媒体の記録層(磁性層)に用いて好適なものである。
(コア部)
 コア部12は、第1の実施形態におけるε酸化鉄粒子と同様である。
(シェル部)
 シェル部13は、コア部12の周囲のうちの少なくとも一部を覆っている。具体的には、シェル部13は、コア部12の周囲を部分的に覆っていてもよいし、コア部12の周囲全体を覆っていてもよい。コア部12とシェル部13の交換結合を十分なものとし、磁気特性を向上する観点からすると、コア部12の表面全体を覆っていることが好ましい。
 シェル部13は、軟磁性体であるα-Feを含む。シェル部13は、例えば、コアシェル粒子の前駆体としてのε酸化鉄粒子(硬磁性粒子)の表面を還元することにより得られうるものである。具体的には例えば、シェル部13に含まれるα-Feは、コア部12に含まれるε酸化鉄を還元することにより得られうるものである。
[磁性粉末の製造方法]
 本開示の第3の実施形態に係る磁性粉末の製造方法は、図6に示すように、コート除去の工程(ステップS15)後に、以下の還元処理の工程(ステップS16)をさらに備える点において、第1の実施形態に係る磁性粉末の製造方法と異なっている。
(還元処理)
 ステップS16において、シリカコート層11bを除去することにより得られたε酸化鉄粒子11の粉末を還元処理する。具体的には、上記のε酸化鉄粒子11の粉末を高温水素雰囲気下で一定時間熱処理することにより、粒子表面を還元させる。これにより、α-Feを含むシェル部13がコア部12の周囲に形成される。以上により、目的とするコアシェル型構造を有するε酸化鉄粒子の粉末が得られる。
[効果]
 第3の実施形態に係る磁性粉末は、ε酸化鉄を含むコア部12とα-Feを含むシェル部13とを備えるコアシェル粒子の粉末を含む。この磁性粉末を用いて磁気記録媒体の記録層を形成することで、高出力で、優れた熱安定性を有し、また記録容易性を有する磁気記録媒体を実現できる。
 第3の実施形態に係る磁性粉末の製造方法では、硬磁性粒子であるε酸化鉄粒子を還元処理することにより、軟磁性体であるα-Feを含むシェル部13を備えるコアシェル粒子を形成する。これにより、均一なコアシェル粒子を作製することができ、コア部12となるε酸化鉄粒子とシェル部13となるα-Feの交換相互作用を均一に発現させることができる。したがって、高い飽和磁化量σsを有する軟磁性体の特徴を生かすことができ、コアシェル粒子全体として高い飽和磁化量σsを得ることができる。記録容易性についても同様に、コア部12単体の保磁力Hcは熱安定性を確保するために大きな値に保ちつつ、コアシェル粒子全体としての保磁力Hcを記録に適した保磁力Hcに調整できるため、記録容易性が高まる。また、コア部12となるε酸化鉄粒子も従来方法に比べて大きく作ることができるため、高い保磁力Hcを保ちやすく、熱安定性の向上に有利である。
 また、第3の実施形態に係る磁性粉末の製造方法では、予め作製したε酸化鉄粒子の表面を直接還元処理するため、前駆体となるε酸化鉄粒子の粒子サイズと、還元処理により得られるコアシェル粒子の粒子サイズとが同程度になる。したがって、前駆体となるε酸化鉄粒子の粒子サイズを調整することで、所望の粒子サイズを有するコアシェル粒子を作製することができる。したがって、粒度分布のばらつきの発生を抑制できる。
[変形例]
(変形例1)
 ε酸化鉄粒子11の粉末を水素化カルシウム(CaH2)で還元処理するようにしてもよい。CaH2は還元性が非常に強いことが知られている。このため、ε酸化鉄粒子11の粉末を還元してα-Feを形成する際に、H2の代替として使用することができる。CaH2は還元性が非常に強いため、H2よりも低温での還元が可能である。また、還元の際のε酸化鉄粒子11の凝集を抑制することも可能である。
(変形例2)
 上述の第3の実施形態では、第1の実施形態に係る磁性粉末の製造方法に対して、還元処理の工程(ステップS16)をさらに備える場合について説明したが、第2の実施形態に係る磁性粉末の製造方法に対して、還元処理の工程(ステップS16)をさらに備えるようにしてもよい。
<4 第4の実施形態>
[磁性粉末の構成]
 本開示の第4の実施形態に係る磁性粉末は、図7に示すように、コア部12と、このコア部12の周囲に設けられた2層構造のシェル部14とを備えるコアシェル粒子の粉末である。第3の実施形態と同様の箇所には同一の符号を付して説明を省略する。
(シェル部)
 2層構造のシェル部14は、コア部12上に設けられた第1シェル部14aと、第1シェル部14a上に設けられた第2シェル部14bとを備える。
(第1シェル部)
 軟磁性層である第1シェル部14aは、第3の実施形態におけるシェル部14と同様である。
(第2シェル部)
 第2シェル部14bは、酸化防止層としての酸化被膜である。第2シェル部14bは、第1シェル部14aに含まれるα-Fe(軟磁性体)を酸化することにより得られうる材料、例えばFe34、Fe23およびFeOのうちの少なくとも1種の酸化鉄を含む。
[磁性粉末の製造方法]
 本開示の第4の実施形態に係る磁性粉末の製造方法は、図8に示すように、コート除去の工程(ステップS15)後に、以下の還元処理の工程(ステップS17)と徐酸化処理の工程(ステップS18)とをさらに備える点において、第1の実施形態に係る磁性粉末の製造方法と異なっている。
(還元処理)
 ステップS17において、シリカコート層11bを除去することにより得られたε酸化鉄粒子11の粉末を還元処理する。これにより、α-Feを含む第1シェル部14aがコア部12の周囲に形成される。なお、ステップS17の還元処理は、第3の実施形態におけるステップS16の還元処理と同様である。
(徐酸化処理)
 ステップS18において、第1シェル部14aにより表面が覆われたε酸化鉄粒子11の粉末を徐酸化処理する。具体的には、上記のε酸化鉄粒子11の粉末を窒素雰囲気中で室温まで冷却したのち、O2+N2混合ガスの雰囲気中で熱処理を行うことにより、最外層に酸化被膜としての第2シェル部14bを形成する。これにより耐酸化性に優れたコアシェル型ε酸化鉄粒子の粉末を得ることができる。
[効果]
 第4の実施形態に係る磁性粉末では、コアシェル粒子が表面に第2シェル部14bを有しているので、コアシェル粒子の表面が空気中に暴露されて、コアシェル粒子の表面に錆び等が発生することを抑制することができる。したがって、磁性粉末の特性劣化を抑制することができる。
[変形例]
 上述の第4の実施形態では、第1の実施形態に係る磁性粉末の製造方法に対して、還元処理の工程(ステップS17)と徐酸化処理の工程(ステップS18)とをさらに備える場合について説明したが、第2の実施形態に係る磁性粉末の製造方法に対して、還元処理の工程(ステップS17)と徐酸化処理の工程(ステップS18)とをさらに備えるようにしてもよい。
<5 第5の実施形態>
[磁気記録媒体の構成]
 本開示の第5の実施形態に係る磁気記録媒体は、いわゆるテープ状の磁気記録媒体であって、図9に示すように、長尺状の基体21と、基体21の一方の主面上に設けられた下地層(非磁性層)22と、下地層22上に設けられた記録層(磁性層)23とを備える。なお、下地層22は必要に応じて備えられるものであって、なくてもよい。磁気記録媒体が、必要に応じて、記録層23上に設けられた保護層(図示せず)等をさらに備えるようにしてもよい。また、必要に応じて、基体21の他方の主面上に設けられたバックコート層24をさらに備えるようにしてもよい。
(SFD)
 SFD曲線において、メインピーク高さAと磁場ゼロ付近のサブピークの高さBとの比率B/Aが0.5以下である(図1参照)。比率B/Aが0.5を超えると、ε酸化鉄粒子の粒子サイズのばらつきが大きくなり、記録層23の磁気特性が低下し、C/N(Carrier to Noise Ratio)が悪化する虞がある。
 上記の比率B/Aは、以下のようにして求められる。まず、長尺状の磁気記録媒体10から測定サンプルを切り出し、VSMを用いて磁気記録媒体の垂直方向(厚み方向)に対応する測定サンプル全体のM-Hループを測定する。次に、アセトンまたはエタノール等を用いて塗膜(下地層22、記録層23およびバックコート層24等)を払拭し、基体21のみを残して、バックグラウンド補正用のサンプルとし、VSMを用いて基体21の垂直方向(磁気記録媒体の垂直方向)に対応する基体21のM-Hループを測定する。その後、測定サンプル全体のM-Hループから基体21のM-Hループを引き算して、バックグラウンド補正後のM-Hループを得る。これ以降は第1の実施形態に係る磁性粉末の場合と同様にして比率B/Aを求める。なお、VSMのM-Hループ測定において、バックグラウンド補正後のM-Hループが飽和しない場合には、より高い印可磁界を得られるSQUIDを用いるものとする。また、M-Hループを垂直方向に測定する際の“反磁界補正”は行わないものとする。
(δ/Mrt)
 δ/Mrtが、下記の式(2)で表される関係を満たしている。
 2.0≦δ/Mrt≦120.0 ・・・(2)
(但し、δ[nm]:記録層23の平均厚み、Mrt[mA]:残留磁化量と記録層23の厚みの積である。)
 記録層23の平均厚みδが小さいと、平均厚みδに対する平均厚みδの変動の割合が必然的に大きくなってしまい、結果としてC/Nが劣化してしまう虞がある。一方、記録層23の平均厚みδが大きいと、記録した磁化が記録層23中で閉ループを形成してしまい、出力の減少が引き起こされ、C/Nが劣化してしまう虞がある。また、Mrtが小さいと、出力が減少し、C/Nの劣化が引き起こされる虞がある。一方、Mrtが大きいと、再生ヘッドが飽和してしまい、良好なC/Nが得られなくなる虞がある。上記のようなC/Nの劣化を抑制するために、δ/Mrtが上記の式(2)で表される関係を満たすようにしている。
 上記の比率δ/Mrtは、以下のようにして求められたδ[nm]およびMrt[mA]から算出される。
 δ[nm]は、以下のようにして求められる。まず、測定対象となる磁気記録媒体をFIB(Focused Ion Beam)法等により加工してTEM観察用薄片を作製し、TEMにより薄片の断面観察を行う。観察倍率としては、記録層23の厚みが明瞭に観察できるよう、少なくとも10万倍以上で行うのが好ましい。断面TEMの観察は、磁気記録媒体の長手方向(走行方向)に100mごとに合計5か所の位置で行われる。それらの各位置における観察方向は、磁気記録媒体の横方向(幅方向)である。一視野あたり均等に50ポイントにおいて記録層23の厚みを観察し、5視野全ての厚みを単純に平均(算術平均)して記録層23の平均厚みδ[nm]を求める。
 Mrt[mA]は、以下のようにして求められる。まず、上記の比率B/Aの算出方法と同様にして、バックグラウンド補正後のM-Hループを得る。次に、得られたバックグラウンド補正後のM-Hループから残留磁化量Mr[emu]を得て、測定サンプルの面積で除することによってMrt[mA]を算出する。
(角形比)
 記録層23に対して垂直方向の角形比Rsが、60%以上であることが好ましい。角形比Rsが60%未満であると、C/Nが低下する虞がある。
 角形比Rs[%]は以下のようにして求められる。まず、上記の“δ/Mrt”を求めた場合と同様にして、残留磁化量Mr[emu]を求める。次に、上記の“δ/Mrt”を求めたときに測定したM-Hループのうち、十分に磁界をかけ磁化量が飽和している部分の磁化量Ms[emu]を求める。そして、上述のようにして求めたMr[emu]をMs[emu]で除することにより、M-Hループの角形比Rs[%](=(Mr/Ms)×100)を算出する。なお、上述のMrならびにMsは、記録層23に対して垂直方向に測定をした値である。
(基体)
 支持体となる基体21は、可撓性を有する長尺状の非磁性基体である。非磁性基体はフィルムであり、フィルムの厚さは、例えば3μm以上8μm以下である。基体21の材料としては、例えば、ポリエチレンテレフタレート等のポリエステル類、ポリエチレン、ポリプロピレン等のポリオレフィン類、セルローストリアセテート、セルロースダイアセテート、セルロースブチレート等のセルロース誘導体、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂、ポリカーボネート、ポリイミド、ポリアミドイミド等のプラスチック、アルミニウム合金、チタン合金等の軽金属、アルミナガラス等のセラミック等を用いることができる。
(記録層)
 記録層23は、例えば、第1の実施形態に係る磁性粉末、結着剤および導電性粒子を含む。記録層23が、必要に応じて、潤滑剤、研磨剤、防錆剤等の添加剤をさらに含んでいてもよい。
 結着剤としては、ポリウレタン系樹脂、塩化ビニル系樹脂等に架橋反応を付与した構造の樹脂が好ましい。しかしながら結着剤はこれらに限定されるものではなく、磁気記録媒体に対して要求される物性等に応じて、その他の樹脂を適宜配合してもよい。配合する樹脂としては、通常、塗布型の磁気記録媒体において一般的に用いられる樹脂であれば、特に限定されない。
 例えば、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニル共重合体、メタクリル酸エステル-エチレン共重合体、ポリ弗化ビニル、塩化ビニリデン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン共重合体、ポリアミド樹脂、ポリビニルブチラール、セルロース誘導体(セルロースアセテートブチレート、セルロースダイアセテート、セルローストリアセテート、セルロースプロピオネート、ニトロセルロース)、スチレンブタジエン共重合体、ポリエステル樹脂、アミノ樹脂、合成ゴム等が挙げられる。
 また、熱硬化性樹脂、または反応型樹脂の例としては、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、シリコーン樹脂、ポリアミン樹脂、尿素ホルムアルデヒド樹脂等が挙げられる。
 また、上述した各結着剤には、磁性粉の分散性を向上させる目的で、-SO3M、-OSO3M、-COOM、P=O(OM)2等の極性官能基が導入されていてもよい。ここで、式中Mは、水素原子、あるいはリチウム、カリウム、ナトリウム等のアルカリ金属である。
 更に、極性官能基としては、-NR1R2、-NR1R2R3+-の末端基を有する側鎖型のもの、>NR1R2+-の主鎖型のものが挙げられる。ここで、式中R1、R2、R3は、水素原子、または炭化水素基であり、X-は弗素、塩素、臭素、ヨウ素等のハロゲン元素イオン、または無機もしくは有機イオンである。また、極性官能基としては、-OH、-SH、-CN、エポキシ基等も挙げられる。
 記録層23は、非磁性補強粒子として、酸化アルミニウム(α、βまたはγアルミナ)、酸化クロム、酸化珪素、ダイヤモンド、ガーネット、エメリー、窒化ホウ素、チタンカーバイト、炭化珪素、炭化チタン、酸化チタン(ルチル型またはアナターゼ型の酸化チタン)等をさらに含有していてもよい。
 記録層23の平均厚みδは、好ましくは30nm以上120nm以下、より好ましくは50nm以上70nm以下である。記録層23の平均厚みδが30nm未満であると、均一な厚みの記録層23を塗布により形成することが困難になる虞がある。一方、記録層23の平均厚みδが120nmを超えると高密度磁気記録媒体として必要な、波長が短い領域の出力がインコヒーレントな磁化反転等の原因により劣化してしまう虞がある。なお、上記の記録層23の平均厚みδの算出方法は、比率δ/Mrtの算出方法にて説明した通りである。
(下地層)
 下地層22は、非磁性粉末および結着剤を主成分として含む非磁性層である。下地層22が、必要に応じて、導電性粒子、潤滑剤、硬化剤および防錆剤等のうちの少なくとも1種の添加剤をさらに含んでいてもよい。
 非磁性粉末は、無機物質でも有機物質でもよい。また、非磁性粉末は、カーボンブラック等でもよい。無機物質としては、例えば、金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。非磁性粉末の形状としては、例えば、針状、球状、立方体状、板状等の各種形状が挙げられるが、これに限定されるものではない。結着剤は、上述の記録層23と同様である。
 下地層22の平均厚みは、好ましくは0.6μm以上2.0μm以下、より好ましくは0.8μm以上1.4μm以下である。下地層22の平均厚みが0.6μm未満であると、表面性悪化により電磁変換特性が劣化する虞がある。一方、下地層22の平均厚みが2.0μmを超えると、塗膜の乾燥ムラによる粗大突起が発生してしまい、同様に電磁変換特性が劣化する虞がある。なお、上記の下地層22の平均厚みの算出方法は、記録層23の平均厚みδの算出方法と同様である。
[磁気記録媒体の製造方法]
 次に、上述の構成を有する磁気記録媒体の製造方法の一例について説明する。まず、非磁性粉末および結着剤等を溶剤に混練、分散させることにより、下地層形成用塗料を調製する。次に、第1の実施形態に係る磁性粉末および結着剤等を溶剤に混練、分散させることにより、記録層形成用塗料を調製する。記録層形成用塗料および下地層形成用塗料の調製には、例えば、以下の溶剤、分散装置および混練装置を用いることができる。
 上述の塗料調製に用いられる溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、乳酸エチル、エチレングリコールアセテート等のエステル系溶媒、ジエチレングリコールジメチルエーテル、2-エトキシエタノール、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、クロロベンゼン等のハロゲン化炭化水素系溶媒等が挙げられる。これらは単独で用いてもよく、適宜混合して用いてもよい。
 上述の塗料調製に用いられる混練装置としては、例えば、連続二軸混練機、多段階で希釈可能な連続二軸混練機、ニーダー、加圧ニーダー、ロールニーダー等の混練装置を用いることができるが、特にこれらの装置に限定されるものではない。また、上述の塗料調製に用いられる分散装置としては、例えば、ロールミル、ボールミル、横型サンドミル、縦型サンドミル、スパイクミル、ピンミル、タワーミル、パールミル(例えばアイリッヒ社製「DCPミル」等)、ホモジナイザー、超音波分散機等の分散装置を用いることができるが、特にこれらの装置に限定されるものではない。
 次に、下地層形成用塗料を基体21の一方の主面に塗布して乾燥させることにより、下地層22を形成する。次に、この下地層22上に記録層形成用塗料を塗布して乾燥させることにより、記録層23を下地層22上に形成する。なお、乾燥の際に、例えばソレノイドコイルにより、磁性粉末を基体21の厚さ方向に磁場配向させるようにしてもよい。次に、必要に応じて、記録層23上に保護層および潤滑剤層を形成してもよいし、基体21の他方の主面にバックコート層24を形成してもよい。
 次に、下地層22および記録層23が形成された基体21を大径コアに巻き直し、硬化処理を行う。次に、下地層22および記録層23が形成された基体21に対してカレンダー処理を行った後、所定の幅に裁断する。以上により、目的とする磁気記録媒体が得られる。
[効果]
 本開示の第5の実施形態に係る磁気記録媒体では、記録層23が、第1の実施形態に係る磁性粉末を含むので、優れた磁気特性を有する磁気記録媒体を実現することができる。したがって、高密度記録した信号を低ノイズで再生することができる。よって、高いC/Nを実現することができる。
[変形例]
 記録層23が、第1の実施形態に係る磁性粉末に代えて、第2、第3または第4の実施形態に係る磁性粉末を含むようにしてもよい。第3または第4の実施形態に係る磁性粉末を用いた場合には、第5の実施形態に係る磁気記録媒体よりも高いC/Nを実現することができる。
 以下、実施例により本開示を具体的に説明するが、本開示はこれらの実施例のみに限定されるものではない。
[実施例1]
(FeOナノ粒子合成)
 図10に、FeOナノ粒子合成の工程の概要を示す。まず、容量300mlの丸底三口フラスコに鉄アセチルアセトナート8.0mmol、オレイン酸20.0mLおよびオレイルアミン20.0mLを秤量し、100Paの減圧雰囲気下、210℃で36時間の前処理加熱を行った。
 次に、N2雰囲気に切り替え、320℃まで昇温し30min加熱した。その後、室温へ自然冷却し、エタノールによって遠心・洗浄を複数回行って、前駆体粒子としてのFeOナノ粒子を得た。最後に、得られたFeOナノ粒子をシクロヘキサン中に再分散させた。この際、得られたFeOナノ粒子は表面酸化が進み、Fe34に変化することがあるが、ε酸化鉄の生成には影響は見られない。
(シリカコート処理)
 図11は、シリカコート処理の工程の概要を示す。まず、容量100mlのナス型フラスコにシクロヘキサン80mL、ポリオキシエチレン(5)ノニルフェニルエーテル(IGEPAL(登録商標))12mLおよびアンモニア水2mLを混合し、透明な均一溶液となるまで超音波を照射しながら、600rpmで60min間攪拌した。
 そこに、あらかじめシクロヘキサン中に分散させた状態のFeOナノ粒子を加え、さらにテトラエチルオルソシリケート(TEOS)を、Fe/Siのmol比が0.1となるように任意の速度で滴下した。滴下後、さらに600rpmで16時間攪拌を続けた。反応終了後、メタノールを加え、遠心分離を行う作業を複数回繰り返し、洗浄を行った。遠心分離により得られた沈殿物を60℃の乾燥機で乾燥させ、シリカコートFeOナノ粒子を回収した。
(被覆処理)
 図12は、被覆剤処理(PAC処理)の工程の概要を示す。まず、シリカコートFeOナノ粒子をイオン交換水に分散し、シリカコートFeOナノ粒子が沈降しないようにスターラーで攪拌しながら、pHメーターで分散液のpHを測定した。続いて、被覆剤としてのPACを分散液に滴下したのち、分散液のpHが8.0になるように酸と塩基を用いて分散液のpHを調整した。そして、pH調整後の分散液を攪拌したのち、エタノールを加えて遠心分離で洗浄した。洗浄後、分散液を乾燥させ、乳鉢でつぶし、PAC処理したシリカコートFeOナノ粒子を得た。
(高温熱処理)
 まず、PAC処理したシリカコートFeOナノ粒子をアルミナるつぼに投入し、マッフル炉に投入した。その後、マッフル炉を1100℃まで加熱し、20時間焼成を行った。これにより、ナノ粒子の粉末が得られた。
(シリカコートおよび被覆剤除去)
 図13は、シリカコートおよび被覆剤除去の工程の概要を示す。まず、テフロン遠沈管(登録商標)にナノ粒子の粉末および5Mに調整したNaOH水溶液を投入し、オイルバスにて60℃まで加熱し、24時間放置した。その後、イオン交換水を添加し遠沈分離する作業を複数回繰り返した。さらにエタノールを添加後、遠心分離をかけたのち、60℃で乾燥させることにより、シリカコートおよび被覆剤が除去された状態のナノ粒子の粉末を得た。
[実施例2]
 被覆剤処理の工程において、pHを7.0に調整したこと以外は実施例1と同様にしてナノ粒子の粉末を得た。
[実施例3]
 被覆剤処理の工程において、pHを9.0に調整したこと以外は実施例1と同様にしてナノ粒子の粉末を得た。
[実施例4]
 被覆剤処理の工程において、pHを10.0に調整したこと以外は実施例1と同様にしてナノ粒子の粉末を得た。
[実施例5]
 被覆剤処理の工程において、pHを6.1に調整したこと以外は実施例1と同様にしてナノ粒子の粉末を得た。
[実施例6]
 被覆剤処理の工程において、被覆剤として硫酸アルミニウムを用いたこと以外は実施例1と同様にしてナノ粒子の粉末を得た。
[実施例7]
 被覆剤処理の工程において、被覆剤として硫酸アンモニウムアルミニウムを用いたこと以外は実施例1と同様にしてナノ粒子の粉末を得た。
[実施例8]
 被覆剤処理の工程において、被覆剤として硫酸マグネシウムを用いたこと以外は実施例1と同様にしてナノ粒子の粉末を得た。
[実施例9]
 PAC処理の工程において、被覆剤として塩化マグネシウムを用いたこと以外は実施例1と同様にしてナノ粒子の粉末を得た。
[実施例10]
 前駆体粒子としてFeOナノ粒子に代えてFe34ナノ粒子を合成したこと以外は実施例1と同様にしてナノ粒子の粉末を得た。なお、表1に示すように、実施例10のシリカコートの厚みが実施例1のシリカコートの厚みと異なっているのは、シリカコート処理の条件変更によるものではなく、前駆体粒子の粒径の違いによるものである。以下に、Fe34ナノ粒子の合成工程について説明する。
(Fe34ナノ粒子合成)
 図14に、前駆体粒子としてのFe34ナノ粒子合成の工程の概要を示す。まず、容量300mlの丸底三口フラスコに鉄アセチルアセトナート30.0mmol、オレイン酸20.0mLおよびオレイルアミン30.0mLを秤量し、混合して溶液を調製した。次に、溶液を100Paの減圧雰囲気下、130℃で1時間の加熱することにより、脱泡処理を行った。
 次に、N2雰囲気に切り替え、310℃まで昇温し6時間加熱した。その後、室温へ自然冷却し、エタノールによって遠心・洗浄を複数回行って、前駆体粒子としてのFe34ナノ粒子を得た。最後に、得られたFe34ナノ粒子をシクロヘキサン中に再分散させた。
[実施例11]
 FeOナノ粒子の合成工程において前処理加熱の時間を47時間としたこと、およびシリカコート処理の工程においてTEOS投入量をFe/Si=0.03とすることによりシリカコート厚みを10nmとしたこと以外は実施例1と同様にしてナノ粒子の粉末を得た。
[実施例12]
 FeOナノ粒子の合成工程において前処理加熱の時間を24時間としたこと以外は実施例1と同様にしてナノ粒子の粉末を得た。なお、表1に示すように、実施例12のシリカコートの厚みが実施例1のシリカコートの厚みと異なっているのは、シリカコート処理の条件変更によるものではなく、前駆体粒子の粒径の違いによるものである。
[比較例1]
 被覆剤処理の工程を省略したこと以外は実施例1と同様にしてナノ粒子の粉末を得た。
[比較例2]
 被覆剤処理の工程において、pHを5.0に調整したこと以外は実施例1と同様にしてナノ粒子の粉末を得た。
[比較例3]
 被覆剤処理の工程において、pHを4.0に調整したこと以外は実施例6と同様にしてナノ粒子の粉末を得た。
[比較例4]
 被覆剤処理の工程において、被覆剤として塩化鉄を用いたこと以外は実施例1と同様にしてナノ粒子の粉末を得た。
[比較例5]
 被覆剤処理の工程において、pHを10.5に調整したこと以外は実施例1と同様にしてナノ粒子の粉末を得た。
 表1は、実施例1~12、比較例1~5のナノ粒子の合成条件および評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
(XRDによる評価)
 以下のようにして、ナノ粒子の結晶構造を同定するとともに、結晶子サイズを求めた。まず、X線回折装置(X-ray diffraction:XRD)を用いてθ-2θ測定を行い、磁性粉末の結晶構造に関する情報を得た。次に、測定により得られたε酸化鉄の結晶面(1,2,2)面から得られる回折ピークに対してScherrerの式を適用して結晶子サイズLを求めた。
 Scherrerの式:L=Kλ/Bcosθ
  λ:測定X線の波長(Å)
  B:結晶子の大きさによる回折線の広がり(ラジアン単位)
  θ:回折線のブラッグ角
  K:Scherrer定数(=0.94)
(比率B/Aの評価)
 上述の第1の実施形態にて説明した手順で、ナノ粒子の粉末の比率B/Aを求めた。
 表1から以下のことがわかる。
 (1)被覆剤処理の工程を備え、(2)被覆剤としてMgまたはAlを含む金属塩化物および硫酸塩を用い、(3)分散液のpHを6以上とした実施例1~10では、焼成時間20時間の短時間でε酸化鉄ナノ粒子の粉末を合成することができる。これは、シリカコートされた前駆体粒子(シリカコートFeOナノ粒子、シリカコートFe34ナノ粒子)の表面を、MgおよびAlのうちの少なくとも1種を含む金属塩化物および硫酸塩で被覆することにより、FeO相またはFe34相からε-Fe23相への相変態が促進され、焼成時間が短縮されたためと考えられる。
 また、実施例1~10では、磁性粒子のSFD曲線におけるメインピーク高さAと磁場ゼロ付近のサブピークの高さBとの比率B/A(図1参照)を0.5以下にすることができる。これは、シリカコートされた前駆体粒子の表面を、MgおよびAlのうちの少なくとも1種を含む金属塩化物および硫酸塩で被覆することにより、前駆体粒子の凝集(すなわち粗大粒子の生成)が抑制され、ε酸化鉄粒子の粒子サイズのばらつきが抑制されたためと考えられる。
 (1’)被覆剤処理の工程を備えていない比較例1では、焼成時間20時間の短時間では、ε酸化鉄およびγ酸化鉄からなる混相のナノ粒子が合成されてしまう。これは、前駆体粒子(FeOナノ粒子)の表面をシリカコート処理したのみでは、FeO相からε-Fe23相への相変態は促進されず、ほぼ単相のε-Fe23相が得られなかったためと考えられる。
 実施例1、11、12の評価結果から、前駆体粒子(FeO粒子)の結晶子サイズを調整することで、焼成後に得られるε酸化鉄粒子の結晶子サイズを調整できることがわかる。なお、実施例11の比率B/Aが1以上となっているのは、高温熱処理の工程における前駆体粒子の凝集によるものではなく、結晶子サイズの微細化により超常磁性(スーパーパラマグネティズム)が起こり、磁気特性が低下したことによるものであると考えられる。
 また、比較例1では、比率B/Aが1以上になってしまう。これは、前駆体粒子の表面をシリカコート処理したのみでは、高温熱処理工程(焼成工程)において前駆体粒子の凝集を十分には抑制できず(すなわち粗大粒子の生成を十分には抑制できず)、ε酸化鉄粒子の粒子サイズのばらつきを抑制できていないこと、また上述したように単相のε-Fe23相が得られなかったためであると考えられる。
 (1)被覆剤処理の工程を備え、(2)被覆剤としてMgまたはAlを含む金属塩化物および硫酸塩を用いているが、(3’)分散液のpHを6未満とした比較例2、3では、γ酸化鉄ナノ粒子の粉末が合成されてしまう。また、比率B/Aが1以上になってしまう。これら結果は、分散液のpHを6未満に調整した場合、シリカコートした前駆体粒子および被覆剤のゼータ電位がいずれも正となるため、シリカコートした前駆体粒子の表面を被覆剤で被覆できていないことに原因があると考えられる。
 (1)被覆剤処理の工程を備え、(3)分散液のpHを6以上としているが、(2’)被覆剤として鉄を含む金属塩化物を用いた比較例4では、オキシ塩化鉄およびγ酸化鉄の混合相からなるナノ粒子が合成されてしまう。これは、鉄を含む金属塩化物では、MgまたはAlを含む金属塩化物および硫酸塩のような作用が発現しないためと考えられる。
 (1)被覆剤処理の工程を備え、(2)被覆剤としてMgまたはAlを含む金属塩化物および硫酸塩を用いているが、(3’)分散液のpHが10を超える比較例5では、ε酸化鉄およびα酸化鉄からなる混相のナノ粒子が合成されてしまう。これは、分散液のpHを10を超えるように調整した場合、シリカコートした前駆体粒子および被覆剤のゼータ電位がいずれも負となるため、シリカコートした前駆体粒子の表面を被覆剤で被覆できていないためと考えられる。
 以上、本開示の実施形態およびその変形例について具体的に説明したが、本開示は、上述の実施形態およびその変形例に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態およびその変形例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。また、化合物等の化学式は代表的なものであって、同じ化合物の一般名称であれば、記載された価数等に限定されない。
 また、上述の実施形態およびその変形例の構成、方法、工程、形状、材料および数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、本開示は以下の構成を採用することもできる。
(1)
 シリカコートされた前駆体粒子の表面を、金属塩化物および硫酸塩のうちの少なくとも1種の被覆剤で被覆し、
 前記被覆剤により被覆された前記前駆体粒子を焼成する
 ことを含む磁性粉末の製造方法。
(2)
 前記金属塩化物および前記硫酸塩が、MgおよびAlのうちの少なくとも1種を含む(1)に記載の磁性粉末の製造方法。
(3)
 前記金属塩化物が、ポリ塩化アルミニウム(PAC)、塩化アルミニウムおよび塩化マグネシウムのうちの少なくとも1種であり、
 前記硫酸塩が、硫酸アルミニウム、硫酸アルミニウムアンモニウムおよび硫酸マグネシウムのうちの少なくとも1種である(1)または(2)に記載の磁性粉末の製造方法。
(4)
 前記被覆剤の被覆が、前記シリカコートされた前記前駆体粒子と前記被覆剤の電位差を利用して行われる(1)から(3)のいずれかに記載の磁性粉末の製造方法。
(5)
 前記被覆剤の被覆が、前記シリカコートされた前記前駆体粒子のゼータ電位が負になり、前記被覆剤のゼータ電位が正になるように、前記シリカコートされた前記前駆体粒子と前記被覆剤のゼータ電位を調整することにより行われる(1)から(3)のいずれかに記載の磁性粉末の製造方法。
(6)
 前記被覆剤を被覆することは、
 前記シリカコートされた前記前駆体粒子および前記被覆剤を溶媒に加え、
 前記シリカコートされた前記前駆体粒子のゼータ電位が負になり、前記被覆剤のゼータ電位が正になるように、前記溶媒のpH調整を行う
 ことを含む(1)から(3)のいずれかに記載の磁性粉末の製造方法。
(7)
 前記pH調整により前記溶媒のpHが、6以上10以下に調整される(6)に記載の磁性粉末の製造方法。
(8)
 前記焼成により、前記前駆体粒子が相変態する(1)から(7)のいずれかに記載の磁性粉末の製造方法。
(9)
 前記相変態により、ε酸化鉄を含む磁性粒子が得られる(8)に記載の磁性粉末の製造方法。
(10)
 前記前駆体粒子が、酸化第一鉄または四酸化三鉄を含む(9)に記載の磁性粉末の製造方法。
(11)
 前記磁性粒子の結晶子サイズが、8nm以上30nm以下である(9)または(10)に記載の磁性粉末の製造方法。
(12)
 前記磁性粒子のSFD(Switching Field Distribution)曲線におけるメインピーク高さAと磁場ゼロ付近のサブピークの高さBとの比率B/Aが、0.5以下である(9)から(11)のいずれかに記載の磁性粉末の製造方法。
(13)
 前記被覆剤の被覆前に、
 液相熱分解法により前記前駆体粒子を作製し、
 作製した前記前駆体粒子をシリカコートする
 ことをさらに含む(9)から(12)のいずれかに記載の磁性粉末の製造方法。
(14)
 前記液相熱分解法による前記前駆体粒子の作製は、鉄アセチルアセトナートを含む溶液を脱泡処理したのち、加熱処理により前記前駆体粒子を作製することを含む(13)に記載の磁性粉末の製造方法。
(15)
 前記焼成後に前記磁性粒子から前記シリカコートおよび前記被覆剤を除去し、
 前記除去後に前記磁性粒子を還元処理する
 ことをさらに含む(9)から(14)のいずれかに記載の磁性粉末の製造方法。
(16)
 前記還元処理後に前記磁性粒子を酸化処理する
 ことをさらに含む(15)に記載の磁性粉末の製造方法。
(17)
 シリカコートされた前駆体粒子の表面を、金属塩化物および硫酸塩のうちの少なくとも1種の被覆剤で被覆し、
 前記被覆剤により被覆された前記前駆体粒子を焼成することにより、磁性粒子を作製し、
 前記磁性粒子から前記シリカコートおよび前記被覆剤を除去し、
 前記除去後の前記磁性粒子を用いて記録層を形成する
 ことを含む磁気記録媒体の製造方法。
 11  ε酸化鉄粒子(磁性粒子)
 11a  FeO粒子(前駆体粒子)
 11b  シリカコート層
 11c  被覆剤
 12  コア部
 13、14  シェル部
 14a  第1シェル部
 14b  第2シェル部
 21  基体
 22  下地層
 23  記録層
 24  バックコート層

Claims (17)

  1.  シリカコートされた前駆体粒子の表面を、金属塩化物および硫酸塩のうちの少なくとも1種の被覆剤で被覆し、
     前記被覆剤により被覆された前記前駆体粒子を焼成する
     ことを含む磁性粉末の製造方法。
  2.  前記金属塩化物および前記硫酸塩が、MgおよびAlのうちの少なくとも1種を含む請求項1に記載の磁性粉末の製造方法。
  3.  前記金属塩化物が、ポリ塩化アルミニウム(PAC)、塩化アルミニウムおよび塩化マグネシウムのうちの少なくとも1種であり、
     前記硫酸塩が、硫酸アルミニウム、硫酸アルミニウムアンモニウムおよび硫酸マグネシウムのうちの少なくとも1種である請求項1に記載の磁性粉末の製造方法。
  4.  前記被覆剤の被覆が、前記シリカコートされた前記前駆体粒子と前記被覆剤の電位差を利用して行われる請求項1に記載の磁性粉末の製造方法。
  5.  前記被覆剤の被覆が、前記シリカコートされた前記前駆体粒子のゼータ電位が負になり、前記被覆剤のゼータ電位が正になるように、前記シリカコートされた前記前駆体粒子と前記被覆剤のゼータ電位を調整することにより行われる請求項1に記載の磁性粉末の製造方法。
  6.  前記被覆剤を被覆することは、
     前記シリカコートされた前記前駆体粒子および前記被覆剤を溶媒に加え、
     前記シリカコートされた前記前駆体粒子のゼータ電位が負になり、前記被覆剤のゼータ電位が正になるように、前記溶媒のpH調整を行う
     ことを含む請求項1に記載の磁性粉末の製造方法。
  7.  前記pH調整により前記溶媒のpHが、6以上10以下に調整される請求項6に記載の磁性粉末の製造方法。
  8.  前記焼成により、前記前駆体粒子が相変態する請求項1に記載の磁性粉末の製造方法。
  9.  前記相変態により、ε酸化鉄を含む磁性粒子が得られる請求項8に記載の磁性粉末の製造方法。
  10.  前記前駆体粒子が、酸化第一鉄または四酸化三鉄を含む請求項9に記載の磁性粉末の製造方法。
  11.  前記磁性粒子の結晶子サイズが、8nm以上30nm以下である請求項9に記載の磁性粉末の製造方法。
  12.  前記磁性粒子のSFD(Switching Field Distribution)曲線におけるメインピーク高さAと磁場ゼロ付近のサブピークの高さBとの比率B/Aが、0.5以下である請求項9に記載の磁性粉末の製造方法。
  13.  前記被覆剤の被覆前に、液相熱分解法により前記前駆体粒子を作製し、
     作製した前記前駆体粒子をシリカコートする
     ことをさらに含む請求項9に記載の磁性粉末の製造方法。
  14.  前記液相熱分解法による前記前駆体粒子の作製は、鉄アセチルアセトナートを含む溶液を脱泡処理したのち、加熱処理により前記前駆体粒子を作製することを含む請求項13に記載の磁性粉末の製造方法。
  15.  前記焼成後に前記磁性粒子から前記シリカコートおよび前記被覆剤を除去し、
     前記除去後に前記磁性粒子を還元処理する
     ことをさらに含む請求項9に記載の磁性粉末の製造方法。
  16.  前記還元処理後に前記磁性粒子を酸化処理することをさらに含む請求項15に記載の磁性粉末の製造方法。
  17.  シリカコートされた前駆体粒子の表面を、金属塩化物および硫酸塩のうちの少なくとも1種の被覆剤で被覆し、
     前記被覆剤により被覆された前記前駆体粒子を焼成することにより、磁性粒子を作製し、
     前記磁性粒子から前記シリカコートおよび前記被覆剤を除去し、
     前記除去後の前記磁性粒子を用いて記録層を形成する
     ことを含む磁気記録媒体の製造方法。
PCT/JP2019/013367 2018-03-30 2019-03-27 磁性粉末の製造方法および磁気記録媒体の製造方法 WO2019189468A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020509254A JP7207399B2 (ja) 2018-03-30 2019-03-27 磁性粉末の製造方法および磁気記録媒体の製造方法
US17/043,452 US11830533B2 (en) 2018-03-30 2019-03-27 Method of producing magnetic powder and method of producing magnetic recording medium
CN201980021554.0A CN111902869B (zh) 2018-03-30 2019-03-27 磁性粉末的制造方法和磁记录介质的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069880 2018-03-30
JP2018-069880 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189468A1 true WO2019189468A1 (ja) 2019-10-03

Family

ID=68062185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013367 WO2019189468A1 (ja) 2018-03-30 2019-03-27 磁性粉末の製造方法および磁気記録媒体の製造方法

Country Status (4)

Country Link
US (1) US11830533B2 (ja)
JP (1) JP7207399B2 (ja)
CN (1) CN111902869B (ja)
WO (1) WO2019189468A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7023250B2 (ja) * 2019-02-28 2022-02-21 富士フイルム株式会社 磁気記録媒体、イプシロン型酸化鉄粒子の製造方法、及び磁気記録媒体の製造方法
JP7303768B2 (ja) * 2020-03-13 2023-07-05 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477901A (en) * 1987-09-19 1989-03-23 Hitachi Maxell Manufacture of metallic iron magnetic powder
JP2011035006A (ja) * 2009-07-29 2011-02-17 Tdk Corp 磁性材料及び磁石、並びに磁性材料の製造方法
JP2011173958A (ja) * 2010-02-23 2011-09-08 Tokyo Electron Ltd スラリー製造方法、スラリー、研磨方法及び研磨装置
JP2017001944A (ja) * 2015-06-12 2017-01-05 国立大学法人 東京大学 イプシロン酸化鉄とその製造方法、磁性塗料および磁気記録媒体
JP2017024981A (ja) * 2015-07-27 2017-02-02 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932523B2 (ja) * 1980-07-11 1984-08-09 日立マクセル株式会社 金属磁性粉末の製造方法
JPS5732003A (en) 1980-08-04 1982-02-20 Mitsubishi Heavy Ind Ltd Motive power plant
AU630528B2 (en) * 1990-06-21 1992-10-29 Kawasaki Steel Corporation Method for producing composite oxides for use as starting materials for ferrites
US5401313A (en) * 1993-02-10 1995-03-28 Harcros Pigments, Inc. Surface modified particles and method of making the same
JP2002216336A (ja) 2001-01-19 2002-08-02 Victor Co Of Japan Ltd 磁気記録媒体、磁気記録媒体の製造方法
KR100648827B1 (ko) * 2006-08-03 2006-11-24 (주)한상개발 슬러지용 고화제,이를 이용한 경화체의 제조방법 및 상기경화체를 이용한 건축재료의 제조방법
JP5105503B2 (ja) 2006-10-19 2012-12-26 国立大学法人 東京大学 ε酸化鉄の製法
JP5293946B2 (ja) * 2007-11-09 2013-09-18 戸田工業株式会社 磁気記録媒体の非磁性下地層用非磁性粒子粉末の製造方法、及び磁気記録媒体
JP5344139B2 (ja) * 2008-12-02 2013-11-20 戸田工業株式会社 磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末、並びに磁気記録媒体
JP5883649B2 (ja) 2008-12-12 2016-03-15 ダウ グローバル テクノロジーズ エルエルシー コーティング組成物、コーティング組成物を製造する工程、コートされた物品、およびそのような物品を形成する方法
JP5781276B2 (ja) * 2010-05-12 2015-09-16 ジ・アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・ザ・ユニバーシティ・オブ・アリゾナThe Arizona Board Of Regents On Behalf Of The University Of Arizona 金属磁性粉末の製造方法
JP5733736B2 (ja) * 2010-05-21 2015-06-10 国立大学法人 東京大学 酸化チタン粒子の製造方法
CN103014285B (zh) 2011-09-28 2015-04-01 宝山钢铁股份有限公司 具有优良磁性能的镜面取向硅钢制造方法及退火隔离剂
JP5762453B2 (ja) * 2012-09-28 2015-08-12 富士フイルム株式会社 六方晶フェライト磁性粒子の製造方法およびこれにより得られた六方晶フェライト磁性粒子、ならびにそれらの利用
US20140315386A1 (en) 2013-04-19 2014-10-23 Air Products And Chemicals, Inc. Metal Compound Coated Colloidal Particles Process for Making and Use Therefor
CN103357420A (zh) * 2013-07-25 2013-10-23 中国汽车技术研究中心 一种颗粒物氧化型催化器的催化剂涂覆方法
JP6565908B2 (ja) 2014-06-24 2019-08-28 ソニー株式会社 磁気記録媒体
JP6010181B2 (ja) * 2015-01-09 2016-10-19 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉およびその製造方法並びに塗料および磁気記録媒体
JP6106303B2 (ja) * 2015-03-13 2017-03-29 Dowaエレクトロニクス株式会社 表面改質鉄系酸化物磁性粒子粉およびその製造方法
JP6411981B2 (ja) * 2015-09-30 2018-10-24 富士フイルム株式会社 塗布型磁気記録媒体製造用金属酸化物粒子分散物、塗布型磁気記録媒体の磁性層形成用組成物の製造方法、および塗布型磁気記録媒体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477901A (en) * 1987-09-19 1989-03-23 Hitachi Maxell Manufacture of metallic iron magnetic powder
JP2011035006A (ja) * 2009-07-29 2011-02-17 Tdk Corp 磁性材料及び磁石、並びに磁性材料の製造方法
JP2011173958A (ja) * 2010-02-23 2011-09-08 Tokyo Electron Ltd スラリー製造方法、スラリー、研磨方法及び研磨装置
JP2017001944A (ja) * 2015-06-12 2017-01-05 国立大学法人 東京大学 イプシロン酸化鉄とその製造方法、磁性塗料および磁気記録媒体
JP2017024981A (ja) * 2015-07-27 2017-02-02 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉の製造方法

Also Published As

Publication number Publication date
JP7207399B2 (ja) 2023-01-18
US11830533B2 (en) 2023-11-28
US20210027807A1 (en) 2021-01-28
CN111902869B (zh) 2022-06-24
CN111902869A (zh) 2020-11-06
JPWO2019189468A1 (ja) 2021-05-13

Similar Documents

Publication Publication Date Title
JP7115316B2 (ja) 磁気記録媒体
JP7143764B2 (ja) 磁性粉末およびその製造方法、ならびに磁気記録媒体
JP6821335B2 (ja) イプシロン酸化鉄とその製造方法、磁性塗料および磁気記録媒体
JP5130534B2 (ja) 磁気特性を改善したε酸化鉄粉末
JP6676493B2 (ja) 鉄系酸化物磁性粒子粉の製造方法
JP5124825B2 (ja) ε酸化鉄系の磁性材料
JP7033071B2 (ja) イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体
JP6565933B2 (ja) 磁性粉末およびその製造方法、ならびに磁気記録媒体
Lei et al. A general strategy for synthesizing high-coercivity L1 0-FePt nanoparticles
WO2019189468A1 (ja) 磁性粉末の製造方法および磁気記録媒体の製造方法
JP7074067B2 (ja) 磁性粉末の製造方法、および磁気記録媒体の製造方法
WO2016199937A1 (ja) イプシロン酸化鉄とその製造方法、磁性塗料および磁気記録媒体
JP5418754B2 (ja) 強磁性金属粒子粉末及びその製造法、並びに磁気記録媒体
US20100035087A1 (en) Process for producing ferromagnetic metal particles and magnetic recording medium
Wang et al. Reducing the ordering temperature of FePt nanoparticles by Cu additive and alternate reduction method
JP5316522B2 (ja) 磁性粒子粉末
Wakayama et al. Research Article Synthesis of a High-Coercivity FePt–Ag Nanocomposite Magnet via Block Copolymer-Templated Self-Assembly
Wakayama et al. Synthesis of a High-Coercivity FePt–Ag Nanocomposite Magnet via Block Copolymer-Templated Self-Assembly
JP5700191B2 (ja) 強磁性金属粒子粉末の製造法、磁気記録媒体
JPH02298004A (ja) メタル磁性粉末の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509254

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19775336

Country of ref document: EP

Kind code of ref document: A1