WO2019188534A1 - Liquid atomizing device - Google Patents

Liquid atomizing device Download PDF

Info

Publication number
WO2019188534A1
WO2019188534A1 PCT/JP2019/011317 JP2019011317W WO2019188534A1 WO 2019188534 A1 WO2019188534 A1 WO 2019188534A1 JP 2019011317 W JP2019011317 W JP 2019011317W WO 2019188534 A1 WO2019188534 A1 WO 2019188534A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
air
water
eliminator
micronizer
Prior art date
Application number
PCT/JP2019/011317
Other languages
French (fr)
Japanese (ja)
Inventor
広幸 近藤
将秀 福本
剛也 重信
正人 本多
村山 拓也
勝見 佳正
訓央 清本
智之 樋口
鈴木 康浩
雅之 広川
泰基 平田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018061514A external-priority patent/JP7126044B2/en
Priority claimed from JP2018061513A external-priority patent/JP7126043B2/en
Priority claimed from JP2018169257A external-priority patent/JP7170175B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980021840.7A priority Critical patent/CN111902218B/en
Publication of WO2019188534A1 publication Critical patent/WO2019188534A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems

Definitions

  • the present disclosure relates to a liquid refining device used in a heat exchange air device, an air purifier, an air conditioner, and the like.
  • a liquid refining device that refines water and blows out the air that has been sucked into the air by containing the refined water droplets.
  • a liquid refinement chamber that refines water is provided in an air passage between a suction port that sucks air and a blowout port that blows out the sucked air.
  • the liquid micronization chamber includes a pumping pipe fixed to the rotating shaft of the rotary motor. When the pumping pipe is rotated by the rotary motor, the water stored in the water storage unit is pumped up by the pumping pipe, and the pumped water is radiated in the centrifugal direction. The radiated water collides with the collision wall, so that the water is refined.
  • the liquid micronizer described in Patent Document 1 is provided with a gas-liquid separator (eliminator), and among the micronized water droplets contained in the air, large water droplets are the gas-liquid separator. Collected and removed by Thereby, it is suppressed that a large droplet of water adheres to a blower outlet.
  • a gas-liquid separator eliminator
  • the gas-liquid separator may be excessively wetted.
  • some conventional liquid micronizers have a gas-liquid separator provided below a collision wall. In this case, water droplets adhering to the collision wall may drop to the gas-liquid separator, and the gas-liquid separator may also become excessively wet. If the gas-liquid separator becomes excessively wet, the liquid micronizer will increase the amount of water vaporized on the gas-liquid separator even though the amount of humidification is controlled by the amount of rotation of the pumping pipe. There is a problem that the controllability of performance tends to be lowered.
  • the present disclosure has been made to solve the above-described problem, and an object of the present disclosure is to provide a liquid micronizer that can improve the controllability of humidification performance while collecting water droplets with an eliminator.
  • the liquid refinement device of the present disclosure includes a suction port that sucks air, a blowout port that blows out air sucked from the suction port, and an air passage between the suction port and the blowout port. And a liquid micronization chamber for micronizing water.
  • the liquid micronization chamber is rotated by a rotary motor and includes a rotary shaft arranged in the vertical direction and a pumping port below, and the upper portion is fixed to the rotary shaft and rotated in accordance with the rotation of the rotary shaft.
  • a cylindrical pumping pipe that pumps water from the pumping outlet and discharges the pumped water in the centrifugal direction, a collision wall that refines the water by colliding with the water released by the pumping pipe, A water storage unit that is installed vertically below the pipe and stores water to be pumped from the pumping port, a side that receives the falling water that adheres to the collision wall, and a water that is received on the side is guided to the storage unit. And an eliminator that is provided in contact with the side below the collision wall and collects water droplets of the refined water.
  • the water that adheres to the collision wall and falls is received in the horizontal direction and guided to the water storage section in the vertical direction, so that the water is provided below the collision wall. It can suppress falling to the eliminator.
  • Some of the water droplets collected by the eliminator may move to the downstream side of the air path and above the eliminator due to the wind pressure, but the water droplets adhere to the horizontal contact with the eliminator and are Can be dropped to the reservoir. Thereby, it can suppress that an eliminator gets wet with water excessively, and it can suppress that the vaporization amount of the water on an eliminator becomes large. Therefore, there is an effect that the controllability of the humidifying performance can be improved while collecting water droplets by the eliminator.
  • FIG. 1 is a schematic cross-sectional view in the vertical direction of the liquid miniaturization apparatus according to Embodiment 1 of the present disclosure.
  • FIG. 2A is a perspective view of an inner cylinder and an eliminator of the liquid micronizer.
  • FIG. 2B is a top view of the inner cylinder and the eliminator of the liquid micronizer as viewed from above.
  • FIG. 3 is a perspective cross-sectional view of the inner cylinder of the liquid micronizer.
  • FIG. 4 is a schematic cross-sectional view of the inner cylinder and eliminator of the liquid micronizer.
  • FIG. 5 is a schematic diagram schematically showing the movement of water droplets collected by the eliminator of the liquid micronizer according to the wind pressure.
  • FIG. 6 is a schematic diagram schematically showing how water droplets that have moved in the eliminator of the liquid micronizer flow along the horizontal and vertical directions.
  • FIG. 7A is a schematic diagram schematically showing a modification of the arrangement position of the eliminator.
  • FIG. 7B is a schematic diagram schematically showing another modification of the arrangement position of the eliminator.
  • FIG. 8A is a schematic diagram schematically showing still another modified example of the arrangement position of the eliminator.
  • FIG. 8B is a cross-sectional view of the eliminator and the vertical section according to the modification shown in FIG. 8A.
  • FIG. 9A is a schematic diagram schematically showing still another modified example of the arrangement position of the eliminator.
  • FIG. 9B is a schematic diagram schematically showing still another modified example of the arrangement position of the eliminator.
  • FIG. 9A is a schematic diagram schematically showing still another modified example of the arrangement position of the eliminator.
  • FIG. 9B is a schematic diagram schematically showing still another modified example of the arrangement position of the eliminator
  • FIG. 10 is a schematic perspective view of a heat exchange air device provided with the liquid micronizer.
  • FIG. 11 is a schematic cross-sectional view in the vertical direction of the liquid micronizing device according to Embodiment 2 of the present disclosure.
  • FIG. 12 is a perspective cross-sectional view of the liquid miniaturization apparatus cut in the vertical direction along two orthogonal surfaces.
  • FIG. 13A is a schematic diagram schematically showing the flow of wind and the flow of water droplets scattered from the eliminator when the protrusion and the guide are provided.
  • FIG. 13B is a schematic view schematically showing the flow of wind and the flow of water droplets scattered from the eliminator when neither the protruding portion nor the guide portion is provided.
  • FIG. 13A is a schematic diagram schematically showing the flow of wind and the flow of water droplets scattered from the eliminator when neither the protruding portion nor the guide portion is provided.
  • FIG. 13C is a schematic diagram schematically showing the flow of wind and the flow of water droplets scattered from the eliminator when the guide portion is provided and the protruding portion is not provided.
  • FIG. 14 is a schematic perspective view of a heat exchange device provided with the liquid micronizer.
  • FIG. 15 is a perspective view illustrating the front side of the liquid micronizing device according to Embodiment 3 of the present disclosure.
  • FIG. 16 is a perspective view showing the back side of the liquid micronizer.
  • FIG. 17 is a schematic cross-sectional view of the liquid miniaturization apparatus.
  • FIG. 18 is a schematic perspective view showing a state in which the liquid micronizer is connected to the air blower according to Embodiment 3 of the present disclosure.
  • FIG. 19 is a schematic perspective view showing a state where the liquid micronizer is connected to the air blowing device.
  • FIG. 20 is a schematic enlarged perspective view showing a state where the liquid micronizer is connected to the air blowing device.
  • FIG. 21 is a schematic perspective view showing the air flow of the liquid micronizing device and the air blowing device.
  • FIG. 22A is a block diagram illustrating a configuration in a case where the liquid micronizing device according to Embodiment 4 of the present disclosure is arranged downstream of the blower.
  • FIG. 22B is a block diagram illustrating a configuration in a case where the liquid micronizing device according to Embodiment 4 of the present disclosure is arranged upstream of the blower device.
  • FIG. 23 is a schematic perspective view illustrating a configuration when the liquid micronizing device according to the fifth embodiment of the present disclosure blows air upward.
  • FIG. 24 is a schematic perspective view showing the configuration of the liquid miniaturization apparatus.
  • FIG. 25 is a schematic view schematically showing the flow of air blown from the upper part of the liquid micronizer.
  • FIG. 26 is a schematic perspective view showing configurations of the liquid micronizing device and the blower.
  • FIG. 27 is a schematic perspective view illustrating a configuration when the liquid micronizing device according to the fifth embodiment of the present disclosure blows out air in the lateral direction.
  • FIG. 28 is a schematic perspective view showing the configuration of the liquid miniaturization apparatus.
  • FIG. 28 is a schematic perspective view showing the configuration of the liquid miniaturization apparatus.
  • FIG. 29 is a schematic view schematically showing the flow of air blown from the side portion of the liquid micronizer.
  • FIG. 30 is a schematic perspective view showing configurations of the liquid micronizing device and the blower.
  • FIG. 31 is a cross-sectional view showing a cross section of a conventional liquid miniaturization apparatus.
  • the liquid refinement device according to the first embodiment of the present disclosure is provided in an air inlet between an air inlet, an air outlet that blows out air sucked from the air inlet, and an air inlet between the air inlet and the air outlet.
  • the liquid micronization chamber is rotated by a rotary motor and includes a rotary shaft arranged in the vertical direction and a pumping port below, and the upper portion is fixed to the rotary shaft and rotated in accordance with the rotation of the rotary shaft.
  • a cylindrical pumping pipe that pumps water from the pumping outlet and discharges the pumped water in the centrifugal direction, a collision wall that refines the water by colliding with the water released by the pumping pipe, and a pumping pipe
  • the water storage part that stores the water to be pumped from the water outlet, the side that receives the falling water that adheres to the collision wall, and the water that is received on the side are guided to the water storage part.
  • an eliminator that is provided in contact with the horizontal direction below the collision wall and collects water droplets of the refined water.
  • the eliminator may be provided in contact with the vertical.
  • the eliminator may be provided such that the downstream side surface of the eliminator is in contact with the vertical direction with respect to the air path.
  • the eliminator may be provided by burying a vertical frame in the eliminator.
  • the eliminator may be provided by burying a vertical beam on the downstream side of the eliminator in the air passage.
  • the horizontal crossing may be provided with an inclination so that the water received at the horizontal side flows toward the vertical.
  • a plurality of vertical beams may be provided from the horizontal to the water storage unit.
  • FIG. 1 is a schematic sectional view of the liquid micronizer 150 in the vertical direction.
  • the liquid micronizer 150 includes a main body case 101 that includes a suction port 102 that sucks air and a blower port 103 that blows out air sucked from the suction port 102. Further, in the main body case 101, the liquid micronizer 150 forms air passages 115 to 117 between the suction port 102 and the air outlet 103. Further, the main body case 101 is provided with a liquid micronization chamber 105 provided in the air passages 115 to 117, and the suction port 102, the liquid micronization chamber 105, and the air outlet 103 communicate with each other.
  • the air passage 115 is an air passage for sending the air taken in through the suction port 102 to the liquid miniaturization chamber 105.
  • the air path 116 is an air path that sends the air sent by the air path 115 to the outside of the liquid micronization chamber 105 through the liquid micronization chamber 105.
  • the air passage 117 is an air passage that sends the air sent out of the liquid micronization chamber 105 to the outlet 103.
  • the liquid micronization chamber 105 is a main part of the liquid micronizer 150 and is where water is miniaturized.
  • air taken in through the suction port 102 is sent to the liquid micronizer chamber 105 via the air path 115.
  • the liquid micronizer 150 includes the water that has been refined in the liquid micronization chamber 105 in the air that passes through the air passage 116, and blows the air containing the water via the air passage 117. It is configured to blow out from the outlet 103.
  • the liquid micronization chamber 105 includes a collision wall 112 on the inner wall of the inner cylinder 106 opened at the upper and lower sides.
  • the inner cylinder 106 is fixed to the main body case 101, and an air path 117 is formed in a space sandwiched between the main body case 101 and the inner cylinder 106.
  • the liquid micronization chamber 105 is provided with a cylindrical pumping pipe 111 for pumping (pumping) water while rotating inside the collision wall 112.
  • the pumping pipe 111 has an inverted conical hollow structure, and has a pumping port on the lower side, and a rotating shaft 110 arranged in the vertical direction is fixed to the center of the top surface of the inverted conical shape on the upper side. Yes.
  • the rotary shaft 110 By connecting the rotary shaft 110 to the rotary motor 109 provided on the outer surface of the liquid micronization chamber 105, the rotary motion of the rotary motor 109 is transmitted to the pumping pipe 111 through the rotary shaft 110, and the pumping pipe 111 rotates.
  • the pumping pipe 111 includes a plurality of rotating plates 114.
  • the plurality of rotating plates 114 are formed so as to protrude outward from the outer surface of the water pumping pipe 111 with a predetermined interval in the axial direction of the rotating shaft 110. Since the rotating plate 114 rotates together with the pumping pipe 111, a horizontal disk shape coaxial with the rotating shaft 110 is preferable. Note that the number of the rotating plates 114 is appropriately set according to the target performance or the dimensions of the pumping pipe 111.
  • an opening 113 that penetrates the wall surface of the pumping pipe 111 is provided on the wall surface of the pumping pipe 111.
  • the opening 113 of the pumping pipe 111 is provided at a position communicating with the rotating plate 114 formed so as to protrude outward from the outer surface of the pumping pipe 111.
  • the size of the opening 113 in the circumferential direction needs to be designed according to the outer diameter of the portion of the pumped pipe 111 where the opening 113 is provided. For example, the diameter corresponding to 5% to 50% of the outer diameter of the pumping pipe 111, more preferably the diameter corresponding to 5% to 20% of the pumping pipe 111. Within the above range, the dimensions of the openings 113 may be the same.
  • a water storage section 104 for storing water pumped by the pumping pipe 111 is provided below the pumping pipe 111 in the vertical direction.
  • the water storage unit 104 has a depth so that a part of the lower part of the pumping pipe 111, for example, about one third to one hundredth of the conical height of the pumping pipe 111 is immersed. This depth can be designed according to the required pumping capacity.
  • Water supply to the water storage unit 104 is performed by the water supply unit 107.
  • a water supply pipe (not shown) is connected to the water supply unit 107, and water is supplied directly from the water supply pipe through a water pressure adjustment valve, for example.
  • the water supply unit 107 may be configured so as to pump up only the amount of water required by the siphon principle from a water tank provided outside the liquid micronization chamber 105 in advance and supply water to the water storage unit 104.
  • the water supply unit 107 is provided above the bottom surface of the water storage unit 104 in the vertical direction.
  • the water supply unit 107 is preferably provided not only above the bottom surface of the water storage unit 104 but also above the top surface of the water storage unit 104 (the surface of the maximum water level that can be stored in the water storage unit 104) in the vertical direction.
  • a water level detection unit 108 that detects the water level of the water storage unit 104 is provided.
  • the water level detection unit 108 has a float switch 120.
  • the float switch 120 is turned off when the water reservoir 104 has not reached a certain water level, and is turned on when the water reservoir 104 has reached a certain water level.
  • This constant water level is set to such a level that the lower part of the pumping pipe 111 is immersed in the water stored in the water storage unit 104.
  • the float switch 120 When the float switch 120 is off, water is supplied from the water supply unit 107 to the water storage unit 104, and when the float switch 120 is on, the supply of water from the water supply unit 107 to the water storage unit 104 is stopped.
  • the water in the water reservoir 104 can be kept at a constant water level.
  • the water level detection unit 108 is provided above the bottom surface of the water storage unit 104 in the vertical direction.
  • a drain pipe 118 is connected to the bottom surface of the water storage unit 104.
  • the drain port of the water storage unit 104 provided at a position where the drain pipe 118 is connected is provided at the lowest position of the water storage unit 104.
  • the water stored in the water storage section 104 is drained from the drain pipe 118 by opening a valve (not shown) provided in the drain pipe 118.
  • the liquid micronization chamber 105 includes an eliminator 119 so as to cover an opening 124 (see FIG. 3) below the collision wall 112 and connected from the liquid micronization chamber 105 to the air path 117.
  • the eliminator 119 passes air containing water refined in the liquid refinement chamber 105 and collects water droplets in the water contained in the air. Most of the water droplets collected by the eliminator 119 are guided to the water storage unit 104.
  • the operation principle of water refinement in the liquid refiner 150 will be described.
  • the rotating shaft 110 is rotated by the rotation motor 109 and the pumped water pipe 111 is rotated accordingly, the water stored in the water storage unit 104 is pumped from the water pumping port of the water pumped pipe 111 by the centrifugal force generated by the rotation.
  • the rotational speed of the pumping pipe 111 is set between 1000 and 5000 rpm. Since the pumping pipe 111 has an inverted conical hollow structure, the water pumped up by the rotation is pumped up along the inner wall of the pumping pipe 111. Then, the pumped water is discharged in the centrifugal direction from the opening 113 of the pumping pipe 111 through the rotating plate 114 and scattered as water droplets.
  • the water droplets scattered from the rotating plate 114 fly in the space surrounded by the collision wall 112 and collide with the collision wall 112 to be refined.
  • the air passing through the liquid micronization chamber 105 moves from the upper opening of the inner cylinder 106 into the inner cylinder 106.
  • the air contains water crushed (miniaturized) by the collision wall 112, and the air passage 116 passes through the eliminator 119 from the opening 124 (see FIG. 3) to the outside of the inner cylinder 106 (air passage 117). Move to).
  • the air sucked from the suction port 102 of the liquid micronizer 150 can be humidified, and the humidified air can be blown out from the air outlet 103.
  • the amount of water pumped up by the pumping pipe 111 is changed by the amount of rotation of the pumping pipe 111, and the amount of water droplets scattered from the rotating plate 114 of the pumping pipe 111 is changed, so that it is refined by the collision wall 112.
  • the amount of water can be changed. Therefore, the amount of water included in the air sucked from the suction port 102 of the liquid micronizer 150 can be changed according to the rotation amount of the pumping pipe 111. That is, the liquid micronizer 150 can control the humidification amount according to the rotation amount of the water pumping pipe 111.
  • the eliminator 119 collects water droplets out of the water refined in the liquid refinement chamber 105 and included in the air, the liquid refiner 150 is vaporized into the air blown from the outlet 103. Only water can be included. Thereby, the liquid refinement
  • the rotating plate 114 is preferably as close to the collision wall 112 as possible.
  • the liquid to be refined may be other than water, for example, a liquid such as hypochlorous acid water having bactericidal or deodorizing properties.
  • the refined hypochlorous acid water is included in the air sucked from the suction port 102 of the liquid micronizer 150, and the air is blown out from the outlet 103, so that the space in which the liquid micronizer 150 is placed Sterilization or deodorization can be performed.
  • 2A is a perspective view of the inner cylinder 106 and the eliminator 119
  • FIG. 2B is a top view of the inner cylinder 106 and the eliminator 119 as viewed from above.
  • 3 is a perspective sectional view of the inner cylinder 106 cut along the plane III shown in FIG. 2A
  • FIG. 4 is a schematic sectional view of the inner cylinder 106 and the eliminator 119 as viewed in the IV direction shown in FIG. 2B.
  • FIG. 3 shows a perspective sectional view of the inner cylinder 106 with the eliminator 119 removed, but the location of the eliminator 119 is shown by a thin line for reference.
  • the inner cylinder 106 is provided with a lateral wall 121 for receiving water that adheres to the collision wall 112 and falls at the lower end of the collision wall 112.
  • the side wall 121 includes a bottom 121a extending toward the inside of the inner cylinder 106 at the lower end of the collision wall 112, and a side wall 121b extending upward from the bottom 121a at a position facing the collision wall 112. And is formed over the entire circumference of the collision wall 112.
  • the inner cylinder 106 includes a plurality of vertical frames 122 that extend from the side wall 121 toward the water storage section 104 to the lower side of the collision wall 112 at a predetermined interval at the lower end of the collision wall 112.
  • the vertical gutter 122 guides the water received by the horizontal gutter 121 to the water reservoir 104.
  • eight vertical frames 122 are provided, but the number may be any number.
  • an opening 124 is formed between adjacent vertical frames 122. Air containing water refined inside the inner cylinder 106 flows from the liquid refinement chamber 105 to the air passage 117 through the opening 124. That is, in the opening 124, the inner side of the inner cylinder 106 (the side of the liquid micronization chamber 105) is the upstream side of the air paths 115 to 117, and the outer side of the inner cylinder 106 (the side of the air path 117) is Downstream side.
  • the side wall 121 is provided with an inclination so that the received water flows toward the vertical wall 122.
  • the horizontal frame 121 is inclined so that the position of the horizontal frame 121 that is the middle of two adjacent vertical frames 122 is the highest and the position of the horizontal frame 121 that is connected to the vertical frame 122 is the lowest. ing.
  • the vertical frame 122 is provided with a bottom 122a on the downstream side with respect to the air passages 115 to 117 and side walls 122b on both sides in the direction of guiding water from the horizontal channel 121 to the water storage unit 104. It has been.
  • the vertical frame 122 has a U-shape that opens toward the upstream side with respect to the air passages 115 to 117. Thereby, the water flowing through the vertical frame 122 is pressed by the wind pressure so as to flow through the bottom 122a of the vertical frame 122, and the side wall 122b can prevent the water from spilling from the vertical frame 122.
  • the inner cylinder 106 is provided with a plurality of eliminator locking claws 123 extending from the side wall 121b of the lateral wall 121 toward the center of the inner cylinder 106 at the lower end of the collision wall 112.
  • four eliminator locking claws 123 are provided, but the number thereof may be any number.
  • the eliminator locking claw 123 locks the eliminator 119 below the collision wall 112 and inside the opening 124 (upstream of the air passages 115 to 117).
  • the eliminator 119 is disposed so that the upper end of the eliminator 119 contacts the lower end of the horizontal plate 121 (below the bottom 121a). Further, the eliminator 119 is disposed so that the downstream side surface (outer peripheral surface) of the eliminator 119 is in contact with the vertical frame 122 with respect to the air passages 115 to 117.
  • FIG. 5 is a schematic diagram schematically showing the movement of the water droplets 131 and 132 collected by the eliminator 119 due to the wind pressure.
  • FIG. 6 is a schematic diagram schematically showing how the water droplet 131 moved in the eliminator 119 flows along the horizontal 121 and the vertical 122.
  • some of the water droplets 131 collected by the eliminator 119 are caused to flow through the air passages 115 to 117 by the wind pressure of the wind flowing from the liquid micronization chamber 105 toward the air passage 117 as shown in FIG. It moves downstream and above the eliminator 119.
  • the water droplet 131 is attached to the horizontal plate 121 by the surface tension of the horizontal plate 121 as shown in FIG. Then, the water droplet 131 moves from the horizontal profile 121 to the vertical profile 122 and falls along the vertical profile 122 to the water storage unit 104.
  • another water droplet 132 is also downstream of the air channels 115 to 117 by the wind pressure of the wind flowing from the liquid micronization chamber 105 toward the air channel 117, as shown in FIG. Move to the side.
  • the liquid micronizer 150 is provided such that the downstream side surface (outer peripheral surface) of the eliminator 119 is in contact with the vertical frame 122. Therefore, a part of the water droplet 132 enters the vertical shaft 122 through the opening directed upstream from the air passages 115 to 117 in the vertical wall 122 and is guided to the water storage unit 104.
  • the remaining part of the water droplet 132 is attached to the outer portion of the side wall 122 b of the vertical wall 122 by surface tension and guided to the water storage unit 104.
  • the water droplets 132 collected by the eliminator 119 can be efficiently dropped onto the water storage unit 104, it is possible to prevent the water droplets 132 collected by the eliminator 119 from being excessively wetted.
  • the eliminator 119 is provided below the collision wall 112 and in contact with the horizontal plate 121, the air flowing from the liquid micronization chamber 105 through the opening 124 to the air passage 117 is surely supplied to the eliminator 119. Can be passed. Therefore, water droplets can be reliably removed from the air blown from the blower outlet 103.
  • the liquid micronization apparatus 150 can suppress the eliminator 119 from being wetted excessively, and thus can suppress an increase in the amount of water vaporized on the eliminator 119. Therefore, since the liquid micronizer 150 can easily obtain the target humidification performance by controlling the rotation amount of the pumping pipe 111, it can control the humidification performance while collecting water droplets by the eliminator 119. It can be improved.
  • positioned as shown in FIG. 4 was demonstrated. That is, the upper end of the eliminator 119 is in contact with the lower end of the horizontal plate 121 (below the bottom 121a), and the downstream side surface (outer peripheral surface) of the eliminator 119 is in contact with the vertical frame 122 with respect to the air passages 115 to 117.
  • the case where the eliminator 119 is disposed has been described. However, it is sufficient that the eliminator 119 is in contact with the horizontal plate 121 below the collision wall 112, and various modifications can be considered for the arrangement position.
  • FIG. 7A is a schematic diagram schematically showing one modification thereof.
  • the eliminator 119 is not in contact with the vertical wall 122, the upper end of the eliminator 119 is in contact with the outside of the side wall 121b of the horizontal wall 121 (the side opposite to the collision wall 112, the pumping pipe 111 side).
  • an eliminator 119 is provided.
  • the vertical frame 122 prevents the water droplets 132 collected by the eliminator 119 from scattering from the downstream side surface (outer peripheral surface) of the eliminator 119, or the water droplets 132 collected by the eliminator 119 are removed. It cannot be efficiently dropped into the water storage unit 104. However, since the upper end of the eliminator 119 is in contact with the outside of the side wall 121b of the side 121, the following operational effects can be obtained.
  • the water droplet 131 moved to the downstream side of the air passages 115 to 117 and above the eliminator 119 by the wind pressure is the side wall 121 b of the side wall 121 due to the surface tension of the side wall 121.
  • the water droplet 131 moves from the side wall 121b of the horizontal frame 121 to the bottom 121a, further moves to the vertical frame 122, and falls to the water storage section 104 along the vertical frame 122.
  • FIG. 7B is a schematic diagram schematically showing another modified example of the arrangement position of the eliminator 119.
  • the eliminator 119 is disposed so that the upper end of the eliminator 119 is in contact with the lower end of the horizontal frame 121 (below the bottom 121a). Is done.
  • the vertical frame 122 prevents the water droplets 132 collected by the eliminator 119 from scattering from the downstream side surface (outer peripheral surface) of the eliminator 119, or the water droplets 132 collected by the eliminator 119 are removed. It cannot be efficiently dropped into the water storage unit 104.
  • the function and effect obtained when the upper end of the eliminator 119 comes into contact with the lower end of the horizontal plate 121 can be obtained in the same manner as in the embodiment shown in FIG.
  • FIG. 8A is a schematic view schematically showing still another modified example of the arrangement position of the eliminator 119
  • FIG. 8B is a cross section of the eliminator 119 and the vertical frame 122 when viewed in the VIIIb direction shown in FIG. 8A.
  • FIG. 8A the eliminator 119 is arranged as follows. That is, the eliminator 119 is disposed so that the lower side of the bottom 121 a of the side wall 121 and the outer side of the side wall 121 b (the side opposite to the collision wall 112 and the pumping pipe 111 side) are buried by the upper end of the eliminator 119.
  • the eliminator 119 is disposed so that the side wall 122b of the vertical wall 122 is buried downstream of the eliminator 119 in the air passages 115 to 117.
  • the effect obtained by the upper end of the eliminator 119 contacting the lower end of the horizontal plate 121 (below the bottom 121 a), and the eliminator 119 is vertical.
  • the effect obtained by contacting 122 can be exhibited.
  • the contact area between the eliminator 119 and the horizontal frame 121 and the vertical frame 122 is increased.
  • the water droplets 131 and 132 collected by the eliminator 119 can be attached to the horizontal frame 121 or the vertical frame 122 by the surface tension, and can be guided to the water storage unit 104. Therefore, compared with the embodiment shown in FIG. 4, the water droplets 131 and 132 collected by the eliminator 119 can be dropped to the water storage unit 104 more efficiently, and the water droplets 131 collected by the eliminator 119, In 132, excessive water wetting can be further suppressed.
  • FIG. 9A is a schematic view schematically showing still another modified example of the arrangement position of the eliminator 119.
  • the eliminator 119 is arranged as follows. That is, the eliminator 119 is disposed so that the lower side of the bottom 121 a of the side wall 121 and the outer side of the side wall 121 b (the side opposite to the collision wall 112 and the pumping pipe 111 side) are buried by the upper end of the eliminator 119. Further, the eliminator 119 is arranged so that the bottom 122a and the side wall 122b (see FIG. 3) of the vertical frame 122 are buried in the eliminator 119. That is, in the modification shown in FIG.
  • the vertical frame 122 is completely buried in the eliminator 119. Also by this, the same effect as FIG. 8A can be show
  • the eliminator 119 is fixed by the vertical shear 122, so that the eliminator 119 can be made difficult to come off. It is preferable that the eliminator 119 is disposed so that the vertical frame 122 is buried downstream of the eliminator 119 in the air passages 115 to 117. As a result, more water droplets 131 and 132 collected by the eliminator 119 can reach the vertical frame 122 by wind pressure, so that the water droplets 131 and 132 can be dropped to the water storage unit 104 more efficiently.
  • FIG. 9B is a schematic diagram schematically showing still another modified example of the arrangement position of the eliminator 119.
  • the eliminator 119 is not in contact with the vertical frame 122, the lower side of the bottom 121a of the horizontal frame 121 and the outside of the side wall 121b (the side opposite to the collision wall 112, the pumping pipe 111 side).
  • the eliminator 119 is disposed so as to be buried by the upper end of the eliminator 119.
  • the vertical frame 122 prevents the water droplets 132 collected by the eliminator 119 from scattering from the downstream side surface (outer peripheral surface) of the eliminator 119, or the water droplets 132 collected by the eliminator 119 are removed.
  • FIG. 10 is a schematic perspective view of the heat exchange air device 160 including the liquid micronizer 150 according to Embodiment 1 of the present disclosure.
  • the heat exchange air device 160 includes an indoor intake port 161 and an air supply port 164 provided in a building interior, an exhaust port 162 and an outside air intake port 163 provided outside the building, and heat exchange provided in the main body. And an element 165.
  • the indoor suction port 161 sucks indoor air, and the sucked air is exhausted from the exhaust port 162 to the outside.
  • the outside air inlet 163 sucks outdoor outside air, and the sucked outside air is supplied into the room through the air inlet 164.
  • heat exchange is performed by the heat exchange element 165 between the air sent from the indoor suction port 161 to the exhaust port 162 and the outside air sent from the outside air suction port 163 to the air supply port 164.
  • the heat exchange air device there is a device incorporating a device for vaporizing a liquid such as a water vaporizer for humidification and a hypochlorous acid vaporizer for sterilization or deodorization.
  • a liquid refining device 150 is incorporated as a device for vaporizing the liquid.
  • the liquid refinement device 150 is provided on the air supply port 164 side of the heat exchange air device 160. Note that water supply and drainage to the liquid micronizer 150 are performed by a water supply / drainage pipe 151.
  • the heat exchange air device 160 provided with the liquid refinement device 150 includes water or hypochlorous acid refined by the liquid refinement device 150 with respect to the outside air subjected to heat exchange by the heat exchange element 165.
  • the air is supplied into the room through the air supply port 164.
  • This liquid refinement device 150 may be provided in an air purifier or an air conditioner instead of the heat exchange air device 160.
  • One of the functions of an air purifier or an air conditioner is one that incorporates a device for vaporizing a liquid such as a water vaporizer for humidification and a hypochlorous acid vaporizer for sterilization or deodorization.
  • a device for vaporizing a liquid such as a water vaporizer for humidification and a hypochlorous acid vaporizer for sterilization or deodorization.
  • a liquid refining device that refines water and blows out the air that has been sucked in by containing the refined water drops.
  • a liquid micronization chamber for micronizing water is provided in an air passage between a suction port that sucks air and a blower port that blows out the sucked air.
  • This liquid micronization chamber is provided with a pumping pipe fixed to the rotary shaft of the rotary motor. When the pumping pipe is rotated by the rotary motor, the water stored in the water storage section is pumped by the pumping pipe, Water is emitted in the centrifugal direction. The radiated water collides with the collision wall, so that the water is refined.
  • this type of liquid micronizer includes an eliminator below the collision wall.
  • the eliminator collects water droplets out of the micronized water included in the air in the liquid micronization chamber. This eliminator removes water droplets included in the air, and suppresses water droplets from adhering to the air outlet.
  • water droplets collected by the eliminator may be scattered from the downstream side surface (outer peripheral surface) of the eliminator due to the wind pressure of the air passing through the eliminator.
  • Water droplets scattered from the eliminator adhere to the wall surface of the downstream air passage of the eliminator. If water droplets adhering to the wall surface remain without being dried after the operation of the liquid micronizing device, there is a problem that bacteria or molds are likely to be generated inside the device.
  • the present disclosure has been made to solve the above-described problems, and an object of the present disclosure is to provide a liquid micronizer that can shorten the internal drying time after the operation is completed and can suppress the generation of bacteria or mold.
  • the liquid refinement device includes a suction port that sucks air, a blow-out port that blows out air sucked from the suction port, and a suction port and a blow-out port.
  • a liquid refining chamber that is provided in the air path between the two and that refins water.
  • the liquid micronization chamber is rotated by a rotary motor and includes a rotary shaft arranged in the vertical direction and a pumping port below, and the upper portion is fixed to the rotary shaft and rotated in accordance with the rotation of the rotary shaft.
  • the cylindrical pumping pipe that pumps the pumped water from the pumping port and releases the pumped water in the centrifugal direction, the collision wall that refines the water by colliding with the water released by the pumping pipe, and the vertical of the pumping pipe
  • a water storage section that stores water for pumping from the pumping outlet, and an eliminator that is provided below the collision wall and collects water droplets from the refined water, and is downstream of the eliminator.
  • a guide part formed by curving a part of the wall surface of the side air passage.
  • the guide portion formed to be curved is provided on the wall surface of the downstream air passage of the eliminator, the guide portion is scattered from the eliminator and Water droplets adhering to the wall surface can be easily dropped downward from the guide portion. Therefore, since the air blown out from the eliminator can flow along the curved wall surface of the guide portion, the wall surface can be easily dried. Therefore, the internal drying time after the operation is completed can be shortened, and the generation of bacteria or mold can be suppressed.
  • the liquid micronizer may further include a protrusion provided above the eliminator and protruding from the collision wall toward the liquid micronization chamber and covering the top of the eliminator.
  • the air that has passed through the inside of the collision wall is once bent by the protrusion inward of the liquid micronization chamber, and then bent so that it flows toward the downstream side of the eliminator at the tip of the protrusion. After passing, it flows through the downstream airway. In this way, since the air flow is formed around, the pressure loss of the air can be reduced, and as a result, the air can flow through the eliminator at a uniform wind speed.
  • the upper end of the guide part may be provided at a position higher than the upper end of the eliminator.
  • the upper end of the guide portion may be provided so as to be substantially the same height as the upper end of the eliminator.
  • liquid micronizer may further include a bottom portion that is in contact with the lower end of the eliminator and is inclined toward the water storage portion, and the protruding portion and the bottom portion may be provided substantially in parallel.
  • FIG. 11 is a schematic cross-sectional view of the liquid micronizer 250 in the vertical direction.
  • FIG. 12 is a perspective cross-sectional view of the liquid micronizer 250 cut in the vertical direction along two orthogonal surfaces.
  • the liquid micronizer 250 includes a main body case 201 provided with a suction port 202 that sucks air and a blower port 203 that blows out air sucked from the suction port 202. Further, the liquid micronizer 250 forms air passages 215 to 217 in the main body case 201 between the suction port 202 and the air outlet 203. Further, the main body case 201 is provided with a liquid micronization chamber 205 provided in the air passages 215 to 217, and the suction port 202, the liquid micronization chamber 205, and the air outlet 203 communicate with each other.
  • the air passage 215 is an air passage that sends the air taken in through the suction port 202 to the liquid micronization chamber 205.
  • the air passage 216 is an air passage that sends the air sent by the air passage 215 to the outside of the liquid miniaturization chamber 205 through the liquid miniaturization chamber 205.
  • the air path 217 is an air path that sends the air sent to the outside of the liquid micronization chamber 205 to the air outlet 203.
  • the liquid atomization chamber 205 is a main part of the liquid atomization apparatus 250 and is where water is atomized.
  • the air taken in through the suction port 202 is sent to the liquid atomization chamber 205 via the air path 215.
  • the liquid micronizer 250 includes water refined in the liquid micronization chamber 205 in the air passing through the air passage 216, and blows the air containing the water via the air passage 217. It is configured to blow out from the outlet 203.
  • the liquid micronization chamber 205 includes an inner cylinder 206 on a cylinder whose upper and lower sides are opened, and an impact wall 212 is provided on the inner wall of the inner cylinder 206.
  • the inner cylinder 206 is fixed to the main body case 201 so that a space 224 is provided between the inner cylinder 206 and the main body case 201 on the outer side surface of the inner cylinder 206 (the outer periphery of the inner cylinder 206).
  • Air containing water refined by the liquid atomization chamber 205 is blown out from the liquid atomization chamber 205 to the space 224 through the air passage 216, and is sent to the outlet 203 through the air passage 217 through the space 224. .
  • the liquid miniaturization chamber 205 is provided with a cylindrical pumping pipe 211 that pumps (pumps) water while rotating inside the collision wall 212.
  • the pumping pipe 211 has an inverted conical hollow structure, and has a pumping port on the lower side, and a rotating shaft 210 arranged in the vertical direction is fixed to the center of the upper surface of the inverted conical shape on the upper side. Yes.
  • the rotary shaft 210 By connecting the rotary shaft 210 to the rotary motor 209 provided on the outer surface of the liquid micronization chamber 205, the rotary motion of the rotary motor 209 is transmitted to the pumped pipe 211 through the rotary shaft 210, and the pumped pipe 211 rotates.
  • the pumping pipe 211 includes a plurality of rotating plates 214.
  • the plurality of rotary plates 214 are formed so as to protrude outward from the outer surface of the pumped pipe 211 with a predetermined interval in the axial direction of the rotary shaft 210. Since the rotating plate 214 rotates together with the pumping pipe 211, a horizontal disk shape coaxial with the rotating shaft 210 is preferable.
  • the number of the rotating plates 214 is appropriately set according to the target performance or the dimensions of the pumping pipe 211.
  • an opening 213 that penetrates the wall surface of the pumping pipe 211 is provided on the wall surface of the pumping pipe 211.
  • the opening 213 of the pumping pipe 211 is provided at a position communicating with the rotating plate 214 formed so as to protrude outward from the outer surface of the pumping pipe 211.
  • the size of the opening 213 in the circumferential direction needs to be designed according to the outer diameter of the portion of the pumped pipe 211 where the opening 213 is provided. For example, the diameter corresponding to 5% to 50% of the outer diameter of the pumping pipe 211, more preferably the diameter corresponding to 5% to 20% of the pumping pipe 211. Within the above range, the dimensions of the openings 213 may be the same.
  • a water storage unit 204 for storing water pumped by the pumping pipe 211 is provided below the pumping pipe 211 in the vertical direction.
  • the water storage unit 204 has a depth so that a part of the lower part of the pumping pipe 211, for example, about one third to one hundredth of the conical height of the pumping pipe 211 is immersed. This depth can be designed according to the required pumping capacity.
  • Water supply to the water storage unit 204 is performed by the water supply unit 207.
  • a water supply pipe (not shown) is connected to the water supply unit 207, and water is supplied directly from the water supply pipe through a water pressure adjustment valve, for example.
  • the water supply unit 207 may be configured to pump up only the amount of water necessary in advance from the water tank provided outside the liquid micronization chamber 205 according to the principle of siphon and supply water to the water storage unit 204.
  • the water supply unit 207 is provided above the bottom surface of the water storage unit 204 in the vertical direction.
  • the water supply unit 207 is provided not only above the bottom surface of the water storage unit 204 but also vertically above the upper surface of the water storage unit 204 (the surface of the maximum water level that can be stored in the water storage unit 204).
  • a water level detection unit 208 that detects the water level of the water storage unit 204 is provided.
  • the water level detection unit 208 has a float switch 220.
  • the float switch 220 is turned off when the water storage unit 204 has not reached a certain water level, and is turned on when the water storage unit 204 has reached a certain water level.
  • This constant water level is set to such a level that the lower part of the pumping pipe 211 is immersed in the water stored in the water storage unit 204.
  • the float switch 220 When the float switch 220 is off, water is supplied from the water supply unit 207 to the water storage unit 204, and when the float switch 220 is on, the supply of water from the water supply unit 207 to the water storage unit 204 is stopped.
  • the water in the water storage unit 204 can be kept at a constant water level.
  • the water level detection unit 208 is provided above the bottom surface of the water storage unit 204 in the vertical direction.
  • a drain pipe 218 is connected to the bottom surface of the water storage unit 204.
  • the drain port of the water storage unit 204 provided at the position to which the drain pipe 218 is connected is provided at the lowest position of the water storage unit 204.
  • the water stored in the water storage unit 204 is drained from the drain pipe 218 by opening a valve (not shown) provided in the drain pipe 218.
  • the liquid miniaturization chamber 205 includes an eliminator 219 below the collision wall 212. Specifically, in the middle of the air passage 216, an opening (not shown) provided below the collision wall 212 that leads from the liquid micronization chamber 205 to the space 224 formed on the outer periphery of the inner cylinder 206. An eliminator 219 is provided so as to cover. The eliminator 219 passes through air containing water refined in the liquid refinement chamber 205 and collects water droplets in the water contained in the air.
  • upstream side of the wind passages 215 to 217 in the wind traveling direction may be simply referred to as “upstream side”
  • downstream side of the wind passages 215 to 217 in the wind traveling direction may be simply referred to as “downstream side”.
  • a projecting portion 221 that projects inward from the collision wall 212 into the liquid micronization chamber 205 and covers the eliminator 219 is provided.
  • the protruding portion 221 is inclined downward toward the inner direction of the liquid micronization chamber 205.
  • the main body case 201 is formed by curving a part of a wall surface 216 a (hereinafter referred to as “main body case side wall surface 216 a”) of the air passage 216 provided on the inner wall of the main body case 201 on the downstream side of the eliminator 219.
  • a guide portion 222 is provided.
  • the upper end 222 a of the guide portion 222 is provided at a position higher than the upper end 219 a of the eliminator 219.
  • a bottom portion 223 that is in contact with the lower end of the guide portion 222 and is inclined downward toward the water storage portion 204 is provided.
  • the protruding portion 221 and the bottom portion 223 are provided so as to be substantially parallel.
  • the air flow in the eliminator 219 can be made substantially uniform.
  • the protrusion part 221 and the bottom part 223 do not need to be completely parallel, and should just maintain parallelism in the range which can be said that the flow of the air in the eliminator 219 is uniform.
  • the operation principle of water refinement in the liquid refiner 250 will be described.
  • the rotating shaft 210 is rotated by the rotation motor 209 and the pumping pipe 211 is rotated accordingly, the water stored in the water storage unit 204 is pumped from the pumping port of the pumping pipe 211 by the centrifugal force generated by the rotation.
  • the rotation speed of the pumping pipe 211 is set between 1000 and 5000 rpm. Since the pumping pipe 211 has an inverted conical hollow structure, the water pumped up by the rotation is pumped up through the inner wall of the pumping pipe 211. Then, the pumped water is discharged from the opening 213 of the pumping pipe 211 through the rotating plate 214 in the centrifugal direction and scattered as water droplets.
  • the water droplets scattered from the rotating plate 214 fly in the space surrounded by the collision wall 212 and collide with the collision wall 212 to be refined.
  • the air passing through the liquid micronization chamber 205 moves from the upper opening of the inner cylinder 206 into the inner cylinder 206. Then, the air includes water crushed (miniaturized) by the collision wall 212, and an opening (not shown) provided below the collision wall 212 by the air passage 216 via the eliminator 219.
  • To the space 224 outside the inner cylinder 206. The air that has moved to the space 224 is blown out from the outlet 203 through the air passage 217. Thereby, the air sucked from the suction port 202 of the liquid micronizer 250 can be humidified, and the humidified air can be blown out from the blower outlet 203.
  • the amount of water pumped up by the pumping pipe 211 is changed according to the rotation amount of the pumping pipe 211, and the amount of water droplets scattered from the rotating plate 214 of the pumping pipe 211 is changed, so that it is refined by the collision wall 212.
  • the amount of water can be changed. Therefore, the amount of water to be included in the air sucked from the suction port 202 of the liquid micronizer 250 can be changed by the rotation amount of the pumping pipe 211. That is, the liquid micronizer 250 can control the humidification amount according to the rotation amount of the pumping pipe 211.
  • the eliminator 219 collects water droplets of the water that is refined in the liquid refinement chamber 205 and included in the air, the liquid refiner 250 is vaporized into the air blown from the outlet 203. Only water can be included. Thereby, the liquid refinement
  • the rotating plate 214 is preferably as close to the collision wall 212 as possible.
  • the liquid to be refined may be other than water, for example, a liquid such as hypochlorous acid water having bactericidal or deodorizing properties.
  • the refined hypochlorous acid water is included in the air sucked from the suction port 202 of the liquid refinement device 250, and the air is blown out from the blowout port 203, so that the space in which the liquid refinement device 250 is placed is placed. Sterilization or deodorization can be performed.
  • FIG. 13A is a schematic diagram schematically showing the flow of wind in the air passage 216 and the flow of water droplets 230 scattered from the downstream side surface of the eliminator 219 when the protruding portion 221 and the guide portion 222 are provided.
  • FIG. 13B is a schematic diagram schematically showing the flow of wind in the air passage 216 and the flow of water droplets 230 scattered from the downstream side surface of the eliminator 219 when neither the protruding portion 221 nor the guide portion 222 is provided. It is.
  • FIG. 13C is a schematic diagram schematically showing the flow of wind in the air passage 216 and the flow of water droplets 230 scattered from the downstream side surface of the eliminator 219 when the guide portion 222 is provided and the protruding portion 221 is not provided.
  • FIG. 13A is a schematic diagram schematically showing the flow of wind in the air passage 216 and the flow of water droplets 230 scattered from the downstream side surface of the eliminator 219 when the guide portion 222 is provided and the protruding portion
  • the water droplet 230 attached to the body case side wall surface 216a of the air passage 216 is as follows. That is, when the main body case side wall surface 216a of the air passage 216 extends straight in the vertical direction and a corner is formed by the main body case side wall surface 216a and the bottom portion 223, the main body case side wall surface 216a of the air passage 216 is formed at this corner. The attached water droplet 230 tends to accumulate.
  • the air flow is formed so as to pass through the shortest path. Therefore, when the protrusion 221 is not provided in the liquid micronizer 250, the air containing the liquid refined by the liquid micronizer chamber 205 passes near the lower end of the collision wall 212 as shown in FIG. 13B. Thus, the main flow of the air passage 216 is formed so as to flow into the space 224.
  • the air flowing in the vertically downward direction inside the collision wall 212 is reversed in the direction of the air flow near the lower end of the collision wall 212, and is a space formed outside the collision wall 212.
  • 224 flows vertically upward. That is, in the air passage 216, the airflow direction is reversed in a narrow region near the lower end of the collision wall 212, and the airflow direction is not reversed in a sufficiently wide region, so that a large pressure loss occurs.
  • the air deviated from the main flow of the air passage 216 stays in the vicinity of the main body case side wall surface 216 a of the air passage 216 or the corner formed by the main body case side wall surface 216 a and the bottom 223.
  • the guide unit 222 is provided in the liquid micronizer 250, as shown in FIGS. 13A and 13C, the water droplets 230 scattered from the eliminator 219 and adhering to the body case side wall surface 216a of the air passage 216 are transferred to the water storage unit 204. It becomes easy to be guided. That is, the water droplet 230 flows to the bottom portion 223 due to the curvature of the main body case side wall surface 216 a formed on the guide portion 222, and is easily guided to the water storage portion 204 as it is due to the inclination of the bottom portion 223. That is, the presence of the guide portion 222 makes it difficult for the water droplet 230 to stay on the main body case side wall surface 216a.
  • main body case side wall surface 216a due to the surface tension of the main body case side wall surface 216a, a part of the water droplet 230 attached to the main body case side wall surface 216a remains on the main body case side wall surface 216a, and the main body case side wall surface 216a remains wet.
  • the main flow of the air passage 216 is formed as follows. That is, as shown in FIG. 13C, the air containing the liquid refined by the liquid refinement chamber 205 flows in the vicinity of the lower end of the collision wall 212 to the space 224 as shown in FIG. 13B. A main flow of the path 216 is formed. That is, in this case, out of the main body case side wall surface 216a of the air passage 216 formed to be curved in the guide portion 222, the main body case side wall surface 216a located away from the vicinity of the lower end of the collision wall 212 is connected to the air passage 216. The mainstream is difficult to touch. Therefore, in this case as well, after the operation of the liquid micronizer 250, the water droplets 230 that remain attached to the main body case side wall surface 216a are not easily dried, and bacteria or molds are likely to occur.
  • the flow of air that has passed through the inside of the collision wall 212 vertically downward is once caused by the protrusion 221.
  • the main flow of the air passage 216 is formed so as to be bent inward.
  • the air flow bent inward of the liquid micronization chamber 205 is bent again at the inner end of the liquid refinement chamber 205 (the tip of the protrusion 221) of the protrusion 221, and flows downstream of the eliminator 219.
  • the main flow of the air path 216 is formed so that it may flow toward.
  • the main flow of the air passage 216 is formed so as to flow upward in the space 224 formed outside the collision wall 212.
  • the projecting portion 221 and the guide portion 222 are provided in the liquid micronizer 250, the following effects are obtained. That is, the presence of the guide portion 222 can make it difficult for the water droplets 230 scattered from the eliminator 219 and adhering to the main body case side wall surface 216a of the air passage 216 to stay on the main body case side wall surface 216a.
  • the air that has passed through the inside of the collision wall 212 is once bent inward by the projecting portion 221 and then downstream of the eliminator 219 at the tip of the projecting portion 221. Bent to flow toward Then, after passing through the eliminator 219, the air flows upward in a space 224 formed outside the collision wall 212.
  • the air passing through the inside of the collision wall 212 in the vertically downward direction is reversed in the air flow direction by the air passage 216 formed on the large circumference, and the space 224 formed on the outside of the collision wall 212 is vertically upward. It flows toward.
  • the air which passes the eliminator 219 can be made to flow through the eliminator 219 with uniform wind speed. Therefore, since the air that has passed through the eliminator 219 can flow along the main body case side wall surface 216a of the air passage 216 of the guide portion 222 formed in a curved shape, the main body case after the operation of the liquid micronizer 250 is completed.
  • the side wall surface 216a can be easily dried. Therefore, the liquid micronizer 250 according to the present embodiment can shorten the internal drying time after the operation is completed, and can suppress the generation of bacteria or mold.
  • the wind speed of the air flowing through the eliminator 219 can be suppressed as compared with the case where the air concentrates and flows in a partial region of the eliminator 219 due to the absence of the protrusion 221. Therefore, the amount of water droplets 230 that scatter from the downstream side surface of the eliminator 219 can be reduced. Therefore, the liquid micronizing apparatus 250 according to the present embodiment can shorten the internal drying time after the operation is completed also from this aspect. Moreover, since water droplets can be collected by the eliminator 219 as a whole, there is an effect that the effect of collecting water droplets can be enhanced.
  • the air flow in the eliminator 219 can be made substantially uniform. It can. Thereby, the air blown out from the eliminator 219 can be reliably brought into contact with the main body case side wall surface 216a of the air passage 216 of the guide portion 222, and the main body case side wall surface 216a can be reliably dried. Further, by making the air flow in the eliminator 219 substantially uniform, it is possible to prevent the air velocity from increasing at a specific position inside the eliminator 219. Thereby, the speed of air becomes high in the specific position inside the eliminator 219, and it can suppress that the water droplet 230 scatters from there.
  • the projection 221 is directed downward from above the inner cylinder 206 of the liquid micronization chamber 205.
  • the flowing air can be bent inward of the liquid micronization chamber 205 while suppressing pressure loss.
  • the collision wall 212 crushes the water flying from the rotating plate 214 of the pumping pipe 211, a part of the water adheres to the collision wall 212 and falls below the collision wall 212 with its weight.
  • the dropped water droplet 230 is received by the protruding portion 221 and guided to the water storage portion 204 by the inclination of the protruding portion 221.
  • the protrusion part 221 is provided above the eliminator 219, it can suppress that the water droplet which adheres to the collision wall 212 and falls falls to the eliminator 219.
  • the presence of the protruding portion 221 can prevent the eliminator 219 from being excessively wetted by water droplets falling from the collision wall 212, and as a result, can prevent the water droplets 230 from being scattered from the eliminator 219. Therefore, also from this aspect, the internal drying time after completion of the operation can be shortened.
  • the upper end 222a of the guide portion 222 is provided at a position higher than the upper end 219a of the eliminator 219.
  • the air passing through the eliminator 219 is greatly turned by the protrusion 221 and flows along the guide part 222, so that the water droplets 230 scattered from the downstream side surface of the eliminator 219 are generated. The possibility of splashing upward is increased.
  • the upper end 222a of the guide portion 222 is provided at a position higher than the upper end 219a of the eliminator 219. Therefore, it is possible to easily adhere to the main body case side wall surface 216a formed by bending the guide portion 222, including the water droplets 230 scattered upward from the upper part of the downstream side surface of the eliminator 219. Therefore, the water droplets 230 attached to the main body case side wall surface 216a including the water droplets 230 scattered upward from the upper part of the downstream side surface of the eliminator 219 are caused to flow to the bottom portion 223 due to the curvature of the main body case side wall surface 216a.
  • the water storage unit 204 can be guided through the H.223. Therefore, the internal drying time after the end of operation can be further shortened.
  • the upper end 222a of the guide portion 222 may be provided so as to have substantially the same height as the upper end 219a of the eliminator 219.
  • the substantially same height is sufficient as long as the positions of the upper end 222a of the guide portion 222 and the upper end 219a of the eliminator 219 are substantially the same.
  • the height from the upper end of the water storage unit 204 to the upper end 222a of the guide unit 222 is within ⁇ 5% of the height from the upper end of the water storage unit 204 to the upper end 219a of the eliminator 219. If so, the upper end 222 a of the guide portion 222 may be regarded as having substantially the same height as the upper end 219 a of the eliminator 219.
  • the guide part 222 When the upper end 222 a of the guide part 222 is provided so as to have substantially the same height as the upper end 219 a of the eliminator 219, a part of the water droplet 230 scattered upward from the upper part of the downstream side surface of the eliminator 219 adheres to the guide part 222. There is a possibility that it cannot be made. However, since there is no curvature of the main body case side wall surface 216a in the guide portion 222 at a position higher than the upper end 219a of the eliminator 219, the width of the cross section of the space 224 can be kept constant. Therefore, the pressure loss in the space 224 can be suppressed.
  • FIG. 14 is a schematic perspective view of a heat exchange device 260 provided with a liquid micronizer 250 according to Embodiment 2 of the present disclosure.
  • the heat exchange air device 260 includes an indoor air inlet 261 and an air inlet 264 provided inside the building, an air outlet 262 and an outside air inlet 263 provided outside the building, and heat exchange provided in the main body. And an element 265.
  • the indoor suction port 261 sucks indoor air, and the sucked air is exhausted from the exhaust port 262 to the outside. Further, the outside air inlet 263 sucks outside air outside, and the sucked outside air is supplied into the room through the air inlet 264. At this time, heat exchange is performed by the heat exchange element 265 between the air sent from the indoor suction port 261 to the exhaust port 262 and the outside air sent from the outside air suction port 263 to the air supply port 264.
  • the heat exchange air device As one of the functions of the heat exchange air device, there is a device incorporating a device for vaporizing a liquid such as a water vaporizer for humidification and a hypochlorous acid vaporizer for sterilization or deodorization.
  • the heat exchange air device 260 incorporates a liquid micronizer 250 as a device for vaporizing the liquid.
  • the liquid refinement device 250 is provided on the air supply port 264 side of the heat exchange device 260. Note that water supply and drainage to the liquid micronizer 250 are performed by a water supply / drainage pipe 251.
  • the heat exchange air device 260 provided with the liquid refinement device 250 includes water or hypochlorous acid refined by the liquid refinement device 250 with respect to the outside air subjected to heat exchange by the heat exchange element 265.
  • the air is supplied into the room through the air supply port 264.
  • This liquid refinement device 250 may be provided in an air purifier or an air conditioner instead of the heat exchange air device 260.
  • One of the functions of an air purifier or an air conditioner is one that incorporates a device for vaporizing a liquid such as a water vaporizer for humidification and a hypochlorous acid vaporizer for sterilization or deodorization.
  • a device for vaporizing a liquid such as a water vaporizer for humidification and a hypochlorous acid vaporizer for sterilization or deodorization.
  • the air sucked from the suction port 17 is blown toward the upper part of the appliance body 1 by the blower fan 14, and the blown air is humidified from the upper part of the water storage chamber 8. It flows into the air generating means (rotating body 10, porous body 12, porous portion 13).
  • the inflowing air ascends in the air passage 15 as humidified air containing nanomist and negative ions generated in the porous portion 13 and is blown into the room from the blower port 2 so that the humidified air containing nanomist and negative ions is Supply indoors.
  • Such a conventional liquid refining device requires that the humidified air generating means is incorporated in the main body in advance on the downstream side of the blower, and the humidified air generating means is newly added to the main body and installed. There is a problem that it is difficult. Further, since humidity recovery (humidity exchange) is not performed in the blowing portion, it is difficult to perform positive humidity control in the humidified air generating means. For this reason, in order to humidify the air reliably, a large amount of energy is required such as using a heater in the humidified air generating means.
  • the present disclosure also solves the above-described problems, and an object thereof is to provide a liquid micronizer that can be retrofitted to a blower and that can control humidity actively and with energy saving.
  • miniaturization apparatus which concerns on Embodiment 3 of this indication is a liquid refinement
  • the air sucked from the suction port is humidified by the liquid refining unit, and the air humidified by the liquid refining unit is blown out from the outlet, and the liquid refining unit is rotated with the suction pipe.
  • the suction pipe sucks up the liquid stored in the water storage part, the rotating plate refines the liquid sucked up by the suction pipe by rotation, and the liquid refinement device includes a blower device having a humidity recovery part.
  • the humidity recovery unit recovers the humidity of the air that passes through the blower, and the liquid refiner is provided downstream of the blower in the flow of air that passes through the liquid refiner and the blower.
  • the liquid micronizer can be retrofitted to the blower, that is, additionally installed. Further, in the liquid micronizer, the amount of humidification by the liquid micronizer is determined by the number of rotations of the rotating plate. That is, the liquid micronizer can control the amount of humidification by controlling the number of rotations of the rotating plate. Thereby, for example, even if the humidity recovery unit is such that the humidification amount is determined to be a constant value depending on the state of air passing through or humidity recovery efficiency, etc., in addition to the humidity recovery unit, Since the amount can be controlled, the humidity can be controlled more appropriately. That is, as a whole, the humidity in the room or the like can be more accurately set to the target humidity by the humidity recovery unit and the liquid micronizer.
  • the liquid micronizer is provided on the downstream side of the air blower so that the liquid micronizer is on the side close to the outlet blown into the room. It can be humidified.
  • miniaturization apparatus can be retrofitted to an air blower, for example, since piping for water supply / drainage etc. can be changed according to an air blower or an installation environment, workability
  • the air whose humidity has been recovered by the humidity recovery unit may flow into the liquid micronizer.
  • This configuration enables the humidity control to be performed with higher accuracy by the air after the humidity has been collected flowing into the liquid micronizer.
  • the liquid refinement apparatus further includes an inner cylindrical air passage that communicates with the suction port, and an outer cylindrical air passage that communicates with the air outlet and the inner cylindrical air passage.
  • the outer cylindrical air passage is provided on the outer periphery of the inner cylindrical air passage, and the air passing through the liquid micronizer passes through the suction port, the inner cylindrical air passage, the outer cylindrical air passage, and the air outlet in this order, The air passing through the tubular wind path may be blown upward in the vertical direction.
  • the air sucked from the suction port is blown into the inner cylinder, passes through the periphery of the liquid micronization section, and reaches the outer cylinder air passage.
  • miniaturization part can be improved, and the vaporization efficiency of a water droplet can be improved.
  • the air sucked in from the suction port passes through the inner cylindrical air passage downward in the vertical direction, the air passes through the ventilation port and passes through the outer cylindrical air passage in the vertical direction upward, so that large water droplets that are difficult to vaporize are generated. Can be separated.
  • water droplets generated in the liquid micronization unit are scattered downward together with the air flowing downward in the inner cylindrical air passage, and are blown downward at the ventilation port.
  • the air passing through the outer cylindrical air passage is blown upward in the vertical direction, so that the blowing direction is changed to the facing direction.
  • the water droplets collide with the wall surface of the outer cylindrical air passage due to inertia due to weight and are collected. In this way, large water droplets that are difficult to vaporize can be collected on the wall surface of the outer tube air passage and separated.
  • liquid micronization part By arranging the liquid micronization part so as to be covered with the inner cylinder, water droplets generated in the liquid micronization part can be attached to the inner surface of the inner cylinder, and scattering outside the inner cylinder can be suppressed. It is possible to prevent water droplets from being re-scattered by the wind pressure from the ventilation opening of the cylinder. As a result, water droplets generated by the liquid miniaturization unit can be prevented from being released into the room.
  • the liquid refinement device may further include a humidification control unit that controls the operation of the liquid refinement unit, and the humidification control unit may control the liquid refinement unit to operate in conjunction with the operation of the blower device. .
  • the humidification control unit controls the operation of the liquid refining unit to control the amount of humidification, and the air blower and the liquid refining unit work together to efficiently humidify.
  • the liquid refinement device may further include a humidification control unit that controls the operation of the liquid refinement unit, and the humidification control unit may control the liquid refinement unit to operate independently of the operation of the blower. .
  • the humidification amount can be controlled by the humidification control unit controlling the operation of the liquid refining unit. Moreover, since a liquid refinement
  • the blower may be communicated with the blower through a duct connected to the suction port.
  • This configuration allows the duct to be directly connected to the suction port, so that the liquid micronizer can be connected to various blowers.
  • the liquid miniaturization apparatus may further include a support unit that supports the liquid miniaturization apparatus, and the liquid miniaturization apparatus may be connected to the blower by the support unit.
  • the liquid refiner and the blower are connected by the support portion, so that the options of the blower that can install the liquid refiner can be increased. Moreover, the workability
  • miniaturization apparatus and an air blower can be improved.
  • the air outlet includes a first air outlet and a second air outlet, and the air blown from the first air outlet is blown upward in the vertical direction and is blown from the second air outlet. May be blown out in the horizontal direction.
  • This configuration makes it possible to blow out the humidified air vertically upward (upward) or horizontally (laterally), improving workability and versatility.
  • the liquid micronizer further includes a closing plate that covers the first air outlet or the second air outlet, and when the closing plate is attached to the first air outlet, the air humidified by the liquid micronizer is When air is blown out from the second air outlet and the closing plate is attached to the second air outlet, the air humidified by the liquid refining unit may be blown out from the first air outlet.
  • This configuration makes it possible to select the direction in which the humidified air is blown out, further improving the workability and versatility.
  • FIG. 15 is a perspective view showing the front side of the liquid micronizer 301 according to the third embodiment of the present disclosure.
  • FIG. 16 is a perspective view showing the back side of the liquid micronizer 301 according to the third embodiment of the present disclosure.
  • FIG. 17 is a schematic cross-sectional view of a liquid micronization apparatus 301 according to Embodiment 3 of the present disclosure.
  • the liquid micronizer 301 has an appearance like a cylindrical container.
  • the liquid micronizer 301 includes a suction port 302, a blower outlet 303, and an inner cylinder 305. And an outer cylinder 309.
  • the suction port 302 is an opening of a shape that can be connected to a duct (for example, a circular shape), and is provided on a side surface of the liquid micronizer 301.
  • the air outlet 303 is an opening through which the air that has passed through the liquid micronizer 301 is blown out, and is provided on the upper surface of the liquid micronizer 301. As shown in FIGS. 15 and 16, the air outlet 303 is formed in a region partitioned by an inner cylinder 305 and an outer cylinder 309 described later. For example, the air outlet 303 is provided around the inner cylinder 305 in the upper surface portion of the liquid micronizer 301. Further, the air outlet 303 is provided so as to be positioned above the air inlet 302. Moreover, the blower outlet 303 is a shape which can connect a cylindrical duct.
  • the air taken in (inhaled) from the inlet 302 is blown out (outflow) from the outlet 303.
  • the inner cylinder 305 is disposed near the center inside the liquid micronizer 301.
  • the inner cylinder 305 has a ventilation port 307 that opens downward substantially in the vertical direction, and is formed in a hollow cylindrical shape.
  • the outer cylinder 309 is formed in a cylindrical shape and is disposed so as to include the inner cylinder 305.
  • a water receiver 312 is provided below the liquid micronizer 301.
  • the water receiver 312 can store liquid that could not be stored in the water reservoir 310. For example, as shown in FIG. 18, even if water is excessively supplied or a malfunction occurs in the drain port 311 or the like, the liquid overflows into the house or the blower 330 or the like (see FIG. 8, for example) described later. Can be suppressed.
  • the shape of the water receiving part 312 should just be a shape which can accumulate the liquid overflowing from the water storage part 310, and is not restricted to the shape illustrated in FIG.
  • the liquid micronizer 301 may not include the water receiver 312.
  • the liquid refinement device 301 includes an inner cylindrical air passage 304, a suction communication air passage 306, an outer cylindrical air passage 308, a water storage part 310, and a liquid refinement part 320.
  • the suction communication air passage 306 is a duct-shaped air passage communicating the suction port 302 and the inner cylinder 305, and the air sucked from the suction opening 302 reaches the inside of the inner cylinder 305 through the suction communication air passage 306. It has a configuration.
  • the inner cylindrical air passage 304 is connected to an outer cylindrical air passage 308 (outlined by broken arrows in FIG. 17) provided outside the inner cylinder 305 via an opening (ventilation opening 307) provided at the lower end of the inner cylinder 305. Road).
  • the outer cylinder air passage 308 is formed between the inner cylinder 305 and the outer cylinder 309. A part of the outer cylinder air passage 308 is formed in a region partitioned by the inner cylinder 305 and the outer cylinder 309.
  • the water storage part 310 is provided in the lower part of the liquid refinement
  • the drain port 311 is provided on the bottom surface of the mortar-shaped water storage part which is the lower part of the water storage part 310.
  • the water supply port 315 is connected to a water supply pipe 316, and the water supply pipe 316 is connected to a water supply facility such as a water supply or a water supply pump such as a house or facility through an opening / closing means such as an electromagnetic valve.
  • the drainage port 311 is connected to a drainage facility such as a drainage port provided in a house or facility via a drainage pipe 314.
  • the liquid refinement unit 320 includes a suction pipe (pumping pipe) 321, a rotating plate 322, and a motor 323, and refines water. Further, the liquid micronization unit 320 is provided inside the inner cylinder 305, that is, at a position covered by the inner cylinder 305.
  • the suction pipe 321 is fixed to the rotating shaft of the motor 323 and sucks water from the water storage section 310 by rotation. Further, the suction pipe 321 is formed in a hollow truncated cone shape, and is provided so that the tip on the side having a small diameter is below the surface of the water stored in the water storage section 310.
  • the rotating plate 322 is formed in a donut-shaped disk shape having an opening at the center, and is disposed around the suction pipe 321 on the larger diameter side, in other words, around the upper portion of the suction pipe 321. A plurality of openings (not shown) are provided on the side of the suction pipe 321 having a large diameter, and the sucked water passes through the openings and is supplied to the rotating plate 322. Yes. Then, the rotating plate 322 discharges the water sucked up by the suction pipe 321 in the rotating surface direction (a direction perpendicular to the rotating shaft).
  • the motor 323 rotates the suction pipe 321 and the rotating plate 322.
  • the liquid micronizer 301 includes a humidification control unit 313 on the side surface.
  • the humidification control unit 313 controls the amount of humidification by controlling the operation of the liquid refinement device 301, particularly the liquid refinement unit 320.
  • the liquid micronizer 301 can operate in conjunction with a blower 330 described later, or can operate independently without being interlocked.
  • the position where the humidification control unit 313 is provided is not limited to the position shown in FIG. Moreover, the liquid refinement
  • the operation of the liquid micronizer 301 will be briefly described.
  • water is supplied from a water supply port 315 to a water storage unit 310 from a water supply facility (not shown), and water is stored in the water storage unit 310.
  • the water droplets generated by the liquid micronization unit 320 and the air passing through the inner cylindrical air passage 304 come into contact with each other, and the water droplets are vaporized, whereby the air can be humidified.
  • the water stored in the water storage unit 310 is discharged from the drain port 311 after a predetermined time has elapsed.
  • liquid micronizer 301 that is, how the liquid micronizer 301 performs air humidification will be described in more detail.
  • the air taken from the suction port 302 through the suction communication air passage 306 and taken into the inner tube 305 of the inner tube air passage 304 passes through the liquid refinement unit 320.
  • the suction pipe 321 and the rotating plate 322 are rotated by the operation of the motor 323, the water stored in the water storage section 310 by the rotation rises along the inner wall surface of the suction pipe 321.
  • the rising water is stretched along the surface of the rotating plate 322 and discharged as fine water droplets from the outer peripheral end of the rotating plate 322 toward the rotating surface.
  • the discharged water droplets collide with the inner wall surface of the inner cylinder 305 and are crushed to become finer water droplets.
  • the water droplets discharged from the rotating plate 322 and the water droplets colliding with and crushing the inner wall surface of the inner cylinder 305 come into contact with the air passing through the inner cylinder 305, and the water droplets are vaporized to humidify the air.
  • the liquid micronization unit 320 is disposed so as to be covered with the inner cylinder 305, so that the water droplets that have not vaporized adhere to the inner surface of the inner cylinder 305 and store water. It falls on the part 310.
  • the air containing the water droplets (humidified air) is blown out from the ventilation port 307 provided at the lower end of the inner cylinder 305 toward the water storage unit 310 provided below. Then, the air flows toward an outer cylinder air passage 308 formed between the inner cylinder 305 and the outer cylinder 309.
  • the air passing through the outer cylindrical air passage 308 is blown upward in the vertical direction, the air flowing downward in the inner cylindrical air passage 304 and the air blowing direction are changed to face each other.
  • the water droplets blown out together with the air from the air vent 307 cannot follow the air flow due to its inertia and adhere to the water surface 340 of the water storage section 310 or the inner wall surface of the outer cylinder 309.
  • This action is greater as the weight of the water drop is larger, that is, the action is larger as the water drop having a diameter that is difficult to vaporize is larger.
  • the large water drop can be separated from the flowing air.
  • the liquid miniaturization apparatus 301 of the present disclosure can humidify air.
  • FIG. 18 is a schematic perspective view showing a state in which the liquid micronizer 301 is connected to the blower 330.
  • the blower 330 has a box-shaped main body case 331, and is used in a state where it is placed on the floor, for example.
  • an outside air inlet 333, an air inlet 334, an indoor air inlet 335, and an exhaust outlet 336 are provided on the top surface of the main body case 331, for example.
  • the outdoor air inlet 333 is provided at a position adjacent to the indoor air inlet 335 and the exhaust outlet 336.
  • the air supply port 334 is provided at a position adjacent to the indoor air suction port 335 and the exhaust port 336. That is, the indoor air suction port 335 and the exhaust port 336 are provided at positions adjacent to the outside air suction port 333 and the air supply port 334, respectively.
  • the outside air suction port 333, the air supply port 334, the indoor air suction port 335, and the exhaust port 336 each have a shape to which a duct can be connected.
  • Ducts respectively connected to the outside air inlet 333 and the outlet 336 are routed to the outer wall surface of the building and communicate with outdoor air outside the building.
  • Ducts respectively connected to the air supply port 334 and the indoor air suction port 335 are communicated with the indoor ceiling surface or wall surface and communicated with the indoor air.
  • the main body case 331 includes a humidity recovery unit 332, a blower 337, and an air supply air passage 338 (see FIG. 21).
  • the humidity recovery unit 332 is provided below the blower 337.
  • the supply air passage 338 (see FIG. 21) sucks fresh outdoor air (supply air) from the outside air intake port 333, passes through the humidity recovery unit 332, and passes through the liquid micronizer 301 from the supply port 334 to the room. It is a wind path to supply to.
  • the humidity collection unit 332 has a function of humidity collection (humidity exchange) that collects (replaces) the humidity of the air that is sucked by the blower 337 and passes through the inside of the blower 330 (particularly, the supply air passage 338).
  • the humidity recovery unit 332 is, for example, a total heat exchange element or a desiccant or heat pump heat exchanger.
  • recovery part 332 may have a function which collect
  • the air blower 330 may have a control part (not shown). This control unit controls the operation of the blower 337 and the operation of the humidity recovery unit 332. Thereby, for example, even when the liquid micronizer 301 is not in operation, the humidity of the air supplied to the room can be controlled by collecting the humidity by the humidity collecting unit 332 of the blower 330.
  • cooperate may be sufficient.
  • the humidity recovery unit 332 is a total heat exchange element
  • a configuration in which an exhaust fan is provided inside the main body case 331 and an exhaust air passage is provided may be employed.
  • the exhaust air passage is an air passage that sucks indoor air from the indoor air intake port 335 by the exhaust air blower, and exhausts the air from the exhaust port 336 to the outside through the humidity recovery unit 332.
  • the humidity recovery unit 332, that is, the total heat exchange element is disposed at a position where the exhaust air passage and the supply air passage 338 intersect. Then, humidity exchange between the air passing through the exhaust air passage and the air passing through the air supply air passage 338 is performed by the humidity recovery unit 332 (total heat exchange element).
  • the air blower 330 may be a structure which installs the main body case 331 sideways. That is, the air supply port 334 of the blower 330 may be provided on the side surface instead of the top surface. At this time, the air passage is configured to be sucked in from the side surface of the main body case 331 and blown out from the side surface of the main body case 331.
  • the blower 330 can be installed, for example, behind the ceiling or under the floor, and the liquid micronizer 301 can be connected to such various blowers 330.
  • the air after the humidity is recovered by the humidity recovery unit 332 may be bypassed so as not to pass through the liquid refining device 301 and supplied to the room. Thereby, for example, when the liquid micronizer 301 is not operated and only the air blower 330 is operated, the air after the humidity recovery can be efficiently supplied into the room.
  • FIG. 19 is a schematic perspective view showing a state in which the liquid micronizer 301 is connected to the blower 330.
  • FIG. 20 is a schematic enlarged perspective view showing the liquid micronizer 301 connected to the blower 330.
  • FIG. 21 is a schematic perspective view showing the air flow of the liquid micronizer 301 and the blower 330.
  • the liquid micronizer 301 is installed on the top surface of the blower 330.
  • the liquid micronizer 301 and the blower 330 are connected by a support portion 342 having a leg portion 342a and a pedestal portion 342b.
  • the leg portion 342a and the blower 330 are fixed, and the base portion 342b and the liquid micronizer 301 are fixed.
  • the liquid micronizer 301 is placed on the support portion 342 (particularly the pedestal portion 342b).
  • the liquid micronizer 301 and the air blower 330 are provided apart from each other. For example, conditions such as routing of a duct connected to the top surface of the air blower 330 are alleviated, and the liquid micronizer 301 and the air blower 330 are relaxed. Improved workability.
  • the blower 330 is connected to the liquid micronizer 301 that can control the amount of humidification by the number of rotations of the rotating plate 322.
  • the humidity recovery unit 332 is a total heat exchange element such that the humidification amount is determined to be a constant value depending on the state of passing air or the humidity recovery efficiency, and it is difficult to control the humidification amount. Even if there is, the humidity can be controlled more appropriately by performing the humidification amount control by the liquid micronizer 320 together. That is, as a whole, the humidity in the room or the like can be more accurately set as the target humidity by the humidity recovery unit 332 and the liquid micronizer 301 having a variable humidity amount.
  • the air blowing device 330 is provided upstream of the liquid micronizing device 301 in the flow of air that passes through the liquid micronizing device 301 and the air blowing device 330.
  • the liquid micronizer 301 is provided on the downstream side of the blower 330.
  • the air after the humidity is recovered by the humidity recovery unit 332 flows into the liquid micronizer 301, so that the humidity can be controlled more appropriately.
  • a sufficient humidification amount can be ensured even when no heater or the like is installed in the humidity recovery unit 332 or the liquid micronizer 301. can do. Further, energy saving can be realized by eliminating the need for a heater for securing the humidification amount.
  • liquid micronizer 301 and the blower 330 may be detachable. Thereby, since the liquid refinement
  • the humidification operation by the liquid refining unit 320 may be performed in conjunction with the humidity recovery by the humidity recovery unit 332 of the blower 330. Thereby, humidity control can be performed more appropriately.
  • the humidifier controller 313 determines that further humidification is necessary during the operation in which only the humidity control by the humidity recovery unit 332 is performed, the humidifier controller 313 from the controller of the blower 330. Instructs to start humidifying operation. In response to this instruction, the humidification control unit 313 instructs the liquid micronization unit 320 to start operation. As a result, the humidification amount, that is, the indoor humidity can be controlled more appropriately and promptly.
  • the method of interlocking is not limited to that described above, and an appropriate control method is appropriately adopted in order to optimally control the indoor humidity according to the number of rooms in the house or the user's preference.
  • the operation of the liquid micronizer 320 may be controlled by the humidification controller 313 or the controller of the blower 330.
  • the humidification operation by the liquid refinement unit 320 may be performed independently from the humidity recovery by the humidity recovery unit 332 of the blower 330 as described above. Thereby, it is possible to control humidification of the air supplied to the room regardless of whether or not the humidity recovery by the humidity recovery unit 332 is performed. In addition, the humidification amount can be increased by operating the liquid micronizer 301 without increasing the air volume of the blower 330.
  • an eliminator may be provided in the liquid micronizer 301.
  • the eliminator collects large water droplets among the water droplets crushed by the liquid refinement unit 320. Thereby, it can suppress that a large-sized water droplet blows off from the blower outlet 303, and can suppress a user's discomfort.
  • the eliminator is provided in the inner cylinder 305 so as to cover, for example, the vicinity of the air outlet 303 and the liquid refinement unit 320.
  • the air outlet 303 may be provided on the side surface instead of the top surface of the liquid micronizer 301.
  • the humidified air is blown out from the side surface of the liquid micronizer 301, so that the liquid micronizer 301 can be installed in places where it cannot be installed in the case of blowing from above.
  • the versatility of the liquid micronizer 301 is improved.
  • the arrangement of the outside air inlet 333, the air inlet 334, the indoor air inlet 335, and the outlet 336 in the blower 330 is an example, and depends on the type of the blower 330 or the location where the blower 330 is installed. Can be set as appropriate.
  • the liquid micronizer 301 is installed in the blower 330 via the support portion 342.
  • the connection method between the liquid micronizer 301 and the blower 330 is not limited to this.
  • the liquid micronizer 301 and the blower 330 need only communicate with each other.
  • FIG. 22A and 22B are block diagrams showing configurations of the liquid micronizing device 301 and the air blowing device 330a according to the fourth embodiment.
  • the liquid micronizer 301 is connected to a blower 330a (for example, a ventilator) that does not have the humidity recovery unit 332.
  • the liquid micronizer 301 may be provided on the downstream side of the blower 330a.
  • the liquid micronizer 301 may be provided on the upstream side of the blower 330a.
  • the broken line arrows indicate the flow of air passing through the liquid micronizer 301 and the blower 330a.
  • the fan motor can be cooled using the heat of vaporization when the air is humidified.
  • the liquid micronizer 301 is provided on the downstream side of the blower 330a, it can be efficiently humidified using the heat of the fan motor.
  • FIG. 23 and 26 are perspective views of a liquid micronizer 301a that can be connected to a ventilator such as the air blower 330.
  • FIG. 23 and 26 are perspective views of a liquid micronizer 301a that can be connected to a ventilator such as the air blower 330.
  • the liquid micronizer 301a includes a first air outlet 303a, a second air outlet 303b, and a closing plate 351.
  • the first outlet 303a is an opening provided above the liquid micronizer 301a. Air blown from the first blower outlet 303a is blown upward in the vertical direction.
  • the second outlet 303b is an opening provided on the side of the liquid micronizer 301a. The air blown out from the second outlet 303b is blown out in the horizontal direction.
  • the closing plate 351 is attached so as to close the first air outlet 303a or the second air outlet 303b. That is, the outflow of air is restricted from the first air outlet 303a or the second air outlet 303b to which the closing plate 351 is attached.
  • the air supply adapter 350 is attached to the first air outlet 303a or the second air outlet 303b, and is connected to a duct or the like through the air supply adapter 350.
  • the air supply adapter 350 is attached to the first air outlet 303a, the closing plate 351 is provided in the second air outlet 303b, and the aspect in which the humidified air is blown upward is shown in FIGS. It explains using.
  • the air blown out from the blower 330 is taken into the liquid micronizer 301a through the suction port 302, passes through the liquid micronizer 320, and is humidified from the first blower outlet 303a. It is blown out to the top.
  • the liquid micronizer 301a may be connected so as to be placed on top of the blower 330.
  • the air supply adapter 350 may be attached to the second air outlet 303b, and the closing plate 351 may be provided in the first air outlet 303a.
  • the air supply adapter 350 is attached to the second air outlet 303b, the closing plate 351 is provided in the first air outlet 303a, and the aspect in which the humidified air is blown out in the lateral direction is shown in FIGS. It explains using.
  • the air blown out from the blower 330 is taken into the liquid micronizer 301a through the suction port 302, passes through the liquid micronizer 320 and is humidified, and the second outlet 303b. It blows out more horizontally.
  • the outside air inlet 333, the air inlet 334, the indoor air inlet 335, and the exhaust outlet 336 of the blower 330 are provided on the side of the main body case 331, and the liquid micronizer 301 a may be provided on a side portion of the main body case 331.
  • the air supply adapter 350 and the closing plate 351 are replaced so that the air humidified by the liquid micronizer 301a is blown out from the second outlet 303b in the lateral direction.
  • the liquid micronizer 301 a can be provided not only above the blower 330 but also beside the blower 330.
  • the freedom degree of the combination or installation place of the liquid micronizer 301a and the air blower 330 improves, and workability and versatility improve.
  • the closing plate 351 only needs to have a structure capable of closing the first air outlet 303a and the second air outlet 303b.
  • a slide type closing plate 351 may be provided integrally with the liquid micronizer 301a.
  • the shapes of the first air outlet 303a and the second air outlet 303b can be appropriately changed according to the installation conditions and the like.
  • the internal configuration or the airflow path design of the liquid micronizer 301a and the blower 330 is appropriately changed when blowing out from the second outlet 303b in the lateral direction.
  • the liquid refining device according to the present disclosure can be applied to devices for vaporizing liquids such as a water vaporizer for humidification purposes and a hypochlorous acid vaporizer for sterilization or deodorization purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Humidification (AREA)
  • Nozzles (AREA)

Abstract

A liquid atomizing chamber (105) of a liquid atomizing device (150) is provided with: a rotating shaft (110) which rotates by means of a rotary motor (109) and which is disposed oriented in a vertical direction; a cylindrical pumping pipe (111) which has a lower part provided with a pumping port and an upper part fixed to the rotating shaft (110), and which pumps water from the pumping port by being rotated and discharges the pumped water in a centrifugal direction; an impact wall (112) against which the water discharged by the pumping pipe (111) impacts, thereby atomizing the water; a water storage portion (104) which is provided vertically below the pumping pipe (111) to store the water to be pumped from the pumping port; a lateral channel (121) which accepts falling water that has adhered to the impact wall (112); a vertical channel which guides the water accepted by the lateral channel (121) toward the water storage portion (104); and an eliminator (119) which is provided in contact with the lateral channel (121) below the impact wall (112) to collect water droplets from among the atomized water.

Description

液体微細化装置Liquid miniaturization equipment
 本開示は、熱交換気装置、空気清浄機及び空気調和機等に用いられる液体微細化装置に関する。 The present disclosure relates to a liquid refining device used in a heat exchange air device, an air purifier, an air conditioner, and the like.
 従来、水を微細化し、吸い込んだ空気にその微細化した水滴を含ませて吹き出す液体微細化装置がある。例えば、特許文献1に記載の液体微細化装置は、空気を吸い込む吸込口とその吸い込んだ空気を吹き出す吹出口との間の風路内に、水を微細化する液体微細化室が設けられている。この液体微細化室は、回転モータの回転軸に固定された揚水管を備えている。揚水管が回転モータによって回転されることで、貯水部に貯水された水が揚水管により揚水され、揚水された水が遠心方向に放射される。この放射された水が衝突壁に衝突することで、水が微細化される。 Conventionally, there is a liquid refining device that refines water and blows out the air that has been sucked into the air by containing the refined water droplets. For example, in the liquid refinement apparatus described in Patent Document 1, a liquid refinement chamber that refines water is provided in an air passage between a suction port that sucks air and a blowout port that blows out the sucked air. Yes. The liquid micronization chamber includes a pumping pipe fixed to the rotating shaft of the rotary motor. When the pumping pipe is rotated by the rotary motor, the water stored in the water storage unit is pumped up by the pumping pipe, and the pumped water is radiated in the centrifugal direction. The radiated water collides with the collision wall, so that the water is refined.
 また、特許文献1に記載の液体微細化装置には、気液分離装置(エリミネータ)が設けられており、空気に含ませた微細化された水滴のうち大粒の水滴が、その気液分離装置によって捕集され除去される。これにより、吹出口に大粒の水滴が付着することを抑制している。 Further, the liquid micronizer described in Patent Document 1 is provided with a gas-liquid separator (eliminator), and among the micronized water droplets contained in the air, large water droplets are the gas-liquid separator. Collected and removed by Thereby, it is suppressed that a large droplet of water adheres to a blower outlet.
特開2014-188021号公報JP 2014-188021 A 特開2009-279514号公報JP 2009-279514 A 特開2017-116164号公報JP 2017-116164 A
 しかしながら、従来の液体微細化装置では、気液分離装置にて大粒の水滴を捕集し続けると、その気液分離装置が過剰に水濡れする恐れがある。また、従来の液体微細化装置の中には、気液分離装置を衝突壁の下方に設けたものがある。この場合、衝突壁に付着した水滴が気液分離装置へ落下し、やはり気液分離装置が過剰に水濡れする恐れがある。気液分離装置が過剰に水濡れすると、液体微細化装置では、揚水管の回転量で加湿量を制御しているにもかかわらず気液分離装置上で水の気化量が大きくなるため、加湿性能の制御性が低下しやすいという問題点がある。 However, in the conventional liquid refining device, if a large water droplet is continuously collected by the gas-liquid separator, the gas-liquid separator may be excessively wetted. In addition, some conventional liquid micronizers have a gas-liquid separator provided below a collision wall. In this case, water droplets adhering to the collision wall may drop to the gas-liquid separator, and the gas-liquid separator may also become excessively wet. If the gas-liquid separator becomes excessively wet, the liquid micronizer will increase the amount of water vaporized on the gas-liquid separator even though the amount of humidification is controlled by the amount of rotation of the pumping pipe. There is a problem that the controllability of performance tends to be lowered.
 本開示は、上記問題を解決するためになされたものであり、エリミネータにより水滴を捕集しつつ、加湿性能の制御性を向上できる液体微細化装置を提供することを目的とする。 The present disclosure has been made to solve the above-described problem, and an object of the present disclosure is to provide a liquid micronizer that can improve the controllability of humidification performance while collecting water droplets with an eliminator.
 この目的を達成するために、本開示の液体微細化装置は、空気を吸い込む吸込口と、吸込口より吸い込まれた空気を吹き出す吹出口と、吸込口と吹出口との間の風路内に設けられ、水を微細化する液体微細化室と、を備える。液体微細化室は、回転モータにより回転され、鉛直方向に向けて配置された回転軸と、下方に揚水口を備えると共に、上方が回転軸に固定され、回転軸の回転に合わせて回転されることにより揚水口より水を揚水し、揚水した水を遠心方向に放出する筒状の揚水管と、揚水管により放出された水が衝突することにより、その水を微細化する衝突壁と、揚水管の鉛直方向下方に設けられ、揚水口より揚水するための水を貯水する貯水部と、衝突壁と付着し落下する水を受け止める横といと、横といで受け止められた水を貯水部へ案内する縦といと、衝突壁の下方で横といと接触して設けられ、微細化された水のうち水滴を捕集するエリミネータと、を備えたものである。 In order to achieve this object, the liquid refinement device of the present disclosure includes a suction port that sucks air, a blowout port that blows out air sucked from the suction port, and an air passage between the suction port and the blowout port. And a liquid micronization chamber for micronizing water. The liquid micronization chamber is rotated by a rotary motor and includes a rotary shaft arranged in the vertical direction and a pumping port below, and the upper portion is fixed to the rotary shaft and rotated in accordance with the rotation of the rotary shaft. A cylindrical pumping pipe that pumps water from the pumping outlet and discharges the pumped water in the centrifugal direction, a collision wall that refines the water by colliding with the water released by the pumping pipe, A water storage unit that is installed vertically below the pipe and stores water to be pumped from the pumping port, a side that receives the falling water that adheres to the collision wall, and a water that is received on the side is guided to the storage unit. And an eliminator that is provided in contact with the side below the collision wall and collects water droplets of the refined water.
 本開示の液体微細化装置によれば、衝突壁と付着して落下する水が、横といにて受け止められて縦といにて貯水部へ案内されるので、その水が衝突壁の下方に設けられたエリミネータへ落下することを抑制できる。また、エリミネータにて捕集された水滴の一部は、風圧によって風路の下流側かつエリミネータの上方へと移動する場合があるが、その水滴をエリミネータと接触する横といに付着させ、縦といに沿って貯水部へと落下させることができる。これにより、エリミネータが過剰に水濡れすることを抑制でき、エリミネータ上での水の気化量が大きくなることを抑制できる。よって、エリミネータにより水滴を捕集しつつ、加湿性能の制御性を向上できるという効果がある。 According to the liquid refinement device of the present disclosure, the water that adheres to the collision wall and falls is received in the horizontal direction and guided to the water storage section in the vertical direction, so that the water is provided below the collision wall. It can suppress falling to the eliminator. Some of the water droplets collected by the eliminator may move to the downstream side of the air path and above the eliminator due to the wind pressure, but the water droplets adhere to the horizontal contact with the eliminator and are Can be dropped to the reservoir. Thereby, it can suppress that an eliminator gets wet with water excessively, and it can suppress that the vaporization amount of the water on an eliminator becomes large. Therefore, there is an effect that the controllability of the humidifying performance can be improved while collecting water droplets by the eliminator.
図1は、本開示の実施の形態1に係る液体微細化装置の鉛直方向の概略断面図である。FIG. 1 is a schematic cross-sectional view in the vertical direction of the liquid miniaturization apparatus according to Embodiment 1 of the present disclosure. 図2Aは、同液体微細化装置の内筒及びエリミネータの斜視図である。FIG. 2A is a perspective view of an inner cylinder and an eliminator of the liquid micronizer. 図2Bは、同液体微細化装置の内筒及びエリミネータを上面視した上面図である。FIG. 2B is a top view of the inner cylinder and the eliminator of the liquid micronizer as viewed from above. 図3は、同液体微細化装置の内筒の斜視断面図である。FIG. 3 is a perspective cross-sectional view of the inner cylinder of the liquid micronizer. 図4は、同液体微細化装置の内筒及びエリミネータの概略断面図である。FIG. 4 is a schematic cross-sectional view of the inner cylinder and eliminator of the liquid micronizer. 図5は、同液体微細化装置のエリミネータにて捕集された水滴の風圧による移動を模式的に示した模式図である。FIG. 5 is a schematic diagram schematically showing the movement of water droplets collected by the eliminator of the liquid micronizer according to the wind pressure. 図6は、同液体微細化装置のエリミネータ内を移動した水滴が横とい及び縦といに沿って流れる様子を模式的に示した模式図である。FIG. 6 is a schematic diagram schematically showing how water droplets that have moved in the eliminator of the liquid micronizer flow along the horizontal and vertical directions. 図7Aは、エリミネータの配設位置の一変形例を模式的に示した模式図である。FIG. 7A is a schematic diagram schematically showing a modification of the arrangement position of the eliminator. 図7Bは、エリミネータの配設位置の別の変形例を模式的に示した模式図である。FIG. 7B is a schematic diagram schematically showing another modification of the arrangement position of the eliminator. 図8Aは、エリミネータの配設位置の更に別の変形例を模式的に示した模式図である。FIG. 8A is a schematic diagram schematically showing still another modified example of the arrangement position of the eliminator. 図8Bは、図8Aに示す変形例に係るエリミネータ及び縦といの断面図である。FIG. 8B is a cross-sectional view of the eliminator and the vertical section according to the modification shown in FIG. 8A. 図9Aは、エリミネータの配設位置の更に別の変形例を模式的に示した模式図である。FIG. 9A is a schematic diagram schematically showing still another modified example of the arrangement position of the eliminator. 図9Bは、エリミネータの配設位置の更に別の変形例を模式的に示した模式図である。FIG. 9B is a schematic diagram schematically showing still another modified example of the arrangement position of the eliminator. 図10は、同液体微細化装置を備えた熱交換気装置の概略斜視図である。FIG. 10 is a schematic perspective view of a heat exchange air device provided with the liquid micronizer. 図11は、本開示の実施の形態2に係る液体微細化装置の鉛直方向の概略断面図である。FIG. 11 is a schematic cross-sectional view in the vertical direction of the liquid micronizing device according to Embodiment 2 of the present disclosure. 図12は、同液体微細化装置を直交する二面で鉛直方向に切断した斜視断面図である。FIG. 12 is a perspective cross-sectional view of the liquid miniaturization apparatus cut in the vertical direction along two orthogonal surfaces. 図13Aは、突出部及びガイド部が設けられた場合の風の流れとエリミネータから飛散した水滴の流れとを模式的に示した模式図である。FIG. 13A is a schematic diagram schematically showing the flow of wind and the flow of water droplets scattered from the eliminator when the protrusion and the guide are provided. 図13Bは、突出部及びガイド部のいずれも設けられていない場合の風の流れとエリミネータから飛散した水滴の流れとを模式的に示した模式図である。FIG. 13B is a schematic view schematically showing the flow of wind and the flow of water droplets scattered from the eliminator when neither the protruding portion nor the guide portion is provided. 図13Cは、ガイド部が設けられ、突出部が設けられていない場合の風の流れとエリミネータから飛散した水滴の流れとを模式的に示した模式図である。FIG. 13C is a schematic diagram schematically showing the flow of wind and the flow of water droplets scattered from the eliminator when the guide portion is provided and the protruding portion is not provided. 図14は、同液体微細化装置を備えた熱交換気装置の概略斜視図である。FIG. 14 is a schematic perspective view of a heat exchange device provided with the liquid micronizer. 図15は、本開示の実施の形態3に係る液体微細化装置の正面側を示す斜視図である。FIG. 15 is a perspective view illustrating the front side of the liquid micronizing device according to Embodiment 3 of the present disclosure. 図16は、同液体微細化装置の背面側を示す斜視図である。FIG. 16 is a perspective view showing the back side of the liquid micronizer. 図17は、同液体微細化装置の概略断面図である。FIG. 17 is a schematic cross-sectional view of the liquid miniaturization apparatus. 図18は、同液体微細化装置が本開示の実施の形態3に係る送風装置に接続された状態を示す概略斜視図である。FIG. 18 is a schematic perspective view showing a state in which the liquid micronizer is connected to the air blower according to Embodiment 3 of the present disclosure. 図19は、同液体微細化装置を同送風装置に接続する状態を示す概略斜視図である。FIG. 19 is a schematic perspective view showing a state where the liquid micronizer is connected to the air blowing device. 図20は、同液体微細化装置が同送風装置に接続された状態を示す概略拡大斜視図である。FIG. 20 is a schematic enlarged perspective view showing a state where the liquid micronizer is connected to the air blowing device. 図21は、同液体微細化装置及び同送風装置の空気の流れを示す概略斜視図である。FIG. 21 is a schematic perspective view showing the air flow of the liquid micronizing device and the air blowing device. 図22Aは、本開示の実施の形態4に係る液体微細化装置を送風装置より下流に配置した場合の構成を示すブロック図である。FIG. 22A is a block diagram illustrating a configuration in a case where the liquid micronizing device according to Embodiment 4 of the present disclosure is arranged downstream of the blower. 図22Bは、本開示の実施の形態4に係る液体微細化装置を送風装置より上流に配置した場合の構成を示すブロック図である。FIG. 22B is a block diagram illustrating a configuration in a case where the liquid micronizing device according to Embodiment 4 of the present disclosure is arranged upstream of the blower device. 図23は、本開示の実施の形態5に係る液体微細化装置が空気を上方向に吹き出す場合の構成を示す概略斜視図である。FIG. 23 is a schematic perspective view illustrating a configuration when the liquid micronizing device according to the fifth embodiment of the present disclosure blows air upward. 図24は、同液体微細化装置の構成を示す概略斜視図である。FIG. 24 is a schematic perspective view showing the configuration of the liquid miniaturization apparatus. 図25は、同液体微細化装置の上部から吹き出される空気の流れを模式的に示した模式図である。FIG. 25 is a schematic view schematically showing the flow of air blown from the upper part of the liquid micronizer. 図26は、同液体微細化装置と送風装置の構成を示す概略斜視図である。FIG. 26 is a schematic perspective view showing configurations of the liquid micronizing device and the blower. 図27は、本開示の実施の形態5に係る液体微細化装置が空気を横方向に吹き出す場合の構成を示す概略斜視図である。FIG. 27 is a schematic perspective view illustrating a configuration when the liquid micronizing device according to the fifth embodiment of the present disclosure blows out air in the lateral direction. 図28は、同液体微細化装置の構成を示す概略斜視図である。FIG. 28 is a schematic perspective view showing the configuration of the liquid miniaturization apparatus. 図29は、同液体微細化装置の側部から吹き出される空気の流れを模式的に示した模式図である。FIG. 29 is a schematic view schematically showing the flow of air blown from the side portion of the liquid micronizer. 図30は、同液体微細化装置と送風装置の構成を示す概略斜視図である。FIG. 30 is a schematic perspective view showing configurations of the liquid micronizing device and the blower. 図31は、従来の液体微細化装置の断面を示す断面図である。FIG. 31 is a cross-sectional view showing a cross section of a conventional liquid miniaturization apparatus.
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。従って、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings. Note that each of the embodiments described below shows a preferred specific example of the present disclosure. Accordingly, numerical values, shapes, materials, components, arrangement positions of components, connection forms, and the like shown in the following embodiments are merely examples and do not limit the present disclosure. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as arbitrary constituent elements.
 (実施の形態1)
 本開示の実施の形態1に係る液体微細化装置は、空気を吸い込む吸込口と、吸込口より吸い込まれた空気を吹き出す吹出口と、吸込口と吹出口との間の風路内に設けられ、水を微細化する液体微細化室と、を備える。液体微細化室は、回転モータにより回転され、鉛直方向に向けて配置された回転軸と、下方に揚水口を備えると共に、上方が回転軸に固定され、回転軸の回転に合わせて回転されることにより揚水口より水を揚水し、揚水した水を遠心方向に放出する筒状の揚水管と、揚水管により放出された水が衝突することにより、水を微細化する衝突壁と、揚水管の鉛直方向下方に設けられ、揚水口より揚水するための水を貯水する貯水部と、衝突壁と付着し落下する水を受け止める横といと、横といで受け止められた水を貯水部へ案内する縦といと、衝突壁の下方で横といと接触して設けられ、微細化された水のうち水滴を捕集するエリミネータと、を備える。
(Embodiment 1)
The liquid refinement device according to the first embodiment of the present disclosure is provided in an air inlet between an air inlet, an air outlet that blows out air sucked from the air inlet, and an air inlet between the air inlet and the air outlet. A liquid refining chamber for refining water. The liquid micronization chamber is rotated by a rotary motor and includes a rotary shaft arranged in the vertical direction and a pumping port below, and the upper portion is fixed to the rotary shaft and rotated in accordance with the rotation of the rotary shaft. A cylindrical pumping pipe that pumps water from the pumping outlet and discharges the pumped water in the centrifugal direction, a collision wall that refines the water by colliding with the water released by the pumping pipe, and a pumping pipe The water storage part that stores the water to be pumped from the water outlet, the side that receives the falling water that adheres to the collision wall, and the water that is received on the side are guided to the water storage part. And an eliminator that is provided in contact with the horizontal direction below the collision wall and collects water droplets of the refined water.
 これにより、衝突壁と付着して落下する水が、横といにて受け止められて縦といにて貯水部へ案内されるので、その水が衝突壁の下方に設けられたエリミネータへ落下することを抑制できる。また、エリミネータにて捕集された水滴の一部は、風圧によって風路の下流側かつエリミネータの上方へと移動する場合があるが、その水滴をエリミネータと接触する横といに付着させ、縦といに沿って貯水部へと落下させることができる。これにより、エリミネータが過剰に水濡れすることを抑制でき、エリミネータ上での水の気化量が大きくなることを抑制できる。よって、エリミネータにより水滴を捕集しつつ、加湿性能の制御性を向上できるという効果がある。 As a result, water that adheres to and collides with the collision wall is received laterally and guided to the water storage section in the vertical direction, so that the water falls to the eliminator provided below the collision wall. Can be suppressed. Some of the water droplets collected by the eliminator may move to the downstream side of the air path and above the eliminator due to the wind pressure, but the water droplets adhere to the horizontal contact with the eliminator and are Can be dropped to the reservoir. Thereby, it can suppress that an eliminator gets wet with water excessively, and it can suppress that the vaporization amount of the water on an eliminator becomes large. Therefore, there is an effect that the controllability of the humidifying performance can be improved while collecting water droplets by the eliminator.
 また、エリミネータは、縦といとも接触して設けられてもよい。 Also, the eliminator may be provided in contact with the vertical.
 また、エリミネータは、風路に対してエリミネータの下流側側面が、縦といと接触して設けられてもよい。 Further, the eliminator may be provided such that the downstream side surface of the eliminator is in contact with the vertical direction with respect to the air path.
 また、エリミネータは、エリミネータ内に縦といを埋没させて設けられてもよい。 Also, the eliminator may be provided by burying a vertical frame in the eliminator.
 また、エリミネータは、風路においてエリミネータ内の下流側に縦といを埋没させて設けられてもよい。 Further, the eliminator may be provided by burying a vertical beam on the downstream side of the eliminator in the air passage.
 また、横といは、その横といで受け止められた水が縦といに向けて流れるように傾斜が設けられていてもよい。 In addition, the horizontal crossing may be provided with an inclination so that the water received at the horizontal side flows toward the vertical.
 また、縦といは、横といから貯水部に向けて複数設けられていてもよい。 Also, a plurality of vertical beams may be provided from the horizontal to the water storage unit.
 まず、図1を参照して、本開示の実施の形態1に係る液体微細化装置150の概略構成について説明する。図1は、その液体微細化装置150の鉛直方向の概略断面図である。 First, with reference to FIG. 1, a schematic configuration of the liquid micronization apparatus 150 according to the first embodiment of the present disclosure will be described. FIG. 1 is a schematic sectional view of the liquid micronizer 150 in the vertical direction.
 液体微細化装置150は、本体ケース101に、空気を吸い込む吸込口102と、吸込口102より吸い込まれた空気を吹き出す吹出口103と、を備える。また、液体微細化装置150は、本体ケース101内において吸込口102と吹出口103との間で風路115~117を形成している。また、本体ケース101内には、その風路115~117内に設けられた液体微細化室105を備えており、吸込口102と液体微細化室105と吹出口103とは連通している。 The liquid micronizer 150 includes a main body case 101 that includes a suction port 102 that sucks air and a blower port 103 that blows out air sucked from the suction port 102. Further, in the main body case 101, the liquid micronizer 150 forms air passages 115 to 117 between the suction port 102 and the air outlet 103. Further, the main body case 101 is provided with a liquid micronization chamber 105 provided in the air passages 115 to 117, and the suction port 102, the liquid micronization chamber 105, and the air outlet 103 communicate with each other.
 ここで、風路115は、吸込口102で取り込んだ空気を液体微細化室105へと送る風路である。風路116は、風路115により送られた空気を、液体微細化室105内を通して液体微細化室105外へと送る風路である。風路117は、液体微細化室105外へと送られた空気を吹出口103へと送る風路である。 Here, the air passage 115 is an air passage for sending the air taken in through the suction port 102 to the liquid miniaturization chamber 105. The air path 116 is an air path that sends the air sent by the air path 115 to the outside of the liquid micronization chamber 105 through the liquid micronization chamber 105. The air passage 117 is an air passage that sends the air sent out of the liquid micronization chamber 105 to the outlet 103.
 液体微細化室105は、液体微細化装置150の主要部であり、水の微細化を行うところである。液体微細化装置150では、吸込口102で取り込んだ空気が、風路115を経由して液体微細化室105へ送られる。そして、液体微細化装置150は、風路116を通る空気に、液体微細化室105にて微細化された水を含ませて、その水の含んだ空気を、風路117を経由して吹出口103より吹き出すように構成されている。 The liquid micronization chamber 105 is a main part of the liquid micronizer 150 and is where water is miniaturized. In the liquid micronizer 150, air taken in through the suction port 102 is sent to the liquid micronizer chamber 105 via the air path 115. Then, the liquid micronizer 150 includes the water that has been refined in the liquid micronization chamber 105 in the air that passes through the air passage 116, and blows the air containing the water via the air passage 117. It is configured to blow out from the outlet 103.
 液体微細化室105は、上方及び下方が開口された内筒106の内壁に衝突壁112を備えている。なお、内筒106は、本体ケース101に固定されており、本体ケース101と内筒106とで挟まれた空間に風路117が形成される。 The liquid micronization chamber 105 includes a collision wall 112 on the inner wall of the inner cylinder 106 opened at the upper and lower sides. The inner cylinder 106 is fixed to the main body case 101, and an air path 117 is formed in a space sandwiched between the main body case 101 and the inner cylinder 106.
 液体微細化室105には、衝突壁112に囲まれた内側において、回転しながら水を汲み上げる(揚水する)筒状の揚水管111が備えられている。揚水管111は、逆円錐形の中空構造となっており、下方に揚水口を備えると共に、上方において逆円錐形状の天面中心に、鉛直方向に向けて配置された回転軸110が固定されている。回転軸110が液体微細化室105の外面に備えられた回転モータ109と接続されることで、回転モータ109の回転運動が回転軸110を通じて揚水管111に伝導され、揚水管111が回転する。 The liquid micronization chamber 105 is provided with a cylindrical pumping pipe 111 for pumping (pumping) water while rotating inside the collision wall 112. The pumping pipe 111 has an inverted conical hollow structure, and has a pumping port on the lower side, and a rotating shaft 110 arranged in the vertical direction is fixed to the center of the top surface of the inverted conical shape on the upper side. Yes. By connecting the rotary shaft 110 to the rotary motor 109 provided on the outer surface of the liquid micronization chamber 105, the rotary motion of the rotary motor 109 is transmitted to the pumping pipe 111 through the rotary shaft 110, and the pumping pipe 111 rotates.
 揚水管111は、回転板114を複数備えている。複数の回転板114は、回転軸110の軸方向に所定間隔を設けて、揚水管111の外面から外側に突出するように形成されている。回転板114は揚水管111と共に回転するため、回転軸110と同軸の水平な円板形状が好ましい。なお、回転板114の枚数は、目標とする性能あるいは揚水管111の寸法に合わせて適宜設定されるものである。 The pumping pipe 111 includes a plurality of rotating plates 114. The plurality of rotating plates 114 are formed so as to protrude outward from the outer surface of the water pumping pipe 111 with a predetermined interval in the axial direction of the rotating shaft 110. Since the rotating plate 114 rotates together with the pumping pipe 111, a horizontal disk shape coaxial with the rotating shaft 110 is preferable. Note that the number of the rotating plates 114 is appropriately set according to the target performance or the dimensions of the pumping pipe 111.
 また、揚水管111の壁面には、揚水管111の壁面を貫通する開口113が設けられている。揚水管111の開口113は、揚水管111の外面から外側に突出するように形成された回転板114と連通する位置に設けられている。開口113の周方向の大きさは、揚水管111の開口113が備えられた部位の外径に合わせてそれぞれ設計する必要がある。例えば、揚水管111の外径の5%から50%に相当する径、より好ましくは、揚水管111の5%から20%に相当する径である。なお、上記範囲内において、各開口113の寸法を同一のものとしてもよい。 Further, an opening 113 that penetrates the wall surface of the pumping pipe 111 is provided on the wall surface of the pumping pipe 111. The opening 113 of the pumping pipe 111 is provided at a position communicating with the rotating plate 114 formed so as to protrude outward from the outer surface of the pumping pipe 111. The size of the opening 113 in the circumferential direction needs to be designed according to the outer diameter of the portion of the pumped pipe 111 where the opening 113 is provided. For example, the diameter corresponding to 5% to 50% of the outer diameter of the pumping pipe 111, more preferably the diameter corresponding to 5% to 20% of the pumping pipe 111. Within the above range, the dimensions of the openings 113 may be the same.
 液体微細化室105の下部には、揚水管111の鉛直方向下方に、揚水管111により揚水される水を貯水する貯水部104が設けられている。貯水部104は、揚水管111の下部の一部、例えば揚水管111の円錐高さの三分の一から百分の一程度の長さが浸るように、深さがとられている。この深さは必要な揚水量に合わせて設計できる。 In the lower part of the liquid refinement chamber 105, a water storage section 104 for storing water pumped by the pumping pipe 111 is provided below the pumping pipe 111 in the vertical direction. The water storage unit 104 has a depth so that a part of the lower part of the pumping pipe 111, for example, about one third to one hundredth of the conical height of the pumping pipe 111 is immersed. This depth can be designed according to the required pumping capacity.
 貯水部104への水の供給は、給水部107により行われる。給水部107には、給水管(図示せず)が接続されており、例えば水道から水圧調整弁を通じて、給水管により直接給水する。なお、給水部107は、あらかじめ液体微細化室105外に備えられた水タンクからサイフォンの原理で必要な水量のみ汲みあげて、貯水部104へ水を供給するように構成されてもよい。給水部107は、貯水部104の底面よりも鉛直方向上方に設けられている。なお、給水部107は、貯水部104の底面の上方であるだけでなく、貯水部104の上面(貯水部104に貯水され得る最大水位の面)よりも鉛直方向上方に設けられるのが好ましい。 Water supply to the water storage unit 104 is performed by the water supply unit 107. A water supply pipe (not shown) is connected to the water supply unit 107, and water is supplied directly from the water supply pipe through a water pressure adjustment valve, for example. Note that the water supply unit 107 may be configured so as to pump up only the amount of water required by the siphon principle from a water tank provided outside the liquid micronization chamber 105 in advance and supply water to the water storage unit 104. The water supply unit 107 is provided above the bottom surface of the water storage unit 104 in the vertical direction. The water supply unit 107 is preferably provided not only above the bottom surface of the water storage unit 104 but also above the top surface of the water storage unit 104 (the surface of the maximum water level that can be stored in the water storage unit 104) in the vertical direction.
 液体微細化室105には、貯水部104の水位を検知する水位検知部108が設けられている。水位検知部108は、フロートスイッチ120を有している。フロートスイッチ120は、貯水部104が一定の水位に達していない場合はオフし、貯水部104が一定の水位に達した場合にオンする。この一定の水位は、揚水管111の下部が貯水部104に貯水された水に浸る程度の水位に設定されている。フロートスイッチ120がオフの場合は、給水部107より貯水部104へ水を供給し、フロートスイッチ120がオンの場合に、給水部107からの貯水部104への水の供給を停止することで、貯水部104の水を一定の水位に保たせることができる。この水位検知部108は、貯水部104の底面よりも鉛直方向上方に設けられている。 In the liquid refinement chamber 105, a water level detection unit 108 that detects the water level of the water storage unit 104 is provided. The water level detection unit 108 has a float switch 120. The float switch 120 is turned off when the water reservoir 104 has not reached a certain water level, and is turned on when the water reservoir 104 has reached a certain water level. This constant water level is set to such a level that the lower part of the pumping pipe 111 is immersed in the water stored in the water storage unit 104. When the float switch 120 is off, water is supplied from the water supply unit 107 to the water storage unit 104, and when the float switch 120 is on, the supply of water from the water supply unit 107 to the water storage unit 104 is stopped. The water in the water reservoir 104 can be kept at a constant water level. The water level detection unit 108 is provided above the bottom surface of the water storage unit 104 in the vertical direction.
 貯水部104の底面には、排水管118が接続されている。排水管118が接続される位置に設けられた貯水部104の排水口は、貯水部104の最も低い位置に設けられている。水の微細化の運転を停止させた場合に、排水管118に設けられた弁(図示せず)を開けることで、貯水部104に貯水された水が、排水管118から排水される。 A drain pipe 118 is connected to the bottom surface of the water storage unit 104. The drain port of the water storage unit 104 provided at a position where the drain pipe 118 is connected is provided at the lowest position of the water storage unit 104. When the operation of water miniaturization is stopped, the water stored in the water storage section 104 is drained from the drain pipe 118 by opening a valve (not shown) provided in the drain pipe 118.
 液体微細化室105は、衝突壁112の下方であって液体微細化室105から風路117へとつながる開口部124(図3参照)を覆うように、エリミネータ119を備えている。エリミネータ119は、液体微細化室105にて微細化された水を含んだ空気が通過し、その空気に含まれる水のうち水滴を捕集する。なお、エリミネータ119で捕集された水滴の多くは、貯水部104に案内されることになる。 The liquid micronization chamber 105 includes an eliminator 119 so as to cover an opening 124 (see FIG. 3) below the collision wall 112 and connected from the liquid micronization chamber 105 to the air path 117. The eliminator 119 passes air containing water refined in the liquid refinement chamber 105 and collects water droplets in the water contained in the air. Most of the water droplets collected by the eliminator 119 are guided to the water storage unit 104.
 ここで、液体微細化装置150における水の微細化の動作原理を説明する。回転モータ109により回転軸110が回転し、それに合わせて揚水管111が回転すると、その回転によって生じる遠心力により、貯水部104に貯水された水が揚水管111の揚水口から汲み上げられる。揚水管111の回転数は、1000-5000rpmの間に設定される。揚水管111は、逆円錐形の中空構造となっているため、回転によって汲み上げられた水は、揚水管111の内壁を伝って上部へ揚水される。そして、揚水された水は、揚水管111の開口113から回転板114を伝って遠心方向に放出され、水滴として飛散する。 Here, the operation principle of water refinement in the liquid refiner 150 will be described. When the rotating shaft 110 is rotated by the rotation motor 109 and the pumped water pipe 111 is rotated accordingly, the water stored in the water storage unit 104 is pumped from the water pumping port of the water pumped pipe 111 by the centrifugal force generated by the rotation. The rotational speed of the pumping pipe 111 is set between 1000 and 5000 rpm. Since the pumping pipe 111 has an inverted conical hollow structure, the water pumped up by the rotation is pumped up along the inner wall of the pumping pipe 111. Then, the pumped water is discharged in the centrifugal direction from the opening 113 of the pumping pipe 111 through the rotating plate 114 and scattered as water droplets.
 回転板114から飛散した水滴は、衝突壁112に囲まれた空間を飛翔し、衝突壁112に衝突して微細化される。一方、液体微細化室105を通過する空気は、内筒106の上方開口部から内筒106内部へ移動する。そして、その空気は、衝突壁112によって破砕(微細化)された水を含みながら、風路116により、エリミネータ119を経由して開口部124(図3参照)から内筒106外部(風路117)へ移動する。これにより、液体微細化装置150の吸込口102より吸い込まれた空気に対して加湿を行い、吹出口103より加湿された空気を吹き出すことができる。 The water droplets scattered from the rotating plate 114 fly in the space surrounded by the collision wall 112 and collide with the collision wall 112 to be refined. On the other hand, the air passing through the liquid micronization chamber 105 moves from the upper opening of the inner cylinder 106 into the inner cylinder 106. Then, the air contains water crushed (miniaturized) by the collision wall 112, and the air passage 116 passes through the eliminator 119 from the opening 124 (see FIG. 3) to the outside of the inner cylinder 106 (air passage 117). Move to). Thereby, the air sucked from the suction port 102 of the liquid micronizer 150 can be humidified, and the humidified air can be blown out from the air outlet 103.
 また、揚水管111の回転量によって、揚水管111により汲み上げられる水の量を変化させ、揚水管111の回転板114から飛散する水滴の量を変化させることで、衝突壁112によって微細化される水の量を変化させることができる。よって、揚水管111の回転量により、液体微細化装置150の吸込口102より吸い込まれた空気に含ませる水の量を変化させることができる。即ち、液体微細化装置150は、揚水管111の回転量によって、加湿量を制御することができる。 Further, the amount of water pumped up by the pumping pipe 111 is changed by the amount of rotation of the pumping pipe 111, and the amount of water droplets scattered from the rotating plate 114 of the pumping pipe 111 is changed, so that it is refined by the collision wall 112. The amount of water can be changed. Therefore, the amount of water included in the air sucked from the suction port 102 of the liquid micronizer 150 can be changed according to the rotation amount of the pumping pipe 111. That is, the liquid micronizer 150 can control the humidification amount according to the rotation amount of the water pumping pipe 111.
 また、エリミネータ119により、液体微細化室105にて微細化され空気に含められた水のうち水滴が捕集されるので、液体微細化装置150は、吹出口103から吹き出される空気に気化された水のみを含めることができる。これにより、液体微細化装置150は、吹出口103に水滴が付着することを抑制できる。 Further, since the eliminator 119 collects water droplets out of the water refined in the liquid refinement chamber 105 and included in the air, the liquid refiner 150 is vaporized into the air blown from the outlet 103. Only water can be included. Thereby, the liquid refinement | miniaturization apparatus 150 can suppress that a water droplet adheres to the blower outlet 103. FIG.
 なお、回転板114から飛散した水の運動エネルギーは衝突壁112内部の空気との摩擦により減衰するため、回転板114はなるべく衝突壁112に近づけたほうが好ましい。一方で、衝突壁112と回転板114を近づけるほど、衝突壁112内部を通過する風量が減少するため、距離の下限値は衝突壁112内部を通過する圧力損失と風量とで、任意に決まる。 In addition, since the kinetic energy of the water scattered from the rotating plate 114 is attenuated by friction with the air inside the collision wall 112, the rotating plate 114 is preferably as close to the collision wall 112 as possible. On the other hand, the closer the collision wall 112 and the rotating plate 114 are, the smaller the amount of air passing through the inside of the collision wall 112. Therefore, the lower limit of the distance is arbitrarily determined by the pressure loss and the amount of air passing through the inside of the collision wall 112.
 また、微細化される液体は水以外でもよく、例えば、殺菌性あるいは消臭性を備えた次亜塩素酸水等の液体であってもよい。微細化された次亜塩素酸水を液体微細化装置150の吸込口102より吸い込まれた空気に含ませ、その空気を吹出口103より吹き出すことで、液体微細化装置150が置かれた空間の殺菌あるいは消臭を行うことができる。 Further, the liquid to be refined may be other than water, for example, a liquid such as hypochlorous acid water having bactericidal or deodorizing properties. The refined hypochlorous acid water is included in the air sucked from the suction port 102 of the liquid micronizer 150, and the air is blown out from the outlet 103, so that the space in which the liquid micronizer 150 is placed Sterilization or deodorization can be performed.
 次いで、図2A~図4を参照して、液体微細化室105を構成する内筒106及びエリミネータ119の詳細構成について説明する。図2Aは、内筒106及びエリミネータ119の斜視図であり、図2Bは、内筒106及びエリミネータ119を上面視した上面図である。図3は、図2Aに示す平面IIIにて切断した内筒106の斜視断面図であり、図4は、図2Bに示すIV方向を見た内筒106及びエリミネータ119の概略断面図である。なお、図3では、エリミネータ119を取り外した状態での内筒106の斜視断面図を示しているが、参考までにエリミネータ119の配設箇所を細線で示してある。 Next, detailed configurations of the inner cylinder 106 and the eliminator 119 constituting the liquid micronization chamber 105 will be described with reference to FIGS. 2A to 4. 2A is a perspective view of the inner cylinder 106 and the eliminator 119, and FIG. 2B is a top view of the inner cylinder 106 and the eliminator 119 as viewed from above. 3 is a perspective sectional view of the inner cylinder 106 cut along the plane III shown in FIG. 2A, and FIG. 4 is a schematic sectional view of the inner cylinder 106 and the eliminator 119 as viewed in the IV direction shown in FIG. 2B. FIG. 3 shows a perspective sectional view of the inner cylinder 106 with the eliminator 119 removed, but the location of the eliminator 119 is shown by a thin line for reference.
 内筒106は、衝突壁112の下端にてその衝突壁112に付着し落下する水を受け止める横とい121を備える。横とい121は、図3に示す通り、衝突壁112の下端にて内筒106の内側に向かって延びる底121aと、衝突壁112と対向する位置に底121aから上方に向かって延びる側壁121bとにより構成され、衝突壁112の全周にわたって形成される。 The inner cylinder 106 is provided with a lateral wall 121 for receiving water that adheres to the collision wall 112 and falls at the lower end of the collision wall 112. As shown in FIG. 3, the side wall 121 includes a bottom 121a extending toward the inside of the inner cylinder 106 at the lower end of the collision wall 112, and a side wall 121b extending upward from the bottom 121a at a position facing the collision wall 112. And is formed over the entire circumference of the collision wall 112.
 また、内筒106は、衝突壁112の下端において所定間隔毎に横とい121から貯水部104に向けて衝突壁112の下方へ延設された複数の縦とい122を備える。縦とい122は、横とい121で受け止められた水を貯水部104へと案内する。本実施の形態では、縦とい122が8つ設けられているが、その数は任意の数であってよい。 Further, the inner cylinder 106 includes a plurality of vertical frames 122 that extend from the side wall 121 toward the water storage section 104 to the lower side of the collision wall 112 at a predetermined interval at the lower end of the collision wall 112. The vertical gutter 122 guides the water received by the horizontal gutter 121 to the water reservoir 104. In the present embodiment, eight vertical frames 122 are provided, but the number may be any number.
 なお、図3に示す通り、隣り合う縦とい122の間に開口部124が形成されている。内筒106の内部で微細化された水を含んだ空気は、この開口部124を通って液体微細化室105から風路117へと流れる。つまり、開口部124において、内筒106の内側(液体微細化室105側)が風路115~117における上流側になり、内筒106の外側(風路117側)が風路115~117における下流側となる。 Note that, as shown in FIG. 3, an opening 124 is formed between adjacent vertical frames 122. Air containing water refined inside the inner cylinder 106 flows from the liquid refinement chamber 105 to the air passage 117 through the opening 124. That is, in the opening 124, the inner side of the inner cylinder 106 (the side of the liquid micronization chamber 105) is the upstream side of the air paths 115 to 117, and the outer side of the inner cylinder 106 (the side of the air path 117) is Downstream side.
 横とい121には、受け止めた水を縦とい122に向けて流れるように傾斜が設けられている。具体的には、隣り合う2つの縦とい122の中間となる横とい121の位置が最も高く、縦とい122と繋がる横とい121の位置が最も低くなるように、横とい121に傾斜が設けられている。これにより、横とい121で受け止めた水が確実に縦とい122へと案内される。また、縦とい122は、図3に示す通り、風路115~117に対して下流側に底122aが設けられると共に横とい121から貯水部104へ水を案内する方向の両側に側壁122bが設けられている。また、縦とい122は、風路115~117に対して上流側に向けて開口した、コの字形状となっている。これにより、縦とい122を流れる水は、風圧によって縦とい122の底122aを流れるように押さえられ、また、側壁122bによって、その水が縦とい122からこぼれることを抑制できる。 The side wall 121 is provided with an inclination so that the received water flows toward the vertical wall 122. Specifically, the horizontal frame 121 is inclined so that the position of the horizontal frame 121 that is the middle of two adjacent vertical frames 122 is the highest and the position of the horizontal frame 121 that is connected to the vertical frame 122 is the lowest. ing. As a result, the water received by the horizontal frame 121 is reliably guided to the vertical frame 122. Further, as shown in FIG. 3, the vertical frame 122 is provided with a bottom 122a on the downstream side with respect to the air passages 115 to 117 and side walls 122b on both sides in the direction of guiding water from the horizontal channel 121 to the water storage unit 104. It has been. The vertical frame 122 has a U-shape that opens toward the upstream side with respect to the air passages 115 to 117. Thereby, the water flowing through the vertical frame 122 is pressed by the wind pressure so as to flow through the bottom 122a of the vertical frame 122, and the side wall 122b can prevent the water from spilling from the vertical frame 122.
 内筒106は、衝突壁112の下端において横とい121の側壁121bから内筒106の中心に向かって延びた複数のエリミネータ用係止爪123を備える。本実施の形態では、エリミネータ用係止爪123が4つ設けられているが、その数は任意の数であってよい。このエリミネータ用係止爪123により、衝突壁112の下方であって開口部124の内側(風路115~117の上流側)にエリミネータ119が係止される。 The inner cylinder 106 is provided with a plurality of eliminator locking claws 123 extending from the side wall 121b of the lateral wall 121 toward the center of the inner cylinder 106 at the lower end of the collision wall 112. In the present embodiment, four eliminator locking claws 123 are provided, but the number thereof may be any number. The eliminator locking claw 123 locks the eliminator 119 below the collision wall 112 and inside the opening 124 (upstream of the air passages 115 to 117).
 また、本実施の形態では、図4に示す通り、エリミネータ119の上端が横とい121の下端(底121aの下側)と接触するようにエリミネータ119が配設される。また、風路115~117に対してエリミネータ119の下流側側面(外周面)が縦とい122と接触するようにエリミネータ119が配設される。 Further, in the present embodiment, as shown in FIG. 4, the eliminator 119 is disposed so that the upper end of the eliminator 119 contacts the lower end of the horizontal plate 121 (below the bottom 121a). Further, the eliminator 119 is disposed so that the downstream side surface (outer peripheral surface) of the eliminator 119 is in contact with the vertical frame 122 with respect to the air passages 115 to 117.
 次いで、図3、図5及び図6を参照して、以上のように構成された内筒106及びエリミネータ119により奏する液体微細化装置150の作用効果について説明する。図5は、エリミネータ119にて捕集された水滴131、132の風圧による移動を模式的に示した模式図である。図6は、エリミネータ119内を移動した水滴131が横とい121及び縦とい122に沿って流れる様子を模式的に示した模式図である。 Next, with reference to FIGS. 3, 5, and 6, the operational effect of the liquid micronizer 150 that is achieved by the inner cylinder 106 and the eliminator 119 configured as described above will be described. FIG. 5 is a schematic diagram schematically showing the movement of the water droplets 131 and 132 collected by the eliminator 119 due to the wind pressure. FIG. 6 is a schematic diagram schematically showing how the water droplet 131 moved in the eliminator 119 flows along the horizontal 121 and the vertical 122.
 衝突壁112が揚水管111の回転板114より飛翔した水を破砕するに際し、図3に示すように、その水の一部(水滴130)が衝突壁112に付着する。そして、図3に示す通り、衝突壁112に付着した水滴130はその水滴130の重みにより衝突壁112の下方へ落下する。その落下した水滴130は、横とい121で受け止められ、横とい121の傾斜によって縦とい122へと移動する。そして、水滴130は、縦とい122によって貯水部104へと案内される。これにより、衝突壁112に付着し落下する水滴130が、衝突壁112の下方に設けられたエリミネータ119へ落下することを抑制できる。よって、エリミネータ119が、その衝突壁112から落下する水滴130で過剰に水濡れすることを抑制できる。 When the collision wall 112 crushes the water flying from the rotating plate 114 of the pumping pipe 111, a part of the water (water droplets 130) adheres to the collision wall 112 as shown in FIG. Then, as shown in FIG. 3, the water droplet 130 attached to the collision wall 112 falls below the collision wall 112 due to the weight of the water droplet 130. The dropped water droplet 130 is received by the horizontal frame 121 and moves to the vertical frame 122 by the inclination of the horizontal frame 121. Then, the water droplet 130 is guided to the water storage unit 104 by the vertical frame 122. Thereby, it is possible to suppress the water droplet 130 attached and falling on the collision wall 112 from dropping to the eliminator 119 provided below the collision wall 112. Therefore, it is possible to suppress the eliminator 119 from being wetted excessively by the water droplet 130 falling from the collision wall 112.
 また、エリミネータ119にて捕集された水滴のうち一部の水滴131は、図5に示す通り、液体微細化室105から風路117に向けて流れる風の風圧によって、風路115~117の下流側かつエリミネータ119の上方へと移動する。液体微細化装置150では、エリミネータ119が横とい121と接触して設けられているので、図6に示すように、横とい121の表面張力によって、水滴131が横とい121に付着される。そして、その水滴131は、横とい121から縦とい122へと移動し、縦とい122に沿って貯水部104へと落下する。これにより、エリミネータ119により捕集された水滴131が、風圧によってエリミネータ119の下流側側面(外周面)から飛散することを抑制できる。また、エリミネータ119にて捕集された水滴131を効率よく貯水部104へと落下させることができるので、エリミネータ119が捕集した水滴131で過剰に水濡れすることを抑制できる。 Further, some of the water droplets 131 collected by the eliminator 119 are caused to flow through the air passages 115 to 117 by the wind pressure of the wind flowing from the liquid micronization chamber 105 toward the air passage 117 as shown in FIG. It moves downstream and above the eliminator 119. In the liquid micronizer 150, since the eliminator 119 is provided in contact with the horizontal plate 121, the water droplet 131 is attached to the horizontal plate 121 by the surface tension of the horizontal plate 121 as shown in FIG. Then, the water droplet 131 moves from the horizontal profile 121 to the vertical profile 122 and falls along the vertical profile 122 to the water storage unit 104. Thereby, it is possible to prevent the water droplet 131 collected by the eliminator 119 from being scattered from the downstream side surface (outer peripheral surface) of the eliminator 119 due to wind pressure. In addition, since the water droplet 131 collected by the eliminator 119 can be efficiently dropped onto the water storage unit 104, it is possible to prevent the water droplet 131 collected by the eliminator 119 from being excessively wetted.
 また、エリミネータ119にて捕集された水滴のうち別の水滴132も、図5に示す通り、液体微細化室105から風路117に向けて流れる風の風圧によって、風路115~117の下流側へと移動する。液体微細化装置150は、エリミネータ119の下流側側面(外周面)が縦とい122と接触して設けられている。そのため、水滴132のうち一部は、縦とい122において風路115~117に対して上流側に向けられた開口から縦とい122内に入り、貯水部104へと案内される。また、水滴132の残りの一部は、表面張力によって縦とい122の側壁122bの外側部分に付着され、貯水部104へと案内される。これにより、エリミネータ119により捕集された水滴132が、風圧によってエリミネータ119の下流側側面(外周面)から飛散することを抑制できる。また、エリミネータ119にて捕集された水滴132を効率よく貯水部104へと落下させることができるので、エリミネータ119が捕集した水滴132で過剰に水濡れすることを抑制できる。 Further, among the water droplets 132 collected by the eliminator 119, another water droplet 132 is also downstream of the air channels 115 to 117 by the wind pressure of the wind flowing from the liquid micronization chamber 105 toward the air channel 117, as shown in FIG. Move to the side. The liquid micronizer 150 is provided such that the downstream side surface (outer peripheral surface) of the eliminator 119 is in contact with the vertical frame 122. Therefore, a part of the water droplet 132 enters the vertical shaft 122 through the opening directed upstream from the air passages 115 to 117 in the vertical wall 122 and is guided to the water storage unit 104. Further, the remaining part of the water droplet 132 is attached to the outer portion of the side wall 122 b of the vertical wall 122 by surface tension and guided to the water storage unit 104. Thereby, it is possible to prevent the water droplets 132 collected by the eliminator 119 from being scattered from the downstream side surface (outer peripheral surface) of the eliminator 119 due to wind pressure. In addition, since the water droplets 132 collected by the eliminator 119 can be efficiently dropped onto the water storage unit 104, it is possible to prevent the water droplets 132 collected by the eliminator 119 from being excessively wetted.
 なお、エリミネータ119が衝突壁112の下方で横とい121と接触して設けられているので、液体微細化室105から開口部124を通って風路117へと流れる空気を、確実にエリミネータ119に通過させることができる。よって、吹出口103から吹き出される空気から、確実に水滴を除去できる。 Since the eliminator 119 is provided below the collision wall 112 and in contact with the horizontal plate 121, the air flowing from the liquid micronization chamber 105 through the opening 124 to the air passage 117 is surely supplied to the eliminator 119. Can be passed. Therefore, water droplets can be reliably removed from the air blown from the blower outlet 103.
 以上説明した通り、本実施の形態に係る液体微細化装置150は、エリミネータ119が過剰に水濡れすることを抑制できるので、エリミネータ119上での水の気化量が大きくなることを抑制できる。よって、液体微細化装置150は、揚水管111の回転量を制御することで目標とする加湿性能を容易に得ることができるので、エリミネータ119により水滴を捕集しつつ、加湿性能の制御性を向上できる。 As described above, the liquid micronization apparatus 150 according to the present embodiment can suppress the eliminator 119 from being wetted excessively, and thus can suppress an increase in the amount of water vaporized on the eliminator 119. Therefore, since the liquid micronizer 150 can easily obtain the target humidification performance by controlling the rotation amount of the pumping pipe 111, it can control the humidification performance while collecting water droplets by the eliminator 119. It can be improved.
 なお、本実施の形態に係る液体微細化装置150では、エリミネータ119が図4に示す通り配設される場合について説明した。即ち、エリミネータ119の上端が横とい121の下端(底121aの下側)と接触し、風路115~117に対してエリミネータ119の下流側側面(外周面)が縦とい122と接触するように、エリミネータ119が配設される場合について説明した。しかしながら、エリミネータ119は、衝突壁112の下方で横とい121と接触していればよく、その配設位置は、種々の変形例が考えられる。 In addition, in the liquid refinement | miniaturization apparatus 150 which concerns on this Embodiment, the case where the eliminator 119 was arrange | positioned as shown in FIG. 4 was demonstrated. That is, the upper end of the eliminator 119 is in contact with the lower end of the horizontal plate 121 (below the bottom 121a), and the downstream side surface (outer peripheral surface) of the eliminator 119 is in contact with the vertical frame 122 with respect to the air passages 115 to 117. The case where the eliminator 119 is disposed has been described. However, it is sufficient that the eliminator 119 is in contact with the horizontal plate 121 below the collision wall 112, and various modifications can be considered for the arrangement position.
 例えば、図7Aは、その一変形例を模式的に示した模式図である。図7Aに示す変形例では、エリミネータ119が縦とい122とは接触していないものの、エリミネータ119の上端が横とい121の側壁121bの外側(衝突壁112と反対側、揚水管111側)と接触するように、エリミネータ119が配設される。 For example, FIG. 7A is a schematic diagram schematically showing one modification thereof. In the modification shown in FIG. 7A, although the eliminator 119 is not in contact with the vertical wall 122, the upper end of the eliminator 119 is in contact with the outside of the side wall 121b of the horizontal wall 121 (the side opposite to the collision wall 112, the pumping pipe 111 side). Thus, an eliminator 119 is provided.
 この変形例では、縦とい122により、エリミネータ119で捕集された水滴132がエリミネータ119の下流側側面(外周面)から飛散することを抑制したり、エリミネータ119にて捕集された水滴132を効率よく貯水部104へと落下させたりすることはできない。しかし、エリミネータ119の上端が横とい121の側壁121bの外側と接触しているので、次のような作用効果が得られる。 In this modification, the vertical frame 122 prevents the water droplets 132 collected by the eliminator 119 from scattering from the downstream side surface (outer peripheral surface) of the eliminator 119, or the water droplets 132 collected by the eliminator 119 are removed. It cannot be efficiently dropped into the water storage unit 104. However, since the upper end of the eliminator 119 is in contact with the outside of the side wall 121b of the side 121, the following operational effects can be obtained.
 即ち、エリミネータ119にて捕集された水滴のうち、風圧によって風路115~117の下流側かつエリミネータ119の上方へと移動した水滴131は、横とい121の表面張力によって横とい121の側壁121bに付着される。そして、その水滴131は、横とい121の側壁121bから底121aへと移動し、更に縦とい122へと移動して、縦とい122に沿って貯水部104へと落下する。 That is, out of the water droplets collected by the eliminator 119, the water droplet 131 moved to the downstream side of the air passages 115 to 117 and above the eliminator 119 by the wind pressure is the side wall 121 b of the side wall 121 due to the surface tension of the side wall 121. To be attached to. Then, the water droplet 131 moves from the side wall 121b of the horizontal frame 121 to the bottom 121a, further moves to the vertical frame 122, and falls to the water storage section 104 along the vertical frame 122.
 これにより、エリミネータ119により捕集された水滴131が、風圧によってエリミネータ119の下流側側面(外周面)から飛散することを抑制できる。また、エリミネータ119にて捕集された水滴131を効率よく貯水部104へと落下させることができるので、エリミネータ119が捕集した水滴130で過剰に水濡れすることを抑制できる。 Thereby, it is possible to suppress the water droplet 131 collected by the eliminator 119 from being scattered from the downstream side surface (outer peripheral surface) of the eliminator 119 due to the wind pressure. In addition, since the water droplet 131 collected by the eliminator 119 can be efficiently dropped onto the water storage unit 104, it is possible to prevent the water droplet 130 collected by the eliminator 119 from being excessively wetted.
 図7Bは、エリミネータ119の配設位置の別の変形例を模式的に示した模式図である。図7Bに示す変形例では、エリミネータ119は縦とい122とは接触していないものの、エリミネータ119の上端が横とい121の下端(底121aの下側)と接触するように、エリミネータ119が配設される。この変形例でも、縦とい122により、エリミネータ119により捕集された水滴132がエリミネータ119の下流側側面(外周面)から飛散することを抑制したり、エリミネータ119にて捕集された水滴132を効率よく貯水部104へと落下させたりすることはできない。しかし、エリミネータ119の上端が横とい121の下端と接触することによる作用効果を、図4に示した実施形態と同様に奏することができる。 FIG. 7B is a schematic diagram schematically showing another modified example of the arrangement position of the eliminator 119. 7B, although the eliminator 119 is not in contact with the vertical frame 122, the eliminator 119 is disposed so that the upper end of the eliminator 119 is in contact with the lower end of the horizontal frame 121 (below the bottom 121a). Is done. Also in this modified example, the vertical frame 122 prevents the water droplets 132 collected by the eliminator 119 from scattering from the downstream side surface (outer peripheral surface) of the eliminator 119, or the water droplets 132 collected by the eliminator 119 are removed. It cannot be efficiently dropped into the water storage unit 104. However, the function and effect obtained when the upper end of the eliminator 119 comes into contact with the lower end of the horizontal plate 121 can be obtained in the same manner as in the embodiment shown in FIG.
 図8Aは、エリミネータ119の配設位置の更に別の変形例を模式的に示した模式図であり、図8Bは、図8Aに示すVIIIb方向を見た場合のエリミネータ119及び縦とい122の断面図である。図8Aに示す変形例では、以下のようにエリミネータ119が配設される。即ち、横とい121の底121aの下側及び側壁121bの外側(衝突壁112と反対側、揚水管111側)がエリミネータ119の上端により埋没されるように、エリミネータ119が配設される。また、縦とい122の側壁122bが、風路115~117においてエリミネータ119内の下流側で埋没されるように、エリミネータ119が配設される。この変形例では、図4に示した実施形態と同様に、エリミネータ119の上端が横とい121の下端(底121aの下側)と接触することで得られる作用効果、及び、エリミネータ119が縦とい122と接触することで得られる作用効果を奏することができる。加えて、この変形例では、エリミネータ119と横とい121及び縦とい122との接触する面積が大きくなる。これにより、エリミネータ119で捕集されたより多くの水滴131、132を、表面張力により横とい121あるいは縦とい122に付着させることができ、貯水部104へと案内することができる。よって、図4に示した実施形態と比して、エリミネータ119にて捕集された水滴131、132をより効率よく貯水部104へと落下させることができ、エリミネータ119が捕集した水滴131、132で過剰に水濡れすることをより抑えることができる。 FIG. 8A is a schematic view schematically showing still another modified example of the arrangement position of the eliminator 119, and FIG. 8B is a cross section of the eliminator 119 and the vertical frame 122 when viewed in the VIIIb direction shown in FIG. 8A. FIG. In the modification shown in FIG. 8A, the eliminator 119 is arranged as follows. That is, the eliminator 119 is disposed so that the lower side of the bottom 121 a of the side wall 121 and the outer side of the side wall 121 b (the side opposite to the collision wall 112 and the pumping pipe 111 side) are buried by the upper end of the eliminator 119. In addition, the eliminator 119 is disposed so that the side wall 122b of the vertical wall 122 is buried downstream of the eliminator 119 in the air passages 115 to 117. In this modification, as in the embodiment shown in FIG. 4, the effect obtained by the upper end of the eliminator 119 contacting the lower end of the horizontal plate 121 (below the bottom 121 a), and the eliminator 119 is vertical. The effect obtained by contacting 122 can be exhibited. In addition, in this modified example, the contact area between the eliminator 119 and the horizontal frame 121 and the vertical frame 122 is increased. As a result, more water droplets 131 and 132 collected by the eliminator 119 can be attached to the horizontal frame 121 or the vertical frame 122 by the surface tension, and can be guided to the water storage unit 104. Therefore, compared with the embodiment shown in FIG. 4, the water droplets 131 and 132 collected by the eliminator 119 can be dropped to the water storage unit 104 more efficiently, and the water droplets 131 collected by the eliminator 119, In 132, excessive water wetting can be further suppressed.
 図9Aは、エリミネータ119の配設位置の更に別の変形例を模式的に示した模式図である。図9Aに示す変形例では、以下のようにエリミネータ119が配設される。即ち、横とい121の底121aの下側及び側壁121bの外側(衝突壁112と反対側、揚水管111側)がエリミネータ119の上端により埋没されるように、エリミネータ119が配設される。また、縦とい122の底122a及び側壁122b(図3参照)がエリミネータ119内で埋没されるように、エリミネータ119が配設される。つまり、図9Aに示す変形例では、縦とい122がエリミネータ119内に完全に埋没される。これによっても、図8Aと同様の作用効果を奏することができる。また、図8Aに示す変形例と比して、エリミネータ119と縦とい122との接触面積が大きくなる。そのため、エリミネータ119で捕集された水滴131、132をより多く横とい121あるいは縦とい122に付着させることができ、貯水部104へと案内することができる。よって、エリミネータ119にて捕集された水滴131、132をより効率よく貯水部104へと落下させることができ、エリミネータ119が、捕集した水滴131、132で過剰に水濡れすることをより抑えることができる。 FIG. 9A is a schematic view schematically showing still another modified example of the arrangement position of the eliminator 119. In the modification shown in FIG. 9A, the eliminator 119 is arranged as follows. That is, the eliminator 119 is disposed so that the lower side of the bottom 121 a of the side wall 121 and the outer side of the side wall 121 b (the side opposite to the collision wall 112 and the pumping pipe 111 side) are buried by the upper end of the eliminator 119. Further, the eliminator 119 is arranged so that the bottom 122a and the side wall 122b (see FIG. 3) of the vertical frame 122 are buried in the eliminator 119. That is, in the modification shown in FIG. 9A, the vertical frame 122 is completely buried in the eliminator 119. Also by this, the same effect as FIG. 8A can be show | played. Further, the contact area between the eliminator 119 and the vertical frame 122 is larger than that of the modification shown in FIG. 8A. Therefore, more water droplets 131 and 132 collected by the eliminator 119 can be attached to the horizontal frame 121 or the vertical frame 122, and can be guided to the water storage unit 104. Therefore, the water droplets 131 and 132 collected by the eliminator 119 can be dropped to the water storage unit 104 more efficiently, and the eliminator 119 is further suppressed from being wetted by the collected water droplets 131 and 132 excessively. be able to.
 また、図9Aにて示す変形例では、縦とい122がエリミネータ119内に埋没されることにより、その縦とい122によってエリミネータ119が固定されるので、エリミネータ119を外れにくくすることができる。なお、縦とい122が風路115~117においてエリミネータ119内の下流側で埋没されるように、エリミネータ119が配設されるのが好ましい。これにより、エリミネータ119により捕集されたより多くの水滴131、132を風圧により縦とい122まで到達させることができるので、その水滴131、132をより効率よく貯水部104へと落下させることができる。 Further, in the modification shown in FIG. 9A, since the vertical shear 122 is buried in the eliminator 119, the eliminator 119 is fixed by the vertical shear 122, so that the eliminator 119 can be made difficult to come off. It is preferable that the eliminator 119 is disposed so that the vertical frame 122 is buried downstream of the eliminator 119 in the air passages 115 to 117. As a result, more water droplets 131 and 132 collected by the eliminator 119 can reach the vertical frame 122 by wind pressure, so that the water droplets 131 and 132 can be dropped to the water storage unit 104 more efficiently.
 図9Bは、エリミネータ119の配設位置の更に別の変形例を模式的に示した模式図である。図9Bに示す変形例では、エリミネータ119が縦とい122とは接触していないものの、横とい121の底121aの下側及び側壁121bの外側(衝突壁112と反対側、揚水管111側)がエリミネータ119の上端により埋没されるように、エリミネータ119が配設される。この変形例では、縦とい122により、エリミネータ119により捕集された水滴132がエリミネータ119の下流側側面(外周面)から飛散することを抑制したり、エリミネータ119にて捕集された水滴132を効率よく貯水部104へと落下させたりすることはできない。しかし、横とい121の底121aの下側及び側壁121bの外側がエリミネータ119の上端により埋没することによる作用効果を、図8Aに示す変形例と同様に奏することができる。 FIG. 9B is a schematic diagram schematically showing still another modified example of the arrangement position of the eliminator 119. In the modification shown in FIG. 9B, although the eliminator 119 is not in contact with the vertical frame 122, the lower side of the bottom 121a of the horizontal frame 121 and the outside of the side wall 121b (the side opposite to the collision wall 112, the pumping pipe 111 side). The eliminator 119 is disposed so as to be buried by the upper end of the eliminator 119. In this modification, the vertical frame 122 prevents the water droplets 132 collected by the eliminator 119 from scattering from the downstream side surface (outer peripheral surface) of the eliminator 119, or the water droplets 132 collected by the eliminator 119 are removed. It cannot be efficiently dropped into the water storage unit 104. However, the effect obtained by burying the lower side of the bottom 121a of the side wall 121 and the outer side of the side wall 121b by the upper end of the eliminator 119 can be obtained in the same manner as the modification shown in FIG. 8A.
 図10は、本開示の実施の形態1に係る液体微細化装置150を備えた熱交換気装置160の概略斜視図である。熱交換気装置160は、建物の室内に設けられた室内吸込口161及び給気口164と、建物の屋外に設けられた排気口162及び外気吸込口163と、本体内に設けられた熱交換素子165とを備えている。 FIG. 10 is a schematic perspective view of the heat exchange air device 160 including the liquid micronizer 150 according to Embodiment 1 of the present disclosure. The heat exchange air device 160 includes an indoor intake port 161 and an air supply port 164 provided in a building interior, an exhaust port 162 and an outside air intake port 163 provided outside the building, and heat exchange provided in the main body. And an element 165.
 室内吸込口161は、室内の空気を吸い込み、その吸い込まれた空気が排気口162より屋外へ排気される。また、外気吸込口163は、屋外の外気を吸い込み、その吸い込まれた外気が給気口164より室内へ給気される。このとき、室内吸込口161から排気口162へ送られる空気と、外気吸込口163から給気口164へ送られる外気との間で、熱交換素子165により熱交換が行われる。 The indoor suction port 161 sucks indoor air, and the sucked air is exhausted from the exhaust port 162 to the outside. The outside air inlet 163 sucks outdoor outside air, and the sucked outside air is supplied into the room through the air inlet 164. At this time, heat exchange is performed by the heat exchange element 165 between the air sent from the indoor suction port 161 to the exhaust port 162 and the outside air sent from the outside air suction port 163 to the air supply port 164.
 熱交換気装置の機能の一つとして、加湿目的の水気化装置、及び殺菌あるいは消臭目的での次亜塩素酸気化装置といった液体を気化させる装置が組み込まれたものがある。熱交換気装置160には、この液体を気化させる装置として、液体微細化装置150が組み込まれている。具体的には、熱交換気装置160の給気口164側に、液体微細化装置150が設けられている。なお、液体微細化装置150への水の供給及び排水は、給排水配管151によって行われる。 As one of the functions of the heat exchange air device, there is a device incorporating a device for vaporizing a liquid such as a water vaporizer for humidification and a hypochlorous acid vaporizer for sterilization or deodorization. In the heat exchange device 160, a liquid refining device 150 is incorporated as a device for vaporizing the liquid. Specifically, the liquid refinement device 150 is provided on the air supply port 164 side of the heat exchange air device 160. Note that water supply and drainage to the liquid micronizer 150 are performed by a water supply / drainage pipe 151.
 液体微細化装置150を備えた熱交換気装置160は、熱交換素子165による熱交換が行われた外気に対して、液体微細化装置150により微細化された水又は次亜塩素酸を含め、給気口164より室内へ供給する。これらの液体を気化させるための機構として液体微細化装置150を用いることで、より小型でエネルギー効率のよい熱交換気装置160を得ることができる。 The heat exchange air device 160 provided with the liquid refinement device 150 includes water or hypochlorous acid refined by the liquid refinement device 150 with respect to the outside air subjected to heat exchange by the heat exchange element 165. The air is supplied into the room through the air supply port 164. By using the liquid micronizer 150 as a mechanism for vaporizing these liquids, it is possible to obtain a heat exchange device 160 that is smaller and more energy efficient.
 この液体微細化装置150は、熱交換気装置160に代えて、空気清浄機あるいは空気調和機に備えられてもよい。空気清浄機あるいは空気調和機における機能の一つとして、加湿目的の水気化装置、及び殺菌あるいは消臭目的での次亜塩素酸気化装置といった液体を気化させる装置が組み込まれたものがある。この装置として、液体微細化装置150を用いることで、より小型でエネルギー効率のよい空気清浄機又は空気調和機を得ることができる。 This liquid refinement device 150 may be provided in an air purifier or an air conditioner instead of the heat exchange air device 160. One of the functions of an air purifier or an air conditioner is one that incorporates a device for vaporizing a liquid such as a water vaporizer for humidification and a hypochlorous acid vaporizer for sterilization or deodorization. By using the liquid micronizer 150 as this device, a more compact and energy efficient air purifier or air conditioner can be obtained.
 以上、実施の形態1に基づき本開示を説明したが、本開示は上記実施の形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記実施の形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。 As mentioned above, although this indication was demonstrated based on Embodiment 1, this indication is not limited to the said embodiment at all, and various improvement deformation | transformation are possible within the range which does not deviate from the meaning of this indication. Can be easily guessed. For example, the numerical values given in the above embodiment are merely examples, and other numerical values can naturally be adopted.
 (実施の形態2)
 従来、水を微細化し、吸い込んだ空気にその微細化した水滴を含ませて吹き出す液体微細化装置がある。例えば、特許文献2に記載の液体微細化装置は、空気を吸い込む吸込口とその吸い込んだ空気を吹き出す吹出口との間の風路内に、水を微細化する液体微細化室が設けられている。この液体微細化室は、回転モータの回転軸に固定された揚水管を備えており、揚水管が回転モータによって回転されることで、貯水部に貯水された水が揚水管により揚水され、揚水された水が遠心方向に放射される。この放射された水が衝突壁に衝突することで、水が微細化される。
(Embodiment 2)
2. Description of the Related Art Conventionally, there is a liquid refining device that refines water and blows out the air that has been sucked in by containing the refined water drops. For example, in the liquid micronization device described in Patent Document 2, a liquid micronization chamber for micronizing water is provided in an air passage between a suction port that sucks air and a blower port that blows out the sucked air. Yes. This liquid micronization chamber is provided with a pumping pipe fixed to the rotary shaft of the rotary motor. When the pumping pipe is rotated by the rotary motor, the water stored in the water storage section is pumped by the pumping pipe, Water is emitted in the centrifugal direction. The radiated water collides with the collision wall, so that the water is refined.
 また、この種の液体微細化装置には、衝突壁の下方にエリミネータを備えたものがある。エリミネータは、液体微細化室にて空気に含められた微細化された水のうち水滴を捕集するものである。このエリミネータにより空気に含められた水滴が除去され、吹出口に水滴が付着することを抑制している。 Also, this type of liquid micronizer includes an eliminator below the collision wall. The eliminator collects water droplets out of the micronized water included in the air in the liquid micronization chamber. This eliminator removes water droplets included in the air, and suppresses water droplets from adhering to the air outlet.
 上記した液体微細化装置では、エリミネータにて捕集された水滴が、エリミネータを通過する空気の風圧により、エリミネータの下流側側面(外周面)から飛散する場合がある。エリミネータより飛散した水滴は、エリミネータの下流側風路の壁面に付着する。液体微細化装置の運転終了後に、この壁面に付着した水滴が乾燥されずに残っていると、装置内部に菌あるいはカビが生じやすくなるという問題点がある。 In the above-described liquid micronizer, water droplets collected by the eliminator may be scattered from the downstream side surface (outer peripheral surface) of the eliminator due to the wind pressure of the air passing through the eliminator. Water droplets scattered from the eliminator adhere to the wall surface of the downstream air passage of the eliminator. If water droplets adhering to the wall surface remain without being dried after the operation of the liquid micronizing device, there is a problem that bacteria or molds are likely to be generated inside the device.
 本開示は、上記問題を解決するためにもなされたものであり、運転終了後の内部乾燥時間を短縮でき、菌あるいはカビの発生を抑制できる液体微細化装置を提供することも目的とする。 The present disclosure has been made to solve the above-described problems, and an object of the present disclosure is to provide a liquid micronizer that can shorten the internal drying time after the operation is completed and can suppress the generation of bacteria or mold.
 この目的を達成するために、本開示の実施の形態2に係る液体微細化装置は、空気を吸い込む吸込口と、吸込口より吸い込まれた空気を吹き出す吹出口と、吸込口と吹出口との間の風路内に設けられ、水を微細化する液体微細化室と、を備える。液体微細化室は、回転モータにより回転され、鉛直方向に向けて配置された回転軸と、下方に揚水口を備えると共に、上方が回転軸に固定され、回転軸の回転に合わせて回転されることにより揚水口より揚水し、揚水した水を遠心方向に放出する筒状の揚水管と、揚水管により放出された水が衝突することにより、水を微細化する衝突壁と、揚水管の鉛直方向下方に設けられ、揚水口より揚水するための水を貯水する貯水部と、衝突壁の下方に設けられ、微細化された水のうち水滴を捕集するエリミネータと、を備え、エリミネータの下流側風路の壁面の一部を湾曲して形成されたガイド部と、を備えたものである。 In order to achieve this object, the liquid refinement device according to the second embodiment of the present disclosure includes a suction port that sucks air, a blow-out port that blows out air sucked from the suction port, and a suction port and a blow-out port. A liquid refining chamber that is provided in the air path between the two and that refins water. The liquid micronization chamber is rotated by a rotary motor and includes a rotary shaft arranged in the vertical direction and a pumping port below, and the upper portion is fixed to the rotary shaft and rotated in accordance with the rotation of the rotary shaft. The cylindrical pumping pipe that pumps the pumped water from the pumping port and releases the pumped water in the centrifugal direction, the collision wall that refines the water by colliding with the water released by the pumping pipe, and the vertical of the pumping pipe A water storage section that stores water for pumping from the pumping outlet, and an eliminator that is provided below the collision wall and collects water droplets from the refined water, and is downstream of the eliminator. And a guide part formed by curving a part of the wall surface of the side air passage.
 本開示の実施の形態2に係る液体微細化装置によれば、エリミネータの下流側風路の壁面に湾曲して形成されたガイド部が設けられているので、エリミネータより飛散し下流側風路の壁面に付着した水滴を、ガイド部より下方へ落下させ易くできる。よって、エリミネータから吹出された空気を、湾曲して形成されたガイド部の壁面に沿って流すことができるので、その壁面を乾燥させやすくできる。従って、運転終了後の内部乾燥時間を短縮でき、菌あるいはカビの発生を抑制できるという効果がある。 According to the liquid refinement device according to the second embodiment of the present disclosure, since the guide portion formed to be curved is provided on the wall surface of the downstream air passage of the eliminator, the guide portion is scattered from the eliminator and Water droplets adhering to the wall surface can be easily dropped downward from the guide portion. Therefore, since the air blown out from the eliminator can flow along the curved wall surface of the guide portion, the wall surface can be easily dried. Therefore, the internal drying time after the operation is completed can be shortened, and the generation of bacteria or mold can be suppressed.
 また、液体微細化装置は、更にエリミネータの上方に設けられ、衝突壁から液体微細化室内方向に突出しエリミネータの上方を覆う突出部を備えてもよい。 The liquid micronizer may further include a protrusion provided above the eliminator and protruding from the collision wall toward the liquid micronization chamber and covering the top of the eliminator.
 これにより、衝突壁の内側を通った空気は、突出部によって一旦液体微細化室の内方向に曲げられた後、突出部の先端でエリミネータの下流側に向けて流れるように曲げられ、エリミネータを通った後、下流側風路を流れる。このように、空気の流れが大回りに形成されるので、その空気の圧力損失を低減でき、その結果、均一な風速でエリミネータ全体に空気を流すことができる。 As a result, the air that has passed through the inside of the collision wall is once bent by the protrusion inward of the liquid micronization chamber, and then bent so that it flows toward the downstream side of the eliminator at the tip of the protrusion. After passing, it flows through the downstream airway. In this way, since the air flow is formed around, the pressure loss of the air can be reduced, and as a result, the air can flow through the eliminator at a uniform wind speed.
 また、ガイド部の上端がエリミネータの上端よりも高い位置に設けられてもよい。 Further, the upper end of the guide part may be provided at a position higher than the upper end of the eliminator.
 また、ガイド部の上端がエリミネータの上端と略同一の高さとなるように設けられてもよい。 Further, the upper end of the guide portion may be provided so as to be substantially the same height as the upper end of the eliminator.
 また、液体微細化装置は、更にエリミネータの下端と接し、貯水部に向けて傾斜した底部を備え、突出部と底部とが略平行となるように設けられてもよい。 Further, the liquid micronizer may further include a bottom portion that is in contact with the lower end of the eliminator and is inclined toward the water storage portion, and the protruding portion and the bottom portion may be provided substantially in parallel.
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。従って、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings. Note that each of the embodiments described below shows a preferred specific example of the present disclosure. Accordingly, numerical values, shapes, materials, components, arrangement positions of components, connection forms, and the like shown in the following embodiments are merely examples and do not limit the present disclosure. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as arbitrary constituent elements.
 まず、図11及び図12を参照して、本開示の実施の形態2に係る液体微細化装置250の概略構成について説明する。図11は、その液体微細化装置250の鉛直方向の概略断面図である。図12は、液体微細化装置250を直交する二面で鉛直方向に切断した斜視断面図である。 First, with reference to FIG. 11 and FIG. 12, a schematic configuration of the liquid micronization apparatus 250 according to the second embodiment of the present disclosure will be described. FIG. 11 is a schematic cross-sectional view of the liquid micronizer 250 in the vertical direction. FIG. 12 is a perspective cross-sectional view of the liquid micronizer 250 cut in the vertical direction along two orthogonal surfaces.
 液体微細化装置250は、本体ケース201に、空気を吸い込む吸込口202と、その吸込口202より吸い込まれた空気を吹き出す吹出口203と、を備える。また、液体微細化装置250は、本体ケース201内において吸込口202と吹出口203との間で風路215~217を形成している。また、本体ケース201内には、その風路215~217内に設けられた液体微細化室205を備えており、吸込口202と液体微細化室205と吹出口203とは連通している。 The liquid micronizer 250 includes a main body case 201 provided with a suction port 202 that sucks air and a blower port 203 that blows out air sucked from the suction port 202. Further, the liquid micronizer 250 forms air passages 215 to 217 in the main body case 201 between the suction port 202 and the air outlet 203. Further, the main body case 201 is provided with a liquid micronization chamber 205 provided in the air passages 215 to 217, and the suction port 202, the liquid micronization chamber 205, and the air outlet 203 communicate with each other.
 ここで、風路215は、吸込口202で取り込んだ空気を液体微細化室205へと送る風路である。風路216は、風路215により送られた空気を、液体微細化室205内を通して液体微細化室205外へと送る風路である。風路217は、液体微細化室205外へと送られた空気を吹出口203へと送る風路である。 Here, the air passage 215 is an air passage that sends the air taken in through the suction port 202 to the liquid micronization chamber 205. The air passage 216 is an air passage that sends the air sent by the air passage 215 to the outside of the liquid miniaturization chamber 205 through the liquid miniaturization chamber 205. The air path 217 is an air path that sends the air sent to the outside of the liquid micronization chamber 205 to the air outlet 203.
 液体微細化室205は、液体微細化装置250の主要部であり、水の微細化を行うところである。液体微細化装置250では、吸込口202で取り込んだ空気が、風路215を経由して液体微細化室205へ送られる。そして、液体微細化装置250は、風路216を通る空気に、液体微細化室205にて微細化された水を含ませて、その水を含んだ空気を、風路217を経由して吹出口203より吹き出すように構成されている。 The liquid atomization chamber 205 is a main part of the liquid atomization apparatus 250 and is where water is atomized. In the liquid atomization apparatus 250, the air taken in through the suction port 202 is sent to the liquid atomization chamber 205 via the air path 215. Then, the liquid micronizer 250 includes water refined in the liquid micronization chamber 205 in the air passing through the air passage 216, and blows the air containing the water via the air passage 217. It is configured to blow out from the outlet 203.
 液体微細化室205は、上方及び下方が開口された円筒上の内筒206を備えており、内筒206の内壁に衝突壁212を備えている。なお、内筒206は、内筒206の側面外側(内筒206の外周)において内筒206と本体ケース201との間に空間224が設けられるように、本体ケース201に固定される。液体微細化室205により微細化された水を含んだ空気は、風路216により液体微細化室205から空間224へと吹き出され、その空間224を通って風路217により吹出口203へ送られる。 The liquid micronization chamber 205 includes an inner cylinder 206 on a cylinder whose upper and lower sides are opened, and an impact wall 212 is provided on the inner wall of the inner cylinder 206. The inner cylinder 206 is fixed to the main body case 201 so that a space 224 is provided between the inner cylinder 206 and the main body case 201 on the outer side surface of the inner cylinder 206 (the outer periphery of the inner cylinder 206). Air containing water refined by the liquid atomization chamber 205 is blown out from the liquid atomization chamber 205 to the space 224 through the air passage 216, and is sent to the outlet 203 through the air passage 217 through the space 224. .
 液体微細化室205には、衝突壁212に囲まれた内側において、回転しながら水を汲み上げる(揚水する)筒状の揚水管211が備えられている。揚水管211は、逆円錐形の中空構造となっており、下方に揚水口を備えると共に、上方において逆円錐形状の天面中心に、鉛直方向に向けて配置された回転軸210が固定されている。回転軸210が液体微細化室205の外面に備えられた回転モータ209と接続されることで、回転モータ209の回転運動が回転軸210を通じて揚水管211に伝導され、揚水管211が回転する。 The liquid miniaturization chamber 205 is provided with a cylindrical pumping pipe 211 that pumps (pumps) water while rotating inside the collision wall 212. The pumping pipe 211 has an inverted conical hollow structure, and has a pumping port on the lower side, and a rotating shaft 210 arranged in the vertical direction is fixed to the center of the upper surface of the inverted conical shape on the upper side. Yes. By connecting the rotary shaft 210 to the rotary motor 209 provided on the outer surface of the liquid micronization chamber 205, the rotary motion of the rotary motor 209 is transmitted to the pumped pipe 211 through the rotary shaft 210, and the pumped pipe 211 rotates.
 揚水管211は、回転板214を複数備えている。複数の回転板214は、回転軸210の軸方向に所定間隔を設けて、揚水管211の外面から外側に突出するように形成されている。回転板214は揚水管211と共に回転するため、回転軸210と同軸の水平な円板形状が好ましい。なお、回転板214の枚数は、目標とする性能あるいは揚水管211の寸法に合わせて適宜設定されるものである。 The pumping pipe 211 includes a plurality of rotating plates 214. The plurality of rotary plates 214 are formed so as to protrude outward from the outer surface of the pumped pipe 211 with a predetermined interval in the axial direction of the rotary shaft 210. Since the rotating plate 214 rotates together with the pumping pipe 211, a horizontal disk shape coaxial with the rotating shaft 210 is preferable. The number of the rotating plates 214 is appropriately set according to the target performance or the dimensions of the pumping pipe 211.
 また、揚水管211の壁面には、揚水管211の壁面を貫通する開口213が設けられている。揚水管211の開口213は、揚水管211の外面から外側に突出するように形成された回転板214と連通する位置に設けられている。開口213の周方向の大きさは、揚水管211の開口213が備えられた部位の外径に合わせてそれぞれ設計する必要がある。例えば、揚水管211の外径の5%から50%に相当する径、より好ましくは、揚水管211の5%から20%に相当する径である。なお、上記範囲内において、各開口213の寸法を同一のものとしてもよい。 Also, an opening 213 that penetrates the wall surface of the pumping pipe 211 is provided on the wall surface of the pumping pipe 211. The opening 213 of the pumping pipe 211 is provided at a position communicating with the rotating plate 214 formed so as to protrude outward from the outer surface of the pumping pipe 211. The size of the opening 213 in the circumferential direction needs to be designed according to the outer diameter of the portion of the pumped pipe 211 where the opening 213 is provided. For example, the diameter corresponding to 5% to 50% of the outer diameter of the pumping pipe 211, more preferably the diameter corresponding to 5% to 20% of the pumping pipe 211. Within the above range, the dimensions of the openings 213 may be the same.
 液体微細化室205の下部には、揚水管211の鉛直方向下方に、揚水管211により揚水される水を貯水する貯水部204が設けられている。貯水部204は、揚水管211の下部の一部、例えば揚水管211の円錐高さの三分の一から百分の一程度の長さが浸るように、深さがとられている。この深さは必要な揚水量に合わせて設計できる。 In the lower part of the liquid refinement chamber 205, a water storage unit 204 for storing water pumped by the pumping pipe 211 is provided below the pumping pipe 211 in the vertical direction. The water storage unit 204 has a depth so that a part of the lower part of the pumping pipe 211, for example, about one third to one hundredth of the conical height of the pumping pipe 211 is immersed. This depth can be designed according to the required pumping capacity.
 貯水部204への水の供給は、給水部207により行われる。給水部207には、給水管(図示せず)が接続されており、例えば水道から水圧調整弁を通じて、給水管により直接給水する。なお、給水部207は、あらかじめ液体微細化室205外に備えられた水タンクからサイフォンの原理で必要な水量のみ汲みあげて、貯水部204へ水を供給するように構成されてもよい。この給水部207は、貯水部204の底面よりも鉛直方向上方に設けられている。なお、給水部207は、貯水部204の底面の上方であるだけでなく、貯水部204の上面(貯水部204に貯水され得る最大水位の面)よりも鉛直方向上方に設けられるのが好ましい。 Water supply to the water storage unit 204 is performed by the water supply unit 207. A water supply pipe (not shown) is connected to the water supply unit 207, and water is supplied directly from the water supply pipe through a water pressure adjustment valve, for example. Note that the water supply unit 207 may be configured to pump up only the amount of water necessary in advance from the water tank provided outside the liquid micronization chamber 205 according to the principle of siphon and supply water to the water storage unit 204. The water supply unit 207 is provided above the bottom surface of the water storage unit 204 in the vertical direction. In addition, it is preferable that the water supply unit 207 is provided not only above the bottom surface of the water storage unit 204 but also vertically above the upper surface of the water storage unit 204 (the surface of the maximum water level that can be stored in the water storage unit 204).
 液体微細化室205には、貯水部204の水位を検知する水位検知部208が設けられている。水位検知部208は、フロートスイッチ220を有している。フロートスイッチ220は、貯水部204が一定の水位に達していない場合はオフし、貯水部204が一定の水位に達した場合にオンする。この一定の水位は、揚水管211の下部が貯水部204に貯水された水に浸る程度の水位に設定されている。フロートスイッチ220がオフの場合は、給水部207より貯水部204へ水を供給し、フロートスイッチ220がオンの場合に、給水部207からの貯水部204への水の供給を停止することで、貯水部204の水を一定の水位に保たせることができる。この水位検知部208は、貯水部204の底面よりも鉛直方向上方に設けられている。 In the liquid refinement chamber 205, a water level detection unit 208 that detects the water level of the water storage unit 204 is provided. The water level detection unit 208 has a float switch 220. The float switch 220 is turned off when the water storage unit 204 has not reached a certain water level, and is turned on when the water storage unit 204 has reached a certain water level. This constant water level is set to such a level that the lower part of the pumping pipe 211 is immersed in the water stored in the water storage unit 204. When the float switch 220 is off, water is supplied from the water supply unit 207 to the water storage unit 204, and when the float switch 220 is on, the supply of water from the water supply unit 207 to the water storage unit 204 is stopped. The water in the water storage unit 204 can be kept at a constant water level. The water level detection unit 208 is provided above the bottom surface of the water storage unit 204 in the vertical direction.
 貯水部204の底面には、排水管218が接続されている。排水管218が接続される位置に設けられた貯水部204の排水口は、貯水部204の最も低い位置に設けられている。水の微細化の運転を停止させた場合に、排水管218に設けられた弁(図示せず)を開けることで、貯水部204に貯水された水が、排水管218から排水される。 A drain pipe 218 is connected to the bottom surface of the water storage unit 204. The drain port of the water storage unit 204 provided at the position to which the drain pipe 218 is connected is provided at the lowest position of the water storage unit 204. When the operation of water refinement is stopped, the water stored in the water storage unit 204 is drained from the drain pipe 218 by opening a valve (not shown) provided in the drain pipe 218.
 液体微細化室205は、衝突壁212の下方にエリミネータ219を備えている。具体的には、風路216の途中であって、液体微細化室205から内筒206の外周に形成された空間224へとつながる衝突壁212の下方に設けられた開口部(図示せず)を覆うように、エリミネータ219が設けられている。エリミネータ219は、液体微細化室205にて微細化された水を含んだ空気が通過し、その空気に含まれる水のうち水滴を捕集する。なお、以下では、風路215~217の風の進行方向における上流側を単に「上流側」、風路215~217の風の進行方向における下流側を単に「下流側」と称する場合がある。 The liquid miniaturization chamber 205 includes an eliminator 219 below the collision wall 212. Specifically, in the middle of the air passage 216, an opening (not shown) provided below the collision wall 212 that leads from the liquid micronization chamber 205 to the space 224 formed on the outer periphery of the inner cylinder 206. An eliminator 219 is provided so as to cover. The eliminator 219 passes through air containing water refined in the liquid refinement chamber 205 and collects water droplets in the water contained in the air. In the following description, the upstream side of the wind passages 215 to 217 in the wind traveling direction may be simply referred to as “upstream side”, and the downstream side of the wind passages 215 to 217 in the wind traveling direction may be simply referred to as “downstream side”.
 エリミネータ219の上方には、衝突壁212から液体微細化室205の内方向に突出し、エリミネータ219の上方を覆う突出部221が設けられている。突出部221は、液体微細化室205の内方向に向かって下方に傾斜している。 Above the eliminator 219, a projecting portion 221 that projects inward from the collision wall 212 into the liquid micronization chamber 205 and covers the eliminator 219 is provided. The protruding portion 221 is inclined downward toward the inner direction of the liquid micronization chamber 205.
 また、本体ケース201には、エリミネータ219の下流側において、本体ケース201の内壁に設けられる風路216の壁面216a(以下「本体ケース側壁面216a」と称す)の一部を湾曲して形成されたガイド部222が設けられている。ここで、図13Aに示す通り、ガイド部222の上端222aはエリミネータ219の上端219aよりも高い位置に設けられている。 In addition, the main body case 201 is formed by curving a part of a wall surface 216 a (hereinafter referred to as “main body case side wall surface 216 a”) of the air passage 216 provided on the inner wall of the main body case 201 on the downstream side of the eliminator 219. A guide portion 222 is provided. Here, as shown in FIG. 13A, the upper end 222 a of the guide portion 222 is provided at a position higher than the upper end 219 a of the eliminator 219.
 また、図11に示す通り、ガイド部222の下端に接し、貯水部204に向けて下方に傾斜した底部223が設けられている。突出部221と底部223とは、略平行となるように設けられている。突出部221と底部223とが略平行となるように設けられることで、エリミネータ219内の空気の流れを略均一にすることができる。なお、突出部221と底部223とは、完全な平行でなくてもよく、エリミネータ219内の空気の流れが均一であると言える程度の範囲で平行性を保っていればよい。 Further, as shown in FIG. 11, a bottom portion 223 that is in contact with the lower end of the guide portion 222 and is inclined downward toward the water storage portion 204 is provided. The protruding portion 221 and the bottom portion 223 are provided so as to be substantially parallel. By providing the protruding portion 221 and the bottom portion 223 so as to be substantially parallel to each other, the air flow in the eliminator 219 can be made substantially uniform. In addition, the protrusion part 221 and the bottom part 223 do not need to be completely parallel, and should just maintain parallelism in the range which can be said that the flow of the air in the eliminator 219 is uniform.
 ここで、液体微細化装置250における水の微細化の動作原理を説明する。回転モータ209により回転軸210が回転し、それに合わせて揚水管211が回転すると、その回転によって生じる遠心力により、貯水部204に貯水された水が揚水管211の揚水口から汲み上げられる。揚水管211の回転数は、1000-5000rpmの間に設定される。揚水管211は、逆円錐形の中空構造となっているため、回転によって汲み上げられた水は、揚水管211の内壁を伝って上部へ揚水される。そして、揚水された水は、揚水管211の開口213から回転板214を伝って遠心方向に放出され、水滴として飛散する。 Here, the operation principle of water refinement in the liquid refiner 250 will be described. When the rotating shaft 210 is rotated by the rotation motor 209 and the pumping pipe 211 is rotated accordingly, the water stored in the water storage unit 204 is pumped from the pumping port of the pumping pipe 211 by the centrifugal force generated by the rotation. The rotation speed of the pumping pipe 211 is set between 1000 and 5000 rpm. Since the pumping pipe 211 has an inverted conical hollow structure, the water pumped up by the rotation is pumped up through the inner wall of the pumping pipe 211. Then, the pumped water is discharged from the opening 213 of the pumping pipe 211 through the rotating plate 214 in the centrifugal direction and scattered as water droplets.
 回転板214から飛散した水滴は、衝突壁212に囲まれた空間を飛翔し、衝突壁212に衝突して微細化される。一方、液体微細化室205を通過する空気は、内筒206の上方開口部から内筒206内部へ移動する。そして、その空気は、衝突壁212によって破砕(微細化)された水を含みながら、風路216により、エリミネータ219を経由して、衝突壁212の下方に設けられた開口部(図示せず)から内筒206外部の空間224へ移動する。空間224へ移動した空気は、風路217により吹出口203から吹出される。これにより、液体微細化装置250の吸込口202より吸い込まれた空気に対して加湿を行い、吹出口203より加湿された空気を吹き出すことができる。 The water droplets scattered from the rotating plate 214 fly in the space surrounded by the collision wall 212 and collide with the collision wall 212 to be refined. On the other hand, the air passing through the liquid micronization chamber 205 moves from the upper opening of the inner cylinder 206 into the inner cylinder 206. Then, the air includes water crushed (miniaturized) by the collision wall 212, and an opening (not shown) provided below the collision wall 212 by the air passage 216 via the eliminator 219. To the space 224 outside the inner cylinder 206. The air that has moved to the space 224 is blown out from the outlet 203 through the air passage 217. Thereby, the air sucked from the suction port 202 of the liquid micronizer 250 can be humidified, and the humidified air can be blown out from the blower outlet 203.
 また、揚水管211の回転量によって、揚水管211により汲み上げられる水の量を変化させ、揚水管211の回転板214から飛散する水滴の量を変化させることで、衝突壁212によって微細化される水の量を変化させることができる。よって、揚水管211の回転量により、液体微細化装置250の吸込口202より吸い込まれた空気に含ませる水の量を変化させることができる。即ち、液体微細化装置250は、揚水管211の回転量によって、加湿量を制御することができる。 Further, the amount of water pumped up by the pumping pipe 211 is changed according to the rotation amount of the pumping pipe 211, and the amount of water droplets scattered from the rotating plate 214 of the pumping pipe 211 is changed, so that it is refined by the collision wall 212. The amount of water can be changed. Therefore, the amount of water to be included in the air sucked from the suction port 202 of the liquid micronizer 250 can be changed by the rotation amount of the pumping pipe 211. That is, the liquid micronizer 250 can control the humidification amount according to the rotation amount of the pumping pipe 211.
 また、エリミネータ219により、液体微細化室205にて微細化され空気に含められた水のうち水滴が捕集されるので、液体微細化装置250は、吹出口203から吹き出される空気に気化された水のみを含めることができる。これにより、液体微細化装置250は、吹出口203に水滴が付着することを抑制できる。 Further, since the eliminator 219 collects water droplets of the water that is refined in the liquid refinement chamber 205 and included in the air, the liquid refiner 250 is vaporized into the air blown from the outlet 203. Only water can be included. Thereby, the liquid refinement | miniaturization apparatus 250 can suppress that a water droplet adheres to the blower outlet 203. FIG.
 なお、回転板214から飛散した水の運動エネルギーは衝突壁212内部の空気との摩擦により減衰するため、回転板214はなるべく衝突壁212に近づけたほうが好ましい。一方で、衝突壁212と回転板214を近づけるほど、衝突壁212内部を通過する風量が減少するため、距離の下限値は衝突壁212内部を通過する圧力損失と風量とで、任意に決まる。 In addition, since the kinetic energy of the water scattered from the rotating plate 214 is attenuated by friction with the air inside the collision wall 212, the rotating plate 214 is preferably as close to the collision wall 212 as possible. On the other hand, the closer the collision wall 212 and the rotating plate 214 are, the smaller the amount of air passing through the inside of the collision wall 212 is.
 また、微細化される液体は水以外でもよく、例えば、殺菌性あるいは消臭性を備えた次亜塩素酸水等の液体であってもよい。微細化された次亜塩素酸水を液体微細化装置250の吸込口202より吸い込まれた空気に含ませ、その空気を吹出口203より吹き出すことで、液体微細化装置250が置かれた空間の殺菌あるいは消臭を行うことができる。 Further, the liquid to be refined may be other than water, for example, a liquid such as hypochlorous acid water having bactericidal or deodorizing properties. The refined hypochlorous acid water is included in the air sucked from the suction port 202 of the liquid refinement device 250, and the air is blown out from the blowout port 203, so that the space in which the liquid refinement device 250 is placed is placed. Sterilization or deodorization can be performed.
 次いで、図13A~13Cを参照して、エリミネータ219の上方に突出部221を設け、且つ、エリミネータ219の下流側にガイド部222を設けた作用効果について説明する。 Next, with reference to FIGS. 13A to 13C, description will be given of the operational effect of providing the protruding portion 221 above the eliminator 219 and providing the guide portion 222 on the downstream side of the eliminator 219. FIG.
 図13Aは、突出部221及びガイド部222が設けられた場合の風路216における風の流れとエリミネータ219の下流側側面から飛散した水滴230の流れとを模式的に示した模式図である。図13Bは、突出部221及びガイド部222のいずれも設けられていない場合の風路216における風の流れとエリミネータ219の下流側側面から飛散した水滴230の流れとを模式的に示した模式図である。図13Cは、ガイド部222が設けられ、突出部221が設けられていない場合の風路216における風の流れとエリミネータ219の下流側側面から飛散した水滴230の流れとを模式的に示した模式図である。 FIG. 13A is a schematic diagram schematically showing the flow of wind in the air passage 216 and the flow of water droplets 230 scattered from the downstream side surface of the eliminator 219 when the protruding portion 221 and the guide portion 222 are provided. FIG. 13B is a schematic diagram schematically showing the flow of wind in the air passage 216 and the flow of water droplets 230 scattered from the downstream side surface of the eliminator 219 when neither the protruding portion 221 nor the guide portion 222 is provided. It is. FIG. 13C is a schematic diagram schematically showing the flow of wind in the air passage 216 and the flow of water droplets 230 scattered from the downstream side surface of the eliminator 219 when the guide portion 222 is provided and the protruding portion 221 is not provided. FIG.
 エリミネータ219にて捕集された水滴の多くは、その重みによってエリミネータ219内を落下し、底部223を通って貯水部204へと案内される。しかしながら、図13A~13Cに示す通り、エリミネータ219にて捕集された一部の水滴230は、エリミネータ219を通過する空気の風圧によりエリミネータ219の下流側側面(外周面)から飛散する。このエリミネータ219より飛散した水滴230は、エリミネータ219の下流側において、そのエリミネータ219より外周側(エリミネータ219から見て、そのエリミネータ219から吹き出される風路216の吹き出し方向)に設けられた本体ケース201の内壁に形成された風路216の本体ケース側壁面216aに付着する。 Most of the water droplets collected by the eliminator 219 fall inside the eliminator 219 due to its weight, and are guided to the water storage unit 204 through the bottom 223. However, as shown in FIGS. 13A to 13C, some of the water droplets 230 collected by the eliminator 219 are scattered from the downstream side surface (outer peripheral surface) of the eliminator 219 by the wind pressure of the air passing through the eliminator 219. The water drops 230 scattered from the eliminator 219 are provided on the downstream side of the eliminator 219 and on the outer peripheral side of the eliminator 219 (when viewed from the eliminator 219, the main body case is provided in the blowing direction of the air passage 216 blown out from the eliminator 219). It adheres to the body case side wall surface 216a of the air passage 216 formed on the inner wall of 201.
 液体微細化装置250にガイド部222が設けられておらず、例えば図13Bに示すような場合、風路216の本体ケース側壁面216aに付着した水滴230は以下のようになる。即ち、風路216の本体ケース側壁面216aが鉛直方向に真っすぐ延び、その本体ケース側壁面216aと底部223とで角が形成される場合、この角に、風路216の本体ケース側壁面216aに付着した水滴230は溜まりやすくなる。 In the case where the liquid micronizer 250 is not provided with the guide portion 222 and, for example, as shown in FIG. 13B, the water droplet 230 attached to the body case side wall surface 216a of the air passage 216 is as follows. That is, when the main body case side wall surface 216a of the air passage 216 extends straight in the vertical direction and a corner is formed by the main body case side wall surface 216a and the bottom portion 223, the main body case side wall surface 216a of the air passage 216 is formed at this corner. The attached water droplet 230 tends to accumulate.
 また、空気の流れは最短経路を通るように形成される。そのため、液体微細化装置250に突出部221が設けられていない場合には、図13Bに示す通り、液体微細化室205により微細化された液体を含んだ空気が衝突壁212の下端近傍を通って空間224へと流れるように、風路216の主流が形成される。 Also, the air flow is formed so as to pass through the shortest path. Therefore, when the protrusion 221 is not provided in the liquid micronizer 250, the air containing the liquid refined by the liquid micronizer chamber 205 passes near the lower end of the collision wall 212 as shown in FIG. 13B. Thus, the main flow of the air passage 216 is formed so as to flow into the space 224.
 このように、液体微細化装置250にガイド部222も突出部221も設けられていない場合、衝突壁212の下端近傍から離れたところにある、風路216の本体ケース側壁面216aに付着した水滴230あるいは本体ケース側壁面216aと底部223とで形成された角に溜まった水滴230は、風路216の主流と触れにくい。 As described above, when neither the guide part 222 nor the protrusion 221 is provided in the liquid micronizer 250, water droplets attached to the main body case side wall surface 216 a of the air passage 216 that is located away from the vicinity of the lower end of the collision wall 212. 230 or the water droplet 230 collected at the corner formed by the body case side wall surface 216a and the bottom portion 223 is difficult to come into contact with the main stream of the air passage 216.
 また、この場合、風路216において、衝突壁212の内側を鉛直下方向に向けて流れる空気は、衝突壁212の下端近傍でその気流方向が反転され、衝突壁212の外側に形成された空間224を鉛直上方向に向けて流れる。即ち、風路216では、衝突壁212の下端近傍という狭小な領域で気流方向が反転しており、十分広い領域で気流方向の反転がなされていないため、大きな圧力損失が生じる。その圧力損失に伴って、風路216の主流から外れた空気が、風路216の本体ケース側壁面216aあるいは本体ケース側壁面216aと底部223とで形成された角の付近に滞留する。 Further, in this case, in the air passage 216, the air flowing in the vertically downward direction inside the collision wall 212 is reversed in the direction of the air flow near the lower end of the collision wall 212, and is a space formed outside the collision wall 212. 224 flows vertically upward. That is, in the air passage 216, the airflow direction is reversed in a narrow region near the lower end of the collision wall 212, and the airflow direction is not reversed in a sufficiently wide region, so that a large pressure loss occurs. Along with the pressure loss, the air deviated from the main flow of the air passage 216 stays in the vicinity of the main body case side wall surface 216 a of the air passage 216 or the corner formed by the main body case side wall surface 216 a and the bottom 223.
 よって、液体微細化装置250の運転終了後も、これらの水滴230が乾燥されずに液体微細化装置250内部に残る可能性が高く、菌あるいはカビが生じやすくなる。 Therefore, even after the operation of the liquid micronizer 250, these water droplets 230 are likely to remain inside the liquid micronizer 250 without being dried, and bacteria or molds are likely to occur.
 一方、液体微細化装置250にガイド部222を設けた場合、図13A及び13Cに示す通り、エリミネータ219より飛散して風路216の本体ケース側壁面216aに付着した水滴230は、貯水部204へ案内されやすくなる。即ち、この水滴230は、ガイド部222に形成された本体ケース側壁面216aの湾曲により底部223へと流れ、底部223の傾斜によりそのまま貯水部204へ案内されやすくなる。つまり、ガイド部222の存在によって、本体ケース側壁面216aに水滴230が留まりにくくなる。ただし、本体ケース側壁面216aの表面張力により、本体ケース側壁面216aに付着した水滴230の一部は本体ケース側壁面216aに残り、本体ケース側壁面216aは濡れた状態のままとなる。 On the other hand, when the guide unit 222 is provided in the liquid micronizer 250, as shown in FIGS. 13A and 13C, the water droplets 230 scattered from the eliminator 219 and adhering to the body case side wall surface 216a of the air passage 216 are transferred to the water storage unit 204. It becomes easy to be guided. That is, the water droplet 230 flows to the bottom portion 223 due to the curvature of the main body case side wall surface 216 a formed on the guide portion 222, and is easily guided to the water storage portion 204 as it is due to the inclination of the bottom portion 223. That is, the presence of the guide portion 222 makes it difficult for the water droplet 230 to stay on the main body case side wall surface 216a. However, due to the surface tension of the main body case side wall surface 216a, a part of the water droplet 230 attached to the main body case side wall surface 216a remains on the main body case side wall surface 216a, and the main body case side wall surface 216a remains wet.
 ここで、液体微細化装置250にガイド部222が設けられ、液体微細化装置250に突出部221が設けられてない場合、風路216の主流は以下のように形成される。即ち、図13Cに示す通り、図13Bに示す場合と同様に、液体微細化室205により微細化された液体を含んだ空気が衝突壁212の下端近傍を通って空間224へと流れるように風路216の主流が形成される。つまり、この場合、ガイド部222において湾曲して形成された風路216の本体ケース側壁面216aのうち、衝突壁212の下端近傍から離れたところにある本体ケース側壁面216aに、風路216の主流が接触しにくい。よってこの場合も、液体微細化装置250の運転終了後、本体ケース側壁面216aに付着したままの水滴230が乾燥されにくく、菌あるいはカビが生じやすい。 Here, when the liquid refiner 250 is provided with the guide part 222 and the liquid refiner 250 is not provided with the protrusion 221, the main flow of the air passage 216 is formed as follows. That is, as shown in FIG. 13C, the air containing the liquid refined by the liquid refinement chamber 205 flows in the vicinity of the lower end of the collision wall 212 to the space 224 as shown in FIG. 13B. A main flow of the path 216 is formed. That is, in this case, out of the main body case side wall surface 216a of the air passage 216 formed to be curved in the guide portion 222, the main body case side wall surface 216a located away from the vicinity of the lower end of the collision wall 212 is connected to the air passage 216. The mainstream is difficult to touch. Therefore, in this case as well, after the operation of the liquid micronizer 250, the water droplets 230 that remain attached to the main body case side wall surface 216a are not easily dried, and bacteria or molds are likely to occur.
 これに対し、液体微細化装置250に突出部221を設けると、図13Aに示す通り、衝突壁212の内側を鉛直下方向に通った空気の流れが、突出部221によって一旦液体微細化室205の内方向に曲げられるように、風路216の主流が形成される。そして、突出部221の液体微細化室205の内方向先端(突出部221の先端)で、液体微細化室205の内方向に曲げられた空気の流れが再び曲げられ、エリミネータ219の下流側に向けて流れるように風路216の主流が形成される。そして、その空気は、エリミネータ219を通過した後、衝突壁212の外側に形成された空間224を上方に向けて流れるように風路216の主流が形成される。 On the other hand, when the protrusion 221 is provided in the liquid micronizer 250, as shown in FIG. 13A, the flow of air that has passed through the inside of the collision wall 212 vertically downward is once caused by the protrusion 221. The main flow of the air passage 216 is formed so as to be bent inward. Then, the air flow bent inward of the liquid micronization chamber 205 is bent again at the inner end of the liquid refinement chamber 205 (the tip of the protrusion 221) of the protrusion 221, and flows downstream of the eliminator 219. The main flow of the air path 216 is formed so that it may flow toward. Then, after the air passes through the eliminator 219, the main flow of the air passage 216 is formed so as to flow upward in the space 224 formed outside the collision wall 212.
 以上のように、液体微細化装置250に突出部221とガイド部222とを設けると、以下のような効果を奏する。即ち、ガイド部222の存在によって、エリミネータ219より飛散して風路216の本体ケース側壁面216aに付着した水滴230を本体ケース側壁面216aに留まりにくくすることができる。 As described above, when the projecting portion 221 and the guide portion 222 are provided in the liquid micronizer 250, the following effects are obtained. That is, the presence of the guide portion 222 can make it difficult for the water droplets 230 scattered from the eliminator 219 and adhering to the main body case side wall surface 216a of the air passage 216 to stay on the main body case side wall surface 216a.
 また、衝突壁212の内側を下方向に通った空気は、上述した通り、突出部221によって一旦液体微細化室205の内方向に曲げられた後、突出部221の先端でエリミネータ219の下流側に向けて流れるように曲げられる。そして、エリミネータ219を通った後、衝突壁212の外側に形成された空間224を上方に向けて流れる。 Further, as described above, the air that has passed through the inside of the collision wall 212 is once bent inward by the projecting portion 221 and then downstream of the eliminator 219 at the tip of the projecting portion 221. Bent to flow toward Then, after passing through the eliminator 219, the air flows upward in a space 224 formed outside the collision wall 212.
 このように、衝突壁212の内側を鉛直下方向に通った空気は、大回りに形成された風路216によって気流方向が反転され、衝突壁212の外側に形成された空間224を鉛直上方向に向けて流れる。これにより、風路216を流れる空気の圧力損失を低減できるので、エリミネータ219を通過する空気を、均一な風速でエリミネータ219全体に流すことができる。よって、エリミネータ219を通過した空気を、湾曲して形成されたガイド部222の風路216の本体ケース側壁面216aに沿って流すことができるので、液体微細化装置250の運転終了後、本体ケース側壁面216aを乾燥させやすくできる。従って、本実施の形態に係る液体微細化装置250は、運転終了後の内部乾燥時間を短縮でき、菌あるいはカビの発生を抑制できる。 As described above, the air passing through the inside of the collision wall 212 in the vertically downward direction is reversed in the air flow direction by the air passage 216 formed on the large circumference, and the space 224 formed on the outside of the collision wall 212 is vertically upward. It flows toward. Thereby, since the pressure loss of the air which flows through the air path 216 can be reduced, the air which passes the eliminator 219 can be made to flow through the eliminator 219 with uniform wind speed. Therefore, since the air that has passed through the eliminator 219 can flow along the main body case side wall surface 216a of the air passage 216 of the guide portion 222 formed in a curved shape, the main body case after the operation of the liquid micronizer 250 is completed. The side wall surface 216a can be easily dried. Therefore, the liquid micronizer 250 according to the present embodiment can shorten the internal drying time after the operation is completed, and can suppress the generation of bacteria or mold.
 また、突出部221の不存在によりエリミネータ219の一部領域に空気が集中して流れる場合と比して、エリミネータ219を流れる空気の風速を抑えることができる。従って、エリミネータ219の下流側側面から飛散する水滴230の量そのものを少なくできる。よって、本実施の形態に係る液体微細化装置250は、この面からも運転終了後の内部乾燥時間を短縮できる。また、水滴の捕集をエリミネータ219全体で行うことができるので、水滴の捕集効果を高めることができるという効果もある。 In addition, the wind speed of the air flowing through the eliminator 219 can be suppressed as compared with the case where the air concentrates and flows in a partial region of the eliminator 219 due to the absence of the protrusion 221. Therefore, the amount of water droplets 230 that scatter from the downstream side surface of the eliminator 219 can be reduced. Therefore, the liquid micronizing apparatus 250 according to the present embodiment can shorten the internal drying time after the operation is completed also from this aspect. Moreover, since water droplets can be collected by the eliminator 219 as a whole, there is an effect that the effect of collecting water droplets can be enhanced.
 また、エリミネータ219の上方に設けられた突出部221と、エリミネータ219の下方に設けられた底部223とが略平行に設けられているので、エリミネータ219内の空気の流れを略均一にすることができる。これにより、エリミネータ219より吹き出される空気を確実にガイド部222の風路216の本体ケース側壁面216aに接触させることができ、本体ケース側壁面216aを確実に乾燥させることができる。また、エリミネータ219内の空気の流れを略均一にすることで、エリミネータ219内部の特定位置で空気の速度が速くなることを抑制できる。これにより、エリミネータ219内部の特定位置で空気の速度が速くなり、そこから水滴230が飛散することを抑制できる。 In addition, since the protrusion 221 provided above the eliminator 219 and the bottom 223 provided below the eliminator 219 are provided substantially in parallel, the air flow in the eliminator 219 can be made substantially uniform. it can. Thereby, the air blown out from the eliminator 219 can be reliably brought into contact with the main body case side wall surface 216a of the air passage 216 of the guide portion 222, and the main body case side wall surface 216a can be reliably dried. Further, by making the air flow in the eliminator 219 substantially uniform, it is possible to prevent the air velocity from increasing at a specific position inside the eliminator 219. Thereby, the speed of air becomes high in the specific position inside the eliminator 219, and it can suppress that the water droplet 230 scatters from there.
 また、エリミネータ219の上方に設けられた突出部221は、液体微細化室205の内方向に向かって下方に傾斜しているので、液体微細化室205の内筒206の上方から下方に向けて流れる空気を、圧力損失を抑えながら液体微細化室205の内方向に曲げることができる。 In addition, since the protrusion 221 provided above the eliminator 219 is inclined downward toward the inside of the liquid micronization chamber 205, the projection 221 is directed downward from above the inner cylinder 206 of the liquid micronization chamber 205. The flowing air can be bent inward of the liquid micronization chamber 205 while suppressing pressure loss.
 なお、衝突壁212が揚水管211の回転板214より飛翔した水を破砕するに際し、その水の一部が衝突壁212に付着し、その重みで衝突壁212の下方へ落下する。その落下した水滴230は、突出部221で受け止められ、突出部221の傾斜によって貯水部204へと案内される。そして、突出部221は、エリミネータ219の上方に設けられているので、衝突壁212に付着し落下する水滴がエリミネータ219へ落下することを抑制できる。よって、突出部221の存在により、エリミネータ219が衝突壁212から落下する水滴で過剰に水濡れすることを抑制し、結果として、エリミネータ219から多くの水滴230が飛散することを抑制できる。従って、この面からも運転終了後の内部乾燥時間を短縮できる。 In addition, when the collision wall 212 crushes the water flying from the rotating plate 214 of the pumping pipe 211, a part of the water adheres to the collision wall 212 and falls below the collision wall 212 with its weight. The dropped water droplet 230 is received by the protruding portion 221 and guided to the water storage portion 204 by the inclination of the protruding portion 221. And since the protrusion part 221 is provided above the eliminator 219, it can suppress that the water droplet which adheres to the collision wall 212 and falls falls to the eliminator 219. Therefore, the presence of the protruding portion 221 can prevent the eliminator 219 from being excessively wetted by water droplets falling from the collision wall 212, and as a result, can prevent the water droplets 230 from being scattered from the eliminator 219. Therefore, also from this aspect, the internal drying time after completion of the operation can be shortened.
 また、本実施の形態に係る液体微細化装置250では、図13Aに示す通り、ガイド部222の上端222aがエリミネータ219の上端219aよりも高い位置に設けられている。ここで、エリミネータ219の下流側側面から飛散する水滴230の中には、エリミネータ219内を流れる空気の流れに沿って上方へ向かって飛散するものもある。特に、本実施の形態に係る液体微細化装置250は、突出部221によってエリミネータ219を通過する空気が大回りし、ガイド部222に沿って流れるため、エリミネータ219の下流側側面から飛散する水滴230が上方へ向かって飛散する可能性が高くなる。 Also, in the liquid micronizer 250 according to the present embodiment, as shown in FIG. 13A, the upper end 222a of the guide portion 222 is provided at a position higher than the upper end 219a of the eliminator 219. Here, some of the water droplets 230 that scatter from the downstream side surface of the eliminator 219 scatter upward along the flow of air flowing in the eliminator 219. In particular, in the liquid micronizer 250 according to the present embodiment, the air passing through the eliminator 219 is greatly turned by the protrusion 221 and flows along the guide part 222, so that the water droplets 230 scattered from the downstream side surface of the eliminator 219 are generated. The possibility of splashing upward is increased.
 これに対し、本実施の形態に係る液体微細化装置250では、ガイド部222の上端222aがエリミネータ219の上端219aよりも高い位置に設けられている。そのため、エリミネータ219の下流側側面の上部から上方へ飛散した水滴230も含めて、ガイド部222に湾曲して形成された本体ケース側壁面216aに付着させやすくすることができる。よって、エリミネータ219の下流側側面の上部から上方へ飛散した水滴230をも含めて、本体ケース側壁面216aに付着した水滴230を、その本体ケース側壁面216aの湾曲により底部223へと流し、底部223を介して貯水部204へと案内することができる。従って、運転終了後の内部乾燥時間をより短縮できる。 On the other hand, in the liquid micronizer 250 according to the present embodiment, the upper end 222a of the guide portion 222 is provided at a position higher than the upper end 219a of the eliminator 219. Therefore, it is possible to easily adhere to the main body case side wall surface 216a formed by bending the guide portion 222, including the water droplets 230 scattered upward from the upper part of the downstream side surface of the eliminator 219. Therefore, the water droplets 230 attached to the main body case side wall surface 216a including the water droplets 230 scattered upward from the upper part of the downstream side surface of the eliminator 219 are caused to flow to the bottom portion 223 due to the curvature of the main body case side wall surface 216a. The water storage unit 204 can be guided through the H.223. Therefore, the internal drying time after the end of operation can be further shortened.
 なお、ガイド部222の上端222aがエリミネータ219の上端219aと略同一の高さとなるように設けられてもよい。ここで、略同一の高さとは、ガイド部222の上端222aとエリミネータ219の上端219aとの位置が実質的に同じ高さであればよい。例えば、貯水部204の上端を基準として、その貯水部204の上端からガイド部222の上端222aまでの高さが、貯水部204の上端からエリミネータ219の上端219aまでの高さの±5%以内であれば、ガイド部222の上端222aがエリミネータ219の上端219aと略同一の高さであると見なしてよい。 It should be noted that the upper end 222a of the guide portion 222 may be provided so as to have substantially the same height as the upper end 219a of the eliminator 219. Here, the substantially same height is sufficient as long as the positions of the upper end 222a of the guide portion 222 and the upper end 219a of the eliminator 219 are substantially the same. For example, on the basis of the upper end of the water storage unit 204, the height from the upper end of the water storage unit 204 to the upper end 222a of the guide unit 222 is within ± 5% of the height from the upper end of the water storage unit 204 to the upper end 219a of the eliminator 219. If so, the upper end 222 a of the guide portion 222 may be regarded as having substantially the same height as the upper end 219 a of the eliminator 219.
 ガイド部222の上端222aがエリミネータ219の上端219aと略同一の高さとなるように設けられた場合、エリミネータ219の下流側側面の上部から上方へ飛散した水滴230の一部をガイド部222に付着させることができない可能性はある。しかし、エリミネータ219の上端219aより高い位置でガイド部222における本体ケース側壁面216aの湾曲が存在しないので、空間224の断面の幅を一定に保つことができる。よって、空間224における圧力損失を抑えることができる。 When the upper end 222 a of the guide part 222 is provided so as to have substantially the same height as the upper end 219 a of the eliminator 219, a part of the water droplet 230 scattered upward from the upper part of the downstream side surface of the eliminator 219 adheres to the guide part 222. There is a possibility that it cannot be made. However, since there is no curvature of the main body case side wall surface 216a in the guide portion 222 at a position higher than the upper end 219a of the eliminator 219, the width of the cross section of the space 224 can be kept constant. Therefore, the pressure loss in the space 224 can be suppressed.
 図14は、本開示の実施の形態2に係る液体微細化装置250を備えた熱交換気装置260の概略斜視図である。熱交換気装置260は、建物の室内に設けられた室内吸込口261及び給気口264と、建物の屋外に設けられた排気口262及び外気吸込口263と、本体内に設けられた熱交換素子265とを備えている。 FIG. 14 is a schematic perspective view of a heat exchange device 260 provided with a liquid micronizer 250 according to Embodiment 2 of the present disclosure. The heat exchange air device 260 includes an indoor air inlet 261 and an air inlet 264 provided inside the building, an air outlet 262 and an outside air inlet 263 provided outside the building, and heat exchange provided in the main body. And an element 265.
 室内吸込口261は、室内の空気を吸い込み、その吸い込まれた空気が排気口262より屋外へ排気される。また、外気吸込口263は、屋外の外気を吸い込み、その吸い込まれた外気が給気口264より室内へ給気される。このとき、室内吸込口261から排気口262へ送られる空気と、外気吸込口263から給気口264へ送られる外気との間で、熱交換素子265により熱交換が行われる。 The indoor suction port 261 sucks indoor air, and the sucked air is exhausted from the exhaust port 262 to the outside. Further, the outside air inlet 263 sucks outside air outside, and the sucked outside air is supplied into the room through the air inlet 264. At this time, heat exchange is performed by the heat exchange element 265 between the air sent from the indoor suction port 261 to the exhaust port 262 and the outside air sent from the outside air suction port 263 to the air supply port 264.
 熱交換気装置の機能の一つとして、加湿目的の水気化装置、及び殺菌あるいは消臭目的での次亜塩素酸気化装置といった液体を気化させる装置が組み込まれたものがある。熱交換気装置260には、この液体を気化させる装置として、液体微細化装置250が組み込まれている。具体的には、熱交換気装置260の給気口264側に、液体微細化装置250が設けられている。なお、液体微細化装置250への水の供給及び排水は、給排水配管251によって行われる。 As one of the functions of the heat exchange air device, there is a device incorporating a device for vaporizing a liquid such as a water vaporizer for humidification and a hypochlorous acid vaporizer for sterilization or deodorization. The heat exchange air device 260 incorporates a liquid micronizer 250 as a device for vaporizing the liquid. Specifically, the liquid refinement device 250 is provided on the air supply port 264 side of the heat exchange device 260. Note that water supply and drainage to the liquid micronizer 250 are performed by a water supply / drainage pipe 251.
 液体微細化装置250を備えた熱交換気装置260は、熱交換素子265による熱交換が行われた外気に対して、液体微細化装置250により微細化された水又は次亜塩素酸を含め、給気口264より室内へ供給する。これらの液体を気化させるための機構として液体微細化装置250を用いることで、より小型でエネルギー効率のよい熱交換気装置260を得ることができる。 The heat exchange air device 260 provided with the liquid refinement device 250 includes water or hypochlorous acid refined by the liquid refinement device 250 with respect to the outside air subjected to heat exchange by the heat exchange element 265. The air is supplied into the room through the air supply port 264. By using the liquid micronizer 250 as a mechanism for vaporizing these liquids, it is possible to obtain a heat exchange device 260 that is smaller and more energy efficient.
 この液体微細化装置250は、熱交換気装置260に代えて、空気清浄機あるいは空気調和機に備えられてもよい。空気清浄機あるいは空気調和機における機能の一つとして、加湿目的の水気化装置、及び殺菌あるいは消臭目的での次亜塩素酸気化装置といった液体を気化させる装置が組み込まれたものがある。この装置として、液体微細化装置250を用いることで、より小型でエネルギー効率のよい空気清浄機又は空気調和機を得ることができる。 This liquid refinement device 250 may be provided in an air purifier or an air conditioner instead of the heat exchange air device 260. One of the functions of an air purifier or an air conditioner is one that incorporates a device for vaporizing a liquid such as a water vaporizer for humidification and a hypochlorous acid vaporizer for sterilization or deodorization. By using the liquid micronizer 250 as this device, a more compact and energy efficient air purifier or air conditioner can be obtained.
 以上、実施の形態2に基づき本開示を説明したが、本開示は上記実施の形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記実施の形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。 As mentioned above, although this indication was demonstrated based on Embodiment 2, this indication is not limited to the said embodiment at all, and various improvement deformation | transformation are possible within the range which does not deviate from the meaning of this indication. Can be easily guessed. For example, the numerical values given in the above embodiment are merely examples, and other numerical values can naturally be adopted.
 (実施の形態3)
 従来、送風装置に接続されて空気を加湿する液体微細化装置が知られている。例えば、特許文献3に記載の従来の送風装置に接続される液体微細化装置は、以下のような構成となっている。
(Embodiment 3)
2. Description of the Related Art Conventionally, a liquid micronizer that is connected to a blower and humidifies air is known. For example, a liquid micronizer connected to a conventional blower described in Patent Document 3 has the following configuration.
 図31に示すように、従来の液体微細化装置では、吸い込み口17から吸い込まれた空気が送風ファン14によって器具本体1の上部方向へ送風され、送風された空気が貯水室8の上部から加湿空気発生手段(回転体10、多孔体12、多孔部13)に流入する。流入した空気が多孔部13で発生したナノミストとマイナスイオンを含んだ加湿空気として送風通路15内を上昇し、送風口2から室内へ送風されることで、ナノミストとマイナスイオンを含んだ加湿空気を室内へ供給する。 As shown in FIG. 31, in the conventional liquid micronizer, the air sucked from the suction port 17 is blown toward the upper part of the appliance body 1 by the blower fan 14, and the blown air is humidified from the upper part of the water storage chamber 8. It flows into the air generating means (rotating body 10, porous body 12, porous portion 13). The inflowing air ascends in the air passage 15 as humidified air containing nanomist and negative ions generated in the porous portion 13 and is blown into the room from the blower port 2 so that the humidified air containing nanomist and negative ions is Supply indoors.
 このような従来の液体微細化装置は、送風装置の下流側にあらかじめ加湿空気発生手段が本体内部等に組み込まれていることが必要で、加湿空気発生手段を本体に新たに追加して設置することが困難であるという問題がある。また、送風部分において湿度回収(湿度交換)が行われないため、加湿空気発生手段において積極的な湿度コントロールが困難である。そのため、更に、空気を確実に加湿するために、加湿空気発生手段でヒータを使用するなど大きなエネルギーが必要となっている。 Such a conventional liquid refining device requires that the humidified air generating means is incorporated in the main body in advance on the downstream side of the blower, and the humidified air generating means is newly added to the main body and installed. There is a problem that it is difficult. Further, since humidity recovery (humidity exchange) is not performed in the blowing portion, it is difficult to perform positive humidity control in the humidified air generating means. For this reason, in order to humidify the air reliably, a large amount of energy is required such as using a heater in the humidified air generating means.
 そこで本開示は、上記問題も解決するものであり、送風装置に後付け可能で、湿度を積極的にかつ省エネルギーでコントロールすることができる液体微細化装置を提供することも目的とする。 Therefore, the present disclosure also solves the above-described problems, and an object thereof is to provide a liquid micronizer that can be retrofitted to a blower and that can control humidity actively and with energy saving.
 そして、この目的を達成するために、本開示の実施の形態3に係る液体微細化装置は、吸込口と、吹出口と、貯水部と、液体微細化部と、を備えた液体微細化装置であって、吸込口から吸い込まれた空気は、液体微細化部により加湿され、液体微細化部により加湿された空気は、吹出口から吹き出され、液体微細化部は、吸上管と、回転板と、を有し、吸上管は、貯水部の液体を吸い上げ、回転板は、吸上管が吸い上げた液体を回転により微細化し、液体微細化装置は、湿度回収部を有する送風装置と連通可能であり、湿度回収部は、送風装置を通過する空気の湿度を回収し、液体微細化装置及び送風装置を通過する空気の流れにおいて、液体微細化装置は、送風装置の下流側に設けられるものである。 And in order to achieve this objective, the liquid refinement | miniaturization apparatus which concerns on Embodiment 3 of this indication is a liquid refinement | purification apparatus provided with the suction inlet, the blower outlet, the water storage part, and the liquid refinement | miniaturization part. The air sucked from the suction port is humidified by the liquid refining unit, and the air humidified by the liquid refining unit is blown out from the outlet, and the liquid refining unit is rotated with the suction pipe. The suction pipe sucks up the liquid stored in the water storage part, the rotating plate refines the liquid sucked up by the suction pipe by rotation, and the liquid refinement device includes a blower device having a humidity recovery part. The humidity recovery unit recovers the humidity of the air that passes through the blower, and the liquid refiner is provided downstream of the blower in the flow of air that passes through the liquid refiner and the blower. It is what
 この構成によって、送風装置に後付け可能で、湿度を省エネかつ積極的にコントロールすることができる液体微細化装置を提供することができる。 With this configuration, it is possible to provide a liquid micronizer that can be retrofitted to the blower and can control the humidity in an energy-saving and active manner.
 つまり、この構成により、液体微細化装置は送風装置に後付けすること、即ち追加で設置することが可能となる。また、液体微細化装置において、液体微細化部による加湿量は、回転板の回転数により定まる。つまり、液体微細化装置は、回転板の回転数を制御することで、加湿量をコントロールすることができる。これにより、例えば湿度回収部が、通過する空気の状態あるいは湿度回収効率等によって加湿量が一定値に定まるようなものであったとしても、その湿度回収部に加えて、液体微細化装置によって加湿量をコントロールできるので、湿度をより適切にコントロールすることができる。即ち、湿度回収部と液体微細化装置によって、全体として、より的確に室内等の湿度を目標とする湿度とすることができる。 That is, with this configuration, the liquid micronizer can be retrofitted to the blower, that is, additionally installed. Further, in the liquid micronizer, the amount of humidification by the liquid micronizer is determined by the number of rotations of the rotating plate. That is, the liquid micronizer can control the amount of humidification by controlling the number of rotations of the rotating plate. Thereby, for example, even if the humidity recovery unit is such that the humidification amount is determined to be a constant value depending on the state of air passing through or humidity recovery efficiency, etc., in addition to the humidity recovery unit, Since the amount can be controlled, the humidity can be controlled more appropriately. That is, as a whole, the humidity in the room or the like can be more accurately set to the target humidity by the humidity recovery unit and the liquid micronizer.
 更に、液体微細化装置及び送風装置を通過する空気の流れにおいて、液体微細化装置は、送風装置の下流側に設けられることで、室内へ吹き出される出口に近い側で、液体微細化装置による加湿をすることができる。また、液体微細化装置は送風装置に後付けすることができるので、例えば給排水のための配管等を、送風装置あるいは設置環境に応じて変えることができるので、施工性が向上する。 Further, in the flow of air passing through the liquid micronizer and the air blower, the liquid micronizer is provided on the downstream side of the air blower so that the liquid micronizer is on the side close to the outlet blown into the room. It can be humidified. Moreover, since the liquid refinement | miniaturization apparatus can be retrofitted to an air blower, for example, since piping for water supply / drainage etc. can be changed according to an air blower or an installation environment, workability | operativity improves.
 また、湿度回収部により湿度を回収された空気が、液体微細化装置に流入するとしてもよい。 Further, the air whose humidity has been recovered by the humidity recovery unit may flow into the liquid micronizer.
 この構成により、湿度回収された後の空気が液体微細化装置に流入することで、湿度コントロールをより精度良く行うことができるようになる。 This configuration enables the humidity control to be performed with higher accuracy by the air after the humidity has been collected flowing into the liquid micronizer.
 また、液体微細化装置は、更に吸込口に連通する内筒風路と、吹出口及び内筒風路に連通する外筒風路と、を備え、液体微細化部は、内筒風路に設けられ、外筒風路は、内筒風路の外周に設けられ、液体微細化装置を通過する空気は、吸込口、内筒風路、外筒風路、吹出口の順に通過し、外筒風路内を通過する空気は、鉛直方向上方に向かって送風されるとしてもよい。 The liquid refinement apparatus further includes an inner cylindrical air passage that communicates with the suction port, and an outer cylindrical air passage that communicates with the air outlet and the inner cylindrical air passage. The outer cylindrical air passage is provided on the outer periphery of the inner cylindrical air passage, and the air passing through the liquid micronizer passes through the suction port, the inner cylindrical air passage, the outer cylindrical air passage, and the air outlet in this order, The air passing through the tubular wind path may be blown upward in the vertical direction.
 この構成により、吸込口から吸いこまれた空気は、内筒内に送風され、液体微細化部の周囲を通過して外筒風路に至るようにされる。これにより、吸込口から吸いこまれた空気と液体微細化部で発生させた水滴との接触効率を向上させることができ、水滴の気化効率を向上させることができる。また、吸込口から吸いこまれた空気を、内筒風路を鉛直方向下向きに通過させたのち、通風口を通過して外筒風路を鉛直方向上向きに通過させ、気化しにくい大粒の水滴を分離することができる。即ち、液体微細化部で発生させた水滴は、内筒風路内を下方に流れる空気と共に下向きに飛散し、通風口において下向きに吹出される。ここで、空気は通風口を通過すると外筒風路内を通過する空気は鉛直方向上方に向かって送風されるため、送風方向が対向する向きに変わる。その際に、水滴は、重量による慣性によって外筒風路の壁面に衝突し捕集される。このようにして、気化しにくい大粒の水滴を外筒風路の壁面に捕集することができ、分離することができる。また、液体微細化部を内筒で覆われるように配置したことにより、液体微細化部で発生させた水滴を内筒の内側表面に付着させ、内筒外への飛散を抑制できるので、内筒の通風口から風圧によって水滴が再飛散することを抑制することができる。その結果、液体微細化部によって発生した水滴が、室内へ放出されることを抑制できるものである。 With this configuration, the air sucked from the suction port is blown into the inner cylinder, passes through the periphery of the liquid micronization section, and reaches the outer cylinder air passage. Thereby, the contact efficiency of the air inhaled from the suction inlet and the water droplet generated in the liquid refinement | miniaturization part can be improved, and the vaporization efficiency of a water droplet can be improved. In addition, after the air sucked in from the suction port passes through the inner cylindrical air passage downward in the vertical direction, the air passes through the ventilation port and passes through the outer cylindrical air passage in the vertical direction upward, so that large water droplets that are difficult to vaporize are generated. Can be separated. That is, water droplets generated in the liquid micronization unit are scattered downward together with the air flowing downward in the inner cylindrical air passage, and are blown downward at the ventilation port. Here, when the air passes through the ventilation port, the air passing through the outer cylindrical air passage is blown upward in the vertical direction, so that the blowing direction is changed to the facing direction. At that time, the water droplets collide with the wall surface of the outer cylindrical air passage due to inertia due to weight and are collected. In this way, large water droplets that are difficult to vaporize can be collected on the wall surface of the outer tube air passage and separated. In addition, by arranging the liquid micronization part so as to be covered with the inner cylinder, water droplets generated in the liquid micronization part can be attached to the inner surface of the inner cylinder, and scattering outside the inner cylinder can be suppressed. It is possible to prevent water droplets from being re-scattered by the wind pressure from the ventilation opening of the cylinder. As a result, water droplets generated by the liquid miniaturization unit can be prevented from being released into the room.
 また、液体微細化装置は、更に液体微細化部の運転を制御する加湿制御部を備え、加湿制御部は、送風装置の運転と連動して動作するよう液体微細化部を制御するとしてもよい。 Further, the liquid refinement device may further include a humidification control unit that controls the operation of the liquid refinement unit, and the humidification control unit may control the liquid refinement unit to operate in conjunction with the operation of the blower device. .
 この構成によって、加湿制御部が液体微細化部の運転を制御することで、加湿量を制御し、更に送風装置と液体微細化部が連動することで、効率的に加湿することができる。 With this configuration, the humidification control unit controls the operation of the liquid refining unit to control the amount of humidification, and the air blower and the liquid refining unit work together to efficiently humidify.
 また、液体微細化装置は、更に液体微細化部の運転を制御する加湿制御部を備え、加湿制御部は、送風装置の運転と独立して動作するよう液体微細化部を制御するとしてもよい。 Further, the liquid refinement device may further include a humidification control unit that controls the operation of the liquid refinement unit, and the humidification control unit may control the liquid refinement unit to operate independently of the operation of the blower. .
 この構成によって、加湿制御部が液体微細化部の運転を制御することで、加湿量を制御することができる。また、送風装置から独立して液体微細化部が運転するので、送風装置の運転状況に関わらず、加湿を行うことができる。 With this configuration, the humidification amount can be controlled by the humidification control unit controlling the operation of the liquid refining unit. Moreover, since a liquid refinement | miniaturization part drive | operates independently from an air blower, humidification can be performed irrespective of the driving | running state of an air blower.
 また、吸込口に接続されるダクトを介して送風装置と連通するとしてもよい。 Also, it may be communicated with the blower through a duct connected to the suction port.
 この構成によって、吸込口に直接ダクトを接続できるので、さまざまな送風装置に液体微細化装置を接続することができる。 This configuration allows the duct to be directly connected to the suction port, so that the liquid micronizer can be connected to various blowers.
 また、液体微細化装置は、更に液体微細化装置を支持する支持部を備え、液体微細化装置は、支持部により送風装置に接続されるとしてもよい。 Further, the liquid miniaturization apparatus may further include a support unit that supports the liquid miniaturization apparatus, and the liquid miniaturization apparatus may be connected to the blower by the support unit.
 この構成によって、支持部で液体微細化装置と送風装置を接続するので、液体微細化装置を設置できる送風装置の選択肢を増やすことができる。また、液体微細化装置及び送風装置の施工性を向上させることができる。 With this configuration, the liquid refiner and the blower are connected by the support portion, so that the options of the blower that can install the liquid refiner can be increased. Moreover, the workability | operativity of a liquid refinement | miniaturization apparatus and an air blower can be improved.
 また、吹出口は、第1吹出口と、第2吹出口と、を含み、第1吹出口から吹き出される空気は、鉛直方向上方に向かって吹き出され、第2吹出口から吹き出される空気は、水平方向に向かって吹き出されるとしてもよい。 The air outlet includes a first air outlet and a second air outlet, and the air blown from the first air outlet is blown upward in the vertical direction and is blown from the second air outlet. May be blown out in the horizontal direction.
 この構成によって、加湿された空気を鉛直方向上方(上方向)又は水平方向(横方向)に吹き出すことが可能となり、施工性あるいは汎用性が向上する。 This configuration makes it possible to blow out the humidified air vertically upward (upward) or horizontally (laterally), improving workability and versatility.
 また、液体微細化装置は、更に第1吹出口又は第2吹出口を覆う閉鎖板を備え、閉鎖板が第1吹出口に取り付けられている場合、液体微細化部により加湿された空気は、第2吹出口から吹き出され、閉鎖板が第2吹出口に取り付けられている場合、液体微細化部により加湿された空気は、第1吹出口から吹き出されるとしてもよい。 Further, the liquid micronizer further includes a closing plate that covers the first air outlet or the second air outlet, and when the closing plate is attached to the first air outlet, the air humidified by the liquid micronizer is When air is blown out from the second air outlet and the closing plate is attached to the second air outlet, the air humidified by the liquid refining unit may be blown out from the first air outlet.
 この構成によって、加湿された空気を吹き出す方向を選択することが可能となり、施工性あるいは汎用性が更に向上する。 This configuration makes it possible to select the direction in which the humidified air is blown out, further improving the workability and versatility.
 以下、添付図面を参照して、本開示の実施の形態につき説明し、本開示の理解に供する。なお、以下の実施の形態は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。更に、本開示に直接には関係しない各部の詳細については重複を避けるために、図面ごとの説明は省略している。 Hereinafter, an embodiment of the present disclosure will be described with reference to the accompanying drawings for understanding of the present disclosure. Note that the following embodiment is an example in which the present disclosure is embodied, and does not limit the technical scope of the present disclosure. Furthermore, in order to avoid duplication about the detail of each part which is not directly related to this indication, the description for every drawing is abbreviate | omitted.
 まず、図15~図17を用いて、本開示の実施の形態3に係る液体微細化装置301の構成について説明する。 First, the configuration of the liquid micronizer 301 according to the third embodiment of the present disclosure will be described with reference to FIGS.
 図15は、本開示の実施の形態3に係る液体微細化装置301の正面側を示す斜視図である。図16は、本開示の実施の形態3に係る液体微細化装置301の背面側を示す斜視図である。図17は、本開示の実施の形態3に係る液体微細化装置301の概略断面図である。 FIG. 15 is a perspective view showing the front side of the liquid micronizer 301 according to the third embodiment of the present disclosure. FIG. 16 is a perspective view showing the back side of the liquid micronizer 301 according to the third embodiment of the present disclosure. FIG. 17 is a schematic cross-sectional view of a liquid micronization apparatus 301 according to Embodiment 3 of the present disclosure.
 図15及び図16に示すように、液体微細化装置301は、円柱状の容器のような外観をしており、液体微細化装置301は、吸込口302と、吹出口303と、内筒305と、外筒309と、を備えている。 As shown in FIGS. 15 and 16, the liquid micronizer 301 has an appearance like a cylindrical container. The liquid micronizer 301 includes a suction port 302, a blower outlet 303, and an inner cylinder 305. And an outer cylinder 309.
 吸込口302は、ダクト接続可能な形状(例えば円形形状)の開口であり、液体微細化装置301の側面に設けられている。 The suction port 302 is an opening of a shape that can be connected to a duct (for example, a circular shape), and is provided on a side surface of the liquid micronizer 301.
 吹出口303は、液体微細化装置301内部を通過した空気が吹き出される開口であり、液体微細化装置301の上面に設けられている。また、図15及び図16に示すように、吹出口303は、後述する内筒305と外筒309とで仕切られる領域に形成される。そして、例えば吹出口303は、液体微細化装置301の上面部における内筒305の周囲に設けられる。更に、吹出口303は、吸込口302よりも上方に位置するように設けられる。また、吹出口303は、筒状のダクトが接続可能な形状である。 The air outlet 303 is an opening through which the air that has passed through the liquid micronizer 301 is blown out, and is provided on the upper surface of the liquid micronizer 301. As shown in FIGS. 15 and 16, the air outlet 303 is formed in a region partitioned by an inner cylinder 305 and an outer cylinder 309 described later. For example, the air outlet 303 is provided around the inner cylinder 305 in the upper surface portion of the liquid micronizer 301. Further, the air outlet 303 is provided so as to be positioned above the air inlet 302. Moreover, the blower outlet 303 is a shape which can connect a cylindrical duct.
 図17に示すように、吸込口302から取り込まれた(吸い込まれた)空気は、吹出口303から吹き出される(流出する)。 As shown in FIG. 17, the air taken in (inhaled) from the inlet 302 is blown out (outflow) from the outlet 303.
 内筒305は、液体微細化装置301内部の中央付近に配置される。また、内筒305は、略鉛直方向下方に向けて開口した通風口307を有し、中空円筒形状に形成されている。外筒309は、円筒形状に形成され、内筒305を内包するように配置されている。 The inner cylinder 305 is disposed near the center inside the liquid micronizer 301. In addition, the inner cylinder 305 has a ventilation port 307 that opens downward substantially in the vertical direction, and is formed in a hollow cylindrical shape. The outer cylinder 309 is formed in a cylindrical shape and is disposed so as to include the inner cylinder 305.
 また、液体微細化装置301の下方には、水受け部312が設けられる。水受け部312は、貯水部310に貯水しきれなかった液体を溜めることができる。例えば図18参照これにより、仮に過剰に給水が行われたり、排水口311などに不具合が起こったりした場合でも、住宅あるいは後述する送風装置330等(例えば図8参照)に液体があふれ出ることを抑制できる。 In addition, a water receiver 312 is provided below the liquid micronizer 301. The water receiver 312 can store liquid that could not be stored in the water reservoir 310. For example, as shown in FIG. 18, even if water is excessively supplied or a malfunction occurs in the drain port 311 or the like, the liquid overflows into the house or the blower 330 or the like (see FIG. 8, for example) described later. Can be suppressed.
 なお、水受け部312の形状は、貯水部310からあふれた液体を溜めることができる形状であればよく、図15等で図示する形状に限られない。また、液体微細化装置301は水受け部312を備えていなくてもよい。 In addition, the shape of the water receiving part 312 should just be a shape which can accumulate the liquid overflowing from the water storage part 310, and is not restricted to the shape illustrated in FIG. In addition, the liquid micronizer 301 may not include the water receiver 312.
 図17に示すように、液体微細化装置301は、内筒風路304と、吸込連通風路306と、外筒風路308と、貯水部310と、液体微細化部320と、を有する。 As shown in FIG. 17, the liquid refinement device 301 includes an inner cylindrical air passage 304, a suction communication air passage 306, an outer cylindrical air passage 308, a water storage part 310, and a liquid refinement part 320.
 吸込連通風路306は、吸込口302と内筒305とを連通するダクト形状の風路であり、吸込口302から吸いこまれた空気は、吸込連通風路306を介して内筒305内部に至る構成となっている。 The suction communication air passage 306 is a duct-shaped air passage communicating the suction port 302 and the inner cylinder 305, and the air sucked from the suction opening 302 reaches the inside of the inner cylinder 305 through the suction communication air passage 306. It has a configuration.
 内筒風路304は、内筒305の下端に設けられた開口(通風口307)を介して、内筒305の外側に設けられた外筒風路308(図17の破線矢符で示す風路)と連通している。 The inner cylindrical air passage 304 is connected to an outer cylindrical air passage 308 (outlined by broken arrows in FIG. 17) provided outside the inner cylinder 305 via an opening (ventilation opening 307) provided at the lower end of the inner cylinder 305. Road).
 外筒風路308は、内筒305と外筒309との間に形成されている。外筒風路308の一部は、内筒305と外筒309とで仕切られる領域に形成される。 The outer cylinder air passage 308 is formed between the inner cylinder 305 and the outer cylinder 309. A part of the outer cylinder air passage 308 is formed in a region partitioned by the inner cylinder 305 and the outer cylinder 309.
 貯水部310は、液体微細化装置301の下部に設けられ、液体を貯留する。また、貯水部310は、略すり鉢形状に形成されて、貯水部310の側壁は、外筒309の下端と接続されて一体化している。本実施の形態では、貯水部310に貯留する液体を水とする。また、連続的に水を微細化させるために、液体微細化装置301には、水を貯水部310へ給水する給水口315と、貯水部310より水を排出する排水口311が備えられている。給水口315は、外筒309に設けられており、水は図17に示す水面340まで貯水される。また、排水口311は貯水部310の下部であるすり鉢形状の貯水部底面に設けられている。給水口315は給水管316と接続されており、給水管316は、電磁弁等の開閉手段を介して、例えば、住宅又は施設の上水道あるいは給水ポンプなどの給水設備に接続されている。また、排水口311は、排水管314を介して、住宅又は施設に設けられている排水口などの排水設備に接続されている。 The water storage part 310 is provided in the lower part of the liquid refinement | miniaturization apparatus 301, and stores a liquid. Moreover, the water storage part 310 is formed in a substantially mortar shape, and the side wall of the water storage part 310 is connected to and integrated with the lower end of the outer cylinder 309. In the present embodiment, the liquid stored in the water storage unit 310 is water. In order to continuously refine water, the liquid refiner 301 is provided with a water supply port 315 for supplying water to the water storage unit 310 and a drain port 311 for discharging water from the water storage unit 310. . The water supply port 315 is provided in the outer cylinder 309, and water is stored up to the water surface 340 shown in FIG. Further, the drain port 311 is provided on the bottom surface of the mortar-shaped water storage part which is the lower part of the water storage part 310. The water supply port 315 is connected to a water supply pipe 316, and the water supply pipe 316 is connected to a water supply facility such as a water supply or a water supply pump such as a house or facility through an opening / closing means such as an electromagnetic valve. Further, the drainage port 311 is connected to a drainage facility such as a drainage port provided in a house or facility via a drainage pipe 314.
 液体微細化部320は、吸上管(揚水管)321と、回転板322と、モータ323と、を有し、水の微細化を行う。また、液体微細化部320は、内筒305の内側即ち内筒305に覆われる位置に設けられている。 The liquid refinement unit 320 includes a suction pipe (pumping pipe) 321, a rotating plate 322, and a motor 323, and refines water. Further, the liquid micronization unit 320 is provided inside the inner cylinder 305, that is, at a position covered by the inner cylinder 305.
 吸上管321は、モータ323の回転軸に固定されており、回転により貯水部310から水を吸い上げる。また、吸上管321は中空の円錐台形状に形成され、直径の小さい側の先端が貯水部310に貯水された水の水面以下になるように設けられている。回転板322は、中央が開口したドーナツ状の円板形状に形成され、吸上管321の直径の大きい側、言い換えれば吸上管321の上部の周囲に配置されている。吸上管321の直径の大きい側には、その側面に複数の開口(図示せず)が設けられており、吸上げた水が開口を通過して回転板322に供給されるようになっている。そして、回転板322は、吸上管321により吸い上げられた水を回転面方向(回転軸と直角の方向)に放出する。モータ323は、吸上管321及び回転板322を回転させる。 The suction pipe 321 is fixed to the rotating shaft of the motor 323 and sucks water from the water storage section 310 by rotation. Further, the suction pipe 321 is formed in a hollow truncated cone shape, and is provided so that the tip on the side having a small diameter is below the surface of the water stored in the water storage section 310. The rotating plate 322 is formed in a donut-shaped disk shape having an opening at the center, and is disposed around the suction pipe 321 on the larger diameter side, in other words, around the upper portion of the suction pipe 321. A plurality of openings (not shown) are provided on the side of the suction pipe 321 having a large diameter, and the sucked water passes through the openings and is supplied to the rotating plate 322. Yes. Then, the rotating plate 322 discharges the water sucked up by the suction pipe 321 in the rotating surface direction (a direction perpendicular to the rotating shaft). The motor 323 rotates the suction pipe 321 and the rotating plate 322.
 更に、図18に示すように、液体微細化装置301は、その側面に加湿制御部313を備える。加湿制御部313は、液体微細化装置301、特に液体微細化部320の運転を制御することで加湿量を制御する。これにより、液体微細化装置301は後述する送風装置330と連動して動作したり、連動せず単独で動作したりできるようになる。 Furthermore, as shown in FIG. 18, the liquid micronizer 301 includes a humidification control unit 313 on the side surface. The humidification control unit 313 controls the amount of humidification by controlling the operation of the liquid refinement device 301, particularly the liquid refinement unit 320. As a result, the liquid micronizer 301 can operate in conjunction with a blower 330 described later, or can operate independently without being interlocked.
 なお、加湿制御部313が設けられる位置は図18等に示す位置に限られない。また、液体微細化装置301は加湿制御部313を備えず、送風装置330を制御する制御部により制御される構成であってもよい。 The position where the humidification control unit 313 is provided is not limited to the position shown in FIG. Moreover, the liquid refinement | miniaturization apparatus 301 may not be provided with the humidification control part 313, and the structure controlled by the control part which controls the air blower 330 may be sufficient.
 以下、図17を用いて液体微細化装置301の動作について説明する。 Hereinafter, the operation of the liquid micronizer 301 will be described with reference to FIG.
 初めに、液体微細化装置301の動作を簡単に説明する。まず、図示しない給水設備より水が給水口315から貯水部310に供給され、貯水部310に水が貯水される。そして、後述する送風装置330等によって吸込口302から液体微細化装置301内部に吸い込まれた空気は、吸込連通風路306、内筒風路304、液体微細化部320、外筒風路308の順に通過し、吹出口303から外部例えば室内に向けて吹き出される。このとき、液体微細化部320によって発生した水滴と、内筒風路304を通過する空気とが接触し、水滴が気化することにより空気を加湿することができる。また、貯水部310に貯水された水は、所定時間が経過したのち排水口311から排出される。 First, the operation of the liquid micronizer 301 will be briefly described. First, water is supplied from a water supply port 315 to a water storage unit 310 from a water supply facility (not shown), and water is stored in the water storage unit 310. Then, the air sucked into the liquid refinement device 301 from the suction port 302 by a blower 330 or the like which will be described later, It passes in order and blows out from the blower outlet 303 toward the outside, for example, the room. At this time, the water droplets generated by the liquid micronization unit 320 and the air passing through the inner cylindrical air passage 304 come into contact with each other, and the water droplets are vaporized, whereby the air can be humidified. Further, the water stored in the water storage unit 310 is discharged from the drain port 311 after a predetermined time has elapsed.
 次に、液体微細化装置301の動作、即ち液体微細化装置301が空気の加湿をどのように行うかをより詳細に説明する。 Next, the operation of the liquid micronizer 301, that is, how the liquid micronizer 301 performs air humidification will be described in more detail.
 吸込口302から吸込連通風路306を通過して内筒風路304の内筒305に取り込まれた空気は、液体微細化部320を通過する。吸上管321及び回転板322がモータ323の動作により回転すると、回転により貯水部310に貯水された水が吸上管321の内壁面を伝って上昇する。上昇した水は、回転板322の表面を伝って引き伸ばされ、回転板322の外周端から回転面方向に向かって微細な水滴として放出される。放出された水滴は内筒305の内壁面に衝突して破砕され、更に微細な水滴となる。この回転板322から放出された水滴と、内筒305の内壁面に衝突し破砕された水滴とが内筒305を通過する空気と接触し、水滴が気化して空気の加湿が行われる。なお、発生した水滴の一部は気化しないが、液体微細化部320を内筒305で覆われるように配置しているので、気化しなかった水滴は内筒305の内側表面に付着して貯水部310に落下する。 The air taken from the suction port 302 through the suction communication air passage 306 and taken into the inner tube 305 of the inner tube air passage 304 passes through the liquid refinement unit 320. When the suction pipe 321 and the rotating plate 322 are rotated by the operation of the motor 323, the water stored in the water storage section 310 by the rotation rises along the inner wall surface of the suction pipe 321. The rising water is stretched along the surface of the rotating plate 322 and discharged as fine water droplets from the outer peripheral end of the rotating plate 322 toward the rotating surface. The discharged water droplets collide with the inner wall surface of the inner cylinder 305 and are crushed to become finer water droplets. The water droplets discharged from the rotating plate 322 and the water droplets colliding with and crushing the inner wall surface of the inner cylinder 305 come into contact with the air passing through the inner cylinder 305, and the water droplets are vaporized to humidify the air. Although some of the generated water droplets are not vaporized, the liquid micronization unit 320 is disposed so as to be covered with the inner cylinder 305, so that the water droplets that have not vaporized adhere to the inner surface of the inner cylinder 305 and store water. It falls on the part 310.
 そして、水滴を含んだ空気(加湿された空気)は、内筒305の下端に設けられた通風口307から下方に設けられた貯水部310に向けて吹き出される。そして、内筒305と外筒309との間に形成された外筒風路308に向かって流れる。ここで、外筒風路308内を通過する空気は鉛直方向上方に向かって送風されるため、内筒風路304内を下方に流れる空気と送風方向が対向する向きに変わることとなる。 And the air containing the water droplets (humidified air) is blown out from the ventilation port 307 provided at the lower end of the inner cylinder 305 toward the water storage unit 310 provided below. Then, the air flows toward an outer cylinder air passage 308 formed between the inner cylinder 305 and the outer cylinder 309. Here, since the air passing through the outer cylindrical air passage 308 is blown upward in the vertical direction, the air flowing downward in the inner cylindrical air passage 304 and the air blowing direction are changed to face each other.
 このとき、通風口307から空気と共に吹き出された水滴はその慣性により空気の流れに追従できず、貯水部310の水面340もしくは外筒309の内側壁面に付着する。水滴の重量が大きいほどこの作用が大きく、即ち、気化しにくい直径の大きな水滴ほど作用が大きいため、これにより大粒の水滴を流れる空気から分離することができる。 At this time, the water droplets blown out together with the air from the air vent 307 cannot follow the air flow due to its inertia and adhere to the water surface 340 of the water storage section 310 or the inner wall surface of the outer cylinder 309. This action is greater as the weight of the water drop is larger, that is, the action is larger as the water drop having a diameter that is difficult to vaporize is larger. Thus, the large water drop can be separated from the flowing air.
 そして、内筒風路304から通風口307を介して外筒風路308に流入した空気は、外筒風路308を通って上向きに流れる。そして、吹出口303から外部に吹き出される。このとき、水滴の一部は重力により貯水部310へ落下する、もしくは、内筒305の外壁あるいは外筒309の内壁に付着する。そして、内筒305の外壁あるいは外筒309の内壁に付着した水滴は、内筒305の外側壁面あるいは外筒309の内側壁面を伝って貯水部310へ落下する。 Then, the air that has flowed into the outer tubular air passage 308 from the inner tubular air passage 304 through the ventilation port 307 flows upward through the outer tubular air passage 308. And it blows out from the blower outlet 303 outside. At this time, a part of the water droplet falls to the water storage unit 310 by gravity, or adheres to the outer wall of the inner cylinder 305 or the inner wall of the outer cylinder 309. Then, water droplets attached to the outer wall of the inner cylinder 305 or the inner wall of the outer cylinder 309 fall to the water storage section 310 along the outer wall surface of the inner cylinder 305 or the inner wall surface of the outer cylinder 309.
 以上述べたようにして、本開示の液体微細化装置301は、空気を加湿することができる。 As described above, the liquid miniaturization apparatus 301 of the present disclosure can humidify air.
 次に、図18を用いて、液体微細化装置301に接続される送風装置330について説明する。 Next, the blower 330 connected to the liquid micronizer 301 will be described with reference to FIG.
 図18は、液体微細化装置301が送風装置330に接続された状態を示す概略斜視図である。 FIG. 18 is a schematic perspective view showing a state in which the liquid micronizer 301 is connected to the blower 330.
 送風装置330は、箱形の本体ケース331を有し、例えば床に置かれた状態で使用される。 The blower 330 has a box-shaped main body case 331, and is used in a state where it is placed on the floor, for example.
 本体ケース331の例えば天面には、外気吸込口333、給気口334、室内空気吸込口335、及び排気口336(図19、図20参照)が設けられている。 For example, an outside air inlet 333, an air inlet 334, an indoor air inlet 335, and an exhaust outlet 336 (see FIGS. 19 and 20) are provided on the top surface of the main body case 331, for example.
 外気吸込口333は、室内空気吸込口335及び排気口336と隣り合う位置に設けられる。また、給気口334は、室内空気吸込口335及び排気口336と隣り合う位置に設けられる。即ち、室内空気吸込口335及び排気口336は、外気吸込口333及び給気口334と隣り合う位置にそれぞれ設けられる。 The outdoor air inlet 333 is provided at a position adjacent to the indoor air inlet 335 and the exhaust outlet 336. The air supply port 334 is provided at a position adjacent to the indoor air suction port 335 and the exhaust port 336. That is, the indoor air suction port 335 and the exhaust port 336 are provided at positions adjacent to the outside air suction port 333 and the air supply port 334, respectively.
 外気吸込口333、給気口334、室内空気吸込口335、及び排気口336は、それぞれダクトが接続できる形状となっている。外気吸込口333と排気口336とにそれぞれ接続したダクトは建物外壁面まで引き回して建物外の屋外空気と連通する。給気口334と室内空気吸込口335とにそれぞれ接続したダクトは室内の天井面又は壁面と連通されて室内空気と連通する。 The outside air suction port 333, the air supply port 334, the indoor air suction port 335, and the exhaust port 336 each have a shape to which a duct can be connected. Ducts respectively connected to the outside air inlet 333 and the outlet 336 are routed to the outer wall surface of the building and communicate with outdoor air outside the building. Ducts respectively connected to the air supply port 334 and the indoor air suction port 335 are communicated with the indoor ceiling surface or wall surface and communicated with the indoor air.
 本体ケース331は内部に、湿度回収部332、送風機337及び給気風路338(図21参照)を有する。湿度回収部332は、送風機337の下方に設けられる。 The main body case 331 includes a humidity recovery unit 332, a blower 337, and an air supply air passage 338 (see FIG. 21). The humidity recovery unit 332 is provided below the blower 337.
 給気風路338(図21参照)は、新鮮な屋外の空気(給気空気)を外気吸込口333から吸い込み、湿度回収部332を通って給気口334から液体微細化装置301を介して室内に供給する風路である。 The supply air passage 338 (see FIG. 21) sucks fresh outdoor air (supply air) from the outside air intake port 333, passes through the humidity recovery unit 332, and passes through the liquid micronizer 301 from the supply port 334 to the room. It is a wind path to supply to.
 湿度回収部332は、送風機337により吸い込まれ、送風装置330内部(特に、給気風路338)を通過する空気の湿度を回収(交換)する湿度回収(湿度交換)の機能を有している。湿度回収部332は、例えば全熱交換素子あるいはデシカント式、ヒートポンプ式の熱交換器などである。なお、湿度回収部332は、湿度だけでなく温度を回収(交換)する機能を有していてもよい。これにより、より快適な空気を室内に供給することができる。 The humidity collection unit 332 has a function of humidity collection (humidity exchange) that collects (replaces) the humidity of the air that is sucked by the blower 337 and passes through the inside of the blower 330 (particularly, the supply air passage 338). The humidity recovery unit 332 is, for example, a total heat exchange element or a desiccant or heat pump heat exchanger. In addition, the humidity collection | recovery part 332 may have a function which collect | recovers not only humidity but temperature (exchange). Thereby, more comfortable air can be supplied indoors.
 また、送風装置330は制御部(図示せず)を有していてもよい。この制御部は、送風機337の運転及び湿度回収部332の運転を制御する。これにより、例えば液体微細化装置301が運転していないときでも、送風装置330の湿度回収部332により湿度回収を行うことで、室内に給気する空気の湿度コントロールをすることができる。 Moreover, the air blower 330 may have a control part (not shown). This control unit controls the operation of the blower 337 and the operation of the humidity recovery unit 332. Thereby, for example, even when the liquid micronizer 301 is not in operation, the humidity of the air supplied to the room can be controlled by collecting the humidity by the humidity collecting unit 332 of the blower 330.
 また、送風装置330の制御部と加湿制御部313とが電気的に接続され、送風装置330と液体微細化装置301が連動する構成であってもよい。 Moreover, the structure which the control part of the air blower 330 and the humidification control part 313 are electrically connected, and the air blower 330 and the liquid refinement | miniaturization apparatus 301 interlock | cooperate may be sufficient.
 更に、湿度回収部332が全熱交換素子である場合には、本体ケース331の内部に排気送風機を設け、排気風路を有するという構成であってもよい。排気風路は、排気送風機によって室内空気吸込口335から室内空気を吸い込み、湿度回収部332を通って排気口336から外部に排気する風路である。このとき、湿度回収部332即ち全熱交換素子は、排気風路と給気風路338が交わる位置に配置される。そして、排気風路を通過する空気と給気風路338を通過する空気の湿度交換が湿度回収部332(全熱交換素子)により行われる。 Furthermore, in the case where the humidity recovery unit 332 is a total heat exchange element, a configuration in which an exhaust fan is provided inside the main body case 331 and an exhaust air passage is provided may be employed. The exhaust air passage is an air passage that sucks indoor air from the indoor air intake port 335 by the exhaust air blower, and exhausts the air from the exhaust port 336 to the outside through the humidity recovery unit 332. At this time, the humidity recovery unit 332, that is, the total heat exchange element, is disposed at a position where the exhaust air passage and the supply air passage 338 intersect. Then, humidity exchange between the air passing through the exhaust air passage and the air passing through the air supply air passage 338 is performed by the humidity recovery unit 332 (total heat exchange element).
 なお、本実施の形態では、送風装置330を床に置いて使用する態様を示しているが、送風装置330は本体ケース331を横向きに設置するような構成であってもよい。つまり、送風装置330の給気口334等は天面ではなく側面に設けられてもよい。このとき、本体ケース331側面から吸い込み、本体ケース331側面から吹き出されるような風路構成となる。これにより、送風装置330は例えば天井裏あるいは床下などにも設置可能となり、更に、液体微細化装置301は、このようなさまざまな送風装置330に接続可能であることとなる。 In addition, in this Embodiment, although the aspect which uses the air blower 330 on a floor is shown, the air blower 330 may be a structure which installs the main body case 331 sideways. That is, the air supply port 334 of the blower 330 may be provided on the side surface instead of the top surface. At this time, the air passage is configured to be sucked in from the side surface of the main body case 331 and blown out from the side surface of the main body case 331. As a result, the blower 330 can be installed, for example, behind the ceiling or under the floor, and the liquid micronizer 301 can be connected to such various blowers 330.
 また、湿度回収部332によって湿度回収された後の空気は、液体微細化装置301を通らないようにバイパスされて室内に供給されてもよい。これにより、例えば液体微細化装置301は運転せず、送風装置330のみ運転するような場合に、湿度回収された後の空気を効率よく室内に供給することができる。 Further, the air after the humidity is recovered by the humidity recovery unit 332 may be bypassed so as not to pass through the liquid refining device 301 and supplied to the room. Thereby, for example, when the liquid micronizer 301 is not operated and only the air blower 330 is operated, the air after the humidity recovery can be efficiently supplied into the room.
 次に、図19~図21を用いて、液体微細化装置301と送風装置330との接続について説明する。 Next, the connection between the liquid micronizer 301 and the blower 330 will be described with reference to FIGS.
 図19は、液体微細化装置301を送風装置330に接続する状態を示す概略斜視図である。図20は、送風装置330に接続された状態の液体微細化装置301を示す概略拡大斜視図である。図21は、液体微細化装置301及び送風装置330の空気の流れを示す概略斜視図である。 FIG. 19 is a schematic perspective view showing a state in which the liquid micronizer 301 is connected to the blower 330. FIG. 20 is a schematic enlarged perspective view showing the liquid micronizer 301 connected to the blower 330. FIG. 21 is a schematic perspective view showing the air flow of the liquid micronizer 301 and the blower 330.
 図19に示すように、液体微細化装置301は、送風装置330の天面に設置される。例えば、液体微細化装置301と送風装置330は、脚部分342aと台座部分342bとを有する支持部342で接続される。このとき、脚部分342aと送風装置330が固定され、台座部分342bと液体微細化装置301が固定される。即ち、図20に示すように、支持部342(特に台座部分342b)に液体微細化装置301が載置されるような状態となる。これによって、液体微細化装置301と送風装置330は離間して設けられるので、例えば、送風装置330天面に接続されるダクトの引き回し等の条件が緩和され、液体微細化装置301及び送風装置330の施工性が向上する。 As shown in FIG. 19, the liquid micronizer 301 is installed on the top surface of the blower 330. For example, the liquid micronizer 301 and the blower 330 are connected by a support portion 342 having a leg portion 342a and a pedestal portion 342b. At this time, the leg portion 342a and the blower 330 are fixed, and the base portion 342b and the liquid micronizer 301 are fixed. That is, as shown in FIG. 20, the liquid micronizer 301 is placed on the support portion 342 (particularly the pedestal portion 342b). As a result, the liquid micronizer 301 and the air blower 330 are provided apart from each other. For example, conditions such as routing of a duct connected to the top surface of the air blower 330 are alleviated, and the liquid micronizer 301 and the air blower 330 are relaxed. Improved workability.
 そして、ダクト341を介して、送風装置330の給気口334と液体微細化装置301の吸込口302が連通する。つまり、給気口334と吸込口302にダクト341が接続される。これにより、図21に示すように送風装置330の送風機337によって、給気口334から吹き出された空気はダクト341を通過して吸込口302から液体微細化装置301に流入する。吸込口302にダクトが接続可能であるため、液体微細化装置301は、送風装置330に追加で設置すること、即ち、後付けが可能となり、さまざまな送風装置に対応可能となる。 Then, the air supply port 334 of the blower 330 and the suction port 302 of the liquid micronizer 301 communicate with each other through the duct 341. That is, the duct 341 is connected to the air supply port 334 and the suction port 302. As a result, as shown in FIG. 21, the air blown from the air supply port 334 by the blower 337 of the blower device 330 passes through the duct 341 and flows into the liquid micronizer 301 from the suction port 302. Since the duct can be connected to the suction port 302, the liquid micronizer 301 can be additionally installed on the blower 330, that is, can be retrofitted, and can be applied to various blowers.
 このように、回転板322の回転数により加湿量を制御することができる液体微細化装置301に送風装置330が接続される。これにより、例えば湿度回収部332が全熱交換素子のような、通過する空気の状態あるいは湿度回収効率等によって加湿量が一定値に定まるようなもので、加湿量を制御することが難しいものであったとしても、液体微細化部320による加湿量コントロールをあわせて行うことで、より適切に湿度を制御することができる。即ち、湿度回収部332と湿度量が可変である液体微細化装置301とによって、全体として、より的確に室内等の湿度を目標とする湿度とすることができる。 Thus, the blower 330 is connected to the liquid micronizer 301 that can control the amount of humidification by the number of rotations of the rotating plate 322. Thus, for example, the humidity recovery unit 332 is a total heat exchange element such that the humidification amount is determined to be a constant value depending on the state of passing air or the humidity recovery efficiency, and it is difficult to control the humidification amount. Even if there is, the humidity can be controlled more appropriately by performing the humidification amount control by the liquid micronizer 320 together. That is, as a whole, the humidity in the room or the like can be more accurately set as the target humidity by the humidity recovery unit 332 and the liquid micronizer 301 having a variable humidity amount.
 また、送風装置330は、液体微細化装置301及び送風装置330を通過する空気の流れにおいて、液体微細化装置301より上流側に設けられる。言い換えれば、液体微細化装置301は送風装置330の下流側に設けられる。このとき、湿度回収部332で湿度回収された後の空気が液体微細化装置301に流入するので、より適切に湿度コントロールすることができる。また、湿度回収部332と液体微細化装置301の2箇所で湿度制御を行うことで、湿度回収部332あるいは液体微細化装置301にヒータ等を設置していない場合でも、十分な加湿量を確保することができる。また、加湿量を確保するためのヒータが不要になることで、省エネを実現できる。 In addition, the air blowing device 330 is provided upstream of the liquid micronizing device 301 in the flow of air that passes through the liquid micronizing device 301 and the air blowing device 330. In other words, the liquid micronizer 301 is provided on the downstream side of the blower 330. At this time, the air after the humidity is recovered by the humidity recovery unit 332 flows into the liquid micronizer 301, so that the humidity can be controlled more appropriately. In addition, by performing humidity control at two locations of the humidity recovery unit 332 and the liquid micronizer 301, a sufficient humidification amount can be ensured even when no heater or the like is installed in the humidity recovery unit 332 or the liquid micronizer 301. can do. Further, energy saving can be realized by eliminating the need for a heater for securing the humidification amount.
 なお、液体微細化装置301と送風装置330は着脱可能であってもよい。これにより、液体微細化装置301と送風装置330を別個に取り外すことができるので、メンテナンス性が向上する。 Note that the liquid micronizer 301 and the blower 330 may be detachable. Thereby, since the liquid refinement | miniaturization apparatus 301 and the air blower 330 can be removed separately, a maintainability improves.
 次に、液体微細化装置301の運転と送風装置330の運転の関係について説明する。 Next, the relationship between the operation of the liquid micronizer 301 and the operation of the blower 330 will be described.
 液体微細化部320による加湿運転は、送風装置330の湿度回収部332による湿度回収と連動して行われてもよい。これにより、より適切に湿度制御を行うことができる。 The humidification operation by the liquid refining unit 320 may be performed in conjunction with the humidity recovery by the humidity recovery unit 332 of the blower 330. Thereby, humidity control can be performed more appropriately.
 例えば、湿度回収部332による湿度制御のみを行っている運転中に、送風装置330の制御部により、更に加湿が必要であると判断した場合には、送風装置330の制御部から加湿制御部313に加湿運転を開始する指示を出す。そして、この指示を受けた加湿制御部313は液体微細化部320に運転開始の指示をする。これにより、より適切かつ速やかに加湿量即ち室内の湿度をコントロールすることが可能になる。 For example, if the controller of the blower 330 determines that further humidification is necessary during the operation in which only the humidity control by the humidity recovery unit 332 is performed, the humidifier controller 313 from the controller of the blower 330. Instructs to start humidifying operation. In response to this instruction, the humidification control unit 313 instructs the liquid micronization unit 320 to start operation. As a result, the humidification amount, that is, the indoor humidity can be controlled more appropriately and promptly.
 なお、連動の仕方については上述したものに限られず、住宅の部屋数あるいは使用者の好みに合わせて、室内の湿度を最適にコントロールするために適切な制御方法を適宜採用することとする。また、液体微細化部320の運転を制御するのは加湿制御部313であっても、送風装置330の制御部であってもよい。 The method of interlocking is not limited to that described above, and an appropriate control method is appropriately adopted in order to optimally control the indoor humidity according to the number of rooms in the house or the user's preference. The operation of the liquid micronizer 320 may be controlled by the humidification controller 313 or the controller of the blower 330.
 更に、液体微細化部320による加湿運転は、上述したように送風装置330の湿度回収部332による湿度回収から独立して行われてもよい。これにより、湿度回収部332による湿度回収が行われているか否かに関わらず、室内に供給する空気の加湿を制御することができる。また、送風装置330の風量を上げることなく、液体微細化装置301の運転により、加湿量を上げることができる。 Furthermore, the humidification operation by the liquid refinement unit 320 may be performed independently from the humidity recovery by the humidity recovery unit 332 of the blower 330 as described above. Thereby, it is possible to control humidification of the air supplied to the room regardless of whether or not the humidity recovery by the humidity recovery unit 332 is performed. In addition, the humidification amount can be increased by operating the liquid micronizer 301 without increasing the air volume of the blower 330.
 なお、液体微細化装置301には、エリミネータを設けてもよい。エリミネータは、液体微細化部320により破砕された水滴のうち、大粒の水滴を捕集する。これにより、大粒の水滴が吹出口303から吹き出されることを抑制し、使用者の不快感を抑制できる。エリミネータは例えば吹出口303近傍及び液体微細化部320を覆うように内筒305に設けられる。 Note that an eliminator may be provided in the liquid micronizer 301. The eliminator collects large water droplets among the water droplets crushed by the liquid refinement unit 320. Thereby, it can suppress that a large-sized water droplet blows off from the blower outlet 303, and can suppress a user's discomfort. The eliminator is provided in the inner cylinder 305 so as to cover, for example, the vicinity of the air outlet 303 and the liquid refinement unit 320.
 また、吹出口303は液体微細化装置301の天面ではなく側面に設けてもよい。これにより、加湿された空気が液体微細化装置301の側面から吹き出されることとなるので、上方向からの吹き出しの場合には設置できないようなところにも液体微細化装置301の設置が可能となり、液体微細化装置301の汎用性が向上する。 Further, the air outlet 303 may be provided on the side surface instead of the top surface of the liquid micronizer 301. As a result, the humidified air is blown out from the side surface of the liquid micronizer 301, so that the liquid micronizer 301 can be installed in places where it cannot be installed in the case of blowing from above. The versatility of the liquid micronizer 301 is improved.
 なお、送風装置330における外気吸込口333、給気口334、室内空気吸込口335及び排気口336の配置は一例であって、送風装置330の種類あるいは送風装置330が設置される場所等に応じて適宜設定できるものとする。 Note that the arrangement of the outside air inlet 333, the air inlet 334, the indoor air inlet 335, and the outlet 336 in the blower 330 is an example, and depends on the type of the blower 330 or the location where the blower 330 is installed. Can be set as appropriate.
 また、本実施の形態においては、液体微細化装置301は支持部342を介して送風装置330に設置されることとしたが、液体微細化装置301と送風装置330の接続方法はこれに限られず、液体微細化装置301と送風装置330が連通すればよい。 In the present embodiment, the liquid micronizer 301 is installed in the blower 330 via the support portion 342. However, the connection method between the liquid micronizer 301 and the blower 330 is not limited to this. The liquid micronizer 301 and the blower 330 need only communicate with each other.
 (実施の形態4)
 実施の形態3と同じ構成の箇所は同じ符号を付与し、詳細な説明は省略する。
(Embodiment 4)
Parts having the same configuration as those of the third embodiment are given the same reference numerals, and detailed description thereof is omitted.
 図22A及び図22Bは、実施の形態4に係る液体微細化装置301と送風装置330aの構成を示すブロック図である。液体微細化装置301は、湿度回収部332を有しない送風装置330a(例えば換気装置)に接続される。この場合、図22Aに示すように、液体微細化装置301は送風装置330aより下流側に設けられてもよい。また、図22Bに示すように、液体微細化装置301は送風装置330aより上流側に設けられてもよい。なお、図22A、図22Bにおいて破線矢印は、液体微細化装置301及び送風装置330aを通過する空気の流れを示す。 22A and 22B are block diagrams showing configurations of the liquid micronizing device 301 and the air blowing device 330a according to the fourth embodiment. The liquid micronizer 301 is connected to a blower 330a (for example, a ventilator) that does not have the humidity recovery unit 332. In this case, as shown in FIG. 22A, the liquid micronizer 301 may be provided on the downstream side of the blower 330a. Further, as shown in FIG. 22B, the liquid micronizer 301 may be provided on the upstream side of the blower 330a. In FIG. 22A and FIG. 22B, the broken line arrows indicate the flow of air passing through the liquid micronizer 301 and the blower 330a.
 液体微細化装置301が送風装置330aの上流側に設けられることで、空気を加湿する際の気化熱を利用してファンモータを冷やすことができる。一方、液体微細化装置301が送風装置330aの下流側に設けられる場合には、ファンモータの熱を利用して効率よく加湿することができる。 Since the liquid micronizer 301 is provided on the upstream side of the blower 330a, the fan motor can be cooled using the heat of vaporization when the air is humidified. On the other hand, when the liquid micronizer 301 is provided on the downstream side of the blower 330a, it can be efficiently humidified using the heat of the fan motor.
 (実施の形態5)
 実施の形態3、4と同じ構成の箇所は同じ符号を付与し、詳細な説明は省略する。
(Embodiment 5)
Parts having the same configuration as those of the third and fourth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 図23及び図26は送風装置330などの換気装置に接続可能な液体微細化装置301aの斜視図である。 23 and 26 are perspective views of a liquid micronizer 301a that can be connected to a ventilator such as the air blower 330. FIG.
 図23及び図24に示すように、液体微細化装置301aは、第1吹出口303aと、第2吹出口303bと、閉鎖板351と、を有する。 23 and 24, the liquid micronizer 301a includes a first air outlet 303a, a second air outlet 303b, and a closing plate 351.
 第1吹出口303aは液体微細化装置301aの上方に設けられる開口である。第1吹出口303aから吹き出される空気は鉛直方向上方に向かって吹き出される。 The first outlet 303a is an opening provided above the liquid micronizer 301a. Air blown from the first blower outlet 303a is blown upward in the vertical direction.
 第2吹出口303bは液体微細化装置301aの側方に設けられる開口である。第2吹出口303bから吹き出される空気は水平方向に向かって吹き出される。 The second outlet 303b is an opening provided on the side of the liquid micronizer 301a. The air blown out from the second outlet 303b is blown out in the horizontal direction.
 閉鎖板351は第1吹出口303aもしくは第2吹出口303bを塞ぐように取り付けられる。即ち、閉鎖板351が取り付けられた第1吹出口303aもしくは第2吹出口303bからは空気の流出が制限される。 The closing plate 351 is attached so as to close the first air outlet 303a or the second air outlet 303b. That is, the outflow of air is restricted from the first air outlet 303a or the second air outlet 303b to which the closing plate 351 is attached.
 第1吹出口303aもしくは第2吹出口303bには給気アダプタ350が取り付けられ、給気アダプタ350を介してダクト等に接続される。 The air supply adapter 350 is attached to the first air outlet 303a or the second air outlet 303b, and is connected to a duct or the like through the air supply adapter 350.
 ここで、給気アダプタ350が第1吹出口303aに取り付けられ、閉鎖板351が第2吹出口303bに設けられて、加湿された空気が上方向へ吹き出される態様について図25及び図26を用いて説明する。 Here, the air supply adapter 350 is attached to the first air outlet 303a, the closing plate 351 is provided in the second air outlet 303b, and the aspect in which the humidified air is blown upward is shown in FIGS. It explains using.
 この場合、図25に示すように送風装置330より吹き出された空気は吸込口302から液体微細化装置301a内へ取り込まれ、液体微細化部320を通過して加湿され、第1吹出口303aより上部へ吹き出される。なお、この場合、図26に示すように、液体微細化装置301aは送風装置330の上部に載置されるように接続されていてもよい。 In this case, as shown in FIG. 25, the air blown out from the blower 330 is taken into the liquid micronizer 301a through the suction port 302, passes through the liquid micronizer 320, and is humidified from the first blower outlet 303a. It is blown out to the top. In this case, as shown in FIG. 26, the liquid micronizer 301a may be connected so as to be placed on top of the blower 330.
 次に、給気アダプタ350と閉鎖板351を入れ替えて、第2吹出口303bより横向きに空気が吹き出されるように設けられる態様について図27~図30を用いて説明する。 Next, a mode in which the air supply adapter 350 and the closing plate 351 are replaced so that air is blown out from the second air outlet 303b will be described with reference to FIGS.
 図27及び図28に示すように、給気アダプタ350を第2吹出口303bに取り付け、閉鎖板351を第1吹出口303aに設けてもよい。 27 and 28, the air supply adapter 350 may be attached to the second air outlet 303b, and the closing plate 351 may be provided in the first air outlet 303a.
 ここで、給気アダプタ350が第2吹出口303bに取り付けられ、閉鎖板351が第1吹出口303aに設けられて、加湿された空気が横方向へ吹き出される態様について図29及び図30を用いて説明する。 Here, the air supply adapter 350 is attached to the second air outlet 303b, the closing plate 351 is provided in the first air outlet 303a, and the aspect in which the humidified air is blown out in the lateral direction is shown in FIGS. It explains using.
 この場合、図29に示すように、送風装置330より吹き出された空気は吸込口302から液体微細化装置301a内へ取り込まれ、液体微細化部320を通過して加湿され、第2吹出口303bより水平方向に向かって吹き出される。 In this case, as shown in FIG. 29, the air blown out from the blower 330 is taken into the liquid micronizer 301a through the suction port 302, passes through the liquid micronizer 320 and is humidified, and the second outlet 303b. It blows out more horizontally.
 なお、この場合、図30に示すように、送風装置330の外気吸込口333、給気口334、室内空気吸込口335、排気口336が本体ケース331の側部に設けられ、液体微細化装置301aが本体ケース331の側部に設けられていてもよい。このとき、送風装置330及び液体微細化装置301aには横方向から空気が流入し、横方向へ空気が吹き出されることとなる。 In this case, as shown in FIG. 30, the outside air inlet 333, the air inlet 334, the indoor air inlet 335, and the exhaust outlet 336 of the blower 330 are provided on the side of the main body case 331, and the liquid micronizer 301 a may be provided on a side portion of the main body case 331. At this time, air flows into the blower 330 and the liquid micronizer 301a from the lateral direction, and the air is blown out in the lateral direction.
 このように、給気アダプタ350と閉鎖板351を入れ替えて、液体微細化装置301aで加湿された空気が第2吹出口303bから横方向に吹き出されるようにする。このことにより、送風装置330の上部に施工スペースが十分確保できない場合でも、横方向への施工スペースも確保することができる。即ち、液体微細化装置301aを送風装置330の上方に設けるだけでなく、送風装置330の横に位置するように設けることが可能となる。これにより、液体微細化装置301aと送風装置330の組み合わせあるいは設置場所の自由度が向上し、施工性ならびに汎用性が向上する。 In this way, the air supply adapter 350 and the closing plate 351 are replaced so that the air humidified by the liquid micronizer 301a is blown out from the second outlet 303b in the lateral direction. Thereby, even when a sufficient construction space cannot be secured in the upper part of the blower 330, a construction space in the lateral direction can be secured. That is, the liquid micronizer 301 a can be provided not only above the blower 330 but also beside the blower 330. Thereby, the freedom degree of the combination or installation place of the liquid micronizer 301a and the air blower 330 improves, and workability and versatility improve.
 なお、閉鎖板351は第1吹出口303a及び第2吹出口303bを塞ぐことができる構造であればよく、例えばスライド方式の閉鎖板351を液体微細化装置301aと一体に備えていてもよい。 Note that the closing plate 351 only needs to have a structure capable of closing the first air outlet 303a and the second air outlet 303b. For example, a slide type closing plate 351 may be provided integrally with the liquid micronizer 301a.
 また、第1吹出口303a及び第2吹出口303bの形状も設置条件等にあわせて適宜変更できるものとする。 Also, the shapes of the first air outlet 303a and the second air outlet 303b can be appropriately changed according to the installation conditions and the like.
 更に、第2吹出口303bから横方向への吹き出しにあたり、液体微細化装置301a及び送風装置330の内部構成あるいは風路設計などは適宜変更するものとする。 Furthermore, the internal configuration or the airflow path design of the liquid micronizer 301a and the blower 330 is appropriately changed when blowing out from the second outlet 303b in the lateral direction.
 以上、本開示に係る液体微細化装置について、実施の形態に基づいて説明したが、本開示は、実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものも、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。 As mentioned above, although the liquid refinement | miniaturization apparatus which concerns on this indication was demonstrated based on embodiment, this indication is not limited to embodiment. Unless it deviates from the gist of the present disclosure, various modifications conceived by those skilled in the art are included in the present embodiment, and forms constructed by combining components in different embodiments are also included in the scope of the present disclosure. .
 本開示に係る液体微細化装置は、加湿目的での水気化装置、及び殺菌あるいは消臭目的での次亜塩素酸気化装置といった液体を気化させる装置に適用可能である。 The liquid refining device according to the present disclosure can be applied to devices for vaporizing liquids such as a water vaporizer for humidification purposes and a hypochlorous acid vaporizer for sterilization or deodorization purposes.
 1    器具本体
 2    送風口
 8    貯水室
 10   回転体
 12   多孔体
 13   多孔部
 14   送風ファン
 15   送風通路
 17   吸い込み口
101   本体ケース
102   吸込口
103   吹出口
104   貯水部
105   液体微細化室
106   内筒
107   給水部
108   水位検知部
109   回転モータ
110   回転軸
111   揚水管
112   衝突壁
113   開口
114   回転板
115   風路
116   風路
117   風路
118   排水管
119   エリミネータ
120   フロートスイッチ
121   横とい
121a  底
121b  側壁
122   縦とい
122a  底
122b  側壁
123   エリミネータ用係止爪
124   開口部
130   水滴
131   水滴
132   水滴
150   液体微細化装置
151   給排水配管
160   熱交換気装置
161   室内吸込口
162   排気口
163   外気吸込口
164   給気口
165   熱交換素子
201   本体ケース
202   吸込口
203   吹出口
204   貯水部
205   液体微細化室
206   内筒
207   給水部
208   水位検知部
209   回転モータ
210   回転軸
211   揚水管
212   衝突壁
213   開口
214   回転板
215   風路
216   風路
216a  本体ケース側壁面
217   風路
218   排水管
219   エリミネータ
219a  上端
220   フロートスイッチ
221   突出部
222   ガイド部
222a  上端
223   底部
224   空間
230   水滴
250   液体微細化装置
251   給排水配管
260   熱交換気装置
261   室内吸込口
262   排気口
263   外気吸込口
264   給気口
265   熱交換素子
301   液体微細化装置
301a  液体微細化装置
302   吸込口
303   吹出口
303a  第1吹出口
303b  第2吹出口
304   内筒風路
305   内筒
306   吸込連通風路
307   通風口
308   外筒風路
309   外筒
310   貯水部
311   排水口
312   水受け部
313   加湿制御部
314   排水管
315   給水口
316   給水管
320   液体微細化部
321   吸上管
322   回転板
323   モータ
330   送風装置
330a  送風装置
331   本体ケース
332   湿度回収部
333   外気吸込口
334   給気口
335   室内空気吸込口
336   排気口
337   送風機
338   給気風路
340   水面
341   ダクト
342   支持部
342a  脚部分
342b  台座部分
350   給気アダプタ
351   閉鎖板
DESCRIPTION OF SYMBOLS 1 Instrument main body 2 Air outlet 8 Water storage chamber 10 Rotor 12 Porous body 13 Porous part 14 Blower fan 15 Air passage 17 Suction port 101 Main body case 102 Suction port 103 Outlet 104 Water storage part 105 Liquid refinement chamber 106 Inner cylinder 107 Water supply part 108 Water level detection unit 109 Rotating motor 110 Rotating shaft 111 Pumping pipe 112 Collision wall 113 Opening 114 Rotating plate 115 Air path 116 Air path 117 Air path 118 Drain pipe 119 Eliminator 120 Float switch 121 Horizontal 121a Bottom 121b Side wall 122 Vertical frame 122a Bottom 122b Side wall 123 Eliminator locking claw 124 Opening portion 130 Water droplet 131 Water droplet 132 Water droplet 150 Liquid refinement device 151 Water supply / drainage piping 160 Heat exchange device 161 Indoor air inlet 162 Exhaust port 163 Outside air suction port 164 Air supply port 165 Heat exchange element 201 Main body case 202 Suction port 203 Air outlet 204 Water storage part 205 Liquid refinement chamber 206 Inner cylinder 207 Water supply part 208 Water level detection part 209 Rotation motor 210 Rotation shaft 211 Pumping pipe 212 Collision wall 213 Opening 214 Rotating plate 215 Air passage 216 Air passage 216a Body case side wall surface 217 Air passage 218 Drain pipe 219 Eliminator 219a Upper end 220 Float switch 221 Protruding portion 222 Guide portion 222a Upper end 223 Bottom portion 224 Space 230 Water drop 250 Liquid refinement Device 251 Water supply / drainage pipe 260 Heat exchange air device 261 Indoor suction port 262 Exhaust port 263 Outside air suction port 264 Air supply port 265 Heat exchange element 301 Liquid refiner 301a Liquid refiner 02 Suction port 303 Air outlet 303a 1st air outlet 303b 2nd air outlet 304 Inner cylinder air passage 305 Inner cylinder 306 Suction communication ventilation path 307 Ventilation opening 308 Outer cylinder air passage 309 Outer cylinder 310 Water storage part 311 Drainage outlet 312 Water receiving part 313 Humidification control part 314 Drain pipe 315 Water supply port 316 Water supply pipe 320 Liquid refinement part 321 Suction pipe 322 Rotating plate 323 Motor 330 Blower 330a Blower 331 Main body case 332 Humidity recovery part 333 Outside air inlet 334 Air inlet 335 Indoor Air intake port 336 Exhaust port 337 Blower 338 Air supply air path 340 Water surface 341 Duct 342 Support portion 342a Leg portion 342b Base portion 350 Air supply adapter 351 Closure plate

Claims (21)

  1.  空気を吸い込む吸込口と、
     前記吸込口より吸い込まれた空気を吹き出す吹出口と、
     前記吸込口と前記吹出口との間の風路内に設けられ、水を微細化する液体微細化室と、を備え、
     前記液体微細化室は、
     回転モータにより回転され、鉛直方向に向けて配置された回転軸と、
     下方に揚水口を備えると共に上方が前記回転軸に固定され、前記回転軸の回転に合わせて回転されることにより前記揚水口より揚水し、揚水した水を遠心方向に放出する筒状の揚水管と、
     前記揚水管により放出された水が衝突することにより、前記水を微細化する衝突壁と、
     前記揚水管の鉛直方向下方に設けられ、前記揚水口より揚水するための水を貯水する貯水部と、
     前記衝突壁と付着し落下する水を受け止める横といと、
     前記横といで受け止められた水を前記貯水部へ案内する縦といと、
     前記衝突壁の下方で前記横といと接触して設けられ、微細化された水のうち水滴を捕集するエリミネータと、を備えたことを特徴とする液体微細化装置。
    A suction port for inhaling air;
    An air outlet that blows out air sucked from the air inlet;
    A liquid refining chamber provided in the air passage between the suction port and the air outlet, and for refining water;
    The liquid refinement chamber is
    A rotating shaft that is rotated by a rotary motor and arranged in a vertical direction;
    A cylindrical pumping pipe provided with a pumping port on the lower side and fixed on the rotary shaft at the upper side and pumping water from the pumping port by being rotated in accordance with the rotation of the rotary shaft and discharging the pumped water in the centrifugal direction. When,
    A collision wall that refines the water by colliding with water released by the pumping pipe;
    A water storage section that is provided vertically below the pumping pipe and stores water for pumping water from the pumping port;
    Beside the collision wall and catch the falling water,
    A vertical guide that guides the water received at the side to the water reservoir,
    An eliminator that is provided in contact with the side below the collision wall and collects water droplets in the refined water.
  2.  前記エリミネータは、前記縦といとも接触して設けられることを特徴とする請求項1に記載の液体微細化装置。 2. The liquid refinement apparatus according to claim 1, wherein the eliminator is provided in contact with the vertical section.
  3.  前記エリミネータは、前記風路に対して前記エリミネータの下流側側面が、前記縦といと接触して設けられることを特徴とする請求項2に記載の液体微細化装置。 3. The liquid refinement apparatus according to claim 2, wherein the eliminator is provided such that a downstream side surface of the eliminator is in contact with the vertical direction with respect to the air path.
  4.  前記エリミネータは、前記エリミネータ内に前記縦といを埋没させて設けられることを特徴とする請求項2に記載の液体微細化装置。 3. The liquid refinement apparatus according to claim 2, wherein the eliminator is provided by burying the vertical beam in the eliminator.
  5.  前記エリミネータは、前記風路において前記エリミネータ内の下流側に前記縦といを埋没させて設けられることを特徴とする請求項4に記載の液体微細化装置。 The liquid eliminator according to claim 4, wherein the eliminator is provided by burying the vertical beam downstream of the eliminator in the air passage.
  6.  前記横といは、その横といで受け止められた水が前記縦といに向けて流れるように傾斜が設けられていることを特徴とする請求項1に記載の液体微細化装置。 2. The liquid refining apparatus according to claim 1, wherein the horizontal gutter is provided with an inclination so that water received at the horizontal glide flows toward the vertical gutter.
  7.  前記縦といは、前記横といから前記貯水部に向けて複数設けられることを特徴とする請求項1に記載の液体微細化装置。 2. The liquid micronizing apparatus according to claim 1, wherein a plurality of the vertical crossing are provided from the horizontal crossing toward the water storage unit.
  8.  空気を吸い込む吸込口と、
     前記吸込口より吸い込まれた空気を吹き出す吹出口と、
     前記吸込口と前記吹出口との間の風路内に設けられ、水を微細化する液体微細化室と、を備え、
     前記液体微細化室は、
     回転モータにより回転され、鉛直方向に向けて配置された回転軸と、
     下方に揚水口を備えると共に上方が前記回転軸に固定され、前記回転軸の回転に合わせて回転されることにより前記揚水口より揚水し、揚水した水を遠心方向に放出する筒状の揚水管と、
     前記揚水管により放出された水が衝突することにより、前記水を微細化する衝突壁と、
     前記揚水管の鉛直方向下方に設けられ、前記揚水口より揚水するための水を貯水する貯水部と、
     前記衝突壁の下方に設けられ、微細化された水のうち水滴を捕集するエリミネータと、を備え、
      前記エリミネータの下流側風路の壁面の一部を湾曲して形成されたガイド部と、を備えることを特徴とする液体微細化装置。
    A suction port for inhaling air;
    An air outlet that blows out air sucked from the air inlet;
    A liquid refining chamber provided in the air passage between the suction port and the air outlet, and for refining water;
    The liquid refinement chamber is
    A rotating shaft that is rotated by a rotary motor and arranged in a vertical direction;
    A cylindrical pumping pipe provided with a pumping port on the lower side and fixed on the rotary shaft at the upper side and pumping water from the pumping port by being rotated in accordance with the rotation of the rotary shaft and discharging the pumped water in the centrifugal direction. When,
    A collision wall that refines the water by colliding with water released by the pumping pipe;
    A water storage section that is provided vertically below the pumping pipe and stores water for pumping water from the pumping port;
    An eliminator that is provided below the collision wall and collects water droplets of the refined water, and
    And a guide part formed by bending a part of the wall surface of the downstream air passage of the eliminator.
  9.  前記液体微細化装置は、更に
     前記エリミネータの上方に設けられ、前記衝突壁から前記液体微細化室内方向に突出し前記エリミネータの上方を覆う突出部を、備えることを特徴とする請求項8に記載の液体微細化装置。
    The said liquid refinement | miniaturization apparatus is further provided above the said eliminator, The protrusion part which protrudes in the said liquid refinement | miniaturization chamber direction from the said collision wall is provided, The protrusion part which covers the upper direction of the said eliminator is provided. Liquid refinement device.
  10.  前記ガイド部の上端が前記エリミネータの上端よりも高い位置に設けられたことを特徴とする請求項8に記載の液体微細化装置。 The liquid refinement apparatus according to claim 8, wherein an upper end of the guide portion is provided at a position higher than an upper end of the eliminator.
  11.  前記ガイド部の上端が前記エリミネータの上端と略同一の高さとなるように設けられたことを特徴とする請求項8に記載の液体微細化装置。 9. The liquid micronizer according to claim 8, wherein an upper end of the guide portion is provided so as to be substantially the same height as an upper end of the eliminator.
  12.  前記液体微細化装置は、更に
     前記エリミネータの下端と接し、前記貯水部に向けて傾斜した底部を備え、
     前記突出部と前記底部とが略平行となるように設けられたことを特徴とする請求項9に記載の液体微細化装置。
    The liquid refinement device further includes a bottom portion that is in contact with a lower end of the eliminator and is inclined toward the water storage portion,
    The liquid refinement apparatus according to claim 9, wherein the protrusion and the bottom are provided so as to be substantially parallel to each other.
  13.  吸込口と、吹出口と、貯水部と、液体微細化部と、を備えた液体微細化装置であって、前記吸込口から吸い込まれた空気は、前記液体微細化部により加湿され、
     前記液体微細化部により加湿された空気は、前記吹出口から吹き出され、
     前記液体微細化部は、吸上管と、回転板と、を有し、
     前記吸上管は、前記貯水部の液体を吸い上げ、
     前記回転板は、前記吸上管が吸い上げた液体を回転により微細化し、
     前記液体微細化装置は、湿度回収部を有する送風装置と連通可能であり、
     前記湿度回収部は、前記送風装置を通過する空気の湿度を回収し、
     前記液体微細化装置及び前記送風装置を通過する空気の流れにおいて、前記液体微細化装置は、前記送風装置の下流側に設けられることを特徴とする液体微細化装置。
    A liquid miniaturization apparatus comprising a suction port, a blowout port, a water storage unit, and a liquid refinement unit, wherein the air sucked from the suction port is humidified by the liquid refinement unit,
    The air humidified by the liquid refinement unit is blown out from the outlet,
    The liquid refinement unit has a suction pipe and a rotating plate,
    The suction pipe sucks up the liquid in the water reservoir,
    The rotating plate refines the liquid sucked up by the suction pipe by rotation,
    The liquid micronizer can communicate with a blower having a humidity recovery unit,
    The humidity recovery unit recovers the humidity of the air passing through the blower,
    In the flow of air passing through the liquid micronizer and the air blower, the liquid micronizer is provided on the downstream side of the air blower.
  14.  前記湿度回収部により湿度を回収された空気が、前記液体微細化装置に流入することを特徴とする請求項13に記載の液体微細化装置。 14. The liquid micronizer according to claim 13, wherein the air whose humidity has been recovered by the humidity recovery unit flows into the liquid micronizer.
  15.  前記吹出口は、第1吹出口と、第2吹出口と、を含み、
     前記第1吹出口から吹き出される空気は、鉛直方向上方に向かって吹き出され、
     前記第2吹出口から吹き出される空気は、水平方向に向かって吹き出されることを特徴とする請求項13に記載の液体微細化装置。
    The air outlet includes a first air outlet and a second air outlet,
    The air blown out from the first outlet is blown upward in the vertical direction,
    The liquid refinement apparatus according to claim 13, wherein the air blown out from the second blow-out opening is blown out in a horizontal direction.
  16.  前記液体微細化装置は、更に
     前記第1吹出口又は前記第2吹出口を覆う閉鎖板を備え、
     前記閉鎖板が前記第1吹出口に取り付けられている場合、前記液体微細化部により加湿された空気は、前記第2吹出口から吹き出され、
     前記閉鎖板が前記第2吹出口に取り付けられている場合、前記液体微細化部により加湿された空気は、前記第1吹出口から吹き出されることを特徴とする請求項15に記載の液体微細化装置。
    The liquid refinement apparatus further includes a closing plate that covers the first air outlet or the second air outlet,
    When the closing plate is attached to the first air outlet, the air humidified by the liquid refinement unit is blown out from the second air outlet,
    16. The liquid fine according to claim 15, wherein when the closing plate is attached to the second air outlet, the air humidified by the liquid finer is blown out from the first air outlet. Device.
  17.  前記液体微細化装置は、更に
     前記吸込口に連通する内筒風路と、
     前記吹出口及び前記内筒風路に連通する外筒風路と、を備え、
     前記液体微細化部は、前記内筒風路に設けられ、
     前記外筒風路は、前記内筒風路の外周に設けられ、
     前記液体微細化装置を通過する空気は、前記吸込口、前記内筒風路、前記外筒風路、前記吹出口の順に通過し、
     前記外筒風路内を通過する空気は、鉛直方向上方に向かって送風されることを特徴とする請求項13に記載の液体微細化装置。
    The liquid refinement device further includes an inner cylindrical air passage communicating with the suction port,
    An outer tubular air passage communicating with the blowout port and the inner tubular air passage,
    The liquid refinement unit is provided in the inner cylinder air passage,
    The outer cylindrical air passage is provided on the outer periphery of the inner cylindrical air passage,
    The air passing through the liquid micronizer passes through the suction port, the inner cylindrical air passage, the outer cylindrical air passage, and the air outlet in this order.
    The liquid refining apparatus according to claim 13, wherein the air passing through the outer cylindrical air passage is blown upward in the vertical direction.
  18.  前記液体微細化装置は、更に
     前記液体微細化部の運転を制御する加湿制御部を備え、
     前記加湿制御部は、前記送風装置の運転と連動して動作するよう前記液体微細化部を制御することを特徴とする請求項13に記載の液体微細化装置。
    The liquid micronizer further includes a humidification controller that controls the operation of the liquid micronizer,
    The liquid refinement device according to claim 13, wherein the humidification control unit controls the liquid refinement unit to operate in conjunction with the operation of the blower.
  19.  前記液体微細化装置は、更に
     前記液体微細化部の運転を制御する加湿制御部を備え、
     前記加湿制御部は、前記送風装置の運転と独立して動作するよう前記液体微細化部を制御することを特徴とする請求項13に記載の液体微細化装置。
    The liquid micronizer further includes a humidification controller that controls the operation of the liquid micronizer,
    The liquid refinement device according to claim 13, wherein the humidification control unit controls the liquid refinement unit to operate independently of the operation of the blower.
  20.  前記吸込口に接続されるダクトを介して前記送風装置と連通することを特徴とする請求項13に記載の液体微細化装置。 The liquid refinement apparatus according to claim 13, wherein the liquid refinement apparatus communicates with the blower through a duct connected to the suction port.
  21.  前記液体微細化装置は、更に
     前記液体微細化装置を支持する支持部を備え、
     前記液体微細化装置は、前記支持部により前記送風装置に接続されることを特徴とする請求項13に記載の液体微細化装置。
    The liquid refinement apparatus further includes a support portion that supports the liquid refinement apparatus,
    The liquid refinement apparatus according to claim 13, wherein the liquid refinement apparatus is connected to the blower by the support portion.
PCT/JP2019/011317 2018-03-28 2019-03-19 Liquid atomizing device WO2019188534A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980021840.7A CN111902218B (en) 2018-03-28 2019-03-19 Liquid micronizing device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018-061514 2018-03-28
JP2018061514A JP7126044B2 (en) 2018-03-28 2018-03-28 Liquid atomization device and air purifier using the same
JP2018061513A JP7126043B2 (en) 2018-03-28 2018-03-28 Liquid atomization device and air purifier using the same
JP2018-061513 2018-03-28
JP2018-110271 2018-06-08
JP2018110271 2018-06-08
JP2018-169257 2018-09-11
JP2018169257A JP7170175B2 (en) 2018-06-08 2018-09-11 Liquid atomization device

Publications (1)

Publication Number Publication Date
WO2019188534A1 true WO2019188534A1 (en) 2019-10-03

Family

ID=68058926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011317 WO2019188534A1 (en) 2018-03-28 2019-03-19 Liquid atomizing device

Country Status (2)

Country Link
CN (1) CN111902218B (en)
WO (1) WO2019188534A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6654276B1 (en) * 2019-09-14 2020-02-26 株式会社Fmi Apparatus and method for inactivating influenza virus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009279514A (en) * 2008-05-22 2009-12-03 Corona Corp Negative ion and nanomist generator
JP2014188023A (en) * 2013-03-26 2014-10-06 Panasonic Corp Liquid atomizing apparatus and sauna apparatus
JP2014188021A (en) * 2013-03-26 2014-10-06 Panasonic Corp Liquid atomization device and sauna device
JP2015024350A (en) * 2013-07-24 2015-02-05 パナソニック株式会社 Liquid atomizing device and sauna apparatus using the same
JP2015058080A (en) * 2013-09-18 2015-03-30 パナソニック株式会社 Liquid refining device and sauna device using the same
JP2017116164A (en) * 2015-12-24 2017-06-29 株式会社コロナ Humidifier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155139A (en) * 1995-12-06 1997-06-17 Aiwa Co Ltd Air cleaner
JP2011160946A (en) * 2010-02-09 2011-08-25 Panasonic Corp Liquid atomizing device and sauna apparatus using the same
CN103816759A (en) * 2014-03-02 2014-05-28 孙传钢 Coaxial integrated multilayered centrifugal washing gas-clearing machine
CN203744494U (en) * 2014-03-06 2014-07-30 美的集团股份有限公司 Air conditioner wet storage and humidification device and air conditioner indoor machine and air conditioner system using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009279514A (en) * 2008-05-22 2009-12-03 Corona Corp Negative ion and nanomist generator
JP2014188023A (en) * 2013-03-26 2014-10-06 Panasonic Corp Liquid atomizing apparatus and sauna apparatus
JP2014188021A (en) * 2013-03-26 2014-10-06 Panasonic Corp Liquid atomization device and sauna device
JP2015024350A (en) * 2013-07-24 2015-02-05 パナソニック株式会社 Liquid atomizing device and sauna apparatus using the same
JP2015058080A (en) * 2013-09-18 2015-03-30 パナソニック株式会社 Liquid refining device and sauna device using the same
JP2017116164A (en) * 2015-12-24 2017-06-29 株式会社コロナ Humidifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6654276B1 (en) * 2019-09-14 2020-02-26 株式会社Fmi Apparatus and method for inactivating influenza virus
WO2021049045A1 (en) * 2019-09-14 2021-03-18 株式会社Fmi Device for inactivating influenza virus and inactivation method

Also Published As

Publication number Publication date
CN111902218A (en) 2020-11-06
CN111902218B (en) 2022-04-26

Similar Documents

Publication Publication Date Title
JP7445841B2 (en) Water stop mechanism
WO2010029722A1 (en) Liquid refining device and humidifier using same
CN112984636A (en) Humidifying unit for HVAC system
JP4367267B2 (en) Sauna equipment
JP2020118383A (en) Heat exchange type ventilation device with dehumidification function
CN111417466B (en) Liquid micronizing device, air interchanger, air purifier and air conditioner
JP2011058728A (en) Liquid atomizer unit and liquid atomizing device, and sauna device using the same
WO2019188534A1 (en) Liquid atomizing device
KR20130107535A (en) Humidifier
JP6906151B2 (en) Hypochlorous acid generator and air purifier using it
JP7170175B2 (en) Liquid atomization device
CN213514244U (en) Air treatment device
JP2019171272A (en) Liquid atomization device and heat exchanger, air cleaner or air conditioner using the same
JP5381576B2 (en) Liquid refinement device and sauna device using the same
JP2021148364A (en) Liquid atomization device
JP7170195B2 (en) Liquid atomization device and heat exchange air device using the same
JP7194880B2 (en) Liquid atomization device
WO2023238526A1 (en) Liquid atomization device and heat exchange ventilation device using same
JP7126044B2 (en) Liquid atomization device and air purifier using the same
JP2013242071A (en) Humidifying mechanism
JP7090225B2 (en) Liquid miniaturization equipment and ventilation equipment using it, air purifiers, air conditioners
JP2021055895A (en) Liquid atomization device
JP5217935B2 (en) Humidification device and sauna device using it
JP5287567B2 (en) Liquid refinement device and sauna device using the same
TW574487B (en) Integrated air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777139

Country of ref document: EP

Kind code of ref document: A1