WO2019187725A1 - フッ素樹脂材料、高周波伝送用フッ素樹脂材料および高周波伝送用被覆電線 - Google Patents

フッ素樹脂材料、高周波伝送用フッ素樹脂材料および高周波伝送用被覆電線 Download PDF

Info

Publication number
WO2019187725A1
WO2019187725A1 PCT/JP2019/005096 JP2019005096W WO2019187725A1 WO 2019187725 A1 WO2019187725 A1 WO 2019187725A1 JP 2019005096 W JP2019005096 W JP 2019005096W WO 2019187725 A1 WO2019187725 A1 WO 2019187725A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
fluororesin material
tfe
copolymer
less
Prior art date
Application number
PCT/JP2019/005096
Other languages
English (en)
French (fr)
Inventor
今村 均
昌宏 近藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP19777108.2A priority Critical patent/EP3778723A4/en
Priority to CN201980020656.0A priority patent/CN111886284B/zh
Priority to US17/041,298 priority patent/US11926753B2/en
Priority claimed from JP2019023272A external-priority patent/JP6708275B2/ja
Publication of WO2019187725A1 publication Critical patent/WO2019187725A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins

Definitions

  • This disclosure relates to a fluororesin material, a fluororesin material for high-frequency transmission, and a coated electric wire for high-frequency transmission.
  • microwaves of 3 to 30 GHz are used for high-frequency wireless LANs, satellite communications, mobile phone base stations, and the like.
  • Patent Document 1 proposes a tetrafluoroethylene-based resin molding material with excellent high-frequency electrical characteristics that gives a molded product having a relative dielectric constant of 12 or less at 12 GHz and a dielectric loss tangent of 1.90 ⁇ 10 ⁇ 4 or less. Has been.
  • Patent Document 1 since the tetrafluoroethylene-based resin molding material proposed in Patent Document 1 is non-melt-processable, it is melt-processed using conventional processing equipment such as an extruder and an injection-molding machine. Can't get.
  • an object of the present disclosure is to provide a fluororesin material that can be manufactured by melt processing and has excellent high-frequency electrical characteristics.
  • a fluororesin material containing a melt processable fluororesin, having a relative dielectric constant at 12 GHz of 2.1 or less and a dielectric loss tangent of 0.00030 or less.
  • the number of functional groups per 10 6 main chain carbon atoms of the fluororesin is preferably 6 or less.
  • the fluororesin is at least one selected from the group consisting of a tetrafluoroethylene / (per) fluoro (alkyl vinyl ether) copolymer and a tetrafluoroethylene / hexafluoropropylene copolymer.
  • a seed copolymer is preferred.
  • a fluororesin material for high frequency transmission containing the above fluororesin material is also provided.
  • a high-frequency transmission coated electric wire provided with the above-described fluororesin material as the insulating coating layer, wherein the insulating coating layer is a solid insulating coating layer.
  • the fluororesin material of the present disclosure contains a melt processable fluororesin.
  • melt processability means that the polymer can be melted and processed using conventional processing equipment such as an extruder and an injection molding machine. Therefore, the melt processable fluororesin usually has a melt flow rate of 0.01 to 500 g / 10 min as measured by the measurement method described later.
  • a melt-processable tetrafluoroethylene / hexafluoropropylene copolymer, a tetrafluoroethylene / (per) fluoro (alkyl vinyl ether) copolymer, and the like are hexafluoropropylene and ( Since per) fluoro (alkyl vinyl ether) is copolymerized, the dipole moment is increased, and a corresponding decrease in electrical characteristics appears remarkably in the microwave region having a high frequency.
  • the relative dielectric constant at 12 GHz of the fluororesin material of the present disclosure is 2.1 or less, and the dielectric loss tangent is 0.00030 or less.
  • the relative dielectric constant of the fluororesin material of the present disclosure is 2.1 or less, preferably 2.10 or less, more preferably 2.08 or less, and the lower limit is not particularly limited, but preferably 1.80. That's it.
  • the dielectric loss tangent of the fluororesin material of the present disclosure is 0.00030 or less, preferably 0.00020 or less, and the lower limit is not particularly limited, but is preferably 0.00001 or more.
  • the relative dielectric constant and dielectric loss tangent are values obtained by measuring changes in resonance frequency and electric field strength at a temperature of 20 to 25 ° C. using a network analyzer HP8510C (manufactured by Hewlett Packard) and a cavity resonator. .
  • the number of functional groups per 10 6 main chain carbon atoms of the fluororesin material contained in the fluororesin material of the present disclosure is preferably 6 or less, and more preferably, because excellent radio frequency electrical characteristics can be obtained. It is 4 or less, more preferably 2 or less, and particularly preferably 0.
  • the number of functional groups of the fluororesin is the number of functional groups of the fluororesin after irradiation when the fluororesin material is produced by irradiating the fluororesin before irradiation with radiation. Moreover, it is preferable that the number of functional groups of the fluororesin before irradiation is also in the above range.
  • the number of functional groups generated by irradiation is further improved by adjusting it within the above-mentioned range of functional groups. High frequency electrical characteristics can be obtained.
  • the number of functional groups of the fluororesin before irradiation is within the above range, it is presumed that when the fluororesin is irradiated with radiation, the reaction of cross-linking of the functional groups is suppressed and high-frequency electrical characteristics are improved.
  • the number of functional groups is within the above range, there is an advantage that molding defects such as foaming hardly occur when the fluororesin is molded.
  • Infrared spectroscopic analysis can be used for identification of the types of functional groups and measurement of the number of functional groups.
  • Table 1 shows the absorption frequency, molar extinction coefficient, and correction coefficient for the functional groups in the present disclosure.
  • the molar extinction coefficient is determined from FT-IR measurement data of a low molecular weight model compound.
  • the absorption frequencies of —CH 2 CF 2 H, —CH 2 COF, —CH 2 COOH, —CH 2 COOCH 3 , —CH 2 CONH 2 are shown in the table, respectively, —CF 2 H, —COF, —
  • the absorption frequency of COOH free, —COOH bonded, —COOCH 3 , and —CONH 2 is lower by several tens of Kaiser (cm ⁇ 1 ).
  • the number of functional groups of —COF is the number of functional groups determined from the absorption peak at an absorption frequency of 1883 cm ⁇ 1 due to —CF 2 COF and the absorption peak at an absorption frequency of 1840 cm ⁇ 1 due to —CH 2 COF. It is the total with the obtained number of functional groups.
  • the functional group is a functional group present at the main chain end or side chain end of the fluororesin, and a functional group present in the main chain or side chain.
  • the number of functional groups may be the total number of —CF ⁇ CF 2 , —CF 2 H, —COF, —COOH, —COOCH 3 , —CONH 2 and CH 2 OH.
  • the functional group is introduced into the fluororesin by, for example, a chain transfer agent or a polymerization initiator used when producing the fluororesin.
  • a chain transfer agent or a polymerization initiator used when producing the fluororesin.
  • alcohol is used as a chain transfer agent or a peroxide having a structure of —CH 2 OH is used as a polymerization initiator
  • —CH 2 OH is introduced at the end of the main chain of the fluororesin.
  • the said functional group is introduce
  • the fluororesin having the number of functional groups within the above range can be obtained by subjecting the fluororesin having such a functional group to fluorination treatment. That is, it is preferable that the fluororesin contained in the fluororesin material of the present disclosure is fluorinated.
  • the fluororesin contained in the fluororesin material of the present disclosure preferably has a —CF 3 terminal group.
  • the fluorination treatment can be performed by bringing a fluorine resin not subjected to fluorination treatment and a fluorine-containing compound into contact with each other.
  • produces a fluorine radical under fluorination process conditions is mentioned.
  • the fluorine radical source include F 2 gas, CoF 3 , AgF 2 , UF 6 , OF 2 , N 2 F 2 , CF 3 OF, and halogen fluoride (eg, IF 5 , ClF 3 ).
  • the fluorine radical source such as F 2 gas may have a concentration of 100%, but is preferably mixed with an inert gas and diluted to 5 to 50% by mass from the viewpoint of safety. It is more preferable to use it diluted to ⁇ 30% by mass.
  • the inert gas include nitrogen gas, helium gas, and argon gas. Nitrogen gas is preferable from the economical viewpoint.
  • the conditions for the fluorination treatment are not particularly limited, and the molten fluororesin and the fluorine-containing compound may be brought into contact with each other, but usually below the melting point of the fluororesin, preferably 20 to 220 ° C., more preferably Can be carried out at a temperature of 100 to 200 ° C.
  • the fluorination treatment is generally performed for 1 to 30 hours, preferably 5 to 25 hours.
  • the fluorination treatment is preferably performed by bringing a fluororesin that has not been fluorinated into contact with fluorine gas (F 2 gas).
  • the above-mentioned fluororesin preferably has a melting point of 190 to 322 ° C.
  • fusing point More preferably, it is 200 degreeC or more, More preferably, it is 220 degreeC or more, Especially preferably, it is 280 degreeC or more, More preferably, it is 315 degreeC or less.
  • the melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
  • the fluororesin is not particularly limited as long as it is a melt processable fluororesin, but tetrafluoroethylene units (TFE units) and (per) fluoro (alkyl vinyl ether) units are obtained because further excellent high-frequency electrical characteristics can be obtained.
  • TFE units tetrafluoroethylene units
  • alkyl vinyl ether alkyl vinyl ether
  • Copolymer hereinafter referred to as TFE / PAVE copolymer (or PFA)
  • TFE unit and hexafluoropropylene unit HFP unit
  • the fluororesin is a copolymer containing PAVE units because a fluororesin material having excellent high-frequency electrical characteristics and a relatively high breaking strength can be obtained.
  • the (per) fluoro (alkyl vinyl ether) may be a fluoroalkyl vinyl ether or a perfluoro (alkyl vinyl ether).
  • perfluoro (alkyl vinyl ether) is an alkyl vinyl ether containing no C—H bond.
  • CF 2 CFO (CF 2 CFY 1 O) p — (CF 2 CF 2 CF 2 O) q —R f (1)
  • Y 1 represents F or CF 3
  • R f represents a perfluoroalkyl group having 1 to 5 carbon atoms
  • p represents an integer of 0 to 5
  • q represents an integer of 0 to 5
  • CFX CXOCF 2 OR 1 (2)
  • X is the same or different and represents H, F or CF 3
  • R 1 represents at least one atom selected from the group consisting of H, Cl, Br and I, which is linear or branched.
  • the monomer represented by General formula (1) is preferable, From the group which consists of perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), and perfluoro (propyl vinyl ether) (PPVE). At least one selected is more preferable, and PPVE is more preferable.
  • the content of PAVE units in the TFE / PAVE copolymer is preferably 1.0 to 10% by mass, more preferably 2.0% by mass or more, and still more preferably based on all monomer units. Is 3.5% by mass or more, particularly preferably 4.0% by mass or more, most preferably 5.0% by mass or more, more preferably 8.0% by mass or less, and still more preferably 7% by mass. It is 0.0 mass% or less, Especially preferably, it is 6.5 mass% or less, Most preferably, it is 6.0 mass% or less.
  • the amount of the PAVE unit is measured by 19 F-NMR method.
  • the TFE / PAVE copolymer may be a copolymer composed only of TFE units and PAVE units.
  • the melting point of the TFE / PAVE copolymer is preferably 280 to 322 ° C., more preferably 290 ° C. or more, and more preferably 315 ° C. or less.
  • the glass transition temperature (Tg) of the TFE / PAVE copolymer is preferably 70 to 110 ° C, more preferably 80 ° C or higher, and more preferably 100 ° C or lower.
  • the glass transition temperature is a value obtained by measurement by dynamic viscoelasticity measurement.
  • the TFE / PAVE copolymer is produced by a conventionally known method such as emulsion polymerization or suspension polymerization by appropriately mixing monomers as constituent units and additives such as a polymerization initiator. Can do.
  • the TFE / HFP copolymer contains TFE units and HFP units.
  • the content of TFE units in the TFE / HFP copolymer is preferably 70% by mass or more, more preferably 85% by mass or more, and preferably 99.8% by mass with respect to all monomer units. % Or less, more preferably 99% by mass or less, and still more preferably 98% by mass or less.
  • the TFE / HFP copolymer preferably has a mass ratio (TFE / HFP) of TFE units to HFP units of 70 to 99/1 to 30 (mass%).
  • the mass ratio (TFE / HFP) is more preferably 85 to 95/5 to 15 (mass%).
  • the TFE / HFP copolymer can further contain (per) fluoro (alkyl vinyl ether) (PAVE) units.
  • PAVE fluoro (alkyl vinyl ether)
  • Examples of the PAVE unit contained in the TFE / HFP copolymer include the same PAVE units as those described above. Since the TFE / PAVE copolymer described above does not contain HFP units, it differs from the TFE / HFP / PAVE copolymer in that respect.
  • the mass ratio (TFE / HFP) / PAVE) is preferably 70 to 99.8 / 0.1 to 25 / 0.1 to 25 (mass%).
  • the mass ratio (TFE / HFP / PAVE) is more preferably 75 to 98 / 1.0 to 15 / 1.0 to 10 (mass%).
  • the TFE / HFP / PAVE copolymer preferably contains 1% by mass or more of HFP units and PAVE units in total.
  • the HFP unit is preferably 25% by mass or less based on the total monomer units.
  • the content of the HFP unit is more preferably 20% by mass or less, still more preferably 18% by mass or less, and particularly preferably 15% by mass or less. Further, the content of the HFP unit is preferably 0.1% by mass or more, more preferably 1% by mass or more, and particularly preferably 2% by mass or more.
  • the content of the HFP unit can be measured by 19 F-NMR method.
  • the content of the PAVE unit is more preferably 20% by mass or less, and further preferably 10% by mass or less. Especially preferably, it is 3 mass% or less. Further, the content of the PAVE unit is preferably 0.1% by mass or more, and more preferably 1% by mass or more.
  • the content of the PAVE unit can be measured by 19 F-NMR method.
  • the TFE / HFP copolymer may further contain other ethylenic monomer ( ⁇ ) units.
  • the other ethylenic monomer ( ⁇ ) unit is not particularly limited as long as it is a monomer unit copolymerizable with TFE, HFP and PAVE.
  • the content of other ethylenic monomer ( ⁇ ) units is preferably 0 to 25% by mass, more preferably 0.1 to 25% by mass.
  • the mass ratio (TFE / HFP / PAVE / other ethylenic monomer ( ⁇ )) is: It is preferably 70 to 98 / 0.1 to 25 / 0.1 to 25 / 0.1 to 25 (mass%).
  • the TFE / HFP / PAVE / other ethylenic monomer ( ⁇ ) copolymer preferably contains 1% by mass or more of monomer units other than TFE units in total.
  • the melting point of the TFE / HFP copolymer is preferably 200 to 322 ° C., more preferably more than 200 ° C., further preferably 220 ° C. or more, more preferably 300 ° C. or less, and further preferably It is 280 degrees C or less.
  • the glass transition temperature (Tg) of the TFE / HFP copolymer is preferably 60 to 110 ° C., more preferably 65 ° C. or more, and more preferably 100 ° C. or less.
  • the glass transition temperature is a value obtained by measurement by dynamic viscoelasticity measurement.
  • the TFE / HFP copolymer is prepared by a conventionally known method such as emulsion polymerization, solution polymerization, suspension polymerization, or the like by appropriately mixing monomers as constituent units and additives such as a polymerization initiator. Can be manufactured.
  • the fluororesin is preferably the TFE / PAVE copolymer and the TFE / HFP copolymer. That is, the TFE / PAVE copolymer and the TFE / HFP copolymer can be mixed and used.
  • the mass ratio ((A) / (B)) between the TFE / PAVE copolymer and the TFE / HFP copolymer is preferably 1/9 to 7/3, more preferably 5/5 to 2 / 8.
  • the above mixture is a mixture of two or more of the above fluororesins and melt-mixed (melt-kneaded), mixed with a resin dispersion after emulsion polymerization, and coagulated with an acid such as nitric acid to recover the resin, etc. It may be prepared by a known method.
  • the melt flow rate (MFR) of the fluororesin at 372 ° C. is preferably 0.1 to 100 g / 10 minutes, more preferably 0.5 g / 10 minutes or more, more preferably 80 g / 10 minutes or less. Yes, more preferably 40 g / 10 min or less.
  • MFR melt flow rate
  • ASTM D1238 the MFR uses a melt indexer (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), and the mass of the polymer flowing out per 10 minutes from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 372 ° C. and 5 kg (g / 10) Min)).
  • the breaking strength of the fluororesin material of the present disclosure is preferably 13 MPa or more, more preferably 15 MPa or more, and the upper limit is not particularly limited, but may be 30 MPa or less, or 25 MPa or less.
  • the fluororesin material of the present disclosure can be manufactured by melt processing and at the same time has such a high breaking strength. When the breaking strength of the fluororesin material of the present disclosure is within the above range, the breaking strength of the fluororesin material of the present disclosure can be applied to applications that require high mechanical strength.
  • the fluororesin material of the present disclosure may contain other components as necessary.
  • Other components include additives such as crosslinking agents, antistatic agents, heat stabilizers, foaming agents, foaming nucleating agents, antioxidants, surfactants, photopolymerization initiators, antiwear agents, surface modifiers, etc. Can be mentioned.
  • the fluororesin material of the present disclosure can be manufactured, for example, by a manufacturing method including a step of irradiating 20 to 100 kGy of radiation at 80 to 240 ° C. with respect to an unirradiated fluororesin.
  • the irradiation temperature of the radiation is 80 to 240 ° C., preferably 100 ° C. or more, more preferably 140 ° C. or more, and preferably 220 ° C. from the viewpoint of achieving both excellent high-frequency electrical characteristics and high breaking strength. It is below, More preferably, it is 200 degrees C or less, More preferably, it is 180 degrees C or less.
  • the irradiation temperature is preferably within the above numerical range and lower than the melting point of the fluororesin before irradiation with radiation.
  • the adjustment of the irradiation temperature is not particularly limited, and can be performed by a known method. Specifically, a method of holding the above-mentioned fluororesin in a heating furnace maintained at a predetermined temperature, placing on a hot plate, energizing a heater built in the hot plate, or hot plate by an external heating means The method of heating is mentioned.
  • the radiation dose is 20 to 100 kGy, preferably 95 kGy or less, more preferably 80 kGy or less, preferably 30 kGy or more, from the viewpoint of achieving both excellent high-frequency electrical characteristics and high breaking strength. More preferably, it is 40 kGy or more.
  • Examples of radiation include electron beams, ultraviolet rays, gamma rays, X-rays, neutron rays, high energy ions, and the like.
  • an electron beam is preferable because it has excellent transmission power, a high dose rate, and is suitable for industrial production.
  • the method of irradiating radiation is not particularly limited, and examples thereof include a method performed using a conventionally known radiation irradiating apparatus.
  • the irradiation environment is not particularly limited, but the oxygen concentration is preferably 1000 ppm or less, more preferably in the absence of oxygen, and in an inert gas atmosphere such as nitrogen, helium or argon More preferably, it is in the middle.
  • the above-described method for producing a fluororesin material preferably further includes a step of molding a non-irradiated fluororesin or a step of molding a fluororesin after irradiation.
  • the molding since the molding is easy, it is preferable to mold the fluororesin before irradiating with radiation. That is, it is more preferable that the above method for producing a fluororesin material further includes a step of molding a fluororesin that has not been irradiated with radiation.
  • the above fluororesin material manufacturing method includes these steps, whereby a fluororesin material having a desired shape can be manufactured.
  • a method for molding the fluororesin a method can be used in which the fluororesin is heated to a melting point or higher and melted.
  • the method for molding the fluororesin is not particularly limited, and examples thereof include known methods such as extrusion molding, injection molding, transfer molding, inflation molding, and compression molding. What is necessary is just to select these shaping
  • molding methods suitably according to the shape of the fluororesin material obtained.
  • the shape of the fluororesin material of the present disclosure is not particularly limited, and examples thereof include pellets, films, sheets, plates, rods, blocks, cylinders, containers, electric wires, and tubes. Also, coating layers for cooking utensils such as rice cookers, hot plates and frying pans, and topcoat layers for fixing rollers for image forming devices such as electrophotographic or electrostatic recording copying machines and laser printers are formed.
  • a fluororesin coating film may be used.
  • the fluororesin coating film can be formed by applying a fluororesin paint to a substrate.
  • the fluororesin material of the present disclosure has a low relative dielectric constant and dielectric loss tangent, it can be particularly suitably used as a fluororesin material for high-frequency transmission.
  • the dielectric loss ⁇ of the high frequency signal can be calculated by the following equation.
  • k is a constant
  • ⁇ r is a relative dielectric constant
  • tan ⁇ is a dielectric loss tangent
  • f is a signal frequency
  • A is a dielectric loss contribution.
  • the product for high-frequency signal transmission is not particularly limited as long as it is a product used for high-frequency signal transmission.
  • Examples include bases for high-frequency vacuum tubes, molded articles such as antenna covers, and (3) covered electric wires such as coaxial cables and LAN cables.
  • the fluororesin material of the present disclosure can be suitably used as an insulator because it has a low relative dielectric constant and dielectric loss tangent.
  • the above (1) molded board is preferably a printed wiring board in that good electrical characteristics can be obtained.
  • said printed wiring board for example, the printed wiring board of electronic circuits, such as a mobile telephone, various computers, and communication apparatuses, is mentioned.
  • an antenna cover is preferable at a point with low dielectric loss.
  • a high-frequency transmission coated electric wire provided with the fluororesin material of the present disclosure is preferable as an insulating coating layer in that good electrical characteristics can be obtained.
  • the high frequency transmission covered electric wire may be a high frequency transmission cable, and a coaxial cable is preferable as the high frequency transmission cable.
  • the coaxial cable generally has a structure in which an inner conductor, an insulating coating layer, an outer conductor layer, and a protective coating layer are sequentially laminated from the core portion to the outer peripheral portion.
  • each layer in the above structure is not particularly limited, but usually the inner conductor has a diameter of about 0.1 to 3 mm, the insulating coating layer has a thickness of about 0.3 to 3 mm, and the outer conductor layer has a thickness of about
  • the protective coating layer has a thickness of about 0.5 to 2 mm.
  • the above-mentioned insulating coating layer may be a foamed insulating coating layer.
  • the coated electric wire for high-frequency transmission has the low relative dielectric constant and dielectric loss tangent of the fluororesin material of the present disclosure, and a low transmission loss can be obtained without foaming.
  • the insulating coating layer formed from the material may be a solid insulating coating layer.
  • the term “solid” means that the inside is filled with a fluororesin material and there is substantially no void.
  • a void formed unintentionally due to a molding defect or the like may be included.
  • many voids exist in the foamed insulation coating layer.
  • the fluororesin material of the present disclosure may be a solid fluororesin material.
  • the above-mentioned (3) covered electric wire includes, for example, a step of coating a non-radiated fluororesin on the inner conductor by extrusion molding to form a covering layer on the inner conductor, and the irradiation on the covering layer. It can be manufactured by a manufacturing method including a step of obtaining a covered electric wire including the fluororesin material as an insulating coating layer by irradiating radiation under conditions to form the fluororesin material.
  • the product for high-frequency signal transmission can be suitably used for devices using microwaves, particularly 3 to 30 MHz microwaves such as satellite communication devices and mobile phone base stations.
  • MFR mass (g / 10 minutes) of the polymer flowing out per 10 minutes from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 372 ° C. and 5 kg. Asked. (Melting point) It calculated
  • N I ⁇ K / t (A) I: Absorbance K: Correction coefficient t: Film thickness (mm)
  • Table 2 shows the absorption frequency, molar extinction coefficient, and correction coefficient for the functional groups in the present disclosure.
  • the molar extinction coefficient is determined from FT-IR measurement data of a low molecular weight model compound.
  • the dielectric loss tangent and relative dielectric constant of the test pieces (extrusion molding) obtained in the examples or comparative examples were measured by the cavity resonator method. Using a network analyzer (HP8510C, manufactured by Hewlett-Packard Company), changes in resonance frequency and Q value (electric field strength) were measured at a temperature of 20 to 25 ° C., and a dielectric loss tangent (tan ⁇ ) and a relative dielectric constant ( ⁇ r at 12 GHz). ) was measured. Further, the dielectric loss contribution A was determined from the following equation from the dielectric loss tangent and relative dielectric constant.
  • Comparative Example 2 The pellet used in Comparative Example 1 was put in a container, and fluorine gas diluted to 20 mass% with nitrogen gas was passed at 200 ° C. at normal pressure for 10 hours to perform fluorine gas treatment. When the number of functional groups was measured using pellets obtained by the fluorine gas treatment, no functional groups were detected. Further, a test piece (extrusion molding) and a test piece (compression molding) were obtained and evaluated in the same manner as in Comparative Example 1 except that pellets obtained by the fluorine gas treatment were used. The results are shown in Table 3.
  • Example 1 The test piece (extrusion molding) and the test piece (compression molding) obtained in Comparative Example 2 are accommodated in an electron beam irradiation container of an electron beam irradiation apparatus (manufactured by NHV Corporation), and then nitrogen gas is added to the container. Was put in a nitrogen atmosphere. After confirming that the temperature in the container was stable at the irradiation temperature described in Table 3, each test piece was listed in Table 3 under the conditions of an electron beam acceleration voltage of 3000 kV and an irradiation dose intensity of 20 kGy / 5 min. Irradiation dose of electron beam was applied. Evaluation was performed in the same manner as in Comparative Example 1 except that a test piece irradiated with an electron beam was used. The results are shown in Table 3.
  • Example 2-5 A test piece was obtained in the same manner as in Example 1 except that the electron beam was irradiated under the conditions described in Table 3. Evaluation was performed in the same manner as in Comparative Example 1 using the obtained test piece. The results are shown in Table 3.
  • Comparative Example 3 A test piece was obtained in the same manner as in Comparative Example 1 except that pellets of TFE / PPVE / HFP copolymer were used. Evaluation was performed in the same manner as in Comparative Example 1 using the obtained test piece. The results are shown in Table 3.
  • Comparative Example 4 Fluorine gas treatment was performed in the same manner as in Comparative Example 2 except that the pellets used in Comparative Example 3 were used. When the number of functional groups was measured using pellets obtained by the fluorine gas treatment, no functional groups were detected. Further, a test piece (extrusion molding) and a test piece (compression molding) were obtained and evaluated in the same manner as in Comparative Example 1 except that pellets obtained by the fluorine gas treatment were used. The results are shown in Table 3.
  • Example 6-7 A test piece was obtained in the same manner as in Example 1 except that the pellet obtained in Comparative Example 4 was used and irradiated with an electron beam under the conditions described in Table 3. Evaluation was performed in the same manner as in Comparative Example 1 using the obtained test piece. The results are shown in Table 3.
  • Comparative Example 5 A test piece was obtained in the same manner as in Comparative Example 1 except that pellets of TFE / HFP copolymer were used. Evaluation was performed in the same manner as in Comparative Example 1 using the obtained test piece. The results are shown in Table 3.
  • Comparative Example 6 A fluorine gas treatment was performed in the same manner as in Comparative Example 2 except that the pellets used in Comparative Example 5 were used. When the number of functional groups was measured using pellets obtained by the fluorine gas treatment, no functional groups were detected. Further, a test piece (extrusion molding) and a test piece (compression molding) were obtained and evaluated in the same manner as in Comparative Example 1 except that pellets obtained by the fluorine gas treatment were used. The results are shown in Table 3.
  • Example 8 A test piece was obtained in the same manner as in Example 1 except that the pellet obtained in Comparative Example 6 was used and irradiated with an electron beam under the conditions described in Table 3. Evaluation was performed in the same manner as in Comparative Example 1 using the obtained test piece. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

溶融加工性のフッ素樹脂を含有し、12GHzにおける比誘電率が2.1以下であり、誘電正接が0.00030以下であるフッ素樹脂材料を提供する。

Description

フッ素樹脂材料、高周波伝送用フッ素樹脂材料および高周波伝送用被覆電線
 本開示は、フッ素樹脂材料、高周波伝送用フッ素樹脂材料および高周波伝送用被覆電線に関する。
 電波を使用した通信手段の発展は目覚しいものがある。使用電波も送信する情報量の増加にともなってますます高周波数領域が使用される傾向にある。たとえば高周波無線LANや衛星通信、携帯電話基地局などには3~30GHzのマイクロ波が使用される。
 このような高周波を使用する通信機器に使用する資材の材料として、安定して低い比誘電率(ε)や、低い誘電正接(tanδ)といった電気特性を有する材料の開発が進められている。たとえば、特許文献1では、12GHzにおける比誘電率が2.2以下で誘電正接が1.90×10-4以下の成形品を与える高周波電気特性に優れたテトラフルオロエチレン系樹脂成形用材料が提案されている。
特開2001-288227号公報
 しかしながら、特許文献1で提案されたテトラフルオロエチレン系樹脂成形用材料は、非溶融加工性であるため、押出機および射出成形機などの従来の加工機器を用いて、溶融加工して成形品を得ることができない。
 そこで、本開示は、溶融加工により製造することが可能であり、高周波電気特性にも優れたフッ素樹脂材料を提供することを目的とする。
 本開示によれば、溶融加工性のフッ素樹脂を含有し、12GHzにおける比誘電率が2.1以下であり、誘電正接が0.00030以下であるフッ素樹脂材料が提供される。
 本開示のフッ素樹脂材料において、前記フッ素樹脂の主鎖炭素数10個当たりの官能基数が、6個以下であることが好ましい。
 本開示のフッ素樹脂材料において、前記フッ素樹脂が、テトラフルオロエチレン/(パー)フルオロ(アルキルビニルエーテル)共重合体、および、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体からなる群より選択される少なくとも1種の共重合体であることが好ましい。
 本開示によれば、また、上記のフッ素樹脂材料を含有する高周波伝送用フッ素樹脂材料が提供される。
 本開示によれば、また、絶縁被覆層として、上記のフッ素樹脂材料を備え、前記絶縁被覆層が中実の絶縁被覆層である高周波伝送用被覆電線が提供される。
 本開示によれば、溶融加工により製造することが可能であり、高周波電気特性にも優れたフッ素樹脂材料を提供することができる。
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。
 本開示のフッ素樹脂材料は、溶融加工性のフッ素樹脂を含有する。本開示において、溶融加工性とは、押出機および射出成形機などの従来の加工機器を用いて、ポリマーを溶融して加工することが可能であることを意味する。従って、溶融加工性のフッ素樹脂は、後述する測定方法により測定されるメルトフローレートが0.01~500g/10分であることが通常である。
 特許文献1に記載されているように、溶融加工可能なテトラフルオロエチレン/ヘキサフルオロプロピレン共重合体や、テトラフルオロエチレン/(パー)フルオロ(アルキルビニルエーテル)共重合体などは、ヘキサフルオロプロピレンや(パー)フルオロ(アルキルビニルエーテル)が共重合されているため双極子モーメントが大きくなり、その分、周波数の高いマイクロ波領域では電気特性の低下が顕著に現れてしまう。
 しかしながら、溶融加工性のフッ素樹脂に対して、適切な照射条件で放射線を照射すると、特異な比誘電率および誘電正接を有するフッ素樹脂材料が得られること、あわせて、このような比誘電率および誘電正接を有するフッ素樹脂材料を用いると、従来の溶融加工性のフッ素樹脂に比べて、高周波信号の減衰率が大きく低減することが、見出された。本開示のフッ素樹脂材料は、この知見に基づき完成された。
 本開示のフッ素樹脂材料は、12GHzにおける比誘電率が2.1以下であり、誘電正接が0.00030以下である。
 本開示のフッ素樹脂材料の比誘電率は、2.1以下であり、好ましくは2.10以下であり、より好ましくは2.08以下であり、下限は特に限定されないが、好ましくは1.80以上である。
 本開示のフッ素樹脂材料の誘電正接は、0.00030以下であり、好ましくは0.00020以下であり、下限は特に限定されないが、好ましくは0.00001以上である。
 上記比誘電率および誘電正接は、ネットワークアナライザーHP8510C(ヒューレットパッカード社製)および空洞共振器を用いて、共振周波数および電界強度の変化を20~25℃の温度下で測定して得られる値である。
 本開示のフッ素樹脂材料に含有される上記フッ素樹脂の主鎖炭素数10個当たりの官能基数は、さらに優れた高周波電気特性が得られることから、好ましくは6個以下であり、より好ましくは4個以下であり、さらに好ましくは2個以下であり、特に好ましくは0個である。上記フッ素樹脂の官能基数は、放射線照射前のフッ素樹脂に放射線を照射することによりフッ素樹脂材料を製造する場合には、放射線照射後のフッ素樹脂の官能基数である。また、放射線照射前のフッ素樹脂の官能基数も上記範囲内にあることが好ましい。放射線照射により官能基が新たに生成することがあるが、この場合であっても、放射線照射により生成した官能基の数を含め、上記の官能基数の範囲内に調整することによって、さらに優れた高周波電気特性を得ることができる。また、放射線照射前のフッ素樹脂の官能基数が上記範囲内にあると、フッ素樹脂に放射線を照射した際に、官能基同士が架橋する反応が抑制され、高周波電気特性が向上するものと推測される。また、官能基数が上記範囲内にあると、上記フッ素樹脂を成形した際に、発泡などの成形不良が生じにくいという利点もある。
 上記官能基の種類の同定および官能基数の測定には、赤外分光分析法を用いることができる。
 官能基数については、具体的には、以下の方法で測定する。まず、上記フッ素樹脂を330~340℃にて30分間溶融し、圧縮成形して、厚さ0.25~0.3mmのフィルムを作製する。このフィルムをフーリエ変換赤外分光分析により分析して、上記フッ素樹脂の赤外吸収スペクトルを得、完全にフッ素化されて官能基が存在しないベーススペクトルとの差スペクトルを得る。この差スペクトルに現れる特定の官能基の吸収ピークから、下記式(A)に従って、上記フッ素樹脂における炭素原子1×10個あたりの官能基数Nを算出する。
   N=I×K/t  (A)
    I:吸光度
    K:補正係数
    t:フィルムの厚さ(mm)
 参考までに、本開示における官能基について、吸収周波数、モル吸光係数および補正係数を表1に示す。また、モル吸光係数は低分子モデル化合物のFT-IR測定データから決定したものである。
Figure JPOXMLDOC01-appb-T000001
 なお、-CHCFH、-CHCOF、-CHCOOH、-CHCOOCH、-CHCONHの吸収周波数は、それぞれ表中に示す、-CFH、-COF、-COOH freeと-COOH bonded、-COOCH、-CONHの吸収周波数から数十カイザー(cm-1)低くなる。
 従って、たとえば、-COFの官能基数とは、-CFCOFに起因する吸収周波数1883cm-1の吸収ピークから求めた官能基数と、-CHCOFに起因する吸収周波数1840cm-1の吸収ピークから求めた官能基数との合計である。
 上記官能基は、フッ素樹脂の主鎖末端または側鎖末端に存在する官能基、および、主鎖中または側鎖中に存在する官能基である。上記官能基数は、-CF=CF、-CFH、-COF、-COOH、-COOCH、-CONHおよびCHOHの合計数であってよい。
 上記官能基は、たとえば、フッ素樹脂を製造する際に用いた連鎖移動剤や重合開始剤によって、フッ素樹脂に導入される。たとえば、連鎖移動剤としてアルコールを使用したり、重合開始剤として-CHOHの構造を有する過酸化物を使用したりした場合、フッ素樹脂の主鎖末端に-CHOHが導入される。また、官能基を有する単量体を重合することによって、上記官能基がフッ素樹脂の側鎖末端に導入される。
 このような官能基を有するフッ素樹脂を、フッ素化処理することによって、上記範囲内の官能基数を有する上記フッ素樹脂を得ることができる。すなわち、本開示のフッ素樹脂材料に含有される上記フッ素樹脂は、フッ素化処理されたものであることが好ましい。また、本開示のフッ素樹脂材料に含有される上記フッ素樹脂は、-CF末端基を有することも好ましい。
 上記フッ素化処理は、フッ素化処理されていないフッ素樹脂とフッ素含有化合物とを接触させることにより行うことができる。
 上記フッ素含有化合物としては特に限定されないが、フッ素化処理条件下にてフッ素ラジカルを発生するフッ素ラジカル源が挙げられる。上記フッ素ラジカル源としては、Fガス、CoF、AgF、UF、OF、N、CFOF、フッ化ハロゲン(例えばIF、ClF)等が挙げられる。
 上記Fガス等のフッ素ラジカル源は、100%濃度のものであってもよいが、安全性の面から不活性ガスと混合し5~50質量%に希釈して使用することが好ましく、15~30質量%に希釈して使用することがより好ましい。上記不活性ガスとしては、窒素ガス、ヘリウムガス、アルゴンガス等が挙げられるが、経済的な面より窒素ガスが好ましい。
 上記フッ素化処理の条件は、特に限定されず、溶融させた状態のフッ素樹脂とフッ素含有化合物とを接触させてもよいが、通常、フッ素樹脂の融点以下、好ましくは20~220℃、より好ましくは100~200℃の温度下で行うことができる。上記フッ素化処理は、一般に1~30時間、好ましくは5~25時間行う。上記フッ素化処理は、フッ素化処理されていないフッ素樹脂をフッ素ガス(Fガス)と接触させるものが好ましい。
 上記フッ素樹脂は、融点が190~322℃であることが好ましい。上記融点としては、より好ましくは200℃以上であり、さらに好ましくは220℃以上であり、特に好ましくは280℃以上であり、より好ましくは315℃以下である。上記融点は、示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度である。
 上記フッ素樹脂としては、溶融加工性のフッ素樹脂であれば特に限定されないが、さらに優れた高周波電気特性が得られることから、テトラフルオロエチレン単位(TFE単位)と(パー)フルオロ(アルキルビニルエーテル)単位(PAVE単位)とを含有する共重合体(以下、TFE/PAVE共重合体(または、PFA)という)、および、TFE単位とヘキサフルオロプロピレン単位(HFP単位)とを含有する共重合体(以下、TFE/HFP共重合体(または、FEP)という)からなる群より選択される少なくとも1種の共重合体がより好ましく、TFE/PAVE共重合体およびTFE/HFP/PAVE共重合体からなる群より選択される少なくとも1種がさらに好ましく、TFE/PAVE共重合体が特に好ましい。特に、上記フッ素樹脂がPAVE単位を含有する共重合体であると、優れた高周波電気特性を有すると同時に、比較的高い破断強度を有するフッ素樹脂材料が得られることから、好ましい。
 (パー)フルオロ(アルキルビニルエーテル)(PAVE)は、フルオロアルキルビニルエーテルであっても、パーフルオロ(アルキルビニルエーテル)であってもよい。本開示において、「パーフルオロ(アルキルビニルエーテル)」とは、C-H結合を含まないアルキルビニルエーテルである。
 上記PAVE単位を構成するPAVEとしては、一般式(1):
CF=CFO(CFCFYO)-(CFCFCFO)-R  (1)
(式中、YはFまたはCFを表し、Rは炭素数1~5のパーフルオロアルキル基を表す。pは0~5の整数を表し、qは0~5の整数を表す。)で表される単量体、および、一般式(2):
CFX=CXOCFOR   (2)
(式中、Xは、同一または異なり、H、FまたはCFを表し、Rは、直鎖または分岐した、H、Cl、BrおよびIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が1~6のフルオロアルキル基、若しくは、H、Cl、BrおよびIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が5または6の環状フルオロアルキル基を表す。)で表される単量体からなる群より選択される少なくとも1種を挙げることができる。
 なかでも、上記PAVEとしては、一般式(1)で表される単量体が好ましく、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)およびパーフルオロ(プロピルビニルエーテル)(PPVE)からなる群より選択される少なくとも1種がより好ましく、PPVEがさらに好ましい。
 上記TFE/PAVE共重合体におけるPAVE単位の含有量は、全単量体単位に対して、好ましくは1.0~10質量%であり、より好ましくは2.0質量%以上であり、さらに好ましくは3.5質量%以上であり、特に好ましくは4.0質量%以上であり、最も好ましくは5.0質量%以上であり、より好ましくは8.0質量%以下であり、さらに好ましくは7.0質量%以下であり、特に好ましくは6.5質量%以下であり、最も好ましくは6.0質量%以下である。なお、上記PAVE単位の量は、19F-NMR法により測定する。上記TFE/PAVE共重合体は、TFE単位およびPAVE単位のみからなる共重合体であってよい。
 上記TFE/PAVE共重合体の融点は、好ましくは280~322℃であり、より好ましくは290℃以上であり、より好ましくは315℃以下である。
 上記TFE/PAVE共重合体のガラス転移温度(Tg)は、好ましくは70~110℃であり、より好ましくは80℃以上であり、より好ましくは100℃以下である。上記ガラス転移温度は、動的粘弾性測定により測定して得られる値である。
 上記TFE/PAVE共重合体は、例えば、その構成単位となるモノマーや、重合開始剤等の添加剤を適宜混合して、乳化重合、懸濁重合を行う等の従来公知の方法により製造することができる。
 上記TFE/HFP共重合体は、TFE単位およびHFP単位を含有する。上記TFE/HFP共重合体にけるTFE単位の含有量は、全単量体単位に対して、好ましくは70質量%以上であり、より好ましくは85質量%以上であり、好ましくは99.8質量%以下であり、より好ましくは99質量%以下であり、さらに好ましくは98質量%以下である。
 上記TFE/HFP共重合体は、TFE単位とHFP単位との質量比(TFE/HFP)が70~99/1~30(質量%)であることが好ましい。上記質量比(TFE/HFP)は、85~95/5~15(質量%)がより好ましい。
 上記TFE/HFP共重合体は、さらに、(パー)フルオロ(アルキルビニルエーテル)(PAVE)単位を含有することができる。上記TFE/HFP共重合体に含まれるPAVE単位としては、上述したPAVE単位と同様のものを挙げることができる。上述したTFE/PAVE共重合体は、HFP単位を含まないので、その点で、TFE/HFP/PAVE共重合体とは異なる。
 上記TFE/HFP共重合体が、TFE単位、HFP単位、および、PAVE単位を含む共重合体である場合(以下、「TFE/HFP/PAVE共重合体」ともいう)、質量比(TFE/HFP/PAVE)が70~99.8/0.1~25/0.1~25(質量%)であることが好ましい。上記質量比(TFE/HFP/PAVE)は、75~98/1.0~15/1.0~10(質量%)であることがより好ましい。上記TFE/HFP/PAVE共重合体は、HFP単位およびPAVE単位を合計で1質量%以上含むことが好ましい。
 上記TFE/HFP/PAVE共重合体は、HFP単位が全単量体単位の25質量%以下であることが好ましい。HFP単位の含有量は、より好ましくは20質量%以下であり、さらに好ましくは18質量%以下であり、特に好ましくは15質量%以下である。また、HFP単位の含有量は、好ましくは0.1質量%以上であり、より好ましくは1質量%以上であり、特に好ましくは2質量%以上である。なお、HFP単位の含有量は、19F-NMR法により測定することができる。
 PAVE単位の含有量は、より好ましくは20質量%以下であり、さらに好ましくは10質量%以下であり。特に好ましくは3質量%以下である。また、PAVE単位の含有量は、好ましくは0.1質量%以上であり、より好ましくは1質量%以上である。なお、PAVE単位の含有量は、19F-NMR法により測定することができる。
 上記TFE/HFP共重合体は、さらに、他のエチレン性単量体(α)単位を含んでいてもよい。他のエチレン性単量体(α)単位としては、TFE、HFPおよびPAVEと共重合可能な単量体単位であれば特に限定されず、例えば、フッ化ビニル(VF)、フッ化ビニリデン(VdF)、クロロトリフルオロエチレン〔CTFE〕、エチレン(ETFE)等の含フッ素エチレン性単量体や、エチレン、プロピレン、アルキルビニルエーテル等の非フッ素化エチレン性単量体等が挙げられる。他のエチレン性単量体(α)単位の含有量は、好ましくは0~25質量%であり、より好ましくは0.1~25質量%である。
 上記共重合体がTFE/HFP/PAVE/他のエチレン性単量体(α)共重合体である場合、質量比(TFE/HFP/PAVE/他のエチレン性単量体(α))は、70~98/0.1~25/0.1~25/0.1~25(質量%)であることが好ましい。上記TFE/HFP/PAVE/他のエチレン性単量体(α)共重合体は、TFE単位以外の単量体単位を合計で1質量%以上含むことが好ましい。
 上記TFE/HFP共重合体の融点は、好ましくは200~322℃であり、より好ましくは200℃超であり、さらに好ましくは220℃以上であり、より好ましくは300℃以下であり、さらに好ましくは280℃以下である。
 上記TFE/HFP共重合体のガラス転移温度(Tg)は、好ましくは60~110℃であり、より好ましくは65℃以上であり、より好ましくは100℃以下である。上記ガラス転移温度は、動的粘弾性測定により測定して得られる値である。
 上記TFE/HFP共重合体は、例えば、その構成単位となるモノマーや、重合開始剤等の添加剤を適宜混合して、乳化重合、溶液重合や懸濁重合を行う等の従来公知の方法により製造することができる。
 上記フッ素樹脂は、上記TFE/PAVE共重合体および上記TFE/HFP共重合体であることも好ましい。すなわち、上記TFE/PAVE共重合体と上記TFE/HFP共重合体とを混合して使用することも可能である。上記TFE/PAVE共重合体と上記TFE/HFP共重合体との質量比((A)/(B))は、好ましくは1/9~7/3であり、より好ましくは5/5~2/8である。
 上記混合物は、上記フッ素樹脂を2種以上混合して溶融混合(溶融混練)したり、乳化重合後の樹脂分散液を混合し、硝酸などの酸で凝析して樹脂を回収したりする等の公知の方法により調製するとよい。
 上記フッ素樹脂の372℃におけるメルトフローレート(MFR)は、好ましくは0.1~100g/10分であり、より好ましくは0.5g/10分以上であり、より好ましくは80g/10分以下であり、さらに好ましくは40g/10分以下である。MFRが上記範囲内にあると、さらに優れた高周波電気特性が得られるとともに、より一層優れた溶融加工性が得られる。MFRは、ASTM D1238に従って、メルトインデクサー(安田精機製作所社製)を用いて、372℃、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)として得られる値である。
 本開示のフッ素樹脂材料の破断強度は、好ましくは13MPa以上であり、より好ましくは15MPa以上であり、上限は特に限定されないが、30MPa以下であってよく、25MPa以下であってよい。本開示のフッ素樹脂材料は、溶融加工により製造することが可能であると同時に、このような高い破断強度を有し得るものである。本開示のフッ素樹脂材料の破断強度が上記範囲内にあると、本開示のフッ素樹脂材料の破断強度を、高い機械的強度が要求される用途にも適用することができる。
 本開示のフッ素樹脂材料は、必要に応じて他の成分を含んでいてもよい。他の成分としては、架橋剤、帯電防止剤、耐熱安定剤、発泡剤、発泡核剤、酸化防止剤、界面活性剤、光重合開始剤、摩耗防止剤、表面改質剤等の添加剤等を挙げることができる。
 本開示のフッ素樹脂材料は、たとえば、放射線未照射のフッ素樹脂に対して、80~240℃で、20~100kGyの放射線を照射する工程を含む製造方法により製造できる。
 放射線の照射温度は、優れた高周波電気特性と高い破断強度とを両立させる観点から、80~240℃であり、好ましくは100℃以上であり、より好ましくは140℃以上であり、好ましくは220℃以下であり、より好ましくは200℃以下であり、さらに好ましくは180℃以下である。上記照射温度は、上記数値範囲内であって、かつ、放射線を照射する前のフッ素樹脂の融点未満であることが好ましい。
 上記照射温度の調整は、特に限定されず、公知の方法で行うことができる。具体的には、上記フッ素樹脂を所定の温度に維持した加熱炉内で保持する方法や、ホットプレート上に載せて、ホットプレートに内蔵した加熱ヒータに通電するか、外部の加熱手段によってホットプレートを加熱する等の方法が挙げられる。
 放射線の照射線量は、優れた高周波電気特性と高い破断強度とを両立させる観点から、20~100kGyであり、好ましくは95kGy以下であり、より好ましくは80kGy以下であり、好ましくは30kGy以上であり、より好ましくは40kGy以上である。
 放射線としては、電子線、紫外線、ガンマ線、X線、中性子線、あるいは高エネルギーイオン等が挙げられる。なかでも、透過力が優れており、線量率が高く、工業的生産に好適である点で電子線が好ましい。
 放射線を照射する方法としては、特に限定されず、従来公知の放射線照射装置を用いて行う方法等が挙げられる。
 放射線の照射環境としては、特に制限されないが、酸素濃度が1000ppm以下であることが好ましく、酸素不存在下であることがより好ましく、真空中、または、窒素、ヘリウム若しくはアルゴン等の不活性ガス雰囲気中であることが更に好ましい。
 上記のフッ素樹脂材料の製造方法は、放射線未照射のフッ素樹脂を成形する工程、または、放射線照射後のフッ素樹脂を成形する工程を、さらに含むことが好ましい。また、成形が容易であることから、放射線を照射する前にフッ素樹脂を成形しておくことが好ましい。すなわち、上記のフッ素樹脂材料の製造方法は、放射線未照射のフッ素樹脂を成形する工程をさらに含むことがより好ましい。上記のフッ素樹脂材料の製造方法が、これらの工程を含むことによって、所望の形状を有するフッ素樹脂材料を製造することができる。
 上記フッ素樹脂を成形する方法としては、上記フッ素樹脂を、融点以上に加熱して溶融させ、成形する方法が使用できる。上記フッ素樹脂を成形する方法としては、特に限定されず、押出成形、射出成形、トランスファー成形、インフレーション成形、圧縮成形等の公知の方法が挙げられる。これらの成形方法は、得られるフッ素樹脂材料の形状に応じて適宜選択すればよい。
 本開示のフッ素樹脂材料の形状は、特に限定されず、例えば、ペレット、フィルム、シート、板、ロッド、ブロック、円筒、容器、電線、チューブ等が挙げられる。また、炊飯器の内釜、ホットプレート、フライパンなどの調理具の被覆層や電子写真方式または静電記録方式の複写機、レーザープリンタなどの画像形成装置用の定着ローラのトップコート層などを形成するフッ素樹脂製塗膜であってもかまわない。フッ素樹脂製塗膜は、フッ素樹脂塗料を基材に塗布することにより形成できる。
 本開示のフッ素樹脂材料は、比誘電率および誘電正接が低いものであることから、高周波伝送用フッ素樹脂材料として、特に好適に利用することができる。
 高周波信号の誘電損失αは、次式で計算することができる。
Figure JPOXMLDOC01-appb-M000002
 上記式において、kは定数、εは比誘電率、tanδは誘電正接、fは信号周波数、Aは誘電損失寄与である。本開示のフッ素樹脂材料を用いることによって、高周波信号の誘電損失αの誘電損失寄与Aを低下させることができるので、高周波の伝送損失が極めて小さい高周波伝送用製品の実現が期待できる。
 上記高周波信号伝送用製品としては、高周波信号の伝送に用いる製品であれば特に限定されず、(1)高周波回路の絶縁板、接続部品の絶縁物、プリント配線基板等の成形板、(2)高周波用真空管のベース、アンテナカバー等の成形品、(3)同軸ケーブル、LANケーブル等の被覆電線等が挙げられる。
 上記高周波信号伝送用製品において、本開示のフッ素樹脂材料は、比誘電率と誘電正接が低い点で、絶縁体として好適に用いることができる。
 上記(1)成形板としては、良好な電気特性が得られる点で、プリント配線基板が好ましい。上記プリント配線基板としては特に限定されないが、例えば、携帯電話、各種コンピューター、通信機器等の電子回路のプリント配線基板が挙げられる。上記(2)成形品としては、誘電損失が低い点で、アンテナカバーが好ましい。
 上記(1)成形板および(2)成形品を製造するための製造方法としては、特に限定されないが、たとえば、放射線未照射のフッ素樹脂を成形する工程、および、成形したフッ素樹脂に、上記の照射条件で放射線を照射する工程を含む製造方法が挙げられる。この場合の成形方法としては、圧縮成形、押出圧延成形等が挙げられる。
 上記(3)被覆電線としては、良好な電気特性が得られる点で、絶縁被覆層として、本開示のフッ素樹脂材料を備える高周波伝送用被覆電線が好ましい。高周波伝送用被覆電線が、上記フッ素樹脂材料から形成される絶縁被覆層を備えるものであると、極めて小さい高周波伝送損失が得られる。上記高周波伝送用被覆電線は、高周波伝送ケーブルであってよく、上記高周波伝送ケーブルとしては、同軸ケーブルが好ましい。上記同軸ケーブルは、一般に、内部導体、絶縁被覆層、外部導体層および保護被覆層が芯部より外周部に順に積層することからなる構造を有する。上記構造における各層の厚さは特に限定されないが、通常、内部導体は直径約0.1~3mmであり、絶縁被覆層は、厚さ約0.3~3mm、外部導体層は、厚さ約0.5~10mm、保護被覆層は、厚さ約0.5~2mmである。
 上記の絶縁被覆層は、発泡絶縁被覆層であってもよい。しかしながら、本開示のフッ素樹脂材料の比誘電率および誘電正接が低いものであって、発泡させなくても伝送損失が小さい被覆電線が得られることから、上記高周波伝送用被覆電線は、上記フッ素樹脂材料から形成される絶縁被覆層が、中実の絶縁被覆層であってよい。上記高周波伝送用被覆電線が、上記フッ素樹脂材料から形成され、なおかつ、空隙のない中実の絶縁被覆層を備えるものであると、上記高周波伝送用被覆電線の機械的強度が優れる上に、上記高周波伝送用被覆電線を屈曲させても比誘電率の安定性が損なわれにくい。本開示において、中実とは、内部がフッ素樹脂材料で埋められていて、実質的に空隙が存在しないことをいう。なお、成形不良等に起因する意図せずに形成された空隙は含んでもよい。一方、発泡絶縁被覆層には、多くの空隙が存在する。以上のことから、本開示のフッ素樹脂材料は、中実のフッ素樹脂材料であってよい。
 上記(3)被覆電線は、たとえば、内部導体上に、放射線未照射のフッ素樹脂を押出成形により被覆して、内部導体上に被覆層を形成する工程、および、上記被覆層に、上記の照射条件で放射線を照射して、上記フッ素樹脂材料を形成することによって、絶縁被覆層として、上記フッ素樹脂材料を備える被覆電線を得る工程を含む製造方法により、製造することができる。
 上記高周波信号伝送用製品は、衛星通信機器、携帯電話基地局などのマイクロ波、特に3~30MHzのマイクロ波を利用する機器に、好適に使用することができる。
 以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。
 実施例の各数値は以下の方法により測定した。
 (単量体単位の含有量)
 各単量体単位の含有量は、19F-NMR法により測定した。
 (MFR)
 ASTM D1238に従って、メルトインデクサー(安田精機製作所社製)を用いて、372℃、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)を求めた。
 (融点)
 示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度として求めた。
 (官能基数)
 試料を330~340℃にて30分間溶融し、圧縮成形して、厚さ0.25~0.3mmのフィルムを作製する。このフィルムをフーリエ変換赤外分光分析装置〔FT-IR(商品名:1760X型、パーキンエルマー社製)により40回スキャンし、分析して赤外吸収スペクトルを得、完全にフッ素化されて官能基が存在しないベーススペクトルとの差スペクトルを得る。この差スペクトルに現れる特定の官能基の吸収ピークから、下記式(A)に従って試料における炭素原子1×10個あたりの官能基数Nを算出する。
   N=I×K/t    (A)
    I:吸光度
    K:補正係数
    t:フィルムの厚さ(mm)
 参考までに、本開示における官能基について、吸収周波数、モル吸光係数および補正係数を表2に示す。また、モル吸光係数は低分子モデル化合物のFT-IR測定データから決定したものである。
Figure JPOXMLDOC01-appb-T000003
 (破断強度および強度保持率)
 実施例または比較例において得られた試験片(圧縮成形)から、ASTM V型ダンベルを用いてダンベル状試験片を切り抜き、得られたダンベル状試験片を用いて、オートグラフ(島津製作所社製 AGS-J 5kN)を使用して、ASTM D638に準じて、50mm/分の条件下で、25℃で破断強度を測定した。
 強度保持率は次式で求めた。
   強度保持率(%)=(電子線照射後の破断強度/基準とする破断強度)×100
 基準とする破断強度は、フッ素化処理後であって、電子線照射前の試験片の破断強度である。実施例1~5については、比較例2の破断強度を、基準とする破断強度とした。実施例6~7については、比較例4の破断強度を、基準とする破断強度とした。実施例8については、比較例6の破断強度を、基準とする破断強度とした。
 (誘電正接、比誘電率および誘電損失寄与)
 実施例または比較例において得られた試験片(押出成形)の誘電正接および比誘電率を、空洞共振器法により、測定した。ネットワークアナライザー(ヒューレットパッカード社製、HP8510C)を用いて、共振周波数およびQ値(電界強度)の変化を20~25℃の温度で測定し、12GHzにおける誘電正接(tanδ)および比誘電率(ε)を測定した。また、誘電正接および比誘電率から、次式により誘電損失寄与Aを求めた。
Figure JPOXMLDOC01-appb-M000004
 比較例1
 TFE/PPVE共重合体のペレットを用いた。
  組成:TFE/PPVE=94.5/5.5(質量%)
  MFR:26.0(g/10min)
  融点:303℃
  官能基数:321個(OH/COF/COOH=150/17/154(個))
 (試験片(押出成形)の作成)
 上記ペレットを、押出成形機を用いて、押出成形した。6gの上記ペレットを、直径10mmのシリンダーに投入し、372℃で5分間加熱溶融した後、5kgの荷重で、口径2mmφ、長さ8mmのダイスから押し出して、長さ100mmのバー状に成形し、試験片(押出成形)を得た。上記の方法により、得られた試験片(押出成形)の誘電正接、比誘電率および誘電損失寄与を測定した。結果を表3に示す。
 (試験片(圧縮成形)の作成)
 上記ペレットを、ヒートプレス成形機を用いて、直径120mm、1.5mm厚の円盤状に成形し、試験片(圧縮成形)を得た。上記の方法により、得られた試験片(圧縮成形)の破断強度および強度保持率を測定した。結果を表3に示す。
 比較例2
 比較例1で用いたペレットを容器に入れ、窒素ガスで20質量%に希釈したフッ素ガスを200℃にて常圧で10時間通して、フッ素ガス処理をした。フッ素ガス処理をして得られたペレットを用いて、官能基数を測定したところ、官能基は検出されなかった。また、フッ素ガス処理をして得られたペレットを用いる以外は、比較例1と同様にして、試験片(押出成形)および試験片(圧縮成形)を得て、同様に評価した。結果を表3に示す。
 実施例1
 比較例2で得られた試験片(押出成形)および試験片(圧縮成形)を、電子線照射装置(NHVコーポレーション社製)の電子線照射容器に収容し、その後窒素ガスを加えて、容器内を窒素雰囲気にした。容器内の温度が表3に記載の照射温度で安定したことを確認した後、電子線加速電圧が3000kV、照射線量の強度が20kGy/5minの条件で、各試験片に、表3に記載の照射線量の電子線を照射した。電子線を照射した試験片を用いる以外は、比較例1と同様に評価した。結果を表3に示す。
 実施例2~5
 表3に記載の条件で電子線を照射した以外は、実施例1と同様にして、試験片を得た。得られた試験片を用いて、比較例1と同様に評価した。結果を表3に示す。
 比較例3
 TFE/PPVE/HFP共重合体のペレットを用いた以外は、比較例1と同様にして、試験片を得た。得られた試験片を用いて、比較例1と同様に評価した。結果を表3に示す。
  組成:TFE/PPVE/HFP=87.9/1.0/11.1(質量%)
  MFR:24.0(g/10min)
  融点:257℃
  官能基数:517個(COF/COOH/CFH=22/12/483(個))
 比較例4
 比較例3で用いたペレットを使用した以外は、比較例2と同様にして、フッ素ガス処理をした。フッ素ガス処理をして得られたペレットを用いて、官能基数を測定したところ、官能基は検出されなかった。また、フッ素ガス処理をして得られたペレットを用いる以外は、比較例1と同様にして、試験片(押出成形)および試験片(圧縮成形)を得て、同様に評価した。結果を表3に示す。
 実施例6~7
 比較例4で得られたペレットを用い、表3に記載の条件で電子線を照射した以外は、実施例1と同様にして、試験片を得た。得られた試験片を用いて、比較例1と同様に評価した。結果を表3に示す。
 比較例5
 TFE/HFP共重合体のペレットを用いた以外は、比較例1と同様にして、試験片を得た。得られた試験片を用いて、比較例1と同様に評価した。結果を表3に示す。
  組成:TFE/HFP=88.9/11.1(質量%)
  MFR:27.0(g/10min)
  融点:266℃
  官能基数:404個(COF/COOH/CFH=2/28/374(個))
 比較例6
 比較例5で用いたペレットを使用した以外は、比較例2と同様にして、フッ素ガス処理をした。フッ素ガス処理をして得られたペレットを用いて、官能基数を測定したところ、官能基は検出されなかった。また、フッ素ガス処理をして得られたペレットを用いる以外は、比較例1と同様にして、試験片(押出成形)および試験片(圧縮成形)を得て、同様に評価した。結果を表3に示す。
 実施例8
 比較例6で得られたペレットを用い、表3に記載の条件で電子線を照射した以外は、実施例1と同様にして、試験片を得た。得られた試験片を用いて、比較例1と同様に評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005

Claims (5)

  1.  溶融加工性のフッ素樹脂を含有し、12GHzにおける比誘電率が2.1以下であり、誘電正接が0.00030以下であるフッ素樹脂材料。
  2.  前記フッ素樹脂の主鎖炭素数10個当たりの官能基数が、6個以下である請求項1に記載のフッ素樹脂材料。
  3.  前記フッ素樹脂が、テトラフルオロエチレン/(パー)フルオロ(アルキルビニルエーテル)共重合体、および、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体からなる群より選択される少なくとも1種の共重合体である請求項1または2に記載のフッ素樹脂材料。
  4.  請求項1~3のいずれかに記載のフッ素樹脂材料を含有する高周波伝送用フッ素樹脂材料。
  5.  絶縁被覆層として、請求項1~3のいずれかに記載のフッ素樹脂材料を備え、前記絶縁被覆層が中実の絶縁被覆層である高周波伝送用被覆電線。
PCT/JP2019/005096 2018-03-26 2019-02-13 フッ素樹脂材料、高周波伝送用フッ素樹脂材料および高周波伝送用被覆電線 WO2019187725A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19777108.2A EP3778723A4 (en) 2018-03-26 2019-02-13 Fluororesin material, fluororesin material for high frequency transmission, and covered electric wire for high-frequency transmission
CN201980020656.0A CN111886284B (zh) 2018-03-26 2019-02-13 氟树脂材料、高频传输用氟树脂材料及高频传输用包覆电线
US17/041,298 US11926753B2 (en) 2018-03-26 2019-02-13 Fluororesin material, fluororesin material for high frequency transmission, and covered electric wire for high-frequency transmission

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-057719 2018-03-26
JP2018057719 2018-03-26
JP2019-023272 2019-02-13
JP2019023272A JP6708275B2 (ja) 2018-03-26 2019-02-13 フッ素樹脂材料、高周波伝送用フッ素樹脂材料および高周波伝送用被覆電線

Publications (1)

Publication Number Publication Date
WO2019187725A1 true WO2019187725A1 (ja) 2019-10-03

Family

ID=68060610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005096 WO2019187725A1 (ja) 2018-03-26 2019-02-13 フッ素樹脂材料、高周波伝送用フッ素樹脂材料および高周波伝送用被覆電線

Country Status (1)

Country Link
WO (1) WO2019187725A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172903A1 (ja) * 2021-02-12 2022-08-18 ダイキン工業株式会社 改質フッ素樹脂材料、回路基板用材料、回路基板用積層体、回路基板、及び、改質フッ素樹脂材料の製造方法
WO2022181721A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 射出成形体、ライニング管およびライニングバルブ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931785A (ja) * 1972-07-25 1974-03-22
JPS63146908A (ja) * 1986-07-18 1988-06-18 Yoneo Tabata 放射線による低分子量ポリテトラフルオロエチレン微粉末の製造方法
JP2001151825A (ja) * 1999-11-29 2001-06-05 Daikin Ind Ltd 含フッ素共重合体および低薬液透過性含フッ素樹脂組成物
JP2001288227A (ja) 2000-02-04 2001-10-16 Daikin Ind Ltd 高周波電気特性に優れたテトラフルオロエチレン系樹脂成形用材料
JP2002047315A (ja) * 2000-08-03 2002-02-12 Daikin Ind Ltd 高周波電気特性に優れたテトラフルオロエチレン系樹脂成形用材料
JP2002348315A (ja) * 2001-05-07 2002-12-04 Ausimont Spa 非晶質の(パー)フッ素化されたポリマー
WO2005052015A1 (ja) * 2003-11-26 2005-06-09 Daikin Industries, Ltd. フッ素樹脂及び被覆電線
JP2005298581A (ja) * 2004-04-07 2005-10-27 Daikin Ind Ltd 変性ポリテトラフルオロエチレン粉末及びテトラフルオロエチレン重合体の製造方法
JP2012153766A (ja) * 2011-01-24 2012-08-16 Daikin Industries Ltd フッ素樹脂組成物及び該フッ素樹脂組成物の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931785A (ja) * 1972-07-25 1974-03-22
JPS63146908A (ja) * 1986-07-18 1988-06-18 Yoneo Tabata 放射線による低分子量ポリテトラフルオロエチレン微粉末の製造方法
JP2001151825A (ja) * 1999-11-29 2001-06-05 Daikin Ind Ltd 含フッ素共重合体および低薬液透過性含フッ素樹脂組成物
JP2001288227A (ja) 2000-02-04 2001-10-16 Daikin Ind Ltd 高周波電気特性に優れたテトラフルオロエチレン系樹脂成形用材料
JP2002047315A (ja) * 2000-08-03 2002-02-12 Daikin Ind Ltd 高周波電気特性に優れたテトラフルオロエチレン系樹脂成形用材料
JP2002348315A (ja) * 2001-05-07 2002-12-04 Ausimont Spa 非晶質の(パー)フッ素化されたポリマー
WO2005052015A1 (ja) * 2003-11-26 2005-06-09 Daikin Industries, Ltd. フッ素樹脂及び被覆電線
JP2005298581A (ja) * 2004-04-07 2005-10-27 Daikin Ind Ltd 変性ポリテトラフルオロエチレン粉末及びテトラフルオロエチレン重合体の製造方法
JP2012153766A (ja) * 2011-01-24 2012-08-16 Daikin Industries Ltd フッ素樹脂組成物及び該フッ素樹脂組成物の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172903A1 (ja) * 2021-02-12 2022-08-18 ダイキン工業株式会社 改質フッ素樹脂材料、回路基板用材料、回路基板用積層体、回路基板、及び、改質フッ素樹脂材料の製造方法
JP2022123855A (ja) * 2021-02-12 2022-08-24 ダイキン工業株式会社 改質フッ素樹脂材料、回路基板用材料、回路基板用積層体、回路基板、及び、改質フッ素樹脂材料の製造方法
JP7269518B2 (ja) 2021-02-12 2023-05-09 ダイキン工業株式会社 改質フッ素樹脂材料、回路基板用材料、回路基板用積層体、回路基板、及び、改質フッ素樹脂材料の製造方法
WO2022181721A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 射出成形体、ライニング管およびライニングバルブ
JP2022132165A (ja) * 2021-02-26 2022-09-07 ダイキン工業株式会社 射出成形体、ライニング管およびライニングバルブ
JP7280538B2 (ja) 2021-02-26 2023-05-24 ダイキン工業株式会社 射出成形体、ライニング管およびライニングバルブ

Similar Documents

Publication Publication Date Title
JP6708275B2 (ja) フッ素樹脂材料、高周波伝送用フッ素樹脂材料および高周波伝送用被覆電線
JP5967181B2 (ja) 改質含フッ素共重合体及びフッ素樹脂成形品
JP5314707B2 (ja) テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体及び電線
US20090038821A1 (en) Covered electric wire and coaxial cable
US9831014B2 (en) Heat-resistant electric wire
EP0423995B1 (en) Low dissipation-factor fluorocarbon resins and cables prepared therefrom
WO2019187725A1 (ja) フッ素樹脂材料、高周波伝送用フッ素樹脂材料および高周波伝送用被覆電線
WO2014007348A1 (ja) 改質含フッ素共重合体、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法
US10759887B2 (en) Electric wire, coil and method for producing electric wire
EP3960794A1 (en) Magnet wire and coil
JP2005298659A (ja) 高周波信号伝送製品用テトラフルオロエチレン共重合体
JP5135658B2 (ja) ポリテトラフルオロエチレンファインパウダー、それから得られるポリテトラフルオロエチレン成形体およびその製造方法
WO2019008998A1 (ja) 電線、ツイストペアケーブル及びlanケーブル
WO2024048189A1 (ja) 被覆電線および被覆電線の製造方法
WO2024048192A1 (ja) 被覆電線および被覆電線の製造方法
TW202420340A (zh) 絕緣電線及其製造方法
JP2024032666A (ja) 被覆電線および被覆電線の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019777108

Country of ref document: EP

Effective date: 20201026