WO2019186660A1 - Method for estimating end bearing capacity of rotary press-in pile, end bearing capacity management system, construction management method, and program - Google Patents

Method for estimating end bearing capacity of rotary press-in pile, end bearing capacity management system, construction management method, and program Download PDF

Info

Publication number
WO2019186660A1
WO2019186660A1 PCT/JP2018/012209 JP2018012209W WO2019186660A1 WO 2019186660 A1 WO2019186660 A1 WO 2019186660A1 JP 2018012209 W JP2018012209 W JP 2018012209W WO 2019186660 A1 WO2019186660 A1 WO 2019186660A1
Authority
WO
WIPO (PCT)
Prior art keywords
support force
rotary press
tip support
pile
tip
Prior art date
Application number
PCT/JP2018/012209
Other languages
French (fr)
Japanese (ja)
Inventor
吉郎 石濱
悦孝 柳
裕貴 日下
将一 田邊
和秀 戸田
妙中 真治
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2018/012209 priority Critical patent/WO2019186660A1/en
Priority to JP2020510206A priority patent/JP6856171B2/en
Publication of WO2019186660A1 publication Critical patent/WO2019186660A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/56Screw piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/22Placing by screwing down

Definitions

  • the present invention relates to a tip support force estimation method, tip support force management system, construction management method, and program for a rotary press-fit pile.
  • a method using a dynamic penetration test is known as a method for confirming the bearing capacity of a pile tip ground of a steel pipe pile under construction.
  • Such a dynamic penetration test is performed by measuring a penetration amount and a rebound amount of a steel pipe pile by dropping a hammer with a predetermined weight from a predetermined height with respect to the steel pipe pile reaching a predetermined depth.
  • the ultimate bearing capacity is estimated by the pile driving method.
  • a predetermined support force can be expected when an estimated support force exceeding the design support force is calculated.
  • the construction method in which the bearing capacity is confirmed by the dynamic penetration test described above there is a demerit that in addition to generating noise and vibration, the construction method that does not use a hammer for construction requires preparation of the hammer. It was.
  • tip blade is, for example in patent document Are listed.
  • the blade needs to be attached to the tip, but there are problems such as the need for the processing cost and the installation cost of the blade. Therefore, a rotary press-fit method using a rotary press-fit pile having high environmental performance is sometimes used because blades are unnecessary, processing costs are low, and noise and vibration are relatively small.
  • the conventional rotary press-fit method has the following problems.
  • the rotary press-fit method has features such as low noise, low vibration and space saving, and is an ideal method peculiar to steel pipe piles because it is constructed by applying pressure input and torque directly to the pile body itself.
  • a loading test is performed each time to confirm the bearing capacity performance. There was a problem that it was necessary.
  • the tip support force is estimated from torque and friction force according to the roughness of the tip.
  • the clogging condition of the tip sediment and the composition of the clogged soil are the control of construction. It is difficult to assume the roughness of the tip from the results of previous ground surveys, and it is difficult to estimate the tip support force.
  • the rotary press-in method does not have a clear management method at the time of stopping, and therefore, there is only a method based on the management of the penetration length. And the ground at the point where the pile is placed may be separated from the place where the preliminary survey was performed, and the ground condition is not necessarily the same as the survey result.
  • the support layer is at a depth shallower than the survey results, it is necessary to spend time on hard ground that is difficult to press-fit in order to secure the penetration depth even though sufficient support force has already been obtained. To secure more than necessary.
  • An object of the present invention is to provide a tip support force estimation method, a tip support force management system, a construction management method, and a program that can be rotated.
  • the outline of the present invention is as follows.
  • the first aspect of the present invention is that the tip of the rotary press-fit pile that estimates the tip support force of the rotary press-fit pile at the time of construction in which the rotary press-fit pile made of a steel pipe pile with the pile tip released is put into the ground.
  • a support force estimation method using an input step of inputting a pressure input Qin and a support force estimation index H measured at the time of construction, the pressure input Qin and the support force estimation index H, Based on the tip support force estimation formula expressed by the formula (1) formulated from the correlation between the pressure input Qin, the tip support force Ru, and the support force estimation index H in the rotary press pile, An estimation step of estimating the tip support force Ru.
  • the supporting force estimation index H may be 0.5D ⁇ ⁇ / w.
  • the corrected pressure input Qin ′ which is the influence of the peripheral friction of the rotary press-fit pile, is measured and obtained by the following formula (3a)
  • the tip support force Ru may be estimated based on a corrected tip support force estimation formula obtained by correcting the tip support force estimation formula using a correction coefficient ⁇ .
  • the bearing capacity estimation index H is It may be T / 0.5D.
  • the measured value of the corrected rotational torque Ts which is the influence of the peripheral friction of the rotary press-fit pile, and the following formula (3b-1):
  • the tip support force Ru is estimated based on the corrected tip support force estimation formula obtained by correcting the tip support force estimation formula by using the correction coefficient ⁇ 1 obtained and the correction coefficient ⁇ 2 obtained by the following equation (3b-2). Also good.
  • the tip support force of the rotary press-fit pile is calculated using the method of estimating the tip support force of the rotary press-fit pile according to any one of (1) to (7) above.
  • a tip support force management system for managing wherein the tip support force Ru is calculated based on a storage unit storing the tip support force estimation formula and the tip support force estimation formula stored in the storage unit. And an arithmetic processing unit.
  • whether or not to continue the penetration of the rotary press-fit pile according to the calculated tip support force Ru is determined in the arithmetic processing unit. Good.
  • the storage unit stores a design tip support force Ra necessary for the rotary press-fit pile to be constructed, and the arithmetic processing unit calculates the calculated It may be determined whether the tip support force Ru is greater than or equal to the designed tip support force Ra.
  • the tip supporting force management system according to any one of (8) to (10) may further include a display unit that displays a result processed by the arithmetic processing unit.
  • the third aspect of the present invention manages the construction of the rotary press-fit pile using the method for estimating the tip bearing capacity of the rotary press-fit pile according to any one of (1) to (7) above.
  • the construction management method further includes a step of determining whether or not to continue the penetration of the rotary press-fit pile according to the estimated tip support force Ru. (13)
  • the tip support force Ru calculated by the tip support force estimation formula is greater than or equal to the design tip support force Ra required for the rotary press-fit pile to be constructed.
  • the penetration of the rotary press-fit pile may be stopped and the penetration of the rotary press-fit pile may be continued when the design tip support force Ra is smaller.
  • the correction pressure input Qin ′ or the correction rotation which is an influence of the peripheral friction of the rotary press-fitting pile
  • the tip support force Ru may be calculated based on a corrected tip support force estimation formula corrected by the coefficient ⁇ 2.
  • a fourth aspect of the present invention is a program for causing a computer to execute the tip pressing force estimating method for a rotary press-fit pile according to any one of the above (1) to (7).
  • a fifth aspect of the present invention is a program that causes a computer to execute the construction management method according to any one of (12) to (14).
  • the present invention by accurately estimating the tip support force of the rotary press-fitting pile in the rotary press-fitting method, it becomes possible to cope with the unevenness of the support layer, and the construction quality can be improved.
  • index H ( 0.5Dx (theta) / w).
  • index H ( T / 0.5D). It is a figure which shows an example of formulation of a tip support force estimation formula. It is a flowchart which shows the step by the construction management method of the rotation press-fit pile which uses the tip supporting force estimation method.
  • FIG. 1 is a schematic view showing a state in which a rotary press-fit pile 1 made of a steel pipe pile with a free end 1a is press-fitted into the ground.
  • the rotary press-fit pile 1 has a predetermined rotational pitch p by applying a pressure input Qin (kN) in the axial direction while applying a rotational torque T (kN ⁇ mm) in the axial direction. Is pressed into the ground.
  • the pressure input Qin is a load that is applied from the pile head toward the tip of the pile by gripping the pile portion that is exposed to the ground portion with the construction machine during construction.
  • Rotation pitch p is made dimensionless by using the radius of the pile that is 1/2 of the outer diameter D (mm) of the rotation speed ⁇ (rad / min) with respect to the penetration speed w (mm / min) of the rotary press-fit pile.
  • the penetration speed w is a speed at which the rotary press-in pile 1 is inserted into the ground per minute
  • the rotary speed ⁇ is an angle at which the rotary press-in pile 1 rotates per minute.
  • the tip support force Ru is a support force exerted in the vicinity of the tip of the pile.
  • the tip support force Ru is exhibited not only in the tip portion 1a of the rotary press-fit pile 1, but also in the range A from the tip portion 1a of the rotary press-fit pile 1 to about 1 to 5 times the pile outer diameter D. It is the resistance toward the pile tip direction from the pile head 1b of the pile shaft.
  • Rotational press-fit pile 1 is rotationally press-fitted into the ground by applying rotational torque T and press input Qin by a pile rotary press-in machine 2 as shown in FIGS.
  • the rotary press-fit pile 1 may be a steel pipe pile with a bit in which a drilling bit for excavation is provided at the distal end portion 1a, or a bit-free steel pipe pile in which a drilling bit for excavation is not provided in the distal end portion 1a.
  • the excavation bit has a structure for improving workability, unlike a blade attached to obtain a supporting force.
  • the outside protrusion length from the steel pipe pile outer surface of the excavation bit is 20 mm or less.
  • a friction cutter having an axial length of about 300 mm may be provided at the tip of the steel pipe pile.
  • the friction cutter has a double pipe structure, and protrudes from the outer surface of the steel pipe pile at 20 mm or less.
  • the inner protruding length of the excavation bit is also preferably 20 mm or less.
  • a self-propelled presser main body 24 provided with a leader 24A and a drive motor 25 for rotating a grip portion 24B provided on the leader 24A are provided.
  • the three-point pile driving machine 2A can be used.
  • the stationary presser main body 26 provided with a gripping portion 26A and a thrust jack 26B, and a drive motor 27 for rotating the gripping portion 26A.
  • the all-around swivel press-fitting machine 2B (2) may be used.
  • the pile driving depth is configured to be measured by a general measuring device such as a stroke sensor or an encoder provided in the leader.
  • the present inventors diligently studied a method for accurately estimating the tip support force Ru of the rotary press-fit pile constructed in this way.
  • the pressure input Qin and the component factor (rotational speed / penetration speed or rotational torque) of the bearing capacity estimation index H are measured during construction to rotationally press-fit the rotary press-fit pile into the ground.
  • the tip support force estimation formula expressed by the following formula (1) formulated from the correlation between the input Qin, the tip support force Ru, and the support force estimation index H, the tip support force Ru of the rotary press-fit pile is calculated. We found that estimation is effective.
  • the tip supporting force estimation method according to the present embodiment estimates the tip supporting force of the rotary press-fitted pile based on the rotational speed ⁇ and the penetration speed w at the time of construction for rotary press-fitting the rotary press-fitted pile into the ground. It has a process and an estimation process. That is, in the tip supporting force estimation method according to the present embodiment, when the outer diameter of the rotary press-fit pile is D (mm), the rotational speed is ⁇ (rad / min), and the penetration speed is w (mm / min). The value (rotation pitch) indicated by 0.5D ⁇ ⁇ / w is defined as the support force estimation index H.
  • the pressure input Qin obtained in the input step and the support force estimation index H are used, and the pressure input Qin, the tip support force Ru, and the support force estimation index H in the rotary press-fit pile are calculated.
  • the tip support force Ru of the rotary press-fit pile 1 is estimated based on the tip support force estimation formula expressed by the following formula (1a) formulated from the correlation.
  • A1 is the gradient when the approximate line of the plot point of the test result with the X axis as the natural logarithm of the bearing capacity estimation index H and the Y axis as Qin / Ru is expressed by the following equation (2a).
  • B1 is the Y intercept when the approximate line of the plot point of the test result with the X axis as the natural logarithm of the bearing capacity estimation index H and the Y axis as Qin / Ru is expressed by the following equation (2a).
  • a logarithmic approximation line by a least square method may be used as the approximation line of the plot points.
  • the tip support force estimation formula expressed by the above formula (1a) is a formula formulated by a construction test and a loading test as described later.
  • the press input Qin, the penetration speed w, and the rotation speed ⁇ are continuously measured by a measurement unit provided in the pile rotation press-fitting device 2.
  • measurement information of the pressure input Qin, the penetration speed w, and the rotational speed ⁇ is continuously or intermittently measured during the construction for rotationally press-fitting the rotary press-fit pile 1.
  • the tip support force Ru can be calculated from the measured measurement information based on the tip support force estimation formula expressed by the above-described formula (1a). That is, by using the tip support force estimation formula formulated based on the fact that there is a high correlation among the pressure input Qin, the rotation speed ⁇ , the penetration speed w, and the tip support force Ru during construction, It is possible to estimate the tip support force Ru of the rotary press-fit pile constructed by rotary press-fit with high accuracy.
  • the rotary press-fit pile can be stopped in a state where a sufficient tip support force Ru can be exhibited. Therefore, as in the case of controlling the stop depending on the depth to the support layer, it is possible to prevent an excessive or insufficient penetration length with respect to the support layer, and it is possible to cope with the unevenness of the support layer.
  • a rotary press-fitting pile 1 is rotationally press-fitted into the actual ground or artificially created ground, and the preset depth at which the rotary press-in construction is stopped (stop depth Z0).
  • the penetration is made while maintaining the rotational speed ⁇ at a constant value.
  • the pressure input Qin is controlled so as to be a substantially constant value, although there is some ups and downs due to changes in ground resistance.
  • the stop depth Z0 is a depth at which the tip support force designed based on the pile outer diameter D and the ground conditions used in the construction test can be obtained.
  • a section having a length of about 0.1 times the pile outer diameter D is set as an immediately preceding section K from the stop depth Z0, and the tip 1a of the rotary press-fit pile 1 reaches this section K.
  • the loading test the rotary press-fit pile for testing is stopped at a predetermined depth, and then loaded with a load from the vertical direction. And the stress distribution of the pile of a plurality of cross sections is measured in the depth direction, and the peripheral friction force and the tip support force Ru are separated and measured.
  • the loading test is, for example, “pile indentation test”, “pile rapid loading test”, “pile loading test” shown in “Pile vertical loading test method / comment 2002” published by the Geotechnical Society. It may be carried out according to the “impact loading test”.
  • Table 1 shows the presence or absence of excavation bits, pile outer diameter (mm), support layer ground type (sand layer / gravel layer), pressure input Qin (kN), rotational speed ⁇ (rad) for tests 1 to 25 as specific examples. / Min), penetration speed w (mm / min), rotational pitch 0.5D ⁇ ⁇ / w ( ⁇ ), tip support force Ru (kN), and Qin / Ru ( ⁇ ).
  • a bit-free steel pipe pile without a drilling bit was used.
  • Tests 15 to 25 a steel pipe pile with a bit in which four excavation bits were evenly provided in the circumferential direction at the tip portion was used.
  • equation (1a-1) which is a tip support force estimation equation corresponding to equation (1), is derived.
  • a sufficient safety factor is taken into consideration with respect to the design formula of the tip support force Ru, and therefore variation is allowed even in the stop management formula. Therefore, it is appropriate to use the expression (1a-1) obtained from the approximate expression of all data.
  • the maximum value of the Qin / Ru point is parallel to the approximate line of the equation (2a-1).
  • the formula (2a-1 ′) which is an approximate line indicating the upper limit to be included, may be calculated, and the formula (1a-1 ′) obtained based on this may be used as the tip support force estimation formula.
  • the above-mentioned tip bearing capacity estimation formula is an estimation formula derived based on the plot points of tests 1 to 25, but is derived using only the test results according to the presence or absence of the bit of the press-fit steel pipe pile to be actually constructed.
  • the accuracy of estimation can be increased. That is, when estimating the bearing capacity of a steel pipe pile with a bit, as shown in FIG. 7A, the equation (2a-1-1) is obtained in the same manner as the equation (2a-1) for the test with a bit. The equation (1a-1-1) obtained based on this may be used as the supporting force estimation equation.
  • the test without a bit is similar to the above equation (2a-1) (2a-1-2) An approximate line of the equation may be obtained, and the equation (1a-1-2) obtained based on the approximate line may be used as the supporting force estimation equation.
  • the approximated line (2a-1 ') which is an approximated line translated from the approximated line (2a-1) based on the least square method of the plot, is derived and is the tip bearing force estimation expression (1a).
  • -1 ′) equation was obtained.
  • the approximate line may be obtained by using an approximation method other than the least square method.
  • the approximate line represented by the above equation (2a-1 ′) may not be obtained by parallel translation with the slope of the approximate line obtained by the least square method being strictly constant. It may be a straight line or a curve enveloping.
  • the range in which the penetration speed w is changed is a range from the maximum speed determined from the machine capability to almost zero.
  • the correction coefficient ⁇ expressed by the expression (3a) is obtained by removing the correction pressure input Qin ′ that is the influence of the pile peripheral surface from the pressure input Qin at the time of construction. Then, a more precise tip support force Ru can be estimated by the corrected tip support force estimation formula (1a-1 *) using the correction coefficient ⁇ .
  • the pressure input Qin at the time of construction and the corrected pressure input Qin ′ are values that continuously change in accordance with the change in the penetration speed w, that is, a function of the penetration speed w.
  • the corrected pressure input Qin ′ As the corrected pressure input Qin ′ to be removed from the pressure input Qin, a value corresponding to the penetration speed w during construction of the support layer is used. Therefore, when the tip support force is estimated by the expression (1a *), the correction coefficient ⁇ is a value that is sequentially calculated according to the change in the penetration speed w when the support layer is applied.
  • the tip support force estimation method according to the present embodiment is for estimating the tip support force of the rotary press-fit pile based on the rotational torque T during construction for rotary press-fitting the rotary press-fit pile into the ground.
  • T rotational torque
  • D pile outer diameter
  • the estimated index is H.
  • the press input Qin and the rotational torque T that is a constituent factor of the bearing force estimation index H are measured and input to the computer.
  • the pressure input Qin obtained in the input step and the support force estimation index H are used, and the pressure input Qin, the tip support force Ru, and the support force estimation index H in the rotary press-fit pile are calculated.
  • the tip support force estimation formula expressed by the following formula (1b) formulated from the correlation the tip support force Ru of the rotary press-fit pile is estimated.
  • A2 is the gradient when the approximate line of the plot point of the test result with the X axis as the natural logarithm of the bearing capacity estimation index H and the Y axis as Qin / Ru is expressed by the following equation (2b).
  • B2 is the Y intercept when the approximate line of the plot points of the test result with the X axis as the natural logarithm of the bearing capacity estimation index H and the Y axis as Qin / Ru is expressed by the equation (2b).
  • a logarithmic approximation line by a least square method may be used as the approximation line of the plot points.
  • the tip support force estimation formula expressed by the above formula (1b) is a formula formulated by a construction test and a loading test as described later.
  • the press input Qin and the rotation torque T are continuously measured by a measuring unit provided in the pile rotation press-fitting device 2.
  • the measurement information of the pressure input Qin and the rotational torque T is measured continuously or intermittently during construction for rotationally press-fitting the rotary press-fit pile, and the measured measurement is performed.
  • the tip support force Ru can be calculated from the information based on the tip support force estimation formula expressed by the above-described formula (1b). That is, by using the tip support force estimation formula formulated based on the fact that there is a high correlation among the pressure input Qin at the time of construction, the rotational torque T, and the tip support force Ru, rotational press-fitting is easy and accurate. It is possible to estimate the tip support force Ru of the rotary press-fitted pile constructed by.
  • the rotary press-fit pile can be stopped in a state where a sufficient tip support force Ru can be exhibited. Therefore, as in the case of controlling the stop depending on the depth to the support layer, it is possible to prevent an excessive or insufficient penetration length with respect to the support layer, and it is possible to cope with the unevenness of the support layer.
  • a rotary press-fitting pile 1 is rotationally press-fitted into the actual ground or artificially created ground, and the preset depth at which the rotary press-in construction is stopped (stop depth Z0).
  • the pressure input Qin is controlled so as to be a substantially constant value, although there is some ups and downs due to changes in ground resistance.
  • the stop depth Z0 is a depth at which the tip support force designed based on the pile outer diameter D and the ground conditions used in the construction test can be obtained.
  • the rotational torque T is measured when the tip 1a of the rotary press-fit pile 1 arrives at this section K, with a section about 0.1 times the outer diameter D of the pile as the section K just before stopping, from the stopping depth Z0. The average value is adopted.
  • the loading test the rotary press-fit pile for testing is stopped at a predetermined depth, and then loaded with a load from the vertical direction. And the stress distribution of the pile of a plurality of cross sections is measured in the depth direction, and the peripheral friction force and the tip support force Ru are separated and measured.
  • the loading test is, for example, “pile indentation test”, “pile rapid loading test”, “pile loading test” shown in “Pile vertical loading test method / comment 2002” published by the Geotechnical Society. It may be carried out according to the “impact loading test”.
  • Table 2 shows the presence or absence of excavation bits, pile outer diameter (mm), support layer ground type (sand layer / gravel layer), pressure input Qin (kN), rotational torque T (kN) for tests 1 to 24 as specific examples. Mm), T / 0.5D (kN), tip support force Ru (kN), and Qin / Ru ( ⁇ ).
  • Mm T / 0.5D
  • kN tip support force
  • Qin / Ru
  • equation (1b-1) which is a tip support force estimation equation corresponding to equation (1), is derived.
  • a sufficient safety factor is taken into consideration with respect to the design formula of the tip support force Ru, and therefore variation is allowed even in the stop management formula. Therefore, it is appropriate to use the expression (1b-1) obtained from the approximate expression of all data.
  • the formula (1b-1) is the tip support force estimation formula from the data of the pressure input Qin and the rotational torque T measured every moment from the pile rotary presser 2 during construction. Can be used to estimate the tip support force Ru.
  • the maximum value of the Qin / Ru point is parallel to the approximate line of equation (2b-1).
  • the formula (2b-1 ′) which is an approximate line indicating the upper limit to be included, may be calculated, and the formula (1b-1 ′) obtained based on this may be used as the tip support force estimation formula.
  • the tip support force estimation formula (1b) is derived by deriving the formula (2b-1 ′), which is an approximated line translated from the formula (2b-1), which is an approximate line based on the least square method of the plot. -1 ′) equation was obtained.
  • the approximate line may be obtained by using an approximation method other than the least square method.
  • the approximate line represented by the above equation (2b-1 ′) may not be obtained by parallel translation with the slope of the approximate line obtained by the least square method being strictly constant.
  • the target plot point It may be a straight line or a curve enveloping.
  • the correction rotational torque Ts and the correction pressure input Qin ′ which are resistance forces in the pushing direction caused by Specifically, the correction coefficient ⁇ 1 expressed by the equation (3b-1) is obtained by removing the corrected rotational torque Ts that is the influence of the pile peripheral surface from the rotational torque T at the time of construction. Further, a correction coefficient ⁇ 2 expressed by the equation (3b-2) is obtained by removing the corrected pressure input Qin ′ from the pressure input Qin at the time of construction. Then, a more precise tip support force Ru can be estimated by using the corrected tip support force estimation formula (1b *) using the correction coefficients ⁇ 1 and ⁇ 2.
  • the third embodiment of the present invention is a tip support force management system (hereinafter referred to as a tip support force management system according to this embodiment) that manages the tip support force of the rotary press-fit pile using the tip support force estimation method described above. And includes a measurement unit, a storage unit, and an arithmetic processing unit.
  • the tip support force management system 10 is a pile rotary press-fit that press-fits the rotary press-fit pile 1 into the ground by moving up and down the gripping part that holds the rotary press-fit pile 1 as described above.
  • the machine 2 is used.
  • This system 10 inputs the measured values (pressure input Qin, penetration speed w, rotational speed ⁇ , rotational torque T) acquired by the pile rotary presser 2 to the computer 3 and supports the tip by the arithmetic processing unit 31 in the computer 3.
  • the force Ru is calculated and estimated.
  • the measured value measured by the pile rotary presser 2 is connected to a computer 3 having an arithmetic processing unit 31 so that it can communicate wirelessly or by wire.
  • the computer 3 includes the arithmetic processing unit 31 and a storage unit 32.
  • the computer 3 may include a display unit 4 that displays the estimated value of the tip support force Ru calculated by the arithmetic processing unit 31.
  • the storage unit 32 incorporates a tip support force estimation formula and a predetermined design tip support force Ra.
  • the measurement values measured by the measurement units 21 and 22 are time series data measured continuously or intermittently in the penetration process of the rotary press-fit pile 1, and these time series data are stored in the storage unit 32. .
  • the pressure input Qin obtained by penetrating a plurality of rotary press-fitting piles into the ground at a plurality of locations before construction, and the tip A tip supporting force estimation formula obtained in advance from the correlation between the supporting force Ru and the supporting force estimation index H may be used.
  • the arithmetic processing unit 31 uses the tip support force estimation formula stored in the storage unit 32 and based on the measurement values (data in the storage unit) input from the measurement units 21 and 22 of the pile rotary press-fitting machine 2. A calculation process for calculating the tip support force Ru is executed. Further, the arithmetic processing unit 31 performs processing for comparing the calculated tip support force Ru with the design tip support force Ra. It is preferable that the processing result (determination result of the estimated tip support force Ru and the design tip support force Ra) is output by the display unit 4 so as to be visible.
  • the design tip support force Ra is the set value of the tip support force required for the rotary press-fit pile to be constructed.
  • the required safety factor A margin may be set accordingly.
  • the penetration of the rotary press-fit pile 1 is stopped based on the tip support force Ru estimated by the tip support force management system 10. That is, in this Embodiment, the construction management of the rotary press-in pile 1 which press-fits the rotary press-in pile 1 with the pile rotary press-in machine 2 using the tip support force management system 10 can be performed.
  • further penetration may be made to ensure a slight margin in order to further improve safety.
  • the pile rotary press machine 2 press-fits the ground while applying rotational force and pressure input to the rotary press-fit pile 1, and, as shown in FIG. 4, press input Qin and support force estimation index (penetration speed w and rotation)
  • press input Qin and support force estimation index penetration speed w and rotation
  • the speed ⁇ or the rotational torque T) is measured by the pressure input measuring unit 21 and the index measuring unit 22, respectively.
  • the pressure input measuring unit 21 for measuring the pressure input Qin a pressure input value for press-fitting the rotary press-fitting pile 1 into the ground G using a hydraulic sensor for detecting the hydraulic pressure of a drive motor provided in the leader of the pile rotary press-fitting machine 2
  • the structure which measures as is adopted For example, it is measured and recorded every time the rotary press pile 1 rotates continuously or about 1/4 rotation or 1/8 rotation in the circumferential direction.
  • the index measurement unit 22 includes, for example, a configuration for measuring a stroke per unit time (penetration speed w) of a gripping part that grips the rotary press-in pile 1 and the rotary press-in pile 1.
  • a configuration in which the rotational speed is measured using an encoder or the like from the rotating portion of the gripping portion to be gripped can be employed.
  • the rotational torque T as a support force estimation parameter
  • adopted is employ
  • the fourth embodiment of the present invention is a construction management method for managing the construction of a rotary press-fit pile using the above-described tip support force estimation method (hereinafter, sometimes referred to as a construction management method according to this embodiment). Yes, it has a measurement process, a calculation process, and a determination process.
  • step S1 the rotary press-fitting machine 2 (2A, 2B) shown in FIGS. 2 and 3 is used to start rotary press-fitting with respect to the ground while applying rotational force and pressure input to the rotary press-fitted pile 1.
  • step S2 in the press input measurement part 21 and index measurement part 22 which are shown in FIG. 4 of the pile rotary press machine 2 during rotary press-fitting, it is a constituent factor of the press input Qin and the supporting force estimation index H, respectively.
  • the penetration speed w and the rotational speed ⁇ or the rotational torque T are measured. The measurement is performed continuously or at a predetermined time pitch.
  • step S3 the tip support force Ru is calculated based on the measured data using the tip support force estimation formula stored in the storage unit 32 in advance.
  • step S ⁇ b> 4 the arithmetic processing unit 31 determines whether or not the calculated tip support force Ru is greater than or equal to the design tip support force Ra stored in advance in the storage unit 32. If the calculated tip support force Ru is greater than or equal to the design tip support force Ra (Ru ⁇ Ra, Step S4: YES), the process proceeds to Step S5. On the other hand, when the calculated tip support force Ru is smaller than the design tip support force Ra (Ru ⁇ Ra, step S4: NO), the process returns to step S2 and continues with the rotary press-fitting operation and each data (pressure input Qin, penetration speed).
  • step S4 if there is a hard thin layer that is not suitable for the support layer in the ground or an obstacle with high hardness, Ru ⁇ Ra may be temporarily satisfied. In such a case, it is not appropriate to stop the press-fitting work.
  • the amount of pile sinking is about 10% of the pile diameter, so it is stable in the section where the length of 10% or more of the pile diameter is penetrated. Then, when it is confirmed that the relationship of Ru ⁇ Ra is obtained, the process may proceed to step S5.
  • the numerical value of the tip support force Ru calculated by the arithmetic processing unit 31, the result of step S4 (the comparison result of the tip support force Ru and the design tip support force Ra), and the like are output via the display unit 4 so as to be visible. It is preferable.
  • step S4 by confirming that the calculated tip support force Ru is greater than or equal to the design support force Ra, a sufficient tip support force is ensured, and the rotary press-fit pile 1 is fixed.
  • step S5 the penetration by the rotary press-fitting of the rotary press-fit pile 1 is stopped and stopped, and the construction is completed.
  • the stop of the rotary press-in pile 1 is to stop the penetration due to the rotary press-in, and after stopping the rotation, stop applying the press input at the time of construction and apply the press input at the time of construction.
  • the rotation may stop after stopping.
  • step S6 the rotary press-fit pile 1 is once lifted at the upper part of the support layer, and in step S7, the correction pressure input Qin ′ related to the influence of the circumferential friction or the correction The rotational torque Ts is measured.
  • step S8 the pressure input Qin when penetrating the support layer and the support force estimation index H (rotational speed ⁇ and penetrating speed w or rotational torque Ts) are measured.
  • step S9 the arithmetic processing unit 31 uses the measured penetration speed w and the corrected pressure input Qin ′, or the measured rotational torque T, pressure input Qin, corrected rotational torque Ts, and corrected pressure input Qin ′.
  • correction coefficients ( ⁇ , ⁇ 1, ⁇ 2 described above) are obtained from the relational expressions stored in the storage unit 32 in advance.
  • the arithmetic processing unit 31 calculates the tip support force Ru based on the measured data using the corrected tip support force estimation formula.
  • step S10 the arithmetic processing unit 31 determines whether or not the calculated tip support force Ru is greater than the value of the design tip support force Ra stored in the storage unit 32 in advance. If the calculated tip support force Ru is greater than or equal to the design tip support force Ra (Ru ⁇ Ra, step S10: YES), the process proceeds to step S5. On the other hand, when the calculated tip support force Ru is smaller than the design tip support force Ra (Ru ⁇ Ra, Step S10: NO), the process returns to Step S8 and continues with each of the data (pressure input Qin, penetration speed) along with the rotary press-in operation. w, rotation speed ⁇ , and rotation torque T) are measured, and the penetration of the rotary press-in pile 1 by rotary press-in is continued.
  • step S10 by confirming that the calculated tip support force Ru is greater than or equal to the design support force Ra, a sufficient tip support force is ensured, and the rotary press-fit pile 1 is fixed.
  • step S5 the penetration by the rotary press-fitting of the rotary press-fit pile 1 is stopped and stopped, and the construction is completed.
  • the tip support force Ru calculated by the tip support force estimation formula formulated in the arithmetic processing unit 31 of the computer 3 is equal to or greater than the design tip support force Ra. Whether or not it is greater than the design tip support force Ra required for the rotary press-fit pile 1 to be constructed, the penetration of the rotary press-fit pile 1 is stopped, and if it is less than the design tip support force Ra, the rotary press-fit pile 1
  • the construction can be managed so that the penetration of
  • the pressure input Qin and the supporting force estimation index H Measurement information of (rotational speed ⁇ and penetration speed w or rotational torque Ts) is measured continuously or intermittently, and the tip support force Ru is calculated from the measured measurement information based on the tip support force estimation formula.
  • the support force estimation index H rotational speed ⁇ and penetration speed w or rotational torque Ts
  • the tip support force Ru of the rotary press-fit pile 1 constructed by rotary press-fitting can be estimated easily and accurately, so that the rotary press-fit pile 1 of the rotary press-fit pile 1 can be estimated according to the estimated tip support force Ru. It can be determined whether or not to continue the penetration.
  • the rotary press-fit pile 1 can be stopped in a state where a sufficient tip support force Ru can be exhibited. Therefore, it is possible to prevent excessive or insufficient penetration length to the support layer, as in the case of controlling the stop by the depth to the support layer, it is possible to cope with the unevenness of the support layer, and to improve the construction quality Can do.
  • the above-described method for estimating the tip bearing force or the construction management method of the rotary press-fit pile is realized by a computer comprising a CPU, a memory, and an interface executing a computer program, and the above-described steps S3 to S4 or S9 to S10 are performed. It is realized by the cooperation of various hardware resources of the computer and the computer program. Further, the computer program described above may be provided by being stored in a non-temporary tangible recording medium that can be read by a computer.
  • Example 1 As a test example, a steel pipe having an outer diameter of 800 mm was applied under the condition that the intermediate layer was 10 m, and a loading test was performed. 12 to 15 show the results as graphs. In these graphs, the vertical axis represents the penetration ratio into the support layer (the penetration amount L (mm) into the support layer divided by the pile outer diameter D (mm)).
  • FIG. 12 is a graph showing the relationship between the penetration ratio L / D and the pressure input Qin (kN).
  • FIG. 13 is a graph showing the relationship between the penetration ratio L / D and the rotational speed ⁇ (rad / min).
  • FIG. 14 is a graph showing the relationship between the penetration ratio L / D and the penetration speed w (mm / min).
  • FIG. 12 is a graph showing the penetration ratio into the support layer (the penetration amount L (mm) into the support layer divided by the pile outer diameter D (mm)).
  • FIG. 12 is a graph showing the relationship between the penetration ratio L / D and the pressure input Qin
  • the tip support force Ru actually obtained from the loading test is in good agreement with the tip support force estimated from the tip support force estimation formula E1. Furthermore, when the tip support force estimation formula E2 is used, it can be confirmed that the tip support force can be sufficiently estimated on the safe side. Therefore, it was confirmed that the estimated value of the tip support force Ru according to the present invention is effective.
  • Example 2 As a test example, a steel pipe having an outer diameter of 800 mm was applied under the condition that the intermediate layer was 10 m, and a loading test was performed. 16 to 18 show the results as graphs. In these graphs, the vertical axis represents the penetration ratio into the support layer (the penetration amount L (mm) into the support layer divided by the pile outer diameter D (mm)).
  • FIG. 16 is a graph showing the relationship between the penetration ratio L / D and the pressure input Qin (kN).
  • FIG. 17 is a graph showing the relationship between the penetration ratio L / D and the rotational torque T (kN ⁇ m).
  • the tip support force Ru actually obtained from the loading test is in good agreement with the tip support force estimated from the tip support force estimation formula E3. Furthermore, when the tip support force estimation formula E4 is used, it can be confirmed that the tip support force can be sufficiently estimated on the safe side. Therefore, it was confirmed that the estimated value of the tip support force Ru according to the present invention is effective.
  • the present invention is limited to the above embodiment. It can be changed as appropriate without departing from the scope of the invention.
  • a screw auger or a hammaglab to drain the earth and sand in the steel pipe of the rotary press-fit pile, or in the steel pipe by discharging the water by piping in the steel pipe
  • An auxiliary method such as a method of loosening the earth and sand or a method of applying vibration using a vibro hammer or the like may be used.
  • the present invention by accurately estimating the tip support force of the rotary press-fitting pile in the rotary press-fitting method, it becomes possible to cope with the unevenness of the support layer, and the construction quality can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

A method for estimating the end bearing capacity of a rotary press-in pile by estimating the end bearing capacity of a rotary press-in pile composed of a steel pipe pile, with a tip end of the pile being left open, at the time of construction for rotationally pressing the rotary press-in pile into the ground, said method for estimating the end bearing capacity of the rotary press-in pile comprising: a step for inputting a press-in pressure Qin measured at the time of construction and a bearing capacity estimation index H; and an estimation step for estimating, using the press-in pressure Qin and the bearing capacity estimation index H, an end bearing capacity Ru of the rotary press-in pile on the basis of an end bearing capacity estimation formula expressed by formula (1), which is formulated from the correlation of the press-in pressure Qin of the rotary press-in pile, the end bearing capacity Ru, and the bearing capacity estimation index H. A: Gradient when an approximate line of plotted points of a test result is expressed by formula (2), where the X axis represents the natural logarithm of the bearing capacity estimation index H, and the Y axis is Qin/Ru; and B: Y slice when an approximate line of plotted points of a test result is expressed by formula (2), where the X axis represents the natural logarithm of the bearing capacity estimation index H, and the Y axis is Qin/Ru.

Description

回転圧入杭の先端支持力推定方法、先端支持力管理システム、施工管理方法、及びプログラムTip support force estimation method, tip support force management system, construction management method, and program for rotary press-fitting pile
 本発明は、回転圧入杭の先端支持力推定方法、先端支持力管理システム、施工管理方法、及びプログラムに関する。 The present invention relates to a tip support force estimation method, tip support force management system, construction management method, and program for a rotary press-fit pile.
 従来、施工中の鋼管杭の杭先端地盤の支持力の確認方法として、動的貫入試験を用いたものが知られている。このような動的貫入試験は、所定深度に到達した鋼管杭に対して所定重量のハンマを所定高さから落下させることにより、鋼管杭の貫入量及びリバウンド量を測定して杭の先端地盤の極限支持力を杭打ち方式により推定するものである。
 そして、このようにして得られた杭先端地盤の極限支持力に地盤条件から推定される周面摩擦力を加え、さらに安全率等を考慮した推定支持力と設計支持力とを比較して、該設計支持力を超える推定支持力が算定された場合に、所定の支持力が期待できる。しかし、上述した動的貫入試験により支持力を確認し施工を行う施工方法では、騒音、振動が発生することに加え、施工にハンマを使わない工法ではハンマの準備が必要になるというデメリットがあった。
Conventionally, a method using a dynamic penetration test is known as a method for confirming the bearing capacity of a pile tip ground of a steel pipe pile under construction. Such a dynamic penetration test is performed by measuring a penetration amount and a rebound amount of a steel pipe pile by dropping a hammer with a predetermined weight from a predetermined height with respect to the steel pipe pile reaching a predetermined depth. The ultimate bearing capacity is estimated by the pile driving method.
And, by adding the peripheral frictional force estimated from the ground conditions to the ultimate bearing capacity of the pile tip ground obtained in this way, and comparing the estimated bearing capacity and the design bearing capacity considering the safety factor, etc., A predetermined support force can be expected when an estimated support force exceeding the design support force is calculated. However, in the construction method in which the bearing capacity is confirmed by the dynamic penetration test described above, there is a demerit that in addition to generating noise and vibration, the construction method that does not use a hammer for construction requires preparation of the hammer. It was.
 また、先端に羽根が付いた杭を用いた回転杭工法では、回転トルク値と杭先端に作用する上載荷重と先端の羽根の仕様から先端支持力を確認する施工方法が、例えば特許文献1に記載されている。これは、貫入時の力のつり合いを用いて貫入抵抗を評価するものである。回転トルク値と圧入力の関係より支持力を確認する施工方法では、先端に羽根が取り付けてある必要があるが、羽根の加工費や取り付け費用が必要となる等の課題がある。そのため、羽根が不要であり加工コストが安く、騒音、振動が比較的小さいことから高い環境性能を有する回転圧入杭を用いた回転圧入工法が用いられることがある。 Moreover, in the rotary pile construction method using the pile with the blade | wing at the front-end | tip, the construction method which confirms front-end | tip support force from the rotation torque value, the loading load which acts on a pile front-end | tip, and the specification of the front-end | tip blade is, for example in patent document Are listed. This evaluates the penetration resistance using the balance of forces at the time of penetration. In the construction method in which the supporting force is confirmed from the relationship between the rotational torque value and the pressure input, the blade needs to be attached to the tip, but there are problems such as the need for the processing cost and the installation cost of the blade. Therefore, a rotary press-fit method using a rotary press-fit pile having high environmental performance is sometimes used because blades are unnecessary, processing costs are low, and noise and vibration are relatively small.
日本国特開2000-80650号公報Japanese Unexamined Patent Publication No. 2000-80650
 しかしながら、従来の回転圧入工法では、以下のような問題があった。
 すなわち、回転圧入工法は低騒音・低振動かつ省スペースなどの特徴を有しており、杭体自体に圧入力とトルクを直接加えて施工することから、鋼管杭特有の理想的な工法である。ところが、回転圧入杭の支持力性能については研究例や試験例が少ないため、構造物の鉛直荷重を支える支持杭として適用するためには、都度、載荷試験を実施して支持力性能を確認する必要があるという問題があった。
 さらに、施工時のトルクと施工時の圧入力により先端支持力を評価する方法はあるものの、先端の粗度に応じてトルクと摩擦力から先端支持力を推定する方法となっている。この方法の場合には、開端杭のように先端に地中の土砂が詰まって閉塞して先端支持力を発揮する条件においては、先端の土砂の詰まり具合や詰まる土砂の構成などが施工の制御や地盤の状態に応じて変化することから事前の地盤調査の結果から先端の粗度を想定することは難しく、先端支持力の推定は困難である。
However, the conventional rotary press-fit method has the following problems.
In other words, the rotary press-fit method has features such as low noise, low vibration and space saving, and is an ideal method peculiar to steel pipe piles because it is constructed by applying pressure input and torque directly to the pile body itself. . However, since there are few research examples and test examples on the bearing capacity performance of rotary press-fit piles, in order to apply it as a supporting pile that supports the vertical load of a structure, a loading test is performed each time to confirm the bearing capacity performance. There was a problem that it was necessary.
Furthermore, although there is a method for evaluating the tip support force based on torque during construction and pressure input during construction, the tip support force is estimated from torque and friction force according to the roughness of the tip. In the case of this method, under the condition that the tip is clogged by clogging the soil like the open-ended pile, and the tip support force is exerted, the clogging condition of the tip sediment and the composition of the clogged soil are the control of construction. It is difficult to assume the roughness of the tip from the results of previous ground surveys, and it is difficult to estimate the tip support force.
 一方、回転圧入杭の特徴として、支持層への根入れを確保することで、高い支持力が期待でき、安定して支持力が発揮されることが確認されている。
 しかしながら、回転圧入工法には明確な打ち止め時における管理方法がないため、根入れ長の管理による方法しかない現状となっている。そして、杭を打設する地点の地盤は事前調査を行った場所と離れる場合があり、調査結果と同じ地盤条件になるとは限らない。一方で、支持層が調査結果よりも浅い深度にある場合などでは、既に十分な支持力が得られているにも関わらず、根入れ長を確保するために、圧入が困難な硬い地盤に時間をかけて必要以上の根入れを確保することになる。この場合には、施工時間が増え、長時間の過負荷がかかることで杭本体や圧入機等の施工機械の劣化が生じるという問題があった。
 このように、施工時には荷重として施工時圧入力とトルク、変位として回転速度と貫入速度があり、制御の対象となるパラメータが多く存在することから、優れた施工管理方法の確立が求められていた。
On the other hand, as a feature of the rotary press-fit pile, it is confirmed that a high support force can be expected and the support force can be stably exhibited by securing the root into the support layer.
However, the rotary press-in method does not have a clear management method at the time of stopping, and therefore, there is only a method based on the management of the penetration length. And the ground at the point where the pile is placed may be separated from the place where the preliminary survey was performed, and the ground condition is not necessarily the same as the survey result. On the other hand, when the support layer is at a depth shallower than the survey results, it is necessary to spend time on hard ground that is difficult to press-fit in order to secure the penetration depth even though sufficient support force has already been obtained. To secure more than necessary. In this case, there is a problem that the construction time is increased and the construction machine such as the pile main body or the press-fitting machine is deteriorated due to a long overload.
In this way, during construction there are pressure input and torque during construction as load, rotation speed and penetration speed as displacement, and there are many parameters to be controlled, so establishment of an excellent construction management method has been required. .
 本発明は、上述する問題点に鑑みてなされたものであって、回転圧入工法において回転圧入杭の先端支持力を管理することで、支持層の不陸にも対応可能となり、施工品質を向上させることができる回転圧入杭の先端支持力推定方法、先端支持力管理システム、施工管理方法、及びプログラムを提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and by managing the tip supporting force of the rotary press-fitting pile in the rotary press-fitting method, it becomes possible to cope with the unevenness of the support layer, thereby improving the construction quality. An object of the present invention is to provide a tip support force estimation method, a tip support force management system, a construction management method, and a program that can be rotated.
 本発明の概要は下記の通りである。 The outline of the present invention is as follows.
(1)本発明の第一の態様は、杭先端が解放された鋼管杭からなる回転圧入杭を地盤に回転圧入する施工時に、前記回転圧入杭の先端支持力を推定する回転圧入杭の先端支持力推定方法であって、前記施工時に測定された、圧入力Qinと、支持力推定指標Hとを入力する入力工程と、前記圧入力Qinと、前記支持力推定指標Hとを使用し、回転圧入杭における圧入力Qinと、先端支持力Ruと、支持力推定指標Hとの相関関係から定式化した(1)式で表される先端支持力推定式に基づいて、前記回転圧入杭の先端支持力Ruを推定する推定工程と、を有する。
Figure JPOXMLDOC01-appb-M000009
 
A:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際の勾配
B:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際のY切片
Figure JPOXMLDOC01-appb-M000010
 
(1) The first aspect of the present invention is that the tip of the rotary press-fit pile that estimates the tip support force of the rotary press-fit pile at the time of construction in which the rotary press-fit pile made of a steel pipe pile with the pile tip released is put into the ground. A support force estimation method using an input step of inputting a pressure input Qin and a support force estimation index H measured at the time of construction, the pressure input Qin and the support force estimation index H, Based on the tip support force estimation formula expressed by the formula (1) formulated from the correlation between the pressure input Qin, the tip support force Ru, and the support force estimation index H in the rotary press pile, An estimation step of estimating the tip support force Ru.
Figure JPOXMLDOC01-appb-M000009

A: Gradient when the X-axis is the natural logarithm of the supporting force estimation index H and the Y-axis is Qin / Ru and the approximate line of the plot point of the test result is expressed by the equation (2) B: The X-axis is supported Y intercept when the approximate logarithm line of the test result with the natural logarithm of the force estimation index H and the Y axis as Qin / Ru is expressed by equation (2)
Figure JPOXMLDOC01-appb-M000010
(2)上記(1)に記載の回転圧入杭の先端支持力推定方法では、Dを杭外径(mm)、θを回転速度(rad/min)、wを貫入速度(mm/min)としたとき、前記支持力推定指標Hが0.5D×θ/wであってもよい。
(3)上記(2)に記載の回転圧入杭の先端支持力推定方法では、前記回転圧入杭の周面摩擦による影響である修正圧入力Qin’を計測し、下記(3a)式で求められる補正係数αにより前記先端支持力推定式を補正した修正先端支持力推定式に基づいて前記先端支持力Ruが推定されてもよい。
Figure JPOXMLDOC01-appb-M000011
 
(4)上記(2)又は(3)に記載の回転圧入杭の先端支持力推定方法では、前記施工を行う前に、複数の回転圧入杭を複数個所の地盤に貫入させ、貫入毎の前記回転圧入杭の圧入力Qin、貫入速度w、及び回転速度θを求め、前記圧入力Qin、前記貫入速度w、及び、前記回転速θと、先端支持力Ruとの相関関係から前記先端支持力推定式を予め得てもよい。
(2) In the method for estimating the tip bearing capacity of the rotary press-fit pile described in (1) above, D is the pile outer diameter (mm), θ is the rotational speed (rad / min), and w is the penetration speed (mm / min). In this case, the supporting force estimation index H may be 0.5D × θ / w.
(3) In the method for estimating the tip bearing capacity of the rotary press-fit pile as described in (2) above, the corrected pressure input Qin ′, which is the influence of the peripheral friction of the rotary press-fit pile, is measured and obtained by the following formula (3a) The tip support force Ru may be estimated based on a corrected tip support force estimation formula obtained by correcting the tip support force estimation formula using a correction coefficient α.
Figure JPOXMLDOC01-appb-M000011

(4) In the method for estimating the tip bearing capacity of the rotary press-fit pile according to (2) or (3), before performing the construction, a plurality of rotary press-fit piles are penetrated into the ground at a plurality of locations, The pressure input Qin, the penetration speed w, and the rotation speed θ of the rotary press-fit pile are obtained, and the tip support force is calculated from the correlation between the pressure input Qin, the penetration speed w, the rotation speed θ, and the tip support force Ru. An estimation formula may be obtained in advance.
(5)上記(1)に記載の回転圧入杭の先端支持力推定方法では、Tを回転トルク(kN・mm)、Dを杭外径(mm)としたとき、前記支持力推定指標HがT/0.5Dであってもよい。
(6)上記(5)に記載の回転圧入杭の先端支持力推定方法では、前記回転圧入杭の周面摩擦による影響である修正回転トルクTsの計測値と、下記(3b-1)式で求められる補正係数β1と、下記(3b-2)式で求められる補正係数β2とにより、前記先端支持力推定式を補正した修正先端支持力推定式に基づいて前記先端支持力Ruが推定されてもよい。
Figure JPOXMLDOC01-appb-M000012
 
Figure JPOXMLDOC01-appb-M000013
 
(7)上記(5)又は(6)に記載の回転圧入杭の先端支持力推定方法では、前記施工を行う前に、複数の回転圧入杭を複数個所の地盤に貫入させ、貫入毎の前記回転圧入杭の圧入力Qin、回転トルクTを求め、前記圧入力Qin及び前記回転トルクTと、先端支持力Ruとの相関関係から前記先端支持力推定式を予め得てもよい。
(5) In the method of estimating the tip bearing capacity of the rotary press-fit pile described in (1) above, when T is the rotational torque (kN · mm) and D is the pile outer diameter (mm), the bearing capacity estimation index H is It may be T / 0.5D.
(6) In the method for estimating the tip bearing capacity of the rotary press-fit pile described in (5) above, the measured value of the corrected rotational torque Ts, which is the influence of the peripheral friction of the rotary press-fit pile, and the following formula (3b-1): The tip support force Ru is estimated based on the corrected tip support force estimation formula obtained by correcting the tip support force estimation formula by using the correction coefficient β1 obtained and the correction coefficient β2 obtained by the following equation (3b-2). Also good.
Figure JPOXMLDOC01-appb-M000012

Figure JPOXMLDOC01-appb-M000013

(7) In the method for estimating the tip bearing capacity of a rotary press-fit pile according to (5) or (6) above, before performing the construction, a plurality of rotary press-fit piles are penetrated into the ground at a plurality of locations, The pressure input Qin and rotational torque T of the rotary press-fit pile may be obtained, and the tip support force estimation formula may be obtained in advance from the correlation between the pressure input Qin and the rotational torque T and the tip support force Ru.
(8)本発明の第二の態様は、上記(1)~(7)のいずれか1項に記載の回転圧入杭の先端支持力推定方法を使用して前記回転圧入杭の先端支持力を管理する先端支持力管理システムであって、前記先端支持力推定式が格納された記憶部と、前記記憶部に格納されている前記先端支持力推定式に基づいて前記先端支持力Ruを算出する演算処理部と、を有する。
(9)上記(8)に記載の先端支持力管理システムでは、前記演算処理部において、算出した前記先端支持力Ruに応じて前記回転圧入杭の貫入を継続するか否かを判定してもよい。
(10)上記(8)に記載の先端支持力管理システムでは、前記記憶部には、施工する回転圧入杭に必要な設計先端支持力Raが格納され、前記演算処理部では、算出された前記先端支持力Ruが前記設計先端支持力Ra以上であるか否かを判定してもよい。
(11)上記(8)~(10)のいずれか1項に記載の先端支持力管理システムは、前記演算処理部で処理した結果を表示する表示部を更に有してもよい。
(8) In the second aspect of the present invention, the tip support force of the rotary press-fit pile is calculated using the method of estimating the tip support force of the rotary press-fit pile according to any one of (1) to (7) above. A tip support force management system for managing, wherein the tip support force Ru is calculated based on a storage unit storing the tip support force estimation formula and the tip support force estimation formula stored in the storage unit. And an arithmetic processing unit.
(9) In the tip support force management system according to (8) above, whether or not to continue the penetration of the rotary press-fit pile according to the calculated tip support force Ru is determined in the arithmetic processing unit. Good.
(10) In the tip support force management system according to (8) above, the storage unit stores a design tip support force Ra necessary for the rotary press-fit pile to be constructed, and the arithmetic processing unit calculates the calculated It may be determined whether the tip support force Ru is greater than or equal to the designed tip support force Ra.
(11) The tip supporting force management system according to any one of (8) to (10) may further include a display unit that displays a result processed by the arithmetic processing unit.
(12)本発明の第三の態様は、上記(1)~(7)のいずれか1項に記載の回転圧入杭の先端支持力推定方法を使用して前記回転圧入杭の施工を管理する施工管理方法であって、推定された前記先端支持力Ruに応じて前記回転圧入杭の貫入を継続するか否かを判定する工程を更に有する。
(13)上記(12)に記載の施工管理方法では、前記先端支持力推定式で算出された前記先端支持力Ruが、施工する前記回転圧入杭に必要な設計先端支持力Ra以上である場合に前記回転圧入杭の貫入を停止し、前記設計先端支持力Raより小さい場合に前記回転圧入杭の貫入を継続するようにしてもよい。
(14)上記(12)又は(13)に記載の施工管理方法は、前記先端支持力Ruを算出する工程では、前記回転圧入杭の周面摩擦による影響である修正圧入力Qin’又は修正回転トルクTsの計測値を用いて、下記(3a)式で求められる補正係数αにより、又は、下記(3b-1)式で求められる補正係数β1と、下記(3b-2)式で求められる補正係数β2とにより補正した修正先端支持力推定式に基づいて前記先端支持力Ruを算出してもよい。
Figure JPOXMLDOC01-appb-M000014
 
Figure JPOXMLDOC01-appb-M000015
 
Figure JPOXMLDOC01-appb-M000016
 
(12) The third aspect of the present invention manages the construction of the rotary press-fit pile using the method for estimating the tip bearing capacity of the rotary press-fit pile according to any one of (1) to (7) above. The construction management method further includes a step of determining whether or not to continue the penetration of the rotary press-fit pile according to the estimated tip support force Ru.
(13) In the construction management method described in (12) above, when the tip support force Ru calculated by the tip support force estimation formula is greater than or equal to the design tip support force Ra required for the rotary press-fit pile to be constructed. Alternatively, the penetration of the rotary press-fit pile may be stopped and the penetration of the rotary press-fit pile may be continued when the design tip support force Ra is smaller.
(14) In the construction management method according to the above (12) or (13), in the step of calculating the tip support force Ru, the correction pressure input Qin ′ or the correction rotation which is an influence of the peripheral friction of the rotary press-fitting pile Using the measured value of the torque Ts, the correction coefficient α obtained by the following expression (3a) or the correction coefficient β1 obtained by the following expression (3b-1) and the correction obtained by the following expression (3b-2) The tip support force Ru may be calculated based on a corrected tip support force estimation formula corrected by the coefficient β2.
Figure JPOXMLDOC01-appb-M000014

Figure JPOXMLDOC01-appb-M000015

Figure JPOXMLDOC01-appb-M000016
(15)本発明の第四の態様は、上記(1)~(7)のいずれか一項に記載の回転圧入杭の先端支持力推定方法をコンピュータに実行させるプログラムである。
(16)本発明の第五の態様は、上記(12)~(14)のいずれか一項に記載の施工管理方法をコンピュータに実行させるプログラムである。
(15) A fourth aspect of the present invention is a program for causing a computer to execute the tip pressing force estimating method for a rotary press-fit pile according to any one of the above (1) to (7).
(16) A fifth aspect of the present invention is a program that causes a computer to execute the construction management method according to any one of (12) to (14).
 本発明によれば、回転圧入工法における回転圧入杭の先端支持力を的確に推定することで、支持層の不陸にも対応可能となり、施工品質を向上させることができる。 According to the present invention, by accurately estimating the tip support force of the rotary press-fitting pile in the rotary press-fitting method, it becomes possible to cope with the unevenness of the support layer, and the construction quality can be improved.
回転圧入杭を地盤に圧入する際の状態を示す概略図である。It is the schematic which shows the state at the time of press-fitting a rotation press fit pile in the ground. 先端支持力推定方法に使用する三点式杭打ち機による杭回転圧入機の構成を示す側面図である。It is a side view which shows the structure of the pile rotary press-fit machine by the three-point type pile driving machine used for a tip support force estimation method. 先端支持力推定方法に使用する全周旋回式圧入機による杭回転圧入機の構成を示す側面図である。It is a side view which shows the structure of the pile rotary press machine by the all-around turning type press machine used for a tip support force estimation method. 先端支持力管理システムの構成を示すブロック図である。It is a block diagram which shows the structure of a front-end | tip support force management system. 施工試験後に載荷試験を実施した回転圧入杭のQin/Ruと、支持力推定指標H(=0.5D×θ/w)の自然対数との関係を示す図である。It is a figure which shows the relationship between Qin / Ru of the rotary press-fit pile which implemented the loading test after the construction test, and the natural logarithm of the bearing capacity estimation parameter | index H (= 0.5Dx (theta) / w). 先端支持力推定式の定式化の一例を示す図である。It is a figure which shows an example of formulation of a tip support force estimation formula. ビット付鋼管について先端支持力推定式の定式化の例を示す図である。It is a figure which shows the example of formulation of a tip bearing force estimation formula about a steel pipe with a bit. ビット無鋼管について先端支持力推定式の定式化の例を示す図である。It is a figure which shows the example of formulation of a tip bearing force estimation formula about a bit steel pipe. 施工試験後に載荷試験を実施した回転圧入杭のQin/Ruと、支持力推定指標H(=T/0.5D)の自然対数との関係を示す図である。It is a figure which shows the relationship between Qin / Ru of the rotary press-fit pile which implemented the load test after the construction test, and the natural logarithm of the bearing capacity estimation parameter | index H (= T / 0.5D). 先端支持力推定式の定式化の一例を示す図である。It is a figure which shows an example of formulation of a tip support force estimation formula. 先端支持力推定方法を使用した回転圧入杭の施工管理方法によるステップを示すフローチャートである。It is a flowchart which shows the step by the construction management method of the rotation press-fit pile which uses the tip supporting force estimation method. 他の先端支持力推定方法を使用した回転圧入杭の施工管理方法によるステップを示すフローチャートである。It is a flowchart which shows the step by the construction management method of the rotation press fit pile using the other tip supporting force estimation method. 実施例を説明する図であって、支持層への根入れ比と圧入力との関係を示すグラフである。It is a figure explaining an Example, Comprising: It is a graph which shows the relationship between the penetration ratio to a support layer, and a pressure input. 実施例を説明する図であって、支持層への根入れ比と回転速度との関係を示すグラフである。It is a figure explaining an Example, Comprising: It is a graph which shows the relationship between the penetration ratio to a support layer, and a rotational speed. 実施例を説明する図であって、支持層への根入れ比と貫入速度との関係を示すグラフである。It is a figure explaining an Example, Comprising: It is a graph which shows the relationship between the penetration ratio to a support layer, and the penetration speed. 実施例を説明する図であって、支持層への根入れ比と先端支持力との関係を示すグラフである。It is a figure explaining an Example, Comprising: It is a graph which shows the relationship between the penetration ratio to a support layer, and tip support force. 実施例を説明する図であって、支持層への根入れ比と圧入力との関係を示すグラフである。It is a figure explaining an Example, Comprising: It is a graph which shows the relationship between the penetration ratio to a support layer, and a pressure input. 実施例を説明する図であって、支持層への根入れ比と回転トルクとの関係を示すグラフである。It is a figure explaining an Example, Comprising: It is a graph which shows the relationship between the penetration ratio to a support layer, and rotational torque. 実施例を説明する図であって、支持層への根入れ比と先端支持力との関係を示すグラフである。It is a figure explaining an Example, Comprising: It is a graph which shows the relationship between the penetration ratio to a support layer, and tip support force.
 図1は、先端部1aが解放された鋼管杭からなる回転圧入杭1を地盤に圧入する際の状態を示す概略図である。図1に示すように、回転圧入杭1は、軸周り方向に回転トルクT(kN・mm)を付与しつつ、軸方向に圧入力Qin(kN)を付与することにより、所定の回転ピッチpで地盤に圧入される。
 圧入力Qinは、施工中に施工機械で地上部に出ている杭部分を把持して杭頭部から杭先端部に向けて付与する荷重である。
 回転ピッチpは、回転圧入杭の貫入速度w(mm/min)に対する回転速度θ(rad/min)を、杭外径D(mm)の1/2である杭の半径を用いて無次元化した割合であって、p=0.5D×θ/wで表される。尚、貫入速度wは、回転圧入杭1が1分当たりに地中に挿入される速度であり、回転速度θは、回転圧入杭1が1分当たりに回転する角度である。
FIG. 1 is a schematic view showing a state in which a rotary press-fit pile 1 made of a steel pipe pile with a free end 1a is press-fitted into the ground. As shown in FIG. 1, the rotary press-fit pile 1 has a predetermined rotational pitch p by applying a pressure input Qin (kN) in the axial direction while applying a rotational torque T (kN · mm) in the axial direction. Is pressed into the ground.
The pressure input Qin is a load that is applied from the pile head toward the tip of the pile by gripping the pile portion that is exposed to the ground portion with the construction machine during construction.
Rotation pitch p is made dimensionless by using the radius of the pile that is 1/2 of the outer diameter D (mm) of the rotation speed θ (rad / min) with respect to the penetration speed w (mm / min) of the rotary press-fit pile. The ratio is expressed by p = 0.5D × θ / w. The penetration speed w is a speed at which the rotary press-in pile 1 is inserted into the ground per minute, and the rotary speed θ is an angle at which the rotary press-in pile 1 rotates per minute.
 先端支持力Ruとは、杭の先端近傍で発揮される支持力である。先端部1aが解放された鋼管杭(開端杭)においては、管内に取り込んだ土砂が閉塞して先端支持力Ruを発揮する。従って、先端支持力Ruは、回転圧入杭1の先端部1aだけでなく、回転圧入杭1の先端部1aから杭外径Dの1倍~5倍程度上方までの範囲Aで発揮される、杭軸の杭頭1bから杭先端方向に向けた抵抗である。 The tip support force Ru is a support force exerted in the vicinity of the tip of the pile. In the steel pipe pile (open-ended pile) from which the distal end portion 1a is released, the earth and sand taken into the pipe is blocked and exerts the distal end supporting force Ru. Therefore, the tip support force Ru is exhibited not only in the tip portion 1a of the rotary press-fit pile 1, but also in the range A from the tip portion 1a of the rotary press-fit pile 1 to about 1 to 5 times the pile outer diameter D. It is the resistance toward the pile tip direction from the pile head 1b of the pile shaft.
 回転圧入杭1は、図2及び図3に示すような杭回転圧入機2により回転トルクTと圧入力Qinとを付与することで地盤に回転圧入される。 Rotational press-fit pile 1 is rotationally press-fitted into the ground by applying rotational torque T and press input Qin by a pile rotary press-in machine 2 as shown in FIGS.
 尚、回転圧入杭1は、先端部1aに掘削用の掘削ビットが設けられたビット付鋼管杭であってもよく、先端部1aに掘削用の掘削ビットが設けられていないビット無鋼管杭であってもよい。
 掘削ビットは、支持力を得るために取り付けられる羽根とは異なり、施工性を向上するための構造である。本願において、掘削ビットが設けられている場合、掘削ビットの鋼管杭外面からの外側突出長は、20mm以下である。一方、鋼管杭の先端には、軸方向長さ300mm程度のフリクションカッターが設けられてもよい。フリクションカッターは二重管構造を有し、鋼管杭の外面から20mm以下で突出している。ビットが、このフリクションカッター上に設けられた場合、フリクションカッター外面から20mm以下で突出し得るため、鋼管外面からは20+20=40mm以下で突出することとなる。尚、掘削ビットの内側突出長も、20mm以下であることが好ましい。
The rotary press-fit pile 1 may be a steel pipe pile with a bit in which a drilling bit for excavation is provided at the distal end portion 1a, or a bit-free steel pipe pile in which a drilling bit for excavation is not provided in the distal end portion 1a. There may be.
The excavation bit has a structure for improving workability, unlike a blade attached to obtain a supporting force. In this application, when the excavation bit is provided, the outside protrusion length from the steel pipe pile outer surface of the excavation bit is 20 mm or less. On the other hand, a friction cutter having an axial length of about 300 mm may be provided at the tip of the steel pipe pile. The friction cutter has a double pipe structure, and protrudes from the outer surface of the steel pipe pile at 20 mm or less. When the bit is provided on the friction cutter, it can protrude from the outer surface of the friction cutter by 20 mm or less, and therefore, it protrudes from the outer surface of the steel pipe by 20 + 20 = 40 mm or less. The inner protruding length of the excavation bit is also preferably 20 mm or less.
 図2に示すように、杭回転圧入機2の一例として、リーダー24Aを備えた自走式の圧入機本体24と、リーダー24Aに設けられる把持部24Bを回転させるための駆動モーター25と、を有する三点式杭打ち機2Aを用いることができる。
 また、図3に示すように、杭回転圧入機2の他の例として、把持部26A及びスラストジャッキ26Bを備えた据え置き式の圧入機本体26と、把持部26Aを回転させるための駆動モーター27と、を有する全周旋回式圧入機2B(2)を使用しても良い。
 なお、杭打設深度(杭先端位置)はリーダーに設けられるストロークセンサーやエンコーダー等の一般的な計測装置により計測するよう構成されている。
As shown in FIG. 2, as an example of the pile rotary presser 2, a self-propelled presser main body 24 provided with a leader 24A and a drive motor 25 for rotating a grip portion 24B provided on the leader 24A are provided. The three-point pile driving machine 2A can be used.
Moreover, as shown in FIG. 3, as another example of the pile rotary presser 2, the stationary presser main body 26 provided with a gripping portion 26A and a thrust jack 26B, and a drive motor 27 for rotating the gripping portion 26A. The all-around swivel press-fitting machine 2B (2) may be used.
It should be noted that the pile driving depth (pile tip position) is configured to be measured by a general measuring device such as a stroke sensor or an encoder provided in the leader.
 本発明者らは、このようにして施工される回転圧入杭の先端支持力Ruを的確に推定する方法について鋭意検討した。
 その結果、回転圧入杭を地盤に回転圧入する施工時に、圧入力Qinと、支持力推定指標Hの構成因子(回転速度・貫入速度、又は、回転トルク)とを測定し、回転圧入杭における圧入力Qinと、先端支持力Ruと、支持力推定指標Hとの相関関係から定式化した下記(1)式で表される先端支持力推定式に基づいて、回転圧入杭の先端支持力Ruを推定することが有効であることを見出した。
Figure JPOXMLDOC01-appb-M000017
 
A:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際の勾配
B:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際のY切片
Figure JPOXMLDOC01-appb-M000018
 
The present inventors diligently studied a method for accurately estimating the tip support force Ru of the rotary press-fit pile constructed in this way.
As a result, the pressure input Qin and the component factor (rotational speed / penetration speed or rotational torque) of the bearing capacity estimation index H are measured during construction to rotationally press-fit the rotary press-fit pile into the ground. Based on the tip support force estimation formula expressed by the following formula (1) formulated from the correlation between the input Qin, the tip support force Ru, and the support force estimation index H, the tip support force Ru of the rotary press-fit pile is calculated. We found that estimation is effective.
Figure JPOXMLDOC01-appb-M000017

A: Gradient when the X-axis is the natural logarithm of the supporting force estimation index H and the Y-axis is Qin / Ru and the approximate line of the plot point of the test result is expressed by the equation (2) B: The X-axis is supported Y intercept when the approximate logarithm line of the test result with the natural logarithm of the force estimation index H and the Y axis as Qin / Ru is expressed by equation (2)
Figure JPOXMLDOC01-appb-M000018
 本発明は上述の新たな知見に基づきなされたものである。以下、本発明を各実施形態に基づき図面を参照しながら詳細に説明する。 The present invention has been made based on the above-mentioned new knowledge. Hereinafter, the present invention will be described in detail based on each embodiment with reference to the drawings.
(第一実施形態)
 以下、本発明の第一実施形態に係る回転圧入杭の先端支持力推定方法について説明する。
 本実施形態に係る先端支持力推定方法は、回転圧入杭を地盤に回転圧入する施工時の回転速度θと貫入速度wとに基づいて回転圧入杭の先端支持力を推定するものであり、入力工程と推定工程とを有する。
 すなわち、本実施形態に係る先端支持力推定方法においては、回転圧入杭の外径をD(mm)、回転速度をθ(rad/min)、貫入速度をw(mm/min)とした場合に、0.5D×θ/wで示される値(回転ピッチ)を支持力推定指標Hとする。
(First embodiment)
Hereinafter, the tip supporting force estimation method of the rotary press-fit pile according to the first embodiment of the present invention will be described.
The tip supporting force estimation method according to the present embodiment estimates the tip supporting force of the rotary press-fitted pile based on the rotational speed θ and the penetration speed w at the time of construction for rotary press-fitting the rotary press-fitted pile into the ground. It has a process and an estimation process.
That is, in the tip supporting force estimation method according to the present embodiment, when the outer diameter of the rotary press-fit pile is D (mm), the rotational speed is θ (rad / min), and the penetration speed is w (mm / min). The value (rotation pitch) indicated by 0.5D × θ / w is defined as the support force estimation index H.
 まず、入力工程として、回転圧入杭1を地盤に回転圧入する施工時に、圧入力Qinと、上記支持力推定指標Hの構成因子である回転速度θと貫入速度wとを測定してこれらの情報をコンピュータに入力する。 First, as an input process, at the time of construction for rotary press-fitting the rotary press-fit pile 1 to the ground, the press input Qin, the rotational speed θ and the penetration speed w, which are constituent factors of the bearing force estimation index H, are measured, and these information are obtained. To the computer.
 次に、推定工程として、入力工程で得られた圧入力Qinと、支持力推定指標Hとを使用し、回転圧入杭における圧入力Qinと、先端支持力Ruと、支持力推定指標Hとの相関関係から定式化した下記(1a)式で表される先端支持力推定式に基づいて、回転圧入杭1の先端支持力Ruを推定する。
Figure JPOXMLDOC01-appb-M000019
 
Next, as the estimation step, the pressure input Qin obtained in the input step and the support force estimation index H are used, and the pressure input Qin, the tip support force Ru, and the support force estimation index H in the rotary press-fit pile are calculated. The tip support force Ru of the rotary press-fit pile 1 is estimated based on the tip support force estimation formula expressed by the following formula (1a) formulated from the correlation.
Figure JPOXMLDOC01-appb-M000019
 A1は、X軸を支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を下記(2a)式で表した際の勾配である。
 B1は、X軸を支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を下記(2a)式で表した際のY切片である。
 プロット点の近似線は、例えば、最小二乗法による対数近似線を用いればよい。
A1 is the gradient when the approximate line of the plot point of the test result with the X axis as the natural logarithm of the bearing capacity estimation index H and the Y axis as Qin / Ru is expressed by the following equation (2a).
B1 is the Y intercept when the approximate line of the plot point of the test result with the X axis as the natural logarithm of the bearing capacity estimation index H and the Y axis as Qin / Ru is expressed by the following equation (2a).
For example, a logarithmic approximation line by a least square method may be used as the approximation line of the plot points.
Figure JPOXMLDOC01-appb-M000020
 
Figure JPOXMLDOC01-appb-M000020
 
 上記(1a)式で表される先端支持力推定式は、後述するような施工試験及び載荷試験によって定式化された式である。圧入力Qin、貫入速度w、回転速度θは、杭回転圧入装置2に設けられた計測部によって連続的に計測される。 The tip support force estimation formula expressed by the above formula (1a) is a formula formulated by a construction test and a loading test as described later. The press input Qin, the penetration speed w, and the rotation speed θ are continuously measured by a measurement unit provided in the pile rotation press-fitting device 2.
 本実施形態に係る先端支持力推定方法によれば、回転圧入杭1を回転圧入する施工時に、圧入力Qin、貫入速度w、及び回転速度θの測定情報を連続的又は間欠的に計測し、計測された測定情報から上述の(1a)式で表される先端支持力推定式に基づいて先端支持力Ruを算出することができる。
 すなわち、施工時の圧入力Qin、回転速度θ、貫入速度w、及び先端支持力Ruの間に高い相関関係があることに基づいて定式化した先端支持力推定式を用いることで、容易にかつ精度よく回転圧入によって施工される回転圧入杭の先端支持力Ruを推定できる。従って、推定される先端支持力Ruに応じて回転圧入杭の貫入を継続するか否かを判定することができる。
 また、後述するように、このような先端支持力Ruを推定することによる施工管理方法を採用することで、十分な先端支持力Ruが発揮できる状態で回転圧入杭を打ち止めすることができる。
 したがって、支持層までの深度によって打ち止めを管理する場合のように、支持層に対する根入れ長の過不足を防止でき、支持層の不陸にも対応することが可能となる。
According to the tip supporting force estimation method according to the present embodiment, measurement information of the pressure input Qin, the penetration speed w, and the rotational speed θ is continuously or intermittently measured during the construction for rotationally press-fitting the rotary press-fit pile 1. The tip support force Ru can be calculated from the measured measurement information based on the tip support force estimation formula expressed by the above-described formula (1a).
That is, by using the tip support force estimation formula formulated based on the fact that there is a high correlation among the pressure input Qin, the rotation speed θ, the penetration speed w, and the tip support force Ru during construction, It is possible to estimate the tip support force Ru of the rotary press-fit pile constructed by rotary press-fit with high accuracy. Therefore, it is possible to determine whether or not to continue the penetration of the rotary press-fit pile according to the estimated tip support force Ru.
Further, as will be described later, by adopting such a construction management method by estimating the tip support force Ru, the rotary press-fit pile can be stopped in a state where a sufficient tip support force Ru can be exhibited.
Therefore, as in the case of controlling the stop depending on the depth to the support layer, it is possible to prevent an excessive or insufficient penetration length with respect to the support layer, and it is possible to cope with the unevenness of the support layer.
 ここで、上述の(1a)式で表される先端支持力推定式を定式化するための施工試験及び載荷試験について説明する。 Here, a construction test and a loading test for formulating the tip bearing force estimation formula represented by the above formula (1a) will be described.
 施工試験では、図1に示すように、実際の地盤や人工的に作成した地盤に回転圧入杭1を回転圧入し、回転圧入施工を停止する予め設定された打ち止め時の深度(打ち止め深度Z0)よりも杭外径Dの2倍程度上方の位置までの区間において、回転速度θを一定値に保持したまま貫入させる。
 圧入力Qinは、地盤の抵抗の変化により多少の上下があるものの、概ね一定値になるように制御される。ここで、打ち止め深度Z0は、施工試験で用いる杭外径Dと地盤条件に基づいて設計される先端支持力が得られる深度である。
 貫入速度w及び回転速度θは、打ち止め深度Z0から上方に杭外径Dの0.1倍程度の長さ区間を打ち止め直前区間Kとして、この区間Kに回転圧入杭1の先端部1aが到達したときに測定される平均値を採用する。
In the construction test, as shown in FIG. 1, a rotary press-fitting pile 1 is rotationally press-fitted into the actual ground or artificially created ground, and the preset depth at which the rotary press-in construction is stopped (stop depth Z0). In the section up to a position about twice as large as the pile outer diameter D, the penetration is made while maintaining the rotational speed θ at a constant value.
The pressure input Qin is controlled so as to be a substantially constant value, although there is some ups and downs due to changes in ground resistance. Here, the stop depth Z0 is a depth at which the tip support force designed based on the pile outer diameter D and the ground conditions used in the construction test can be obtained.
As for the penetration speed w and the rotational speed θ, a section having a length of about 0.1 times the pile outer diameter D is set as an immediately preceding section K from the stop depth Z0, and the tip 1a of the rotary press-fit pile 1 reaches this section K. The average value measured when
 載荷試験では、試験用の回転圧入杭を所定の深度で打ち止めした後、鉛直方向から荷重により載荷を行う。そして、深度方向に複数断面の杭の応力分布を計測して周面摩擦力と先端支持力Ruを分離して測定する。尚、載荷試験は、例えば、地盤工学会から発刊されている「杭の鉛直載荷試験方法・同解説2002」に示される、「杭の押込み試験」、「杭の急速載荷試験」、「杭の衝撃載荷試験」に従って実施すればよい。 In the loading test, the rotary press-fit pile for testing is stopped at a predetermined depth, and then loaded with a load from the vertical direction. And the stress distribution of the pile of a plurality of cross sections is measured in the depth direction, and the peripheral friction force and the tip support force Ru are separated and measured. In addition, the loading test is, for example, “pile indentation test”, “pile rapid loading test”, “pile loading test” shown in “Pile vertical loading test method / comment 2002” published by the Geotechnical Society. It may be carried out according to the “impact loading test”.
 表1に、具体例としての試験1~25について、掘削ビットの有無、杭外径(mm)、支持層地盤の種類(砂層/礫層)、圧入力Qin(kN)、回転速度θ(rad/min)、貫入速度w(mm/min)、回転ピッチ0.5D×θ/w(-)、先端支持力Ru(kN)、及びQin/Ru(-)を示す。
 試験1~14では、掘削ビットを有しないビット無鋼管杭を用いた。
 試験15~25では、先端部において周方向に均等に四つの掘削ビットが設けられたビット付鋼管杭を用いた。
Table 1 shows the presence or absence of excavation bits, pile outer diameter (mm), support layer ground type (sand layer / gravel layer), pressure input Qin (kN), rotational speed θ (rad) for tests 1 to 25 as specific examples. / Min), penetration speed w (mm / min), rotational pitch 0.5D × θ / w (−), tip support force Ru (kN), and Qin / Ru (−).
In tests 1 to 14, a bit-free steel pipe pile without a drilling bit was used.
In Tests 15 to 25, a steel pipe pile with a bit in which four excavation bits were evenly provided in the circumferential direction at the tip portion was used.
Figure JPOXMLDOC01-appb-T000021
 
Figure JPOXMLDOC01-appb-T000021
 
 試験1~25について、X軸を支持力推定指標H(=0.5D×θ/w)の自然対数とし、Y軸をQin/Ruとしてプロットしたグラフを図5に示す。このグラフは、施工試験後に載荷試験を実施した回転圧入杭のQin/Ruと、支持力推定指標H(=0.5D×θ/w)の自然対数との関係を示したものである。 For Tests 1 to 25, a graph in which the X axis is the natural logarithm of the bearing capacity estimation index H (= 0.5 D × θ / w) and the Y axis is Qin / Ru is shown in FIG. This graph shows the relationship between Qin / Ru of the rotary press-fit pile subjected to the loading test after the construction test and the natural logarithm of the bearing capacity estimation index H (= 0.5D × θ / w).
 図5から、各試験の試験結果のプロットについて最小二乗法による近似線を算出すると、図6に示すように下記(2a-1)式が得られる。
Figure JPOXMLDOC01-appb-M000022
 
From FIG. 5, when the approximate line by the least square method is calculated for the plot of the test result of each test, the following equation (2a-1) is obtained as shown in FIG.
Figure JPOXMLDOC01-appb-M000022
 そして、この(2a-1)式に基づいて、上記(1)式に対応する先端支持力推定式である(1a-1)式が導かれる。
 実構造物の設計では、先端支持力Ruの設計式に対して十分な安全率が考慮されているため、打ち止め管理式においてもばらつきは許容される。従って、全データの近似式から求めた(1a-1)式を用いることは妥当である。
Based on this equation (2a-1), equation (1a-1), which is a tip support force estimation equation corresponding to equation (1), is derived.
In designing an actual structure, a sufficient safety factor is taken into consideration with respect to the design formula of the tip support force Ru, and therefore variation is allowed even in the stop management formula. Therefore, it is appropriate to use the expression (1a-1) obtained from the approximate expression of all data.
Figure JPOXMLDOC01-appb-M000023
 
Figure JPOXMLDOC01-appb-M000023
 
 このような相関性があることを確認したことにより、施工時に杭回転圧入機2から刻々と測定される圧入力Qin、貫入速度w、回転速度θのデータから先端支持力推定式である(1a-1)式を使用して先端支持力Ruを推定することができる。 By confirming that there is such a correlation, it is a tip supporting force estimation formula from the data of the pressure input Qin, the penetration speed w, and the rotational speed θ measured every moment from the pile rotary presser 2 at the time of construction (1a The tip support force Ru can be estimated using the equation -1).
 尚、許容される安全率が低い構造物について打ち止め管理を行う場合には、図6に示すように、(2a-1)式の近似線に平行で、かつQin/Ruの点の最大値を含む上限を示す近似線である(2a-1’)式を算出し、これに基づいて得られる(1a-1’)式を先端支持力推定式として用いてもよい。 In the case of performing stop management for a structure having a low allowable safety factor, as shown in FIG. 6, the maximum value of the Qin / Ru point is parallel to the approximate line of the equation (2a-1). The formula (2a-1 ′), which is an approximate line indicating the upper limit to be included, may be calculated, and the formula (1a-1 ′) obtained based on this may be used as the tip support force estimation formula.
Figure JPOXMLDOC01-appb-M000024
 
Figure JPOXMLDOC01-appb-M000025
 
Figure JPOXMLDOC01-appb-M000024
 
Figure JPOXMLDOC01-appb-M000025
 
 この場合、載荷試験による試験結果は、図6において(2a-1’)式で示される直線よりも下方の領域に包含されているため、より信頼性を高めることができる。 In this case, since the test result by the loading test is included in the region below the straight line represented by the formula (2a-1 ′) in FIG. 6, the reliability can be further improved.
 また、上述した先端支持力推定式は、試験1~25のプロット点に基づいて導出された推定式であるが、実際に施工する圧入鋼管杭のビット有無に合わせた試験結果のみを用いて導出した推定式を用いることで、推定の精度を高めることができる。
 すなわち、ビット有りの鋼管杭について支持力を推定する場合には、図7Aに示すように、ビット有りの試験について、上記(2a-1)式と同様に(2a-1-1)式を求め、これに基づき得られる(1a-1-1)式を支持力推定式として用いてもよい。
Figure JPOXMLDOC01-appb-M000026
 
Figure JPOXMLDOC01-appb-M000027
 
 また、同様に、ビット無しの鋼管杭について支持力を推定する場合には、図7Bに示すように、ビット無しの試験について、上記(2a-1)式と同様に(2a-1-2)式の近似線を求め、これに基づき得られる(1a-1-2)式を支持力推定式として用いてもよい。
Figure JPOXMLDOC01-appb-M000028
 
Figure JPOXMLDOC01-appb-M000029
 
The above-mentioned tip bearing capacity estimation formula is an estimation formula derived based on the plot points of tests 1 to 25, but is derived using only the test results according to the presence or absence of the bit of the press-fit steel pipe pile to be actually constructed. By using the estimated expression, the accuracy of estimation can be increased.
That is, when estimating the bearing capacity of a steel pipe pile with a bit, as shown in FIG. 7A, the equation (2a-1-1) is obtained in the same manner as the equation (2a-1) for the test with a bit. The equation (1a-1-1) obtained based on this may be used as the supporting force estimation equation.
Figure JPOXMLDOC01-appb-M000026

Figure JPOXMLDOC01-appb-M000027

Similarly, when estimating the bearing capacity of a steel pipe pile without a bit, as shown in FIG. 7B, the test without a bit is similar to the above equation (2a-1) (2a-1-2) An approximate line of the equation may be obtained, and the equation (1a-1-2) obtained based on the approximate line may be used as the supporting force estimation equation.
Figure JPOXMLDOC01-appb-M000028

Figure JPOXMLDOC01-appb-M000029
 尚、上記の例では、プロットの最小二乗法による近似線である(2a-1)式から平行移動した近似線である(2a-1’)式を導き出して先端支持力推定式である(1a-1’)式を求めた。しかし、近似線はプロットを最小二乗法以外の近似法を用いて得てもよい。
 また、上記(2a-1’)式で示す近似線は、最小二乗法による近似線の傾きを厳密に一定とした平行移動により得られたものでなくてもよく、例えば、対象とするプロット点を包絡するような直線又は曲線であってもよい。
In the above example, the approximated line (2a-1 '), which is an approximated line translated from the approximated line (2a-1) based on the least square method of the plot, is derived and is the tip bearing force estimation expression (1a). -1 ′) equation was obtained. However, the approximate line may be obtained by using an approximation method other than the least square method.
Further, the approximate line represented by the above equation (2a-1 ′) may not be obtained by parallel translation with the slope of the approximate line obtained by the least square method being strictly constant. It may be a straight line or a curve enveloping.
 また、上述した先端支持力推定式である(1a)式において、杭長が長い場合や、支持層より上部に厚い粘土層が存在する場合などにはより精緻な先端支持力Ruの推定を行うために、支持層より上部での杭周面の影響を除く補正を行うようにしてもよい。
 その際には、回転圧入杭1を支持層の上部で一旦引き上げ、杭先端に空隙を生じさせて先端の抵抗が発生しない条件で、その際の回転速度θを一定にして、貫入速度wを変化させて貫入させたときの圧入力、すなわち杭周面の影響(周面摩擦力が起因となる押し込み方向の抵抗力)である修正圧入力Qin’を計測する。このとき、貫入速度wを変化させる範囲は、機械の能力から決まる最大の速度からほぼゼロまでの範囲であることが望ましい。
 具体的には、施工時の圧入力Qinから杭周面の影響である修正圧入力Qin’を除去することにより求まる(3a)式で表される補正係数αを求める。
 そして、補正係数αを用いた(1a-1*)式の修正先端支持力推定式によって、より精緻な先端支持力Ruを推定できる。
 このとき、施工時の圧入力Qinおよび修正圧入力Qin’は貫入速度wの変化に応じて連続的に変化する値、つまり貫入速度wの関数となるため、施工時の圧入力Qinと施工時の圧入力Qinから除去する修正圧入力Qin’は支持層の施工時の貫入速度wに応じた値を用いる。したがって、(1a*)式によって先端支持力を推定する際に、補正係数αは、支持層施工時の貫入速度wの変化に応じて逐次演算された値を用いる。
Further, in the above formula (1a) which is the tip supporting force estimation formula, a more precise tip supporting force Ru is estimated when the pile length is long or when a thick clay layer exists above the support layer. Therefore, you may make it perform the correction | amendment which excludes the influence of the pile surrounding surface above a support layer.
In that case, the rotary press-in pile 1 is once lifted at the upper part of the support layer, and a void is generated at the tip of the pile so that no resistance at the tip is generated. The pressure input when changing and penetrating, that is, the corrected pressure input Qin ′, which is the influence of the circumferential surface of the pile (resistance force in the pushing direction caused by the circumferential frictional force), is measured. At this time, it is desirable that the range in which the penetration speed w is changed is a range from the maximum speed determined from the machine capability to almost zero.
Specifically, the correction coefficient α expressed by the expression (3a) is obtained by removing the correction pressure input Qin ′ that is the influence of the pile peripheral surface from the pressure input Qin at the time of construction.
Then, a more precise tip support force Ru can be estimated by the corrected tip support force estimation formula (1a-1 *) using the correction coefficient α.
At this time, the pressure input Qin at the time of construction and the corrected pressure input Qin ′ are values that continuously change in accordance with the change in the penetration speed w, that is, a function of the penetration speed w. As the corrected pressure input Qin ′ to be removed from the pressure input Qin, a value corresponding to the penetration speed w during construction of the support layer is used. Therefore, when the tip support force is estimated by the expression (1a *), the correction coefficient α is a value that is sequentially calculated according to the change in the penetration speed w when the support layer is applied.
Figure JPOXMLDOC01-appb-M000030
 
Figure JPOXMLDOC01-appb-M000030
 
Figure JPOXMLDOC01-appb-M000031
 
Figure JPOXMLDOC01-appb-M000031
 
(第二実施形態)
 以下、本発明の第二実施形態に係る回転圧入杭の先端支持力推定方法について説明する。
 本実施形態に係る先端支持力推定方法は、回転圧入杭を地盤に回転圧入する施工時の回転トルクTに基づいて回転圧入杭の先端支持力を推定するものであり、入力工程と推定工程とを有する。
 すなわち、本実施形態に係る先端支持力推定方法においては、回転トルクをT(kN・mm)、杭外径をD(mm)とした場合に、T/0.5Dで示される値を支持力推定指標Hとする。
(Second embodiment)
Hereinafter, the tip supporting force estimation method of the rotary press-fit pile according to the second embodiment of the present invention will be described.
The tip support force estimation method according to the present embodiment is for estimating the tip support force of the rotary press-fit pile based on the rotational torque T during construction for rotary press-fitting the rotary press-fit pile into the ground. Have
That is, in the tip support force estimation method according to this embodiment, when the rotational torque is T (kN · mm) and the pile outer diameter is D (mm), the value indicated by T / 0.5D is the support force. The estimated index is H.
 まず、入力工程として、回転圧入杭1を地盤に回転圧入する施工時に、圧入力Qinと、上記支持力推定指標Hの構成因子である回転トルクTとを測定してコンピュータに入力する。 First, as an input process, at the time of construction in which the rotary press-fitting pile 1 is rotary press-fitted into the ground, the press input Qin and the rotational torque T that is a constituent factor of the bearing force estimation index H are measured and input to the computer.
 次に、推定工程として、入力工程で得られた圧入力Qinと、支持力推定指標Hとを使用し、回転圧入杭における圧入力Qinと、先端支持力Ruと、支持力推定指標Hとの相関関係から定式化した下記(1b)式で表される先端支持力推定式に基づいて、回転圧入杭の先端支持力Ruを推定する。
Figure JPOXMLDOC01-appb-M000032
 
Next, as the estimation step, the pressure input Qin obtained in the input step and the support force estimation index H are used, and the pressure input Qin, the tip support force Ru, and the support force estimation index H in the rotary press-fit pile are calculated. Based on the tip support force estimation formula expressed by the following formula (1b) formulated from the correlation, the tip support force Ru of the rotary press-fit pile is estimated.
Figure JPOXMLDOC01-appb-M000032
 A2は、X軸を支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を下記(2b)式で表した際の勾配である。
 B2は、X軸を支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2b)式で表した際のY切片である。
 プロット点の近似線は、例えば、最小二乗法による対数近似線を用いればよい。
A2 is the gradient when the approximate line of the plot point of the test result with the X axis as the natural logarithm of the bearing capacity estimation index H and the Y axis as Qin / Ru is expressed by the following equation (2b).
B2 is the Y intercept when the approximate line of the plot points of the test result with the X axis as the natural logarithm of the bearing capacity estimation index H and the Y axis as Qin / Ru is expressed by the equation (2b).
For example, a logarithmic approximation line by a least square method may be used as the approximation line of the plot points.
Figure JPOXMLDOC01-appb-M000033
 
Figure JPOXMLDOC01-appb-M000033
 
 上記(1b)式で表される先端支持力推定式は、後述するような施工試験及び載荷試験によって定式化された式である。圧入力Qin、回転トルクTは、杭回転圧入装置2に設けられた計測部によって連続的に計測される。 The tip support force estimation formula expressed by the above formula (1b) is a formula formulated by a construction test and a loading test as described later. The press input Qin and the rotation torque T are continuously measured by a measuring unit provided in the pile rotation press-fitting device 2.
 本実施形態に係る先端支持力推定方法によれば、回転圧入杭を回転圧入する施工時に、圧入力Qin、及び、回転トルクTの測定情報を連続的又は間欠的に計測し、計測された測定情報から上述の(1b)式で表される先端支持力推定式に基づいて先端支持力Ruを算出することができる。
 すなわち、施工時の圧入力Qin、回転トルクT、及び先端支持力Ruの間に高い相関関係があることに基づいて定式化した先端支持力推定式を用いることで、容易にかつ精度よく回転圧入によって施工される回転圧入杭の先端支持力Ruを推定できる。従って、推定される先端支持力Ruに応じて回転圧入杭の貫入を継続するか否かを判定することができる。
 また、後述するように、このような先端支持力Ruを推定することによる施工管理方法を採用することで、十分な先端支持力Ruが発揮できる状態で回転圧入杭を打ち止めすることができる。
 したがって、支持層までの深度によって打ち止めを管理する場合のように、支持層に対する根入れ長の過不足を防止でき、支持層の不陸にも対応することが可能となる。
According to the tip supporting force estimation method according to the present embodiment, the measurement information of the pressure input Qin and the rotational torque T is measured continuously or intermittently during construction for rotationally press-fitting the rotary press-fit pile, and the measured measurement is performed. The tip support force Ru can be calculated from the information based on the tip support force estimation formula expressed by the above-described formula (1b).
That is, by using the tip support force estimation formula formulated based on the fact that there is a high correlation among the pressure input Qin at the time of construction, the rotational torque T, and the tip support force Ru, rotational press-fitting is easy and accurate. It is possible to estimate the tip support force Ru of the rotary press-fitted pile constructed by. Therefore, it is possible to determine whether or not to continue the penetration of the rotary press-fit pile according to the estimated tip support force Ru.
Further, as will be described later, by adopting such a construction management method by estimating the tip support force Ru, the rotary press-fit pile can be stopped in a state where a sufficient tip support force Ru can be exhibited.
Therefore, as in the case of controlling the stop depending on the depth to the support layer, it is possible to prevent an excessive or insufficient penetration length with respect to the support layer, and it is possible to cope with the unevenness of the support layer.
 ここで、上述の(1b)式で表される先端支持力推定式を定式化するための施工試験及び載荷試験について説明する。 Here, a construction test and a loading test for formulating the tip bearing force estimation formula represented by the above formula (1b) will be described.
 施工試験では、図1に示すように、実際の地盤や人工的に作成した地盤に回転圧入杭1を回転圧入し、回転圧入施工を停止する予め設定された打ち止め時の深度(打ち止め深度Z0)よりも杭外径Dの2倍程度上方の位置までの区間において、回転速度θを一定値に保持したまま貫入させる。
 圧入力Qinは、地盤の抵抗の変化により多少の上下があるものの、概ね一定値になるように制御される。ここで、打ち止め深度Z0は、施工試験で用いる杭外径Dと地盤条件に基づいて設計される先端支持力が得られる深度である。
 回転トルクTは、打ち止め深度Z0から上方に杭外径Dの0.1倍程度の長さ区間を打ち止め直前区間Kとして、この区間Kに回転圧入杭1の先端部1aが到達したときに測定される平均値を採用する。
In the construction test, as shown in FIG. 1, a rotary press-fitting pile 1 is rotationally press-fitted into the actual ground or artificially created ground, and the preset depth at which the rotary press-in construction is stopped (stop depth Z0). In the section up to a position about twice as large as the pile outer diameter D, the penetration is made while maintaining the rotational speed θ at a constant value.
The pressure input Qin is controlled so as to be a substantially constant value, although there is some ups and downs due to changes in ground resistance. Here, the stop depth Z0 is a depth at which the tip support force designed based on the pile outer diameter D and the ground conditions used in the construction test can be obtained.
The rotational torque T is measured when the tip 1a of the rotary press-fit pile 1 arrives at this section K, with a section about 0.1 times the outer diameter D of the pile as the section K just before stopping, from the stopping depth Z0. The average value is adopted.
 載荷試験では、試験用の回転圧入杭を所定の深度で打ち止めした後、鉛直方向から荷重により載荷を行う。そして、深度方向に複数断面の杭の応力分布を計測して周面摩擦力と先端支持力Ruを分離して測定する。尚、載荷試験は、例えば、地盤工学会から発刊されている「杭の鉛直載荷試験方法・同解説2002」に示される、「杭の押込み試験」、「杭の急速載荷試験」、「杭の衝撃載荷試験」に従って実施すればよい。 In the loading test, the rotary press-fit pile for testing is stopped at a predetermined depth, and then loaded with a load from the vertical direction. And the stress distribution of the pile of a plurality of cross sections is measured in the depth direction, and the peripheral friction force and the tip support force Ru are separated and measured. In addition, the loading test is, for example, “pile indentation test”, “pile rapid loading test”, “pile loading test” shown in “Pile vertical loading test method / comment 2002” published by the Geotechnical Society. It may be carried out according to the “impact loading test”.
 表2に、具体例としての試験1~24について、掘削ビットの有無、杭外径(mm)、支持層地盤の種類(砂層/礫層)、圧入力Qin(kN)、回転トルクT(kN・mm)、T/0.5D(kN)、先端支持力Ru(kN)、及びQin/Ru(-)を示す。
 試験1~14では、掘削ビットを有しないビット無鋼管杭を用いた。
 試験15~24では、先端部において周方向に均等に四つの掘削ビットが設けられたビット付鋼管杭を用いた。
Table 2 shows the presence or absence of excavation bits, pile outer diameter (mm), support layer ground type (sand layer / gravel layer), pressure input Qin (kN), rotational torque T (kN) for tests 1 to 24 as specific examples. Mm), T / 0.5D (kN), tip support force Ru (kN), and Qin / Ru (−).
In tests 1 to 14, a bit-free steel pipe pile without a drilling bit was used.
In Tests 15 to 24, a steel pipe pile with a bit in which four excavation bits were evenly provided in the circumferential direction at the tip portion was used.
Figure JPOXMLDOC01-appb-T000034
 
Figure JPOXMLDOC01-appb-T000034
 
 試験1~24について、X軸を支持力推定指標H(=T/0.5D)の自然対数とし、Y軸をQin/Ruとしてプロットしたグラフを図8に示す。このグラフは、施工試験後に載荷試験を実施した回転圧入杭のQin/Ruと、支持力推定指標H(=T/0.5D)との関係を示したものである。 FIG. 8 shows a graph plotted for the tests 1 to 24 with the X axis as the natural logarithm of the bearing capacity estimation index H (= T / 0.5D) and the Y axis as Qin / Ru. This graph shows the relationship between the Qin / Ru of the rotary press-fit pile subjected to the loading test after the construction test and the bearing capacity estimation index H (= T / 0.5D).
 図8から、各試験の試験結果のプロットについて最小二乗法による近似線を算出すると、図9に示すように下記(2b-1)式が得られる。
Figure JPOXMLDOC01-appb-M000035
 
From FIG. 8, when the approximate line by the least square method is calculated for the plot of the test result of each test, the following equation (2b-1) is obtained as shown in FIG.
Figure JPOXMLDOC01-appb-M000035
 そして、この(2b-1)式に基づいて、上記(1)式に対応する先端支持力推定式である(1b-1)式が導かれる。
 実構造物の設計では、先端支持力Ruの設計式に対して十分な安全率が考慮されているため、打ち止め管理式においてもばらつきは許容される。従って、全データの近似式から求めた(1b-1)式を用いることは妥当である。
Based on this equation (2b-1), equation (1b-1), which is a tip support force estimation equation corresponding to equation (1), is derived.
In designing an actual structure, a sufficient safety factor is taken into consideration with respect to the design formula of the tip support force Ru, and therefore variation is allowed even in the stop management formula. Therefore, it is appropriate to use the expression (1b-1) obtained from the approximate expression of all data.
Figure JPOXMLDOC01-appb-M000036
 
Figure JPOXMLDOC01-appb-M000036
 
 このような相関性があることを確認したことにより、施工時に杭回転圧入機2から刻々と測定される圧入力Qin、回転トルクTのデータから先端支持力推定式である(1b-1)式を使用して先端支持力Ruを推定することができる。 By confirming that there is such a correlation, the formula (1b-1) is the tip support force estimation formula from the data of the pressure input Qin and the rotational torque T measured every moment from the pile rotary presser 2 during construction. Can be used to estimate the tip support force Ru.
 尚、許容される安全率が低い構造物について打ち止め管理を行う場合には、図9に示すように、(2b-1)式の近似線に平行で、かつQin/Ruの点の最大値を含む上限を示す近似線である(2b-1’)式を算出し、これに基づいて得られる(1b-1’)式を先端支持力推定式として用いてもよい。 In the case of performing stop management for a structure having a low allowable safety factor, as shown in FIG. 9, the maximum value of the Qin / Ru point is parallel to the approximate line of equation (2b-1). The formula (2b-1 ′), which is an approximate line indicating the upper limit to be included, may be calculated, and the formula (1b-1 ′) obtained based on this may be used as the tip support force estimation formula.
Figure JPOXMLDOC01-appb-M000037
 
Figure JPOXMLDOC01-appb-M000038
 
Figure JPOXMLDOC01-appb-M000037
 
Figure JPOXMLDOC01-appb-M000038
 
 この場合、載荷試験による試験結果は、図9において(2b-1’)式で示される直線よりも下方の領域に包含されているため、より信頼性を高めることができる。 In this case, since the test result by the loading test is included in the region below the straight line represented by the expression (2b-1 ') in FIG. 9, the reliability can be further improved.
 尚、本実施形態に係る先端支持力推定方法においても、第一実施形態で説明した通り、推定の精度を高めるために、実際に施工する圧入鋼管杭のビット有無に合わせた試験結果のみを用いて導出した推定式を用いてもよい。 In the tip support force estimation method according to this embodiment, as described in the first embodiment, only test results according to the presence or absence of the bit of the press-fit steel pipe pile to be actually used are used in order to increase the accuracy of estimation. The estimation formula derived in this way may be used.
 尚、上記の例では、プロットの最小二乗法による近似線である(2b-1)式から平行移動した近似線である(2b-1’)式を導き出して先端支持力推定式である(1b-1’)式を求めた。しかし、近似線はプロットを最小二乗法以外の近似法を用いて得てもよい。
 また、上記(2b-1’)式で示す近似線は、最小二乗法による近似線の傾きを厳密に一定とした平行移動により得られたものでなくてもよく、例えば、対象とするプロット点を包絡するような直線又は曲線であってもよい。
In the above example, the tip support force estimation formula (1b) is derived by deriving the formula (2b-1 ′), which is an approximated line translated from the formula (2b-1), which is an approximate line based on the least square method of the plot. -1 ′) equation was obtained. However, the approximate line may be obtained by using an approximation method other than the least square method.
Further, the approximate line represented by the above equation (2b-1 ′) may not be obtained by parallel translation with the slope of the approximate line obtained by the least square method being strictly constant. For example, the target plot point It may be a straight line or a curve enveloping.
 また、上述した先端支持力推定式である(1b)式において、杭長が長い場合や、支持層より上部に厚い粘土層が存在する場合などにはより精緻な先端支持力Ruの推定を行うために、支持層より上部での杭周面の影響を除く補正を行うようにしてもよい。
 その際には、回転圧入杭1を支持層の上部で一旦引き上げ、杭先端に空隙を生じさせて先端の抵抗が発生しない条件で再度貫入させたときの杭周面の影響(周面摩擦力が起因となる押し込み方向の抵抗力)である修正回転トルクTsおよび修正圧入力Qin’を計測する。
 具体的には、施工時の回転トルクTから杭周面の影響である修正回転トルクTsを除去することにより求まる(3b-1)式で表される補正係数β1を求める。
 更に、施工時の圧入力Qinから修正圧入力Qin’を除去することにより求まる(3b-2)式で表される補正係数β2を求める。
 そして、補正係数β1、β2を用いた(1b*)式の修正先端支持力推定式によって、より精緻な先端支持力Ruを推定できる。
Further, in the above formula (1b) which is the tip support force estimation formula, when the pile length is long or when a thick clay layer exists above the support layer, a more precise tip support force Ru is estimated. Therefore, you may make it perform the correction | amendment which excludes the influence of the pile surrounding surface above a support layer.
At that time, the effect of the circumferential surface of the pile when the rotary press-fit pile 1 is once lifted at the upper part of the support layer and re-penetrated under the condition that a void is generated at the tip of the pile and no resistance at the tip occurs. The correction rotational torque Ts and the correction pressure input Qin ′, which are resistance forces in the pushing direction caused by
Specifically, the correction coefficient β1 expressed by the equation (3b-1) is obtained by removing the corrected rotational torque Ts that is the influence of the pile peripheral surface from the rotational torque T at the time of construction.
Further, a correction coefficient β2 expressed by the equation (3b-2) is obtained by removing the corrected pressure input Qin ′ from the pressure input Qin at the time of construction.
Then, a more precise tip support force Ru can be estimated by using the corrected tip support force estimation formula (1b *) using the correction coefficients β1 and β2.
Figure JPOXMLDOC01-appb-M000039
 
Figure JPOXMLDOC01-appb-M000040
 
Figure JPOXMLDOC01-appb-M000041
 
Figure JPOXMLDOC01-appb-M000039
 
Figure JPOXMLDOC01-appb-M000040
 
Figure JPOXMLDOC01-appb-M000041
 
(第三実施形態)
 本発明の第三実施形態は、上述の先端支持力推定方法を使用して回転圧入杭の先端支持力を管理する先端支持力管理システム(以下、本実施形態に係る先端支持力管理システムと呼称する場合がある)であり、測定部と、記憶部と、演算処理部とを有する。
(Third embodiment)
The third embodiment of the present invention is a tip support force management system (hereinafter referred to as a tip support force management system according to this embodiment) that manages the tip support force of the rotary press-fit pile using the tip support force estimation method described above. And includes a measurement unit, a storage unit, and an arithmetic processing unit.
 図4に示すように、本実施形態に係る先端支持力管理システム10は、上述したように回転圧入杭1を把持した把持部を昇降させることにより回転圧入杭1を地盤に圧入する杭回転圧入機2を利用したものである。このシステム10は、杭回転圧入機2で取得した計測値(圧入力Qin、貫入速度w、回転速度θ、回転トルクT)をコンピュータ3に入力し、コンピュータ3内の演算処理部31により先端支持力Ruを算出し推定する。この杭回転圧入機2で測定した計測値は、演算処理部31を有するコンピュータ3に無線又は有線により通信可能に接続されている。 As shown in FIG. 4, the tip support force management system 10 according to the present embodiment is a pile rotary press-fit that press-fits the rotary press-fit pile 1 into the ground by moving up and down the gripping part that holds the rotary press-fit pile 1 as described above. The machine 2 is used. This system 10 inputs the measured values (pressure input Qin, penetration speed w, rotational speed θ, rotational torque T) acquired by the pile rotary presser 2 to the computer 3 and supports the tip by the arithmetic processing unit 31 in the computer 3. The force Ru is calculated and estimated. The measured value measured by the pile rotary presser 2 is connected to a computer 3 having an arithmetic processing unit 31 so that it can communicate wirelessly or by wire.
 コンピュータ3は、前記演算処理部31と、記憶部32とを有する。又、コンピュータ3は、演算処理部31で算出された先端支持力Ruの推定値を表示する表示部4を備えていてもよい。
 記憶部32には、先端支持力推定式と、所定の設計先端支持力Raとが組み込まれている。各計測部21、22で計測された計測値は、回転圧入杭1の貫入工程において連続的又は間欠的に計測される時系列データであり、記憶部32にこれら時系列データが格納されている。
 尚、先端支持力推定式については、第一実施形態で説明したように、施工を行う前に、複数の回転圧入杭を複数個所の地盤に貫入させることで得られた圧入力Qinと、先端支持力Ruと、支持力推定指標Hとの相関関係から予め求められた先端支持力推定式を用いればよい。
The computer 3 includes the arithmetic processing unit 31 and a storage unit 32. The computer 3 may include a display unit 4 that displays the estimated value of the tip support force Ru calculated by the arithmetic processing unit 31.
The storage unit 32 incorporates a tip support force estimation formula and a predetermined design tip support force Ra. The measurement values measured by the measurement units 21 and 22 are time series data measured continuously or intermittently in the penetration process of the rotary press-fit pile 1, and these time series data are stored in the storage unit 32. .
As for the tip support force estimation formula, as explained in the first embodiment, the pressure input Qin obtained by penetrating a plurality of rotary press-fitting piles into the ground at a plurality of locations before construction, and the tip A tip supporting force estimation formula obtained in advance from the correlation between the supporting force Ru and the supporting force estimation index H may be used.
 演算処理部31では、記憶部32で記憶されている先端支持力推定式を使用し、杭回転圧入機2の各計測部21、22から入力された計測値(記憶部のデータ)に基づいて、先端支持力Ruを算出する演算処理が実行される。さらに演算処理部31では、算出された先端支持力Ruと設計先端支持力Raとが比較される処理が行われる。その処理結果(推定した先端支持力Ruと設計先端支持力Raとの判定結果)は表示部4によって視認可能に出力されることが好ましい。尚、設計先端支持力Raとは、施工する回転圧入杭に必要な先端支持力の設定値であり、支持力推定指標Hの計測結果の精度などを考慮して、必要とされる安全率に応じてマージンが設定されてもよい。
 このように、先端支持力管理システム10によって推定された先端支持力Ruに基づいて回転圧入杭1の貫入を打ち止めするものである。つまり、本実施の形態では、先端支持力管理システム10を用いて杭回転圧入機2によって回転圧入杭1を圧入する回転圧入杭1の施工管理を行うことができる。
 尚、先端支持力Ruが設計先端支持力Ra以上になったことを確認してから、より安全性を高めるために多少のマージンを確保すべく更に貫入してもよい。
The arithmetic processing unit 31 uses the tip support force estimation formula stored in the storage unit 32 and based on the measurement values (data in the storage unit) input from the measurement units 21 and 22 of the pile rotary press-fitting machine 2. A calculation process for calculating the tip support force Ru is executed. Further, the arithmetic processing unit 31 performs processing for comparing the calculated tip support force Ru with the design tip support force Ra. It is preferable that the processing result (determination result of the estimated tip support force Ru and the design tip support force Ra) is output by the display unit 4 so as to be visible. The design tip support force Ra is the set value of the tip support force required for the rotary press-fit pile to be constructed. In consideration of the accuracy of the measurement result of the support force estimation index H, etc., the required safety factor A margin may be set accordingly.
In this way, the penetration of the rotary press-fit pile 1 is stopped based on the tip support force Ru estimated by the tip support force management system 10. That is, in this Embodiment, the construction management of the rotary press-in pile 1 which press-fits the rotary press-in pile 1 with the pile rotary press-in machine 2 using the tip support force management system 10 can be performed.
In addition, after confirming that the tip support force Ru is greater than or equal to the design tip support force Ra, further penetration may be made to ensure a slight margin in order to further improve safety.
 杭回転圧入機2は、回転圧入杭1に回転力と圧入力とを付与しながら地盤に圧入し、図4に示すように、圧入力Qin、及び、支持力推定指標(貫入速度w及び回転速度θ、又は、回転トルクT)がそれぞれ圧入力計測部21、及び、指標計測部22によって計測される。 The pile rotary press machine 2 press-fits the ground while applying rotational force and pressure input to the rotary press-fit pile 1, and, as shown in FIG. 4, press input Qin and support force estimation index (penetration speed w and rotation) The speed θ or the rotational torque T) is measured by the pressure input measuring unit 21 and the index measuring unit 22, respectively.
 圧入力Qinを計測する圧入力計測部21としては、杭回転圧入機2のリーダーに設けられる駆動モーターの油圧を検出する油圧センサーを利用し、回転圧入杭1を地盤Gに圧入する圧入力値として計測する構成が採用されている。例えば連続的、或いは回転圧入杭1が円周方向に1/4回転や1/8回転程度、回転する毎に計測及び記録される。
 支持力推定指標として回転ピッチpを用いる場合、指標計測部22としては、例えば回転圧入杭1を把持する把持部の時間当たりのストローク(貫入速度w)を計測する構成と、回転圧入杭1を把持する把持部の回転部分からエンコーダー等を使って回転速度を計測する構成とを採用することができる。
 また、支持力推定指標として回転トルクTを用いる場合、指標計測部22としては、例えば回転圧入杭1を把持する把持部に備えた回転トルクセンサによって回転方向に作用する荷重を計測する構成を採用することができる。
As the pressure input measuring unit 21 for measuring the pressure input Qin, a pressure input value for press-fitting the rotary press-fitting pile 1 into the ground G using a hydraulic sensor for detecting the hydraulic pressure of a drive motor provided in the leader of the pile rotary press-fitting machine 2 The structure which measures as is adopted. For example, it is measured and recorded every time the rotary press pile 1 rotates continuously or about 1/4 rotation or 1/8 rotation in the circumferential direction.
When the rotation pitch p is used as the support force estimation index, the index measurement unit 22 includes, for example, a configuration for measuring a stroke per unit time (penetration speed w) of a gripping part that grips the rotary press-in pile 1 and the rotary press-in pile 1. A configuration in which the rotational speed is measured using an encoder or the like from the rotating portion of the gripping portion to be gripped can be employed.
Moreover, when using the rotational torque T as a support force estimation parameter | index, as the parameter | index measurement part 22, the structure which measures the load which acts on a rotation direction with the rotational torque sensor with which the holding part which hold | grips the rotary press-fit pile 1, for example is employ | adopted is employ | adopted. can do.
(第四実施形態)
 本発明の第四実施形態は、上述の先端支持力推定方法を使用して回転圧入杭の施工を管理する施工管理方法(以下、本実施形態に係る施工管理方法と呼称する場合がある)であり、計測工程と、算出工程と、判定工程とを有する。
(Fourth embodiment)
The fourth embodiment of the present invention is a construction management method for managing the construction of a rotary press-fit pile using the above-described tip support force estimation method (hereinafter, sometimes referred to as a construction management method according to this embodiment). Yes, it has a measurement process, a calculation process, and a determination process.
 以下、本実施形態に係る施工管理方法について、図10のフローチャートを使用して詳しく説明する。
 先ず、ステップS1において、図2及び図3に示す杭回転圧入機2(2A、2B)を使用して回転圧入杭1に回転力と圧入力を与えながら地盤に対して回転圧入を開始する。
 そして、ステップS2において、回転圧入中の杭回転圧入機2の図4に示す圧入力計測部21、及び、指標計測部22で、それぞれ圧入力Qinと、支持力推定指標Hの構成因子である貫入速度w及び回転速度θ、又は、回転トルクTが計測される。計測は、連続的又は所定時間ピッチで行われる。これら計測されたデータ(圧入力Qin、貫入速度w、回転速度θ、又は回転トルクT)は、図4に示すコンピュータ3の演算処理部31に入力される。以降、演算処理装置31は、ステップS3、S4の処理を実行する。
Hereinafter, the construction management method according to the present embodiment will be described in detail using the flowchart of FIG.
First, in step S1, the rotary press-fitting machine 2 (2A, 2B) shown in FIGS. 2 and 3 is used to start rotary press-fitting with respect to the ground while applying rotational force and pressure input to the rotary press-fitted pile 1.
And in step S2, in the press input measurement part 21 and index measurement part 22 which are shown in FIG. 4 of the pile rotary press machine 2 during rotary press-fitting, it is a constituent factor of the press input Qin and the supporting force estimation index H, respectively. The penetration speed w and the rotational speed θ or the rotational torque T are measured. The measurement is performed continuously or at a predetermined time pitch. These measured data (pressure input Qin, penetration speed w, rotational speed θ, or rotational torque T) are input to the arithmetic processing unit 31 of the computer 3 shown in FIG. Thereafter, the arithmetic processing unit 31 executes the processes of steps S3 and S4.
 ステップS3において、予め記憶部32に格納されている先端支持力推定式を用い、測定されたデータに基づいて先端支持力Ruが算定される。ステップS4において、演算処理装置31は、算定された先端支持力Ruが、記憶部32に予め格納されている設計先端支持力Raの値以上であるか否かを判断する。算定した先端支持力Ruが設計先端支持力Ra以上である場合(Ru≧Ra、ステップS4:YES)には、ステップS5に進む。一方、算定した先端支持力Ruが設計先端支持力Raよりも小さい場合(Ru<Ra、ステップS4:NO)には、ステップS2に戻り引き続き回転圧入の施工とともに各データ(圧入力Qin、貫入速度w、回転速度θ、及び回転トルクT)が測定され、回転圧入杭1の回転圧入による貫入が継続される。
 尚、ステップS4において、地盤中に支持層には適さない、硬質な薄層や、硬度の高い障害物がある場合等には、一時的にRu≧Raとなることがある。このような場合には圧入の施工を止めることは適切ではない。一般的に、鉛直支持力性能を評価する際の載荷試験において、杭を沈下させる量は杭径の10%程度であるため、杭径の10%以上の長さを貫入させている区間で安定してRu≦Raの関係が得られていることを確認できた場合にステップS5に進んでもよい。
 演算処理部31で算定された先端支持力Ruの数値や、ステップS4の結果(先端支持力Ruが設計先端支持力Raの対比結果)等は、表示部4を介して視認可能に出力されることが好ましい。
In step S3, the tip support force Ru is calculated based on the measured data using the tip support force estimation formula stored in the storage unit 32 in advance. In step S <b> 4, the arithmetic processing unit 31 determines whether or not the calculated tip support force Ru is greater than or equal to the design tip support force Ra stored in advance in the storage unit 32. If the calculated tip support force Ru is greater than or equal to the design tip support force Ra (Ru ≧ Ra, Step S4: YES), the process proceeds to Step S5. On the other hand, when the calculated tip support force Ru is smaller than the design tip support force Ra (Ru <Ra, step S4: NO), the process returns to step S2 and continues with the rotary press-fitting operation and each data (pressure input Qin, penetration speed). w, rotational speed θ, and rotational torque T) are measured, and the penetration of the rotary press-in pile 1 by rotary press-in is continued.
In step S4, if there is a hard thin layer that is not suitable for the support layer in the ground or an obstacle with high hardness, Ru ≧ Ra may be temporarily satisfied. In such a case, it is not appropriate to stop the press-fitting work. Generally, in the load test when evaluating the vertical bearing capacity performance, the amount of pile sinking is about 10% of the pile diameter, so it is stable in the section where the length of 10% or more of the pile diameter is penetrated. Then, when it is confirmed that the relationship of Ru ≦ Ra is obtained, the process may proceed to step S5.
The numerical value of the tip support force Ru calculated by the arithmetic processing unit 31, the result of step S4 (the comparison result of the tip support force Ru and the design tip support force Ra), and the like are output via the display unit 4 so as to be visible. It is preferable.
 そして、ステップS4において、算出した先端支持力Ruが設計支持力Ra以上であることを確認することで、十分な先端支持力が確保され、回転圧入杭1が定着されたことになるため、ステップS5において回転圧入杭1の回転圧入による貫入を停止して打ち止めとし、施工が終了となる。
 ここで、回転圧入杭1の打ち止めとは、回転圧入による貫入を停止することであり、回転を停止した後に、施工時の圧入力の付与を停止する場合と、施工時の圧入力の付与を停止した後に回転を停止する場合がある。
And in step S4, by confirming that the calculated tip support force Ru is greater than or equal to the design support force Ra, a sufficient tip support force is ensured, and the rotary press-fit pile 1 is fixed. In S5, the penetration by the rotary press-fitting of the rotary press-fit pile 1 is stopped and stopped, and the construction is completed.
Here, the stop of the rotary press-in pile 1 is to stop the penetration due to the rotary press-in, and after stopping the rotation, stop applying the press input at the time of construction and apply the press input at the time of construction. The rotation may stop after stopping.
 次に、杭周面の影響を除いた修正先端支持力推定式を用いた回転圧入杭1の施工管理方法について、図11のフローチャートを使用して説明する。
 この場合には、上述したステップS1の後、ステップS6において、回転圧入杭1を支持層の上部で一旦引き上げ、ステップS7で、周面摩擦による影響に関連する修正圧入力Qin’、又は、修正回転トルクTsを計測する。
 そしてステップS8において、支持層に貫入させた際の圧入力Qin、及び、支持力推定指標H(回転速度θ及び貫入速度w、又は、回転トルクTs)を計測する。そして、ステップS9において、演算処理装置31は、計測された貫入速度wと修正圧入力Qin’、又は、計測された回転トルクT、圧入力Qin、修正回転トルクTs及び修正圧入力Qin’を用いて、予め記憶部32に格納されている関係式から補正係数(上述したα、β1、β2)を求める。さらに、演算処理装置31は、修正先端支持力推定式を用い、測定されたデータに基づいて先端支持力Ruを算定する。
Next, the construction management method of the rotary press-fit pile 1 using the corrected tip support force estimation formula excluding the influence of the pile peripheral surface will be described using the flowchart of FIG.
In this case, after step S1 described above, in step S6, the rotary press-fit pile 1 is once lifted at the upper part of the support layer, and in step S7, the correction pressure input Qin ′ related to the influence of the circumferential friction or the correction The rotational torque Ts is measured.
In step S8, the pressure input Qin when penetrating the support layer and the support force estimation index H (rotational speed θ and penetrating speed w or rotational torque Ts) are measured. In step S9, the arithmetic processing unit 31 uses the measured penetration speed w and the corrected pressure input Qin ′, or the measured rotational torque T, pressure input Qin, corrected rotational torque Ts, and corrected pressure input Qin ′. Thus, correction coefficients (α, β1, β2 described above) are obtained from the relational expressions stored in the storage unit 32 in advance. Furthermore, the arithmetic processing unit 31 calculates the tip support force Ru based on the measured data using the corrected tip support force estimation formula.
 その後、ステップS10において、演算処理装置31は、算定された先端支持力Ruが、記憶部32に予め格納されている設計先端支持力Raの値よりも大きいか否かを判断する。算定した先端支持力Ruが設計先端支持力Ra以上である場合(Ru≧Ra、ステップS10:YES)には、ステップS5に進む。一方、算定した先端支持力Ruが設計先端支持力Raよりも小さい場合(Ru<Ra、ステップS10:NO)には、ステップS8に戻り引き続き回転圧入の施工とともに各データ(圧入力Qin、貫入速度w、及び回転速度θ、回転トルクT)が測定され、回転圧入杭1の回転圧入による貫入が継続される。 Thereafter, in step S10, the arithmetic processing unit 31 determines whether or not the calculated tip support force Ru is greater than the value of the design tip support force Ra stored in the storage unit 32 in advance. If the calculated tip support force Ru is greater than or equal to the design tip support force Ra (Ru ≧ Ra, step S10: YES), the process proceeds to step S5. On the other hand, when the calculated tip support force Ru is smaller than the design tip support force Ra (Ru <Ra, Step S10: NO), the process returns to Step S8 and continues with each of the data (pressure input Qin, penetration speed) along with the rotary press-in operation. w, rotation speed θ, and rotation torque T) are measured, and the penetration of the rotary press-in pile 1 by rotary press-in is continued.
 そして、ステップS10において、算出した先端支持力Ruが設計支持力Ra以上であることを確認することで、十分な先端支持力が確保され、回転圧入杭1が定着されたことになるため、ステップS5において回転圧入杭1の回転圧入による貫入を停止して打ち止めとし、施工が終了となる。 And in step S10, by confirming that the calculated tip support force Ru is greater than or equal to the design support force Ra, a sufficient tip support force is ensured, and the rotary press-fit pile 1 is fixed. In S5, the penetration by the rotary press-fitting of the rotary press-fit pile 1 is stopped and stopped, and the construction is completed.
 このように、本実施形態に係る施工管理方法によれば、コンピュータ3の演算処理部31において定式化した先端支持力推定式によって算出された先端支持力Ruが、設計先端支持力Ra以上であるか否かを判定し、施工する回転圧入杭1に必要な設計先端支持力Ra以上である場合に回転圧入杭1の貫入を停止し、設計先端支持力Raよりも小さい場合に回転圧入杭1の貫入を継続するように施工管理することができる。 Thus, according to the construction management method according to the present embodiment, the tip support force Ru calculated by the tip support force estimation formula formulated in the arithmetic processing unit 31 of the computer 3 is equal to or greater than the design tip support force Ra. Whether or not it is greater than the design tip support force Ra required for the rotary press-fit pile 1 to be constructed, the penetration of the rotary press-fit pile 1 is stopped, and if it is less than the design tip support force Ra, the rotary press-fit pile 1 The construction can be managed so that the penetration of
 以上説明した回転圧入杭の先端支持力推定方法、先端支持力管理システム、及び、施工管理方法によれば、回転圧入杭1を回転圧入する際に、圧入力Qin、及び、支持力推定指標H(回転速度θ及び貫入速度w、又は、回転トルクTs)の測定情報を連続的又は間欠的に計測し、計測された測定情報から先端支持力推定式に基づいて先端支持力Ruを算出することができる。
 すなわち、施工時の圧入力Qin、支持力推定指標H(回転速度θ及び貫入速度w、又は、回転トルクTs)、及び先端支持力Ruの間に高い相関関係があることに基づいて定式化した先端支持力推定式を用いることで、容易にかつ精度よく回転圧入によって施工される回転圧入杭1の先端支持力Ruを推定できるので、推定される先端支持力Ruに応じて回転圧入杭1の貫入を継続するか否かを判定することができる。このような先端支持力Ruを推定することによる施工管理方法を採用することで、十分な先端支持力Ruが発揮できる状態で回転圧入杭1を打ち止めすることができる。
 したがって、支持層までの深度によって打ち止めを管理する場合のように、支持層に対する根入れ長の過不足を防止でき、支持層の不陸にも対応することが可能となり、施工品質を向上させることができる。
According to the tip pressing force estimating method, tip supporting force management system, and construction management method described above, when the rotary pressing pile 1 is press-fitted, the pressure input Qin and the supporting force estimation index H Measurement information of (rotational speed θ and penetration speed w or rotational torque Ts) is measured continuously or intermittently, and the tip support force Ru is calculated from the measured measurement information based on the tip support force estimation formula. Can do.
That is, it was formulated based on the fact that there is a high correlation among the pressure input Qin at the time of construction, the support force estimation index H (rotational speed θ and penetration speed w or rotational torque Ts), and the tip support force Ru. By using the tip support force estimation formula, the tip support force Ru of the rotary press-fit pile 1 constructed by rotary press-fitting can be estimated easily and accurately, so that the rotary press-fit pile 1 of the rotary press-fit pile 1 can be estimated according to the estimated tip support force Ru. It can be determined whether or not to continue the penetration. By adopting such a construction management method by estimating the tip support force Ru, the rotary press-fit pile 1 can be stopped in a state where a sufficient tip support force Ru can be exhibited.
Therefore, it is possible to prevent excessive or insufficient penetration length to the support layer, as in the case of controlling the stop by the depth to the support layer, it is possible to cope with the unevenness of the support layer, and to improve the construction quality Can do.
 なお、上述した回転圧入杭の先端支持力推定方法又は施工管理方法は、CPUやメモリ、インターフェースからなるコンピュータがコンピュータプログラムを実行することによって実現され、上述したステップS3~S4、又はS9~S10は、上記コンピュータの各種ハードウェア資源と上記コンピュータプログラムとが協働することによって実現される。
 また、上記したコンピュータプログラムは、コンピュータが読み取り可能な一時的ではない有形の記録媒体に格納されて提供されても良い。
The above-described method for estimating the tip bearing force or the construction management method of the rotary press-fit pile is realized by a computer comprising a CPU, a memory, and an interface executing a computer program, and the above-described steps S3 to S4 or S9 to S10 are performed. It is realized by the cooperation of various hardware resources of the computer and the computer program.
Further, the computer program described above may be provided by being stored in a non-temporary tangible recording medium that can be read by a computer.
 次に、上述した回転圧入杭の先端支持力推定方法の効果を裏付けるために行った実施例について以下説明する。 Next, examples carried out to support the effect of the method for estimating the tip bearing force of the rotary press-fit pile described above will be described below.
(実施例1)
 試験実施例として、外径800mmの鋼管を中間層が10mの条件で施工し、載荷試験を行った。
 図12~図15に、その結果をグラフとして示す。これらのグラフでは、それぞれ縦軸を支持層への根入れ比(支持層への貫入量L(mm)を杭外径D(mm)で除したもの)としている。
図12は根入れ比L/Dと圧入力Qin(kN)との関係を示したグラフである。
図13は根入れ比L/Dと回転速度θ(rad/min)との関係を示したグラフである。
図14は根入れ比L/Dと貫入速度w(mm/min)との関係を示したグラフである。
図15は根入れ比L/Dと先端支持力Ru(kN)と、第一実施形態で説明した(1a-1)式と同様に導き出した先端支持力推定式E1、及び、(1a-1’)式と同様に導き出した先端支持力推定式E2に基づいて推定した、回転圧入杭1の先端支持力Ruの推定値の関係を示したグラフである。
Example 1
As a test example, a steel pipe having an outer diameter of 800 mm was applied under the condition that the intermediate layer was 10 m, and a loading test was performed.
12 to 15 show the results as graphs. In these graphs, the vertical axis represents the penetration ratio into the support layer (the penetration amount L (mm) into the support layer divided by the pile outer diameter D (mm)).
FIG. 12 is a graph showing the relationship between the penetration ratio L / D and the pressure input Qin (kN).
FIG. 13 is a graph showing the relationship between the penetration ratio L / D and the rotational speed θ (rad / min).
FIG. 14 is a graph showing the relationship between the penetration ratio L / D and the penetration speed w (mm / min).
FIG. 15 shows the penetration ratio L / D, the tip support force Ru (kN), the tip support force estimation formula E1 derived in the same manner as the formula (1a-1) described in the first embodiment, and (1a-1 It is the graph which showed the relationship of the estimated value of the front-end | tip support force Ru of the rotary press-fit pile 1 estimated based on the front-end | tip support force estimation formula E2 derived | led-out similarly to the ') type | formula.
 これにより、実際に載荷試験から得られた先端支持力Ruが、先端支持力推定式E1から推定された先端支持力に良く一致していることが確認できる。
 さらに、先端支持力推定式E2を用いた場合には、十分に安全側に先端支持力を推定できることが確認できる。
 したがって、本発明による先端支持力Ruの推定値が有効であることを確認できた。
Thereby, it can be confirmed that the tip support force Ru actually obtained from the loading test is in good agreement with the tip support force estimated from the tip support force estimation formula E1.
Furthermore, when the tip support force estimation formula E2 is used, it can be confirmed that the tip support force can be sufficiently estimated on the safe side.
Therefore, it was confirmed that the estimated value of the tip support force Ru according to the present invention is effective.
(実施例2)
 試験実施例として、外径800mmの鋼管を中間層が10mの条件で施工し、載荷試験を行った。
 図16~図18に、その結果をグラフとして示す。これらのグラフでは、それぞれ縦軸を支持層への根入れ比(支持層への貫入量L(mm)を杭外径D(mm)で除したもの)としている。
図16は根入れ比L/Dと圧入力Qin(kN)との関係を示したグラフである。
図17は根入れ比L/Dと回転トルクT(kN・m)との関係を示したグラフである。
図18は根入れ比L/Dと先端支持力Ru(kN)と、第二実施形態で説明した(1b-1)式と同様に導き出した先端支持力推定式E3、及び、(1b-1’)式と同様に導き出した先端支持力推定式E4に基づいて推定した、回転圧入杭1の先端支持力Ruの推定値の関係を示したグラフである。
(Example 2)
As a test example, a steel pipe having an outer diameter of 800 mm was applied under the condition that the intermediate layer was 10 m, and a loading test was performed.
16 to 18 show the results as graphs. In these graphs, the vertical axis represents the penetration ratio into the support layer (the penetration amount L (mm) into the support layer divided by the pile outer diameter D (mm)).
FIG. 16 is a graph showing the relationship between the penetration ratio L / D and the pressure input Qin (kN).
FIG. 17 is a graph showing the relationship between the penetration ratio L / D and the rotational torque T (kN · m).
FIG. 18 shows the penetration ratio L / D, the tip support force Ru (kN), the tip support force estimation formula E3 derived in the same manner as the formula (1b-1) described in the second embodiment, and (1b-1 It is the graph which showed the relationship of the estimated value of the front-end | tip support force Ru of the rotary press-fit pile 1 estimated based on the front-end | tip support force estimation formula E4 derived | led-out similarly to the ') type | formula.
 これにより、実際に載荷試験から得られた先端支持力Ruが、先端支持力推定式E3から推定された先端支持力に良く一致していることが確認できる。
 さらに、先端支持力推定式E4を用いた場合には、十分に安全側に先端支持力を推定できることが確認できる。
 したがって、本発明による先端支持力Ruの推定値が有効であることを確認できた。
Thereby, it can be confirmed that the tip support force Ru actually obtained from the loading test is in good agreement with the tip support force estimated from the tip support force estimation formula E3.
Furthermore, when the tip support force estimation formula E4 is used, it can be confirmed that the tip support force can be sufficiently estimated on the safe side.
Therefore, it was confirmed that the estimated value of the tip support force Ru according to the present invention is effective.
 以上、本発明による回転圧入杭の先端支持力推定方法、先端支持力管理システム、及び回転圧入杭の施工管理方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 As mentioned above, although the embodiment of the tip supporting force estimation method of the rotary press-fit pile, the tip support force management system, and the construction management method of the rotary press-fit pile according to the present invention has been described, the present invention is limited to the above embodiment. It can be changed as appropriate without departing from the scope of the invention.
 例えば、支持層より上部の中間層において、例えばスクリューオーガー、ハンマグラブ等を使用して回転圧入杭の鋼管内の土砂を排土する方法や、鋼管内に配管をして水を吐出させて鋼管内の土砂を緩める方法や、バイブロハンマー等を用いて振動を与える方法等の補助工法を用いても良い。 For example, in the intermediate layer above the support layer, for example, using a screw auger or a hammaglab to drain the earth and sand in the steel pipe of the rotary press-fit pile, or in the steel pipe by discharging the water by piping in the steel pipe An auxiliary method such as a method of loosening the earth and sand or a method of applying vibration using a vibro hammer or the like may be used.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with known constituent elements without departing from the spirit of the present invention.
 本発明によれば、回転圧入工法における回転圧入杭の先端支持力を的確に推定することで、支持層の不陸にも対応可能となり、施工品質を向上させることができる。 According to the present invention, by accurately estimating the tip support force of the rotary press-fitting pile in the rotary press-fitting method, it becomes possible to cope with the unevenness of the support layer, and the construction quality can be improved.
 1 回転圧入杭
 1a 先端部
 2 杭回転圧入機
 3 コンピュータ
 4 表示部
 10 先端支持力管理システム
 21 圧入力計測部
 22 指標計測部
 31 演算処理部
 32 記憶部
DESCRIPTION OF SYMBOLS 1 Rotation press pile 1a Tip part 2 Pile rotation press machine 3 Computer 4 Display part 10 Tip support force management system 21 Press input measurement part 22 Index measurement part 31 Calculation processing part 32 Storage part

Claims (16)

  1.  杭先端が解放された鋼管杭からなる回転圧入杭を地盤に回転圧入する施工時に、前記回転圧入杭の先端支持力を推定する回転圧入杭の先端支持力推定方法であって、前記施工時に測定された、圧入力Qinと、支持力推定指標Hとを入力する工程と、前記圧入力Qinと、前記支持力推定指標Hとを使用し、回転圧入杭における圧入力Qinと、先端支持力Ruと、支持力推定指標Hとの相関関係から定式化した(1)式で表される先端支持力推定式に基づいて、前記回転圧入杭の先端支持力Ruを推定する推定工程と、
    を有することを特徴とする回転圧入杭の先端支持力推定方法。
    Figure JPOXMLDOC01-appb-M000001
     
    A:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際の勾配
    B:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際のY切片
    Figure JPOXMLDOC01-appb-M000002
     
    A method for estimating the tip support force of a rotary press-fit pile, which estimates the tip support force of the rotary press-fit pile during the construction of rotary press-fitting of a rotary press-fit pile consisting of a steel pipe pile with the pile tip released, measured at the time of the construction The step of inputting the pressure input Qin and the support force estimation index H, the pressure input Qin and the support force estimation index H are used, and the pressure input Qin and the tip support force Ru of the rotary press-fit pile are used. And an estimation step for estimating the tip support force Ru of the rotary press-fit pile based on the tip support force estimation formula expressed by the equation (1) formulated from the correlation with the support force estimation index H;
    A method for estimating the tip bearing capacity of a rotary press-fit pile.
    Figure JPOXMLDOC01-appb-M000001

    A: Gradient when the X-axis is the natural logarithm of the supporting force estimation index H and the Y-axis is Qin / Ru and the approximate line of the plot point of the test result is expressed by the equation (2) B: The X-axis is supported Y intercept when the approximate logarithm line of the test result with the natural logarithm of the force estimation index H and the Y axis as Qin / Ru is expressed by equation (2)
    Figure JPOXMLDOC01-appb-M000002
  2.  Dを杭外径(mm)、θを回転速度(rad/min)、wを貫入速度(mm/min)としたとき、前記支持力推定指標Hが0.5D×θ/wである
    ことを特徴とする請求項1に記載の回転圧入杭の先端支持力推定方法。
    When D is the pile outer diameter (mm), θ is the rotational speed (rad / min), and w is the penetration speed (mm / min), the bearing force estimation index H is 0.5D × θ / w. The method for estimating the tip bearing force of a rotary press-fit pile according to claim 1, wherein
  3.  前記回転圧入杭の周面摩擦による影響である修正圧入力Qin’の計測値と、下記(3a)式で求められる補正係数αにより前記先端支持力推定式を補正した修正先端支持力推定式に基づいて前記先端支持力Ruが推定される
    ことを特徴とする請求項2に記載の回転圧入杭の先端支持力推定方法。
    Figure JPOXMLDOC01-appb-M000003
     
    To the corrected tip support force estimation formula obtained by correcting the tip support force estimation formula by the measured value of the corrected pressure input Qin ′, which is the influence of the peripheral friction of the rotary press-fit pile, and the correction coefficient α obtained by the following equation (3a) The tip support force estimation method for the rotary press-fit pile according to claim 2, wherein the tip support force Ru is estimated based on the tip support force Ru.
    Figure JPOXMLDOC01-appb-M000003
  4.  前記施工を行う前に、複数の回転圧入杭を複数個所の地盤に貫入させ、貫入毎の前記回転圧入杭の圧入力Qin、貫入速度w、及び回転速度θを求め、前記圧入力Qin、前記貫入速度w、及び、前記回転速θと、先端支持力Ruとの相関関係から前記先端支持力推定式を予め得る
    ことを特徴とする請求項2又は3に記載の回転圧入杭の先端支持力推定方法。
    Before performing the construction, a plurality of rotary press piles are penetrated into a plurality of grounds, and the pressure input Qin, the penetration speed w, and the rotational speed θ of the rotary press pile for each penetration are obtained, and the press input Qin, The tip support force of the rotary press-fit pile according to claim 2 or 3, wherein the tip support force estimation formula is obtained in advance from a correlation between the penetration speed w, the rotational speed θ, and the tip support force Ru. Estimation method.
  5.  Tを回転トルク(kN・mm)、Dを杭外径(mm)としたとき、前記支持力推定指標HがT/0.5Dである
    ことを特徴とする請求項1に記載の回転圧入杭の先端支持力推定方法。
    The rotary press-fit pile according to claim 1, wherein the bearing capacity estimation index H is T / 0.5D, where T is rotational torque (kN · mm) and D is pile outer diameter (mm). Tip bearing force estimation method.
  6.  前記回転圧入杭の周面摩擦による影響である修正回転トルクTsの計測値と、下記(3b-1)式で求められる補正係数β1と、下記(3b-2)式で求められる補正係数β2とにより、前記先端支持力推定式を補正した修正先端支持力推定式に基づいて前記先端支持力Ruが推定される
    ことを特徴とする請求項5に記載の回転圧入杭の先端支持力推定方法。
    Figure JPOXMLDOC01-appb-M000004
     
    Figure JPOXMLDOC01-appb-M000005
     
    The measured value of the corrected rotational torque Ts, which is the influence of the peripheral friction of the rotary press-fit pile, the correction coefficient β1 obtained by the following equation (3b-1), and the correction coefficient β2 obtained by the following equation (3b-2): The tip support force Ru of the rotary press-fit pile according to claim 5, wherein the tip support force Ru is estimated based on a corrected tip support force estimation formula obtained by correcting the tip support force estimation formula.
    Figure JPOXMLDOC01-appb-M000004

    Figure JPOXMLDOC01-appb-M000005
  7.  前記施工を行う前に、複数の回転圧入杭を複数個所の地盤に貫入させ、貫入毎の前記回転圧入杭の圧入力Qin、回転トルクTを求め、前記圧入力Qin及び前記回転トルクTと、先端支持力Ruとの相関関係から前記先端支持力推定式を予め得る
    ことを特徴とする請求項5又は6に記載の回転圧入杭の先端支持力推定方法。
    Before carrying out the construction, a plurality of rotary press-fit piles are penetrated into the ground at a plurality of locations, and the pressure input Qin and the rotary torque T of the rotary press-fit pile for each penetration are obtained, the press input Qin and the rotary torque T, The tip support force estimation method for a rotary press-fit pile according to claim 5 or 6, wherein the tip support force estimation formula is obtained in advance from a correlation with the tip support force Ru.
  8.  請求項1~7のいずれか1項に記載の回転圧入杭の先端支持力推定方法を使用して前記回転圧入杭の先端支持力を管理する先端支持力管理システムであって、
     前記先端支持力推定式が格納された記憶部と、
     前記記憶部に格納されている前記先端支持力推定式に基づいて前記先端支持力Ruを算出する演算処理部と、
    を有することを特徴とする先端支持力管理システム。
    A tip support force management system for managing a tip support force of the rotary press-fit pile using the tip support force estimation method of the rotary press-fit pile according to any one of claims 1 to 7,
    A storage unit storing the tip support force estimation formula;
    An arithmetic processing unit that calculates the tip support force Ru based on the tip support force estimation formula stored in the storage unit;
    A tip support force management system comprising:
  9.  前記演算処理部において、算出した前記先端支持力Ruに応じて前記回転圧入杭の貫入を継続するか否かを判定する
    ことを特徴とする請求項8に記載の先端支持力管理システム。
    The tip support force management system according to claim 8, wherein the arithmetic processing unit determines whether or not to continue the penetration of the rotary press-fit pile according to the calculated tip support force Ru.
  10.  前記記憶部には、施工する回転圧入杭に必要な設計先端支持力Raが格納され、
     前記演算処理部では、算出された前記先端支持力Ruが前記設計先端支持力Ra以上であるか否かを判定する
    ことを特徴とする請求項8に記載の先端支持力管理システム。
    The storage portion stores the design tip support force Ra necessary for the rotary press-fit pile to be constructed,
    9. The tip support force management system according to claim 8, wherein the arithmetic processing unit determines whether or not the calculated tip support force Ru is greater than or equal to the designed tip support force Ra.
  11.  前記演算処理部で処理した結果を表示する表示部を更に有する
    ことを特徴とする請求項8~10のいずれか1項に記載の先端支持力管理システム。
    The tip supporting force management system according to any one of claims 8 to 10, further comprising a display unit for displaying a result processed by the arithmetic processing unit.
  12.  請求項1~7のいずれか1項に記載の回転圧入杭の先端支持力推定方法を使用して前記回転圧入杭の施工を管理する施工管理方法であって、
     推定された前記先端支持力Ruに応じて前記回転圧入杭の貫入を継続するか否かを判定する工程、
    を更に有することを特徴とする施工管理方法。
    A construction management method for managing the construction of the rotary press-fit pile using the tip bearing capacity estimation method of the rotary press-fit pile according to any one of claims 1 to 7,
    A step of determining whether or not to continue the penetration of the rotary press-fit pile according to the estimated tip support force Ru;
    A construction management method characterized by further comprising:
  13.  前記先端支持力推定式で算出された前記先端支持力Ruが、施工する前記回転圧入杭に必要な設計先端支持力Ra以上である場合に前記回転圧入杭の貫入を停止し、前記設計先端支持力Raより小さい場合に前記回転圧入杭の貫入を継続するようにした
    ことを特徴とする請求項12に記載の施工管理方法。
    When the tip support force Ru calculated by the tip support force estimation formula is greater than or equal to the design tip support force Ra required for the rotary press-fit pile to be constructed, the penetration of the rotary press-fit pile is stopped, and the design tip support The construction management method according to claim 12, wherein penetration of the rotary press-fitting pile is continued when the force Ra is smaller.
  14.  前記先端支持力Ruを算出する工程では、前記回転圧入杭の周面摩擦による影響である修正圧入力Qin’又は修正回転トルクTsの計測値を用いて、下記(3a)式で求められる補正係数αにより、又は、下記(3b-1)式で求められる補正係数β1と、下記(3b-2)式で求められる補正係数β2とにより補正した修正先端支持力推定式に基づいて前記先端支持力Ruを算出する
    ことを特徴とする請求項12又は13に記載の施工管理方法。
    Figure JPOXMLDOC01-appb-M000006
     
    Figure JPOXMLDOC01-appb-M000007
     
    Figure JPOXMLDOC01-appb-M000008
     
    In the step of calculating the tip support force Ru, the correction coefficient obtained by the following equation (3a) using the measured value of the corrected pressure input Qin ′ or the corrected rotational torque Ts, which is the influence of the circumferential friction of the rotary press-fit pile The tip support force based on the corrected tip support force estimation formula corrected by α or by the correction coefficient β1 obtained by the following equation (3b-1) and the correction coefficient β2 obtained by the following equation (3b-2): The construction management method according to claim 12 or 13, wherein Ru is calculated.
    Figure JPOXMLDOC01-appb-M000006

    Figure JPOXMLDOC01-appb-M000007

    Figure JPOXMLDOC01-appb-M000008
  15.  請求項1~7のいずれか一項に記載の回転圧入杭の先端支持力推定方法をコンピュータに実行させるプログラム。 A program for causing a computer to execute the tip bearing capacity estimation method for a rotary press-fit pile according to any one of claims 1 to 7.
  16.  請求項12~14のいずれか一項に記載の施工管理方法をコンピュータに実行させるプログラム。 A program for causing a computer to execute the construction management method according to any one of claims 12 to 14.
PCT/JP2018/012209 2018-03-26 2018-03-26 Method for estimating end bearing capacity of rotary press-in pile, end bearing capacity management system, construction management method, and program WO2019186660A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/012209 WO2019186660A1 (en) 2018-03-26 2018-03-26 Method for estimating end bearing capacity of rotary press-in pile, end bearing capacity management system, construction management method, and program
JP2020510206A JP6856171B2 (en) 2018-03-26 2018-03-26 Tip bearing capacity estimation method, tip bearing capacity management system, construction management method, and program for rotary press-fit piles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012209 WO2019186660A1 (en) 2018-03-26 2018-03-26 Method for estimating end bearing capacity of rotary press-in pile, end bearing capacity management system, construction management method, and program

Publications (1)

Publication Number Publication Date
WO2019186660A1 true WO2019186660A1 (en) 2019-10-03

Family

ID=68059543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012209 WO2019186660A1 (en) 2018-03-26 2018-03-26 Method for estimating end bearing capacity of rotary press-in pile, end bearing capacity management system, construction management method, and program

Country Status (2)

Country Link
JP (1) JP6856171B2 (en)
WO (1) WO2019186660A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346443A (en) * 1993-06-07 1994-12-20 Kawasaki Steel Corp Method for driving steel pipe pile for foundation
JPH09279561A (en) * 1996-04-18 1997-10-28 Shimizu Corp Loading test method of pile and construction method of structure
JP2000080649A (en) * 1997-10-30 2000-03-21 Nippon Steel Corp Rotary press-in pile and execution control method therefor
JP2000080650A (en) * 1998-03-10 2000-03-21 Nippon Steel Corp Construction management method for rotary press-fit pile
JP2002021076A (en) * 2000-07-05 2002-01-23 Nippon Steel Corp System and method for controlling construction of rotatively press-fitted pile
JP2015017493A (en) * 2013-06-14 2015-01-29 株式会社技研製作所 Method and system for estimating end resistance of rotary press-in pile

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6574341B2 (en) * 2015-06-12 2019-09-11 株式会社技研製作所 Tip resistance force estimation system, press-fitting construction system, and tip resistance force estimation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346443A (en) * 1993-06-07 1994-12-20 Kawasaki Steel Corp Method for driving steel pipe pile for foundation
JPH09279561A (en) * 1996-04-18 1997-10-28 Shimizu Corp Loading test method of pile and construction method of structure
JP2000080649A (en) * 1997-10-30 2000-03-21 Nippon Steel Corp Rotary press-in pile and execution control method therefor
JP2000080650A (en) * 1998-03-10 2000-03-21 Nippon Steel Corp Construction management method for rotary press-fit pile
JP2002021076A (en) * 2000-07-05 2002-01-23 Nippon Steel Corp System and method for controlling construction of rotatively press-fitted pile
JP2015017493A (en) * 2013-06-14 2015-01-29 株式会社技研製作所 Method and system for estimating end resistance of rotary press-in pile

Also Published As

Publication number Publication date
JP6856171B2 (en) 2021-04-07
JPWO2019186660A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
CN101979783A (en) Multifunctional cone penetration test (CPTU)-based pile foundation bearing capacity pre-measuring method
WO2016152568A1 (en) Device for calculating construction assistance information, system for calculating construction assistance information, and program
WO2015012304A1 (en) Method for determining liquefaction
JP6138729B2 (en) Resistance estimation method and estimation system for rotary press-fit piles
WO2019186660A1 (en) Method for estimating end bearing capacity of rotary press-in pile, end bearing capacity management system, construction management method, and program
JP4885325B1 (en) Construction management system for ground improvement method
JP7155911B2 (en) Method for estimating tip bearing capacity of rotary press-in piles, tip bearing capacity management system, construction management method, and program
JP2010133140A (en) Rotary penetrating pile construction system
JP6574341B2 (en) Tip resistance force estimation system, press-fitting construction system, and tip resistance force estimation method
KR100755351B1 (en) N of standard penetration test measuring method and the apparatus using electric current data
JP6929676B2 (en) Tip resistance estimation system, fluid injection combined press-fitting construction system, and tip resistance estimation method
JP6656724B2 (en) Liquefaction determination method
JP7090320B2 (en) Arithmetic logic unit, excavator, calculation method, and computer program
JP2014202657A (en) Method and device for measuring depth direction properties of concrete structure member
JP7393452B2 (en) Method for estimating ground data from construction data
JP7168328B2 (en) Slope reinforcement work and construction method of slope reinforcement work
JP7020589B2 (en) Construction method of rotating piles, manufacturing method of piles, and piles
JP6532637B1 (en) Ground survey method and bladed cone
KR100692305B1 (en) Ground intensity measuring method and the apparatus using electric current data
JP6307348B2 (en) Ground improvement measuring device
Krasiński Estimation of screw displacement pile-bearing capacity based on drilling resistances
JP6159089B2 (en) Soil judgment method
JP2005113612A (en) Method for construction management of rotary press-in steel pipe pile
JP2001228068A (en) Penetration tester
Fischer-Cripps Linear elastic fracture mechanics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510206

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911346

Country of ref document: EP

Kind code of ref document: A1