JP2015017493A - Method and system for estimating end resistance of rotary press-in pile - Google Patents

Method and system for estimating end resistance of rotary press-in pile Download PDF

Info

Publication number
JP2015017493A
JP2015017493A JP2014122502A JP2014122502A JP2015017493A JP 2015017493 A JP2015017493 A JP 2015017493A JP 2014122502 A JP2014122502 A JP 2014122502A JP 2014122502 A JP2014122502 A JP 2014122502A JP 2015017493 A JP2015017493 A JP 2015017493A
Authority
JP
Japan
Prior art keywords
pile
depth
tip
tip resistance
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014122502A
Other languages
Japanese (ja)
Other versions
JP6138729B2 (en
Inventor
北村 精男
Morio Kitamura
北村  精男
行博 石原
Yukihiro Ishihara
行博 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giken Seisakusho Co Ltd
Original Assignee
Giken Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giken Seisakusho Co Ltd filed Critical Giken Seisakusho Co Ltd
Priority to JP2014122502A priority Critical patent/JP6138729B2/en
Publication of JP2015017493A publication Critical patent/JP2015017493A/en
Application granted granted Critical
Publication of JP6138729B2 publication Critical patent/JP6138729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate end resistance of a pile during a rotary press-in operation without installing a measuring instrument at a tip part of the pile and without the need for a special operation of the pile.SOLUTION: An end resistance value Q(z) of a pile is estimated on the basis of a load Q and torque T depending on a depth z of a tip of the pile in association with the pile rotary-press-in operation of rotatively pressing in the pile while simultaneously applying the axial load Q and the torque T around an axis to the pile 3.

Description

本発明は、軸方向の荷重と軸回りのトルクを同時に与えられながら回転圧入される杭の先端抵抗を推定する回転圧入杭の先端抵抗推定方法及び推定システムに関する。   The present invention relates to a tip resistance estimation method and an estimation system for a rotary press-fit pile that estimate the tip resistance of a pile that is rotationally press-fitted while being simultaneously given an axial load and a torque around the shaft.

圧入工法は杭の施工技術の一つで、油圧力により杭を静的に貫入させる工法である。低振動低騒音、仮設不要等の利点から、主に都市部で利用されている。このうち、杭を回転させながら圧入する「回転圧入」という技術は硬質地盤にも適用可能で、近年その市場が拡大しつつある。
杭の回転圧入中には圧入力とトルクを計測することができる。この情報を用いて何らかの方法により先端抵抗を知ることができれば、施工の効率化、杭の品質保証、地盤情報の推定などにつながると考えられる。一般には、先端抵抗を知るためには、杭の先端部に何らかの計測器を取付ける必要がある。
非特許文献1に記載の技術にあっては、杭の先端部に計測器を取付ける方法による。
非特許文献2に記載の技術にあっては、杭を上下に動かす「打抜」という動作をすることを前提として、付加的な計測器を導入することなく先端抵抗を推定する。
The press-in method is one of the construction techniques of piles, and is a method in which the piles are statically penetrated by hydraulic pressure. It is mainly used in urban areas because of its advantages such as low vibration, low noise, and temporary construction. Among these, the technique called “rotational press-fitting”, which press-fits while rotating piles, can be applied to hard ground, and its market is expanding in recent years.
Pressure input and torque can be measured during rotary press-fitting of piles. If this information can be used to determine the tip resistance in some way, it will lead to improved construction efficiency, pile quality assurance, and ground information estimation. In general, in order to know the tip resistance, it is necessary to attach some measuring device to the tip of the pile.
In the technique described in Non-Patent Document 1, it is based on a method of attaching a measuring instrument to the tip of the pile.
In the technique described in Non-Patent Document 2, the tip resistance is estimated without introducing an additional measuring instrument on the premise of performing an operation of “punching” to move the pile up and down.

PPTデータに基づく土質分類および換算N値に関する研究 (地盤工学会、最近のサウンディング技術と地盤評価シンポジウム、2009)Study on soil classification and converted N value based on PPT data (Geotechnical Society, Recent Sounding Technology and Ground Evaluation Symposium, 2009) Estimation of soil type and N-value from data in press-in piling construction (IS-Kanazawa 2012)Estimation of soil type and N-value from data in press-in piling construction (IS-Kanazawa 2012)

しかし、回転圧入中の杭の先端抵抗を知るために杭の先端部に計測器を取付ける方法においては、以下のような問題がある。
杭の先端部にロードセル等の計測器を備えることは、計測器そのものの費用や、計測器を備えるための杭先端構造を杭に付加する費用などの付加的な費用を発生させる。
また、このような杭を施工現場で用いることは、計測器を備えた杭を圧入した後で引抜く、計測器の出力に基づき計測値を演算する計測装置を現場に持参して計測器と計測装置を接続する、などの付加的な作業を発生させる。
非特許文献2に記載の技術にあっては、「打抜」という動作をすることを前提として、付加的な計測器を導入することなく先端抵抗を推定することができるが、推定値が深度方向に離散的になる上に、最終貫入時点での値は推定できず支持力確認として使用するには不十分な技術である。
However, there are the following problems in the method of attaching a measuring instrument to the tip of the pile in order to know the tip resistance of the pile during rotary press-fitting.
Providing a measuring instrument such as a load cell at the tip of the pile generates additional costs such as the cost of the measuring instrument itself and the cost of adding a pile tip structure for providing the measuring instrument to the pile.
In addition, using such a pile at the construction site means bringing a measuring device that calculates the measured value based on the output of the measuring instrument and pulling it out after press-fitting the pile equipped with the measuring instrument. Generate additional work such as connecting measuring devices.
In the technique described in Non-Patent Document 2, it is possible to estimate the tip resistance without introducing an additional measuring instrument on the assumption that the operation of “punching” is performed. In addition to being discrete in the direction, the value at the time of final penetration cannot be estimated, and this technique is insufficient for use as a bearing capacity check.

本発明は以上の従来技術における問題に鑑みてなされたものであって、軸方向の荷重と軸回りのトルクを同時に与えられながら回転圧入される杭の先端抵抗を推定する回転圧入杭の先端抵抗推定方法及び推定システムにおいて、杭の先端部に計測器を設置することなく、また杭の特別な動作を必要とすることなく、回転圧入中の杭の先端抵抗を推定することを課題とする。   The present invention has been made in view of the above problems in the prior art, and the tip resistance of a rotary press-fit pile that estimates the tip resistance of a pile that is press-fitted while being simultaneously given an axial load and a torque around the shaft. An object of the estimation method and the estimation system is to estimate the tip resistance of a pile during rotary press-fitting without installing a measuring instrument at the tip of the pile and without requiring a special operation of the pile.

以上の課題を解決するための請求項1記載の発明は、軸方向の荷重Qと軸回りのトルクTを同時に与えられながら回転圧入される杭について、
前記杭の回転圧入に伴う前記杭の先端の深度zの増分△zに応じた荷重Qの増分△Q及びトルクTの増分△Tに基づき前記杭の先端抵抗値を推定する回転圧入杭の先端抵抗推定方法である。
The invention according to claim 1 for solving the above-mentioned problem is about a pile that is rotationally press-fitted while being simultaneously given an axial load Q and a torque T about the axis.
Tip of the rotary press-fit pile that estimates the tip resistance value of the pile based on the increment ΔQ of the load Q and the increment ΔT of the torque T according to the increment Δz of the depth z of the tip of the pile accompanying the rotary press-fitting of the pile This is a resistance estimation method.

請求項2記載の発明は、前記杭の圧入進行に伴い深度zを逐次計測する工程と、
深度zの増加に伴い荷重Q及びトルクTを逐次計測する工程と、
増分△zに応じた増分△Q及び増分△Tを演算する工程と、
△zを小区間として△Q及び△Tに応じた先端抵抗値の増分相当の関数を既に到達した所定の深度z(i)まで積分して当該深度z(i)における先端抵抗値を演算する工程とを含む請求項1に記載の回転圧入杭の先端抵抗推定方法である。
The invention according to claim 2 is a step of sequentially measuring the depth z with the progress of press-fitting of the pile,
A step of sequentially measuring the load Q and the torque T as the depth z increases,
Calculating an increment ΔQ and an increment ΔT according to the increment Δz;
The tip resistance value at the depth z (i) is calculated by integrating a function corresponding to the increment of the tip resistance value according to ΔQ and ΔT to a predetermined depth z (i) that has already been reached, with Δz being a small section. It is a front-end | tip resistance estimation method of the rotary press-fit pile of Claim 1 including a process.

請求項3記載の発明は、軸方向の荷重Qと軸回りのトルクTを同時に与えながら回転圧入される杭について、
前記杭の回転圧入に伴う前記杭の先端の深度zに応じた荷重Q及びトルクTに基づき前記杭の先端抵抗値を推定する回転圧入杭の先端抵抗推定方法である。
The invention described in claim 3 relates to a pile that is rotationally press-fitted while simultaneously applying an axial load Q and a torque T about the axis.
It is the tip resistance estimation method of the rotary press-fit pile which estimates the tip resistance value of the said pile based on the load Q and torque T according to the depth z of the tip of the said pile accompanying the rotary press-fit of the said pile.

請求項4記載の発明は、前記杭の圧入進行に伴い深度zを逐次計測する工程と、
深度zの増加に伴い荷重Q及びトルクTを逐次計測する工程と、
深度zに応じたQ及びTに基づき先端抵抗値を演算する工程とを含む請求項3に記載の回転圧入杭の先端抵抗推定方法である。
The invention according to claim 4 is a step of sequentially measuring the depth z with the progress of press-fitting of the pile,
A step of sequentially measuring the load Q and the torque T as the depth z increases,
It is a tip resistance estimation method of the rotary press-fit pile of Claim 3 including the process of calculating a tip resistance value based on Q and T according to the depth z.

請求項5記載の発明は、軸方向の荷重Qと軸回りのトルクTを同時に与えられながら回転圧入される杭の先端抵抗を推定する回転圧入杭の先端抵抗推定システムであって、
前記杭の先端の深度zを計測する深度計測手段と、
荷重Qを計測する圧入力計測手段と、
トルクTを計測するトルク計測手段と、を備えるとともに、
前記杭の圧入進行過程における前記深度計測手段、前記圧入力計測手段及び前記トルク計測手段がそれぞれ出力する計測値の時系列データに基づき、増分△zに応じた増分△Q及び増分△Tを演算し、△zを小区間として△Q及び△Tに応じた先端抵抗値の増分相当の関数を既に到達した所定の深度z(i)まで積分して当該深度z(i)における先端抵抗値を演算する演算手段と、
前記演算手段による先端抵抗値の演算結果を記憶するデータ記憶手段とを備えた回転圧入杭の先端抵抗推定システムである。
The invention according to claim 5 is a tip resistance estimation system for a rotary press-fit pile that estimates the tip resistance of a pile that is rotationally press-fitted while being simultaneously given an axial load Q and a torque T about the axis,
Depth measuring means for measuring the depth z of the tip of the pile;
A pressure input measuring means for measuring the load Q;
Torque measuring means for measuring the torque T, and
Increment ΔQ and increment ΔT corresponding to increment Δz are calculated based on time series data of measured values output from the depth measuring means, the pressure input measuring means, and the torque measuring means in the process of press-fitting the pile. Then, with Δz as a small section, a function corresponding to the increment of the tip resistance value corresponding to ΔQ and ΔT is integrated to a predetermined depth z (i), and the tip resistance value at the depth z (i) is obtained. Computing means for computing;
It is the tip resistance estimation system of the rotary press-fit pile provided with the data storage means which memorize | stores the calculation result of the tip resistance value by the said calculating means.

請求項6記載の発明は、軸方向の荷重Qと軸回りのトルクTを同時に与えながら回転圧入される杭の先端抵抗を推定する回転圧入杭の先端抵抗推定システムであって、
前記杭の先端の深度zを計測する深度計測手段と、
荷重Qを計測する圧入力計測手段と、
トルクTを計測するトルク計測手段と、を備えるとともに、
前記杭の圧入進行過程における前記深度計測手段、前記圧入力計測手段及び前記トルク計測手段がそれぞれ出力する計測値の時系列データに基づき、深度zに応じたQ及びTに基づき先端抵抗値を演算する演算手段と、
前記演算手段による先端抵抗値の演算結果を記憶するデータ記憶手段とを備えた回転圧入杭の先端抵抗推定システムである。
The invention according to claim 6 is a tip resistance estimation system for a rotary press-fit pile that estimates the tip resistance of the pile that is press-fitted while being simultaneously applied with an axial load Q and a torque T about the axis,
Depth measuring means for measuring the depth z of the tip of the pile;
A pressure input measuring means for measuring the load Q;
Torque measuring means for measuring the torque T, and
The tip resistance value is calculated based on Q and T according to the depth z based on time series data of the measured values output from the depth measuring means, the pressure input measuring means, and the torque measuring means in the progress of press-fitting of the pile. Computing means for
It is the tip resistance estimation system of the rotary press-fit pile provided with the data storage means which memorize | stores the calculation result of the tip resistance value by the said calculating means.

請求項7記載の発明は、前記演算結果は、深度zの変化に応じた先端抵抗値のデータ列の態様をなす請求項5又は請求項6に記載の回転圧入杭の先端抵抗推定システムである。   The invention according to claim 7 is the tip resistance estimation system for rotary press-fit piles according to claim 5 or claim 6, wherein the calculation result is in the form of a data string of tip resistance values corresponding to changes in the depth z. .

請求項8記載の発明は、前記データ列には、最終深度における先端抵抗値が含まれる請求項7に記載の回転圧入杭の先端抵抗推定システムである。   The invention according to claim 8 is the tip resistance estimation system for a rotary press-fit pile according to claim 7, wherein the data string includes a tip resistance value at a final depth.

請求項9記載の発明は、前記演算結果を表示する表示手段を備えた請求項5から請求項8のいずれか一項に記載の回転圧入杭の先端抵抗推定システムである。   Invention of Claim 9 is a tip resistance estimation system of the rotary press-fit pile as described in any one of Claim 5-8 provided with the display means which displays the said calculation result.

杭を回転圧入するときの杭の先端抵抗の影響は、圧入機から杭に与えられる荷重Qの変化とトルクTの変化に現れる。
本発明のうちの第1の発明によれば、杭の回転圧入に伴い、杭の先端の深度zと、荷重Qと、トルクTとを計測し、増分△zに応じた増分△Q及び増分△Tに基づき杭の先端抵抗値を推定することができる。
また、本発明のうちの第2の発明によれば、杭の回転圧入に伴い、杭の先端の深度zと、荷重Qと、トルクTとを計測し、zに応じたQ及びTに基づき杭の先端抵抗値を推定することができる。
本発明によれば、杭の回転圧入中に連続して計測を実行することで、杭の先端の深度zに対して連続的に先端抵抗値を算出することができる。
The influence of the tip resistance of the pile when the pile is rotationally press-fitted appears in changes in the load Q and torque T applied to the pile from the press-fitting machine.
According to the first invention of the present invention, the depth z, the load Q, and the torque T of the tip of the pile are measured along with the rotary press-fitting of the pile, and the increment ΔQ and the increment corresponding to the increment Δz. The tip resistance value of the pile can be estimated based on ΔT.
Moreover, according to 2nd invention of this invention, with rotation press-fitting of a pile, the depth z of the front-end | tip of a pile, the load Q, and the torque T are measured, and based on Q and T according to z The tip resistance value of the pile can be estimated.
According to the present invention, the tip resistance value can be continuously calculated with respect to the depth z of the tip of the pile by continuously performing the measurement during the rotary press-fitting of the pile.

本発明の一実施形態に係る回転圧入杭の先端抵抗推定システムのイメージ図である。It is an image figure of the tip resistance estimation system of the rotary press-fit pile which concerns on one Embodiment of this invention. 回転圧入される杭について、(a)は軸方向の力に関する力学的関図、(b)は軸回りトルクに関する力学的関図である。(A) is a mechanical relationship diagram regarding axial force, and (b) is a mechanical relationship diagram regarding torque around the axis, for a pile that is rotationally press-fitted. 実証試験に係る試験場の地盤条件図である。It is a ground condition figure of the test ground concerning a verification test. 本発明第1実施形態による先端抵抗の推定値と、杭先端のロードセルで計測された先端抵抗の計測値と、深度を縦軸として記載したグラフである。It is the graph which described the estimated value of the tip resistance by 1st Embodiment of this invention, the measured value of the tip resistance measured with the load cell of the pile tip, and the depth as a vertical axis | shaft. 本発明第2実施形態による先端抵抗の推定値と、杭先端のロードセルで計測された先端抵抗の計測値と、深度を縦軸として記載したグラフである。It is the graph which described the estimated value of the tip resistance by 2nd Embodiment of this invention, the measured value of the tip resistance measured with the load cell of a pile tip, and the depth as a vertical axis | shaft.

以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。   An embodiment of the present invention will be described below with reference to the drawings. The following is one embodiment of the present invention and does not limit the present invention.

〔第1実施形態〕
まず、本発明の第1実施形態につき説明する。
図1に示すように圧入機1にコンピュータ2を通信接続して圧入機1からの情報をコンピュータ2に取得しコンピュータ2により先端抵抗値を演算する形態を実施する。
圧入機1は、杭3に図2(a)に示すような軸方向の荷重Qと図2(b)に示すような軸回りのトルクTとを同時に与えながら杭3を回転圧入する。
杭3の回転圧入時に圧入機1からコンピュータ2に入力すべき情報は、少なくとも杭の先端の深度z、荷重Q及びトルクTである。
杭の先端の深度zを計測する深度計測手段は、圧入機1による圧入ストロークを検出するストロークセンサーを圧入機1に設けてこれを利用して構成する。
また、荷重Qを計測する圧入力計測手段、トルクTを計測するトルク計測手段は、圧入機1の油圧駆動部の油圧を検出する油圧センサーを利用して構成する。
圧入機1において深度z、荷重Q及びトルクTを計測し、圧入機1から深度z、荷重Q及びトルクTの計測値がコンピュータ2に入力されるように構成する。
[First Embodiment]
First, a first embodiment of the present invention will be described.
As shown in FIG. 1, a computer 2 is communicatively connected to the press-fitting machine 1, information from the press-fitting machine 1 is acquired by the computer 2, and the tip resistance value is calculated by the computer 2.
The press machine 1 rotationally presses the pile 3 while simultaneously applying to the pile 3 an axial load Q as shown in FIG. 2 (a) and a torque T about the axis as shown in FIG. 2 (b).
Information to be input from the presser 1 to the computer 2 at the time of rotary press-fitting of the pile 3 is at least the depth z, the load Q, and the torque T at the tip of the pile.
The depth measuring means for measuring the depth z of the tip of the pile is configured by providing a stroke sensor for detecting the press-fitting stroke by the press-fitting machine 1 in the press-fitting machine 1.
The pressure input measuring means for measuring the load Q and the torque measuring means for measuring the torque T are configured using a hydraulic sensor that detects the hydraulic pressure of the hydraulic drive unit of the press-fitting machine 1.
The depth z, the load Q, and the torque T are measured in the press-fitting machine 1, and the measurement values of the depth z, the load Q, and the torque T are input from the press-fitting machine 1 to the computer 2.

コンピュータ2に入力される計測値は、杭の圧入進行過程における時系列データの形態とされる。コンピュータ2は、付属する記憶装置に深度z、荷重Q及びトルクTの時系列データを記憶する。深度z、荷重Q及びトルクTの時系列データは、相互に対応がとれたものである。
コンピュータ2のCPUは、先端抵抗値を演算する演算手段として機能し、深度z、荷重Q及びトルクTの時系列データに基づき、増分△zに応じた増分△Q及び増分△Tを演算し、△zを小区間として△Q及び△Tに応じた先端抵抗値の増分相当の関数を既に到達した所定の深度z(i)まで積分して当該深度z(i)における先端抵抗値を演算する。積分区間の始点は、回転圧入開始時(深度及び先端抵抗ゼロ時)とする。
The measurement value input to the computer 2 is in the form of time-series data in the process of pressing in the pile. The computer 2 stores time series data of the depth z, the load Q, and the torque T in the attached storage device. The time series data of the depth z, the load Q, and the torque T are mutually corresponding.
The CPU of the computer 2 functions as a calculation means for calculating the tip resistance value, calculates the increment ΔQ and the increment ΔT corresponding to the increment Δz based on the time series data of the depth z, the load Q and the torque T, The tip resistance value at the depth z (i) is calculated by integrating a function corresponding to the increment of the tip resistance value according to ΔQ and ΔT to a predetermined depth z (i) that has already been reached, with Δz being a small section. . The starting point of the integration interval is when rotation press-fitting starts (when the depth and tip resistance are zero).

圧入機1において、杭3の圧入進行に伴い深度zを逐次計測し、深度zの増加に伴い荷重Q及びトルクTを逐次計測する。
杭の回転圧入の進行中にコンピュータ2に蓄積される深度z、荷重Q及びトルクTの時系列データが更新されるたびに、杭3の新たに到達した先端位置における先端抵抗値を算出し、回転圧入中に深度zの変化に応じた先端抵抗値のデータ列の大部分を算出してもよい。回転圧入中は、少なくとも深度z、荷重Q及びトルクTの時系列データの記録を行って、杭3の回転圧入中又は回転圧入の施工が終了した後の任意の時に、コンピュータ2により先端抵抗値の演算を実行する。
In the press-fitting machine 1, the depth z is sequentially measured with the progress of press-fitting of the pile 3, and the load Q and the torque T are sequentially measured as the depth z increases.
Each time the time series data of the depth z, load Q and torque T accumulated in the computer 2 during the progress of rotary press-fitting of the pile is updated, the tip resistance value at the tip position where the pile 3 is newly reached is calculated. Most of the data string of the tip resistance value corresponding to the change of the depth z may be calculated during the press-fitting. During rotary press-fitting, record time series data of at least depth z, load Q and torque T, and at any time during rotary press-fitting of the pile 3 or after completion of rotary press-fitting, the tip resistance value is calculated by the computer 2 Execute the operation.

コンピュータ2は、付属する記憶装置に先端抵抗値の演算結果を記憶する。この先端抵抗値の演算結果は、例えば図4のようにグラフ化される深度zの変化に応じた先端抵抗値のデータ列の態様をなし、杭3の最終深度における先端抵抗値が含まれる。また、コンピュータ2は、表示装置21に演算結果を表示する。   The computer 2 stores the calculation result of the tip resistance value in the attached storage device. The calculation result of the tip resistance value is in the form of a data string of tip resistance values corresponding to changes in the depth z plotted as shown in FIG. 4, for example, and includes the tip resistance value at the final depth of the pile 3. Further, the computer 2 displays the calculation result on the display device 21.

(推定理論)
次に、先端抵抗値の増分相当の関数の一例につき説明する。
荷重QとトルクTは、図2中にも示すように先端成分(下付きbで表す)と周面成分(下付きSで表す)から成ると考えられる。杭先端が深度z(i)にある場合の各抵抗をQb(i)等と表記し、杭先端がz(i)からz(i+1)へ移行する間の各抵抗の増分を△Qb(i,i+1) 等と表記すると、荷重Qの増分△Q、トルクTの増分△Tは(1)(2)式で表される。
(Estimation theory)
Next, an example of a function corresponding to the increment of the tip resistance value will be described.
The load Q and the torque T are considered to be composed of a tip component (represented by a subscript b) and a peripheral surface component (represented by a subscript S) as shown in FIG. Each resistance when the pile tip is at the depth z (i) is expressed as Qb (i) or the like, and the increment of each resistance during the transition of the pile tip from z (i) to z (i + 1) is ΔQb (i , I + 1) and the like, the increment ΔQ of the load Q and the increment ΔT of the torque T are expressed by equations (1) and (2).

ところで、Qb(i)とTb(i)は、先端抵抗力度qb(i) と壁面摩擦角δ(i)を用いて(3)(4)式で表され、(3)(4)式より両者の関係は(5)式となる。杭の直径をDとする。また(5)式に示すとおりαを定義する。
ここで、先端抵抗力度qbとは、先端抵抗Qbの単位面積当たりの値である。また、先端面上の微小面積dAに生じる垂直抗力は、qb・dAと表され、杭を回転させたときに杭の先端面上の微小面積dAに生じる摩擦力は、qb・dAに摩擦係数を乗じたものである。この摩擦係数をtanδとしたとき、すなわち、上記摩擦力を、qb・dA・tanδとしたときのδが壁面摩擦角である。
By the way, Qb (i) and Tb (i) are expressed by the equations (3) and (4) using the tip resistance force qb (i) and the wall friction angle δ (i), and from the equations (3) and (4) The relationship between the two is the equation (5). D is the diameter of the pile. Also, α is defined as shown in equation (5).
Here, the tip resistance force qb is a value per unit area of the tip resistance Qb. Further, the normal force generated in the minute area dA on the tip surface is expressed as qb · dA, and the frictional force generated in the minute area dA on the tip surface of the pile when the pile is rotated is the friction coefficient in qb · dA. Multiplied by. When this friction coefficient is tan δ, that is, when the friction force is qb · dA · tan δ, δ is the wall surface friction angle.

いま、深度方向の地盤条件(壁面摩擦角)の変化を無視できるとし、α(i)=α(i+1)=αとすると、(6)式が得られる。   Now, assuming that the change in the ground condition (wall friction angle) in the depth direction can be ignored and α (i) = α (i + 1) = α, equation (6) is obtained.

他方、周面に関しては、 △QS(i,i+1)と△TS(i,i+1)は、土と杭周面との間の単位面積当たりの摩擦力f(i,i+1)とピッチ(圧入速度に対する回転速度の比)pを用いて(7)(8)式で表わされ、(7)(8)式より両者の関係は(9)式となる。また(9)式に示すとおりβを定義する。
以上の関係式からさらに(10)式が導かれる。(10)式を先端抵抗値の増分相当の関数として適用し、(11)式に示すように先端抵抗値を積分法により求める。このとき、壁面摩擦角は現場ごとに適切な定数を設定して、定数として実施しても十分な結果が得られる。また、圧入機においてトルクTが大きくなると回転速度が設定値よりも小さくなるため、ピッチpの算出に必要になる回転速度は圧入機の設定値をトルクTの計測値で補正して推定することができる。すなわち、回転速度を直接検知せずにピッチpを深度zとトルクTの計測値から推算しても十分な結果が得られる。もちろん、杭の回転速度を直接検知して実施してもよい。
On the other hand, regarding the circumferential surface, ΔQS (i, i + 1) and ΔTS (i, i + 1) are the frictional force f (i, i + 1) and pitch (press-fit speed) between the soil and the pile circumferential surface. (The ratio of the rotational speed to the above) p) is expressed by the equations (7) and (8), and the relationship between them is the equation (9) from the equations (7) and (8). Also, β is defined as shown in equation (9).
Equation (10) is further derived from the above relational expression. The formula (10) is applied as a function corresponding to the increment of the tip resistance value, and the tip resistance value is obtained by an integration method as shown in the formula (11). At this time, even if the wall surface friction angle is set as an appropriate constant for each site and implemented as a constant, sufficient results can be obtained. Further, when the torque T increases in the press-fitting machine, the rotational speed becomes smaller than the set value. Therefore, the rotational speed necessary for calculating the pitch p is estimated by correcting the set value of the press-fitting machine with the measured value of the torque T. Can do. That is, sufficient results can be obtained even if the pitch p is estimated from the measured values of the depth z and the torque T without directly detecting the rotational speed. Of course, the rotation speed of the pile may be directly detected.

(実証試験)
上述した第1実施形態に係る先端抵抗の推定理論を確認するために実証試験を行った。図3に試験場の地盤条件を示す。この試験場の地盤条件に応じた壁面摩擦角δを定数として設定した。試験杭は直径D=318.5mmの閉端構造とし、検証用に先端部にロードセルを設置して先端抵抗を計測した。荷重QとトルクTは回転圧入機の油圧の計測値に杭重量などを加味して求めた。深度zはドラム式ストロークセンサーを用いて計測した。2種類の試験1,2を行った。表1に回転圧入機における圧入速度、回転速度の各設定値、さらに試験2ついては引抜速度の設定値を示した。試験1では回転圧入動作を継続的に行い、試験2では、回転圧入動作に打抜動作(杭を上下に動かす動作)を加えた。例えば打抜ストローク800-400 とは下方向変位800mmと上方向変位400mmを繰返すことを意味する。杭の回転速度は計測器を用いて測定することで得た。
(Verification test)
A verification test was conducted to confirm the estimation theory of the tip resistance according to the first embodiment described above. Fig. 3 shows the ground conditions of the test site. The wall friction angle δ according to the ground conditions of this test site was set as a constant. The test pile had a closed end structure with a diameter D = 318.5 mm, and a load cell was installed at the tip for verification to measure the tip resistance. The load Q and torque T were obtained by adding the pile weight and the like to the measured hydraulic pressure of the rotary press-fitting machine. The depth z was measured using a drum type stroke sensor. Two types of tests 1 and 2 were performed. Table 1 shows set values of the press-fitting speed and the rotational speed in the rotary press-fitting machine, and further, for Test 2, the set value of the drawing speed. In Test 1, a rotary press-fitting operation was continuously performed, and in Test 2, a punching operation (moving the pile up and down) was added to the rotary press-fitting operation. For example, the punching stroke 800-400 means that a downward displacement of 800 mm and an upward displacement of 400 mm are repeated. The rotation speed of the pile was obtained by measuring with a measuring instrument.

上述した第1実施形態に係る推定理論に基づき推定した先端抵抗の推定値と、杭先端のロードセルで計測された先端抵抗の計測値とを、図4のグラフに示した。図4(a)は試験1のもの、図4(b)は試験2のものである。
図4に示すようにいずれの試験でも、先端抵抗の推定値は計測値とよく一致することが確認された。
以上の試験により、閉端鋼管杭の回転圧入時の杭頭荷重QとトルクTの情報から先端抵抗を精度よく推定できることが確認された。
The estimated value of the tip resistance estimated based on the estimation theory according to the first embodiment described above and the measured value of the tip resistance measured by the load cell at the tip of the pile are shown in the graph of FIG. 4 (a) is for Test 1, and FIG. 4 (b) is for Test 2.
As shown in FIG. 4, in any test, it was confirmed that the estimated value of the tip resistance was in good agreement with the measured value.
From the above test, it was confirmed that the tip resistance can be accurately estimated from the information on the pile head load Q and the torque T at the time of rotary press-fitting of the closed-end steel pipe pile.

〔第2実施形態〕
次に、本発明の第2実施形態につき説明する。
図1に示すように圧入機1にコンピュータ2を通信接続して圧入機1からの情報をコンピュータ2に取得しコンピュータ2により先端抵抗値を演算する形態を実施する。
圧入機1は、杭3に図2(a)に示すような軸方向の荷重Qと図2(b)に示すような軸回りのトルクTとを同時に与えながら杭3を回転圧入する。
杭3の回転圧入時に圧入機1からコンピュータ2に入力すべき情報は、少なくとも杭の先端の深度z、荷重Q及びトルクTである。
杭の先端の深度zを計測する深度計測手段は、圧入機1による圧入ストロークを検出するストロークセンサーを圧入機1に設けてこれを利用して構成する。
また、荷重Qを計測する圧入力計測手段、トルクTを計測するトルク計測手段は、圧入機1の油圧駆動部の油圧を検出する油圧センサーを利用して構成する。
圧入機1において深度z、荷重Q及びトルクTを計測し、圧入機1から深度z、荷重Q及びトルクTの計測値がコンピュータ2に入力されるように構成する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
As shown in FIG. 1, a computer 2 is communicatively connected to the press-fitting machine 1, information from the press-fitting machine 1 is acquired by the computer 2, and the tip resistance value is calculated by the computer 2.
The press machine 1 rotationally presses the pile 3 while simultaneously applying to the pile 3 an axial load Q as shown in FIG. 2 (a) and a torque T about the axis as shown in FIG. 2 (b).
Information to be input from the presser 1 to the computer 2 at the time of rotary press-fitting of the pile 3 is at least the depth z, the load Q, and the torque T at the tip of the pile.
The depth measuring means for measuring the depth z of the tip of the pile is configured by providing a stroke sensor for detecting the press-fitting stroke by the press-fitting machine 1 in the press-fitting machine 1.
The pressure input measuring means for measuring the load Q and the torque measuring means for measuring the torque T are configured using a hydraulic sensor that detects the hydraulic pressure of the hydraulic drive unit of the press-fitting machine 1.
The depth z, the load Q, and the torque T are measured in the press-fitting machine 1, and the measurement values of the depth z, the load Q, and the torque T are input from the press-fitting machine 1 to the computer 2.

コンピュータ2に入力される計測値は、杭の圧入進行過程における時系列データの形態とされる。コンピュータ2は、付属する記憶装置に深度z、荷重Q及びトルクTの時系列データを記憶する。深度z、荷重Q及びトルクTの時系列データは、相互に対応がとれたものである。
コンピュータ2のCPUは、先端抵抗値を演算する演算手段として機能し、深度z、荷重Q及びトルクTの時系列データに基づき、当該深度zにおける先端抵抗値を演算する。
The measurement value input to the computer 2 is in the form of time-series data in the process of pressing in the pile. The computer 2 stores time series data of the depth z, the load Q, and the torque T in the attached storage device. The time series data of the depth z, the load Q, and the torque T are mutually corresponding.
The CPU of the computer 2 functions as calculation means for calculating the tip resistance value, and calculates the tip resistance value at the depth z based on the time series data of the depth z, the load Q, and the torque T.

圧入機1において、杭3の圧入進行に伴い深度zを逐次計測し、深度zの増加に伴い荷重Q及びトルクTを逐次計測する。
杭の回転圧入の進行中にコンピュータ2に蓄積される深度z、荷重Q及びトルクTの時系列データが更新されるたびに、杭3の新たに到達した先端位置における先端抵抗値を算出し、回転圧入中に深度zの変化に応じた先端抵抗値のデータ列の大部分を算出してもよい。回転圧入中は、少なくとも深度z、荷重Q及びトルクTの時系列データの記録を行って、杭3の回転圧入中又は回転圧入の施工が終了した後の任意の時に、コンピュータ2により先端抵抗値の演算を実行する。
In the press-fitting machine 1, the depth z is sequentially measured with the progress of press-fitting of the pile 3, and the load Q and the torque T are sequentially measured as the depth z increases.
Each time the time series data of the depth z, load Q and torque T accumulated in the computer 2 during the progress of rotary press-fitting of the pile is updated, the tip resistance value at the tip position where the pile 3 is newly reached is calculated. Most of the data string of the tip resistance value corresponding to the change of the depth z may be calculated during the press-fitting. During rotary press-fitting, record time series data of at least depth z, load Q and torque T, and at any time during rotary press-fitting of the pile 3 or after completion of rotary press-fitting, the tip resistance value is calculated by the computer 2 Execute the operation.

コンピュータ2は、付属する記憶装置に先端抵抗値の演算結果を記憶する。この先端抵抗値の演算結果は、例えば図4のようにグラフ化される深度zの変化に応じた先端抵抗値のデータ列の態様をなし、杭3の最終深度における先端抵抗値が含まれる。また、コンピュータ2は、表示装置21に演算結果を表示する。   The computer 2 stores the calculation result of the tip resistance value in the attached storage device. The calculation result of the tip resistance value is in the form of a data string of tip resistance values corresponding to changes in the depth z plotted as shown in FIG. 4, for example, and includes the tip resistance value at the final depth of the pile 3. Further, the computer 2 displays the calculation result on the display device 21.

(推定理論)
次に、先端抵抗値相当の関数の一例につき説明する。
荷重QとトルクTは、図2中にも示すように先端成分(下付きで表す)と周面成分(下付きで表す)から成ると考えられる。杭先端が深度zにある場合の各抵抗をQ(z)等と表記すると、荷重Q、トルクTは(A1)(A2)式で表される。
(Estimation theory)
Next, an example of a function corresponding to the tip resistance value will be described.
The load Q and the torque T are considered to be composed of a tip component (represented by a subscript b ) and a peripheral surface component (represented by a subscript S ) as shown in FIG. When each resistance when the pile tip is at a depth z is expressed as Q b (z) or the like, the load Q and the torque T are expressed by equations (A1) and (A2).

ところで、Q(z)とT(z)は、先端抵抗力度q(z) と壁面摩擦角δ(z)を用いて(A3)(A4)式で表され、(A3)(A4)式より両者の関係は(A5)式となる。杭の直径をDとする。また(A5)式に示すとおりα(z)を定義する。
ここで、先端抵抗力度qbとは、先端抵抗Qbの単位面積当たりの値である。また、先端面上の微小面積dAに生じる垂直抗力は、qb・dAと表され、杭を回転させたときに杭の先端面上の微小面積dAに生じる摩擦力は、qb・dAに摩擦係数を乗じたものである。この摩擦係数をtanδとしたとき、すなわち、上記摩擦力を、qb・dA・tanδとしたときのδが壁面摩擦角である。
By the way, Q b (z) and T b (z) are expressed by the expressions (A3) and (A4) using the tip resistance force q b (z) and the wall friction angle δ (z), and (A3) (A4 The relationship between the two is represented by equation (A5). D is the diameter of the pile. Further, α (z) is defined as shown in the equation (A5).
Here, the tip resistance force qb is a value per unit area of the tip resistance Qb. Further, the normal force generated in the minute area dA on the tip surface is expressed as qb · dA, and the frictional force generated in the minute area dA on the tip surface of the pile when the pile is rotated is the friction coefficient in qb · dA. Multiplied by. When this friction coefficient is tan δ, that is, when the friction force is qb · dA · tan δ, δ is the wall surface friction angle.

他方、周面に関しては、Q(z)とT(z)は、土と杭周面の間の単位面積当たりの摩擦力f(z)とピッチ(圧入速度に対する回転速度の比)p(z)を用いて(A6)(A7)式で表わされ、(A6)(A7)式より両者の関係は(A8)式となる。また(A8)式に示すとおりβ(z)を定義する。
以上の関係式から(A9)式が導かれ、(A9)式を先端抵抗値の関数として適用する。このとき、壁面摩擦角は現場ごとに適切な定数を設定して、定数として実施しても十分な結果が得られる。また、圧入機においてトルクTが大きくなると回転速度が設定値よりも小さくなるため、ピッチpの算出に必要になる回転速度は圧入機の設定値をトルクTの計測値で補正して推定することができる。すなわち、回転速度を直接検知せずにピッチpを深度zとトルクTの計測値から推算しても十分な結果が得られる。もちろん、杭の回転速度を直接検知して実施してもよい。
On the other hand, regarding the circumferential surface, Q S (z) and T S (z) are the frictional force f (z) and pitch (ratio of the rotational speed to the press-fit speed) p between the soil and the pile circumferential surface, p. Using (z), it is expressed by the equations (A6) and (A7), and the relationship between them is the equation (A8) from the equations (A6) and (A7). Further, β (z) is defined as shown in the equation (A8).
Expression (A9) is derived from the above relational expression, and expression (A9) is applied as a function of the tip resistance value. At this time, even if the wall surface friction angle is set as an appropriate constant for each site and implemented as a constant, sufficient results can be obtained. Further, when the torque T increases in the press-fitting machine, the rotational speed becomes smaller than the set value. Therefore, the rotational speed necessary for calculating the pitch p is estimated by correcting the set value of the press-fitting machine with the measured value of the torque T. Can do. That is, sufficient results can be obtained even if the pitch p is estimated from the measured values of the depth z and the torque T without directly detecting the rotational speed. Of course, the rotation speed of the pile may be directly detected.

(実証試験)
上述した第2実施形態に係る先端抵抗の推定理論を確認するために実証試験を行った。図3に試験場の地盤条件を示す(第1実施形態のときと同じである)。この試験場の地盤条件に応じた壁面摩擦角δを定数として設定した。試験杭は直径D=318.5mmの閉端構造とし、検証用に先端部にロードセルを設置して先端抵抗を計測した。荷重QとトルクTは回転圧入機の油圧の計測値に杭重量などを加味して求めた。深度zはドラム式ストロークセンサーを用いて計測した。2種類の試験1,2を行った。表1に回転圧入機における圧入速度、回転速度の各設定値、さらに試験2ついては引抜速度の設定値を示した(第1実施形態のときと同じである)。試験1では回転圧入動作を継続的に行い、試験2では、回転圧入動作に打抜動作(杭を上下に動かす動作)を加えた。例えば打抜ストローク800-400 とは下方向変位800mmと上方向変位400mmを繰返すことを意味する。杭の回転速度は計測器を用いて測定することで得た。
(Verification test)
A verification test was performed to confirm the estimation theory of the tip resistance according to the second embodiment described above. FIG. 3 shows the ground conditions of the test site (the same as in the first embodiment). The wall friction angle δ according to the ground conditions of this test site was set as a constant. The test pile had a closed end structure with a diameter D = 318.5 mm, and a load cell was installed at the tip for verification to measure the tip resistance. The load Q and torque T were obtained by adding the pile weight and the like to the measured hydraulic pressure of the rotary press-fitting machine. The depth z was measured using a drum type stroke sensor. Two types of tests 1 and 2 were performed. Table 1 shows the set values of the press-fitting speed and the rotational speed in the rotary press-fitting machine, and the set values of the drawing speed for test 2 (the same as in the first embodiment). In Test 1, a rotary press-fitting operation was continuously performed, and in Test 2, a punching operation (moving the pile up and down) was added to the rotary press-fitting operation. For example, the punching stroke 800-400 means that a downward displacement of 800 mm and an upward displacement of 400 mm are repeated. The rotation speed of the pile was obtained by measuring with a measuring instrument.

上述した第2実施形態に係る推定理論に基づき推定した先端抵抗の推定値と、杭先端のロードセルで計測された先端抵抗の計測値とを、図5のグラフに示した。図5(a)は試験1のもの、図5(b)は試験2のものである。
図5に示すようにいずれの試験でも、先端抵抗の推定値は計測値とよく一致することが確認された。
以上の試験により、閉端鋼管杭の回転圧入時の杭頭荷重QとトルクTの情報から先端抵抗を精度よく推定できることが確認された。
The estimated value of the tip resistance estimated based on the estimation theory according to the second embodiment described above and the measured value of the tip resistance measured by the load cell at the tip of the pile are shown in the graph of FIG. FIG. 5 (a) is for Test 1 and FIG. 5 (b) is for Test 2.
As shown in FIG. 5, in any test, it was confirmed that the estimated value of the tip resistance was in good agreement with the measured value.
From the above test, it was confirmed that the tip resistance can be accurately estimated from the information on the pile head load Q and the torque T at the time of rotary press-fitting of the closed-end steel pipe pile.

なお、本発明は、支持力確認や地盤情報推定などにも利用することができる。   In addition, this invention can be utilized also for a bearing capacity check, ground information estimation, etc.

1 圧入機
2 コンピュータ(演算手段、データ記憶手段、表示手段)
3 杭
1 Press-fitting machine 2 Computer (calculation means, data storage means, display means)
3 piles

Claims (9)

軸方向の荷重Qと軸回りのトルクTを同時に与えながら回転圧入される杭について、
前記杭の回転圧入に伴う前記杭の先端の深度zの増分△zに応じた荷重Qの増分△Q及びトルクTの増分△Tに基づき前記杭の先端抵抗値を推定する回転圧入杭の先端抵抗推定方法。
For piles that are rotationally press-fitted while simultaneously applying axial load Q and axial torque T,
Tip of the rotary press-fit pile that estimates the tip resistance value of the pile based on the increment ΔQ of the load Q and the increment ΔT of the torque T according to the increment Δz of the depth z of the tip of the pile accompanying the rotary press-fitting of the pile Resistance estimation method.
前記杭の圧入進行に伴い深度zを逐次計測する工程と、
深度zの増加に伴い荷重Q及びトルクTを逐次計測する工程と、
増分△zに応じた増分△Q及び増分△Tを演算する工程と、
△zを小区間として△Q及び△Tに応じた先端抵抗値の増分相当の関数を既に到達した所定の深度z(i)まで積分して当該深度z(i)における先端抵抗値を演算する工程とを含む請求項1に記載の回転圧入杭の先端抵抗推定方法。
A step of sequentially measuring the depth z with the progress of press-fitting of the pile;
A step of sequentially measuring the load Q and the torque T as the depth z increases,
Calculating an increment ΔQ and an increment ΔT according to the increment Δz;
The tip resistance value at the depth z (i) is calculated by integrating a function corresponding to the increment of the tip resistance value according to ΔQ and ΔT to a predetermined depth z (i) that has already been reached, with Δz being a small section. The tip resistance estimation method of the rotary press-fit pile of Claim 1 including a process.
軸方向の荷重Qと軸回りのトルクTを同時に与えながら回転圧入される杭について、
前記杭の回転圧入に伴う前記杭の先端の深度zに応じた荷重Q及びトルクTに基づき前記杭の先端抵抗値を推定する回転圧入杭の先端抵抗推定方法。
For piles that are rotationally press-fitted while simultaneously applying axial load Q and axial torque T,
The tip resistance estimation method of the rotary press-fit pile which estimates the tip resistance value of the said pile based on the load Q and the torque T according to the depth z of the tip of the said pile accompanying the rotary press-fit of the said pile.
前記杭の圧入進行に伴い深度zを逐次計測する工程と、
深度zの増加に伴い荷重Q及びトルクTを逐次計測する工程と、
深度zに応じたQ及びTに基づき先端抵抗値を演算する工程とを含む請求項3に記載の回転圧入杭の先端抵抗推定方法。
A step of sequentially measuring the depth z with the progress of press-fitting of the pile;
A step of sequentially measuring the load Q and the torque T as the depth z increases,
The method of estimating the tip resistance of the rotary press-fit pile according to claim 3, further comprising: calculating a tip resistance value based on Q and T according to the depth z.
軸方向の荷重Qと軸回りのトルクTを同時に与えながら回転圧入される杭の先端抵抗を推定する回転圧入杭の先端抵抗推定システムであって、
前記杭の先端の深度zを計測する深度計測手段と、
荷重Qを計測する圧入力計測手段と、
トルクTを計測するトルク計測手段と、を備えるとともに、
前記杭の圧入進行過程における前記深度計測手段、前記圧入力計測手段及び前記トルク計測手段がそれぞれ出力する計測値の時系列データに基づき、増分△zに応じた増分△Q及び増分△Tを演算し、△zを小区間として△Q及び△Tに応じた先端抵抗値の増分相当の関数を既に到達した所定の深度z(i)まで積分して当該深度z(i)における先端抵抗値を演算する演算手段と、
前記演算手段による先端抵抗値の演算結果を記憶するデータ記憶手段とを備えた回転圧入杭の先端抵抗推定システム。
A rotary press-fit pile tip resistance estimation system that estimates the tip resistance of a pile that is rotary press-fitted while simultaneously applying an axial load Q and an axial torque T,
Depth measuring means for measuring the depth z of the tip of the pile;
A pressure input measuring means for measuring the load Q;
Torque measuring means for measuring the torque T, and
Increment ΔQ and increment ΔT corresponding to increment Δz are calculated based on time series data of measured values output from the depth measuring means, the pressure input measuring means, and the torque measuring means in the process of press-fitting the pile. Then, with Δz as a small section, a function corresponding to the increment of the tip resistance value corresponding to ΔQ and ΔT is integrated to a predetermined depth z (i), and the tip resistance value at the depth z (i) is obtained. Computing means for computing;
A tip resistance estimation system for a rotary press-fit pile, comprising data storage means for storing a calculation result of the tip resistance value by the calculation means.
軸方向の荷重Qと軸回りのトルクTを同時に与えながら回転圧入される杭の先端抵抗を推定する回転圧入杭の先端抵抗推定システムであって、
前記杭の先端の深度zを計測する深度計測手段と、
荷重Qを計測する圧入力計測手段と、
トルクTを計測するトルク計測手段と、を備えるとともに、
前記杭の圧入進行過程における前記深度計測手段、前記圧入力計測手段及び前記トルク計測手段がそれぞれ出力する計測値の時系列データに基づき、深度zに応じたQ及びTに基づき先端抵抗値を演算する演算手段と、
前記演算手段による先端抵抗値の演算結果を記憶するデータ記憶手段とを備えた回転圧入杭の先端抵抗推定システム。
A rotary press-fit pile tip resistance estimation system that estimates the tip resistance of a pile that is rotary press-fitted while simultaneously applying an axial load Q and an axial torque T,
Depth measuring means for measuring the depth z of the tip of the pile;
A pressure input measuring means for measuring the load Q;
Torque measuring means for measuring the torque T, and
The tip resistance value is calculated based on Q and T according to the depth z based on time series data of the measured values output from the depth measuring means, the pressure input measuring means, and the torque measuring means in the progress of press-fitting of the pile. Computing means for
A tip resistance estimation system for a rotary press-fit pile, comprising data storage means for storing a calculation result of the tip resistance value by the calculation means.
前記演算結果は、深度zの変化に応じた先端抵抗値のデータ列の態様をなす請求項5又は請求項6に記載の回転圧入杭の先端抵抗推定システム。   The tip resistance estimation system for a rotary press-fit pile according to claim 5 or 6, wherein the calculation result is in the form of a data string of tip resistance values corresponding to changes in the depth z. 前記データ列には、最終深度における先端抵抗値が含まれる請求項7に記載の回転圧入杭の先端抵抗推定システム。   The tip resistance estimation system for a rotary press-fit pile according to claim 7, wherein the data string includes a tip resistance value at a final depth. 前記演算結果を表示する表示手段を備えた請求項5から請求項8のいずれか一項に記載の回転圧入杭の先端抵抗推定システム。   The tip resistance estimation system for a rotary press-fit pile according to any one of claims 5 to 8, further comprising display means for displaying the calculation result.
JP2014122502A 2013-06-14 2014-06-13 Resistance estimation method and estimation system for rotary press-fit piles Active JP6138729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014122502A JP6138729B2 (en) 2013-06-14 2014-06-13 Resistance estimation method and estimation system for rotary press-fit piles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013125122 2013-06-14
JP2013125122 2013-06-14
JP2014122502A JP6138729B2 (en) 2013-06-14 2014-06-13 Resistance estimation method and estimation system for rotary press-fit piles

Publications (2)

Publication Number Publication Date
JP2015017493A true JP2015017493A (en) 2015-01-29
JP6138729B2 JP6138729B2 (en) 2017-05-31

Family

ID=52438723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014122502A Active JP6138729B2 (en) 2013-06-14 2014-06-13 Resistance estimation method and estimation system for rotary press-fit piles

Country Status (1)

Country Link
JP (1) JP6138729B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002623A (en) * 2015-06-12 2017-01-05 株式会社技研製作所 Estimation system for tip resistance degree, press-fit installation method, and estimation method for tip resistance degree
CN107642112A (en) * 2017-09-30 2018-01-30 青岛理工大学 A kind of end open type PHC pile tube end resistance test devices
JP2018162563A (en) * 2017-03-24 2018-10-18 株式会社技研製作所 Tip resistance estimation system, fluid injection combined and press-fitting execution system, and tip resistance estimation method
WO2019186660A1 (en) * 2018-03-26 2019-10-03 日本製鉄株式会社 Method for estimating end bearing capacity of rotary press-in pile, end bearing capacity management system, construction management method, and program
JP2020084403A (en) * 2018-11-14 2020-06-04 日本製鉄株式会社 End bearing capacity estimation method of rotary press-in pile, end bearing capacity control system, construction control method and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080650A (en) * 1998-03-10 2000-03-21 Nippon Steel Corp Construction management method for rotary press-fit pile
JP2002021076A (en) * 2000-07-05 2002-01-23 Nippon Steel Corp System and method for controlling construction of rotatively press-fitted pile
JP2009133164A (en) * 2007-11-30 2009-06-18 Nitto Seiko Co Ltd Penetration testing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080650A (en) * 1998-03-10 2000-03-21 Nippon Steel Corp Construction management method for rotary press-fit pile
JP2002021076A (en) * 2000-07-05 2002-01-23 Nippon Steel Corp System and method for controlling construction of rotatively press-fitted pile
JP2009133164A (en) * 2007-11-30 2009-06-18 Nitto Seiko Co Ltd Penetration testing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002623A (en) * 2015-06-12 2017-01-05 株式会社技研製作所 Estimation system for tip resistance degree, press-fit installation method, and estimation method for tip resistance degree
JP2018162563A (en) * 2017-03-24 2018-10-18 株式会社技研製作所 Tip resistance estimation system, fluid injection combined and press-fitting execution system, and tip resistance estimation method
CN107642112A (en) * 2017-09-30 2018-01-30 青岛理工大学 A kind of end open type PHC pile tube end resistance test devices
WO2019186660A1 (en) * 2018-03-26 2019-10-03 日本製鉄株式会社 Method for estimating end bearing capacity of rotary press-in pile, end bearing capacity management system, construction management method, and program
JPWO2019186660A1 (en) * 2018-03-26 2020-10-22 日本製鉄株式会社 Tip bearing capacity estimation method, tip bearing capacity management system, construction management method, and program for rotary press-fit piles
JP2020084403A (en) * 2018-11-14 2020-06-04 日本製鉄株式会社 End bearing capacity estimation method of rotary press-in pile, end bearing capacity control system, construction control method and program
JP7155911B2 (en) 2018-11-14 2022-10-19 日本製鉄株式会社 Method for estimating tip bearing capacity of rotary press-in piles, tip bearing capacity management system, construction management method, and program

Also Published As

Publication number Publication date
JP6138729B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6138729B2 (en) Resistance estimation method and estimation system for rotary press-fit piles
Byrne et al. Monotonic laterally loaded pile testing in a stiff glacial clay till at Cowden
US9963852B2 (en) Test method for friction resistance at inner and outer sidewalls of pipe pile
Lin et al. Interaction between laterally loaded pile and surrounding soil
US10443202B2 (en) Pile design optimization
CN101979783A (en) Multifunctional cone penetration test (CPTU)-based pile foundation bearing capacity pre-measuring method
US10829903B2 (en) Device for calculating construction assistance information, system for calculating construction assistance information, and program
CN105352807A (en) Bent casing pipe non-uniform collapse strength simulation test method and device
Wang et al. A two-stage method using spline-kernelled chirplet transform and angle synchronous averaging to detect faults at variable speed
JP6574341B2 (en) Tip resistance force estimation system, press-fitting construction system, and tip resistance force estimation method
JPS6153911A (en) Device of measuring peripheral surface friction force of pile
JP5610986B2 (en) Geological estimation system and geological estimation method
CN102268886B (en) Method for detecting and evaluating design bearing capacity of pile foundation of offshore oil platform
Bungenstab et al. Continous Flight Auger (CFA) Piles–A Review of the Execution Process and Integrity Evaluation by Low Strain Test
GB2614646A (en) System to model distributed torque, drag and friction along a string
JP6144029B2 (en) Ground property acquisition method, ground property acquisition device, and ground property acquisition program
JP6929676B2 (en) Tip resistance estimation system, fluid injection combined press-fitting construction system, and tip resistance estimation method
JP7155911B2 (en) Method for estimating tip bearing capacity of rotary press-in piles, tip bearing capacity management system, construction management method, and program
Jindal et al. Identification of soil damping for stiff piles based on experiments: Methodology and results
Lehane et al. Discussion of “Determination of Bearing Capacity of Open-Ended Piles in Sand” by Kyuho Paik and Rodrigo Salgado
JP6656724B2 (en) Liquefaction determination method
JP7393452B2 (en) Method for estimating ground data from construction data
JP6856171B2 (en) Tip bearing capacity estimation method, tip bearing capacity management system, construction management method, and program for rotary press-fit piles
Rausche et al. Advances in the evaluation of pile and shaft quality
JP2711367B2 (en) How to measure underground stress

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170426

R150 Certificate of patent or registration of utility model

Ref document number: 6138729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250