JPWO2019186660A1 - Tip bearing capacity estimation method, tip bearing capacity management system, construction management method, and program for rotary press-fit piles - Google Patents

Tip bearing capacity estimation method, tip bearing capacity management system, construction management method, and program for rotary press-fit piles Download PDF

Info

Publication number
JPWO2019186660A1
JPWO2019186660A1 JP2020510206A JP2020510206A JPWO2019186660A1 JP WO2019186660 A1 JPWO2019186660 A1 JP WO2019186660A1 JP 2020510206 A JP2020510206 A JP 2020510206A JP 2020510206 A JP2020510206 A JP 2020510206A JP WO2019186660 A1 JPWO2019186660 A1 JP WO2019186660A1
Authority
JP
Japan
Prior art keywords
bearing capacity
tip bearing
pile
rotary press
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020510206A
Other languages
Japanese (ja)
Other versions
JP6856171B2 (en
Inventor
吉郎 石濱
吉郎 石濱
悦孝 柳
悦孝 柳
裕貴 日下
裕貴 日下
将一 田邊
将一 田邊
和秀 戸田
和秀 戸田
妙中 真治
真治 妙中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2019186660A1 publication Critical patent/JPWO2019186660A1/en
Application granted granted Critical
Publication of JP6856171B2 publication Critical patent/JP6856171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/56Screw piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/22Placing by screwing down

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

この回転圧入杭の先端支持力推定方法は、杭先端が解放された鋼管杭からなる回転圧入杭を地盤に回転圧入する施工時に、前記回転圧入杭の先端支持力を推定する回転圧入杭の先端支持力推定方法であって、前記施工時に測定された、圧入力Qinと、支持力推定指標Hとを入力する工程と、前記圧入力Qinと、前記支持力推定指標Hとを使用し、回転圧入杭における圧入力Qinと、先端支持力Ruと、支持力推定指標Hとの相関関係から定式化した(1)式で表される先端支持力推定式に基づいて、前記回転圧入杭の先端支持力Ruを推定する推定工程と、を有する。【数1】A:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際の勾配B:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際のY切片【数2】This method of estimating the tip bearing capacity of a rotary press-fit pile is the tip of a rotary press-fit pile that estimates the tip bearing capacity of the rotary press-fit pile when a rotary press-fit pile made of a steel pipe pile with the pile tip released is rotationally press-fitted into the ground. It is a bearing capacity estimation method, in which a step of inputting a pressure input Qin and a bearing capacity estimation index H measured at the time of construction, and the rotation using the pressure input Qin and the bearing capacity estimation index H. The tip of the rotary press-fit pile is based on the tip bearing capacity estimation formula represented by equation (1) formulated from the correlation between the press-in input Qin in the press-fit pile, the tip bearing capacity Ru, and the bearing capacity estimation index H. It has an estimation step of estimating the bearing capacity Ru. [Equation 1] Gradient B: X when the approximate line of the plot points of the test results with the X-axis as the natural logarithmic of the bearing capacity estimation index H and the Y-axis as Qin / Ru is expressed by Eq. (2). The Y-intercept [Equation 2] when the approximate line of the plot points of the test results with the axis as the natural logarithmic of the bearing capacity estimation index H and the Y-axis as Qin / Ru is expressed by Eq. (2).

Description

本発明は、回転圧入杭の先端支持力推定方法、先端支持力管理システム、施工管理方法、及びプログラムに関する。 The present invention relates to a method for estimating the tip bearing capacity of a rotary press-fit pile, a tip bearing capacity management system, a construction management method, and a program.

従来、施工中の鋼管杭の杭先端地盤の支持力の確認方法として、動的貫入試験を用いたものが知られている。このような動的貫入試験は、所定深度に到達した鋼管杭に対して所定重量のハンマを所定高さから落下させることにより、鋼管杭の貫入量及びリバウンド量を測定して杭の先端地盤の極限支持力を杭打ち方式により推定するものである。
そして、このようにして得られた杭先端地盤の極限支持力に地盤条件から推定される周面摩擦力を加え、さらに安全率等を考慮した推定支持力と設計支持力とを比較して、該設計支持力を超える推定支持力が算定された場合に、所定の支持力が期待できる。しかし、上述した動的貫入試験により支持力を確認し施工を行う施工方法では、騒音、振動が発生することに加え、施工にハンマを使わない工法ではハンマの準備が必要になるというデメリットがあった。
Conventionally, as a method of confirming the bearing capacity of the pile tip ground of a steel pipe pile under construction, a method using a dynamic penetration test is known. In such a dynamic penetration test, a hammer having a predetermined weight is dropped from a predetermined height on a steel pipe pile that has reached a predetermined depth, and the penetration amount and rebound amount of the steel pipe pile are measured to measure the penetration amount and rebound amount of the pile tip ground. The ultimate bearing capacity is estimated by the pile driving method.
Then, the peripheral friction force estimated from the ground conditions is added to the ultimate bearing capacity of the pile tip ground thus obtained, and the estimated bearing capacity in consideration of the safety factor and the design bearing capacity are compared. When the estimated bearing capacity exceeding the design bearing capacity is calculated, a predetermined bearing capacity can be expected. However, in the construction method in which the bearing capacity is confirmed by the above-mentioned dynamic penetration test, noise and vibration are generated, and in the construction method that does not use a hammer, it is necessary to prepare a hammer. It was.

また、先端に羽根が付いた杭を用いた回転杭工法では、回転トルク値と杭先端に作用する上載荷重と先端の羽根の仕様から先端支持力を確認する施工方法が、例えば特許文献1に記載されている。これは、貫入時の力のつり合いを用いて貫入抵抗を評価するものである。回転トルク値と圧入力の関係より支持力を確認する施工方法では、先端に羽根が取り付けてある必要があるが、羽根の加工費や取り付け費用が必要となる等の課題がある。そのため、羽根が不要であり加工コストが安く、騒音、振動が比較的小さいことから高い環境性能を有する回転圧入杭を用いた回転圧入工法が用いられることがある。 Further, in the rotary pile construction method using a pile having blades at the tip, a construction method for confirming the tip bearing capacity from the rotational torque value, the loading load acting on the pile tip, and the specifications of the blade at the tip is described in Patent Document 1, for example. Are listed. This evaluates the penetration resistance by using the balance of forces at the time of penetration. In the construction method for confirming the bearing capacity from the relationship between the rotational torque value and the pressure input, it is necessary to attach the blade to the tip, but there are problems such as the processing cost and the installation cost of the blade. Therefore, a rotary press-fitting method using a rotary press-fitting pile having high environmental performance may be used because blades are not required, the processing cost is low, and noise and vibration are relatively small.

日本国特開2000−80650号公報Japanese Patent Application Laid-Open No. 2000-80650

しかしながら、従来の回転圧入工法では、以下のような問題があった。
すなわち、回転圧入工法は低騒音・低振動かつ省スペースなどの特徴を有しており、杭体自体に圧入力とトルクを直接加えて施工することから、鋼管杭特有の理想的な工法である。ところが、回転圧入杭の支持力性能については研究例や試験例が少ないため、構造物の鉛直荷重を支える支持杭として適用するためには、都度、載荷試験を実施して支持力性能を確認する必要があるという問題があった。
さらに、施工時のトルクと施工時の圧入力により先端支持力を評価する方法はあるものの、先端の粗度に応じてトルクと摩擦力から先端支持力を推定する方法となっている。この方法の場合には、開端杭のように先端に地中の土砂が詰まって閉塞して先端支持力を発揮する条件においては、先端の土砂の詰まり具合や詰まる土砂の構成などが施工の制御や地盤の状態に応じて変化することから事前の地盤調査の結果から先端の粗度を想定することは難しく、先端支持力の推定は困難である。
However, the conventional rotary press-fitting method has the following problems.
That is, the rotary press-fitting method has features such as low noise, low vibration, and space saving, and it is an ideal method peculiar to steel pipe piles because it is constructed by directly applying pressure input and torque to the pile body itself. .. However, since there are few research examples and test examples regarding the bearing capacity performance of rotary press-fit piles, in order to apply it as a bearing pile that supports the vertical load of a structure, a loading test is conducted each time to confirm the bearing capacity performance. There was a problem that it was necessary.
Further, although there is a method of evaluating the tip bearing capacity by the torque at the time of construction and the pressure input at the time of construction, it is a method of estimating the tip bearing capacity from the torque and the frictional force according to the roughness of the tip. In the case of this method, under the condition that the tip of the pile is clogged with underground sediment and blocks to exert the tip bearing capacity, the degree of clogging of the tip and the composition of the clogged sediment control the construction. It is difficult to estimate the roughness of the tip from the results of the preliminary ground survey because it changes according to the condition of the ground and the tip, and it is difficult to estimate the tip bearing capacity.

一方、回転圧入杭の特徴として、支持層への根入れを確保することで、高い支持力が期待でき、安定して支持力が発揮されることが確認されている。
しかしながら、回転圧入工法には明確な打ち止め時における管理方法がないため、根入れ長の管理による方法しかない現状となっている。そして、杭を打設する地点の地盤は事前調査を行った場所と離れる場合があり、調査結果と同じ地盤条件になるとは限らない。一方で、支持層が調査結果よりも浅い深度にある場合などでは、既に十分な支持力が得られているにも関わらず、根入れ長を確保するために、圧入が困難な硬い地盤に時間をかけて必要以上の根入れを確保することになる。この場合には、施工時間が増え、長時間の過負荷がかかることで杭本体や圧入機等の施工機械の劣化が生じるという問題があった。
このように、施工時には荷重として施工時圧入力とトルク、変位として回転速度と貫入速度があり、制御の対象となるパラメータが多く存在することから、優れた施工管理方法の確立が求められていた。
On the other hand, as a feature of the rotary press-fitting pile, it has been confirmed that high bearing capacity can be expected and stable bearing capacity is exhibited by ensuring rooting in the support layer.
However, since the rotary press-fitting method does not have a clear control method at the time of stopping, the current situation is that there is only a method of controlling the rooting length. The ground at the point where the piles are placed may be different from the place where the preliminary survey was conducted, and the ground conditions may not be the same as the survey results. On the other hand, when the support layer is shallower than the survey results, it takes time to press-fit into hard ground to secure the penetration length even though sufficient bearing capacity has already been obtained. It will be necessary to secure more rooting than necessary. In this case, there is a problem that the construction time increases and the construction machine such as the pile body and the press-fitting machine deteriorates due to the overload for a long time.
In this way, during construction, there are pressure input and torque during construction as loads, rotation speed and penetration speed as displacement, and there are many parameters to be controlled, so establishment of an excellent construction management method has been required. ..

本発明は、上述する問題点に鑑みてなされたものであって、回転圧入工法において回転圧入杭の先端支持力を管理することで、支持層の不陸にも対応可能となり、施工品質を向上させることができる回転圧入杭の先端支持力推定方法、先端支持力管理システム、施工管理方法、及びプログラムを提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and by managing the tip bearing capacity of the rotary press-fitting pile in the rotary press-fitting method, it is possible to cope with the non-landing of the support layer and improve the construction quality. It is an object of the present invention to provide a method for estimating the tip bearing capacity of a rotary press-fitting pile, a tip bearing capacity management system, a construction management method, and a program.

本発明の概要は下記の通りである。 The outline of the present invention is as follows.

(1)本発明の第一の態様は、杭先端が解放された鋼管杭からなる回転圧入杭を地盤に回転圧入する施工時に、前記回転圧入杭の先端支持力を推定する回転圧入杭の先端支持力推定方法であって、前記施工時に測定された、圧入力Qinと、支持力推定指標Hとを入力する入力工程と、前記圧入力Qinと、前記支持力推定指標Hとを使用し、回転圧入杭における圧入力Qinと、先端支持力Ruと、支持力推定指標Hとの相関関係から定式化した(1)式で表される先端支持力推定式に基づいて、前記回転圧入杭の先端支持力Ruを推定する推定工程と、を有する。

Figure 2019186660

A:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際の勾配
B:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際のY切片
Figure 2019186660
(1) The first aspect of the present invention is the tip of a rotary press-fit pile that estimates the tip bearing capacity of the rotary press-fit pile at the time of construction in which a rotary press-fit pile made of a steel pipe pile whose tip is released is rotationally press-fitted into the ground. It is a bearing capacity estimation method, in which an input step for inputting a pressure input Qin and a bearing capacity estimation index H measured at the time of construction, the pressure input Qin, and the bearing capacity estimation index H are used. Based on the tip bearing capacity estimation formula represented by equation (1) formulated from the correlation between the press-in force Qin in the rotary press-fitting pile, the tip bearing capacity Ru, and the bearing capacity estimation index H, the rotary press-fitting pile It has an estimation step of estimating the tip bearing capacity Ru.
Figure 2019186660

A: Gradient when the approximate line of the plot points of the test results with the X-axis as the natural logarithmic of the bearing capacity estimation index H and the Y-axis as Qin / Ru is expressed by Eq. (2). The Y-intercept when the approximate line of the plot points of the test results with the natural logarithmic of the force estimation index H and the Y-axis as Qin / Ru is expressed by Eq. (2).
Figure 2019186660

(2)上記(1)に記載の回転圧入杭の先端支持力推定方法では、Dを杭外径(mm)、θを回転速度(rad/min)、wを貫入速度(mm/min)としたとき、前記支持力推定指標Hが0.5D×θ/wであってもよい。
(3)上記(2)に記載の回転圧入杭の先端支持力推定方法では、前記回転圧入杭の周面摩擦による影響である修正圧入力Qin’を計測し、下記(3a)式で求められる補正係数αにより前記先端支持力推定式を補正した修正先端支持力推定式に基づいて前記先端支持力Ruが推定されてもよい。

Figure 2019186660

(4)上記(2)又は(3)に記載の回転圧入杭の先端支持力推定方法では、前記施工を行う前に、複数の回転圧入杭を複数個所の地盤に貫入させ、貫入毎の前記回転圧入杭の圧入力Qin、貫入速度w、及び回転速度θを求め、前記圧入力Qin、前記貫入速度w、及び、前記回転速θと、先端支持力Ruとの相関関係から前記先端支持力推定式を予め得てもよい。(2) In the method for estimating the tip bearing capacity of a rotary press-fit pile according to (1) above, D is the pile outer diameter (mm), θ is the rotational speed (rad / min), and w is the penetration speed (mm / min). Then, the bearing capacity estimation index H may be 0.5D × θ / w.
(3) In the method for estimating the tip bearing capacity of the rotational press-fitting pile according to (2) above, the corrected press-fitting input Qin', which is the effect of the peripheral friction of the rotary press-fitting pile, is measured and obtained by the following equation (3a). The tip bearing capacity Ru may be estimated based on the modified tip bearing capacity estimation formula in which the tip bearing capacity estimation formula is corrected by the correction coefficient α.
Figure 2019186660

(4) In the method for estimating the tip bearing capacity of the rotary press-fit pile according to the above (2) or (3), a plurality of rotary press-fit piles are penetrated into the ground at a plurality of places before the construction is performed, and the above-mentioned for each penetration. The pressure input Qin, penetration speed w, and rotation speed θ of the rotary press-fit pile are obtained, and the tip bearing force is obtained from the correlation between the pressure input Qin, the penetration speed w, and the rotation speed θ and the tip bearing force Ru. The estimation formula may be obtained in advance.

(5)上記(1)に記載の回転圧入杭の先端支持力推定方法では、Tを回転トルク(kN・mm)、Dを杭外径(mm)としたとき、前記支持力推定指標HがT/0.5Dであってもよい。
(6)上記(5)に記載の回転圧入杭の先端支持力推定方法では、前記回転圧入杭の周面摩擦による影響である修正回転トルクTsの計測値と、下記(3b−1)式で求められる補正係数β1と、下記(3b−2)式で求められる補正係数β2とにより、前記先端支持力推定式を補正した修正先端支持力推定式に基づいて前記先端支持力Ruが推定されてもよい。

Figure 2019186660

Figure 2019186660

(7)上記(5)又は(6)に記載の回転圧入杭の先端支持力推定方法では、前記施工を行う前に、複数の回転圧入杭を複数個所の地盤に貫入させ、貫入毎の前記回転圧入杭の圧入力Qin、回転トルクTを求め、前記圧入力Qin及び前記回転トルクTと、先端支持力Ruとの相関関係から前記先端支持力推定式を予め得てもよい。(5) In the method for estimating the tip bearing capacity of a rotary press-fit pile according to (1) above, when T is a rotational torque (kN · mm) and D is a pile outer diameter (mm), the bearing capacity estimation index H is It may be T / 0.5D.
(6) In the method for estimating the tip bearing capacity of the rotational press-fitting pile according to (5) above, the measured value of the corrected rotational torque Ts, which is the effect of the peripheral friction of the rotary press-fitting pile, and the following equation (3b-1) are used. The tip bearing capacity Ru is estimated based on the modified tip bearing capacity estimation formula obtained by correcting the tip bearing capacity estimation formula by the obtained correction coefficient β1 and the correction coefficient β2 obtained by the following equation (3b-2). May be good.
Figure 2019186660

Figure 2019186660

(7) In the method for estimating the tip bearing capacity of the rotary press-fit pile according to the above (5) or (6), a plurality of rotary press-fit piles are penetrated into the ground at a plurality of places before the construction is performed, and the above-mentioned for each penetration. The pressure input Qin and the rotational torque T of the rotational press-fitting pile may be obtained, and the tip bearing force estimation formula may be obtained in advance from the correlation between the pressure input Qin and the rotational torque T and the tip bearing force Ru.

(8)本発明の第二の態様は、上記(1)〜(7)のいずれか1項に記載の回転圧入杭の先端支持力推定方法を使用して前記回転圧入杭の先端支持力を管理する先端支持力管理システムであって、前記先端支持力推定式が格納された記憶部と、前記記憶部に格納されている前記先端支持力推定式に基づいて前記先端支持力Ruを算出する演算処理部と、を有する。
(9)上記(8)に記載の先端支持力管理システムでは、前記演算処理部において、算出した前記先端支持力Ruに応じて前記回転圧入杭の貫入を継続するか否かを判定してもよい。
(10)上記(8)に記載の先端支持力管理システムでは、前記記憶部には、施工する回転圧入杭に必要な設計先端支持力Raが格納され、前記演算処理部では、算出された前記先端支持力Ruが前記設計先端支持力Ra以上であるか否かを判定してもよい。
(11)上記(8)〜(10)のいずれか1項に記載の先端支持力管理システムは、前記演算処理部で処理した結果を表示する表示部を更に有してもよい。
(8) In the second aspect of the present invention, the tip bearing capacity of the rotary press-fitting pile is determined by using the method for estimating the tip bearing capacity of the rotary press-fitting pile according to any one of (1) to (7) above. In the tip bearing capacity management system to be managed, the tip bearing capacity Ru is calculated based on the storage unit in which the tip bearing capacity estimation formula is stored and the tip bearing capacity estimation formula stored in the storage unit. It has an arithmetic processing unit.
(9) In the tip bearing capacity management system according to (8) above, even if the arithmetic processing unit determines whether or not to continue the penetration of the rotary press-fitting pile according to the calculated tip bearing capacity Ru. Good.
(10) In the tip bearing capacity management system according to (8) above, the design tip bearing capacity Ra required for the rotary press-fitting pile to be constructed is stored in the storage unit, and the calculation processing unit calculates the above. It may be determined whether or not the tip bearing force Ru is equal to or greater than the design tip bearing force Ra.
(11) The tip bearing capacity management system according to any one of (8) to (10) above may further have a display unit that displays the result of processing by the arithmetic processing unit.

(12)本発明の第三の態様は、上記(1)〜(7)のいずれか1項に記載の回転圧入杭の先端支持力推定方法を使用して前記回転圧入杭の施工を管理する施工管理方法であって、推定された前記先端支持力Ruに応じて前記回転圧入杭の貫入を継続するか否かを判定する工程を更に有する。
(13)上記(12)に記載の施工管理方法では、前記先端支持力推定式で算出された前記先端支持力Ruが、施工する前記回転圧入杭に必要な設計先端支持力Ra以上である場合に前記回転圧入杭の貫入を停止し、前記設計先端支持力Raより小さい場合に前記回転圧入杭の貫入を継続するようにしてもよい。
(14)上記(12)又は(13)に記載の施工管理方法は、前記先端支持力Ruを算出する工程では、前記回転圧入杭の周面摩擦による影響である修正圧入力Qin’又は修正回転トルクTsの計測値を用いて、下記(3a)式で求められる補正係数αにより、又は、下記(3b−1)式で求められる補正係数β1と、下記(3b−2)式で求められる補正係数β2とにより補正した修正先端支持力推定式に基づいて前記先端支持力Ruを算出してもよい。

Figure 2019186660

Figure 2019186660

Figure 2019186660
(12) A third aspect of the present invention manages the construction of the rotary press-fit pile by using the method for estimating the tip bearing capacity of the rotary press-fit pile according to any one of (1) to (7) above. It is a construction management method, and further includes a step of determining whether or not to continue the penetration of the rotary press-fit pile according to the estimated tip bearing capacity Ru.
(13) In the construction management method described in (12) above, when the tip bearing force Ru calculated by the tip bearing force estimation formula is equal to or greater than the design tip bearing force Ra required for the rotational press-fitting pile to be constructed. The penetration of the rotary press-fit pile may be stopped, and the penetration of the rotary press-fit pile may be continued when the design tip bearing capacity Ra is smaller than the design tip bearing capacity Ra.
(14) In the construction management method according to (12) or (13) above, in the step of calculating the tip bearing capacity Ru, the correction pressure input Qin'or the correction rotation, which is the effect of the peripheral friction of the rotation press-fitting pile, is used. Using the measured value of torque Ts, the correction coefficient α obtained by the following formula (3a), or the correction coefficient β1 obtained by the following formula (3b-1) and the correction obtained by the following formula (3b-2) The tip bearing capacity Ru may be calculated based on the modified tip bearing capacity estimation formula corrected by the coefficient β2.
Figure 2019186660

Figure 2019186660

Figure 2019186660

(15)本発明の第四の態様は、上記(1)〜(7)のいずれか一項に記載の回転圧入杭の先端支持力推定方法をコンピュータに実行させるプログラムである。
(16)本発明の第五の態様は、上記(12)〜(14)のいずれか一項に記載の施工管理方法をコンピュータに実行させるプログラムである。
(15) A fourth aspect of the present invention is a program for causing a computer to execute the method for estimating the tip bearing capacity of a rotary press-fit pile according to any one of (1) to (7) above.
(16) A fifth aspect of the present invention is a program for causing a computer to execute the construction management method according to any one of (12) to (14) above.

本発明によれば、回転圧入工法における回転圧入杭の先端支持力を的確に推定することで、支持層の不陸にも対応可能となり、施工品質を向上させることができる。 According to the present invention, by accurately estimating the tip bearing capacity of the rotary press-fitting pile in the rotary press-fitting method, it is possible to cope with the non-landing of the support layer, and the construction quality can be improved.

回転圧入杭を地盤に圧入する際の状態を示す概略図である。It is a schematic diagram which shows the state at the time of press-fitting a rotary press-fitting pile into the ground. 先端支持力推定方法に使用する三点式杭打ち機による杭回転圧入機の構成を示す側面図である。It is a side view which shows the structure of the pile rotary press-fitting machine by the three-point type pile driver used for the tip bearing capacity estimation method. 先端支持力推定方法に使用する全周旋回式圧入機による杭回転圧入機の構成を示す側面図である。It is a side view which shows the structure of the pile rotary press-fitting machine by the all-around swirl type press-fitting machine used for the tip bearing capacity estimation method. 先端支持力管理システムの構成を示すブロック図である。It is a block diagram which shows the structure of the advanced bearing capacity management system. 施工試験後に載荷試験を実施した回転圧入杭のQin/Ruと、支持力推定指標H(=0.5D×θ/w)の自然対数との関係を示す図である。It is a figure which shows the relationship between the Qin / Ru of the rotary press-fitting pile which carried out the loading test after the construction test, and the natural logarithm of the bearing capacity estimation index H (= 0.5D × θ / w). 先端支持力推定式の定式化の一例を示す図である。It is a figure which shows an example of the formulation of the tip bearing capacity estimation formula. ビット付鋼管について先端支持力推定式の定式化の例を示す図である。It is a figure which shows the example of the formulation of the tip bearing capacity estimation formula for the steel pipe with a bit. ビット無鋼管について先端支持力推定式の定式化の例を示す図である。It is a figure which shows the example of the formulation of the tip bearing capacity estimation formula for a bit steel pipe. 施工試験後に載荷試験を実施した回転圧入杭のQin/Ruと、支持力推定指標H(=T/0.5D)の自然対数との関係を示す図である。It is a figure which shows the relationship between the Qin / Ru of the rotary press-fitting pile which carried out the loading test after the construction test, and the natural logarithm of the bearing capacity estimation index H (= T / 0.5D). 先端支持力推定式の定式化の一例を示す図である。It is a figure which shows an example of the formulation of the tip bearing capacity estimation formula. 先端支持力推定方法を使用した回転圧入杭の施工管理方法によるステップを示すフローチャートである。It is a flowchart which shows the step by the construction management method of the rotary press-fitting pile using the tip bearing capacity estimation method. 他の先端支持力推定方法を使用した回転圧入杭の施工管理方法によるステップを示すフローチャートである。It is a flowchart which shows the step by the construction management method of the rotary press-fitting pile using another tip bearing capacity estimation method. 実施例を説明する図であって、支持層への根入れ比と圧入力との関係を示すグラフである。It is a figure explaining the Example, and is the graph which shows the relationship between the embedding ratio to a support layer, and a pressure input. 実施例を説明する図であって、支持層への根入れ比と回転速度との関係を示すグラフである。It is a figure explaining an Example, and is a graph which shows the relationship between the rooting ratio to a support layer, and a rotation speed. 実施例を説明する図であって、支持層への根入れ比と貫入速度との関係を示すグラフである。It is a figure explaining an Example, and is a graph which shows the relationship between the penetration ratio to the support layer, and the penetration speed. 実施例を説明する図であって、支持層への根入れ比と先端支持力との関係を示すグラフである。It is a figure explaining the Example, and is the graph which shows the relationship between the embedding ratio to a support layer, and the tip bearing capacity. 実施例を説明する図であって、支持層への根入れ比と圧入力との関係を示すグラフである。It is a figure explaining the Example, and is the graph which shows the relationship between the embedding ratio to a support layer, and a pressure input. 実施例を説明する図であって、支持層への根入れ比と回転トルクとの関係を示すグラフである。It is a figure explaining the Example, and is the graph which shows the relationship between the embedding ratio to a support layer, and a rotational torque. 実施例を説明する図であって、支持層への根入れ比と先端支持力との関係を示すグラフである。It is a figure explaining the Example, and is the graph which shows the relationship between the embedding ratio to a support layer, and the tip bearing capacity.

図1は、先端部1aが解放された鋼管杭からなる回転圧入杭1を地盤に圧入する際の状態を示す概略図である。図1に示すように、回転圧入杭1は、軸周り方向に回転トルクT(kN・mm)を付与しつつ、軸方向に圧入力Qin(kN)を付与することにより、所定の回転ピッチpで地盤に圧入される。
圧入力Qinは、施工中に施工機械で地上部に出ている杭部分を把持して杭頭部から杭先端部に向けて付与する荷重である。
回転ピッチpは、回転圧入杭の貫入速度w(mm/min)に対する回転速度θ(rad/min)を、杭外径D(mm)の1/2である杭の半径を用いて無次元化した割合であって、p=0.5D×θ/wで表される。尚、貫入速度wは、回転圧入杭1が1分当たりに地中に挿入される速度であり、回転速度θは、回転圧入杭1が1分当たりに回転する角度である。
FIG. 1 is a schematic view showing a state when a rotary press-fitting pile 1 made of a steel pipe pile whose tip portion 1a is released is press-fitted into the ground. As shown in FIG. 1, the rotary press-fitting pile 1 applies a rotational torque T (kN · mm) in the axial direction and a press input Qin (kN) in the axial direction to provide a predetermined rotational pitch p. Is press-fitted into the ground.
The pressure input Qin is a load applied from the pile head to the pile tip by grasping the pile portion protruding above the ground with a construction machine during construction.
The rotation pitch p is such that the rotation speed θ (rad / min) with respect to the penetration speed w (mm / min) of the rotation press-fit pile is made dimensionless by using the radius of the pile which is 1/2 of the pile outer diameter D (mm). It is represented by p = 0.5D × θ / w. The penetration speed w is the speed at which the rotary press-fit pile 1 is inserted into the ground per minute, and the rotational speed θ is the angle at which the rotary press-fit pile 1 rotates per minute.

先端支持力Ruとは、杭の先端近傍で発揮される支持力である。先端部1aが解放された鋼管杭(開端杭)においては、管内に取り込んだ土砂が閉塞して先端支持力Ruを発揮する。従って、先端支持力Ruは、回転圧入杭1の先端部1aだけでなく、回転圧入杭1の先端部1aから杭外径Dの1倍〜5倍程度上方までの範囲Aで発揮される、杭軸の杭頭1bから杭先端方向に向けた抵抗である。 Tip bearing capacity Ru is the bearing capacity exerted near the tip of the pile. In the steel pipe pile (open end pile) in which the tip portion 1a is released, the earth and sand taken into the pipe is blocked to exert the tip bearing capacity Ru. Therefore, the tip bearing force Ru is exhibited not only in the tip 1a of the rotary press-fit pile 1 but also in the range A from the tip 1a of the rotary press-fit pile 1 to about 1 to 5 times above the pile outer diameter D. It is a resistance from the pile head 1b of the pile shaft toward the tip of the pile.

回転圧入杭1は、図2及び図3に示すような杭回転圧入機2により回転トルクTと圧入力Qinとを付与することで地盤に回転圧入される。 The rotary press-fitting pile 1 is rotationally press-fitted into the ground by applying a rotational torque T and a press-fitting Qin by a pile rotary press-fitting machine 2 as shown in FIGS. 2 and 3.

尚、回転圧入杭1は、先端部1aに掘削用の掘削ビットが設けられたビット付鋼管杭であってもよく、先端部1aに掘削用の掘削ビットが設けられていないビット無鋼管杭であってもよい。
掘削ビットは、支持力を得るために取り付けられる羽根とは異なり、施工性を向上するための構造である。本願において、掘削ビットが設けられている場合、掘削ビットの鋼管杭外面からの外側突出長は、20mm以下である。一方、鋼管杭の先端には、軸方向長さ300mm程度のフリクションカッターが設けられてもよい。フリクションカッターは二重管構造を有し、鋼管杭の外面から20mm以下で突出している。ビットが、このフリクションカッター上に設けられた場合、フリクションカッター外面から20mm以下で突出し得るため、鋼管外面からは20+20=40mm以下で突出することとなる。尚、掘削ビットの内側突出長も、20mm以下であることが好ましい。
The rotary press-fitting pile 1 may be a steel pipe pile with a bit having an excavation bit provided at the tip 1a, or a bitless steel pipe pile having no excavation bit provided at the tip 1a. There may be.
The excavation bit has a structure for improving workability, unlike blades that are attached to obtain bearing capacity. In the present application, when the excavation bit is provided, the outward protrusion length of the excavation bit from the outer surface of the steel pipe pile is 20 mm or less. On the other hand, a friction cutter having an axial length of about 300 mm may be provided at the tip of the steel pipe pile. The friction cutter has a double pipe structure and protrudes from the outer surface of the steel pipe pile by 20 mm or less. When the bit is provided on the friction cutter, it can protrude from the outer surface of the friction cutter by 20 mm or less, so that it protrudes from the outer surface of the steel pipe by 20 + 20 = 40 mm or less. The inward protrusion length of the excavation bit is also preferably 20 mm or less.

図2に示すように、杭回転圧入機2の一例として、リーダー24Aを備えた自走式の圧入機本体24と、リーダー24Aに設けられる把持部24Bを回転させるための駆動モーター25と、を有する三点式杭打ち機2Aを用いることができる。
また、図3に示すように、杭回転圧入機2の他の例として、把持部26A及びスラストジャッキ26Bを備えた据え置き式の圧入機本体26と、把持部26Aを回転させるための駆動モーター27と、を有する全周旋回式圧入機2B(2)を使用しても良い。
なお、杭打設深度(杭先端位置)はリーダーに設けられるストロークセンサーやエンコーダー等の一般的な計測装置により計測するよう構成されている。
As shown in FIG. 2, as an example of the pile rotary press-fitting machine 2, a self-propelled press-fitting machine main body 24 provided with a leader 24A and a drive motor 25 for rotating a grip portion 24B provided on the leader 24A are provided. A three-point pile driver 2A can be used.
Further, as shown in FIG. 3, as another example of the pile rotary press-fitting machine 2, a stationary press-fitting machine main body 26 having a grip portion 26A and a thrust jack 26B and a drive motor 27 for rotating the grip portion 26A The all-around swivel press-fitting machine 2B (2) having the above may be used.
The pile driving depth (pile tip position) is configured to be measured by a general measuring device such as a stroke sensor or an encoder provided in the reader.

本発明者らは、このようにして施工される回転圧入杭の先端支持力Ruを的確に推定する方法について鋭意検討した。
その結果、回転圧入杭を地盤に回転圧入する施工時に、圧入力Qinと、支持力推定指標Hの構成因子(回転速度・貫入速度、又は、回転トルク)とを測定し、回転圧入杭における圧入力Qinと、先端支持力Ruと、支持力推定指標Hとの相関関係から定式化した下記(1)式で表される先端支持力推定式に基づいて、回転圧入杭の先端支持力Ruを推定することが有効であることを見出した。

Figure 2019186660

A:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際の勾配
B:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際のY切片
Figure 2019186660
The present inventors have diligently studied a method for accurately estimating the tip bearing capacity Ru of the rotary press-fitting pile constructed in this way.
As a result, when the rotary press-fitting pile is rotationally press-fitted into the ground, the press-fitting Qin and the constituent factors (rotational speed / penetration speed or rotational torque) of the bearing capacity estimation index H are measured, and the pressure in the rotary press-fitting pile is measured. Based on the tip bearing force estimation formula represented by the following equation (1) formulated from the correlation between the input Qin, the tip bearing force Ru, and the bearing force estimation index H, the tip bearing force Ru of the rotary press-fit pile is calculated. We found that it was effective to estimate.
Figure 2019186660

A: Gradient when the approximate line of the plot points of the test results with the X-axis as the natural logarithmic of the bearing capacity estimation index H and the Y-axis as Qin / Ru is expressed by Eq. (2). The Y-intercept when the approximate line of the plot points of the test results with the natural logarithmic of the force estimation index H and the Y-axis as Qin / Ru is expressed by Eq. (2).
Figure 2019186660

本発明は上述の新たな知見に基づきなされたものである。以下、本発明を各実施形態に基づき図面を参照しながら詳細に説明する。 The present invention has been made based on the above-mentioned new findings. Hereinafter, the present invention will be described in detail based on each embodiment with reference to the drawings.

(第一実施形態)
以下、本発明の第一実施形態に係る回転圧入杭の先端支持力推定方法について説明する。
本実施形態に係る先端支持力推定方法は、回転圧入杭を地盤に回転圧入する施工時の回転速度θと貫入速度wとに基づいて回転圧入杭の先端支持力を推定するものであり、入力工程と推定工程とを有する。
すなわち、本実施形態に係る先端支持力推定方法においては、回転圧入杭の外径をD(mm)、回転速度をθ(rad/min)、貫入速度をw(mm/min)とした場合に、0.5D×θ/wで示される値(回転ピッチ)を支持力推定指標Hとする。
(First Embodiment)
Hereinafter, a method for estimating the tip bearing capacity of the rotary press-fit pile according to the first embodiment of the present invention will be described.
The tip bearing capacity estimation method according to the present embodiment estimates the tip bearing capacity of the rotary press-fit pile based on the rotational speed θ and the penetration speed w at the time of rotational press-fitting the rotary press-fit pile into the ground. It has a process and an estimation process.
That is, in the tip bearing capacity estimation method according to the present embodiment, when the outer diameter of the rotary press-fitting pile is D (mm), the rotational speed is θ (rad / min), and the penetration speed is w (mm / min). , The value (rotational pitch) represented by 0.5D × θ / w is used as the bearing capacity estimation index H.

まず、入力工程として、回転圧入杭1を地盤に回転圧入する施工時に、圧入力Qinと、上記支持力推定指標Hの構成因子である回転速度θと貫入速度wとを測定してこれらの情報をコンピュータに入力する。 First, as an input step, when the rotary press-fitting pile 1 is rotationally press-fitted into the ground, the press-fitting Qin, the rotational speed θ and the penetration speed w, which are constituent factors of the bearing capacity estimation index H, are measured and these information are obtained. Enter the computer.

次に、推定工程として、入力工程で得られた圧入力Qinと、支持力推定指標Hとを使用し、回転圧入杭における圧入力Qinと、先端支持力Ruと、支持力推定指標Hとの相関関係から定式化した下記(1a)式で表される先端支持力推定式に基づいて、回転圧入杭1の先端支持力Ruを推定する。

Figure 2019186660
Next, as the estimation process, the pressure input Qin obtained in the input process and the bearing capacity estimation index H are used, and the pressure input Qin in the rotary press-fitting pile, the tip bearing capacity Ru, and the bearing capacity estimation index H are used. The tip bearing capacity Ru of the rotary press-fit pile 1 is estimated based on the tip bearing capacity estimation formula represented by the following equation (1a) formulated from the correlation.
Figure 2019186660

A1は、X軸を支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を下記(2a)式で表した際の勾配である。
B1は、X軸を支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を下記(2a)式で表した際のY切片である。
プロット点の近似線は、例えば、最小二乗法による対数近似線を用いればよい。
A1 is a gradient when the approximate line of the plot points of the test results with the X-axis as the natural logarithm of the bearing capacity estimation index H and the Y-axis as Qin / Ru is expressed by the following equation (2a).
B1 is a Y-intercept when the approximate line of the plot points of the test results with the X-axis as the natural logarithm of the bearing capacity estimation index H and the Y-axis as Qin / Ru is expressed by the following equation (2a).
As the approximation line of the plot points, for example, a logarithmic approximation line by the least squares method may be used.

Figure 2019186660
Figure 2019186660

上記(1a)式で表される先端支持力推定式は、後述するような施工試験及び載荷試験によって定式化された式である。圧入力Qin、貫入速度w、回転速度θは、杭回転圧入装置2に設けられた計測部によって連続的に計測される。 The tip bearing capacity estimation formula represented by the above formula (1a) is a formula formulated by a construction test and a loading test as described later. The press-in input Qin, the penetration speed w, and the rotation speed θ are continuously measured by the measuring unit provided in the pile rotation press-fitting device 2.

本実施形態に係る先端支持力推定方法によれば、回転圧入杭1を回転圧入する施工時に、圧入力Qin、貫入速度w、及び回転速度θの測定情報を連続的又は間欠的に計測し、計測された測定情報から上述の(1a)式で表される先端支持力推定式に基づいて先端支持力Ruを算出することができる。
すなわち、施工時の圧入力Qin、回転速度θ、貫入速度w、及び先端支持力Ruの間に高い相関関係があることに基づいて定式化した先端支持力推定式を用いることで、容易にかつ精度よく回転圧入によって施工される回転圧入杭の先端支持力Ruを推定できる。従って、推定される先端支持力Ruに応じて回転圧入杭の貫入を継続するか否かを判定することができる。
また、後述するように、このような先端支持力Ruを推定することによる施工管理方法を採用することで、十分な先端支持力Ruが発揮できる状態で回転圧入杭を打ち止めすることができる。
したがって、支持層までの深度によって打ち止めを管理する場合のように、支持層に対する根入れ長の過不足を防止でき、支持層の不陸にも対応することが可能となる。
According to the tip bearing capacity estimation method according to the present embodiment, the measurement information of the press-fitting Qin, the penetration speed w, and the rotary speed θ is continuously or intermittently measured at the time of performing the rotary press-fitting of the rotary press-fit pile 1. From the measured measurement information, the tip bearing capacity Ru can be calculated based on the tip bearing capacity estimation formula represented by the above equation (1a).
That is, it is easy and easy to use the tip bearing capacity estimation formula formulated based on the high correlation between the pressure input Qin, the rotation speed θ, the penetration speed w, and the tip bearing capacity Ru at the time of construction. It is possible to accurately estimate the tip bearing capacity Ru of the rotary press-fitting pile constructed by rotary press-fitting. Therefore, it is possible to determine whether or not to continue the penetration of the rotary press-fit pile according to the estimated tip bearing capacity Ru.
Further, as will be described later, by adopting the construction management method by estimating the tip bearing force Ru, the rotary press-fitting pile can be stopped in a state where a sufficient tip bearing force Ru can be exhibited.
Therefore, it is possible to prevent excess or deficiency of the rooting length with respect to the support layer as in the case of managing the stoppage by the depth to the support layer, and it is possible to cope with the non-landing of the support layer.

ここで、上述の(1a)式で表される先端支持力推定式を定式化するための施工試験及び載荷試験について説明する。 Here, a construction test and a loading test for formulating the tip bearing capacity estimation formula represented by the above formula (1a) will be described.

施工試験では、図1に示すように、実際の地盤や人工的に作成した地盤に回転圧入杭1を回転圧入し、回転圧入施工を停止する予め設定された打ち止め時の深度(打ち止め深度Z0)よりも杭外径Dの2倍程度上方の位置までの区間において、回転速度θを一定値に保持したまま貫入させる。
圧入力Qinは、地盤の抵抗の変化により多少の上下があるものの、概ね一定値になるように制御される。ここで、打ち止め深度Z0は、施工試験で用いる杭外径Dと地盤条件に基づいて設計される先端支持力が得られる深度である。
貫入速度w及び回転速度θは、打ち止め深度Z0から上方に杭外径Dの0.1倍程度の長さ区間を打ち止め直前区間Kとして、この区間Kに回転圧入杭1の先端部1aが到達したときに測定される平均値を採用する。
In the construction test, as shown in FIG. 1, the rotary press-fitting pile 1 is rotationally press-fitted into the actual ground or the artificially created ground to stop the rotary press-fitting construction (stopping depth Z0) at the time of stopping. In the section up to a position about twice above the outer diameter D of the pile, the rotation speed θ is maintained at a constant value and penetrated.
The pressure input Qin is controlled so as to have a substantially constant value, although there is some ups and downs due to changes in the resistance of the ground. Here, the stopping depth Z0 is a depth at which the tip bearing capacity designed based on the pile outer diameter D and the ground conditions used in the construction test can be obtained.
The penetration speed w and the rotation speed θ are such that a section having a length of about 0.1 times the outer diameter D of the pile upward from the stop depth Z0 is set as a section K immediately before the stop, and the tip portion 1a of the rotary press-fit pile 1 reaches this section K. Adopt the average value measured when

載荷試験では、試験用の回転圧入杭を所定の深度で打ち止めした後、鉛直方向から荷重により載荷を行う。そして、深度方向に複数断面の杭の応力分布を計測して周面摩擦力と先端支持力Ruを分離して測定する。尚、載荷試験は、例えば、地盤工学会から発刊されている「杭の鉛直載荷試験方法・同解説2002」に示される、「杭の押込み試験」、「杭の急速載荷試験」、「杭の衝撃載荷試験」に従って実施すればよい。 In the loading test, the rotary press-fitting pile for the test is stopped at a predetermined depth, and then the pile is loaded from the vertical direction by a load. Then, the stress distribution of the pile having a plurality of cross sections is measured in the depth direction, and the peripheral friction force and the tip bearing force Ru are separately measured. The loading test is, for example, the "pile pushing test", "pile rapid loading test", and "pile loading test" shown in "Pile Vertical Load Test Method / Explanation 2002" published by the Japanese Geotechnical Society. It may be carried out according to the "impact loading test".

表1に、具体例としての試験1〜25について、掘削ビットの有無、杭外径(mm)、支持層地盤の種類(砂層/礫層)、圧入力Qin(kN)、回転速度θ(rad/min)、貫入速度w(mm/min)、回転ピッチ0.5D×θ/w(−)、先端支持力Ru(kN)、及びQin/Ru(−)を示す。
試験1〜14では、掘削ビットを有しないビット無鋼管杭を用いた。
試験15〜25では、先端部において周方向に均等に四つの掘削ビットが設けられたビット付鋼管杭を用いた。
Table 1 shows the presence / absence of excavation bits, pile outer diameter (mm), support layer ground type (sand layer / gravel layer), pressure input Qin (kN), and rotation speed θ (rad) for tests 1 to 25 as specific examples. / Min), penetration speed w (mm / min), rotation pitch 0.5D × θ / w (−), tip bearing force Ru (kN), and Qin / Ru (−).
In tests 1 to 14, bitless steel pipe piles having no excavation bit were used.
In tests 15 to 25, a steel pipe pile with a bit was used in which four excavation bits were evenly provided at the tip in the circumferential direction.

Figure 2019186660
Figure 2019186660

試験1〜25について、X軸を支持力推定指標H(=0.5D×θ/w)の自然対数とし、Y軸をQin/Ruとしてプロットしたグラフを図5に示す。このグラフは、施工試験後に載荷試験を実施した回転圧入杭のQin/Ruと、支持力推定指標H(=0.5D×θ/w)の自然対数との関係を示したものである。 FIG. 5 shows a graph in which the X-axis is the natural logarithm of the bearing capacity estimation index H (= 0.5D × θ / w) and the Y-axis is Qin / Ru for tests 1 to 25. This graph shows the relationship between the Qin / Ru of the rotary press-fit pile that was subjected to the loading test after the construction test and the natural logarithm of the bearing capacity estimation index H (= 0.5D × θ / w).

図5から、各試験の試験結果のプロットについて最小二乗法による近似線を算出すると、図6に示すように下記(2a−1)式が得られる。

Figure 2019186660
When the approximation line by the least squares method is calculated for the plot of the test results of each test from FIG. 5, the following equation (2a-1) is obtained as shown in FIG.
Figure 2019186660

そして、この(2a−1)式に基づいて、上記(1)式に対応する先端支持力推定式である(1a−1)式が導かれる。
実構造物の設計では、先端支持力Ruの設計式に対して十分な安全率が考慮されているため、打ち止め管理式においてもばらつきは許容される。従って、全データの近似式から求めた(1a−1)式を用いることは妥当である。
Then, based on this equation (2a-1), the equation (1a-1), which is the tip bearing capacity estimation equation corresponding to the above equation (1), is derived.
In the design of the actual structure, a sufficient safety factor is taken into consideration for the design formula of the tip bearing capacity Ru, so that variation is allowed even in the stop control formula. Therefore, it is appropriate to use the formula (1a-1) obtained from the approximate formula of all the data.

Figure 2019186660
Figure 2019186660

このような相関性があることを確認したことにより、施工時に杭回転圧入機2から刻々と測定される圧入力Qin、貫入速度w、回転速度θのデータから先端支持力推定式である(1a−1)式を使用して先端支持力Ruを推定することができる。 By confirming that there is such a correlation, the tip bearing capacity estimation formula is obtained from the data of the pressure input Qin, the penetration speed w, and the rotation speed θ measured every moment from the pile rotation press-fitting machine 2 at the time of construction (1a). The tip bearing capacity Ru can be estimated using Eq. -1).

尚、許容される安全率が低い構造物について打ち止め管理を行う場合には、図6に示すように、(2a−1)式の近似線に平行で、かつQin/Ruの点の最大値を含む上限を示す近似線である(2a−1’)式を算出し、これに基づいて得られる(1a−1’)式を先端支持力推定式として用いてもよい。 When stopping and managing a structure having a low allowable safety factor, as shown in FIG. 6, the maximum value of the Qin / Ru points parallel to the approximate line of Eq. (2a-1) is set. The equation (2a-1'), which is an approximate line indicating the upper limit to be included, may be calculated, and the equation (1a-1') obtained based on the equation may be used as the tip bearing capacity estimation equation.

Figure 2019186660
Figure 2019186660

Figure 2019186660
Figure 2019186660

この場合、載荷試験による試験結果は、図6において(2a−1’)式で示される直線よりも下方の領域に包含されているため、より信頼性を高めることができる。 In this case, since the test result by the loading test is included in the region below the straight line represented by the equation (2a-1') in FIG. 6, the reliability can be further improved.

また、上述した先端支持力推定式は、試験1〜25のプロット点に基づいて導出された推定式であるが、実際に施工する圧入鋼管杭のビット有無に合わせた試験結果のみを用いて導出した推定式を用いることで、推定の精度を高めることができる。
すなわち、ビット有りの鋼管杭について支持力を推定する場合には、図7Aに示すように、ビット有りの試験について、上記(2a−1)式と同様に(2a−1−1)式を求め、これに基づき得られる(1a−1−1)式を支持力推定式として用いてもよい。

Figure 2019186660

Figure 2019186660

また、同様に、ビット無しの鋼管杭について支持力を推定する場合には、図7Bに示すように、ビット無しの試験について、上記(2a−1)式と同様に(2a−1−2)式の近似線を求め、これに基づき得られる(1a−1−2)式を支持力推定式として用いてもよい。
Figure 2019186660

Figure 2019186660
The above-mentioned tip bearing capacity estimation formula is an estimation formula derived based on the plot points of tests 1 to 25, but is derived using only the test results according to the presence or absence of bits of the press-fit steel pipe pile to be actually constructed. The accuracy of estimation can be improved by using the estimation formula.
That is, when estimating the bearing capacity of a steel pipe pile with a bit, as shown in FIG. 7A, for the test with a bit, the formula (2a-1-1) is obtained in the same manner as the above formula (2a-1). , The equation (1a-1-1) obtained based on this may be used as the bearing capacity estimation equation.
Figure 2019186660

Figure 2019186660

Similarly, when estimating the bearing capacity of a steel pipe pile without a bit, as shown in FIG. 7B, the test without a bit is performed in the same manner as in the above equation (2a-1) (2a-1-2). An approximate line of the equation may be obtained, and the equation (1a-1-2) obtained based on the approximate line may be used as the bearing capacity estimation equation.
Figure 2019186660

Figure 2019186660

尚、上記の例では、プロットの最小二乗法による近似線である(2a−1)式から平行移動した近似線である(2a−1’)式を導き出して先端支持力推定式である(1a−1’)式を求めた。しかし、近似線はプロットを最小二乗法以外の近似法を用いて得てもよい。
また、上記(2a−1’)式で示す近似線は、最小二乗法による近似線の傾きを厳密に一定とした平行移動により得られたものでなくてもよく、例えば、対象とするプロット点を包絡するような直線又は曲線であってもよい。
In the above example, the tip bearing capacity estimation formula (1a) is obtained by deriving the translation (2a-1') equation from the approximation line (2a-1) which is the approximation line by the least squares method of the plot. -1') Equation was obtained. However, the approximation line may be obtained by using an approximation method other than the least squares method.
Further, the approximate line shown by the above equation (2a-1') does not have to be obtained by translation in which the slope of the approximate line by the least squares method is strictly constant. For example, the plot point to be targeted. It may be a straight line or a curved line that wraps around.

また、上述した先端支持力推定式である(1a)式において、杭長が長い場合や、支持層より上部に厚い粘土層が存在する場合などにはより精緻な先端支持力Ruの推定を行うために、支持層より上部での杭周面の影響を除く補正を行うようにしてもよい。
その際には、回転圧入杭1を支持層の上部で一旦引き上げ、杭先端に空隙を生じさせて先端の抵抗が発生しない条件で、その際の回転速度θを一定にして、貫入速度wを変化させて貫入させたときの圧入力、すなわち杭周面の影響(周面摩擦力が起因となる押し込み方向の抵抗力)である修正圧入力Qin’を計測する。このとき、貫入速度wを変化させる範囲は、機械の能力から決まる最大の速度からほぼゼロまでの範囲であることが望ましい。
具体的には、施工時の圧入力Qinから杭周面の影響である修正圧入力Qin’を除去することにより求まる(3a)式で表される補正係数αを求める。
そして、補正係数αを用いた(1a−1*)式の修正先端支持力推定式によって、より精緻な先端支持力Ruを推定できる。
このとき、施工時の圧入力Qinおよび修正圧入力Qin’は貫入速度wの変化に応じて連続的に変化する値、つまり貫入速度wの関数となるため、施工時の圧入力Qinと施工時の圧入力Qinから除去する修正圧入力Qin’は支持層の施工時の貫入速度wに応じた値を用いる。したがって、(1a*)式によって先端支持力を推定する際に、補正係数αは、支持層施工時の貫入速度wの変化に応じて逐次演算された値を用いる。
Further, in the above-mentioned tip bearing capacity estimation formula (1a), the tip bearing capacity Ru is estimated more precisely when the pile length is long or when a thick clay layer is present above the support layer. Therefore, the correction may be performed to remove the influence of the pile peripheral surface above the support layer.
In that case, the rotational press-fitting pile 1 is once pulled up at the upper part of the support layer, and under the condition that a gap is generated at the tip of the pile and no resistance at the tip is generated, the rotational speed θ at that time is kept constant to set the penetration speed w. The pressure input when the pile is changed and penetrated, that is, the correction pressure input Qin', which is the influence of the pile peripheral surface (the resistance force in the pushing direction caused by the peripheral friction force), is measured. At this time, it is desirable that the range for changing the penetration speed w is a range from the maximum speed determined by the capacity of the machine to almost zero.
Specifically, the correction coefficient α expressed by the equation (3a) obtained by removing the correction pressure input Qin', which is the influence of the pile peripheral surface, from the pressure input Qin at the time of construction is obtained.
Then, a more precise tip bearing capacity Ru can be estimated by the modified tip bearing capacity estimation formula (1a-1 *) using the correction coefficient α.
At this time, the pressure input Qin at the time of construction and the modified pressure input Qin'are values that continuously change according to the change of the penetration speed w, that is, a function of the penetration speed w. For the modified pressure input Qin'removed from the pressure input Qin, a value corresponding to the penetration speed w at the time of construction of the support layer is used. Therefore, when estimating the tip bearing capacity by the equation (1a *), the correction coefficient α uses a value sequentially calculated according to the change in the penetration speed w during the construction of the support layer.

Figure 2019186660
Figure 2019186660

Figure 2019186660
Figure 2019186660

(第二実施形態)
以下、本発明の第二実施形態に係る回転圧入杭の先端支持力推定方法について説明する。
本実施形態に係る先端支持力推定方法は、回転圧入杭を地盤に回転圧入する施工時の回転トルクTに基づいて回転圧入杭の先端支持力を推定するものであり、入力工程と推定工程とを有する。
すなわち、本実施形態に係る先端支持力推定方法においては、回転トルクをT(kN・mm)、杭外径をD(mm)とした場合に、T/0.5Dで示される値を支持力推定指標Hとする。
(Second Embodiment)
Hereinafter, a method for estimating the tip bearing capacity of the rotary press-fit pile according to the second embodiment of the present invention will be described.
The tip bearing capacity estimation method according to the present embodiment estimates the tip bearing capacity of the rotary press-fit pile based on the rotational torque T during construction in which the rotary press-fit pile is rotationally press-fitted into the ground. Has.
That is, in the tip bearing capacity estimation method according to the present embodiment, when the rotational torque is T (kN · mm) and the pile outer diameter is D (mm), the value indicated by T / 0.5D is the bearing capacity. Let it be an estimation index H.

まず、入力工程として、回転圧入杭1を地盤に回転圧入する施工時に、圧入力Qinと、上記支持力推定指標Hの構成因子である回転トルクTとを測定してコンピュータに入力する。 First, as an input step, at the time of construction in which the rotary press-fitting pile 1 is rotationally press-fitted into the ground, the press-fitting Qin and the rotational torque T, which is a constituent factor of the bearing capacity estimation index H, are measured and input to the computer.

次に、推定工程として、入力工程で得られた圧入力Qinと、支持力推定指標Hとを使用し、回転圧入杭における圧入力Qinと、先端支持力Ruと、支持力推定指標Hとの相関関係から定式化した下記(1b)式で表される先端支持力推定式に基づいて、回転圧入杭の先端支持力Ruを推定する。

Figure 2019186660
Next, as the estimation process, the pressure input Qin obtained in the input process and the bearing capacity estimation index H are used, and the pressure input Qin in the rotary press-fitting pile, the tip bearing capacity Ru, and the bearing capacity estimation index H are used. The tip bearing capacity Ru of the rotary press-fit pile is estimated based on the tip bearing capacity estimation formula represented by the following formula (1b) formulated from the correlation.
Figure 2019186660

A2は、X軸を支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を下記(2b)式で表した際の勾配である。
B2は、X軸を支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2b)式で表した際のY切片である。
プロット点の近似線は、例えば、最小二乗法による対数近似線を用いればよい。
A2 is a gradient when the approximate line of the plot points of the test results with the X-axis as the natural logarithm of the bearing capacity estimation index H and the Y-axis as Qin / Ru is expressed by the following equation (2b).
B2 is a Y-intercept when the approximate line of the plot points of the test results with the X-axis as the natural logarithm of the bearing capacity estimation index H and the Y-axis as Qin / Ru is expressed by Eq. (2b).
As the approximation line of the plot points, for example, a logarithmic approximation line by the least squares method may be used.

Figure 2019186660
Figure 2019186660

上記(1b)式で表される先端支持力推定式は、後述するような施工試験及び載荷試験によって定式化された式である。圧入力Qin、回転トルクTは、杭回転圧入装置2に設けられた計測部によって連続的に計測される。 The tip bearing capacity estimation formula represented by the above formula (1b) is a formula formulated by a construction test and a loading test as described later. The press-in input Qin and the rotational torque T are continuously measured by the measuring unit provided in the pile rotational press-fitting device 2.

本実施形態に係る先端支持力推定方法によれば、回転圧入杭を回転圧入する施工時に、圧入力Qin、及び、回転トルクTの測定情報を連続的又は間欠的に計測し、計測された測定情報から上述の(1b)式で表される先端支持力推定式に基づいて先端支持力Ruを算出することができる。
すなわち、施工時の圧入力Qin、回転トルクT、及び先端支持力Ruの間に高い相関関係があることに基づいて定式化した先端支持力推定式を用いることで、容易にかつ精度よく回転圧入によって施工される回転圧入杭の先端支持力Ruを推定できる。従って、推定される先端支持力Ruに応じて回転圧入杭の貫入を継続するか否かを判定することができる。
また、後述するように、このような先端支持力Ruを推定することによる施工管理方法を採用することで、十分な先端支持力Ruが発揮できる状態で回転圧入杭を打ち止めすることができる。
したがって、支持層までの深度によって打ち止めを管理する場合のように、支持層に対する根入れ長の過不足を防止でき、支持層の不陸にも対応することが可能となる。
According to the tip bearing capacity estimation method according to the present embodiment, the measurement information of the press input Qin and the rotational torque T is continuously or intermittently measured at the time of performing the rotational press-fitting of the rotary press-fitting pile, and the measured measurement is performed. From the information, the tip bearing capacity Ru can be calculated based on the tip bearing capacity estimation formula represented by the above equation (1b).
That is, by using the tip bearing capacity estimation formula formulated based on the high correlation between the pressure input Qin, the rotational torque T, and the tip bearing capacity Ru at the time of construction, rotational press-fitting can be performed easily and accurately. The tip bearing capacity Ru of the rotary press-fitting pile constructed by can be estimated. Therefore, it is possible to determine whether or not to continue the penetration of the rotary press-fit pile according to the estimated tip bearing capacity Ru.
Further, as will be described later, by adopting the construction management method by estimating the tip bearing force Ru, the rotary press-fitting pile can be stopped in a state where a sufficient tip bearing force Ru can be exhibited.
Therefore, it is possible to prevent excess or deficiency of the rooting length with respect to the support layer as in the case of managing the stoppage by the depth to the support layer, and it is possible to cope with the non-landing of the support layer.

ここで、上述の(1b)式で表される先端支持力推定式を定式化するための施工試験及び載荷試験について説明する。 Here, a construction test and a loading test for formulating the tip bearing capacity estimation formula represented by the above formula (1b) will be described.

施工試験では、図1に示すように、実際の地盤や人工的に作成した地盤に回転圧入杭1を回転圧入し、回転圧入施工を停止する予め設定された打ち止め時の深度(打ち止め深度Z0)よりも杭外径Dの2倍程度上方の位置までの区間において、回転速度θを一定値に保持したまま貫入させる。
圧入力Qinは、地盤の抵抗の変化により多少の上下があるものの、概ね一定値になるように制御される。ここで、打ち止め深度Z0は、施工試験で用いる杭外径Dと地盤条件に基づいて設計される先端支持力が得られる深度である。
回転トルクTは、打ち止め深度Z0から上方に杭外径Dの0.1倍程度の長さ区間を打ち止め直前区間Kとして、この区間Kに回転圧入杭1の先端部1aが到達したときに測定される平均値を採用する。
In the construction test, as shown in FIG. 1, the rotary press-fitting pile 1 is rotationally press-fitted into the actual ground or the artificially created ground to stop the rotary press-fitting construction (stopping depth Z0) at the time of stopping. In the section up to a position about twice above the outer diameter D of the pile, the rotation speed θ is maintained at a constant value and penetrated.
The pressure input Qin is controlled so as to have a substantially constant value, although there is some ups and downs due to changes in the resistance of the ground. Here, the stopping depth Z0 is a depth at which the tip bearing capacity designed based on the pile outer diameter D and the ground conditions used in the construction test can be obtained.
The rotational torque T is measured when the tip portion 1a of the rotary press-fit pile 1 reaches this section K, with a section having a length of about 0.1 times the pile outer diameter D upward from the stopping depth Z0 as the section immediately before stopping. Adopt the average value to be calculated.

載荷試験では、試験用の回転圧入杭を所定の深度で打ち止めした後、鉛直方向から荷重により載荷を行う。そして、深度方向に複数断面の杭の応力分布を計測して周面摩擦力と先端支持力Ruを分離して測定する。尚、載荷試験は、例えば、地盤工学会から発刊されている「杭の鉛直載荷試験方法・同解説2002」に示される、「杭の押込み試験」、「杭の急速載荷試験」、「杭の衝撃載荷試験」に従って実施すればよい。 In the loading test, the rotary press-fitting pile for the test is stopped at a predetermined depth, and then the pile is loaded from the vertical direction by a load. Then, the stress distribution of the pile having a plurality of cross sections is measured in the depth direction, and the peripheral friction force and the tip bearing force Ru are separately measured. The loading test is, for example, the "pile pushing test", "pile rapid loading test", and "pile loading test" shown in "Pile Vertical Load Test Method / Explanation 2002" published by the Japanese Geotechnical Society. It may be carried out according to the "impact loading test".

表2に、具体例としての試験1〜24について、掘削ビットの有無、杭外径(mm)、支持層地盤の種類(砂層/礫層)、圧入力Qin(kN)、回転トルクT(kN・mm)、T/0.5D(kN)、先端支持力Ru(kN)、及びQin/Ru(−)を示す。
試験1〜14では、掘削ビットを有しないビット無鋼管杭を用いた。
試験15〜24では、先端部において周方向に均等に四つの掘削ビットが設けられたビット付鋼管杭を用いた。
Table 2 shows the presence / absence of excavation bits, pile outer diameter (mm), support layer ground type (sand layer / gravel layer), pressure input Qin (kN), and rotational torque T (kN) for tests 1 to 24 as specific examples. -Mm), T / 0.5D (kN), tip bearing capacity Ru (kN), and Qin / Ru (-).
In tests 1 to 14, bitless steel pipe piles having no excavation bit were used.
In tests 15 to 24, a steel pipe pile with a bit was used in which four excavation bits were evenly provided at the tip in the circumferential direction.

Figure 2019186660
Figure 2019186660

試験1〜24について、X軸を支持力推定指標H(=T/0.5D)の自然対数とし、Y軸をQin/Ruとしてプロットしたグラフを図8に示す。このグラフは、施工試験後に載荷試験を実施した回転圧入杭のQin/Ruと、支持力推定指標H(=T/0.5D)との関係を示したものである。 For tests 1 to 24, a graph plotted with the X-axis as the natural logarithm of the bearing capacity estimation index H (= T / 0.5D) and the Y-axis as Qin / Ru is shown in FIG. This graph shows the relationship between the Qin / Ru of the rotary press-fit pile that was subjected to the loading test after the construction test and the bearing capacity estimation index H (= T / 0.5D).

図8から、各試験の試験結果のプロットについて最小二乗法による近似線を算出すると、図9に示すように下記(2b−1)式が得られる。

Figure 2019186660
When the approximation line by the least squares method is calculated for the plot of the test results of each test from FIG. 8, the following equation (2b-1) is obtained as shown in FIG.
Figure 2019186660

そして、この(2b−1)式に基づいて、上記(1)式に対応する先端支持力推定式である(1b−1)式が導かれる。
実構造物の設計では、先端支持力Ruの設計式に対して十分な安全率が考慮されているため、打ち止め管理式においてもばらつきは許容される。従って、全データの近似式から求めた(1b−1)式を用いることは妥当である。
Then, based on this equation (2b-1), the equation (1b-1), which is the tip bearing capacity estimation equation corresponding to the above equation (1), is derived.
In the design of the actual structure, a sufficient safety factor is taken into consideration for the design formula of the tip bearing capacity Ru, so that variation is allowed even in the stop control formula. Therefore, it is appropriate to use the formula (1b-1) obtained from the approximate formula of all the data.

Figure 2019186660
Figure 2019186660

このような相関性があることを確認したことにより、施工時に杭回転圧入機2から刻々と測定される圧入力Qin、回転トルクTのデータから先端支持力推定式である(1b−1)式を使用して先端支持力Ruを推定することができる。 By confirming that there is such a correlation, the tip bearing capacity estimation formula is the equation (1b-1) based on the data of the pressure input Qin and the rotational torque T measured every moment from the pile rotary press-fitting machine 2 at the time of construction. Can be used to estimate the tip bearing capacity Ru.

尚、許容される安全率が低い構造物について打ち止め管理を行う場合には、図9に示すように、(2b−1)式の近似線に平行で、かつQin/Ruの点の最大値を含む上限を示す近似線である(2b−1’)式を算出し、これに基づいて得られる(1b−1’)式を先端支持力推定式として用いてもよい。 When stopping and managing a structure having a low allowable safety factor, as shown in FIG. 9, the maximum value of the Qin / Ru points parallel to the approximate line of Eq. (2b-1) is set. The equation (2b-1'), which is an approximate line indicating the upper limit to be included, may be calculated, and the equation (1b-1') obtained based on the equation may be used as the tip bearing capacity estimation equation.

Figure 2019186660
Figure 2019186660

Figure 2019186660
Figure 2019186660

この場合、載荷試験による試験結果は、図9において(2b−1’)式で示される直線よりも下方の領域に包含されているため、より信頼性を高めることができる。 In this case, since the test result by the loading test is included in the region below the straight line represented by the equation (2b-1') in FIG. 9, the reliability can be further improved.

尚、本実施形態に係る先端支持力推定方法においても、第一実施形態で説明した通り、推定の精度を高めるために、実際に施工する圧入鋼管杭のビット有無に合わせた試験結果のみを用いて導出した推定式を用いてもよい。 In the tip bearing capacity estimation method according to the present embodiment, as described in the first embodiment, only the test results according to the presence or absence of bits of the press-fitted steel pipe pile actually constructed are used in order to improve the estimation accuracy. You may use the estimation formula derived from.

尚、上記の例では、プロットの最小二乗法による近似線である(2b−1)式から平行移動した近似線である(2b−1’)式を導き出して先端支持力推定式である(1b−1’)式を求めた。しかし、近似線はプロットを最小二乗法以外の近似法を用いて得てもよい。
また、上記(2b−1’)式で示す近似線は、最小二乗法による近似線の傾きを厳密に一定とした平行移動により得られたものでなくてもよく、例えば、対象とするプロット点を包絡するような直線又は曲線であってもよい。
In the above example, the tip bearing capacity estimation formula is obtained by deriving the translation (2b-1') equation from the approximation line (2b-1) which is the approximation line by the least squares method of the plot. -1') Equation was obtained. However, the approximation line may be obtained by using an approximation method other than the least squares method.
Further, the approximate line shown by the above equation (2b-1') does not have to be obtained by translation in which the slope of the approximate line by the least squares method is strictly constant. For example, the plot point to be targeted. It may be a straight line or a curved line that wraps around.

また、上述した先端支持力推定式である(1b)式において、杭長が長い場合や、支持層より上部に厚い粘土層が存在する場合などにはより精緻な先端支持力Ruの推定を行うために、支持層より上部での杭周面の影響を除く補正を行うようにしてもよい。
その際には、回転圧入杭1を支持層の上部で一旦引き上げ、杭先端に空隙を生じさせて先端の抵抗が発生しない条件で再度貫入させたときの杭周面の影響(周面摩擦力が起因となる押し込み方向の抵抗力)である修正回転トルクTsおよび修正圧入力Qin’を計測する。
具体的には、施工時の回転トルクTから杭周面の影響である修正回転トルクTsを除去することにより求まる(3b−1)式で表される補正係数β1を求める。
更に、施工時の圧入力Qinから修正圧入力Qin’を除去することにより求まる(3b−2)式で表される補正係数β2を求める。
そして、補正係数β1、β2を用いた(1b*)式の修正先端支持力推定式によって、より精緻な先端支持力Ruを推定できる。
Further, in the above-mentioned formula (1b) for estimating the tip bearing capacity, the tip bearing capacity Ru is estimated more precisely when the pile length is long or when a thick clay layer is present above the support layer. Therefore, the correction may be performed to remove the influence of the pile peripheral surface above the support layer.
In that case, the influence of the pile peripheral surface (peripheral frictional force) when the rotary press-fit pile 1 is once pulled up at the upper part of the support layer and then penetrated again under the condition that a gap is generated at the pile tip and no resistance at the tip is generated. The corrected rotation torque Ts and the corrected pressure input Qin', which are the resistance forces in the pushing direction caused by the above, are measured.
Specifically, the correction coefficient β1 expressed by the equation (3b-1) obtained by removing the modified rotational torque Ts, which is the influence of the pile peripheral surface, from the rotational torque T at the time of construction is obtained.
Further, the correction coefficient β2 expressed by the equation (3b-2) obtained by removing the modified pressure input Qin'from the pressure input Qin at the time of construction is obtained.
Then, a more precise tip bearing capacity Ru can be estimated by the modified tip bearing capacity estimation formula (1b *) using the correction coefficients β1 and β2.

Figure 2019186660
Figure 2019186660

Figure 2019186660
Figure 2019186660

Figure 2019186660
Figure 2019186660

(第三実施形態)
本発明の第三実施形態は、上述の先端支持力推定方法を使用して回転圧入杭の先端支持力を管理する先端支持力管理システム(以下、本実施形態に係る先端支持力管理システムと呼称する場合がある)であり、測定部と、記憶部と、演算処理部とを有する。
(Third Embodiment)
A third embodiment of the present invention is a tip bearing capacity management system that manages the tip bearing capacity of a rotary press-fitting pile using the above-mentioned tip bearing capacity estimation method (hereinafter, referred to as a tip bearing capacity management system according to the present embodiment). It has a measuring unit, a storage unit, and an arithmetic processing unit.

図4に示すように、本実施形態に係る先端支持力管理システム10は、上述したように回転圧入杭1を把持した把持部を昇降させることにより回転圧入杭1を地盤に圧入する杭回転圧入機2を利用したものである。このシステム10は、杭回転圧入機2で取得した計測値(圧入力Qin、貫入速度w、回転速度θ、回転トルクT)をコンピュータ3に入力し、コンピュータ3内の演算処理部31により先端支持力Ruを算出し推定する。この杭回転圧入機2で測定した計測値は、演算処理部31を有するコンピュータ3に無線又は有線により通信可能に接続されている。 As shown in FIG. 4, the tip bearing capacity management system 10 according to the present embodiment press-fits the rotary press-fit pile 1 into the ground by raising and lowering the grip portion that grips the rotary press-fit pile 1 as described above. This is the one using the machine 2. This system 10 inputs the measured values (press input Qin, penetration speed w, rotation speed θ, rotation torque T) acquired by the pile rotation press-fitting machine 2 into the computer 3, and the tip is supported by the arithmetic processing unit 31 in the computer 3. The force Ru is calculated and estimated. The measured values measured by the pile rotary press-fitting machine 2 are wirelessly or wiredly connected to the computer 3 having the arithmetic processing unit 31.

コンピュータ3は、前記演算処理部31と、記憶部32とを有する。又、コンピュータ3は、演算処理部31で算出された先端支持力Ruの推定値を表示する表示部4を備えていてもよい。
記憶部32には、先端支持力推定式と、所定の設計先端支持力Raとが組み込まれている。各計測部21、22で計測された計測値は、回転圧入杭1の貫入工程において連続的又は間欠的に計測される時系列データであり、記憶部32にこれら時系列データが格納されている。
尚、先端支持力推定式については、第一実施形態で説明したように、施工を行う前に、複数の回転圧入杭を複数個所の地盤に貫入させることで得られた圧入力Qinと、先端支持力Ruと、支持力推定指標Hとの相関関係から予め求められた先端支持力推定式を用いればよい。
The computer 3 has the arithmetic processing unit 31 and a storage unit 32. Further, the computer 3 may include a display unit 4 that displays an estimated value of the tip bearing capacity Ru calculated by the arithmetic processing unit 31.
The storage unit 32 incorporates a tip bearing capacity estimation formula and a predetermined design tip bearing capacity Ra. The measured values measured by the measuring units 21 and 22 are time-series data measured continuously or intermittently in the penetration process of the rotary press-fitting pile 1, and these time-series data are stored in the storage unit 32. ..
As for the tip bearing capacity estimation formula, as described in the first embodiment, the pressure input Qin obtained by penetrating a plurality of rotary press-fit piles into the ground at a plurality of places before the construction, and the tip. The tip bearing capacity estimation formula obtained in advance from the correlation between the bearing capacity Ru and the bearing capacity estimation index H may be used.

演算処理部31では、記憶部32で記憶されている先端支持力推定式を使用し、杭回転圧入機2の各計測部21、22から入力された計測値(記憶部のデータ)に基づいて、先端支持力Ruを算出する演算処理が実行される。さらに演算処理部31では、算出された先端支持力Ruと設計先端支持力Raとが比較される処理が行われる。その処理結果(推定した先端支持力Ruと設計先端支持力Raとの判定結果)は表示部4によって視認可能に出力されることが好ましい。尚、設計先端支持力Raとは、施工する回転圧入杭に必要な先端支持力の設定値であり、支持力推定指標Hの計測結果の精度などを考慮して、必要とされる安全率に応じてマージンが設定されてもよい。
このように、先端支持力管理システム10によって推定された先端支持力Ruに基づいて回転圧入杭1の貫入を打ち止めするものである。つまり、本実施の形態では、先端支持力管理システム10を用いて杭回転圧入機2によって回転圧入杭1を圧入する回転圧入杭1の施工管理を行うことができる。
尚、先端支持力Ruが設計先端支持力Ra以上になったことを確認してから、より安全性を高めるために多少のマージンを確保すべく更に貫入してもよい。
The arithmetic processing unit 31 uses the tip bearing capacity estimation formula stored in the storage unit 32, and is based on the measured values (data in the storage unit) input from the measurement units 21 and 22 of the pile rotation press-fitting machine 2. , The arithmetic processing for calculating the tip bearing capacity Ru is executed. Further, the arithmetic processing unit 31 performs a process of comparing the calculated tip bearing force Ru with the design tip bearing force Ra. It is preferable that the processing result (determination result of the estimated tip bearing force Ru and the design tip bearing force Ra) is visually output by the display unit 4. The design tip bearing capacity Ra is a set value of the tip bearing capacity required for the rotary press-fitting pile to be constructed, and the required safety factor is set in consideration of the accuracy of the measurement result of the bearing capacity estimation index H. Margins may be set accordingly.
In this way, the penetration of the rotary press-fitting pile 1 is stopped based on the tip bearing force Ru estimated by the tip bearing capacity management system 10. That is, in the present embodiment, the construction management of the rotary press-fitting pile 1 in which the rotary press-fitting pile 1 is press-fitted by the pile rotary press-fitting machine 2 can be performed by using the tip bearing capacity management system 10.
After confirming that the tip bearing force Ru is equal to or greater than the design tip bearing force Ra, further penetration may be made in order to secure a certain margin in order to further enhance safety.

杭回転圧入機2は、回転圧入杭1に回転力と圧入力とを付与しながら地盤に圧入し、図4に示すように、圧入力Qin、及び、支持力推定指標(貫入速度w及び回転速度θ、又は、回転トルクT)がそれぞれ圧入力計測部21、及び、指標計測部22によって計測される。 The pile rotary press-fitting machine 2 press-fits into the ground while applying a rotational force and a press-fitting force to the rotary press-fitting pile 1, and as shown in FIG. 4, the press-fitting Qin and the bearing capacity estimation index (penetration speed w and rotation). The speed θ or the rotational torque T) is measured by the pressure input measuring unit 21 and the index measuring unit 22, respectively.

圧入力Qinを計測する圧入力計測部21としては、杭回転圧入機2のリーダーに設けられる駆動モーターの油圧を検出する油圧センサーを利用し、回転圧入杭1を地盤Gに圧入する圧入力値として計測する構成が採用されている。例えば連続的、或いは回転圧入杭1が円周方向に1/4回転や1/8回転程度、回転する毎に計測及び記録される。
支持力推定指標として回転ピッチpを用いる場合、指標計測部22としては、例えば回転圧入杭1を把持する把持部の時間当たりのストローク(貫入速度w)を計測する構成と、回転圧入杭1を把持する把持部の回転部分からエンコーダー等を使って回転速度を計測する構成とを採用することができる。
また、支持力推定指標として回転トルクTを用いる場合、指標計測部22としては、例えば回転圧入杭1を把持する把持部に備えた回転トルクセンサによって回転方向に作用する荷重を計測する構成を採用することができる。
The pressure input measuring unit 21 that measures the pressure input Qin uses a hydraulic sensor that detects the hydraulic pressure of the drive motor provided in the leader of the pile rotary press-fitting machine 2, and press-fits the rotary press-fitting pile 1 into the ground G. The configuration to measure as is adopted. For example, it is measured and recorded every time the rotary press-fitting pile 1 rotates continuously or about 1/4 turn or 1/8 turn in the circumferential direction.
When the rotation pitch p is used as the bearing capacity estimation index, the index measurement unit 22 includes, for example, a configuration for measuring the stroke (penetration speed w) per hour of the gripping portion that grips the rotation press-fit pile 1 and the rotation press-fit pile 1. It is possible to adopt a configuration in which the rotation speed is measured from the rotating portion of the grip portion to be gripped by using an encoder or the like.
When the rotational torque T is used as the bearing capacity estimation index, the index measuring unit 22 adopts, for example, a configuration in which the load acting in the rotational direction is measured by a rotational torque sensor provided in the grip portion that grips the rotational press-fit pile 1. can do.

(第四実施形態)
本発明の第四実施形態は、上述の先端支持力推定方法を使用して回転圧入杭の施工を管理する施工管理方法(以下、本実施形態に係る施工管理方法と呼称する場合がある)であり、計測工程と、算出工程と、判定工程とを有する。
(Fourth Embodiment)
A fourth embodiment of the present invention is a construction management method for managing the construction of a rotary press-fit pile using the above-mentioned tip bearing capacity estimation method (hereinafter, may be referred to as a construction management method according to the present embodiment). Yes, it has a measurement process, a calculation process, and a determination process.

以下、本実施形態に係る施工管理方法について、図10のフローチャートを使用して詳しく説明する。
先ず、ステップS1において、図2及び図3に示す杭回転圧入機2(2A、2B)を使用して回転圧入杭1に回転力と圧入力を与えながら地盤に対して回転圧入を開始する。
そして、ステップS2において、回転圧入中の杭回転圧入機2の図4に示す圧入力計測部21、及び、指標計測部22で、それぞれ圧入力Qinと、支持力推定指標Hの構成因子である貫入速度w及び回転速度θ、又は、回転トルクTが計測される。計測は、連続的又は所定時間ピッチで行われる。これら計測されたデータ(圧入力Qin、貫入速度w、回転速度θ、又は回転トルクT)は、図4に示すコンピュータ3の演算処理部31に入力される。以降、演算処理装置31は、ステップS3、S4の処理を実行する。
Hereinafter, the construction management method according to the present embodiment will be described in detail using the flowchart of FIG.
First, in step S1, the pile rotary press-fitting machine 2 (2A, 2B) shown in FIGS. 2 and 3 is used to start rotary press-fitting to the ground while applying a rotational force and a press-fitting force to the rotary press-fitting pile 1.
Then, in step S2, the pressure input measuring unit 21 and the index measuring unit 22 shown in FIG. 4 of the pile rotary press-fitting machine 2 during rotary press-fitting are constituent factors of the pressure input Qin and the bearing capacity estimation index H, respectively. The penetration speed w and the rotation speed θ, or the rotation torque T are measured. The measurement is performed continuously or at a predetermined time pitch. These measured data (pressure input Qin, penetration speed w, rotation speed θ, or rotation torque T) are input to the arithmetic processing unit 31 of the computer 3 shown in FIG. After that, the arithmetic processing unit 31 executes the processes of steps S3 and S4.

ステップS3において、予め記憶部32に格納されている先端支持力推定式を用い、測定されたデータに基づいて先端支持力Ruが算定される。ステップS4において、演算処理装置31は、算定された先端支持力Ruが、記憶部32に予め格納されている設計先端支持力Raの値以上であるか否かを判断する。算定した先端支持力Ruが設計先端支持力Ra以上である場合(Ru≧Ra、ステップS4:YES)には、ステップS5に進む。一方、算定した先端支持力Ruが設計先端支持力Raよりも小さい場合(Ru<Ra、ステップS4:NO)には、ステップS2に戻り引き続き回転圧入の施工とともに各データ(圧入力Qin、貫入速度w、回転速度θ、及び回転トルクT)が測定され、回転圧入杭1の回転圧入による貫入が継続される。
尚、ステップS4において、地盤中に支持層には適さない、硬質な薄層や、硬度の高い障害物がある場合等には、一時的にRu≧Raとなることがある。このような場合には圧入の施工を止めることは適切ではない。一般的に、鉛直支持力性能を評価する際の載荷試験において、杭を沈下させる量は杭径の10%程度であるため、杭径の10%以上の長さを貫入させている区間で安定してRu≦Raの関係が得られていることを確認できた場合にステップS5に進んでもよい。
演算処理部31で算定された先端支持力Ruの数値や、ステップS4の結果(先端支持力Ruが設計先端支持力Raの対比結果)等は、表示部4を介して視認可能に出力されることが好ましい。
In step S3, the tip bearing capacity Ru is calculated based on the measured data using the tip bearing capacity estimation formula stored in the storage unit 32 in advance. In step S4, the arithmetic processing unit 31 determines whether or not the calculated tip bearing force Ru is equal to or greater than the value of the design tip bearing force Ra stored in advance in the storage unit 32. If the calculated tip bearing capacity Ru is equal to or greater than the design tip bearing capacity Ra (Ru ≧ Ra, step S4: YES), the process proceeds to step S5. On the other hand, when the calculated tip bearing force Ru is smaller than the design tip bearing force Ra (Ru <Ra, step S4: NO), the process returns to step S2, and each data (press input Qin, penetration speed) is continued along with the rotational press fitting. w, the rotation speed θ, and the rotation torque T) are measured, and the penetration of the rotation press-fitting pile 1 by the rotation press-fitting is continued.
In step S4, if there is a hard thin layer or an obstacle with high hardness in the ground that is not suitable for the support layer, Ru ≧ Ra may temporarily be satisfied. In such a case, it is not appropriate to stop the press-fitting work. Generally, in the loading test when evaluating the vertical bearing capacity performance, the amount of pile sinking is about 10% of the pile diameter, so it is stable in the section where the length of 10% or more of the pile diameter is penetrated. When it is confirmed that the relationship of Ru ≦ Ra is obtained, the process may proceed to step S5.
The numerical value of the tip bearing capacity Ru calculated by the arithmetic processing unit 31, the result of step S4 (the result of comparison of the tip bearing capacity Ru with the design tip bearing force Ra), and the like are visually output via the display unit 4. Is preferable.

そして、ステップS4において、算出した先端支持力Ruが設計支持力Ra以上であることを確認することで、十分な先端支持力が確保され、回転圧入杭1が定着されたことになるため、ステップS5において回転圧入杭1の回転圧入による貫入を停止して打ち止めとし、施工が終了となる。
ここで、回転圧入杭1の打ち止めとは、回転圧入による貫入を停止することであり、回転を停止した後に、施工時の圧入力の付与を停止する場合と、施工時の圧入力の付与を停止した後に回転を停止する場合がある。
Then, in step S4, by confirming that the calculated tip bearing capacity Ru is equal to or greater than the design bearing capacity Ra, a sufficient tip bearing capacity is secured and the rotary press-fitting pile 1 is fixed. In S5, the penetration of the rotary press-fitting pile 1 by the rotary press-fitting is stopped and stopped, and the construction is completed.
Here, stopping the rotary press-fitting pile 1 means stopping the penetration by rotary press-fitting, and after stopping the rotation, stopping the application of the pressure input at the time of construction and applying the pressure input at the time of construction. The rotation may stop after stopping.

次に、杭周面の影響を除いた修正先端支持力推定式を用いた回転圧入杭1の施工管理方法について、図11のフローチャートを使用して説明する。
この場合には、上述したステップS1の後、ステップS6において、回転圧入杭1を支持層の上部で一旦引き上げ、ステップS7で、周面摩擦による影響に関連する修正圧入力Qin’、又は、修正回転トルクTsを計測する。
そしてステップS8において、支持層に貫入させた際の圧入力Qin、及び、支持力推定指標H(回転速度θ及び貫入速度w、又は、回転トルクTs)を計測する。そして、ステップS9において、演算処理装置31は、計測された貫入速度wと修正圧入力Qin’、又は、計測された回転トルクT、圧入力Qin、修正回転トルクTs及び修正圧入力Qin’を用いて、予め記憶部32に格納されている関係式から補正係数(上述したα、β1、β2)を求める。さらに、演算処理装置31は、修正先端支持力推定式を用い、測定されたデータに基づいて先端支持力Ruを算定する。
Next, the construction management method of the rotary press-fitting pile 1 using the modified tip bearing capacity estimation formula excluding the influence of the pile peripheral surface will be described with reference to the flowchart of FIG.
In this case, after step S1 described above, in step S6, the rotary press-fit pile 1 is once pulled up at the upper part of the support layer, and in step S7, the correction pressure input Qin'related to the influence of the peripheral friction or the correction The rotational torque Ts is measured.
Then, in step S8, the pressure input Qin when penetrating into the support layer and the bearing capacity estimation index H (rotational speed θ and penetration speed w, or rotational torque Ts) are measured. Then, in step S9, the arithmetic processing apparatus 31 uses the measured penetration speed w and the correction pressure input Qin', or the measured rotation torque T, pressure input Qin, correction rotation torque Ts, and correction pressure input Qin'. Then, the correction coefficients (α, β1, β2 described above) are obtained from the relational expression stored in the storage unit 32 in advance. Further, the arithmetic processing unit 31 calculates the tip bearing capacity Ru based on the measured data using the modified tip bearing capacity estimation formula.

その後、ステップS10において、演算処理装置31は、算定された先端支持力Ruが、記憶部32に予め格納されている設計先端支持力Raの値よりも大きいか否かを判断する。算定した先端支持力Ruが設計先端支持力Ra以上である場合(Ru≧Ra、ステップS10:YES)には、ステップS5に進む。一方、算定した先端支持力Ruが設計先端支持力Raよりも小さい場合(Ru<Ra、ステップS10:NO)には、ステップS8に戻り引き続き回転圧入の施工とともに各データ(圧入力Qin、貫入速度w、及び回転速度θ、回転トルクT)が測定され、回転圧入杭1の回転圧入による貫入が継続される。 After that, in step S10, the arithmetic processing unit 31 determines whether or not the calculated tip bearing force Ru is larger than the value of the design tip bearing force Ra stored in advance in the storage unit 32. When the calculated tip bearing capacity Ru is equal to or greater than the design tip bearing capacity Ra (Ru ≧ Ra, step S10: YES), the process proceeds to step S5. On the other hand, when the calculated tip bearing force Ru is smaller than the design tip bearing force Ra (Ru <Ra, step S10: NO), the process returns to step S8, and each data (press input Qin, penetration speed) is continued along with the rotational press fitting. w, the rotation speed θ, and the rotation torque T) are measured, and the penetration of the rotation press-fitting pile 1 by the rotation press-fitting is continued.

そして、ステップS10において、算出した先端支持力Ruが設計支持力Ra以上であることを確認することで、十分な先端支持力が確保され、回転圧入杭1が定着されたことになるため、ステップS5において回転圧入杭1の回転圧入による貫入を停止して打ち止めとし、施工が終了となる。 Then, in step S10, by confirming that the calculated tip bearing capacity Ru is equal to or greater than the design bearing capacity Ra, a sufficient tip bearing capacity is secured and the rotary press-fitting pile 1 is fixed. In S5, the penetration of the rotary press-fitting pile 1 by the rotary press-fitting is stopped and stopped, and the construction is completed.

このように、本実施形態に係る施工管理方法によれば、コンピュータ3の演算処理部31において定式化した先端支持力推定式によって算出された先端支持力Ruが、設計先端支持力Ra以上であるか否かを判定し、施工する回転圧入杭1に必要な設計先端支持力Ra以上である場合に回転圧入杭1の貫入を停止し、設計先端支持力Raよりも小さい場合に回転圧入杭1の貫入を継続するように施工管理することができる。 As described above, according to the construction management method according to the present embodiment, the tip bearing force Ru calculated by the tip bearing force estimation formula formulated by the arithmetic processing unit 31 of the computer 3 is equal to or greater than the design tip bearing force Ra. Whether or not it is determined, the penetration of the rotary press-fitting pile 1 is stopped when the design tip bearing capacity Ra or more required for the rotary press-fitting pile 1 to be constructed is stopped, and the rotary press-fitting pile 1 is smaller than the design tip bearing capacity Ra. It is possible to manage the construction so as to continue the intrusion.

以上説明した回転圧入杭の先端支持力推定方法、先端支持力管理システム、及び、施工管理方法によれば、回転圧入杭1を回転圧入する際に、圧入力Qin、及び、支持力推定指標H(回転速度θ及び貫入速度w、又は、回転トルクTs)の測定情報を連続的又は間欠的に計測し、計測された測定情報から先端支持力推定式に基づいて先端支持力Ruを算出することができる。
すなわち、施工時の圧入力Qin、支持力推定指標H(回転速度θ及び貫入速度w、又は、回転トルクTs)、及び先端支持力Ruの間に高い相関関係があることに基づいて定式化した先端支持力推定式を用いることで、容易にかつ精度よく回転圧入によって施工される回転圧入杭1の先端支持力Ruを推定できるので、推定される先端支持力Ruに応じて回転圧入杭1の貫入を継続するか否かを判定することができる。このような先端支持力Ruを推定することによる施工管理方法を採用することで、十分な先端支持力Ruが発揮できる状態で回転圧入杭1を打ち止めすることができる。
したがって、支持層までの深度によって打ち止めを管理する場合のように、支持層に対する根入れ長の過不足を防止でき、支持層の不陸にも対応することが可能となり、施工品質を向上させることができる。
According to the tip bearing capacity estimation method, the tip bearing capacity management system, and the construction management method of the rotary press-fitting pile described above, when the rotary press-fitting pile 1 is rotationally press-fitted, the press-fitting Qin and the bearing capacity estimation index H The measurement information of (rotational speed θ and penetration speed w, or rotational torque Ts) is continuously or intermittently measured, and the tip bearing capacity Ru is calculated from the measured measurement information based on the tip bearing capacity estimation formula. Can be done.
That is, it was formulated based on the fact that there is a high correlation between the pressure input Qin at the time of construction, the bearing capacity estimation index H (rotational speed θ and penetration speed w, or rotational torque Ts), and the tip bearing capacity Ru. By using the tip bearing capacity estimation formula, the tip bearing capacity Ru of the rotary press-fitting pile 1 constructed by rotary press-fitting can be estimated easily and accurately, so that the rotary press-fitting pile 1 can be calculated according to the estimated tip bearing capacity Ru. It is possible to determine whether or not to continue the intrusion. By adopting the construction management method by estimating the tip bearing force Ru, the rotary press-fitting pile 1 can be stopped in a state where a sufficient tip bearing force Ru can be exhibited.
Therefore, it is possible to prevent excess or deficiency of the rooting length for the support layer, and to cope with the non-landing of the support layer, as in the case of managing the stoppage by the depth to the support layer, and improve the construction quality. Can be done.

なお、上述した回転圧入杭の先端支持力推定方法又は施工管理方法は、CPUやメモリ、インターフェースからなるコンピュータがコンピュータプログラムを実行することによって実現され、上述したステップS3〜S4、又はS9〜S10は、上記コンピュータの各種ハードウェア資源と上記コンピュータプログラムとが協働することによって実現される。
また、上記したコンピュータプログラムは、コンピュータが読み取り可能な一時的ではない有形の記録媒体に格納されて提供されても良い。
The above-mentioned method for estimating the tip bearing capacity of the rotary press-fitting pile or the construction management method is realized by executing a computer program by a computer including a CPU, a memory, and an interface, and steps S3 to S4 or S9 to S10 described above are performed. , It is realized by the cooperation of various hardware resources of the computer and the computer program.
Further, the computer program described above may be provided stored in a tangible recording medium that is not temporary and can be read by a computer.

次に、上述した回転圧入杭の先端支持力推定方法の効果を裏付けるために行った実施例について以下説明する。 Next, an example carried out to support the effect of the above-mentioned method for estimating the tip bearing capacity of the rotary press-fit pile will be described below.

(実施例1)
試験実施例として、外径800mmの鋼管を中間層が10mの条件で施工し、載荷試験を行った。
図12〜図15に、その結果をグラフとして示す。これらのグラフでは、それぞれ縦軸を支持層への根入れ比(支持層への貫入量L(mm)を杭外径D(mm)で除したもの)としている。
図12は根入れ比L/Dと圧入力Qin(kN)との関係を示したグラフである。
図13は根入れ比L/Dと回転速度θ(rad/min)との関係を示したグラフである。
図14は根入れ比L/Dと貫入速度w(mm/min)との関係を示したグラフである。
図15は根入れ比L/Dと先端支持力Ru(kN)と、第一実施形態で説明した(1a−1)式と同様に導き出した先端支持力推定式E1、及び、(1a−1’)式と同様に導き出した先端支持力推定式E2に基づいて推定した、回転圧入杭1の先端支持力Ruの推定値の関係を示したグラフである。
(Example 1)
As a test example, a steel pipe having an outer diameter of 800 mm was constructed under the condition that the intermediate layer was 10 m, and a loading test was conducted.
The results are shown as a graph in FIGS. 12 to 15. In each of these graphs, the vertical axis is the penetration ratio to the support layer (the amount of penetration L (mm) into the support layer divided by the pile outer diameter D (mm)).
FIG. 12 is a graph showing the relationship between the rooting ratio L / D and the pressure input Qin (kN).
FIG. 13 is a graph showing the relationship between the rooting ratio L / D and the rotation speed θ (rad / min).
FIG. 14 is a graph showing the relationship between the penetration ratio L / D and the penetration speed w (mm / min).
FIG. 15 shows the embedding ratio L / D, the tip bearing capacity Ru (kN), the tip bearing capacity estimation formula E1 derived in the same manner as the formula (1a-1) described in the first embodiment, and (1a-1). It is a graph which showed the relationship of the estimated value of the tip bearing capacity Ru of a rotary press-fitting pile 1 estimated based on the tip bearing capacity estimation formula E2 derived in the same manner as the equation').

これにより、実際に載荷試験から得られた先端支持力Ruが、先端支持力推定式E1から推定された先端支持力に良く一致していることが確認できる。
さらに、先端支持力推定式E2を用いた場合には、十分に安全側に先端支持力を推定できることが確認できる。
したがって、本発明による先端支持力Ruの推定値が有効であることを確認できた。
From this, it can be confirmed that the tip bearing capacity Ru actually obtained from the loading test is in good agreement with the tip bearing capacity estimated from the tip bearing capacity estimation formula E1.
Further, when the tip bearing capacity estimation formula E2 is used, it can be confirmed that the tip bearing capacity can be sufficiently estimated on the safe side.
Therefore, it was confirmed that the estimated value of the tip bearing capacity Ru according to the present invention is valid.

(実施例2)
試験実施例として、外径800mmの鋼管を中間層が10mの条件で施工し、載荷試験を行った。
図16〜図18に、その結果をグラフとして示す。これらのグラフでは、それぞれ縦軸を支持層への根入れ比(支持層への貫入量L(mm)を杭外径D(mm)で除したもの)としている。
図16は根入れ比L/Dと圧入力Qin(kN)との関係を示したグラフである。
図17は根入れ比L/Dと回転トルクT(kN・m)との関係を示したグラフである。
図18は根入れ比L/Dと先端支持力Ru(kN)と、第二実施形態で説明した(1b−1)式と同様に導き出した先端支持力推定式E3、及び、(1b−1’)式と同様に導き出した先端支持力推定式E4に基づいて推定した、回転圧入杭1の先端支持力Ruの推定値の関係を示したグラフである。
(Example 2)
As a test example, a steel pipe having an outer diameter of 800 mm was constructed under the condition that the intermediate layer was 10 m, and a loading test was conducted.
The results are shown as a graph in FIGS. 16 to 18. In each of these graphs, the vertical axis is the penetration ratio to the support layer (the amount of penetration L (mm) into the support layer divided by the pile outer diameter D (mm)).
FIG. 16 is a graph showing the relationship between the rooting ratio L / D and the pressure input Qin (kN).
FIG. 17 is a graph showing the relationship between the embedding ratio L / D and the rotational torque T (kN · m).
FIG. 18 shows the embedding ratio L / D, the tip bearing capacity Ru (kN), the tip bearing capacity estimation formula E3 derived in the same manner as the formula (1b-1) described in the second embodiment, and (1b-1). It is a graph which showed the relationship of the estimated value of the tip bearing capacity Ru of a rotary press-fitting pile 1 estimated based on the tip bearing capacity estimation formula E4 derived in the same manner as the equation').

これにより、実際に載荷試験から得られた先端支持力Ruが、先端支持力推定式E3から推定された先端支持力に良く一致していることが確認できる。
さらに、先端支持力推定式E4を用いた場合には、十分に安全側に先端支持力を推定できることが確認できる。
したがって、本発明による先端支持力Ruの推定値が有効であることを確認できた。
From this, it can be confirmed that the tip bearing capacity Ru actually obtained from the loading test is in good agreement with the tip bearing capacity estimated from the tip bearing capacity estimation formula E3.
Further, when the tip bearing capacity estimation formula E4 is used, it can be confirmed that the tip bearing capacity can be sufficiently estimated on the safe side.
Therefore, it was confirmed that the estimated value of the tip bearing capacity Ru according to the present invention is valid.

以上、本発明による回転圧入杭の先端支持力推定方法、先端支持力管理システム、及び回転圧入杭の施工管理方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although the embodiment of the tip bearing capacity estimation method of the rotary press-fitting pile, the tip bearing capacity management system, and the construction management method of the rotary press-fitting pile according to the present invention has been described above, the present invention is limited to the above-described embodiment. It is not a thing and can be changed as appropriate without departing from the purpose.

例えば、支持層より上部の中間層において、例えばスクリューオーガー、ハンマグラブ等を使用して回転圧入杭の鋼管内の土砂を排土する方法や、鋼管内に配管をして水を吐出させて鋼管内の土砂を緩める方法や、バイブロハンマー等を用いて振動を与える方法等の補助工法を用いても良い。 For example, in the intermediate layer above the support layer, for example, a method of discharging the earth and sand in the steel pipe of the rotary press-fitting pile using a screw auger, a hammer mug, etc., or a method of piping in the steel pipe to discharge water in the steel pipe. Auxiliary construction methods such as a method of loosening the earth and sand and a method of applying vibration using a vibro hammer or the like may be used.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to replace the components in the above-described embodiment with well-known components as appropriate without departing from the spirit of the present invention.

本発明によれば、回転圧入工法における回転圧入杭の先端支持力を的確に推定することで、支持層の不陸にも対応可能となり、施工品質を向上させることができる。 According to the present invention, by accurately estimating the tip bearing capacity of the rotary press-fitting pile in the rotary press-fitting method, it is possible to cope with the non-landing of the support layer, and the construction quality can be improved.

1 回転圧入杭
1a 先端部
2 杭回転圧入機
3 コンピュータ
4 表示部
10 先端支持力管理システム
21 圧入力計測部
22 指標計測部
31 演算処理部
32 記憶部
1 Rotary press-fitting pile 1a Tip 2 Pile rotary press-fitting machine 3 Computer 4 Display 10 Tip bearing capacity management system 21 Pressure input measurement unit 22 Index measurement unit 31 Calculation processing unit 32 Storage unit

Claims (16)

杭先端が解放された鋼管杭からなる回転圧入杭を地盤に回転圧入する施工時に、前記回転圧入杭の先端支持力を推定する回転圧入杭の先端支持力推定方法であって、前記施工時に測定された、圧入力Qinと、支持力推定指標Hとを入力する工程と、前記圧入力Qinと、前記支持力推定指標Hとを使用し、回転圧入杭における圧入力Qinと、先端支持力Ruと、支持力推定指標Hとの相関関係から定式化した(1)式で表される先端支持力推定式に基づいて、前記回転圧入杭の先端支持力Ruを推定する推定工程と、
を有することを特徴とする回転圧入杭の先端支持力推定方法。
Figure 2019186660

A:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際の勾配
B:X軸を前記支持力推定指標Hの自然対数とし、Y軸をQin/Ruとした試験結果のプロット点の近似線を(2)式で表した際のY切片
Figure 2019186660
This is a method for estimating the tip bearing capacity of a rotary press-fit pile that estimates the tip bearing capacity of the rotary press-fit pile when a rotary press-fit pile made of steel pipe piles with the pile tip released is rotationally press-fitted into the ground. Using the step of inputting the pressure input Qin and the bearing capacity estimation index H, and the pressure input Qin and the bearing capacity estimation index H, the pressure input Qin in the rotary press-fitting pile and the tip bearing capacity Ru And the estimation step of estimating the tip bearing capacity Ru of the rotary press-fitting pile based on the tip bearing capacity estimation formula represented by the equation (1) formulated from the correlation with the bearing capacity estimation index H.
A method for estimating the tip bearing capacity of a rotary press-fitting pile, which comprises.
Figure 2019186660

A: Gradient when the approximate line of the plot points of the test results with the X-axis as the natural logarithmic of the bearing capacity estimation index H and the Y-axis as Qin / Ru is expressed by Eq. (2). The Y-intercept when the approximate line of the plot points of the test results with the natural logarithmic of the force estimation index H and the Y-axis as Qin / Ru is expressed by Eq. (2).
Figure 2019186660
Dを杭外径(mm)、θを回転速度(rad/min)、wを貫入速度(mm/min)としたとき、前記支持力推定指標Hが0.5D×θ/wである
ことを特徴とする請求項1に記載の回転圧入杭の先端支持力推定方法。
When D is the pile outer diameter (mm), θ is the rotation speed (rad / min), and w is the penetration speed (mm / min), the bearing capacity estimation index H is 0.5D × θ / w. The method for estimating the tip bearing capacity of a rotary press-fit pile according to claim 1.
前記回転圧入杭の周面摩擦による影響である修正圧入力Qin’の計測値と、下記(3a)式で求められる補正係数αにより前記先端支持力推定式を補正した修正先端支持力推定式に基づいて前記先端支持力Ruが推定される
ことを特徴とする請求項2に記載の回転圧入杭の先端支持力推定方法。
Figure 2019186660
The modified tip bearing capacity estimation formula is obtained by correcting the tip bearing capacity estimation formula by the measured value of the corrected pressure input Qin', which is the effect of the peripheral friction of the rotary press-fit pile, and the correction coefficient α obtained by the following formula (3a). The method for estimating the tip bearing capacity of a rotary press-fit pile according to claim 2, wherein the tip bearing capacity Ru is estimated based on the above.
Figure 2019186660
前記施工を行う前に、複数の回転圧入杭を複数個所の地盤に貫入させ、貫入毎の前記回転圧入杭の圧入力Qin、貫入速度w、及び回転速度θを求め、前記圧入力Qin、前記貫入速度w、及び、前記回転速θと、先端支持力Ruとの相関関係から前記先端支持力推定式を予め得る
ことを特徴とする請求項2又は3に記載の回転圧入杭の先端支持力推定方法。
Before performing the construction, a plurality of rotary press-fit piles are penetrated into the ground at a plurality of places, and the press-in Qin, the penetration speed w, and the rotational speed θ of the rotary press-fit pile for each penetration are obtained. The tip bearing force of the rotary press-fitting pile according to claim 2 or 3, wherein the tip bearing force estimation formula is obtained in advance from the penetration speed w and the correlation between the rotational speed θ and the tip bearing force Ru. Estimating method.
Tを回転トルク(kN・mm)、Dを杭外径(mm)としたとき、前記支持力推定指標HがT/0.5Dである
ことを特徴とする請求項1に記載の回転圧入杭の先端支持力推定方法。
The rotary press-fitting pile according to claim 1, wherein when T is a rotational torque (kN · mm) and D is a pile outer diameter (mm), the bearing capacity estimation index H is T / 0.5D. Tip bearing capacity estimation method.
前記回転圧入杭の周面摩擦による影響である修正回転トルクTsの計測値と、下記(3b−1)式で求められる補正係数β1と、下記(3b−2)式で求められる補正係数β2とにより、前記先端支持力推定式を補正した修正先端支持力推定式に基づいて前記先端支持力Ruが推定される
ことを特徴とする請求項5に記載の回転圧入杭の先端支持力推定方法。
Figure 2019186660

Figure 2019186660
The measured value of the corrected rotational torque Ts, which is the effect of the peripheral friction of the rotational press-fitting pile, the correction coefficient β1 obtained by the following formula (3b-1), and the correction coefficient β2 obtained by the following formula (3b-2). The method for estimating the tip bearing capacity of a rotary press-fitting pile according to claim 5, wherein the tip bearing capacity Ru is estimated based on the modified tip bearing capacity estimation formula obtained by correcting the tip bearing capacity estimation formula.
Figure 2019186660

Figure 2019186660
前記施工を行う前に、複数の回転圧入杭を複数個所の地盤に貫入させ、貫入毎の前記回転圧入杭の圧入力Qin、回転トルクTを求め、前記圧入力Qin及び前記回転トルクTと、先端支持力Ruとの相関関係から前記先端支持力推定式を予め得る
ことを特徴とする請求項5又は6に記載の回転圧入杭の先端支持力推定方法。
Before performing the construction, a plurality of rotary press-fit piles are penetrated into the ground at a plurality of places, and the press-in force Qin and the rotary torque T of the rotary press-fit pile are obtained for each penetration, and the press-fitting Qin and the rotary torque T are determined. The method for estimating the tip bearing capacity of a rotary press-fit pile according to claim 5 or 6, wherein the tip bearing force estimation formula is obtained in advance from the correlation with the tip bearing force Ru.
請求項1〜7のいずれか1項に記載の回転圧入杭の先端支持力推定方法を使用して前記回転圧入杭の先端支持力を管理する先端支持力管理システムであって、
前記先端支持力推定式が格納された記憶部と、
前記記憶部に格納されている前記先端支持力推定式に基づいて前記先端支持力Ruを算出する演算処理部と、
を有することを特徴とする先端支持力管理システム。
A tip bearing capacity management system that manages the tip bearing capacity of the rotary press-fitting pile by using the method for estimating the tip bearing capacity of the rotary press-fitting pile according to any one of claims 1 to 7.
A storage unit in which the tip bearing capacity estimation formula is stored and
An arithmetic processing unit that calculates the tip bearing force Ru based on the tip bearing force estimation formula stored in the storage section, and
Advanced bearing capacity management system characterized by having.
前記演算処理部において、算出した前記先端支持力Ruに応じて前記回転圧入杭の貫入を継続するか否かを判定する
ことを特徴とする請求項8に記載の先端支持力管理システム。
The tip bearing capacity management system according to claim 8, wherein the arithmetic processing unit determines whether or not to continue the penetration of the rotary press-fitting pile according to the calculated tip bearing capacity Ru.
前記記憶部には、施工する回転圧入杭に必要な設計先端支持力Raが格納され、
前記演算処理部では、算出された前記先端支持力Ruが前記設計先端支持力Ra以上であるか否かを判定する
ことを特徴とする請求項8に記載の先端支持力管理システム。
The design tip bearing capacity Ra required for the rotary press-fitting pile to be constructed is stored in the storage unit.
The tip bearing capacity management system according to claim 8, wherein the arithmetic processing unit determines whether or not the calculated tip bearing force Ru is equal to or greater than the design tip bearing force Ra.
前記演算処理部で処理した結果を表示する表示部を更に有する
ことを特徴とする請求項8〜10のいずれか1項に記載の先端支持力管理システム。
The advanced bearing capacity management system according to any one of claims 8 to 10, further comprising a display unit for displaying the result of processing by the arithmetic processing unit.
請求項1〜7のいずれか1項に記載の回転圧入杭の先端支持力推定方法を使用して前記回転圧入杭の施工を管理する施工管理方法であって、
推定された前記先端支持力Ruに応じて前記回転圧入杭の貫入を継続するか否かを判定する工程、
を更に有することを特徴とする施工管理方法。
A construction management method for managing the construction of the rotary press-fit pile by using the method for estimating the tip bearing capacity of the rotary press-fit pile according to any one of claims 1 to 7.
A step of determining whether or not to continue the penetration of the rotary press-fit pile according to the estimated tip bearing capacity Ru.
A construction management method characterized by further having.
前記先端支持力推定式で算出された前記先端支持力Ruが、施工する前記回転圧入杭に必要な設計先端支持力Ra以上である場合に前記回転圧入杭の貫入を停止し、前記設計先端支持力Raより小さい場合に前記回転圧入杭の貫入を継続するようにした
ことを特徴とする請求項12に記載の施工管理方法。
When the tip bearing force Ru calculated by the tip bearing force estimation formula is equal to or greater than the design tip bearing force Ra required for the rotary press-fitting pile to be constructed, the penetration of the rotary press-fitting pile is stopped to support the design tip. The construction management method according to claim 12, wherein the penetration of the rotary press-fitting pile is continued when the force is smaller than Ra.
前記先端支持力Ruを算出する工程では、前記回転圧入杭の周面摩擦による影響である修正圧入力Qin’又は修正回転トルクTsの計測値を用いて、下記(3a)式で求められる補正係数αにより、又は、下記(3b−1)式で求められる補正係数β1と、下記(3b−2)式で求められる補正係数β2とにより補正した修正先端支持力推定式に基づいて前記先端支持力Ruを算出する
ことを特徴とする請求項12又は13に記載の施工管理方法。
Figure 2019186660

Figure 2019186660

Figure 2019186660
In the step of calculating the tip bearing force Ru, the correction coefficient obtained by the following equation (3a) is obtained by using the measured value of the correction pressure input Qin'or the correction rotation torque Ts, which is the influence of the peripheral friction of the rotation press-fitting pile. The tip bearing capacity is based on the corrected tip bearing capacity estimation formula corrected by α or by the correction coefficient β1 obtained by the following equation (3b-1) and the correction coefficient β2 obtained by the following equation (3b-2). The construction management method according to claim 12 or 13, wherein Ru is calculated.
Figure 2019186660

Figure 2019186660

Figure 2019186660
請求項1〜7のいずれか一項に記載の回転圧入杭の先端支持力推定方法をコンピュータに実行させるプログラム。 A program for causing a computer to execute the method for estimating the tip bearing capacity of a rotary press-fit pile according to any one of claims 1 to 7. 請求項12〜14のいずれか一項に記載の施工管理方法をコンピュータに実行させるプログラム。 A program for causing a computer to execute the construction management method according to any one of claims 12 to 14.
JP2020510206A 2018-03-26 2018-03-26 Tip bearing capacity estimation method, tip bearing capacity management system, construction management method, and program for rotary press-fit piles Active JP6856171B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012209 WO2019186660A1 (en) 2018-03-26 2018-03-26 Method for estimating end bearing capacity of rotary press-in pile, end bearing capacity management system, construction management method, and program

Publications (2)

Publication Number Publication Date
JPWO2019186660A1 true JPWO2019186660A1 (en) 2020-10-22
JP6856171B2 JP6856171B2 (en) 2021-04-07

Family

ID=68059543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510206A Active JP6856171B2 (en) 2018-03-26 2018-03-26 Tip bearing capacity estimation method, tip bearing capacity management system, construction management method, and program for rotary press-fit piles

Country Status (2)

Country Link
JP (1) JP6856171B2 (en)
WO (1) WO2019186660A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346443A (en) * 1993-06-07 1994-12-20 Kawasaki Steel Corp Method for driving steel pipe pile for foundation
JPH09279561A (en) * 1996-04-18 1997-10-28 Shimizu Corp Loading test method of pile and construction method of structure
JP2000080649A (en) * 1997-10-30 2000-03-21 Nippon Steel Corp Rotary press-in pile and execution control method therefor
JP2000080650A (en) * 1998-03-10 2000-03-21 Nippon Steel Corp Construction management method for rotary press-fit pile
JP2002021076A (en) * 2000-07-05 2002-01-23 Nippon Steel Corp System and method for controlling construction of rotatively press-fitted pile
JP2015017493A (en) * 2013-06-14 2015-01-29 株式会社技研製作所 Method and system for estimating end resistance of rotary press-in pile
JP2017002623A (en) * 2015-06-12 2017-01-05 株式会社技研製作所 Estimation system for tip resistance degree, press-fit installation method, and estimation method for tip resistance degree

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346443A (en) * 1993-06-07 1994-12-20 Kawasaki Steel Corp Method for driving steel pipe pile for foundation
JPH09279561A (en) * 1996-04-18 1997-10-28 Shimizu Corp Loading test method of pile and construction method of structure
JP2000080649A (en) * 1997-10-30 2000-03-21 Nippon Steel Corp Rotary press-in pile and execution control method therefor
JP2000080650A (en) * 1998-03-10 2000-03-21 Nippon Steel Corp Construction management method for rotary press-fit pile
JP2002021076A (en) * 2000-07-05 2002-01-23 Nippon Steel Corp System and method for controlling construction of rotatively press-fitted pile
JP2015017493A (en) * 2013-06-14 2015-01-29 株式会社技研製作所 Method and system for estimating end resistance of rotary press-in pile
JP2017002623A (en) * 2015-06-12 2017-01-05 株式会社技研製作所 Estimation system for tip resistance degree, press-fit installation method, and estimation method for tip resistance degree

Also Published As

Publication number Publication date
JP6856171B2 (en) 2021-04-07
WO2019186660A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
CN104965987B (en) A kind of expansive soil foundation soil expansion causes the measuring method of a displacement and internal force
WO2016152568A1 (en) Device for calculating construction assistance information, system for calculating construction assistance information, and program
AU2015399014B2 (en) Method and electronic control unit for determining a vertical position
JP5819152B2 (en) Support layer arrival estimation method and support layer arrival estimation support device used in pile embedding method
JP6856171B2 (en) Tip bearing capacity estimation method, tip bearing capacity management system, construction management method, and program for rotary press-fit piles
JP6138729B2 (en) Resistance estimation method and estimation system for rotary press-fit piles
WO2015012304A1 (en) Method for determining liquefaction
JP4885325B1 (en) Construction management system for ground improvement method
JP7155911B2 (en) Method for estimating tip bearing capacity of rotary press-in piles, tip bearing capacity management system, construction management method, and program
CN110174503A (en) A method of determining that country rock weakens development range based on tunnel deformation
JP2010133140A (en) Rotary penetrating pile construction system
JP6574341B2 (en) Tip resistance force estimation system, press-fitting construction system, and tip resistance force estimation method
JP3831181B2 (en) Construction management system and construction management method for rotary press-fit piles
JP4964525B2 (en) Caisson settlement method and caisson settlement management system
KR100755351B1 (en) N of standard penetration test measuring method and the apparatus using electric current data
JP5643384B2 (en) Concrete property estimation method and concrete property estimation apparatus
JP6929676B2 (en) Tip resistance estimation system, fluid injection combined press-fitting construction system, and tip resistance estimation method
JP5283555B2 (en) Estimation method of concrete properties
WO2020218561A1 (en) Rotary pile construction method, pile group manufacturing method, pile group, rotary pile construction and management device, rotary pile construction and management system
JP2014202657A (en) Method and device for measuring depth direction properties of concrete structure member
JP7393452B2 (en) Method for estimating ground data from construction data
JP7090320B2 (en) Arithmetic logic unit, excavator, calculation method, and computer program
CN103352465B (en) Judge that great diameter and long steel pipe pile slips the method in stake interval in piling process
JP6656724B2 (en) Liquefaction determination method
JP7020589B2 (en) Construction method of rotating piles, manufacturing method of piles, and piles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R151 Written notification of patent or utility model registration

Ref document number: 6856171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151