WO2019184322A1 - 光学组件及虚拟现实vr设备 - Google Patents

光学组件及虚拟现实vr设备 Download PDF

Info

Publication number
WO2019184322A1
WO2019184322A1 PCT/CN2018/111793 CN2018111793W WO2019184322A1 WO 2019184322 A1 WO2019184322 A1 WO 2019184322A1 CN 2018111793 W CN2018111793 W CN 2018111793W WO 2019184322 A1 WO2019184322 A1 WO 2019184322A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
eye
screen
display screen
light emitted
Prior art date
Application number
PCT/CN2018/111793
Other languages
English (en)
French (fr)
Inventor
罗鹏
王志强
崔辛超
钟德龙
田建飞
邱亚栋
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/334,573 priority Critical patent/US11474356B2/en
Publication of WO2019184322A1 publication Critical patent/WO2019184322A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Definitions

  • the present disclosure relates to the field of Virtual Reality (VR), for example, designing an optical component and a VR device.
  • VR Virtual Reality
  • VR devices have gradually gained popularity in the market.
  • VR products include wearable devices (such as VR glasses, VR helmets), and the playback screen (ie, display screen) of the wearable VR device is small in size.
  • An optical component comprising:
  • the light-transmitting device is configured to receive the light emitted by the left-eye display screen and the light emitted by the right-eye display screen, and transmit the light emitted by the left-eye display screen and the light emitted by the right-eye display image to the light concentrating device ;
  • the light concentrating device is configured to converge the light emitted by the left eye display screen and the light emitted by the right eye display image to the light reflecting device, wherein the light emitted by the left eye display screen is concentrated
  • the size of the first display screen is smaller than the size of the left-eye display screen
  • the size of the second display screen formed by the convergence of the light emitted by the right-eye display screen is smaller than the size of the right-eye display screen
  • the light reflecting means is configured to reflect light of the first display screen to a left eye of the user, and reflect light of the second display screen to a right eye of the user.
  • the light propagation device is an optical prism.
  • the light concentrating device comprises:
  • a left-eye lens configured to converge light emitted by the left-eye display to the light reflecting device
  • a right eye lens arranged to converge light emitted by the right eye display to the light reflecting means.
  • the left eye lens and the right eye lens are both convex lenses.
  • the light reflecting device comprises a light screen, wherein the light screen is located on a path of the light ray collecting device emitting light, and the light screen is configured to display the first display screen and the second Displaying a picture and reflecting the light of the first display picture and the light of the second display picture.
  • the light reflecting device further includes a plane mirror, wherein the plane mirror is located on a path of the light reflected by the light screen, and the plane mirror is configured to reflect light of the first display screen reflected by the light screen To the left eye of the user, and the light of the second display screen reflected by the light screen is reflected to the right eye of the user.
  • the geometric center of the optical prism, the geometric center of the left-eye lens, the geometric center of the right-eye lens, and the geometric center of the light screen are in the same plane.
  • the geometric center of the optical prism, the geometric center of the left-eye lens, the geometric center of the right-eye lens, and the plane at which the geometric center of the screen is located are parallel to the XOY plane of the three-dimensional coordinate system;
  • An angle formed by a normal line of the light screen between the Z axis and the normal axis of the plane mirror is complementary to an angle formed between a normal direction of the plane mirror and a Z axis in a reflection direction of the plane mirror.
  • the path distance of the light emitted by the left eye display screen to the left eye lens is greater than the focal length of the left eye lens, and the path distance of the light emitted by the right eye display screen to the right eye lens is greater than the right The focal length of the eye lens.
  • a virtual reality VR device comprising the optical component of any of the above.
  • the VR device further includes:
  • a left eye display that is set to display a left eye display
  • the right eye display is set to display the right eye display.
  • FIG. 1 is a schematic diagram showing the logical structure of an optical component provided by some embodiments.
  • FIG. 2 is a schematic diagram showing the physical structure of an optical component provided by some embodiments.
  • FIG. 3 is a schematic diagram showing the physical structure of an optical component provided by other embodiments.
  • FIG. 4 is a schematic diagram showing the logical structure of a VR helmet provided by some embodiments.
  • FIG. 5 is a schematic diagram of the logical structure of VR glasses provided by some embodiments.
  • the optical components and VR devices provided in the following embodiments are capable of displaying small-sized, high-resolution VR pictures.
  • the optical component includes a light propagation device 11, a light concentrating device 12, and a light reflecting device 13.
  • the light-transmitting device 11 is configured to receive the light emitted by the left-eye display screen and the light emitted by the right-eye display screen, and propagate the light emitted by the left-eye display screen and the light emitted by the right-eye display screen to the light concentrating device 12, respectively.
  • the light concentrating device 12 is arranged to converge the light emitted by the left eye display screen and the light emitted by the right eye display screen to the light reflecting means 13.
  • the size of the first display screen formed by the convergence of the light emitted by the left-eye display screen is smaller than the size of the left-eye display screen
  • the size of the second display screen formed by the convergence of the light emitted by the right-eye display screen is smaller than the size of the right display screen.
  • the eye displays the size of the picture.
  • the light reflecting means 13 is arranged to reflect the light of the first display picture to the left eye of the user and to reflect the light of the second display picture to the right eye of the user.
  • the left eye display screen and the right eye display screen described above are high resolution screens suitable for display on a large size screen.
  • the optical component converges the light emitted by the left-eye display and the light emitted by the right-eye display, so that the view formed after the convergence is suitable for a device having a small-sized playback picture, since the convergence does not affect the resolution, the optical
  • the VR picture that the component ultimately presents to the user has a very high definition.
  • the solution of the above embodiment is capable of displaying a high-resolution VR picture on a small-sized playback screen based on a simple optical structure, which can improve the user's experience with the VR device.
  • the large size screen is a screen that is 5 inches or more in size.
  • the high resolution refers to a screen resolution of QHD (Quarter High Definition), that is, 960 ⁇ 540 resolution.
  • QHD Quadrater High Definition
  • the high resolution means that the screen resolution is UHD (Ultra High Definition), that is, the resolution reaches 3840 ⁇ 2160.
  • high resolution refers to a pixel density greater than 600 ppi.
  • the light-transmitting device, the light-concentrating device, and the light-reflecting device are respectively realized by different optical components.
  • the optical assembly specifically includes an optical prism 111, a left-eye lens 121, a right-eye lens 122, a light screen 131, and a plane mirror 132.
  • the light propagation device 11 described above includes an optical prism 111.
  • the above-described light concentrating device 12 includes a left-eye lens 121 and a right-eye lens 122.
  • the left-eye lens 121 and the right-eye lens 122 are convex lenses having a converging function.
  • the light reflecting device 13 described above includes a light screen 131 and a plane mirror 132.
  • the geometric centers of the four components of the optical prism 111, the left-eye lens 121, the right-eye lens 122, and the light screen 131 are located on the same plane.
  • the optical screen 131 when the geometric centers of the optical prism 111, the left-eye lens 121, the right-eye lens 122, and the optical screen 131 are located in the XOY plane of the three-dimensional coordinate system, then the optical screen 131 The angle ⁇ between the normal line and the Z-axis in the reflection direction of the light screen 131 is complementary to the angle ⁇ between the normal of the plane mirror 132 and the Z-axis in the reflection direction of the plane mirror 132 (ie, along the light screen 131).
  • the normal line of the light screen 131 extending in the direction of reflection, the angle between the axis and the Z axis is ⁇ ; the normal angle of the plane mirror 132 extending in the direction of reflection of the plane mirror 132, and the angle ⁇ between the Z axis; ⁇ and ⁇ are complementary).
  • the reflecting surface of the light panel 131 and the reflecting surface of the plane mirror 132 are perpendicular to each other. For example, if ⁇ is 135°, ⁇ is 45°; or ⁇ is 45°, ⁇ is 135°.
  • the light emitted by the left eye display screen propagates to the left eye of the user, and the light emitted by the right eye display image propagates to the right eye of the user.
  • the left eye display screen when incident on the optical prism 111, it is reflected by the optical prism 111 to the left eye lens 121; and when the right eye display image is incident on the optical prism 111, it is reflected by the optical prism 111 to the right eye lens 122. .
  • the left-eye lens 121 converges the light emitted by the left-eye display screen to the light screen 131 to obtain a first display screen; the right-eye lens 122 converges the light emitted from the right-eye display screen to the light screen 131 to obtain a second display screen.
  • the first display image is an inverted and reduced real image on the light screen 131; and when the right eye displays the light emitted by the screen to
  • the second display screen is an inverted and reduced real image on the optical screen 131.
  • the light screen 131 is a screen having brightness itself, and the brightness of the real image on the light screen 131 changes with the brightness of the light screen 131 to adjust the brightness of the VR picture.
  • the light of the first display screen after the convergence and the light of the second display screen after the convergence are reflected by the light screen 131 to the plane mirror 132.
  • the plane mirror 132 is located on the path of the light reflected by the light screen 131, and finally reflected by the plane mirror 132 along the X-axis, reflects the light of the first display screen reflected by the screen 131 to the left eye of the user, and reflects the light screen 131.
  • the light of the second display screen is reflected to the right eye of the user to present the VR picture.
  • the condensing property of the convex lens is used to converge the screen of the large-sized screen into a small-sized real image, and the path is reflected by the prism, the light screen, the plane mirror, or the like to reduce the space occupied by the VR component.
  • the aggregated image can achieve higher resolution.
  • the light-transmitting device, the light-concentrating device, and the light-reflecting device are implemented by other optical components.
  • the light-transmitting device uses a lens instead of a prism to realize a propagation function;
  • the light-reflecting device includes only a plane mirror, and the light of the left-eye display image after the convergence is directly reflected by the plane mirror to the left eye of the user, and the right-eye display screen after convergence The light is reflected directly through the mirror to the user's right eye.
  • the light reflecting device only includes the light screen, and the light of the left eye display screen after the convergence is directly reflected by the light screen to the left eye of the user, and the light of the right eye display image after the convergence is directly reflected by the light screen to the right of the user. eye.
  • Some embodiments provide a VR device that includes the optical components provided by any of the above embodiments.
  • the VR device occupies a small space and realizes an ultra-high resolution VR display effect, and is suitable for use in a wearable device.
  • the wearable device is a VR glasses.
  • the wearable device is a VR helmet.
  • VR glasses and VR helmets have a small-sized playback screen, making it difficult to display high-resolution VR images.
  • the picture definition of the wearable VR device is improved.
  • the VR device when the VR device is a VR helmet, as shown in FIG. 4, the VR helmet includes an optical component 41, a left eye display 42 and a right eye display 43.
  • the left eye display screen 42 is set to display a left eye display screen.
  • the right eye display screen 43 is set to display a right eye display screen.
  • the left-eye display 42 and the right-eye display 43 are large-size high-resolution screens, and the left-eye display 42 transmits the left-eye display light to the light-transmitting device of the optical component 41, the right eye.
  • the display screen 43 emits the light of the right-eye display screen into the light-transmitting device of the optical component 41, and the optical component 41 receives and converges the light of the left-eye display image and the light of the right-eye display image to obtain a small-sized, high-resolution image. VR picture.
  • a small size means that the screen size is less than 3 inches.
  • a small size means that the screen size is greater than or equal to 2 inches and less than or equal to 3 inches.
  • the VR device is a VR glasses, as shown in FIG. 5, which includes an optical component 51, a receiver 52, and a transmitter 53.
  • the receiver 52 is arranged to receive left eye display screen information and right eye display screen information.
  • the transmitter 53 is arranged to transmit a left-eye display screen and a right-eye display screen to the optical component 51 in accordance with the left-eye display screen information and the right-eye display screen information.
  • the left eye display screen information and the right eye display screen information are screen information played in a large size, high resolution playback device.
  • the receiver 52 is a communication device.
  • the receiver 52 is Bluetooth or Wireless-Fidelity (WIFI).
  • the receiver 52 wirelessly receives the picture information (eg, interacts with a large-sized, high-resolution playback device to receive its picture information), and the light of the picture information is ultimately transmitted by the transmitter 53 to the optical component 51, by the optical
  • the component 51 receives and converges the light emitted by the transmitter 53 to obtain a small-sized, high-resolution VR picture.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

提供了一种光学组件及虚拟现实VR设备。所述光学组件包括光线传播装置、光线汇聚装置以及光线反射装置。光线传播装置设置为接收左眼显示画面发出的光线和右眼显示画面发出的光线,并将左眼显示画面发出的光线和右眼显示画面发出的光线分别传播至光线汇聚装置。光线汇聚装置设置为将左眼显示画面发出的光线和右眼显示画面发出的光线汇聚至光线反射装置。左眼显示画面发出的光线经汇聚后所形成的第一显示画面的尺寸小于左眼显示画面的尺寸,以及右眼显示画面发出的光线经汇聚后所形成的第二显示画面的尺寸小于右眼显示画面的尺寸。光线反射装置设置为将第一显示画面的光线反射至用户的左眼,并将第二显示画面的光线反射至用户的右眼。

Description

光学组件及虚拟现实VR设备
相关申请的交叉引用
本申请主张在2018年3月30日在中国提交的中国专利申请号No.201810288795.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及虚拟现实(Virtual Reality,VR)领域,例如,设计一种光学组件及VR设备。
背景技术
随着VR技术的发展,VR设备逐渐在市场上得到了普及。VR产品包括可穿戴设备(如VR眼镜、VR头盔),可穿戴的VR设备的播放画面(即显示屏幕)的尺寸小。
发明内容
一种光学组件,包括:
光线传播装置,设置为接收左眼显示画面发出的光线和右眼显示画面发出的光线,并将所述左眼显示画面发出的光线和所述右眼显示画面发出的光线分别传播至光线汇聚装置;
所述光线汇聚装置,设置为将所述左眼显示画面发出的光线和所述右眼显示画面发出的光线汇聚至光线反射装置,其中,所述左眼显示画面发出的光线经汇聚后所形成的第一显示画面的尺寸小于所述左眼显示画面的尺寸,以及所述右眼显示画面发出的光线经汇聚后所形成的第二显示画面的尺寸小于所述右眼显示画面的尺寸;以及
所述光线反射装置,设置为将所述第一显示画面的光线反射至用户的左眼,以及将所述第二显示画面的光线反射至用户的右眼。
一些实施例中,所述光线传播装置为光学棱镜。
一些实施例中,所述光线汇聚装置包括:
左眼透镜,设置为将左眼显示画面发出的光线汇聚至所述光线反射装置;以及
右眼透镜,设置为将右眼显示画面发出的光线汇聚至所述光线反射装置。
一些实施例中,所述左眼透镜和所述右眼透镜均为凸透镜。
一些实施例中,所述光线反射装置包括光屏,其中,所述光屏位于所述光线汇聚装置出射光线的路径上,所述光屏设置为显示所述第一显示画面和所述第二显示画面,并将所述第一显示画面的光线以及所述第二显示画面的光线进行反射。
一些实施例中,所述光线反射装置还包括平面镜,其中,所述平面镜位于所述光屏反射光线的路径上,以及所述平面镜设置为将所述光屏反射的第一显示画面的光线反射至用户的左眼,以及将所述光屏反射的第二显示画面的光线反射至用户的右眼。
一些实施例中,所述光学棱镜的几何中心、所述左眼透镜的几何中心、所述右眼透镜的几何中心以及所述光屏的几何中心位于同一平面。
一些实施例中,所述光学棱镜的几何中心、左眼透镜的几何中心、右眼透镜的几何中心以及光屏的几何中心所处的平面平行于三维坐标系的XOY平面;
所述光屏的法线在所述光屏的反射方向上与Z轴之间形成的夹角互补于所述平面镜的法线在所述平面镜的反射方向上与Z轴之间形成的夹角;以及
所述左眼显示画面发出的光线至所述左眼透镜的路径距离大于所述左眼透镜的焦距,以及所述右眼显示画面发出的光线至所述右眼透镜的路径距离大于所述右眼透镜的焦距。
一种虚拟现实VR设备,包括上述任一所述的光学组件。
一些实施例中,所述VR设备还包括:
左眼显示屏,设置为显示左眼显示画面;以及
右眼显示屏,设置为显示右眼显示画面。
附图说明
图1为一些实施例提供的光学组件的逻辑结构示意图;
图2为一些实施例提供的光学组件的物理结构示意图;
图3为另一些实施例提供的光学组件的物理结构示意图;
图4为一些实施例提供的VR头盔的逻辑结构示意图;以及
图5为一些实施例提供的VR眼镜的逻辑结构示意图。
具体实施方式
在小尺寸的播放画面上显示高分辨率的VR画面存在较高的技术难度,以下实施例中提供的光学组件和VR设备为能够显示小尺寸、高分辨率的VR画面。
一些实施例提供了一种光学组件。如图1所示,所述光学组件包括光线传播装置11、光线汇聚装置12以及光线反射装置13。
光线传播装置11设置为接收左眼显示画面发出的光线和右眼显示画面发出的光线,并将左眼显示画面发出的光线和所述右眼显示画面发出的光线分别传播至光线汇聚装置12。
光线汇聚装置12设置为将左眼显示画面发出的光线和右眼显示画面发出的光线汇聚至光线反射装置13。其中,左眼显示画面发出的光线经汇聚后所形成的第一显示画面的尺寸小于左眼显示画面的尺寸,右眼显示画面发出的光线经汇聚后所形成的第二显示画面的尺寸小于右眼显示画面的尺寸。
光线反射装置13设置为将第一显示画面的光线反射至用户的左眼,以及将第二显示画面的光线反射至用户的右眼。
一些实施例中,上述左眼显示画面和右眼显示画面是适用于大尺寸屏幕所显示的高分辨率画面。光学组件将左眼显示画面发出的光线和右眼显示画面发出的光线进行汇聚,从而使汇聚后形成的视图适用于具有小尺寸播放画面的设备,由于汇聚不会对分辨率产生影响,因此光学组件最终给用户呈现的VR画面具有极高的清晰度。上述实施例的方案基于简单的光学结构就能够在小尺寸的播放画面上显示出高分辨率的VR画面,可提高用户对VR设备的体验。
一些实施例中,大尺寸屏幕为尺寸在5英寸以上的屏幕。
一些实施例中,高分辨率是指屏幕分辨率为QHD(Quarter High  Definition),即960×540分辨率。
一些实施例中,高分辨率是指屏幕分辨率为UHD(Ultra High Definition)即,分辨率达到3840×2160。
一些实施例中,高分辨率是指像素密度大于600ppi。
一些实施例中的光学组件中,上述光线传播装置、光线汇聚装置以及光线反射装置分别由不同的光学部件实现。
一些实施例中,如图2和图3所示,光学组件具体包括光学棱镜111、左眼透镜121、右眼透镜122、光屏131和平面镜132。
上述光线传播装置11包括光学棱镜111。
上述光线汇聚装置12包括左眼透镜121和右眼透镜122。
一些实施例中,左眼透镜121和右眼透镜122为具有汇聚功能的凸透镜。
上述光线反射装置13包括光屏131和平面镜132。
一些实施例中,为减小光线组件占用的空间,光学棱镜111、左眼透镜121、右眼透镜122以及光屏131这四个部件各自的几何中心位于同一平面。
示例性地,如图3所示,当光学棱镜111、左眼透镜121、右眼透镜122以及光屏131这四者各自的几何中心位于三维坐标系的XOY平面内时,则光屏131的法线在光屏131的反射方向上与Z轴之间的夹角α互补于平面镜132的法线在平面镜132的反射方向上与Z轴之间的夹角β(即,在沿光屏131的反射方向上延伸的光屏131的法线,与Z轴之间的夹角为α;在沿平面镜132的反射方向上延伸的平面镜132的法线,与Z轴之间的夹角β;α和β互补)。
即,光屏131的反射面与平面镜132的反射面互相垂直。例如:α为135°,则β为45°;或者α为45°,则β为135°。基于该结构设计,左眼显示画面发出的光线传播至用户的左眼,以及右眼显示画面发出的光线传播至用户的右眼。
其中,当左眼显示画面在入射至光学棱镜111后,被光学棱镜111反射至左眼透镜121;以及当右眼显示画面在入射至光学棱镜111后,被光学棱镜111反射至右眼透镜122。
左眼透镜121将左眼显示画面发出的光线汇聚至光屏131,得到第一显 示画面;右眼透镜122将右眼显示画面发出的光线汇聚至光屏131得到第二显示画面。当左眼显示画面发出的光线至左眼透镜121的路径距离大于左眼透镜121的焦距时,第一显示画面在光屏131上为倒立缩小的实像;且当右眼显示画面发出的光线至所述右眼透镜122的路径距离大于右眼透镜122的焦距时,第二显示画面在光屏131上为倒立缩小的实像。
该光屏131为本身具有亮度的屏幕,光屏131上实像的亮度会随光屏131的亮度而改变,以调节VR画面的亮度。
汇聚后的第一显示画面的光线和汇聚后的第二显示画面的光线经光屏131反射至平面镜132。该平面镜132位于光屏131反射光线的路径上,最终由平面镜132沿X轴正向,将光屏131反射的第一显示画面的光线反射至用户的左眼,以及将光屏131反射的第二显示画面的光线反射至用户的右眼,以呈现VR画面。
上述实施例中,利用凸透镜的聚光性,将大尺寸屏幕的画面汇聚成小尺寸实像,再利用棱镜、光屏、平面镜等将路径反射以减小VR组件占用的空间。当汇聚前的视图光源具有高分辨率时,汇聚后的图像可达到更高的分辨率。
一些实施例中,上述光线传播装置、光线汇聚装置以及光线反射装置由其他光学部件实现。
例如,光线传播装置采用透镜来代替棱镜,以实现传播功能;光线反射装置仅包括平面镜,汇聚后的左眼显示画面的光线直接经过平面镜反射至用户的左眼,以及汇聚后的右眼显示画面的光线直接经过平面镜反射至用户的右眼。
再例如:光线反射装置仅包括光屏,汇聚后的左眼显示画面的光线直接经过光屏反射至用户的左眼,以及汇聚后的右眼显示画面的光线直接经过光屏反射至用户的右眼。
一些实施例提供一种VR设备,该VR设备包括上述任一实施例提供的光学组件。
基于该光学组件,VR设备占用小的空间并实现了超高分辨率的VR显示效果,适合应用于可穿戴设备。
一些实施例中,可穿戴设备是VR眼镜。
一些实施例中,可穿戴设备是VR头盔。
VR眼镜以及VR头盔具有小尺寸的播放画面,难以显示高分辨率的VR画面。采用上述实施例的VR设备,提高了可穿戴VR设备的画面清晰度。
示例性地,VR设备是VR头盔时,如图4所示,该VR头盔包括光学组件41、左眼显示屏42以及右眼显示屏43。
左眼显示屏42设置为显示左眼显示画面。
右眼显示屏43设置为显示右眼显示画面。
一些实施例中,上述左眼显示屏42和右眼显示屏43为大尺寸高分辨率的屏幕,左眼显示屏42将左眼显示画面光线发射至光学组件41的光线传播装置中,右眼显示屏43将右眼显示画面的光线发射至光学组件41的光线传播装置中,该光学组件41接收并汇聚左眼显示画面的光线和右眼显示画面的光线,得到小尺寸、高分辨率的VR画面。
一些实施例中,小尺寸是指屏幕尺寸小于3英寸(inch)。
一些实施例中,小尺寸是指屏幕尺寸大于等于2英寸且小于等于3英寸。
一些实施例中,VR设备是VR眼镜,如图5所示,该VR眼镜包括光学组件51、接收器52以及发射器53。
接收器52设置为接收左眼显示画面信息和右眼显示画面信息。
发射器53设置为根据左眼显示画面信息和右眼显示画面信息,向光学组件51发射左眼显示画面和右眼显示画面。
一些实施例中,左眼显示画面信息和右眼显示画面信息为在大尺寸、高分辨率的播放设备中播放的画面信息。
一些实施例中,接收器52是通信装置。
例如,接收器52为蓝牙或无线仿真(Wireless-Fidelity,WIFI)。接收器52通过无线方式接收该画面信息(例如与大尺寸、高分辨率的播放设备建立交互,接收其画面信息),该画面信息的光线最终由发射器53发射至光学组件51,由该光学组件51接收并汇聚发射器53发射的光线,得到小尺寸、高分辨率的VR画面。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属 领域内具有一般技能的人士所理解的通常意义。本公开中使用“包括”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。

Claims (10)

  1. 一种光学组件,包括:
    光线传播装置,设置为接收左眼显示画面发出的光线和右眼显示画面发出的光线,并将所述左眼显示画面发出的光线和所述右眼显示画面发出的光线分别传播至光线汇聚装置;
    所述光线汇聚装置,设置为将所述左眼显示画面发出的光线和所述右眼显示画面发出的光线汇聚至光线反射装置,其中,所述左眼显示画面发出的光线经汇聚后所形成的第一显示画面的尺寸小于所述左眼显示画面的尺寸,以及所述右眼显示画面发出的光线经汇聚后所形成的第二显示画面的尺寸小于所述右眼显示画面的尺寸;以及
    所述光线反射装置,设置为将所述第一显示画面的光线反射至用户的左眼,以及将所述第二显示画面的光线反射至用户的右眼。
  2. 根据权利要求1所述的光学组件,其中,所述光线传播装置为光学棱镜。
  3. 根据权利要求2所述的光学组件,其中,所述光线汇聚装置包括:
    左眼透镜,设置为将左眼显示画面发出的光线汇聚至所述光线反射装置;以及
    右眼透镜,设置为将右眼显示画面发出的光线汇聚至所述光线反射装置。
  4. 根据权利要求3所述的光学组件,其中,所述左眼透镜和所述右眼透镜均为凸透镜。
  5. 根据权利要求3或4所述的光学组件,其中,所述光线反射装置包括光屏;
    其中,所述光屏位于所述光线汇聚装置出射光线的路径上,以及所述光屏设置为显示所述第一显示画面和所述第二显示画面,并将所述第一显示画面的光线以及所述第二显示画面的光线进行反射。
  6. 根据权利要求5所述的光学组件,其中,所述光线反射装置还包括平面镜;
    其中,所述平面镜位于所述光屏反射光线的路径上,以及所述平面镜设 置为将所述光屏反射的第一显示画面的光线反射至用户的左眼,以及将所述光屏反射的第二显示画面的光线反射至用户的右眼。
  7. 根据权利要求6所述的光学组件,其中,所述光学棱镜的几何中心、所述左眼透镜的几何中心、所述右眼透镜的几何中心以及所述光屏的几何中心位于同一平面。
  8. 根据权利要求7所述的光学组件,其中,
    所述光学棱镜的几何中心、左眼透镜的几何中心、右眼透镜的几何中心以及光屏的几何中心所处的平面平行于三维坐标系的XOY平面;
    所述光屏的法线在所述光屏的反射方向上与Z轴之间形成的夹角互补于所述平面镜的法线在所述平面镜的反射方向上与Z轴之间形成的夹角;以及
    所述左眼显示画面发出的光线至所述左眼透镜的路径距离大于所述左眼透镜的焦距,以及所述右眼显示画面发出的光线至所述右眼透镜的路径距离大于所述右眼透镜的焦距。
  9. 一种虚拟现实VR设备,包括如权利要求1-8任一项所述的光学组件。
  10. 根据权利要求9所述的VR设备,还包括:
    左眼显示屏,设置为显示左眼显示画面;以及
    右眼显示屏,设置为显示右眼显示画面。
PCT/CN2018/111793 2018-03-30 2018-10-25 光学组件及虚拟现实vr设备 WO2019184322A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/334,573 US11474356B2 (en) 2018-03-30 2018-10-25 Optical assembly and virtual reality device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810288795.9 2018-03-30
CN201810288795.9A CN108761786B (zh) 2018-03-30 2018-03-30 一种光学组件及vr设备

Publications (1)

Publication Number Publication Date
WO2019184322A1 true WO2019184322A1 (zh) 2019-10-03

Family

ID=63980807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111793 WO2019184322A1 (zh) 2018-03-30 2018-10-25 光学组件及虚拟现实vr设备

Country Status (3)

Country Link
US (1) US11474356B2 (zh)
CN (1) CN108761786B (zh)
WO (1) WO2019184322A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777616A (zh) * 2015-04-27 2015-07-15 深圳市智帽科技开发有限公司 透视头戴式光场显示装置
CN204536735U (zh) * 2015-04-08 2015-08-05 江苏慧光电子科技有限公司 透明全息显示***
WO2016176207A1 (en) * 2015-04-26 2016-11-03 Mems Start, Llc Near-eye light-field display system
CN106199972A (zh) * 2016-09-06 2016-12-07 东莞市美光达光学科技有限公司 一种用于观察大尺寸屏幕3d显示的头戴式光学***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616732A (en) * 1969-11-06 1971-11-02 Buckbee Mears Co Aperture mask optical system
US9406166B2 (en) * 2010-11-08 2016-08-02 Seereal Technologies S.A. Display device, in particular a head-mounted display, based on temporal and spatial multiplexing of hologram tiles
US9459457B2 (en) * 2011-12-01 2016-10-04 Seebright Inc. Head mounted display with remote control
TWI604223B (zh) * 2015-12-18 2017-11-01 台達電子工業股份有限公司 顯示裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204536735U (zh) * 2015-04-08 2015-08-05 江苏慧光电子科技有限公司 透明全息显示***
WO2016176207A1 (en) * 2015-04-26 2016-11-03 Mems Start, Llc Near-eye light-field display system
CN104777616A (zh) * 2015-04-27 2015-07-15 深圳市智帽科技开发有限公司 透视头戴式光场显示装置
CN106199972A (zh) * 2016-09-06 2016-12-07 东莞市美光达光学科技有限公司 一种用于观察大尺寸屏幕3d显示的头戴式光学***

Also Published As

Publication number Publication date
US20220050291A1 (en) 2022-02-17
CN108761786B (zh) 2020-08-04
CN108761786A (zh) 2018-11-06
US11474356B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
US10241344B1 (en) Advanced retroreflecting aerial displays
US11119322B2 (en) Imaging display system
CN107870438B (zh) 增强现实的装置、光引擎部件和方法
JP3232126U (ja) プロンプタ及びプロンプタにおける空中結像素子の使用方法
JPH04339488A (ja) 三次元映像表示方法および装置
US20140104580A1 (en) Projection device
CN108885353A (zh) 投影装置、投影***以及眼镜型显示装置
WO2020124627A1 (zh) 一种近眼显示***及眼镜式虚拟显示器
WO2019028970A1 (zh) 光学***、放大影像装置、虚拟现实眼镜及增强现实眼镜
CN106707531A (zh) 一种显示装置及穿戴式设备
US10531076B2 (en) Device, system and method for stereoscopic display
WO2022199194A1 (zh) 光学***和穿戴式增强现实显示设备
US11644673B2 (en) Near-eye optical system
WO2016123925A1 (zh) 3d显示眼镜
KR20190085345A (ko) 헤드 마운트 장치
US10593102B2 (en) Three-dimensional display for smart home device
WO2019184322A1 (zh) 光学组件及虚拟现实vr设备
WO2023276921A1 (ja) 空中浮遊映像表示装置
TWI715145B (zh) 具有雙對焦平面的虛擬實境光學裝置
WO2017147801A1 (zh) 一种调整多深度显示的景深距离的***及其方法
CN106708264B (zh) 显示装置和穿戴式电子设备
TWI608255B (zh) 立體浮空影像顯示裝置
US20150185491A1 (en) Optical Imaging Apparatus
TWI723836B (zh) 光學投影系統
KR101741912B1 (ko) 이미지 확대 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913088

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18913088

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18913088

Country of ref document: EP

Kind code of ref document: A1