WO2019181960A1 - 熱電変換層形成用組成物及び熱電変換層の製造方法 - Google Patents

熱電変換層形成用組成物及び熱電変換層の製造方法 Download PDF

Info

Publication number
WO2019181960A1
WO2019181960A1 PCT/JP2019/011517 JP2019011517W WO2019181960A1 WO 2019181960 A1 WO2019181960 A1 WO 2019181960A1 JP 2019011517 W JP2019011517 W JP 2019011517W WO 2019181960 A1 WO2019181960 A1 WO 2019181960A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion layer
composition
forming
manganese
Prior art date
Application number
PCT/JP2019/011517
Other languages
English (en)
French (fr)
Inventor
宅磨 長▲濱▼
加藤 博和
前田 真一
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2020507846A priority Critical patent/JPWO2019181960A1/ja
Publication of WO2019181960A1 publication Critical patent/WO2019181960A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Definitions

  • the present invention relates to a composition for forming a thermoelectric conversion layer for forming a thermoelectric conversion layer and a method for producing a thermoelectric conversion layer using the composition for forming a thermoelectric conversion layer.
  • thermoelectric conversion element Since the magnitude of the electromotive force due to the Seebeck effect is proportional to the temperature difference between the high-temperature and low-temperature parts of the thermoelectric conversion element, in order to increase the temperature difference in the conventional thermoelectric conversion module, a bulk-type thermoelectric conversion element is used. It was often used. However, the bulk-type thermoelectric conversion element has a problem that the microfabrication is not easy and the power generation unit price of the module becomes high. Therefore, research on thermoelectric conversion elements and thermoelectric conversion modules using a coating process that facilitates microfabrication has been recently reported. In particular, from the viewpoint of environmental protection, development of a composition for forming a thermoelectric conversion layer using water as a main dispersion medium is strongly desired.
  • Patent Document 1 discloses forming a film on a support using an aqueous composition containing semiconductor fine particles and a conductive polymer.
  • Patent Document 2 discloses that a thermoelectric conversion sheet is produced from an aqueous composition containing metal nanoparticles and a water-soluble conductive polymer.
  • Patent Document 3 discloses that a flexible thermoelectric conversion layer is prepared by dissolving a conjugated conductive polymer in water.
  • Patent Document 4 discloses that a thermoelectric conversion layer of a manganese-based oxide was produced using ⁇ -terpineol as a solvent.
  • Patent Documents 1 to 3 are techniques in which a thermoelectric conversion layer is produced by a coating process using a thermoelectric conversion layer forming composition in which a thermoelectric conversion material is dispersed or dissolved in water.
  • thermoelectric conversion materials with low heat resistance, and do not have heat resistance in the middle and high temperature range (300 to 600 ° C.).
  • Patent Document 4 uses an organic solvent to produce a thermoelectric conversion layer. There has been no example of a thermoelectric conversion layer forming composition using water as a solvent / dispersion medium in a medium-high temperature range thermoelectric conversion layer.
  • An object of the present invention is to provide a composition for forming a thermoelectric conversion layer using water as a dispersion medium that can be applied to a medium to high temperature range of 300 to 600 ° C. Moreover, this invention makes it a subject to manufacture a thermoelectric conversion layer with a coating process using the composition for thermoelectric conversion layer formation.
  • thermoelectric conversion layer forming composition containing (B) a manganese-based oxide and (C) a polysaccharide has good dispersibility and coatability, and was prepared from the thermoelectric conversion layer forming composition.
  • the present inventors have found that a thermoelectric conversion layer excellent in thermoelectric properties free of components that inhibit thermoelectric properties can be produced by firing the polysaccharide contained in the coating in an oxidizing atmosphere.
  • the first aspect of the present invention is as follows.
  • the polysaccharide is a composition for forming a thermoelectric conversion layer according to the first aspect, which is a cellulose derivative
  • the cellulose derivative is a composition for forming a thermoelectric conversion layer according to the second aspect, which is methylcellulose
  • the manganese-based oxide has the following general formula (1): Ca v M 1 w Mn x M 2 y O z (1) (Where M 1 is at least one element selected from the group consisting of
  • M 3 is at least one element selected from the group consisting of rare earth elements, Li, Na, K, Mg, Sr, Ba, Zn, Al and Bi
  • M 4 is at least one element selected from the group consisting of Ti, V, Cr, Fe, Ni, Cu, Zr, Nb, Ta, Mo, and W; 1 ⁇ a ⁇ 2.4; 0 ⁇ b ⁇ 1; 0.5 ⁇ c ⁇ 1.2; 0 ⁇ d ⁇ 0.5; 3.6 ⁇ e ⁇ 4.4.
  • thermoelectric conversion layer forming composition according to any one of the first aspect to the third aspect
  • a step of forming a film by applying the composition for forming a thermoelectric conversion layer according to any one of the first aspect to the fourth aspect to a substrate, and then oxidizing the film at 300 ° C.
  • thermoelectric conversion layer comprising a step of firing in an atmosphere;
  • a step of forming a film by applying the composition for forming a thermoelectric conversion layer according to any one of the first to fourth aspects to a substrate, and then irradiating the film with an oxidizing atmosphere A process for producing a thermoelectric conversion layer, comprising a step of photo-firing with
  • thermoelectric conversion layer includes a step of baking, and a step of photo-baking the film by light irradiation in an oxidizing atmosphere before or after the baking step.
  • An eighth aspect is a composite for forming a manganese-based oxide layer containing a manganese-based oxide and a polysaccharide.
  • thermoelectric conversion layer since water is the main solvent, a composition for forming a thermoelectric conversion layer with less environmental and work environment contamination can be provided. Further, by using the composition, it is possible to provide a thermoelectric conversion layer having heat resistance in a medium to high temperature range, excellent thermoelectric characteristics, and having workability and shape flexibility.
  • FIG. 1 is a view showing an observation image of the cross-sectional shape of the thermoelectric conversion layer A by a scanning electron microscope.
  • the composition for thermoelectric conversion layer formation of this invention is a composition which can form the thermoelectric conversion layer which consists of manganese type oxides by apply
  • manganese oxide for forming a thermoelectric conversion layer is dispersed in the composition in the form of fine particles, and water and polysaccharides contained in the composition improve the dispersion state of the manganese oxide. It is a component to do.
  • thermoelectric conversion layer The basic characteristics of the thermoelectric conversion layer are determined by the type of manganese oxide dispersed in the thermoelectric conversion layer forming composition. That is, as long as the manganese-based oxide dispersed in the composition for forming a thermoelectric conversion layer of the present invention can be dispersed in water, a thermoelectric conversion material made of a known manganese-based oxide can be used as it is. From another viewpoint, it can be said that a manganese-based oxide having a Seebeck coefficient at ⁇ 100 ° C. of ⁇ 50 ⁇ V / K or more is a thermoelectric conversion material. In the present invention, these known manganese-based oxides may be used as a starting material. it can.
  • the polysaccharide is added to adhere the manganese-based oxide particles to each other when the thermoelectric conversion layer-forming composition of the present invention is formed on the thermoelectric conversion layer.
  • the particles do not fall off the substrate, and the thermoelectric conversion layer is formed on the substrate.
  • the polysaccharide is not contained, when the drying of the composition proceeds, the manganese-based oxide particles easily peel off from the substrate and cannot exist as a thermoelectric conversion layer.
  • the polysaccharide is contained in a large amount, the electrical resistance of the thermoelectric conversion layer may be deteriorated, but good electrical conductivity can be obtained by baking and decomposing at a high temperature of 300 ° C. or higher.
  • the polysaccharide does not exist in the thermoelectric conversion layer after firing, it can exist as a layer by weakly fusing manganese-based oxides together.
  • the polysaccharide also has an effect of improving the dispersibility of the manganese-based oxide fine particles in water.
  • the crystallinity of the manganese-based oxide thermoelectric conversion layer obtained by the thermoelectric conversion layer forming composition of the present invention is not limited. In order to obtain good properties as a thermoelectric conversion layer, it is preferable to be a crystal. For example, even if the starting material is amorphous, the composition for forming a thermoelectric conversion layer is applied to a substrate and then crystallized. A thermoelectric conversion layer with good characteristics can be obtained by firing.
  • a manganese-based oxide contains a carbon component remaining in the manufacturing process, if the carbon component can be decomposed by firing, a thermoelectric conversion with good thermoelectric characteristics is possible. A layer can be obtained.
  • the oxygen atom of the manganese-based oxide can also be introduced in the baking step after coating, so that a manganese-based oxide having an oxygen atom content less than the stoichiometric ratio can also be used.
  • thermoelectric conversion layer of the present invention if the composition for forming a thermoelectric conversion layer of the present invention is applied to a substrate and then sufficient characteristics can be obtained as a thermoelectric conversion layer by an appropriate baking treatment, a manganese-based oxide as a starting material is sufficient. It does not have to have a good thermoelectric conversion characteristic.
  • manganese-based oxides examples include perovskite-type calcium manganese-based oxides represented by the following general formula (1) and layered perovskite-type calcium manganese-based oxides represented by the following formula (2). Can do.
  • rare earth elements include Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the manganese-based oxide in order to disperse the manganese-based oxide in water, the manganese-based oxide needs to be particulate. If the average particle size of the manganese-based oxide is 1 nm or more and 100 ⁇ m or less, a uniform dispersion can be easily prepared. If it is 1 nm or less, the particles aggregate and become difficult to disperse, and if it is 100 ⁇ m or more, not only does the dispersibility deteriorate, but there is a problem that a uniform thermoelectric conversion layer cannot be formed.
  • the average particle diameter is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, from the viewpoints of coating properties of the dispersion, thermoelectric properties of the thermoelectric conversion layer, and the like. Here, the average particle diameter is calculated from a value obtained by observation with a scanning electron microscope (SEM).
  • the average particle diameter of the manganese-based oxide is not particularly limited as long as it is 1 nm or more. Even when the particle diameter of the starting material is 100 ⁇ m or more, a manganese-based oxide having a particle diameter that can be dispersed in water can be obtained by mixing with water and then pulverizing the particles by wet pulverization.
  • Polysaccharide is a general term for substances in which two or more monosaccharide molecules are polymerized by glycosidic bonds.
  • cellulose, starch, amylose, amylopectin, glycogen, chitin, agarose, carrageenan, heparin, hyaluronic acid, pectin, xyloglucan and the like are preferable.
  • Polysaccharide is added to the composition for forming a thermoelectric conversion layer of the present invention for the purpose of improving the dispersibility and coatability of the manganese-based oxide.
  • the polysaccharide is present in a dissolved or dispersed state in water.
  • cellulose is known to have many partially modified derivatives such as carboxymethylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, Carboxymethyl ethyl cellulose, nitrocellulose, cellulose acetate and the like are known.
  • Methyl cellulose, hydroxypropyl methylcellulose, hydroxypropylcellulose, hydroxyethylmethylcellulose, and hydroxyethylcellulose are preferred because the thermoelectric conversion layer can be formed with good film formability and low volume resistivity when forming the thermoelectric conversion layer. Is more preferable.
  • the amount of polysaccharide added is 0.02 parts by mass or more and less than 10 parts by mass.
  • the more the polysaccharide is added the better the adhesion between the manganese-based oxide particles and the better the film-forming property.
  • the amount of polysaccharide added is preferably 0.04 to 5 parts by mass, more preferably 0.1 to 2.5 parts by mass.
  • the water contained in the composition for forming a thermoelectric conversion layer of the present invention has a function as a dispersion medium for dispersing a manganese-based oxide.
  • the manganese-based oxide is uniformly dispersed, and a uniform thermoelectric conversion layer can be formed.
  • water is used as the main dispersion medium from the viewpoint of protecting the environment and the working environment. Therefore, based on 100 parts by mass of the composition for forming a thermoelectric conversion layer of the present invention, the total of (A) water and (B) a manganese-based oxide needs to be 90 parts by mass or more, preferably 95 parts by mass or more. It is.
  • the composition for forming a thermoelectric conversion layer of the present invention can contain a hydrophilic solvent as long as it does not contaminate the environment and the working environment.
  • the hydrophilic solvent may be used as a dispersion medium in addition to water in advance.
  • the hydrophilic solvent is added mainly for the purpose of suppressing foaming and improving the film forming property.
  • methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and acetonitrile are preferably used.
  • the amount of the dispersion medium other than water is used based on 100 parts by mass of the composition for forming a thermoelectric conversion layer from the viewpoint of protecting the environment and the working environment. Is preferably 9.98 parts by mass or less, for example, 6 parts by mass or less, more preferably 5 parts by mass or less.
  • thermoelectric conversion layer In the composition for forming a thermoelectric conversion layer of the present invention, (B) a manganese-based oxide and (C) a polysaccharide are present as solids.
  • solid content means components other than the dispersion medium (here water, a hydrophilic solvent) contained in the said composition, and it treats as solid content even if it is the state melt
  • the solid content concentration of the composition is too high, the composition does not have fluidity, and a thermoelectric conversion layer cannot be easily obtained by a coating method. On the other hand, if the solid concentration is too low, a uniform film cannot be obtained from the composition.
  • the total of (B) the manganese-based oxide and (C) the polysaccharide needs to be 1.02 parts by mass or more and less than 60 parts by mass, preferably 10 to 30 parts. Part by mass, more preferably 10 to 25 parts by mass.
  • the method for preparing the composition for forming a thermoelectric conversion layer of the present invention is not particularly limited. Appropriate amounts of raw materials are added and mixed in each reaction vessel, and wet pulverization is performed as necessary to obtain the thermoelectric conversion layer forming composition of the present invention.
  • a preparation example for example, water and a polysaccharide (for example, a cellulose derivative) are added to a container and stirred until the polysaccharide (for example, a cellulose derivative) is completely dissolved.
  • a manganese-based oxide is added to the same container.
  • a hydrophilic solvent for example, 1-propanol
  • the composition for thermoelectric conversion layer formation can be obtained by performing the ball mill process using a zirconia bead in order to mix and disperse
  • the conditions of the ball mill treatment are, for example, 5 days on the mix rotor (rotor rotation speed 100 rpm) or 4 hours by a sand grinder (rotation speed 500 rpm).
  • Zirconia beads can be easily removed from the composition by filtration using a mesh having an opening of 1 mm or less.
  • the composition for forming a thermoelectric conversion layer of the present invention can form a thermoelectric conversion layer comprising a manganese-based oxide by dropping the composition onto a substrate, forming a film of the composition, and then drying the dispersion medium. It is. However, since the polysaccharide is present between the manganese-based oxide particles as it is, a thermoelectric conversion layer having extremely poor electrical conductivity is obtained. In order to obtain a thermoelectric conversion layer having good electrical conductivity, it is necessary to further calcinate at a temperature at which the polysaccharide is decomposed. This firing is preferably performed at 300 ° C. or higher in an oxidizing atmosphere.
  • the oxidizing atmosphere refers to an atmosphere containing at least an oxidizing gas (oxygen, ozone, nitrogen dioxide, etc.).
  • the concentration of the oxidizing gas is preferably 1 ppm or more.
  • the firing temperature is too high, the thermoelectric characteristics are lowered, so the upper limit of the firing temperature is limited by the temperature at which the thermoelectric characteristics of the manganese-based oxide are lowered.
  • the firing temperature is preferably 1300 ° C. or lower.
  • the upper limit of the firing temperature is also limited by the substrate used.
  • the firing temperature is preferably 450 ° C. or lower.
  • a substrate having sufficiently high heat resistance for example, a ceramic substrate such as alumina or a quartz substrate is used, the substrate can be fired at a temperature of 600 ° C. or higher.
  • a baking process in addition to heat baking in an oven or the like, light baking using light irradiation such as ultraviolet light, visible light, flash light, or the like can be performed. Moreover, heating baking and light baking can also be used together, and the order in particular does not ask
  • the light baking should just be able to bake the film obtained from the composition for thermoelectric conversion layer formation at the temperature which a polysaccharide decomposes
  • the light source for light irradiation include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp.
  • Suitable examples of the light irradiation include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
  • An example is xenon pulsed light irradiation. Since the surface of the coating can be irradiated with light and heated in a short time by light baking, there is an advantage that the influence of heat on the substrate can be reduced. In addition, since light baking can be performed in a short time, there is an advantage that productivity is high.
  • the substrate is not particularly limited as long as it is an electrically insulating substrate, and a quartz substrate, a glass substrate, a ceramic substrate such as alumina, a resin substrate such as polyimide, a metal substrate having an insulating layer, or the like is used.
  • the coating apparatus and the coating film drying and baking apparatus generally known apparatuses can be used. Specific examples include spin coaters, slit coaters, doctor blades, roll coaters, ink jets, dip coats, and screen printing. Examples of the apparatus used for drying and baking include a hot plate, an oven, and a lamp heating apparatus. In addition to the heating device, examples of the device used for baking include a light irradiation device using ultraviolet light, visible light, and flash light.
  • Film thickness measuring device Kosaka Laboratory Co., Ltd.
  • Fine shape measuring machine Surfcorder ET4000
  • Thermoelectric property evaluation device Thermoelectric property measuring device RZ2001i manufactured by Ozawa Science Co., Ltd.
  • Electrode Thin-film electrode (7)
  • Particle size analyzer Nanotrac (registered trademark) UPA-EX manufactured by Microtrack Bell Co., Ltd.
  • Photo-firing device Xenon pulse light sintering device X-1100 manufactured by Xenon (9) Resistance measurement device: Digital Multimeter SD-06 manufactured by Engineers [material] Manganese oxide Mn113: CaMn 0.98 Mo 0.02 O 3 (particle diameter: 20 nm (according to SEM observation), specific surface area 33 m 2 / g) Methylcellulose: Metroz (registered trademark) SM-15 (manufactured by Shin-Etsu Chemical Co., Ltd.) ⁇ 1-Propanol: (Pure Chemical Co., Ltd.)
  • Example 1 Preparation of composition for thermoelectric conversion
  • SM-15 (0.05 g, 1 part by mass) which is a polysaccharide is water (3.9 g, 79 parts by mass) Dissolved in.
  • CaMn 0.98 Mo 0.02 O 3 (0.75 g, 15 parts by mass)
  • 1-propanol (0.25 g, 5 parts by mass) were added.
  • zirconia beads having a diameter of 1 mm were added and ball milled for 3 days on a mix rotor (100 rpm) to obtain Example Composition A.
  • Example compositions B to D were obtained by the same procedure as in Example 1, except that polysaccharides, water, CaMn 0.98 Mo 0.02 O 3 , and 1-propanol each had the composition shown in Table 1.
  • Comparative Example 1 PEG4000 (0.05 g, 1 part by mass) was dissolved in water (3.9 g, 79 parts by mass). CaMn 0.98 Mo 0.02 O 3 (0.75 g, 15 parts by mass) and 1-propanol (0.25 g, 5 parts by mass) were added. Further, ⁇ 1 mm zirconia beads were added and subjected to ball mill treatment for 3 days on a mix rotor (100 rpm) to obtain a comparative composition a.
  • Comparative Example composition b having the composition shown in Table 2 was obtained by the same procedure as Comparative Example 1 except that PEG 4000 was not added.
  • Example 5 A small amount of Example Composition A was dropped on an alumina substrate, and a coating film was formed using a spin coating method (700 rpm). The obtained coating film was dried at 100 ° C. for 5 minutes and then baked at 1000 ° C. for 1 hour in an oxidizing atmosphere (about 80% nitrogen and about 20% oxygen) to obtain Example Layer A. About Example layer A, the film formability (after drying at 100 ° C. and after baking at 1000 ° C.) and the surface resistivity were evaluated by the following procedure. The obtained results are shown in Table 3. [Film formability] The film formability on the alumina substrate was visually evaluated. ⁇ : No cracking or peeling of the thermoelectric conversion layer is observed.
  • thermoelectric conversion layer is cracked or peeled off.
  • surface resistivity With respect to the sample from which the thermoelectric conversion layer was obtained, the surface resistance value at three points was measured using Loresta-GP, and the average value of the three points was used as the surface resistance value of the thermoelectric conversion layer.
  • resistance value after photosintering For resistance measurement, the resistance test mode of Digital Multimeter SD-06 manufactured by Engineer Co., Ltd. was used, and the two test bars of the meter were placed so as to be diagonal to the layer surfaces of Example layers A2, A3 and A4. I guessed and read the displayed value.
  • Example layer A does not show cracking or peeling after 100 ° C. drying (dispersion of the dispersion medium) or 1000 ° C. baking (coating of the coating film), and uniformly covers the alumina substrate. It was confirmed.
  • FIG. 1 shows the observation result of the cross-sectional state of Example Layer A with a scanning electron microscope (SEM) (magnification: 30,000 times). From SEM observation, it was confirmed that Example layer A was formed by laminating Mn113 (CaMn 0.98 Mo 0.02 O 3 ) fine particles to form a 1.1 ⁇ m layer. Further, the surface resistivity of Example Layer A was 1.8E + 04 ⁇ / ⁇ . It was shown that Example Composition A can form a uniform thermoelectric conversion layer with good characteristics while being a composition that does not give a load to the environment.
  • SEM scanning electron microscope
  • Example layers B to D were obtained in the same procedure as in Example 5 except that Example compositions B to D were used, and the film formability and surface resistivity were evaluated. The obtained results are also shown in Table 3. In all of the example layers B to D, neither cracking nor peeling was observed even after drying at 100 ° C. (dispersion of the dispersion medium) or after baking at 1000 ° C. (firing of the coating film), and even on the alumina substrate. I confirmed that it was covered. Table 3 shows the surface resistivity of Example Layers B to D. It was shown that Example Compositions B to D can form a uniform thermoelectric conversion layer having good characteristics while being a composition that does not give a load to the environment.
  • a comparative example layer a to d was prepared in the same procedure as in Example 5 except that the comparative example composition a to d was used, but all of the comparative example layers a to d were cracked after drying at 100 ° C. Peeling occurred and a thermoelectric conversion layer could not be formed on the substrate.
  • PEG and Mn113 (CaMn 0.98 Mo 0.02 O 3 ) are not sufficiently dispersed and aggregated. Therefore, Mn113 (CaMn 0.98 Mo 0.02 O 3 particles due to the resin component) It is thought that cracking and peeling occurred after drying because the substrate could not be fixed on the substrate.
  • Comparative Example d in which an excessive amount of polysaccharide was present, the polysaccharide was not sufficiently dissolved, and a composition for forming a thermoelectric conversion layer was not obtained.
  • the composition in which PEG is added instead of the polysaccharide (comparative composition a)
  • the amount of the polysaccharide added is insufficient (comparative compositions b and c) or excessive (comparative composition d). It was confirmed that the composition does not function as a thermoelectric conversion layer forming composition.
  • Example 9 The polysaccharide SM-15 (1.5 g, 1 part by mass) was dissolved in water (111 g, 82 parts by mass). CaMn 0.98 Mo 0.02 O 3 (15 g, 11 parts by mass) and 1-propanol (7.5 g, 6 parts by mass) were added. Further, zirconia beads having a diameter of 1 mm were added, and ball milling was performed for 4 hours using a sand grinder (500 rpm) to obtain Example Composition E.
  • Example 10 A small amount of Example Composition E was dropped on an alumina substrate, and a coating film was formed using a spin coating method (700 rpm). The obtained coating film was dried at 100 ° C. for 5 minutes and then baked at 800 ° C. for 1 hour in an oxidizing atmosphere (about 80% nitrogen and about 20% oxygen) to obtain Example Layer E. The film formability and surface resistivity were evaluated in the same procedure as in Example 5. It was confirmed that Example layer E did not crack or peel even after drying at 100 ° C. and firing at 800 ° C. and uniformly covered the alumina substrate. The surface resistivity was 1.6E + 5 ⁇ / ⁇ . It was shown that Example Composition E can form a uniform thermoelectric conversion layer with good characteristics while being a composition that does not give a load to the environment.
  • Example 11 A coating film of Example Composition A was formed on an alkali-free glass substrate (10 mm ⁇ 10 mm) by using a spin coating method (1500 rpm). The obtained coating film was dried at 110 ° C. for 10 minutes and then baked at 350 ° C. for 1 hour in an oxidizing atmosphere (about 80% nitrogen and about 20% oxygen) to obtain Example Layer A2. Finally, the coating film was photosintered (voltage 3000 V, 350 ⁇ sec.). The resistance of Example layer A2 was 14 M ⁇ after photo sintering, although the resistance was high before photo sintering and was outside the measurement range.
  • Example 12 A coating film of Example Composition A was formed on an alkali-free glass substrate (10 mm ⁇ 10 mm) by using a spin coating method (1500 rpm). The obtained coating film was dried at 110 ° C. for 10 minutes and then baked at 350 ° C. for 1 hour in an oxidizing atmosphere (about 80% nitrogen and about 20% oxygen) to obtain Example Layer A3. Finally, the coating film was photosintered (voltage 3000 V, 400 ⁇ sec.). The resistance of Example layer A3 was high before the photo sintering and was outside the measurement range, but was 10 M ⁇ after the photo sintering.
  • the resistance of the example layers A2 to A4 was reduced by photosintering.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】水を分散媒とした熱電変換層形成用組成物を提供すること。また、熱電変換層形成用組成物を用いて塗布プロセスにより熱電変換層を製造すること。 【解決手段】(A)水、(B)マンガン系酸化物及び(C)多糖類を含む熱電変換層形成用組成物であり、該組成物100質量部に基いて、(A)と(B)との合計は90~99.98質量部であり、(B)は1~50質量部であり、(C)は0.02質量部以上10質量部未満である熱電変換層形成用組成物による。

Description

熱電変換層形成用組成物及び熱電変換層の製造方法
 本発明は、熱電変換層を形成するための熱電変換層形成用組成物及び熱電変換層形成用組成物を用いた熱電変換層の製造方法に関する。
 ゼーベック効果による起電力の大きさは、熱電変換素子の高温部と低温部との温度差に比例することから、従来の熱電変換モジュールでは温度差を大きくとるために、バルク形の熱電変換素子を利用することが多かった。しかしながら、バルク形の熱電変換素子は、微細加工が容易でなく、モジュールの発電単価が高くなる問題があった。そのため、微細加工が容易な塗布プロセスを用いた熱電変換素子及び熱電変換モジュールの研究が近年報告されている。中でも環境保護の観点から、水を主な分散媒とする熱電変換層形成用組成物の開発が強く望まれている。
 水を用いた塗布プロセスにより形成される熱電変換層として、特許文献1には、半導体微粒子及び導電性高分子を含む水系組成物を用いて支持体上に被膜を形成することが開示されている。また、特許文献2には、金属ナノ粒子と水溶性導電性高分子とを含む水系組成物から熱電変換シートを製造することが開示されている。特許文献3には、共役系導電性高分子を水に溶解させてフレキシブルな熱電変換層を作成したことが開示されている。一方、特許文献4では、α-テルピネオールを溶剤として使用して、マンガン系酸化物の熱電変換層を作製したことが開示されている。
国際公開第2013/141065号 特開2014-30010号公報 特開2014-199838号公報 特開2008-270410号公報
 特許文献1から特許文献3は、熱電変換材料を水に分散又は溶解した熱電変換層形成用組成物を用いて、熱電変換層を塗布プロセスで作製した技術である。しかしながら、これら先行技術は耐熱性の低い熱電変換材料を用いており、中高温域(300~600℃)における耐熱性がない。
 特許文献4は、熱電変換層を作製するために有機溶媒を用いている。これまでに中高温域の熱電変換層で、水を溶媒・分散媒とする熱電変換層形成用組成物の例はない。
 本発明は、300~600℃の中高温域に適用できる水を分散媒とした熱電変換層形成用組成物を提供することを課題とする。また、本発明は熱電変換層形成用組成物を用いて塗布プロセスにより熱電変換層を製造することを課題とする。
 本発明者は上記の課題を解決するべく鋭意検討した結果、
(A)水、
(B)マンガン系酸化物、及び
(C)多糖類
を含む熱電変換層形成用組成物が良好な分散性及び塗布性を有することを見出し、また、当該熱電変換層形成用組成物より作製した被膜中に含まれる多糖類を酸化性雰囲気下で焼成することにより、熱電特性を阻害する成分が存在しない、熱電特性に優れた熱電変換層を製造できることを見出し、本発明を完成させた。
 すなわち、本発明はその第1観点として、
(A)水、(B)マンガン系酸化物及び(C)多糖類を含む熱電変換層形成用組成物であり、該組成物100質量部に基いて、(A)と(B)との合計は90~99.98質量部であり、(B)は1~50質量部であり、(C)は0.02質量部以上10質量部未満である熱電変換層形成用組成物であり、
 第2観点として、前記多糖類は、セルロース誘導体である、第1観点に記載の熱電変換層形成用組成物であり、
 第3観点として、前記セルロース誘導体は、メチルセルロースである、第2観点に記載の熱電変換層形成用組成物であり、
 第4観点として、前記マンガン系酸化物は、下記の一般式(1):
 Ca Mn   (1)
(式中、
は希土類元素、Li、Na、K、Mg、Sr、Ba、Zn、Al及びBiからなる群から選ばれた少なくとも一種の元素であり、
はTi、V、Cr、Fe、Ni、Cu、Zr、Nb、Ta、Mo及びWからなる群から選ばれた少なくとも一種の元素であり、
0.5≦v≦1.2; 0≦w≦0.5; 0.5≦x≦1.2; 0≦y≦0.5; 2.8≦z≦3.2を満たす数であって、0.8≦v+w≦1.2; 0.8≦x+y≦1.2である。)
で表されるペロブスカイト型カルシウムマンガン系酸化物であるか、
一般式(2):
 Ca Mn   (2)
(式中、
は希土類元素、Li、Na、K、Mg、Sr、Ba,Zn、Al及びBiからなる群から選ばれた少なくとも一種の元素であり、
はTi,V,Cr、Fe、Ni、Cu、Zr、Nb、Ta,Mo及びWからなる群から選ばれた少なくとも一種の元素であり、
1≦a≦2.4; 0≦b≦1; 0.5≦c≦1.2; 0≦d≦0.5; 3.6≦e≦4.4を満たす数であって、1.6≦a+b≦2.4; 0.8≦c+d≦1.2である。)
で表される層状ペロブスカイト型カルシウムマンガン系酸化物である、
第1観点乃至第3観点のうちいずれか一つに記載の熱電変換層形成用組成物であり、
 第5観点として、第1観点乃至第4観点のうちいずれか一つに記載の熱電変換層形成用組成物を基板に塗布して被膜を形成する工程、次いで該被膜を300℃以上の酸化性雰囲気にて焼成する工程を含む、熱電変換層の製造方法であり、
 第6観点として、第1観点乃至4観点のうちいずれか一つに記載の熱電変換層形成用組成物を基板に塗布して被膜を形成する工程、次いで該被膜を酸化性雰囲気にて光照射による光焼成する工程を含む、熱電変換層の製造方法であり、
 第7観点として、第1観点乃至第4観点のうちいずれか一つに記載の熱電変換層形成用組成物を基板に塗布して被膜を形成する工程、該被膜を300℃以上の酸化性雰囲気下、焼成する工程、該焼成工程の前又は後に、該被膜を酸化性雰囲気下、光照射により光焼成する工程を含む、熱電変換層の製造方法である。
 第8観点として、マンガン系酸化物と多糖類とを含む、マンガン系酸化物層を形成するための複合物である。
 本発明では、水を主溶媒とするため、環境及び作業環境汚染の少ない熱電変換層形成用組成物を提供できる。また、該組成物を用いることにより、中高温域における耐熱性があり、熱電特性に優れかつ加工性・形状自由度を有する熱電変換層を提供することができる。
図1は、熱電変換層Aの断面形状の走査型電子顕微鏡による観察画像を示す図である。
 以下、本発明について詳細に説明する。本発明の熱電変換層形成用組成物は、基板に塗布し、焼成することでマンガン系酸化物からなる熱電変換層を形成することができる組成物である。つまり、該組成物には熱電変換層を形成するためのマンガン系酸化物が微粒子の状態で分散しており、該組成物に含まれる水と多糖類は、マンガン系酸化物の分散状態を改善するための成分である。
 熱電変換層の基本的な特性は、前記の熱電変換層形成用組成物に分散しているマンガン系酸化物の種類により決定される。つまり、本発明の熱電変換層形成用組成物に分散したマンガン系酸化物は、水に分散することが可能であれば、既知のマンガン系酸化物からなる熱電変換材料をそのまま用いることができる。別の観点からは、100℃におけるゼーベック係数が-50μV/K以上であるマンガン系酸化物が熱電変換材料であるとも言え、本発明ではこれら既知のマンガン系酸化物を出発原料として使用することができる。
 なお、多糖類は、本発明の熱電変換層形成用組成物を熱電変換層に形成する際に、マンガン系酸化物の粒子同士を接着するために添加される。多糖類が添加されることで、熱電変換層の成膜過程において、前記熱電変換層形成用組成物の乾燥が進行した後も、粒子が基板から剥がれ落ちることなく、熱電変換層として基板上に存在することができる。すなわち、成膜過程において、後述する焼成工程の前段階では、マンガン系酸化物と多糖類とを含む、マンガン系酸化物層を形成するための複合物、いわば熱電変換層中間体の態様にて、基板上に存在することができる。一方、多糖類が含まれない場合、組成物の乾燥が進行すると、マンガン系酸化物粒子が基板から容易に剥がれ落ちてしまい熱電変換層として存在することができない。
 多糖類は、多く含まれると熱電変換層の電気抵抗が悪化する虞があるが、300℃以上の高温で焼成して分解することにより、良好な電気伝導性を得ることができる。焼成後の熱電変換層には多糖類は存在しないが、マンガン系酸化物同士が弱く融着することで層として存在することができる。なお、多糖類はマンガン系酸化物微粒子の水への分散性を改善する効果も有する。
 また、本発明の熱電変換層形成用組成物により得られるマンガン系酸化物の熱電変換層は、その結晶性は限定されない。熱電変換層として良い特性を得るためには結晶である方が好ましいが、例えば、出発原料がアモルファスであったとしても、熱電変換層形成用組成物を基板に塗布した後、結晶化のために焼成することで良い特性の熱電変換層を得ることができる。
 また、マンガン系酸化物の出発原料として、例えばマンガン系酸化物にその製造過程で残存するカーボン成分が含まれている場合でも、焼成によってカーボン成分を分解することができれば、熱電特性の良い熱電変換層を得ることができる。
 また、同じようにマンガン系酸化物の酸素原子は、塗布後の焼成工程で導入することも可能であるため、酸素原子の含有量が化学量論比より少ないマンガン系酸化物を用いることもできる。
 つまり、本発明の熱電変換層形成用組成物を基板に塗布した後、適切な焼成処理によって熱電変換層として十分な特性が得ることが可能であれば、出発原料としてのマンガン系酸化物は十分な熱電変換特性を有さなくてもよい。
 このようなマンガン系酸化物として、たとえば下記の一般式(1)で表されるペロブスカイト型カルシウムマンガン系酸化物、並びに、式(2)で表される層状ペロブスカイト型カルシウムマンガン系酸化物を挙げることができる。
 一般式(1):
 Ca Mn   (1)
(式中、Mは希土類元素、Li、Na、K、Mg、Sr、Ba、Zn、Al及びBiからなる群から選ばれた少なくとも一種の元素であり、
はTi、V、Cr、Fe、Ni、Cu、Zr、Nb、Ta、Mo及びWからなる群から選ばれた少なくとも一種の元素であり、
0.5≦v≦1.2; 0≦w≦0.5; 0.5≦x≦1.2; 0≦y≦0.5; 2.8≦z≦3.2を満たす数であって、0.8≦v+w≦1.2; 0.8≦x+y≦1.2である。)
 一般式(2):
 Ca Mn   (2)
(式中、Mは希土類元素、Li、Na、K、Mg、Sr、Ba,Zn、Al及びBiからなる群から選ばれた少なくとも一種の元素であり、
はTi,V,Cr、Fe、Ni、Cu、Zr、Nb、Ta,Mo及びWからなる群から選ばれた少なくとも一種の元素であり、
1≦a≦2.4; 0≦b≦1; 0.5≦c≦1.2; 0≦d≦0.5; 3.6≦e≦4.4を満たす数であって、1.6≦a+b≦2.4; 0.8≦c+d≦1.2である。)
 上記一般式(1)において、希土類元素としては、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等を例示できる。
 一般式(1)で表される特に好ましいマンガン系酸化物を表Aに示す。
Figure JPOXMLDOC01-appb-T000001
 本発明においてマンガン系酸化物を水に分散させるためには、マンガン系酸化物は粒子状である必要がある。マンガン系酸化物の平均粒子径が1nm以上100μm以下であれば、均一な分散液が容易に調製できる。1nm以下では粒子同士が凝集して分散しにくくなり、100μm以上では分散性が悪くなるのみならず、均一な熱電変換層が形成できない問題がある。なお、分散液の塗布性、熱電変換層の熱電特性等の観点から、該平均粒子径は好ましくは5μm以下であり、より好ましくは1μm以下である。ここで平均粒子径は、走査型電子顕微鏡(SEM)観察より求められる値から算出したものである。
 本発明の熱電変換層形成用組成物を調製する際の出発原料として、マンガン系酸化物の平均粒子径は、1nm以上であれば特に限定されない。出発原料の粒子径が100μm以上であっても、水と混合した後、湿式粉砕によって粒子を粉砕することで水に分散可能な粒子径のマンガン系酸化物を得ることができる。
 多糖類とは、グリコシド結合によって単糖分子が2分子以上重合した物質の総称である。本発明に用いられる多糖類としては、セルロース、デンプン、アミロース、アミロペクチン、グリコーゲン、キチン、アガロース、カラギーナン、ヘパリン、ヒアルロン酸、ペクチン、キシログルカンなどが好ましい。
 多糖類は、マンガン系酸化物の分散性及び塗布性を改善する目的で本発明の熱電変換層形成用組成物に添加される。該組成物中では、多糖類は水に溶解若しくは分散した状態で存在する。
 多糖類の中でセルロースは、部分的に変性させた誘導体が多く知られており、例えば、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルエチルセルロース、ニトロセルロース、酢酸セルロースなどが知られている。熱電変換層を形成する際に、成膜性が良く、かつ、体積抵抗率の小さい熱電変換層を形成できることから、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシエチルセルロースが好ましく、メチルセルロースがより好ましい。
 本発明の熱電変換層形成用組成物100質量部に基いて、多糖類の添加量は0.02質量部以上10質量部未満である。多糖類を多く添加するほどマンガン系酸化物の粒子同士の接着性が良好になり、成膜性は良好になる。一方、電気伝導性の良い熱電変換層を得るためには、熱電変換層に残存した多糖類を分解させる必要があり、この観点では多糖類は少ないほうが良い。上記の理由から、多糖類の添加量は0.04~5質量部が好ましく、より好ましくは0.1~2.5質量部である。
 本発明の熱電変換層形成用組成物に含有される水は、マンガン系酸化物を分散するための分散媒としての機能を持つ。熱電変換層形成用組成物に水が含まれることによりマンガン系酸化物が均一に分散し、均一な熱電変換層を形成することが可能となる。
 また、本発明では環境及び作業環境の保護という観点で水を主な分散媒として用いている。そのため、本発明の熱電変換層形成用組成物100質量部に基いて、(A)水と(B)マンガン系酸化物の合計は90質量部以上である必要があり、好ましくは95質量部以上である。
 本発明の熱電変換層形成用組成物は、環境及び作業環境を汚染しない範囲で親水性溶媒を添加することができる。親水性溶媒は予め水に加えて分散媒としてもよい。親水性溶媒は主に発泡を抑える目的及び成膜性を改善する目的で添加される。具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、アセトニトリルが好適に用いられる。
 水以外の分散媒を使用する場合(0質量部超)、環境及び作業環境の保護という観点から、該熱電変換層形成用組成物100質量部に基いて、該水以外の分散媒の使用量は9.98質量部以下であることが好ましく、例えば6質量部以下、より好ましくは5質量部以下である。
 本発明の熱電変換層形成用組成物は、(B)マンガン系酸化物と(C)多糖類とが固形分として存在する。なお固形分とは、当該組成物に含まれる分散媒(ここでは水、親水性溶媒)以外の成分を意味し、分散媒に溶解された状態であっても固形分として扱う。組成物の固形分濃度が高すぎると該組成物は流動性を持たず、塗布法により容易に熱電変換層を得ることができない。一方、固形分濃度が低すぎると該組成物は均一な膜が得られない。そのため、該組成物100質量部に基いて、(B)マンガン系酸化物と(C)多糖類との合計は1.02質量部以上60質量部未満である必要があり、好ましくは10~30質量部であり、より好ましくは10~25質量部である。
 本発明の熱電変換層形成用組成物の調製方法は特に限定されない。反応容器にそれぞれ原料を適量添加し混合し、必要に応じて湿式粉砕を行って、本発明の熱電変換層形成用組成物が得られる。調製例としては例えば、容器に水と多糖類(例えばセルロース誘導体)を加え、多糖類(例えばセルロース誘導体)が完全に溶解するまで撹拌する。次に、同じ容器にマンガン系酸化物を添加する。必要に応じて、発泡を抑制するために親水性溶媒(例えば1-プロパノール)を加える。さらに均一に混合・分散させるためにジルコニアビーズを用いたボールミル処理を行うことで熱電変換層形成用組成物を得ることができる。ボールミル処理の条件は、例えば、ミックスローター上(ローターの回転数100rpm)で5日間、あるいはサンドグラインダー(回転数500rpm)で4時間である。ジルコニアビーズは目開き1mm以下のメッシュを用いて濾過することにより容易に該組成物から取り除くことができる。
 本発明の熱電変換層形成用組成物は、基板に該組成物を滴下し、該組成物の被膜を形成した後、分散媒を乾燥させることでマンガン系酸化物からなる熱電変換層が形成可能である。しかしながら、このままではマンガン系酸化物の粒子間に多糖類が存在するため、電気伝導性が著しく悪い熱電変換層となる。電気伝導性の良い熱電変換層を得るためには多糖類が分解する温度でさらに焼成する必要がある。この焼成は、酸化性雰囲気下にて、300℃以上が好適である。ここで酸化性雰囲気とは、酸化性の気体(酸素・オゾン・二酸化窒素など)を少なくとも含む雰囲気を指す。酸化性の気体の濃度は、1ppm以上が好ましい。
 しかしながら、焼成温度が高すぎると熱電特性が低下するため、焼成温度の上限はマンガン系酸化物の熱電特性が低下する温度によって制限される。例えば、CaMn0.98Mo0.02を使用する場合は、焼成温度が1300℃以上の焼成で熱電特性が変化するため、焼成温度は1300℃以下が好ましい。また、焼成温度の上限は、用いる基板によっても制限される。例えば、樹脂製のフレキシブル基板を用いる場合、焼成温度は450℃以下であることが好ましい。一方、十分に耐熱性の高い基板、例えば、アルミナなどのセラミックス基板、石英基板などを用いるのであれば、600℃以上の温度で焼成することができる。
 焼成工程としては、オーブン等による加熱焼成の他、紫外線、可視光、フラッシュ光等の光照射を使用した光焼成を行うことができる。また、加熱焼成と光焼成とを併用することもでき、これらの順序は特に問わない。
 光焼成は、熱電変換層形成用組成物から得られる被膜を、多糖類が分解する温度で焼成できればよい。
 光照射の光源としては、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯等が挙げられる。光照射としては、例えば赤外線レーザーによる走査露光、キセノン放電灯等の高照度フラッシュ露光、赤外線ランプ露光等が好適に挙げられる。例えばキセノンパルス光照射が挙げられる。
 光焼成により、被膜表面に光を照射し短時間で加熱することができるため、基材への熱の影響を少なくすることができるといいう利点がある。また、光焼成は、短時間で焼成できるため、生産性が高いという利点もある。
 基板としては、電気絶縁性基板であれば特に限定はなく、石英基板、ガラス基板、アルミナなどのセラミックス基板、ポリイミドなどの樹脂製の基板、絶縁層を有した金属基板などが用いられる。
 塗布装置並びに塗膜の乾燥及び焼成装置は、一般的に知られるものを用いることができる。具体的にはスピンコーター、スリットコーター、ドクターブレード、ロールコーター、インクジェット、ディップコート、スクリーン印刷などが挙げられる。乾燥及び焼成に用いる装置はホットプレート、オーブン、ランプ加熱装置などが挙げられる。また焼成に用いる装置としては加熱装置の他、紫外線、可視光、フラッシュ光による光照射装置などが挙げられる。
 以下に、実施例を挙げて本発明をより具体的に記載するが、本発明は以下の記述によって限定されるものではない。なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は以下のとおりである。
[装置]
(1)電気炉(マッフル炉)
装置:山田電機(株)製 卓上マッフル炉 Y-2025-N
(2)スピンコーター
装置:ミカサ(株)製 スピンコーター 1H-D7
(3)抵抗率計(表面抵抗値測定)
装置:三菱化学(株)製 ロレスタ-GP
プローブ:三菱化学(株)製 PSPプローブ(探針間距離:1.5mm)
(4)走査電子顕微鏡
装置:日本電子(株)製 電界放出形走査電子顕微鏡 JSM-7400F
(5)膜厚測定
装置:(株)小坂研究所製 微細形状測定機 サーフコーダ ET4000
(6)熱電特性評価
装置:オザワ科学(株)製 熱電特性測定装置 RZ2001i
電極:薄膜電極
(7)粒度分析計
装置:マイクロトラック・ベル(株)製 ナノトラック(登録商標) UPA-EX
(8)光焼成
 装置:Xenon社製 キセノンパルス光焼結装置X-1100
(9)抵抗測定
装置:エンジニア社製 デジタルマルチメーター SD-06
[原料]
・マンガン系酸化物 Mn113:CaMn0.98Mo0.02(粒子径:20nm(SEM観察による)、比表面積33m/g)
・メチルセルロース:メトローズ(登録商標)SM-15(信越化学(株)製)
・1-プロパノール:(純正化学(株)製)
[実施例1:熱電変換用組成物の調製]
 多糖類であるSM-15(0.05g、1質量部)を水(3.9g、79質量部)
に溶解させた。CaMn0.98Mo0.02(0.75g、15質量部)と1-プロパノール(0.25g、5質量部)を添加した。さらにφ1mmのジルコニアビーズを添加し、ミックスローター(100rpm)上で3日間ボールミル処理して、実施例組成物Aを得た。
[実施例2~4]
 多糖類、水、CaMn0.98Mo0.02、及び1-プロパノールを、それぞれ表1の組成とした以外は、実施例1と同じ手順により実施例組成物B~Dを得た。
[比較例1]
 PEG4000(0.05g、1質量部)を水(3.9g、79質量部)に溶解させた。CaMn0.98Mo0.02(0.75g、15質量部)と1-プロパノール(0.25g、5質量部)を添加した。さらにφ1mmのジルコニアビーズを添加し、ミックスローター(100rpm)上で3日間ボールミル処理して比較例組成物aを得た。
[比較例2]
 PEG4000を添加しなかった以外は、比較例1と同じ手順により、表2の組成の比較例組成物bを得た。
[比較例3]
 多糖類であるSM-15の使用量を0.0005g(0.01質量部)とし、水の使用量を表2の組成となるように調整した以外は、実施例1と同じ手順により、表2の組成の比較例組成物cを得た。
[比較例4]
 多糖類であるSM-15の使用量を0.5g(10質量部)とし、水の使用量を表2の組成となるように調整した以外は、実施例1と同じ手順により、表2の組成の比較例組成物dを得た。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[実施例5]
 実施例組成物Aをアルミナ基板上に少量滴下し、スピンコート法(700rpm)を用いて塗膜を形成した。得られた塗膜を100℃で5分間乾燥し、次いで酸化性雰囲気(窒素約80%、酸素約20%)下、1000℃で1時間焼成し、実施例層Aを得た。実施例層Aについて、成膜性(100℃の乾燥後、1000℃の焼成後)および表面抵抗率を以下の手順にて評価した。得られた結果を表3に示す。
[成膜性]
 アルミナ基板上への成膜性について、目視にて評価した。
〇:熱電変換層の割れや剥がれがみられない。
×:熱電変換層の割れや剥がれがみられる。
[表面抵抗率]
熱電変換層が得られたサンプルに対して、ロレスタ-GPを用いて3点の表面抵抗値を測定し、3点の平均値を熱電変換層の表面抵抗値とした。
[光焼結後の抵抗値]
抵抗測定は、エンジニア社製のデジタルマルチメーターSD-06の抵抗測定モードを用いて、実施例層A2、A3及びA4の層表面の対角となるように、該メーターの2本のテスト棒を当て、表示された値を読みとった。
 実施例層Aは、100℃の乾燥(分散媒の乾燥)後、また1000℃焼成(塗膜の焼成)後においても、割れや剥がれは見られず、アルミナ基板上を均一に覆っていることを確認した。図1に実施例層Aの断面状態の走査型電子顕微鏡(SEM)による観察結果を示す(倍率:30,000倍)。SEM観察から実施例層AはMn113(CaMn0.98Mo0.02)微粒子が積層して1.1μmの層を形成していることが確認できた。また、実施例層Aの表面抵抗率は1.8E+04Ω/□であった。実施例組成物Aは環境に負荷を与えない組成物でありながら、特性の良い均一な熱電変換層を形成できることが示された。
[実施例6~実施例9]
 実施例組成物B~Dを用いた以外は、実施例5と同様の手順で実施例層B~Dを得、成膜性および表面抵抗率を評価した。得られた結果を表3にあわせて示す。
 実施例層B~Dは、いずれも、100℃の乾燥(分散媒の乾燥)後、また1000℃焼成(塗膜の焼成)後においても、割れや剥がれは見られず、アルミナ基板上を均一に覆っていることを確認した。実施例層B~Dの表面抵抗率を表3に示す。実施例組成物B~Dも、環境に負荷を与えない組成物でありながら、特性の良い均一な熱電変換層を形成できることが示された。
[比較例5~比較例8]
 比較例組成物a~dを用いた以外は実施例5と同様の手順で比較例層a~dの作製を試みたが、比較例層a~dのいずれも、100℃の乾燥後に、割れや剥がれが発生し、基板上に熱電変換層を形成することができなかった。
 比較例層aはPEGとMn113(CaMn0.98Mo0.02)とが十分に分散せず凝集しており、そのため、樹脂成分によるMn113(CaMn0.98Mo0.02粒子の基板上への固定ができず、乾燥後に、割れや剥がれが発生したと考えられる。
 比較例層bおよびcに関しては、十分な量の多糖類が存在しないため、粒子同士若しくは粒子と基板とを結合する成分が不足して、乾燥後に割れ、剥がれが発生したと考えられる。
 過多の多糖類が存在した比較例dに関しては、多糖類が十分に溶解せず熱電変換層を形成するための組成物が得られなかった。
 以上、多糖類の代わりにPEGを添加した組成物(比較例組成物a)や、多糖類の添加量が不十分(比較例組成物bおよびc)または過多(比較例組成物d)である組成物は、熱電変換層形成用組成物として機能しないことが確認された。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
[実施例9]
 多糖類であるSM-15(1.5g、1質量部)を水(111g、82質量部)に溶解させた。CaMn0.98Mo0.02(15g、11質量部)と1-プロパノール(7.5g、6質量部)を添加した。さらにφ1mmのジルコニアビーズを添加し、サンドグラインダー(500rpm)を用いて4時間ボールミル処理して実施例組成物Eを得た。
[実施例10]
 実施例組成物Eをアルミナ基板上に少量滴下し、スピンコート法(700rpm)を用いて塗膜を形成した。得られた塗膜を100℃で5分間乾燥し、次いで酸化性雰囲気(窒素約80%、酸素約20%)下、800℃で1時間焼成し実施例層Eを得た。実施例5と同様の手順で成膜性および表面抵抗率を評価した。
 実施例層Eは100℃乾燥および800℃焼成後においても、割れや剥がれは見られずアルミナ基板を均一に覆っていることを確認した。表面抵抗率は1.6E+5Ω/□であった。実施例組成物Eは環境に負荷を与えない組成物でありながら、特性の良い均一な熱電変換層を形成できることが示された。
[実施例11]
 実施例組成物Aを無アルカリガラス基板(10mm×10mm)上にスピンコート法(1500rpm)を用いて塗膜を形成した。得られた塗膜を110℃10分間乾燥し、次いで酸化性雰囲気(窒素約80%、酸素約20%)下、350℃で1時間焼成し、実施例層A2を得た。最後に塗膜を光焼結(電圧3000V、350μsec.)した。実施例層A2の抵抗は、光焼結前は抵抗が高く測定範囲外だったが、光焼結後は14MΩであった。
[実施例12]
 実施例組成物Aを無アルカリガラス基板(10mm×10mm)上にスピンコート法(1500rpm)を用いて塗膜を形成した。得られた塗膜を110℃10分間乾燥し、次いで酸化性雰囲気(窒素約80%、酸素約20%)下、350℃で1時間焼成し、実施例層A3を得た。最後に塗膜を光焼結(電圧3000V、400μsec.)した。実施例層A3の抵抗は、光焼結前は抵抗が高く測定範囲外だったが、光焼結後は10MΩであった。
[実施例13]
 実施例組成物Aを無アルカリガラス基板(10mm×10mm)上にスピンコート法(1500rpm)を用いて塗膜を形成した。得られた塗膜を110℃10分間乾燥し、次いで酸化性雰囲気(窒素約80%、酸素約20%)下、350℃で1時間焼成し、実施例層A4を得た。最後に塗膜を光焼結(電圧3000V、450μsec.)した。実施例層A4の抵抗は、光焼結前は抵抗が高く測定範囲外だったが、光焼結後は7MΩであった。
このように実施例層A2~A4は光焼結により低抵抗化した。

Claims (8)

  1. (A)水、
    (B)マンガン系酸化物、及び
    (C)多糖類
    を含む熱電変換層形成用組成物であり、
    該組成物100質量部に基いて、
    (A)と(B)との合計は90~99.98質量部であり、
    (B)は1~50質量部であり、
    (C)は0.02質量部以上10質量部未満である熱電変換層形成用組成物。
  2. 前記(C)多糖類は、セルロース誘導体である、請求項1に記載の熱電変換層形成用組成物。
  3. 前記セルロース誘導体は、メチルセルロースである、請求項2に記載の熱電変換層形成用組成物。
  4. 前記(B)マンガン系酸化物は、下記の一般式(1):
     Ca Mn   (1)
    (式中、
    は希土類元素、Li、Na、K、Mg、Sr、Ba、Zn、Al及びBiからなる群から選ばれた少なくとも一種の元素であり、
    はTi、V、Cr、Fe、Ni、Cu、Zr、Nb、Ta、Mo及びWからなる群から選ばれた少なくとも一種の元素であり、
    0.5≦v≦1.2; 0≦w≦0.5; 0.5≦x≦1.2; 0≦y≦0.5; 2.8≦z≦3.2を満たす数であって、0.8≦v+w≦1.2; 0.8≦x+y≦1.2である。)
    で表されるペロブスカイト型カルシウムマンガン系酸化物であるか、
    一般式(2):
     Ca Mn   (2)
    (式中、
    は希土類元素、Li、Na、K、Mg、Sr、Ba,Zn、Al及びBiからなる群から選ばれた少なくとも一種の元素であり、
    はTi,V,Cr、Fe、Ni、Cu、Zr、Nb、Ta,Mo及びWからなる群から選ばれた少なくとも一種の元素であり、
    1≦a≦2.4; 0≦b≦1; 0.5≦c≦1.2; 0≦d≦0.5; 3.6≦e≦4.4を満たす数であって、1.6≦a+b≦2.4; 0.8≦c+d≦1.2である。)
    で表される層状ペロブスカイト型カルシウムマンガン系酸化物である、
    請求項1乃至請求項3のうちいずれか一項に記載の熱電変換層形成用組成物。
  5. 請求項1乃至請求項4のうちいずれか一項に記載の熱電変換層形成用組成物を基板に塗布して被膜を形成する工程、次いで該被膜を300℃以上の酸化性雰囲気にて焼成する工程を含む、熱電変換層の製造方法。
  6. 請求項1乃至請求項4のうちいずれか一項に記載の熱電変換層形成用組成物を基板に塗布して被膜を形成する工程、次いで該被膜を酸化性雰囲気にて光照射による光焼成する工程を含む、熱電変換層の製造方法。
  7. 請求項1乃至請求項4のうちいずれか一項に記載の熱電変換層形成用組成物を基板に塗布して被膜を形成する工程、該被膜を300℃以上の酸化性雰囲気下、焼成する工程、該焼成工程の前又は後に、該被膜を酸化性雰囲気下、光照射により光焼成する工程を含む、熱電変換層の製造方法。
  8. マンガン系酸化物と多糖類とを含む、マンガン系酸化物層を形成するための複合物。
PCT/JP2019/011517 2018-03-20 2019-03-19 熱電変換層形成用組成物及び熱電変換層の製造方法 WO2019181960A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020507846A JPWO2019181960A1 (ja) 2018-03-20 2019-03-19 熱電変換層形成用組成物及び熱電変換層の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018053479 2018-03-20
JP2018-053479 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019181960A1 true WO2019181960A1 (ja) 2019-09-26

Family

ID=67987656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011517 WO2019181960A1 (ja) 2018-03-20 2019-03-19 熱電変換層形成用組成物及び熱電変換層の製造方法

Country Status (3)

Country Link
JP (1) JPWO2019181960A1 (ja)
TW (1) TW201945453A (ja)
WO (1) WO2019181960A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305991A (ja) * 2007-06-07 2008-12-18 Sumitomo Chemical Co Ltd 熱電変換モジュール、熱電変換装置及びそれらの製造方法
JP2012028504A (ja) * 2010-07-22 2012-02-09 Jgc Catalysts & Chemicals Ltd CaMnO3型熱電変換材料及びその製造方法
JP2015029056A (ja) * 2013-07-03 2015-02-12 富士フイルム株式会社 熱電変換層の製造方法、熱電変換素子
JP2016178107A (ja) * 2015-03-18 2016-10-06 日本化学工業株式会社 熱電変換材料の製造方法
WO2018056368A1 (ja) * 2016-09-21 2018-03-29 日産化学工業株式会社 熱電変換層形成用組成物及び熱電変換層の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305991A (ja) * 2007-06-07 2008-12-18 Sumitomo Chemical Co Ltd 熱電変換モジュール、熱電変換装置及びそれらの製造方法
JP2012028504A (ja) * 2010-07-22 2012-02-09 Jgc Catalysts & Chemicals Ltd CaMnO3型熱電変換材料及びその製造方法
JP2015029056A (ja) * 2013-07-03 2015-02-12 富士フイルム株式会社 熱電変換層の製造方法、熱電変換素子
JP2016178107A (ja) * 2015-03-18 2016-10-06 日本化学工業株式会社 熱電変換材料の製造方法
WO2018056368A1 (ja) * 2016-09-21 2018-03-29 日産化学工業株式会社 熱電変換層形成用組成物及び熱電変換層の製造方法

Also Published As

Publication number Publication date
TW201945453A (zh) 2019-12-01
JPWO2019181960A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6282616B2 (ja) 銀粉およびその製造方法
JP6256636B2 (ja) 酸化ルテニウム粉末の製造方法
TWI614767B (zh) 形成氣體感測器電極用的金屬膏及其製造方法,以及氣體感測器電極的製造方法
TWI508102B (zh) 導電性糊狀組成物及使用其所形成之導電性膜
TWI590417B (zh) 厚膜電阻體及其製造方法
JP2007103594A (ja) 抵抗体組成物並びに厚膜抵抗体
TW201324537A (zh) 導電粒子及金屬膏以及電極
JP2006299385A (ja) 白金粉末、その製造方法、および圧電セラミック材用白金ペースト
Hosseini et al. Novel electrophoretic deposited nanostructured forsterite coating on 316L stainless steel implants for biocompatibility improvement
WO2018056368A1 (ja) 熱電変換層形成用組成物及び熱電変換層の製造方法
WO2019181960A1 (ja) 熱電変換層形成用組成物及び熱電変換層の製造方法
JP4492785B2 (ja) 複合導電性粒子粉末、該複合導電性粒子粉末を含む導電性塗料並びに積層セラミックコンデンサ
JP5053902B2 (ja) 銀超微粒子の製造方法
Jiang et al. Rheological fingerprints of time-evolving polymer-particle interaction and sol–gel transition in silver pastes
JP4834848B2 (ja) 低温焼成用銅粉または導電ペースト用銅粉
KR101138246B1 (ko) 낮은 온도저항계수를 갖는 저항체용 페이스트 조성물의 제조방법, 이를 이용한 후막 저항체 및 그 제조방법
KR101336395B1 (ko) 투명전극용 ito 페이스트 제조방법 및 이에 의해 제조된 투명전극용 ito 페이스트
JP6763119B2 (ja) 絶縁性被膜組成物、及び絶縁性被膜付金属材料
Luo et al. Electrical properties of binder-free thick film BaYxBi1− xO3 NTC thermistors
JP2019165186A (ja) 熱電変換層およびその製造方法
Gurunathan et al. Co-precipitation synthesis in the presence of surfactant and characterization of nanosized CaRuO3 powders and its application in fired thick film resistors in nanoelectronics
JP6795841B2 (ja) 金担持白金粉末の製造方法
JP7231319B2 (ja) 導電性ペースト組成物、それを用いた導電性膜の製造方法および積層コンデンサ
JP2005026479A (ja) セラミック電子部品用電極ペースト
TWI795545B (zh) 厚膜電阻用組成物、厚膜電阻用膏體及厚膜電阻

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020507846

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19770450

Country of ref document: EP

Kind code of ref document: A1