WO2019181817A1 - 建設機械 - Google Patents

建設機械 Download PDF

Info

Publication number
WO2019181817A1
WO2019181817A1 PCT/JP2019/011030 JP2019011030W WO2019181817A1 WO 2019181817 A1 WO2019181817 A1 WO 2019181817A1 JP 2019011030 W JP2019011030 W JP 2019011030W WO 2019181817 A1 WO2019181817 A1 WO 2019181817A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
construction machine
turning
vibration
index value
Prior art date
Application number
PCT/JP2019/011030
Other languages
English (en)
French (fr)
Inventor
田中 精一
玲央奈 高村
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Priority to EP19770836.5A priority Critical patent/EP3744907A4/en
Priority to CN201980016110.8A priority patent/CN111788359B/zh
Priority to US16/976,345 priority patent/US11933020B2/en
Publication of WO2019181817A1 publication Critical patent/WO2019181817A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/04Controlling members for hand actuation by pivoting movement, e.g. levers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/03Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/04766Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks providing feel, e.g. indexing means, means to create counterforce

Definitions

  • the present invention relates to a construction machine such as a hydraulic excavator.
  • Patent Document 1 includes setting means for setting a work target surface such as an attachment, and the degree of approach and operation direction of the attachment to the work target surface when the attachment approaches the work target surface by operating the operation lever. Accordingly, an electromagnetic actuator is provided that applies an assisting force to the operation lever so that the operation is performed along the work target surface and teaches the operation to the operator.
  • the operation is taught by applying an auxiliary force to the operation lever by the electromagnetic actuator so that the attachment approaches the work target surface.
  • the construction machine disclosed in Patent Document 2 includes a vehicle state detection unit that detects information on the current position and orientation of the construction machine, a storage unit that stores position information of a target surface to be worked, and information that includes the direction of the cutting edge of the attachment. Based on information including the direction orthogonal to the target surface, etc., the target turning information indicating the turning amount of the upper turning body required for the attachment blade edge to face the target surface is obtained, and an image corresponding to the target turning information is obtained.
  • a processing unit for displaying on a display device and a sound generator are provided.
  • the processing unit displays the position of the blade edge of the attachment relative to the target surface on the display device, and operates by shortening the interval of the sound generated from the sound generator as the blade vector of the attachment and the target surface become closer to parallel. Teach.
  • Patent Document 1 the operator may feel troublesome because the operation lever is directly moved by the assisting force of the electric actuator.
  • Patent Document 2 when the operator directly looks at the tip of the attachment, if the operator looks at the display device, the line of sight may be interrupted, which may be undesirable. The operator may be difficult to hear due to noise on site. For this reason, there is room for improvement in the operation teaching means in Patent Documents 1 and 2.
  • the present invention is a construction machine that can reliably teach an operation to the operator while the operator's line of sight is not interrupted or the teaching sound is difficult to hear and the trouble of the operation lever is reduced.
  • the purpose is to provide.
  • a construction machine a lower traveling body, an upper revolving body that is turnably provided on the lower traveling body, a work device that is rotatably connected to the upper revolving body, An attachment connected to a tip of a work device, an operation unit that receives an operation by an operator for operating at least one of the lower traveling body, the upper swing body, the work device, and the attachment; and the operation
  • a vibration applying device that applies vibration to a target part that is at least part of a part that contacts the body of the operator who operates the unit, and the specific part at a target position set as a destination to which the specific part of the construction machine moves
  • a storage unit for storing an operation target set as an operation target of the construction machine to move the machine, and an index serving as an index of a distance between the operation target and the actual state of the construction machine
  • the vibration applying device applies a first vibration applying operation for applying vibration having a first vibration pattern to the target part and a vibration having a second vibration pattern different from the first vibration pattern to the target part. It is possible to perform a second vibration applying operation.
  • the control device causes the vibration applying device to perform the first vibration applying operation when the index value calculated by the calculating unit satisfies a predetermined first condition, and is calculated by the calculating unit. When the index value satisfies a predetermined second condition different from the first condition, the vibration applying device is configured to perform the second vibration applying operation.
  • the distance of the tip to the target track when the tip of the attachment is moved to a target position on a linear target track set as a target of the track drawn by the tip of the attachment. It is a side view for demonstrating.
  • FIG. 1 it is a flowchart showing another example of control when the distance from the target track to the tip of the attachment is used as an index value.
  • the construction machine 10 is a hydraulic excavator, and includes a lower traveling body 12, an upper revolving body 14 that is provided on the lower traveling body 12 so as to be able to swivel via a revolving shaft 13, A work device 15 provided on the upper swing body 14 and an attachment 25 are provided.
  • the working device 15 includes a boom 21 and an arm 23.
  • the said attachment 25 is a bucket, it is not restricted to this, For example, a grapple, a crusher (crusher), a breaker, a fork, etc. may be sufficient.
  • the upper swing body 14 includes a swing frame connected to the lower traveling body 12, an operation chamber (cab) 16 mounted on the swing frame, and a machine room 17 mounted on the swing frame. .
  • the operation chamber 16 is disposed at a front portion of the swivel frame and biased to one side in the left-right direction.
  • the machine room 17 is disposed at the rear part of the swivel frame.
  • An engine and a counterweight 18 are mounted in the machine room 17.
  • the construction machine 10 further includes a plurality of actuators that move the lower traveling body 12, the upper swing body 14, the work device 15, and the bucket 25.
  • the plurality of actuators include a boom cylinder 22, an arm cylinder 24, a bucket cylinder 27, a turning motor 28 (see FIG. 5), and a travel drive device (not shown).
  • the boom cylinder 22 is an actuator for rotating the boom 21 with respect to the upper swing body 14.
  • a base end portion of the boom cylinder 22 is pivotally supported with respect to the upper swing body 14 so as to be rotatable.
  • the tip of the boom cylinder 22 is rotatably connected to the boom 21 via a pin 22a.
  • An arm 23 is connected to the tip of the boom 21.
  • the arm cylinder 24 is an actuator for rotating the arm 23 with respect to the boom 21.
  • the base end portion and the tip end portion of the arm cylinder 24 are pivotally supported by the boom 21 and the arm 23, respectively.
  • the bucket 25 is connected to the tip of the arm 23.
  • the bucket cylinder 27 is an actuator for rotating the bucket 25 with respect to the arm 23.
  • a base end portion of the bucket cylinder 27 is pivotally supported by the arm 23 so as to be rotatable.
  • the tip of the bucket cylinder 27 is pivotally supported by the arm 23 and the bucket 25 via a link portion 26 so that the bucket 25 which is the attachment 25 rotates with respect to the arm 23 by the bucket cylinder 27. Yes.
  • the construction machine 10 includes a first angle sensor 41, a second angle sensor 42, a third angle sensor 43, a fourth angle sensor 44, a plurality of external state detection units, and a plurality of load measurement units. Further prepare.
  • the first angle sensor 41 is provided at a rotating shaft portion of the boom 21 that is rotatably supported by the upper swing body 14 and measures the rotation angle of the boom 21 with respect to the upper swing body 14.
  • the second angle sensor 42 is provided at a rotating portion of the arm 23 that is rotatably supported by the boom 21, and measures the rotation angle of the arm 23 with respect to the boom 21.
  • the third angle sensor 43 is provided in a bucket (attachment) 25 that is rotatably supported by the arm 23, and measures the rotation angle of the bucket 25 with respect to the arm 23.
  • the fourth angle sensor 44 is provided on the turning shaft 13 of the upper turning body 14 provided to be turnable on the lower traveling body 12, and measures the rotation angle of the upper turning body 14 with respect to the lower traveling body 12.
  • the fourth angle sensor 44 can detect the turning amount (turning angle) of the upper turning body 14.
  • the postures of the bucket (attachment) 25 and the work device 15 are detected by the first to fourth angle sensors 41, 42, 43, 44.
  • Each of the first to fourth angle sensors 41 to 44 is constituted by, for example, a rotary encoder.
  • Each of the first to fourth angle sensors 41 to 44 detects an angle to be measured at a constant cycle, and sequentially transmits data of the detected angle to the control device.
  • the plurality of external state detection units are devices that detect an external state that is a peripheral state of the construction machine 10.
  • the plurality of external state detection units include a three-dimensional scanner 45, a plurality of area sensors, and a tilt sensor 48.
  • the 3D scanner 45 is an apparatus that can detect unevenness of an object and acquire 3D data of the object.
  • the three-dimensional scanner 45 is disposed in the operation room 16 and has a field of view extending in front of the construction machine 10, and detects the state of the outside world in the field of view.
  • the three-dimensional scanner 45 transmits the acquired 3D data to the control device.
  • the plurality of area sensors include a first area sensor 46 capable of detecting the first peripheral object when the first peripheral object is located in a first area around the construction machine 10.
  • a second area sensor 47 capable of detecting the second peripheral object when the second peripheral object is located in a second area around the construction machine 10.
  • the first area and the second area are different areas behind the construction machine 10.
  • Each of the first area sensor 46 and the second area sensor 47 is configured by, for example, an infrared sensor.
  • Each of the first peripheral object and the second peripheral object may include various objects such as a moving body other than the construction machine 10 and a stationary object.
  • each of the first peripheral object and the second peripheral object may be, for example, a vehicle, a building, a surface layer portion of earth such as earth and sand, and asphalt.
  • the inclination sensor 48 measures the inclination of the construction machine 10 with respect to the horizontal direction or the horizontal plane.
  • the said inclination sensor 48 detects the inclination angle of the construction machine 10 with respect to a horizontal direction or a horizontal surface with a fixed period, and transmits the data of the detected inclination angle to a control apparatus sequentially.
  • the plurality of load measuring units include a load measuring unit 51 that measures the magnitude of a load (holding pressure) applied to the boom cylinder 22 and a load (holding pressure) applied to the arm cylinder 24.
  • a load measurement unit 52 that measures the magnitude and a load measurement unit 53 that measures the magnitude of the load (holding pressure) applied to the bucket cylinder 27 are included.
  • the plurality of load measuring units include a load measuring unit (not shown) that measures the magnitude of a load (holding pressure) applied to the travel driving device as an actuator that drives the lower traveling body 12, and the upper swing body 14.
  • a load measuring unit 54 that measures the magnitude of a load (holding pressure) applied to the turning motor 28 as an actuator for turning.
  • Each of the plurality of load measuring units is constituted by, for example, a pressure sensor.
  • Each of the plurality of load measuring units measures a load to be measured at a constant cycle, and sequentially transmits data of the measured load to the control device.
  • the plurality of external state detection units are not limited to the three-dimensional scanner 45, the area sensors 46 and 47, and the tilt sensor 48.
  • the outside world state detection unit may be other devices that can measure the outside world state, such as a distance measuring device and a camera.
  • Each of the plurality of load measuring units is not limited to the pressure sensor.
  • Each of the plurality of load measuring units only needs to be able to detect the magnitude of the load applied to the corresponding actuator, and may be another measuring instrument such as a strain gauge.
  • the construction machine 10 includes an operation unit that receives an operation by an operator, and a contact unit that is a part of the construction machine 10 that contacts the body of an operator who operates the operation unit and is a part other than the operation unit. And a plurality of vibration applying devices that apply vibration to a target part that is at least a part of a part that contacts the body of the operator who operates the operation unit.
  • the target site may be, for example, at least a part of the operation unit or at least a part of the contact unit.
  • the operation unit includes a pair of left and right operation levers 61 that receive an operation by an operator.
  • the contact portion includes a seat 62 on which an operator is seated and a pair of left and right armrests 63 on which the operator places his arms.
  • the pair of operation levers 61, the seat 62, the pair of armrests 63, and the plurality of vibration applying devices are provided in the operation chamber 16.
  • the plurality of vibration applying devices include a pair of vibration applying devices 64 provided on the pair of operation levers 61 and a pair of vibration applying devices 65 provided on the pair of armrests 63, respectively.
  • the pair of vibration applying devices 64 apply vibrations to the pair of operation levers 61, respectively. Since the pair of vibration applying devices 64 are provided on the pair of operation levers 61, the warning information is reliably transmitted to the operator via the operation lever 61 that is held by the operator. In the embodiment, the pair of vibration applying devices 64 are provided on the operation lever 61 which is an example of the operation unit. It may be provided in the operation unit.
  • the pair of vibration applying devices 65 apply vibrations to the pair of armrests 63, respectively. Since the pair of vibration applying devices 65 are provided in the pair of armrests 63, vibration is transmitted through the operator's arm, and the operator can be urged to perceive the warning information.
  • the pair of armrests 63 are exemplified as the contact portion provided with the vibration applying device, but the present invention is not limited to this.
  • the vibration applying device may be provided on a seat 62 (including a seat cushion, a seat back, a footrest, and a headrest) as the contact portion or on the floor.
  • each of the pair of vibration applying devices 64 is detachably provided on the operation lever 61. Specifically, each of the pair of vibration applying devices 64 is disposed so as to surround the corresponding operation lever 61 and fastened by a fastening member 66. In the embodiment, the vibration applying device 64 is disposed on a bar extending vertically in the operation lever 61, but is not limited thereto. The vibration applying device 64 may be attached to the knob portion of the operation lever 61, and may be disposed at the base end portion of the bar of the operation lever 61. As long as the vibration can be transmitted to the operator, the shape and the mounting manner of the vibration applying device 64 are not limited.
  • the construction machine 10 includes the operation room 16 and a main body 11 that is a part of the construction machine 10 other than the operation room 16.
  • the main body 11 includes a calculation unit 55, a control device 56, and a communication device 57.
  • the operation chamber 16 includes an operation unit including the pair of operation levers 61, the seat 62 and the pair of armrests 63, a communication device 71, a control device 72, and an interface. 73, a storage unit 74, a target generation unit 75, and the vibration applying devices 64 and 65.
  • the calculation unit 55, the control device 56, the control device 72, the storage unit 74, and the target generation unit 75 constitute a controller.
  • the controller is composed of a computer, for example.
  • the computing unit 55 is configured to control the construction machine 10 in the machine coordinate system based on angle information input from the first angle sensor 41, the second angle sensor 42, the third angle sensor 43, and the fourth angle sensor 44. Calculate the coordinates of a specific part. In the present embodiment, the specific site is the tip of the attachment 25.
  • the calculation unit 55 also calculates the postures of the upper swing body 14, the boom 21, the arm 23, and the attachment 25 in the machine coordinate system of the construction machine 10.
  • the coordinate information and posture information calculated by the calculation unit 55 are input to the control device 56.
  • the communication device 57 transmits information output from the control device 56 to the communication device 71 in the operation room 16.
  • the control device 56 includes an external state detection unit (three-dimensional scanner) 45, an external state detection unit (area sensor) 46 and 47, an external state detection unit (tilt sensor) 48, load measurement units 51, 52 and 53, turning Signals output from the load measurement unit 54 of the motor and the load measurement unit of the travel drive device are input. Further, the control device 56 outputs signals for controlling the operations of the boom cylinder 22, the arm cylinder 24, the bucket cylinder 27, the turning motor 28, and the travel drive device.
  • the communication device 71 provided in the operation room 16 of the construction machine 10 transmits information to and from the communication device 57 of the main body 11. Information received by the communication device 71 is input to the control device 72.
  • the interface 73 is connected to the control device 72.
  • the storage unit 74 stores an operation target set as an operation target of the construction machine 10 in order to move the specific part to a target position set as a destination to which the specific part of the construction machine 10 moves.
  • the operation target includes at least one of a target trajectory, a deceleration target timing, and a deceleration target turning amount.
  • the target trajectory is set as a target of a trajectory drawn by the specific part when the specific part moves toward the target position.
  • the deceleration target timing is set as a target for the timing at which the upper swing body 14 starts the deceleration operation when the operation unit receives a swing deceleration operation for stopping the swing operation of the upper swing body 14.
  • the deceleration target turning amount is set as a turning amount target when the upper turning body 14 starts a deceleration operation when the operation unit receives a turning deceleration operation for stopping the turning operation of the upper turning body 14. Is done.
  • the target trajectory, the deceleration target timing, and the deceleration target turning amount may be set in advance and stored in the storage unit 74, set by the operator via the interface 73 or the like, and stored in the storage unit 74. May be stored.
  • target trajectory for example, as shown in FIG. 8, target trajectories R ⁇ b> 1 and R ⁇ b> 2 representing a time series of at least one of a target position G and a target posture of a specific part of the construction machine 10 can be cited.
  • the target trajectories R1 and R2 are virtual paths that connect the position P1 (current position P1) at which the tip of the attachment 25 set as the specific part is currently located and the target position G.
  • the target trajectories R1 and R2 are represented by a line segment connecting the position P1 and the target position G as shown in FIG.
  • the line segment may be a curve, a straight line, or a combination of a curve and a straight line.
  • the calculation unit 55 calculates an index value that is an index of the distance between the operation target and the actual state of the construction machine 10. A specific example of the index value will be described later.
  • the target generation unit 75 generates the operation target.
  • the target generation unit 75 generates the operation target based on, for example, information (machine information) regarding the status of the construction machine 10.
  • the situation of the construction machine 10 includes the external state detected by the plurality of external state detectors.
  • the target generation unit 75 generates target trajectories R1 and R2 as shown in FIG. 8, for example, according to the detection results of the external world state detection units 45, 46, 47, and 48.
  • the control device 72 generates a state trajectory (actual trajectory) representing a time series of at least one of the position and posture of the specific part of the construction machine 10 or at least one of the position and posture, and the target trajectories R1 and R2. Are compared with each of a plurality of predetermined conditions associated with.
  • the control device 72 is configured to vibrate the vibration applying devices 64 and 65 according to a plurality of different vibration patterns set in advance so as to correspond to the plurality of conditions. Therefore, when any of the plurality of conditions is satisfied, the control device 72 vibrates the vibration applying devices 64 and 65 according to a vibration pattern corresponding to the satisfied condition.
  • each of the vibration applying devices 64 and 65 includes a first vibration applying operation that applies a vibration having a first vibration pattern to the target portion, and a second vibration pattern that is different from the first vibration pattern. It is possible to perform a second vibration applying operation for applying a vibration having a vibration pattern to the target portion.
  • the control device 72 causes the vibration applying devices 64 and 65 to perform the first vibration applying operation when the index value calculated by the calculating unit 55 satisfies a predetermined first condition, and the calculating unit When the index value calculated by 55 satisfies a predetermined second condition different from the first condition, the vibration applying devices 64 and 65 are configured to perform the second vibration applying operation. Yes.
  • the interface 73 is configured such that an operator can input the target position in the machine coordinate system, that is, the target position that is a destination of a specific part of the construction machine 10.
  • the target position may be specified when the operator inputs coordinates corresponding to the target position using the interface 73.
  • the target position may be specified as follows. That is, image information around the construction machine 10 is acquired by a three-dimensional scanner or an imaging device provided in the construction machine 10, and on the three-dimensional image acquired by the three-dimensional scanner or the image captured by the imaging device.
  • the target position may be specified by the operator selecting a position corresponding to the target position, and the control device 72 converting the selected position into coordinates corresponding to the target position.
  • the interface 73 is configured such that an operator can input the positions and postures of the upper swing body 14, the work device 15, and the attachment 25 of the construction machine 10 in the machine coordinate system.
  • the target generation unit 75 may be configured to correct the target trajectories R1 and R2 according to the detection results of the external state detection units 45, 46, 47, and 48 after generating the target trajectory. .
  • information about the obstacle for example, position information
  • generation part 75 when the said specific site
  • the target trajectories R1 and R2 are corrected so that an object can be avoided.
  • the external state detection unit 45, 46, 47, 48 detects the external state, and the target generation unit 75 generates a target trajectory according to the detection result of the external state detection unit 45, 46, 47, 48 ( In the case of correcting the target trajectory), even if the external environment changes, it is possible to reliably teach the operation to the operator and improve the operability.
  • the specific part is any part of the construction machine 10. Specifically, the specific part is set, for example, at the tip of the attachment 25. The specific part may be set in advance, or may be set based on information input by the operator using the interface 73.
  • the calculation unit 55 calculates the coordinates of the tip of the attachment 25 based on the angle information input from the first to fourth angle sensors 41 to 44. Further, the calculation unit 55 calculates the target position from the tip of the attachment 25 based on the calculated coordinates of the tip of the attachment 25 and the coordinates of the target position input using the interface 73. Is calculated as the remaining distance index value.
  • the calculation unit 55 determines the remaining distance from the tip of the attachment 25 and the target position to the target position. Calculated as an index value.
  • the control device 72 may be configured to vibrate the vibration applying devices 64 and 65 according to the remaining distance index value (the target distance).
  • the storage unit 74 stores a plurality of remaining distance determination conditions.
  • the plurality of remaining distance determination conditions may be set in advance and stored in the storage unit 74, or may be stored based on information input through the interface 73.
  • the control device 72 performs vibration applying apparatuses 64 and 65 according to the vibration pattern corresponding to the remaining distance determination conditions. Vibrate.
  • the plurality of remaining distance determination conditions include a first remaining distance determination condition, a second remaining distance determination condition, and a third remaining distance determination condition.
  • the first remaining distance determination condition is set to a condition that the target distance from the distal end portion of the attachment 25 to the target position is greater than 1 m and equal to or less than 2 m
  • the second remaining distance determination condition is The target distance is set to a condition that is greater than 0.5 m and equal to or less than 1 m
  • the third remaining distance determination condition is set to a condition that the target distance is equal to or less than 0.5 m.
  • the control device 72 causes the vibration applying devices 64 and 65 to vibrate in the first vibration pattern, specifically, for example, in a low frequency range (small frequency). Vibrate with a pattern.
  • the control device 72 changes the vibration applying devices 64 and 65 to the second vibration pattern, specifically, for example, the middle frequency range (first vibration pattern). Vibrate at a greater frequency).
  • the control device 72 changes the vibration applying devices 64 and 65 to a third vibration pattern, specifically, for example, a high frequency region (from the second vibration pattern). Is vibrated at a higher frequency).
  • the construction machine 10 is configured such that the communication device 57 provided in the main body 11 and the communication device 71 provided in the operation chamber 16 transmit information to each other wirelessly.
  • the communication device 57 and the communication device 71 may be connected by wire.
  • the communication devices 57 and 71 may be omitted, and the control device 56 and the control device 72 may be configured by a single control device.
  • the operation room 16 may be provided at a distance, and the operation unit 61 may be a remote operation unit that allows the operator to remotely operate the construction machine 10.
  • the control devices 56 and 72 indicate that the index value serving as an index of the distance between the operation target and the actual state of the construction machine 10 is a predetermined condition. Is determined (STEP 1). Specifically, the predetermined condition includes at least a first condition and a second condition, and the control devices 56 and 72 determine whether or not the index value satisfies the first condition. , It is determined whether or not the index value satisfies the second condition.
  • the control devices 56 and 72 When the index value satisfies a predetermined condition (YES in STEP 1), the control devices 56 and 72 perform the process shown in STEP 2. When the index value does not satisfy the predetermined condition (NO in STEP 1), the control devices 56 and 72 perform the process shown in STEP 1 again.
  • the control devices 56 and 72 cause the vibration applying devices 64 and 65 to perform the first vibration applying operation when the index value satisfies the first condition.
  • the control devices 56 and 72 cause the vibration applying devices 64 and 65 to perform the second vibration applying operation when the index value satisfies the second condition.
  • the first vibration applying operation of the vibration applying devices 64 and 65 applies, for example, vibration having the first vibration pattern to the target portion such as the operation lever 61 that is touched by the operator. In the vibration applying operation, a vibration having the second vibration pattern is applied to the target portion. This makes it possible for the operator to perceive the separation of the operation of the construction machine 10 from the operation target by the vibrations of the first vibration pattern and the second vibration pattern which are different from each other.
  • the operator is in any one of a first situation in which the distance corresponds to the first condition and a second situation in which the second condition corresponds to the second condition.
  • the situation of the construction machine 10 has changed from the first situation to the second situation, and the situation of the construction machine 10 has changed from the second situation to the first situation. You can perceive that the situation has changed. Therefore, in the construction machine 10, when the distance between the actual state of the construction machine 10 and the operation target is transmitted to the operator, the operator's line of sight is not interrupted and the teaching sound does not become difficult to hear.
  • it is possible to improve the operability of the construction machine 10 by reliably teaching the operation to the operator while reducing the troublesome operation of the operation lever.
  • the index value is a distance index value that is a distance L5 (see FIG. 9) from the target trajectory to a specific part.
  • the calculation unit 55 calculates a distance L5 (the distance index value) from the target tracks R1 and R2 to the tip (specific part) of the attachment 25 (STEP 11).
  • the control devices 56 and 72 determine whether or not the distance (distance index value) from the target trajectory to the specific part is within a predetermined distance range (predetermined allowable range) (STEP 12). When the index value exceeds the predetermined allowable range (YES in STEP 12), the control devices 56 and 72 perform the process shown in STEP 13. When the index value does not exceed the predetermined allowable range (NO in STEP 12), the control devices 56 and 72 perform the process shown in STEP 11 again.
  • the allowable range may be set in advance and stored in the storage unit 74, or may be set by the operator via the interface 73 or the like and stored in the storage unit 74.
  • the control devices 56 and 72 cause the vibration applying devices 64 and 65 to perform a vibration applying operation corresponding to a condition satisfied by the distance index value that is a distance from the target trajectory to the tip of the attachment 25 (STEP 13).
  • the storage unit 74 stores a first condition and a second condition.
  • the first condition is a condition that the distance index value is within a predetermined first distance range
  • the second condition is a predetermined condition in which the distance index value is different from the first distance range.
  • the condition is that it is within the second distance range.
  • the first distance range and the second distance range are both set to a distance range that is larger than the upper limit (maximum value) of the allowable range. That is, the lower limit value (minimum value) of the first distance range and the lower limit value (minimum value) of the second distance range are both larger than the upper limit value of the allowable range.
  • At least one of the operation unit and the contact unit vibrates according to the first vibration pattern or the second vibration pattern according to the magnitude of the distance index value that is the distance of the specific part with respect to the target trajectory. To do. This enables the operator to perceive the distance from the specific part to the target trajectory via the vibration, and the specific part is guided through the trajectory close to the target trajectory to the target position. Makes it possible to
  • the first vibration pattern and the second vibration pattern by the vibration applying devices 64 and 65 are continuously generated from intermittent vibration. It may be set so as to change to a proper vibration.
  • the first vibration pattern and the second vibration pattern are set such that at least one of the vibration frequency and amplitude increases as the tip of the attachment 25 approaches the position of the warning object (target position G). May be.
  • the operator can perceive a change in the distance from the tip of the attachment 25, which is a specific part of the construction machine 10, to the target track by vibration.
  • the tip of the attachment 25 of the construction machine 10 is located at the position P1.
  • the target trajectories R1 and R2 are set to substantially arc-shaped trajectories R1 and R2, as shown in FIG.
  • the target trajectories R1 and R2 target that the tip of the attachment 25 moves from the position P1 through the target trajectory R1 to the position P2, and further moves from the position P2 through the target trajectory R2 to the target position G. Orbit.
  • the target trajectories R1 and R2 are generated as follows, for example. As shown in FIG. 8, the position P1 at which the tip of the attachment 25 is disposed at that time is a position away from the ground, the target position G is a position on the ground, It is a position ahead of the position P1. In order for the tip of the attachment 25 to move from the position P1 to the target position G, an operation lever for expanding and contracting the boom cylinder 22, an operation lever for expanding and contracting the arm cylinder 24, and the bucket cylinder 27 are provided. The operation lever for extending and contracting is operated simultaneously.
  • the target generation unit 75 generates a trajectory that can move the specific part from the position P1 to the target position G in a state where the operation amount received by these operation levers is kept constant.
  • the generated trajectory is stored in the storage unit 74 as the target trajectory.
  • the method for generating the target trajectory is not limited to the above specific example.
  • the attachment 25 indicated by a two-dot chain line in FIG. 9 is a position (passing position) through which the attachment 25 actually passes when the operation lever 61 is actually operated.
  • the tip of the attachment 25 is at a position separated from the target trajectory R1 by a distance L5 (index value).
  • L5 index value
  • the vibration applying devices 64 and 65 perform the vibration applying operation.
  • Each of the plurality of predetermined conditions includes a condition that the specific part is within a predetermined distance range from the target trajectory.
  • the plurality of conditions respectively correspond to a plurality of different situations. Specifically, when the first condition is satisfied, the condition of the construction machine 10 is that the distance from the specific part to the target track is included in the first distance range. It is. When the second condition is satisfied, the state of the construction machine 10 is a state in which the distance from the specific part to the target track is included in the second distance range.
  • the distance index value which is the distance between the target trajectory and the specific part (tip portion of the attachment 25), is within the first distance range or the second distance range.
  • the present invention is not limited to this.
  • the construction machine of the present invention may consider not only the distance but also the posture of the attachment 25 or the like. Examples of such modifications include the following.
  • the motion target includes a target posture.
  • the target posture is set as a posture target of the specific part (second specific part) at the target position G.
  • the index value includes a posture index value that serves as an index of the distance between the target posture and the actual posture of the second specific part.
  • the second specific part is set in the bucket 25, for example. That is, the second specific part that is the target of the target posture may be set to a part different from the specific part that is the target of the target trajectory described above (for example, the front end portion of the bucket 25).
  • the first condition includes a condition that the posture index value is within a predetermined first posture range
  • the second condition is that the posture index value is the first value. It includes a condition that it is within a predetermined second posture range different from the posture range.
  • the computing unit 55 is configured to control the construction machine 10 in the machine coordinate system based on angle information input from the first angle sensor 41, the second angle sensor 42, the third angle sensor 43, and the fourth angle sensor 44. Since the coordinates of the second specific part can be calculated, it can be determined whether the posture of the second specific part is within the first posture range, and the second specific part can be determined. It can be determined whether or not the posture of the part is within the second posture range.
  • the excavator shown in FIGS. 8 and 9 which is an example of the construction machine 10 can perform various operations such as excavation work and leveling work. Since the excavation work is performed to excavate the ground, the bucket 25 is arranged so that the tip of the bucket 25 is in contact with the ground when the excavation work is started. On the other hand, since the leveling work is performed to level the ground using a part of the bottom surface of the bucket 25, a part of the bottom surface of the bucket 25 is grounded when the leveling work is started. The bucket 25 is arranged so as to be in contact with.
  • the target posture of the bucket 25 at the target position G is The posture is such that the tip of the bucket 25 is in contact with the ground.
  • the target posture of the bucket 25 at the target position G is a posture in which a part of the bottom surface of the bucket 25 is in contact with the ground.
  • the work device 15 extends forward (front of the vehicle), and the tip of the attachment 25 is disposed at a position P3 on the ground.
  • a target position P4 as a destination to which the tip of the attachment 25 moves is set to a position P4 closer to the lower traveling body than the position P3 on the ground.
  • the target trajectory is set along the ground from the position P3 to the target position P4.
  • a so-called horizontal pulling operation is performed from the position P3 to the target position P4 using the tip of the attachment 25.
  • the target is to move the tip of the attachment 25 linearly with respect to the construction surface (ground). That is, in the horizontal pulling operation, the target trajectory at the tip of the attachment 25 is a linear trajectory (along the ground) that follows the ground from the position P3 to the target position P4.
  • the movement of the boom 21 with respect to the upper swing body 14, the movement of the arm 23 with respect to the boom 21, and the movement of the attachment 25 with respect to the arm 23 are basically all circular movements. Therefore, it is difficult to move the attachment 25 linearly along the ground while maintaining a posture in which the tip of the attachment 25 is directed downward.
  • An example of a specific horizontal pulling operation of the construction machine 10 shows that when moving the tip of the attachment 25 from the position P3 to the target position P4, the arm 23 is rotated downward while rotating the boom 21 upward. Further, the attachment 25 is rotated so that the tip of the attachment 25 faces downward.
  • the arm 23 is pivoted upward while the boom 21 is pivoted downward, and the distal end portion of the attachment 25 is directed downward. Rotate.
  • the tip of the attachment 25 is separated from the ground by a distance L6 as shown by a two-dot chain line in FIG. (Index value) may be separated.
  • the vibration applying devices 64 and 65 (see FIG. 3) vibrate.
  • the operator is informed that the attachment 25 is away from the ground (target trajectory).
  • an operation in which the tip of the attachment 25 moves along the ground from the position P3 to the target position P4 becomes possible.
  • an operation of moving the tip of the attachment 25 linearly following the ground or the like is often required.
  • the vibration applying devices 64 and 65 vibrate and the operation is taught. Thereby, the operator can easily perform an operation in which the tip of the attachment 25 moves linearly following the ground.
  • the remaining distance index value is the distance (target distance) from the tip of the attachment 25 to the target position.
  • the calculation unit 55 calculates the distance from the tip of the attachment 25 to the target position, and calculates the remaining distance index value (STEP 21).
  • the control devices 56 and 72 determine whether or not the remaining distance index value, which is the distance from the tip of the attachment 25 to the target position, satisfies a predetermined condition. In other words, the control devices 56 and 72 determine whether or not the target distance is included in a predetermined distance range (STEP 22). Specifically, in the present embodiment, the control devices 56 and 72 allow the target distance to satisfy the first remaining distance determination condition, the second remaining distance determination condition, and the third remaining distance determination condition. Each of them is determined whether or not.
  • the remaining distance index value When the remaining distance index value is included in a predetermined distance range, specifically, the remaining distance index value includes the first remaining distance determination condition, the second remaining distance determination condition, and the third If any one of the remaining distance determination conditions is satisfied (YES in STEP 22), the control devices 56 and 72 perform the processing shown in STEP 23. When the remaining distance index value is not included in the predetermined distance range (NO in STEP 22), the control devices 56 and 72 perform the process shown in STEP 21 again.
  • the control devices 56 and 72 vibrate the vibration applying devices 64 and 65 according to a vibration pattern corresponding to a condition satisfied by the target distance, which is a distance from the target position to the tip of the attachment 25 (STEP 23).
  • the target distance is a value included in a distance range that satisfies the first remaining distance determination condition
  • the second remaining distance determination condition is
  • the first to third vibration patterns change, for example, as follows.
  • the first to third vibration patterns by the vibration applying devices 64 and 65 may be set so as to change from intermittent vibration to continuous vibration in the process.
  • the first to third vibration patterns may be set so that at least one of vibration frequency and amplitude gradually increases in the process.
  • the operator can teach the change in the target distance from the tip of the attachment 25, which is a specific part of the construction machine 10, to the target position by vibration.
  • FIGS. 12 When the construction machine 10 takes the posture shown in FIG. 12, the attachment 25 of the construction machine 10 is close to the main body 11 and at a high position. A recess 1 is formed in front of the construction machine 10, and the bottom of the recess 1 is input by the operator as the target position G and stored in the control devices 56 and 72. In the posture shown in FIG. 12, the distance (target position) from the tip of the attachment 25 as the specific part to the target position G is L1.
  • FIG. 12 shows the position and orientation of the attachment 25 when the distance from the tip of the attachment 25 to the target position G decreases in the order of the target distance L2, the target distance L3, and the target distance L4.
  • the target distance L2 satisfies the first remaining distance determination condition, that is, the condition that the distance from the distal end portion of the attachment 25 to the target position G is greater than 1 m and equal to or less than 2 m.
  • the target distance L3 satisfies the second remaining distance determination condition, that is, the condition that the distance from the distal end portion of the attachment 25 to the target position G is greater than 0.5 m and equal to or less than 1 m.
  • the target distance L4 satisfies the third remaining distance determination condition, that is, the condition that the distance from the distal end portion of the attachment 25 to the target position G is 0.5 m or less.
  • the tip of the attachment 25 approaches the target position G from the position shown in FIG. 12, and the target distance from the tip of the attachment 25 to the target position G becomes L2 shown in FIG.
  • the control devices 56 and 72 vibrate the vibration applying devices 64 and 65 (see FIG. 3) at the first frequency.
  • the control device 56 , 72 causes the vibration applying devices 64 and 65 (see FIG. 3) to vibrate at the second frequency.
  • the second frequency is greater than the first frequency.
  • the control device 56 , 72 causes the vibration applying devices 64 and 65 (see FIG. 3) to vibrate at the third frequency.
  • the third frequency is greater than the second frequency.
  • the upper swing body 14 is swung from a position P5 that is a position at which the upper swing body 14 is started to a target position P6 that is set as a target of a position at which the swing operation is stopped. Is related to the operation of the time.
  • the construction machine 10 is in a state in which the upper swing body 14 faces the front of the vehicle and the work device 15 extends forward, and the tip of the attachment 25 is at the position P5.
  • the target trajectory is a trajectory of the distal end portion of the attachment 25 when the upper swing body 14 turns while the work device 15 maintains the posture.
  • the storage unit 74 stores the size of the upper swing body 14, the boom 21, the arm 23, and the attachment 25, the length and weight between joints, and the calculation unit 55 includes angle sensors 41, 42, 43, From the angle information of 44, the current positions and postures of the upper swing body 14, the boom 21, the arm 23, and the attachment 25 are calculated.
  • the calculation unit 55 calculates the positions and postures of the upper swing body 14, the boom 21, the arm 23, and the attachment 25 not only when the tip of the attachment 25 is at the position P5 but also at any position during the turn. can do.
  • control device 72 calculates an ideal operation amount of the operation lever 61 for turning the upper swing body 14 from the inertia force generated during turning and the target trajectory, and uses the actual operation amount of the operation unit 61. The operator is instructed so that the tip of the attachment 25 reaches the target position P6 and the target posture.
  • an operation target is set as an operation target of the construction machine 10 in order to move the specific part of the construction machine 10 to the target position P6. At least one of the target timing and the deceleration target turning amount.
  • the operation target is generated by the target generation unit 75 and stored in the storage unit 74.
  • the calculation unit 55 calculates an index value that is an index of the distance between the operation target and the actual state of the construction machine 10.
  • the index value is a time index value when the operation target is the deceleration target timing, and is a turning index value when the operation target is the deceleration target turning amount.
  • the specific part is set at the tip of the bucket 25, for example, but is not limited thereto, and may be set at a part of the arm 23 or a part of the boom 21, for example.
  • FIG. 15 is a graph for explaining the turning operation of the upper turning body 14 in the construction machine 10 according to this embodiment.
  • the operation lever 61 for turning (see FIGS. 3 and 4) is in the neutral position as shown in the graph (A) of FIG. 15, the upper turning body 14 is in the lower position as shown in the graph (B) of FIG. Since the turning operation is not performed with respect to the traveling body 12, the turning speed is zero, and the vehicle stops at the position P5 (turning start position) as shown in the graph (C) of FIG.
  • the operator gives a turning operation to the operation lever 61 when the upper turning body 14 performs a turning operation.
  • the upper turning body 14 turns as shown in the graph (B).
  • the upper turning body 14 turns in one direction (the direction of the arrow) from the position P5 toward the target position P6.
  • the construction machine 10 includes a timer, and the timer measures an elapsed time from when the turning operation is given to the operation lever 61.
  • the elapsed time measured by the timer is input to the calculation unit 55 and the control device 56.
  • the turning amount (turning angle) of the upper turning body 14 is measured by the fourth angle sensor 44, and the measured turning amount is input to the calculation unit 55 and the control device 56.
  • the measured turning amount may be a turning amount based on the turning start position P5 (a turning angle from the position P5), or a turning amount based on an arbitrary preset reference position (from the reference position). ).
  • the turning speed is the maximum speed of the full lever as shown in the graph (B). Is reached at the maximum speed (steady turning section in FIG. 15). In this steady turning section, the upper turning body 14 turns at a constant turning speed.
  • the turning deceleration operation is an operation for stopping the turning operation of the upper turning body 14.
  • a turning brake action is applied to the upper turning body 14 in the construction machine 10.
  • the said turning speed falls gradually (deceleration area in FIG. 15). Then, when the turning speed becomes zero, the turning operation of the upper turning body 14 is stopped.
  • the construction machine 10 includes a hydraulic motor that drives the upper swing body 14 to swing, a hydraulic pump that serves as a hydraulic source for the hydraulic motor, and a control valve that switches the rotation direction of the hydraulic motor (the swing direction of the upper swing body 14).
  • a pair of right and left turning oil passages connected to the ports on both sides of the hydraulic motor to drive the upper turning body 14 in the left and right directions, and a brake valve connected to each of the turning oil passages.
  • a relief valve When the operation lever 61 returns from the full lever position to the neutral position, for example, the supply of hydraulic oil from the hydraulic pump to the hydraulic motor is stopped, and the swing brake action is activated by the relief operation of the relief valve. The motor slows down.
  • the time required from when the turning deceleration operation is performed until the turning operation is stopped, and the amount of turning by which the upper swing body 14 is turned from when the turning deceleration operation is performed until the turning operation is stopped. Is determined by the kinetic energy of the upper turning body 14 at the time of the turning deceleration operation and the characteristics of the turning brake action (characteristics of the braking force).
  • the characteristics of the turning brake action are generally specific to construction machinery.
  • an operator sensuously determines the timing of the turning deceleration operation for stopping a specific part at a target position.
  • this embodiment makes it possible to teach the operator the preferred timing of the turning deceleration operation. Specifically, it is as follows.
  • the characteristics of the turning brake action are stored in the storage unit in advance in the construction machine 10.
  • the kinetic energy is calculated based on the moment of inertia and the angular velocity. Specifically, the kinetic energy is calculated based on, for example, the positions and postures of the boom 21, the arm 23, and the bucket 25, the turning speed, and the weight of the load such as earth and sand loaded on the bucket 25.
  • the position and orientation, the turning speed, and the weight of the load are based on the angle information of the angle sensors 41, 42, 43, 44, the holding pressure information of the load measuring units 51, 52, 53, 54, etc. Calculated by the calculation unit 55.
  • the computing unit 55 computes the kinetic energy constantly or periodically during the turning operation of the upper turning body 14.
  • the target generation unit 75 performs the turning operation from the time when it is assumed that the operation lever 61 has received the turning deceleration operation based on the calculated kinetic energy and the characteristics of the braking force stored in the storage unit.
  • the predicted required turning amount until the vehicle stops is calculated.
  • the predicted required turning amount is calculated by the target generator 75 constantly or periodically during the turning operation of the upper turning body 14.
  • the graphs (A), (B), and (C) of FIG. 15 show the operation lever at an ideal timing such that the turning motion of the upper swing body 14 stops when the specific part reaches the target position P6. 61 shows the behavior of the turning operation when the turning deceleration operation is received. In the present embodiment, when the turning speed is constant, the predicted required turning amount is also constant.
  • the predicted required turning amount is a value obtained by subtracting the turning amount Pc from the turning amount P6 on the vertical axis of the graph (C). It corresponds to.
  • the predicted required turning amount is a turning amount corresponding to the magnitude from the turning amount Pc to the turning amount P6.
  • the target generator 75 calculates a stop target turning amount corresponding to the target position P6 based on information such as the coordinates of the position P5 and the coordinates of the target position P6.
  • the stop target turning amount is the turning amount of the upper turning body 14 that can stop the specific portion that has started moving from the position P5 at the target position P6, and the turning amount on the vertical axis of the graph (C). P6.
  • the target generator 75 calculates the deceleration target turning amount based on the stop target turning amount and the predicted required turning amount.
  • the deceleration target turning amount is a target of the turning amount when the upper turning body 14 starts the deceleration operation when the operation lever 61 receives the turning deceleration operation for stopping the turning operation of the upper turning body 14. It is.
  • the deceleration target turning amount is the turning amount Pc on the vertical axis of the graph (C).
  • the calculation unit 55 calculates the turning index value constantly or periodically during the turning operation of the upper turning body 14.
  • the turning index value is an index value representing the turning amount of the upper turning body 14 at the time when the turning index value is calculated.
  • the control device causes the vibration applying devices 64 and 65 to perform the first vibration applying operation when the turning index value calculated by the calculating unit 55 satisfies a predetermined first condition, and the calculating unit When the turning index value calculated by 55 satisfies a predetermined second condition different from the first condition, the vibration applying devices 64 and 65 are caused to perform the second vibration applying operation.
  • the first condition is, for example, a condition that the turning index value is within a predetermined first turning amount range Pr1 before reaching the deceleration target turning amount Pc
  • the second condition is, for example, The condition is that the turning index value is within a predetermined second turning amount range Pr2 that is closer to the deceleration target turning amount Pc than the first turning amount range Pr1 before reaching the deceleration target turning amount Pc. .
  • the first turning amount range Pr1 is a range that is greater than or equal to the turning amount Pa and less than the turning amount Pb on the vertical axis of the graph (C)
  • the second turning amount range Pr2 is The range is greater than or equal to the turning amount Pb and less than the turning amount Pc on the vertical axis of the graph (C).
  • vibration having the first vibration pattern is applied to the target portion by the vibration applying devices 64 and 65.
  • vibration having the second vibration pattern is given to the target part by the vibration applying devices 64 and 65.
  • the second turn index value is closer to the deceleration target turning amount Pc than the first turning amount range Pr1 as compared with the case where the turning index value is in the first turning amount range Pr1.
  • the vibration frequency by the vibration applying devices 64 and 65 increases, or the vibration amplitude increases. This makes it possible for the operator to perceive that the deceleration target turning amount Pc is approaching in a stepwise manner by changing the frequency or amplitude of vibration, and the specific part is located at or near the target position P6. Make it easier to stop.
  • the target generation unit 75 assumes that the operation lever 61 has received the turning deceleration operation based on the kinetic energy calculated by the calculation unit 55 and the characteristics of the braking force stored in the storage unit. A predicted required time from the time point until the turning operation stops is calculated. The estimated required time is calculated by the target generator 75 constantly or periodically during the turning operation of the upper turning body 14. In the present embodiment, when the turning speed is constant, the predicted required time is also constant, so the predicted required time is from time tc to time td on the horizontal axis of graphs (A), (B), and (C). It corresponds to the length of time until.
  • the target generator 75 calculates a time (stop target time td) required for the upper swing body 14 to turn to the stop target turning amount P6.
  • the target stop time td is calculated based on, for example, the kinetic energy and the brake characteristics.
  • the target generator 75 calculates the deceleration target timing based on the target stop time td and the estimated required time.
  • the deceleration target timing is a target of the timing at which the upper swing body 14 starts the deceleration operation when the operation lever 61 receives the swing deceleration operation for stopping the swing operation of the upper swing body.
  • the deceleration target timing is a time tc on the horizontal axis of the graphs (A), (B), and (C).
  • the calculation unit 55 calculates the time index value constantly or periodically during the turning operation of the upper turning body 14.
  • the time index value is a time index value that is an index of a time difference from the deceleration target timing tc, and is an index value that represents a current time point at which the time index value is calculated.
  • the control device causes the vibration applying devices 64 and 65 to perform the first vibration applying operation when the time index value calculated by the calculating unit 55 satisfies a predetermined first condition, and the calculating unit When the time index value calculated by 55 satisfies a predetermined second condition different from the first condition, the vibration applying devices 64 and 65 are caused to perform the second vibration applying operation.
  • the first condition is a condition that the time index value is within a predetermined first time range tr1 before the deceleration target timing tc
  • the second condition is that the time index value is The condition is that it is within a predetermined second time range tr2 that is before the deceleration target timing and is closer to the deceleration target timing tc than the first time range tr1.
  • the first time range tr1 is a range that is greater than or equal to time ta and less than time tb on the horizontal axis of the graphs (A), (B), and (C), and the second time period.
  • the range tr2 is a range that is greater than or equal to time tb and less than time tc on the horizontal axis.
  • vibration having the first vibration pattern is applied to the target portion by the vibration applying devices 64 and 65.
  • the vibration having the second vibration pattern is applied to the target part by the vibration applying devices 64 and 65.
  • the second time range tr2 that is closer to the deceleration target timing tc than the first time range tr1 as compared with the case where the time index value is within the first time range tr1.
  • the frequency of vibration by the vibration imparting devices 64 and 65 increases, or the amplitude of vibration increases. This enables the operator to perceive that the deceleration target timing tc is approaching in a stepwise manner by changing the frequency or amplitude of vibration, and stops the specific part at or near the target position P6. To make it even easier.
  • FIG. 16 is a graph for explaining the turning operation of the upper turning body 14, and is a modification of the embodiment shown in FIG. In this modification, control is performed in consideration of the occurrence of a gap between the timing at which the operation lever 61 receives the turning deceleration operation and the timing at which the braking force actually starts to act. That is, in this modification, control is performed in consideration of the response delay time by the hydraulic motor.
  • the response delay time corresponds to the length of time from time te to time tc on the horizontal axis in FIG. Specifically, as shown in graphs (A) and (B) of FIG. 16, when the response delay as described above occurs, the turning deceleration operation for returning the operator from the full lever position to the neutral position is performed. There is a time difference (response delay time) between the time te given to the operation lever 61 and the time tc when the braking force is applied and the deceleration of the turning speed is started. Characteristics relating to the response delay time (that is, a value obtained by subtracting time te from time tc) are stored in advance in the storage unit.
  • the target generation unit 75 calculates the deceleration target turning amount Pc described above, and the turning amount at the time point earlier than the deceleration target turning amount Pc by the amount corresponding to the response delay time.
  • the second target turning amount Pe corresponding to is calculated.
  • the target generator 75 calculates the deceleration target timing tc described above, and the second target timing at a point earlier than the deceleration target timing tc by an amount corresponding to the response delay time. Calculate te.
  • the target generation unit 75 calculates the deceleration target turning amount Pc based on the stop target turning amount and the predicted required turning amount in the same manner as the embodiment shown in FIG.
  • a second target turning amount Pe is calculated by subtracting a turning amount corresponding to the response delay time from the amount Pc (graphs (B) and (C) in FIG. 16).
  • the first turning amount range Pr1 is a range that is greater than or equal to the turning amount Pa and less than the turning amount Pb on the vertical axis of the graph (C) of FIG. 16
  • the second turning amount range Pr2 is This is a range that is not less than the turning amount Pb and less than the turning amount Pe on the vertical axis of the graph (C) in FIG.
  • the target generation unit 75 calculates the deceleration target timing tc based on the target stop time and the estimated required time in the same manner as the embodiment shown in FIG. 15, and the response target is calculated from the deceleration target timing tc.
  • a second target timing te obtained by subtracting a time corresponding to the delay time is calculated (graphs (B) and (C) in FIG. 16).
  • the first time range tr1 is a range that is not less than the time ta and less than the time tb on the horizontal axis of the graphs (A), (B), and (C) of FIG.
  • the range tr2 is a range that is greater than or equal to time tb and less than time te on the horizontal axis.
  • the control considering the response delay time is performed as in this modified example, so that information including the response delay can be transmitted to the operator.
  • Other features of the modification are the same as those of the embodiment shown in FIG. If the upper swing body 14 is not driven to swing by a hydraulic actuator (hydraulic motor) and the response delay as described above does not occur or the response delay is small, the control shown in FIG. 16 is performed. There is no need to perform the control shown in FIG.
  • the control devices 56 and 72 may perform the following control.
  • the control device has a trajectory (state trajectory) representing a time series of at least one of the position and orientation of the specific part of the construction machine 10 or at least one of the location and orientation of the predetermined position with respect to the target trajectory.
  • the vibration applying devices 64 and 65 are vibrated according to the vibration pattern set for each of the plurality of conditions. This prevents the operator's line of sight from being interrupted and the teaching sound from becoming difficult to hear.
  • the operation lever 61 is merely vibrated and does not move by the assisting force, so that the troublesomeness of the operation of the operation lever 61 can be reduced, and the operation can be reliably taught to the operator and the operability can be improved. it can.
  • the vibration applying device 64 is provided on the grip of the operation unit 61, the operator can surely perceive vibration through the grip of the operation unit that is held by the operator's hand, and the line of sight is interrupted or bothered. It is possible to teach the operation without giving.
  • the vibration applying device 64 can be attached to and detached from the operation lever 61, the vibration applying device 64 can be attached to the standard operation unit 61 by retrofitting.
  • the vibration applying device 65 is provided on the armrest 63, it is possible to further perceive the operator by transmitting the vibration through the operator's arm.
  • the predetermined condition and the predetermined plural vibration patterns can be changed or adjusted. For this reason, a vibration pattern can be set to make it easier to perceive vibration so that each operator can easily feel it.
  • the vibration applying devices 64 and 65 are provided in both of the operation unit 61 and the contact unit 63. It is sufficient that at least one of 63 is provided.
  • the external environment state detection units 45, 46, 47, and 48 are provided in the construction machine 10, but the invention is not limited to this, and the external environment state detection units 45, 46, 47, and 48 are provided around the construction machine 10. It may be arranged to detect an external state from the outside of the construction machine 10.
  • the vibration applying devices 64 and 65 are vibrated when the distance from the target track such as the tip of the attachment 25 is a predetermined distance or more, and the vibration applying devices 64 and 65 are vibrated as the target position is approached.
  • the present invention is not limited to this, and the conditions for vibration are reversed.
  • the vibration applying devices 64 and 65 are vibrated and approach the target position. You may make it weaken the vibration by the vibration provision apparatuses 64 and 65. FIG.
  • a construction machine which is a lower traveling body, an upper revolving body that is turnably provided on the lower traveling body, and a work device that is rotatably connected to the upper revolving body.
  • An attachment connected to a tip of the working device, and an operation unit that receives an operation by an operator for operating at least one of the lower traveling body, the upper swing body, the working device, and the attachment.
  • a vibration applying device that applies vibration to a target part that is at least a part of a part that contacts the body of an operator who operates the operation unit; and a target position that is set as a destination to which the specific part of the construction machine moves.
  • a storage unit that stores an operation target set as an operation target of the construction machine to move the specific part, and an index of a distance between the operation target and the actual state of the construction machine Comprising a calculating unit for calculating an index value, and a control unit for controlling the operation of said vibration imparting device.
  • the vibration applying device applies a first vibration applying operation for applying vibration having a first vibration pattern to the target part and a vibration having a second vibration pattern different from the first vibration pattern to the target part. It is possible to perform a second vibration applying operation.
  • the control device causes the vibration applying device to perform the first vibration applying operation when the index value calculated by the calculating unit satisfies a predetermined first condition, and is calculated by the calculating unit. When the index value satisfies a predetermined second condition different from the first condition, the vibration applying device is configured to perform the second vibration applying operation.
  • the storage unit stores the operation target set as a target of the operation of the construction machine
  • the calculation unit is an index serving as an index of a distance between the operation target and the actual state of the construction machine. Calculate the value.
  • the control device causes the vibration applying device to perform a first vibration applying operation for applying a vibration having the first vibration pattern to the target part when the index value satisfies the first condition
  • the vibration applying apparatus performs a second vibration applying operation for applying a vibration having the second vibration pattern different from the first vibration pattern to the target part. Make it.
  • the operator determines that the distance is one of a first situation corresponding to the first condition and a second situation corresponding to the second condition. Not only can it be perceived, but the status of the construction machine has changed from the first status to the second status, and the status of the construction machine has changed from the second status to the first status. I can perceive what I did. This makes it possible to accurately notify the operator of changes in various situations of the construction machine.
  • the state of the construction machine is displayed on the display device or the sound generation device. It is not necessary to convey the state of the construction machine via an auxiliary force to the operation lever. Therefore, in the construction machine, when telling the operator the distance of the actual state of the construction machine with respect to the operation target, the operator's line of sight is not interrupted or the teaching sound is not easily heard, and Further, it is possible to improve the operability of the construction machine by reliably teaching the operation to the operator while reducing the troublesomeness of the operation of the operation lever.
  • the operation target is determined based on information including an external state detection unit that detects an external state that is a peripheral state of the construction machine, and information including the external state detected by the external state detection unit. It is preferable to further include a target generation unit for generation.
  • the operation target is generated based on information including the external state detected by the external state detection unit, even if the external state has changed, the generated operation target is The external state after the change is taken into consideration. This makes it possible to inform the operator of the gap in the actual situation of the construction machine based on the operation target corresponding to the changed external state. As a result, even when the external state changes, the operator can be surely instructed to improve the operability of the construction machine.
  • the operation target includes a target trajectory that is a target of a trajectory drawn by the specific part when the specific part moves toward the target position, and the index value is the specific part And a distance index value that is a distance from the target trajectory, and the first condition includes a condition that the distance index value is within a predetermined first distance range, and the second condition is It is preferable to include a condition that the distance index value is within a predetermined second distance range different from the first distance range.
  • the vibration having the first vibration pattern or the vibration having the second vibration pattern in the target portion according to the magnitude of the distance index value that is the distance of the specific portion with respect to the target trajectory. Is granted. This makes it possible for the operator to perceive the distance from the specific part to the target trajectory by the vibration, so that the specific part guides through the trajectory close to the target trajectory to the target position. Allows to be done.
  • the frequency of the vibration increases as the distance between the target position and the specific part decreases, or It is preferable that the vibration amplitude is set to be large.
  • the frequency of vibration by the vibration applying device increases or the amplitude of vibration increases, so that the operator can change the frequency or the amplitude.
  • the change of the distance can be perceived by the change of.
  • the construction machine further includes a target generation unit that generates the operation target, and the operation target is received by the operation unit when the operation unit receives a turning deceleration operation for stopping the turning operation of the upper turning body.
  • the target generation unit includes a deceleration target timing that is a target of the timing at which the upper-part turning body starts a deceleration operation, and the target generation unit predicts from the time when the operation unit receives the turning deceleration operation until the turning operation stops.
  • the required time may be calculated, and the deceleration target timing may be calculated based on information including at least the predicted required time.
  • the target generation unit calculates the predicted required time, and calculates the deceleration target timing based on information including the predicted required time.
  • the information on the deceleration target timing calculated in this way may be transmitted to the operator by vibration applied by the vibration applying device at a time coincident with the deceleration target timing, for example, or before the deceleration target timing.
  • the vibration may be transmitted to the operator by vibration provided by the vibration applying device. The operator can perceive the deceleration target timing based on the information regarding the deceleration target timing transmitted by the vibration. This facilitates stopping the specific part at or near the target position.
  • the estimated required time is based on, for example, the moment of inertia of the upper swing body, the swing speed of the upper swing body and the like when the upper swing body is driven to swing by a hydraulic actuator (hydraulic motor).
  • the calculation is based on the calculated kinetic energy and the brake characteristics of the hydraulic circuit in the construction machine.
  • the moment of inertia is determined according to, for example, the position and posture of the work device, the position and posture of the attachment, the weight of the load loaded on the attachment, and the like.
  • the index value includes a time index value that is a time index value that is an index of a time difference from the deceleration target timing, and that represents a current time point at which the time index value is calculated.
  • the first condition includes a condition that the time index value is within a predetermined first time range before the deceleration target timing
  • the second condition is that the time index value is the deceleration It is preferable to include a condition that it is within a predetermined second time range that is before the target timing and closer to the deceleration target timing than the first time range.
  • the index value includes the time index value that is an index of a time difference between the deceleration target timing and a time point (current time point) corresponding to an actual state of the construction machine.
  • the time index value is within the first time range
  • the vibration having the first vibration pattern is given to the target part by the vibration applying device
  • the time index value is the second time.
  • the vibration having the second vibration pattern is applied to the target portion by the vibration applying device.
  • the construction machine further includes a target generation unit that generates the operation target, and the operation target is received when the operation unit receives a turning deceleration operation for stopping the turning operation of the upper-part turning body.
  • the target generation unit includes a deceleration target turning amount that is a target of the turning amount when the upper turning body starts a deceleration operation, and the target generation unit stops the turning operation from the point of time when the operation unit receives the turning deceleration operation.
  • the predicted required turning amount until the vehicle is calculated, and the deceleration target turning amount may be calculated based on information including the stop target turning amount corresponding to the target position and the predicted required turning amount. .
  • the target generation unit calculates the predicted required turning amount, and calculates the deceleration target turning amount based on information including the stop target turning amount and the predicted required turning amount.
  • Information about the deceleration target turning amount calculated in this way may be transmitted to the operator by vibration applied by the vibration applying device when the turning amount of the upper turning body reaches the deceleration target turning amount, for example.
  • the turning amount of the upper turning body may be transmitted to the operator by vibration applied by the vibration applying device before reaching the deceleration target turning amount. The operator can perceive the deceleration target turning amount based on the information related to the deceleration target turning amount transmitted by the vibration. This facilitates stopping the specific part at or near the target position.
  • the predicted required turning amount is, for example, when the upper turning body is driven to turn by a hydraulic actuator, the kinetic energy when the upper turning body turns, and the brake provided in the hydraulic circuit in the construction machine It is calculated based on the characteristics.
  • the index value includes a turning index value representing a turning amount of the upper-part turning body at the time when the index value is calculated, and the first condition is that the turning index value is Including a condition that the vehicle is within a predetermined first turning amount range before reaching the deceleration target turning amount, wherein the second condition is before the turning index value reaches the deceleration target turning amount and the first turning amount It is preferable to include a condition that it is within a predetermined second turning amount range that is closer to the deceleration target turning amount than the turning amount range.
  • the index value includes the turning index value that is an index of the difference between the deceleration target turning amount and the actual turning amount of the upper turning body.
  • the turning index value is within the first turning amount range
  • vibration having the first vibration pattern is given to the target part by the vibration applying device, and the turning index value is set to the second turning value.
  • the vibration having the second vibration pattern is applied to the target part by the vibration applying device.
  • the second vibration pattern is set such that the vibration frequency is larger or the vibration amplitude is larger than the first vibration pattern. Preferably it is.
  • the case where the time index value is within the second time range which is closer to the deceleration target timing than the first time range.
  • the frequency of vibration by the vibration applying device increases, or the amplitude of vibration increases. This enables the operator to perceive that the deceleration target timing is approaching in stages by changing the frequency or amplitude of vibration, and stopping the specific part at or near the target position. Make it even easier.
  • the operation target includes a target posture which is a target of the posture of the specific part at the target position, and the index value is a distance between the target posture and an actual posture of the specific part.
  • the first condition includes a condition that the posture index value is within a predetermined first posture range
  • the second condition includes that the posture index value is the value of the posture index value.
  • a condition that the second posture range is different from the first posture range may be included.
  • the vibration having the first vibration pattern or the vibration having the second vibration pattern is applied to the target portion according to the size of the difference between the target posture and the actual posture of the specific portion. Is granted. This enables the operator to perceive the magnitude of the distance of the posture of the specific part with respect to the target posture by the vibration, whereby the posture of the specific part is guided to the target posture. Make it possible.
  • the vibration applying device is provided on a grip of the operation unit.
  • the vibration imparting device is provided in the grip of the operation unit, the operator can surely perceive the vibration by the vibration imparting device via the grip of the operation unit that the operator grasps with the hand, Thereby, the operation can be taught to the operator without interrupting the line of sight or giving troublesomeness.
  • the vibration applying device is detachable from an operation lever of the operation unit.
  • the vibration applying device can be attached as an option to the operation lever of the operation unit of the construction machine that is not provided with the vibration applying device in the standard specification.
  • the target part includes an armrest, and the vibration applying device is provided on the armrest to vibrate the armrest.
  • the vibration by the vibration applying device provided on the armrest is transmitted to the operator via the armrest on which the operator's arm is placed. Thereby, the operator can perceive the distance of the actual state of the construction machine from the operation target through vibration applied to the armrest.
  • At least one of the first condition, the second condition, the first vibration pattern, and the second vibration pattern is changeable or adjustable.
  • the operator can more easily perceive the vibration by changing or adjusting the condition and the vibration pattern so that the operator can easily perceive the condition and the vibration pattern.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)
  • Mechanical Control Devices (AREA)

Abstract

建設機械(10)の記憶部(74)は、建設機械(10)の特定部位が移動する移動先として設定される目標位置に当該特定部位を移動させるために前記建設機械の動作の目標として設定される動作目標を記憶する。演算部(55)は、前記動作目標と建設機械(10)の実際の状態との隔たりの指標となる指標値を演算する。前記制御装置は、前記指標値が所定の第1の条件を満たす場合に振動付与装置に第1の振動付与動作を行わせ、前記指標値が前記第1の条件とは異なる所定の第2の条件を満たす場合に前記振動付与装置に第2の振動付与動作を行わせるように構成されている。

Description

建設機械
 本発明は、油圧ショベル等の建設機械に関する。
 油圧ショベル等の建設機械による作業は、操作室の操作者が操作レバー等を操作することにより行われる。前記作業時に、前記建設機械のアタッチメントを目標軌道に沿って移動させると効率的に作業を行うことができるので好ましい。
 前記アタッチメントを前記目標軌道に沿って移動させる方法として、ブーム、アーム及びアタッチメント等の操作レバーの操作量を教示する機構を用いた方法が知られている。このような建設機械では、当該機構は、アタッチメントが目標軌道に沿って移動するように操作レバーの操作量を教示する(例えば、特許文献1及び特許文献2参照)。
 特許文献1の建設機械は、アタッチメント等の作業目標面を設定する設定手段と、操作レバーの操作によりアタッチメントが作業目標面に接近する場合にアタッチメントの作業目標面への接近の度合いと動作方向に応じて、作業目標面に沿った動作となるように操作レバーに補助力を付与して操作を操作者に教示する電磁アクチュエータと、を備えている。
 操作者が操作レバーによりアタッチメント等を操作し、アタッチメントが作業目標面から外れそうになると、アタッチメントが作業目標面に近づくように電磁アクチュエータにより操作レバーに補助力が付与されることで操作が教示される。
 特許文献2の建設機械は、当該建設機械の現在位置及び姿勢の情報を検出する車両状態検出部と、作業対象の目標面の位置情報を記憶する記憶部と、アタッチメントの刃先の方向を含む情報及び目標面と直交する方向を含む情報等に基づいてアタッチメントの刃先が目標面と正対するために必要な上部旋回体の旋回量を示す目標旋回情報を求めて、目標旋回情報に対応する画像を表示装置に表示する処理部と、音発生装置と、を備えている。
 処理部は、目標面に対するアタッチメントの刃先の位置を表示装置に表示し、アタッチメントの刃先ベクトルと目標面とが平行に近くになるにしたがって音発生装置から発生する音の間隔を短くすることで操作を教示する。
 しかし、特許文献1では、電動アクチュエータの補助力によって操作レバーが直接動かされるため操作者が煩わしく感じることがある。また、特許文献2では、操作者が直接アタッチメントの先端を目視しているときに当該操作者が表示装置を見ると視線が途切れてしまい好ましくない場合があり、また、音発生装置による音が作業現場の騒音で前記操作者が聞きづらい場合がある。このため、特許文献1,2における操作の教示手段には改善の余地がある。
特開2007-009432号公報 国際公開第2015/173935号パンフレット
 本発明は、操作者の視線が途切れたり、教示音が聞きづらくなったりすることなく、且つ、操作レバーの動作の煩わしさも低減しつつ、操作者に確実に操作を教示することができる建設機械を提供することを目的とする。
 提供されるのは、建設機械であって、下部走行体と、当該下部走行体に旋回可能に設けられた上部旋回体と、当該上部旋回体に回動自在に連結された作業装置と、当該作業装置の先端に連結されたアタッチメントと、前記下部走行体、前記上部旋回体、前記作業装置および前記アタッチメントのうちの少なくとも一つを操作するための操作者による操作を受ける操作部と、当該操作部を操作する操作者の身体に接触する部位の少なくとも一部である対象部位に振動を与える振動付与装置と、前記建設機械の特定部位が移動する移動先として設定される目標位置に当該特定部位を移動させるために前記建設機械の動作の目標として設定される動作目標を記憶する記憶部と、前記動作目標と前記建設機械の実際の状態との隔たりの指標となる指標値を演算する演算部と、前記振動付与装置の動作を制御する制御装置と、を備える。前記振動付与装置は、第1の振動パターンを有する振動を前記対象部位に与える第1の振動付与動作と、前記第1の振動パターンとは異なる第2の振動パターンを有する振動を前記対象部位に与える第2の振動付与動作と、を行うことが可能である。前記制御装置は、前記演算部により演算される前記指標値が所定の第1の条件を満たす場合に前記振動付与装置に前記第1の振動付与動作を行わせ、前記演算部により演算される前記指標値が前記第1の条件とは異なる所定の第2の条件を満たす場合に前記振動付与装置に前記第2の振動付与動作を行わせるように構成されている。
本発明の実施形態に係る建設機械を示す平面図である。 前記実施形態に係る建設機械を示す側面図である。 前記実施形態に係る建設機械の操作室を示す斜視図である。 前記実施形態に係る建設機械において、着脱可能な振動付与装置が取り付けられた操作レバーを示す正面図である。 前記実施形態に係る建設機械の構成を示すブロック図である。 本発明の概念を示すフローチャートである。 前記実施形態に係る建設機械において、目標軌道からアタッチメントの先端部までの距離を指標値とする場合の制御の一例を示すフローチャートである。 前記実施形態に係る建設機械において、アタッチメントの先端部が描く軌道の目標として設定される目標軌道について説明するための側面図である。 前記実施形態に係る建設機械において、アタッチメントの先端部が目標位置に移動するときの前記目標軌道に対する前記先端部の距離について説明するための側面図である。 前記実施形態に係る建設機械において、アタッチメントの先端部が描く軌道の目標として設定される直線的な目標軌道における目標位置に当該アタッチメントの先端部を移動させるときの前記目標軌道に対する前記先端部の距離について説明するための側面図である。 前記実施形態に係る建設機械において、前記目標軌道からアタッチメントの先端部までの距離を指標値とする場合の制御の他の例を示すフローチャートである。 目標位置からアタッチメントの先端部までの距離について説明するための側面図である。 アタッチメントの先端部が前記目標位置に接近するときの前記建設機械の動作の一例を説明するための側面図である。 前記実施形態に係る建設機械における上部旋回体の旋回動作を説明するための平面図である。 前記実施形態に係る建設機械における上部旋回体の旋回動作を説明するためのグラフである。 前記実施形態に係る建設機械における上部旋回体の旋回動作を説明するためのグラフである。
 図面を参照して、本発明の実施形態に係る建設機械10について詳しく説明する。図1及び図2に示すように、建設機械10は、油圧ショベルであり、下部走行体12と、下部走行体12上に旋回軸13を介して旋回可能に設けられた上部旋回体14と、上部旋回体14に設けられた作業装置15と、アタッチメント25と、を備えている。本実施形態では、前記作業装置15は、ブーム21と、アーム23と、を含む。また、本実施形態では、前記アタッチメント25は、バケットであるが、これに限らず、例えばグラップル、圧砕機(破砕機)、ブレーカ、フォークなどであってもよい。
 上部旋回体14は、前記下部走行体12に連結される旋回フレームと、当該旋回フレーム上に搭載される操作室(キャブ)16と、前記旋回フレーム上に搭載される機械室17と、を有する。前記操作室16は、前記旋回フレームの前部であって左右方向の一方に偏った部位に配置されている。前記機械室17は、前記旋回フレームの後部に配置されている。当該機械室17にはエンジンやカウンタウエイト18が搭載されている。
 前記建設機械10は、前記下部走行体12、前記上部旋回体14、前記作業装置15および前記バケット25を動かす複数のアクチュエータをさらに備える。前記複数のアクチュエータは、ブームシリンダ22と、アームシリンダ24と、バケットシリンダ27と、旋回モータ28(図5参照)と、図略の走行駆動装置と、を含む。
 前記ブームシリンダ22は、上部旋回体14に対してブーム21を回動させるためのアクチュエータである。当該ブームシリンダ22の基端部は前記上部旋回体14に対して回動可能に軸支されている。前記ブームシリンダ22の先端部はピン22aを介してブーム21に回動可能に連結されている。前記ブーム21の先端部には、アーム23が連結されている。
 前記アームシリンダ24は、前記ブーム21に対して前記アーム23を回動させるためのアクチュエータである。当該アームシリンダ24の基端部及び先端部は前記ブーム21及び前記アーム23のそれぞれに回動可能に軸支されている。前記アーム23の先端部には、前記バケット25が連結されている。
 前記バケットシリンダ27は、前記アーム23に対して前記バケット25を回動させるためのアクチュエータである。当該バケットシリンダ27の基端部は前記アーム23に回動可能に軸支されている。前記バケットシリンダ27の先端部は、前記アタッチメント25であるバケット25が当該バケットシリンダ27により前記アーム23に対して回動するようにリンク部26を介して前記アーム23及びバケット25に軸支されている。
 前記建設機械10は、第1角度センサ41と、第2角度センサ42と、第3角度センサ43と、第4角度センサ44と、複数の外界状態検知部と、複数の負荷計測部と、をさらに備える。
 前記第1角度センサ41は、上部旋回体14に回転可能に軸支されるブーム21の回転軸部分に設けられ、上部旋回体14に対するブーム21の回転角度を計測する。前記第2角度センサ42は、ブーム21に回転可能に軸支されるアーム23の回転部分に設けられ、ブーム21に対するアーム23の回転角度を計測する。
 前記第3角度センサ43は、アーム23に回転可能に軸支されるバケット(アタッチメント)25に設けられ、アーム23に対するバケット25の回転角度を計測する。前記第4角度センサ44は、下部走行体12に旋回可能に設けられた上部旋回体14の旋回軸13に設けられ、下部走行体12に対する上部旋回体14の回転角度を計測する。前記第4角度センサ44は、上部旋回体14の旋回量(旋回角度)を検出することができる。第1~第4角度センサ41、42、43、44によって、バケット(アタッチメント)25及び作業装置15の姿勢が検出される。
 前記第1~第4角度センサ41~44のそれぞれは、例えばロータリエンコーダにより構成される。前記第1~第4角度センサ41~44のそれぞれは、一定の周期で計測対象の角度を検出し、その検出した角度のデータを制御装置へ逐次送信する。
 前記複数の外界状態検知部は、建設機械10の周辺の状態である外界状態を検知する装置である。前記複数の外界状態検知部は、3次元スキャナ45と、複数のエリアセンサと、傾斜センサ48と、を含む。
 前記3次元スキャナ45は、対象物の凹凸を検知して当該対象物の3Dデータを取得することができる装置である。本実施形態では、当該3次元スキャナ45は、操作室16に配置され、建設機械10の前方に広がる視野を有し、当該視野における外界の状態を検知する。前記3次元スキャナ45は、取得した3Dデータを制御装置へ送信する。
 前記複数のエリアセンサは、前記建設機械10の周辺にある第1のエリア内に第1の周辺物が位置している場合に当該第1の周辺物を検出可能な第1のエリアセンサ46と、前記建設機械10の周辺にある第2のエリア内に第2の周辺物が位置している場合に当該第2の周辺物を検出可能な第2のエリアセンサ47と、を含む。図1及び図2に示すように、本実施形態では、前記第1のエリア及び前記第2のエリアは、建設機械10の後方の互いに異なるエリアである。前記第1のエリアセンサ46及び前記第2のエリアセンサ47のそれぞれは、例えば赤外線センサなどにより構成される。前記第1及び第2のエリアセンサのそれぞれは、計測対象のエリア内において周辺物が位置していることを検出すると、その検出したデータを制御装置へ送信する。
 前記第1の周辺物及び前記第2の周辺物のそれぞれは、前記建設機械10以外の移動体、静止物などの種々の物を含み得る。具体的には、前記第1の周辺物及び前記第2の周辺物のそれぞれは、例えば、車両、建物、土砂やアスファルトなどの地面の表層部分などであってもよい。
 前記傾斜センサ48は、建設機械10の水平方向や水平面に対する傾きを計測する。当該傾斜センサ48は、一定の周期で水平方向や水平面に対する建設機械10の傾斜角度を検出し、その検出した傾斜角度のデータを制御装置へ逐次送信する。
 前記複数の負荷計測部は、図5に示すように、前記ブームシリンダ22に加わる負荷(保持圧)の大きさを計測する負荷計測部51と、前記アームシリンダ24に加わる負荷(保持圧)の大きさを計測する負荷計測部52と、前記バケットシリンダ27に加わる負荷(保持圧)の大きさを計測する負荷計測部53と、を含む。また、前記複数の負荷計測部は、下部走行体12を駆動するアクチュエータとしての前記走行駆動装置に加わる負荷(保持圧)の大きさを計測する図略の負荷計測部と、上部旋回体14を旋回させるアクチュエータとしての前記旋回モータ28に加わる負荷(保持圧)の大きさを計測する負荷計測部54と、をさらに含む。前記複数の負荷計測部のそれぞれは、例えば圧力センサにより構成される。前記複数の負荷計測部のそれぞれは、一定の周期で計測対象の負荷を計測し、その計測した負荷のデータを制御装置へ逐次送信する。
 なお、前記複数の外界状態検知部は、3次元スキャナ45、エリアセンサ46,47、傾斜センサ48に限定されない。外界状態検知部は、3次元スキャナ、エリアセンサ、傾斜センサの他、例えば、距離計測器、カメラ等のように外界状態を計測できる他の機器であっても差し支えない。
 前記複数の負荷計測部のそれぞれは、前記圧力センサに限定されない。前記複数の負荷計測部のそれぞれは、対応するアクチュエータに加わる負荷の大きさを検出できるものであればよく、ひずみゲージなど他の計測器であっても差し支えない。
 前記建設機械10は、操作者による操作を受ける操作部と、前記建設機械10のうち前記操作部を操作する操作者の身体に接触する部分であって前記操作部以外の部分である接触部と、当該操作部を操作する操作者の身体に接触する部位の少なくとも一部である対象部位に振動を与える複数の振動付与装置と、をさらに備える。当該対象部位は、例えば、前記操作部の少なくとも一部であってもよく、前記接触部の少なくとも一部であってもよい。
 具体的には、図3に示すように、前記操作部は、操作者による操作を受ける左右一対の操作レバー61を含む。前記接触部は、操作者が着座するシート62と、操作者が腕を置く左右一対のアームレスト63と、を含む。前記一対の操作レバー61、シート62、一対のアームレスト63及び前記複数の振動付与装置は、前記操作室16に設けられている。
 前記複数の振動付与装置は、前記一対の操作レバー61にそれぞれ設けられた一対の振動付与装置64と、前記一対のアームレスト63にそれぞれ設けられた一対の振動付与装置65と、を含む。
 前記一対の振動付与装置64は、前記一対の操作レバー61にそれぞれ振動を与える。当該一対の振動付与装置64は前記一対の操作レバー61に設けられているので、操作者が手でつかむ操作レバー61を介して、確実に操作者に警告情報が伝達される。なお、実施形態では、前記一対の振動付与装置64が操作部の一例である操作レバー61に設けられているが、これに限定されず、振動付与装置が図略の操作ペダルやハンドルなどの他の操作部に設けられていてもよい。
 前記一対の振動付与装置65は、前記一対のアームレスト63にそれぞれ振動を与える。当該一対の振動付与装置65は前記一対のアームレスト63に備えられているので、操作者の腕を介して振動が伝えられ、操作者への前記警告情報の知覚を促すことができる。
 なお、この実施形態では、前記振動付与装置が設けられる前記接触部として、前記一対のアームレスト63を例示したが、これに限定されない。振動付与装置は、前記接触部としてのシート62(シートクッション、シートバック、フットレスト、ヘッドレストを含む)や、床に設けられてもよい。
 図4に示すように、前記一対の振動付与装置64のそれぞれは、操作レバー61に着脱可能に設けられている。具体的には、前記一対の振動付与装置64のそれぞれは、対応する操作レバー61を囲うようにして配置され、締結部材66によって締結されている。なお、実施形態では、振動付与装置64が操作レバー61のうち上下に延びているバーに配置されているが、これに限定されない。振動付与装置64は前記操作レバー61のノブの部分に装着されてもよく、前記操作レバー61のうち前記バーの基端部に配置されてもよい。操作者に振動を伝達することができれば、振動付与装置64の形状や取付態様は問われない。
 次に、前記建設機械10の機能構成を図5に示すブロック図を用いて説明する。図5に示すように、建設機械10は、前記操作室16と、当該建設機械10のうち当該操作室16以外の部分である本体11と、を備える。当該本体11は、演算部55と、制御装置56と、通信装置57と、を備える。前記操作室16は、図3及び図5に示すように、前記一対の操作レバー61を含む操作部、前記シート62及び前記一対のアームレスト63の他、通信装置71と、制御装置72と、インターフェース73と、記憶部74と、目標生成部75と、前記振動付与装置64,65と、をさらに備える。前記演算部55、前記制御装置56、前記制御装置72、前記記憶部74及び前記目標生成部75はコントローラを構成する。当該コントローラは、例えばコンピュータなどにより構成される。
 前記演算部55は、前記第1角度センサ41、前記第2角度センサ42、前記第3角度センサ43および前記第4角度センサ44から入力される角度情報に基づいて機械座標系における建設機械10の特定部位の座標を演算する。本実施形態では、当該特定部位は、アタッチメント25の先端部である。当該演算部55は、建設機械10の機械座標系における上部旋回体14、ブーム21、アーム23、及びアタッチメント25の姿勢も演算する。演算部55により演算された座標情報及び姿勢情報は、制御装置56に入力される。前記通信装置57は、制御装置56から出力される情報を操作室16の通信装置71に送信する。
 前記制御装置56には、外界状態検知部(3次元スキャナ)45、外界状態検知部(エリアセンサ)46、47、外界状態検知部(傾斜センサ)48、負荷計測部51、52、53、旋回モータの負荷計測部54、および走行駆動装置の負荷計測部からそれぞれ出力される信号が入力される。さらに制御装置56は、ブームシリンダ22、アームシリンダ24、バケットシリンダ27、旋回モータ28および前記走行駆動装置の動作を制御するための信号をそれぞれ出力する。
 前記建設機械10の前記操作室16に設けられる前記通信装置71は、前記本体11の通信装置57と情報を相互に伝達する。当該通信装置71が受信した情報は、制御装置72に入力される。前記インターフェース73は当該制御装置72に接続されている。
 前記記憶部74は、前記建設機械10の特定部位が移動する移動先として設定される目標位置に当該特定部位を移動させるために建設機械10の動作の目標として設定される動作目標を記憶する。本実施形態では、当該動作目標は、目標軌道、減速目標タイミング、及び減速目標旋回量の少なくとも一つを含む。
 前記目標軌道は、前記目標位置に向かって前記特定部位が移動するときに当該特定部位が描く軌道の目標として設定される。
 前記減速目標タイミングは、前記上部旋回体14の旋回動作を停止させるための旋回減速操作を前記操作部が受けることにより前記上部旋回体14が減速動作を開始するタイミングの目標として設定される。
 前記減速目標旋回量は、前記上部旋回体14の旋回動作を停止させるための旋回減速操作を前記操作部が受けることにより前記上部旋回体14が減速動作を開始するときの旋回量の目標として設定される。
 前記目標軌道、前記減速目標タイミング及び前記減速目標旋回量は、予め設定されて前記記憶部74に記憶されていてもよく、前記インターフェース73等を介して前記操作者により設定されて前記記憶部74に記憶されてもよい。前記目標軌道としては、例えば図8に示すように、建設機械10の特定部位の目標位置G及び目標姿勢のうち少なくとも一方の時系列を表わす目標軌道R1、R2を挙げることができる。当該目標軌道R1,R2は、前記特定部位として設定されたアタッチメント25の先端部がその時点で配置されている位置P1(現在位置P1)と目標位置Gとを結ぶ仮想の経路である。当該目標軌道R1,R2は、例えば図8に示すように位置P1と目標位置Gとを結ぶ線分により表される。当該線分は、曲線であってもよく、直線であってもよく、曲線と直線の組み合わせであってもよい。
 前記演算部55は、前記動作目標と前記建設機械10の実際の状態との隔たりの指標となる指標値を演算する。当該指標値の具体例については後述する。
 前記目標生成部75は、前記動作目標を生成する。前記目標生成部75は、例えば、前記建設機械10の状況に関する情報(機械情報)に基づいて前記動作目標を生成する。当該建設機械10の状況は、前記複数の外界状態検知部により検知される前記外界状態を含む。本実施形態では、前記目標生成部75は、外界状態検知部45、46、47、48の検知結果に応じて、例えば図8に示すような目標軌道R1、R2を生成する。
 制御装置72は、建設機械10の特定部位の位置および姿勢のうち少なくとも一方、または当該位置および当該姿勢のうち少なくとも一方の時系列を表わす状態軌道(実際の軌道)を、前記目標軌道R1、R2に関連づけられた所定の複数の条件のそれぞれと比較する。前記制御装置72は、前記複数の条件に対応するように予め設定された複数の互いに異なる振動パターンにしたがって振動付与装置64、65を振動させるように構成される。したがって、前記制御装置72は、前記複数の条件の何れかが満たされている場合には、その満たされた条件に対応する振動パターンに従って前記振動付与装置64,65を振動させる。
 具体的には、前記振動付与装置64,65のそれぞれは、第1の振動パターンを有する振動を前記対象部位に与える第1の振動付与動作と、前記第1の振動パターンとは異なる第2の振動パターンを有する振動を前記対象部位に与える第2の振動付与動作と、を行うことが可能である。
 前記制御装置72は、前記演算部55により演算される前記指標値が所定の第1の条件を満たす場合に前記振動付与装置64,65に前記第1の振動付与動作を行わせ、前記演算部55により演算される前記指標値が前記第1の条件とは異なる所定の第2の条件を満たす場合に前記振動付与装置64,65に前記第2の振動付与動作を行わせるように構成されている。
 前記インターフェース73は、機械座標系における前記目標位置、すなわち、建設機械10の特定部位の移動先となる前記目標位置を、操作者が入力することが可能なように構成されている。前記目標位置は、前記インターフェース73を用いて前記操作者が当該目標位置に相当する座標を入力することにより特定されてもよい。また、前記目標位置は、次のように特定されてもよい。すなわち、建設機械10に設けられた3次元スキャナ又は撮像装置によって建設機械10の周囲の画像情報が取得され、前記3次元スキャナにより取得された3次元画像又は前記撮像装置により撮像された画像上において操作者が前記目標位置に相当する位置を選択し、選択された当該位置を制御装置72が前記目標位置に相当する座標に変換することにより、前記目標位置が特定されてもよい。また、インターフェース73は、前記機械座標系における建設機械10の上部旋回体14、作業装置15、アタッチメント25の位置および姿勢を操作者が入力することが可能なように構成されている。
 さらに、前記目標生成部75は、前記目標軌道を生成した後、外界状態検知部45、46、47、48の検知結果に応じて目標軌道R1、R2を修正するように構成されていてもよい。例えば、建設機械10の操作中に障害物が当該建設機械10の周辺に進入してきた場合には、当該障害物に関する情報(例えば位置情報)が、前記外界状態検知部により検知され、前記制御装置56に入力され、前記通信装置57,71を介して前記制御装置72に入力される。そして、前記目標生成部75は、当該障害物に関する情報に基づいて、前記特定部位が前記目標位置に移動するときに、前記作業装置15及び前記アタッチメント25がその障害物と接触せずに当該障害物を回避することができるように目標軌道R1、R2を修正する。このように外界状態検知部45、46、47、48によって外界状態を検知し、当該外界状態検知部45、46、47、48の検知結果に応じて目標生成部75が目標軌道を生成する(目標軌道を修正する)場合には、外界状況が変化しても、操作者に確実に操作を教示して操作性を向上させることができる。
 前記特定部位は、前記建設機械10のうちの何れかの部位である。具体的に、当該特定部位は、例えば、前記アタッチメント25の先端部に設定される。当該特定部位は、予め設定されていてもよく、前記インターフェース73を用いて操作者が入力する情報に基づいて設定されてもよい。
 前記演算部55は、前記第1~第4角度センサ41~44から入力される前記角度情報に基づいてアタッチメント25の先端部の座標を演算する。さらに、前記演算部55は、演算された当該アタッチメント25の先端部の前記座標と、前記インターフェース73を用いて入力された前記目標位置の座標とに基づいて、アタッチメント25の先端部から前記目標位置までの距離(目標距離)を残り距離指標値として演算する。
 また、操作者が操作レバー61を操作することによりアタッチメント25の位置および姿勢が変化した場合であっても、演算部55は、アタッチメント25の先端部と前記目標位置までの前記目標距離を残り距離指標値として演算する。
 前記制御装置72は、前記残り距離指標値(前記目標距離)に応じて前記振動付与装置64,65を振動させるように構成されていてもよい。かかる場合、前記記憶部74は、複数の残り距離判定条件を記憶している。当該複数の残り距離判定条件は、あらかじめ設定されて記憶部74に記憶されていてもよく、インターフェース73により入力された情報に基づいて記憶されていてもよい。前記制御装置72は、前記残り距離指標値(前記目標距離)が前記複数の残り距離判定条件の何れかを満たす場合に、その残り距離判定条件に対応する振動パターンにしたがって振動付与装置64、65を振動させる。
 例えば、前記複数の残り距離判定条件は、第1の残り距離判定条件、第2の残り距離判定条件及び第3の残り距離判定条件を含む。前記第1の残り距離判定条件は、アタッチメント25の先端部から前記目標位置までの前記目標距離が1mより大きく且つ2m以下であるという条件に設定され、前記第2の残り距離判定条件は、前記目標距離が0.5mより大きく且つ1m以下であるという条件に設定され、前記第3の残り距離判定条件は、前記目標距離が0.5m以下であるという条件に設定される。
 前記目標距離が前記第1の残り距離判定条件を満たす場合、前記制御装置72は、振動付与装置64、65を第1の振動パターン、具体的には例えば低周波域(小さい振動数)の振動パターンで振動させる。また、前記目標距離が前記第2の残り距離判定条件を満たす場合、前記制御装置72は、振動付与装置64、65を第2の振動パターン、具体的には例えば中周波域(第1振動パターンよりも大きい振動数)で振動させる。前記目標距離が前記第3の残り距離判定条件を満たす場合、前記制御装置72は、振動付与装置64、65を第3の振動パターン、具体的には例えば高周波域(前記第2の振動パターンよりもさらに大きい振動数)で振動させる。
 なお、この実施形態に係る建設機械10は、前記本体11に設けられた通信装置57と、前記操作室16に設けられた通信装置71とが、互いに無線で情報を伝達するように構成されているが、これに限定されない。当該建設機械10では、前記通信装置57と前記通信装置71とが有線で接続されていてもよい。さらには、当該建設機械10では、通信装置57,71を省略して、制御装置56と制御装置72を1つの制御装置により構成してもよい。
 また、建設機械10に、前記本体11に設けられた通信装置57と、前記操作室16に設けられた通信装置71とが互いに無線で情報を伝達する場合には、前記本体11に対して前記操作室16が距離を隔てた位置に設けられ、前記操作部61は、操作者が建設機械10を遠隔操作する遠隔操作用操作部であってもよい。
 次に、以上に述べた建設機械10の動作を図6に示すフローチャートに基づいて説明する。図6に示すように、前記建設機械10の制御が開始されると、制御装置56、72は、前記動作目標と建設機械10の実際の状態との隔たりの指標となる指標値が所定の条件を満たしているか否かを判定する(STEP1)。具体的に、前記所定の条件は、少なくとも第1の条件及び第2の条件を含み、前記制御装置56,72は、前記指標値が前記第1の条件を満たしているか否かを判定するとともに、前記指標値が前記第2の条件を満たしているか否かを判定する。
 前記指標値が所定の条件を満たしている場合には(STEP1でYES)、前記制御装置56,72は、STEP2に示す処理を行う。前記指標値が所定の条件を満たしていない場合には(STEP1でNO)、前記制御装置56,72は、STEP1に示す処理を再び行う。
 前記制御装置56,72は、前記指標値が前記第1の条件を満たしている場合には、前記振動付与装置64、65に前記第1の振動付与動作を行わせる。また、前記制御装置56,72は、前記指標値が前記第2の条件を満たしている場合には、前記振動付与装置64,65に前記第2の振動付与動作を行わせる。前記振動付与装置64,65の前記第1の振動付与動作は、例えば前記操作者が接触する前記操作レバー61などの前記対象部位に前記第1の振動パターンを有する振動を与え、前記第2の振動付与動作は、前記対象部位に前記第2の振動パターンを有する振動を与える。このことは、前記動作目標に対する前記建設機械10の動作の隔たりを、互いに異なる前記第1の振動パターン及び前記第2の振動パターンの振動によって操作者に知覚させることを可能にする。具体的には、前記建設機械10では、前記操作者は、前記隔たりが前記第1の条件に対応する第1の状況及び前記第2の条件に対応する第2の状況の何れかであることを知覚することができるだけでなく、前記建設機械10の状況が前記第1の状況から前記第2の状況に変化したこと、及び前記建設機械10の状況が前記第2の状況から前記第1の状況に変化したことを知覚することができる。したがって、前記建設機械10では、前記動作目標に対する当該建設機械10の実際の状態の隔たりを前記操作者に伝えるときに、操作者の視線が途切れたり、教示音が聞きづらくなったりすることがなく、前記操作レバーの動作の煩わしさも低減しつつ、操作者に確実に操作を教示して当該建設機械10の操作性を向上させることができる。
 次に、前記建設機械10の動作の具体例を図7に示すフローチャートに基づいて説明する。図7に示す具体例では、前記指標値は、前記目標軌道から特定部位までの距離L5(図9参照)である距離指標値である。
 前記建設機械10の制御が開始されると、前記演算部55は目標軌道R1,R2からアタッチメント25の先端部(特定部位)までの距離L5(前記距離指標値)を演算する(STEP11)。
 前記制御装置56,72は、目標軌道から特定部位までの距離(距離指標値)が所定の距離範囲(所定の許容範囲)内であるか否かを判定する(STEP12)。前記指標値が所定の許容範囲を超えている場合には(STEP12でYES)、前記制御装置56,72は、STEP13に示す処理を行う。前記指標値が所定の許容範囲を超えていない場合には(STEP12でNO)、前記制御装置56,72は、STEP11に示す処理を再び行う。前記許容範囲は、予め設定されて前記記憶部74に記憶されていてもよく、前記インターフェース73等を介して前記操作者により設定されて前記記憶部74に記憶されてもよい。
 前記制御装置56,72は、前記目標軌道からアタッチメント25の先端部までの距離である前記距離指標値が満たす条件に対応する振動付与動作を前記振動付与装置64,65に行わせる(STEP13)。具体的には、前記記憶部74は、第1の条件及び第2の条件を記憶している。前記第1の条件は、前記距離指標値が所定の第1の距離範囲内であるという条件であり、前記第2の条件は、前記距離指標値が前記第1の距離範囲とは異なる所定の第2の距離範囲内であるという条件である。前記第1の距離範囲及び前記第2の距離範囲は、何れも前記許容範囲の上限値(最大値)よりも大きい距離範囲に設定されている。すなわち、前記第1の距離範囲の下限値(最小値)及び前記第2の距離範囲の下限値(最小値)は、何れも前記許容範囲の上限値よりも大きい。
 この態様では、前記目標軌道に対する前記特定部位の距離である前記距離指標値の大きさに応じて、操作部および接触部の少なくとも一方が前記第1の振動パターン又は前記第2の振動パターンに従って振動する。このことは、前記特定部位から前記目標軌道までの距離を前記振動を介して前記操作者が知覚することを可能にし、前記特定部位が前記目標位置まで前記目標軌道に近い軌道を通って誘導されることを可能にする。
 また、アタッチメント25の先端部が警告対象物の位置(目標位置G)に近づくほど、振動付与装置64、65による前記第1の振動パターン及び第2の振動パターンは、断続的な振動から連続的な振動に変化するように設定されていてもよい。また、前記第1の振動パターン及び第2の振動パターンは、アタッチメント25の先端部が警告対象物の位置(目標位置G)に近づくほど、振動の周波数及び振幅の少なくとも一方が大きくなるように設定されていてもよい。
 図7に示すような制御が行われることにより、操作者は、建設機械10の特定部位であるアタッチメント25の先端部から目標軌道までの距離の変化を振動によって知覚することできる。
 次に、前記建設機械10の動作のさらに他の具体例を図8及び図9に基づいて説明する。前記建設機械10が図8に示す姿勢をとる場合、建設機械10のアタッチメント25の先端部は位置P1に位置している。前記目標軌道R1,R2は、図8に示すように略円弧状の軌道R1、R2に設定されている。当該目標軌道R1,R2は、アタッチメント25の先端部が位置P1から目標軌道R1を通って位置P2へ移動し、さらに位置P2から目標軌道R2を通って目標位置Gへ移動することを目標とする軌道である。
 当該目標軌道R1,R2は例えば次のように生成される。図8に示すにように、前記アタッチメント25の先端部がその時点で配置されている位置P1は、地面から上方に離れた位置であり、前記目標位置Gは、地面上の位置であり、前記位置P1よりも前方の位置である。前記アタッチメント25の先端部が前記位置P1から目標位置Gまで移動するためには、前記ブームシリンダ22を伸縮させるための操作レバー、前記アームシリンダ24を伸縮させるための操作レバー及び前記バケットシリンダ27を伸縮させるための操作レバーが同時に操作される。かかる場合、前記目標生成部75は、例えば、これらの操作レバーが受ける操作量が一定に保持された状態で前記特定部位を前記位置P1から前記目標位置Gに移動させることが可能な軌道を生成し、生成された当該軌道が前記目標軌道として記憶部74に記憶される。ただし、前記目標軌道の生成方法は、上記の具体例に限定されない。
 図9において二点鎖線で示されるアタッチメント25は、操作レバー61が実際に操作されたときにアタッチメント25が実際に通る位置(通過位置)である。当該通過位置では、アタッチメント25の先端部は、目標軌道R1から距離L5(指標値)だけ離れた位置にある。この距離L5が前記所定の許容範囲を超えている場合には、振動付与装置64、65(図3参照)が前記振動付与動作を行う。
 所定の複数の条件(本実施形態では、前記第1の条件及び第2の条件)のそれぞれは、特定部位が目標軌道から所定の距離範囲内であるという条件を含む。前記複数の条件は、複数の異なる状況にそれぞれ対応している。具体的には、前記第1の条件が満たされる場合には、前記建設機械10の状況は、前記特定部位から前記目標軌道までの距離が前記第1の距離範囲内に含まれているという状況である。前記第2の条件が満たされる場合には、前記建設機械10の状況は、前記特定部位から前記目標軌道までの距離が前記第2の距離範囲内に含まれているという状況である。
 この実施形態では、特定部位から目標軌道までの距離に応じて、操作部61および接触部62、63の少なくとも一方が振動するので、特定部位を目標位置まで最適に近い軌道で誘導することができ、操作性を向上させることができる。
 なお、図7~図9に示す実施形態は、前記目標軌道と特定部位(アタッチメント25の先端部)との距離である距離指標値が前記第1の距離範囲内又は前記第2の距離範囲内であるという条件を満たす場合に前記振動付与動作が行われるものであったが、これに限定されない。本発明の建設機械は、例えば、前記距離だけでなく、アタッチメント25等の姿勢も考慮するものであってもよい。このような変形例として次のような形態を挙げることができる。
 すなわち、当該変形例の場合、前記動作目標は、目標姿勢を含む。当該目標姿勢は、前記目標位置Gにおける特定部位(第2の特定部位)の姿勢の目標として設定される。また、当該変形例では、前記指標値は、前記目標姿勢と前記第2の特定部位の実際の姿勢との隔たりの指標となる姿勢指標値を含む。前記第2の特定部位は、例えばバケット25に設定される。すなわち、前記目標姿勢の対象となる前記第2の特定部位は、上述した前記目標軌道の対象となる前記特定部位(例えばバケット25の先端部)と異なる部位に設定されてもよい。また、当該変形例では、前記第1の条件は、前記姿勢指標値が所定の第1の姿勢範囲内であるという条件を含み、前記第2の条件は、前記姿勢指標値が前記第1の姿勢範囲とは異なる所定の第2の姿勢範囲内であるという条件を含む。
 前記演算部55は、前記第1角度センサ41、前記第2角度センサ42、前記第3角度センサ43および前記第4角度センサ44から入力される角度情報に基づいて機械座標系における建設機械10の第2の特定部位の座標を演算することができるので、当該第2の特定部位の姿勢が前記第1の姿勢範囲内であるか否かについて判定することができ、また、前記第2の特定部位の姿勢が前記第2の姿勢範囲内であるか否かについて判定することができる。
 具体的には、建設機械10の一例である図8及び図9に示す油圧ショベルは、例えば掘削作業、ならし作業などの種々の作業を行うことができる。前記掘削作業は地盤を掘り取るために行われる作業であるので、当該掘削作業を開始するときにはバケット25の先端部が地面に接するように当該バケット25が配置される。一方、前記ならし作業は前記バケット25の底面の一部を用いて地面を平坦にならすために行われる作業であるので、当該ならし作業を開始するときには前記バケット25の底面の一部が地面に接するように当該バケット25が配置される。従って、前記バケット25の先端部が前記位置P1から目標位置Gに向かって移動した後に行われる次の作業が例えば前記掘削作業である場合には、当該目標位置Gにおける前記バケット25の目標姿勢は、バケット25の先端部が地面に接するような姿勢である。一方、前記次の作業が例えば前記ならし作業である場合には、前記目標位置Gにおける前記バケット25の目標姿勢は、バケット25の底面の一部が地面に接するような姿勢である。なお、前記次の作業が当該ならし作業である場合には、図8における前記目標位置Gは、地面から少し上方に離れた位置に設定される。
 次に、アタッチメント25の先端部を地面に沿って直線的に移動させるときの動作について説明する。図10に示す建設機械10の姿勢では、作業装置15が前方(車両前方)に伸び、アタッチメント25の先端部は地面における位置P3に配置されている。前記アタッチメント25の先端部が移動する移動先としての目標位置P4は地面において前記位置P3よりも下部走行体に近い位置P4に設定されている。目標軌道は、前記位置P3から前記目標位置P4までの地面に沿って設定される。この実施形態では、前記位置P3から前記目標位置P4までアタッチメント25の先端部を用いていわゆる水平引きという作業が行われる。この水平引き作業では、施工面(地面)に対して直線的にアタッチメント25の先端部を移動させることが目標とされる。すなわち、前記水平引き作業では、アタッチメント25の先端部の目標軌道は、位置P3から目標位置P4までの地面にならった(地面に沿った)直線的な軌道である。
 ところで、油圧ショベルのような建設機械10は、上部旋回体14に対するブーム21の動き、ブーム21に対するアーム23の動き、アーム23に対するアタッチメント25の動きが、基本的に全て円弧運動である。したがって、アタッチメント25の先端部を下方に向けた姿勢を維持して前記アタッチメント25を地面に沿って直線的に移動させることは難しい。具体的な建設機械10の水平引き動作の一例を示すと、アタッチメント25の先端部を位置P3から目標位置P4へ移動させる際には、ブーム21を上方へ回動させながらアーム23を下方へ回動させ、さらにアタッチメント25の先端が下方を向くように回動させる。アタッチメント25の先端部を前記目標位置P4から前記位置P3に戻す際には、ブーム21を下方へ回動させながらアーム23を上方へ回動させ、さらにアタッチメント25の先端部が下方を向くように回動させる。
 本実施形態では、実際に操作レバー61が操作されてアタッチメント25が地面に沿って直線的に移動する際に、図10において二点鎖線で示されるようにアタッチメント25の先端部が地面から距離L6(指標値)だけ離れることがある。この距離L6が所定の距離範囲(所定の許容範囲)を超えている場合には、振動付与装置64、65(図3参照)が振動する。これにより、アタッチメント25が地面(目標軌道)から離れていることが操作者に伝えられる。この動作が繰り返されることにより、アタッチメント25の先端部が前記位置P3から前記目標位置P4まで地面にならって移動するような操作が可能になる。建設機械10では、アタッチメント25の先端部を地面などにならって直線的に移動させる操作が求められることが多い。本実施形態では、操作者が初心者や初級者である場合に難しい水平引き動作であっても、アタッチメント25の先端部から目標軌道(地面)までの距離(指標値)が前記許容範囲を超えると、振動付与装置64、65が振動して操作が教示される。これにより、操作者は、アタッチメント25の先端部が地面にならって直線的に移動するような操作を容易に行うことができる。
 次に、前記建設機械10の動作の具体例を図11に示すフローチャートに基づいて説明する。図11に示す具体例では、前記残り距離指標値は、アタッチメント25の先端部から目標位置まで距離(目標距離)である。
 前記建設機械10の制御が開始されると、前記演算部55は、アタッチメント25の先端部から前記目標位置までの距離を演算し、残り距離指標値を演算する(STEP21)。
 前記制御装置56,72は、アタッチメント25の先端部から目標位置までの距離である前記残り距離指標値が、所定の条件を満たしているか否かを判定する。言い換えると、前記制御装置56,72は、前記目標距離が所定の距離範囲に含まれているか否かを判定する(STEP22)。具体的には、本実施形態では、前記制御装置56,72は、前記目標距離が前記第1の残り距離判定条件、前記第2の残り距離判定条件及び前記第3の残り距離判定条件を満たしているか否かをそれぞれ判定する。
 前記残り距離指標値が、所定の距離範囲に含まれている場合、具体的には、前記残り距離指標値が前記第1の残り距離判定条件、前記第2の残り距離判定条件及び前記第3の残り距離判定条件の何れかの条件を満たしている場合には(STEP22でYES)、前記制御装置56,72は、STEP23に示す処理を行う。前記残り距離指標値が所定の距離範囲に含まれていない場合には(STEP22でNO)、前記制御装置56,72は、STEP21に示す処理を再び行う。
 前記制御装置56,72は、前記目標位置からアタッチメント25の先端部までの距離である前記目標距離が満たす条件に対応する振動パターンに従って前記振動付与装置64,65を振動させる(STEP23)。具体的には、アタッチメント25の先端部が前記目標位置に近づく過程において、前記目標距離が、前記第1の残り距離判定条件を満たす距離範囲に含まれる値、前記第2の残り距離判定条件を満たす距離範囲に含まれる値、及び前記第3の残り距離判定条件を満たす距離範囲に含まれる値の順に変化する場合に、前記第1~第3の振動パターンは、例えば次のように変化する。振動付与装置64、65による前記第1~第3の振動パターンは、前記過程において、断続的な振動から連続的な振動に変化するように設定されていてもよい。また、前記第1~第3の振動パターンは、前記過程において、振動の周波数及び振幅の少なくとも一方が次第に大きくなるように設定されていてもよい。
 図11に示すような制御が行われることにより、操作者は、建設機械10の特定部位であるアタッチメント25の先端部から前記目標位置までの前記目標距離の変化を振動によって教示することできる。
 次に、前記建設機械10の動作のさらに他の具体例を図12及び図13に基づいて説明する。前記建設機械10が図12に示す姿勢をとる場合、建設機械10のアタッチメント25は、本体11に近く且つ高い位置にある。建設機械10の前方には、凹部1が形成されており、当該凹部1の底が前記目標位置Gとして操作者により入力され、前記制御装置56,72に記憶されている。図12に示す姿勢では、前記特定部位としてのアタッチメント25の先端部から前記目標位置Gまでの距離(目標位置)は、L1である。
 図12は、アタッチメント25の先端部から前記目標位置Gまでの距離が目標距離L2、目標距離L3及び目標距離L4の順に小さくなるときの前記アタッチメント25の位置及び姿勢を示している。前記目標距離L2は、前記第1の残り距離判定条件、すなわち、前記アタッチメント25の先端部から前記目標位置Gまでの距離が1mより大きく且つ2m以下であるという条件を満たす。前記目標距離L3は、前記第2の残り距離判定条件、すなわち、前記アタッチメント25の先端部から前記目標位置Gまでの距離が0.5mより大きく且つ1m以下であるという条件を満たす。前記目標距離L4は、前記第3の残り距離判定条件、すなわち、前記アタッチメント25の先端部から前記目標位置Gまでの距離が0.5m以下であるという条件を満たす。
 前記アタッチメント25の先端部が図12に示す位置から前記目標位置Gに近づき、当該アタッチメント25の先端部から前記目標位置Gまでの前記目標距離が図13に示すL2になって前記第1の残り距離判定条件を満たす距離範囲内に含まれると、前記制御装置56,72は、振動付与装置64、65(図3参照)を、第1の振動数で振動させる。
 前記アタッチメント25がさらに移動し、アタッチメント25の先端部から前記目標位置Gまでの目標距離が図13に示すL3になって前記第2の条件を満たす距離範囲内に含まれると、前記制御装置56,72は、振動付与装置64、65(図3参照)を、第2の振動数で振動させる。当該第2の振動数は、前記第1の振動数よりも大きい。前記アタッチメント25がさらに移動し、アタッチメント25の先端部から前記目標位置Gまでの目標距離が図13に示すL4になって前記第3の条件を満たす距離範囲内に含まれると、前記制御装置56,72は、振動付与装置64、65(図3参照)を、第3の振動数で振動させる。当該第3の振動数は、前記第2の振動数よりも大きい。
 次に、本発明のさらに他の実施形態について説明する。図14に示す実施形態は、上部旋回体14の旋回動作を開始させる位置である位置P5から当該旋回動作を停止させる位置の目標として設定される目標位置P6に向けて上部旋回体14を旋回させるときの動作に関するものである。具体的に、図14に示すように、建設機械10は、上部旋回体14が車両前方を向いているとともに作業装置15が前方に伸びた状態であり、アタッチメント25の先端部は位置P5にある。目標軌道は、作業装置15が姿勢を維持した状態で上部旋回体14が旋回するときのアタッチメント25の先端部の軌道である。前記記憶部74は、上部旋回体14、ブーム21、アーム23及びアタッチメント25の大きさ、関節間の長さ及び重量を記憶しており、前記演算部55は、角度センサ41、42、43、44の角度情報から現在の上部旋回体14、ブーム21、アーム23及びアタッチメント25のそれぞれの位置および姿勢を演算する。前記演算部55は、アタッチメント25の先端部が位置P5にある場合だけでなく、旋回中の任意の位置において、上部旋回体14、ブーム21、アーム23及びアタッチメント25のそれぞれの位置及び姿勢を演算することができる。
 本実施形態では、制御装置72は、旋回時に発生する慣性力及び目標軌道から、上部旋回体14を旋回させる操作レバー61の理想的な操作量を演算し、操作部61の実際の操作量でアタッチメント25の先端部が目標位置P6及び目標姿勢に到達するように操作者に教示する。
 このようにすることで、建設機械10の旋回作業において、操作者に旋回操作を教示して上部旋回体14の旋回時の操作性を向上させることができる。
 この実施形態では、上述の実施形態と同様に、建設機械10の特定部位を前記目標位置P6に移動させるために当該建設機械10の動作の目標として動作目標が設定され、当該動作目標は、減速目標タイミング及び減速目標旋回量の少なくとも一方である。当該動作目標は、前記目標生成部75により生成され、前記記憶部74に記憶される。また、当該動作目標と前記建設機械10の実際の状態との隔たりの指標となる指標値が前記演算部55により演算される。当該指標値は、前記動作目標が前記減速目標タイミングである場合には時間指標値であり、前記動作目標が前記減速目標旋回量である場合には旋回指標値である。本実施形態では、前記特定部位は、例えばバケット25の先端部に設定されるが、これに限定されず、例えばアーム23の一部分やブーム21の一部分に設定されてもよい。
 以下、本実施形態について具体的に説明する。図15は、この実施形態に係る建設機械10における上部旋回体14の旋回動作を説明するためのグラフである。
 図15のグラフ(A)に示すように旋回用の前記操作レバー61(図3及び図4参照)が中立位置にあるときには、図15のグラフ(B)に示すように上部旋回体14は下部走行体12に対して旋回動作していないため旋回速度がゼロであり、図15のグラフ(C)に示すように位置P5(旋回開始位置)において停止している。操作者は、上部旋回体14に旋回動作を行わせる場合、前記操作レバー61に旋回操作を与える。具体的には、グラフ(A)に示すように、例えばフルレバーに相当する操作量の旋回操作が前記操作レバー61に対して与えられると、グラフ(B)に示すように上部旋回体14の旋回速度が次第に増加し、グラフ(C)に示すように上部旋回体14の旋回量(旋回角度)が次第に増加する(図15における加速区間)。これにより、図14に示すように上部旋回体14は位置P5から目標位置P6に向かって一方向(矢印の方向)に旋回する。
 前記建設機械10はタイマーを備え、当該タイマーは、前記操作レバー61に旋回操作が与えられた時点からの経過時間を計測する。当該タイマーにより計測される経過時間は演算部55や制御装置56に入力される。また、上部旋回体14の旋回量(旋回角度)は、前記第4角度センサ44により計測され、計測された旋回量は演算部55や制御装置56に入力される。計測される旋回量は、旋回開始位置P5を基準とする旋回量(位置P5からの旋回角度)であってもよく、予め設定された任意の基準位置を基準とする旋回量(当該基準位置からの旋回角度)であってもよい。
 図15のグラフ(A)に示すように前記フルレバーに相当する操作量の旋回操作が前記操作レバー61に継続して与えられる場合、旋回速度は、グラフ(B)に示すようにフルレバーの最高速度に到達した後、当該最高速度に維持される(図15における定常旋回区間)。この定常旋回区間では、上部旋回体14は一定の旋回速度で旋回する。
 その後、操作者は、バケット25の先端部(特定部位)の位置が目標位置P6に近くなると、グラフ(A)に示すように前記操作レバー61が前記フルレバーの位置から中立位置に戻るように前記操作レバー61に対して旋回減速操作を与える。当該旋回減速操作は、上部旋回体14の旋回動作を停止させるための操作である。当該旋回減速操作が行われると、前記建設機械10において上部旋回体14に対して旋回ブレーキ作用が働く。これにより、グラフ(B)に示すように、前記旋回速度が次第に低下する(図15における減速区間)。そして、当該旋回速度がゼロになると、上部旋回体14の旋回動作が停止する。
 ここで、前記旋回ブレーキ作用について簡単に説明する。建設機械10は、上部旋回体14を旋回駆動する油圧モータと、当該油圧モータの油圧源としての油圧ポンプと、油圧モータの回転方向(上部旋回体14の旋回方向)を切り換えるためのコントロールバルブと、上部旋回体14を左右双方向に駆動するために油圧モータの両側のポートに接続された右旋回油路及び左旋回油路と、各旋回油路にそれぞれ接続されたブレーキ弁としての一対のリリーフ弁と、を備える。前記操作レバー61が例えばフルレバー位置から前記中立位置に戻ると、前記油圧ポンプから前記油圧モータへの作動油の供給が停止するとともに、前記リリーフ弁のリリーフ作動によって前記旋回ブレーキ作用が働き、前記油圧モータが減速する。前記旋回減速操作が行われた時点から前記旋回動作が停止するまでに必要な時間、及び前記旋回減速操作が行われた時点から前記旋回動作が停止するまでに上部旋回体14が旋回する旋回量は、当該旋回減速操作の時点における上部旋回体14の運動エネルギーと、前記旋回ブレーキ作用の特性(ブレーキ力の特性)とにより決まる。前記旋回ブレーキ作用の特性は一般に建設機械に特有のものである。従来、操作者は、目標位置に特定部位を停止させるための前記旋回減速操作のタイミングを感覚的に判断していた。これに対し、本実施形態は、前記旋回減速操作の好ましいタイミングを操作者に対して教示することを可能にする。具体的には次の通りである。
 まず、以下では、前記動作目標が減速目標旋回量である場合について説明する。
 本実施形態において、前記旋回ブレーキ作用の特性は、前記建設機械10において予め記憶部に記憶されている。前記運動エネルギーは、慣性モーメントと角速度に基づいて算出される。具体的に、運動エネルギーは、例えば、ブーム21、アーム23及びバケット25の位置及び姿勢と、旋回速度と、バケット25に積載された土砂等の積載物の重量と、に基づいて算出される。前記位置及び姿勢、前記旋回速度、並びに前記積載物の重量は、前記角度センサ41、42、43、44の角度情報および負荷計測部51、52、53、54の保持圧情報などに基づいて、前記演算部55により演算される。前記演算部55は、上部旋回体14の旋回動作中において常時又は周期的に、前記運動エネルギーを演算する。
 前記目標生成部75は、演算された当該運動エネルギーと前記記憶部に記憶された前記ブレーキ力の特性とに基づいて、前記旋回減速操作を前記操作レバー61が受けたと仮定した時点から前記旋回動作が停止するまでの予測所要旋回量を演算する。当該予測所要旋回量は、上部旋回体14の旋回動作中において常時又は周期的に、前記目標生成部75により演算される。図15のグラフ(A),(B),(C)は、前記特定部位が前記目標位置P6に達した時点で上部旋回体14の旋回動作が停止するような理想的なタイミングで前記操作レバー61が前記旋回減速操作を受けた場合の旋回動作の挙動を示している。本実施形態では、前記旋回速度が一定である場合、前記予測所要旋回量も一定になるので、当該予測所要旋回量はグラフ(C)の縦軸における旋回量P6から旋回量Pcを減算した値に相当する。言い換えると、当該予測所要旋回量は、旋回量Pcから旋回量P6までの大きさに相当する旋回量である。
 また、前記目標生成部75は、前記位置P5の座標、前記目標位置P6の座標などの情報に基づいて、前記目標位置P6に対応する停止目標旋回量を演算する。当該停止目標旋回量は、前記位置P5から移動を開始した前記特定部位を前記目標位置P6において停止させることができる前記上部旋回体14の旋回量であり、グラフ(C)の縦軸における旋回量P6である。前記目標生成部75は、前記停止目標旋回量と前記予測所要旋回量とに基づいて前記減速目標旋回量を演算する。前記減速目標旋回量は、前記上部旋回体14の旋回動作を停止させるための前記旋回減速操作を前記操作レバー61が受けることにより前記上部旋回体14が減速動作を開始するときの旋回量の目標である。当該減速目標旋回量は、グラフ(C)の縦軸における旋回量Pcである。
 前記演算部55は、上部旋回体14の旋回動作中において常時又は周期的に、前記旋回指標値を演算する。前記旋回指標値は、当該旋回指標値が演算される時点における前記上部旋回体14の旋回量を表す指標値である。
 前記制御装置は、前記演算部55により演算される前記旋回指標値が所定の第1の条件を満たす場合に前記振動付与装置64,65に前記第1の振動付与動作を行わせ、前記演算部55により演算される前記旋回指標値が前記第1の条件とは異なる所定の第2の条件を満たす場合に前記振動付与装置64,65に前記第2の振動付与動作を行わせる。
 前記第1の条件は、例えば、前記旋回指標値が前記減速目標旋回量Pcに達する前の所定の第1の旋回量範囲Pr1内であるという条件であり、前記第2の条件は、例えば、前記旋回指標値が前記減速目標旋回量Pcに達する前で且つ前記第1の旋回量範囲Pr1よりも前記減速目標旋回量Pcに近い所定の第2の旋回量範囲Pr2内であるという条件である。本実施形態の具体例では、前記第1の旋回量範囲Pr1は、グラフ(C)の縦軸における旋回量Pa以上で旋回量Pb未満の範囲であり、前記第2の旋回量範囲Pr2は、グラフ(C)の縦軸における旋回量Pb以上で旋回量Pc未満の範囲である。
 前記演算部55により演算される前記旋回指標値が前記第1の旋回量範囲Pr1内である場合には、前記第1の振動パターンを有する振動が前記振動付与装置64,65により前記対象部位に与えられ、当該旋回指標値が前記第2の旋回量範囲Pr2内である場合には、前記第2の振動パターンを有する振動が前記振動付与装置64,65により前記対象部位に与えられる。これにより、操作者は、前記上部旋回体14の旋回量が前記減速目標旋回量Pcに達する前に、前記上部旋回体14の旋回量が前記減速目標旋回量Pcに近づいていることを、前記第1の振動パターンを有する振動と前記第2の振動パターンを有する振動とにより段階的に知覚することができる。
 また、本実施形態では、前記旋回指標値が前記第1の旋回量範囲Pr1内である場合に比べて、当該第1の旋回量範囲Pr1よりも前記減速目標旋回量Pcに近い前記第2の旋回量範囲Pr2内である場合の方が、振動付与装置64,65による振動の周波数が大きくなる、又は、振動の振幅が大きくなる。このことは、前記減速目標旋回量Pcが近づいていることを、操作者が振動の周波数または振幅の変化によって段階的に知覚することを可能にし、前記特定部位を前記目標位置P6又はその近傍において停止させることをさらに容易にする。
 次に、前記動作目標が減速目標タイミングである場合について説明する。
 前記目標生成部75は、前記演算部55により演算された前記運動エネルギーと前記記憶部に記憶された前記ブレーキ力の特性とに基づいて、前記旋回減速操作を前記操作レバー61が受けたと仮定した時点から前記旋回動作が停止するまでの予測所要時間を演算する。当該予測所要時間は、上部旋回体14の旋回動作中において常時又は周期的に、前記目標生成部75により演算される。本実施形態では、前記旋回速度が一定である場合、前記予測所要時間も一定になるので、当該予測所要時間はグラフ(A),(B),(C)の横軸における時間tcから時間tdまでの時間の長さに相当する。
 また、前記目標生成部75は、前記上部旋回体14が前記停止目標旋回量P6まで旋回するのに必要な時間(停止目標時間td)を演算する。当該停止目標時間tdは、例えば、前記運動エネルギーと前記ブレーキ特性とに基づいて演算される。前記目標生成部75は、前記停止目標時間tdと前記予測所要時間とに基づいて前記減速目標タイミングを演算する。前記減速目標タイミングは、前記上部旋回体の旋回動作を停止させるための前記旋回減速操作を前記操作レバー61が受けることにより前記上部旋回体14が減速動作を開始するタイミングの目標である。当該減速目標タイミングは、グラフ(A),(B),(C)の横軸における時間tcである。
 前記演算部55は、上部旋回体14の旋回動作中において常時又は周期的に、前記時間指標値を演算する。前記時間指標値は、前記減速目標タイミングtcとの時間差の指標となる時間指標値であって当該時間指標値が演算される時点である現在時点を表す指標値である。
 前記制御装置は、前記演算部55により演算される前記時間指標値が所定の第1の条件を満たす場合に前記振動付与装置64,65に前記第1の振動付与動作を行わせ、前記演算部55により演算される前記時間指標値が前記第1の条件とは異なる所定の第2の条件を満たす場合に前記振動付与装置64,65に前記第2の振動付与動作を行わせる。前記第1の条件は、前記時間指標値が前記減速目標タイミングtcよりも前の所定の第1の時間範囲tr1内であるという条件であり、前記第2の条件は、前記時間指標値が前記減速目標タイミングよりも前で且つ前記第1の時間範囲tr1よりも前記減速目標タイミングtcに近い所定の第2の時間範囲tr2内であるという条件である。本実施形態の具体例では、前記第1の時間範囲tr1は、グラフ(A),(B),(C)の横軸における時間ta以上で時間tb未満の範囲であり、前記第2の時間範囲tr2は、当該横軸における時間tb以上で時間tc未満の範囲である。
 前記演算部55により演算される前記時間指標値が前記第1の時間範囲tr1内である場合には、前記第1の振動パターンを有する振動が前記振動付与装置64,65により前記対象部位に与えられ、当該時間指標値が前記第2の時間範囲tr2内である場合には、前記第2の振動パターンを有する振動が前記振動付与装置64,65により前記対象部位に与えられる。これにより、操作者は、前記上部旋回体14の旋回量が前記減速目標タイミングtcに達する前に、前記上部旋回体14の旋回動作が前記減速目標タイミングtcに近づいていることを、前記第1の振動パターンを有する振動と前記第2の振動パターンを有する振動とにより段階的に知覚することができる。
 また、本実施形態では、前記時間指標値が前記第1の時間範囲tr1内である場合に比べて、当該第1の時間範囲tr1よりも前記減速目標タイミングtcに近い前記第2の時間範囲tr2内である場合の方が、振動付与装置64,65による振動の周波数が大きくなる、又は、振動の振幅が大きくなる。このことは、前記減速目標タイミングtcが近づいていることを、操作者が振動の周波数または振幅の変化によって段階的に知覚することを可能にし、前記特定部位を前記目標位置P6又はその近傍において停止させることをさらに容易にする。
 図16は、上部旋回体14の旋回動作を説明するためのグラフであり、図15に示す実施形態の変形例である。この変形例は、前記旋回減速操作を前記操作レバー61が受けるタイミングと、前記ブレーキ力が実際に作用し始めるタイミングとの間にギャップが生じることを考慮した制御を行うものである。すなわち、当該変形例では、前記油圧モータによる応答遅れ時間を考慮した制御が行われる。
 当該応答遅れ時間は、図16の横軸における時間teから時間tcまでの時間の長さに相当する。具体的に、図16のグラフ(A),(B)に示すように、上記のような応答遅れが生じる場合には、操作者が前記フルレバーの位置から中立位置に戻す前記旋回減速操作を前記操作レバー61に与える時間teと、前記ブレーキ力が作用して前記旋回速度の減速が開始される時間tcとの間に、時間差(応答遅れ時間)が生じる。この応答遅れ時間(すなわち、時間tcから時間teを減算した値)に関する特性は、前記記憶部に予め記憶されている。
 従って、この変形例では、前記目標生成部75は、上述した前記減速目標旋回量Pcを演算するとともに、前記減速目標旋回量Pcよりも前記応答遅れ時間に対応する大きさだけ早い時点の旋回量に相当する第2目標旋回量Peを演算する。また、この変形例では、前記目標生成部75は、上述した前記減速目標タイミングtcを演算するとともに、前記減速目標タイミングtcよりも前記応答遅れ時間に対応する大きさだけ早い時点の第2目標タイミングteを演算する。
 具体的に、前記目標生成部75は、図15に示す実施形態と同様にして前記停止目標旋回量と前記予測所要旋回量とに基づいて前記減速目標旋回量Pcを演算し、この減速目標旋回量Pcから、前記応答遅れ時間に対応する大きさの旋回量を減算した第2目標旋回量Peを算出する(図16のグラフ(B),(C))。この変形例では、前記第1の旋回量範囲Pr1は、図16のグラフ(C)の縦軸における旋回量Pa以上で旋回量Pb未満の範囲であり、前記第2の旋回量範囲Pr2は、図16のグラフ(C)の縦軸における旋回量Pb以上で旋回量Pe未満の範囲である。
 また、前記目標生成部75は、図15に示す実施形態と同様にして前記停止目標時間と前記予測所要時間とに基づいて前記減速目標タイミングtcを演算し、この減速目標タイミングtcから、前記応答遅れ時間に対応する大きさの時間を減算した第2目標タイミングteを算出する(図16のグラフ(B),(C))。この変形例では、前記第1の時間範囲tr1は、図16のグラフ(A),(B),(C)の横軸における時間ta以上で時間tb未満の範囲であり、前記第2の時間範囲tr2は、当該横軸における時間tb以上で時間te未満の範囲である。
 前記油圧モータによる応答遅れが生じる場合には、この変形例のように当該応答遅れ時間を考慮した制御が行われることにより、当該応答遅れを加味した情報の伝達を操作者に行うことができる。当該変形例におけるその他の特徴は、図15に示す前記実施形態と同様であるので、詳細な説明を省略する。なお、上部旋回体14が油圧式アクチュエータ(油圧モータ)により旋回駆動されるものでなく、上記のような応答遅れが生じないか若しくは応答遅れが小さい場合には、図16に示す制御が行われる必要はなく、図15に示す制御が行われればよい。
 次に上記で説明した以外の作用効果について説明する。制御装置56、72は、次のような制御を行ってもよい。具体的に、前記制御装置は、建設機械10の特定部位の位置および姿勢のうち少なくとも一方、または当該位置および当該姿勢のうち少なくとも一方の時系列を表わす軌道(状態軌道)が、目標軌道に対する所定の複数の条件の何れかに対応しているときに、前記複数の条件毎に設定された振動パターンにしたがって振動付与装置64、65を振動させる。これにより、操作者の視線が途切れたり、教示音が聞きづらくなったりすることがない。さらに、例えば操作レバー61は、振動するだけで、補助力によって動くわけではないので、操作レバー61の動作の煩わしさも低減し、操作者に確実に操作を教示して操作性を向上させることができる。
 また、振動付与装置64は操作部61のグリップに設けられているので、操作者が手でつかむ操作部のグリップを介して振動を確実に操作者に知覚させ、視線を途切らせたり煩わしさを与えたりすることなく操作を教示することができる。
 また、振動付与装置64は、操作レバー61に着脱可能であるので、標準的な操作部61に後付けによって振動付与装置64を装着することができる。
 また、振動付与装置65は、アームレスト63に設けられているので、操作者の腕を介して振動を伝えることで、より操作者への知覚を促すことができる。
 また、所定の条件および所定の複数の振動パターンは、変更可能又は調整可能である。このため、それぞれの操作者の感じ易いように、振動パターンを設定してより一層振動を知覚しやすいようにできる。
 また、実施形態では、振動付与装置64、65を、操作部61と接触部63の両方に備えたが、これに限定されず、振動付与装置64、65を、操作部61および接触部62、63の少なくとも一方に備えていればよい。
 また、実施形態では、外界状態検知部45、46、47、48を建設機械10に設けたが、これに限定されず、建設機械10の周囲に外界状態検知部45、46、47、48を配置して建設機械10の外部から外界状態を検知してもよい。
 また、実施形態では、目標軌道からアタッチメント25先端部等の距離が所定の距離以上離れた場合に振動付与装置64、65を振動させ、目標位置に近づくにつれて振動付与装置64、65を振動させてもよいが、これに限定されず、振動する条件を逆にし、目標軌道からアタッチメント25先端部等の距離が所定の距離以内の場合に振動付与装置64、65を振動させ、目標位置に近づくにつれて振動付与装置64、65による振動を弱めるようにしてもよい。
 以上のように、建設機械の様々な状況の変化を的確に操作者に伝えることができる建設機械が提供される。
 [1]提供されるのは、建設機械であって、下部走行体と、当該下部走行体に旋回可能に設けられた上部旋回体と、当該上部旋回体に回動自在に連結された作業装置と、当該作業装置の先端に連結されたアタッチメントと、前記下部走行体、前記上部旋回体、前記作業装置および前記アタッチメントのうちの少なくとも一つを操作するための操作者による操作を受ける操作部と、当該操作部を操作する操作者の身体に接触する部位の少なくとも一部である対象部位に振動を与える振動付与装置と、前記建設機械の特定部位が移動する移動先として設定される目標位置に当該特定部位を移動させるために前記建設機械の動作の目標として設定される動作目標を記憶する記憶部と、前記動作目標と前記建設機械の実際の状態との隔たりの指標となる指標値を演算する演算部と、前記振動付与装置の動作を制御する制御装置と、を備える。前記振動付与装置は、第1の振動パターンを有する振動を前記対象部位に与える第1の振動付与動作と、前記第1の振動パターンとは異なる第2の振動パターンを有する振動を前記対象部位に与える第2の振動付与動作と、を行うことが可能である。前記制御装置は、前記演算部により演算される前記指標値が所定の第1の条件を満たす場合に前記振動付与装置に前記第1の振動付与動作を行わせ、前記演算部により演算される前記指標値が前記第1の条件とは異なる所定の第2の条件を満たす場合に前記振動付与装置に前記第2の振動付与動作を行わせるように構成されている。
 この建設機械では、前記記憶部は前記建設機械の動作の目標として設定される前記動作目標を記憶し、前記演算部は当該動作目標と前記建設機械の実際の状態との隔たりの指標となる指標値を演算する。前記制御装置は、前記指標値が前記第1の条件を満たす場合には前記第1の振動パターンを有する振動を前記対象部位に与える第1の振動付与動作を前記振動付与装置に行わせ、前記指標値が前記第2の条件を満たす場合には前記第1の振動パターンとは異なる前記第2の振動パターンを有する振動を前記対象部位に与える第2の振動付与動作を前記振動付与装置に行わせる。このことは、前記動作目標に対する前記建設機械の実際の状態の隔たりを、互いに異なる前記第1の振動パターン及び前記第2の振動パターンを有する振動によって操作者に知覚させることを可能にする。具体的には、前記建設機械では、前記操作者は、前記隔たりが前記第1の条件に対応する第1の状況及び前記第2の条件に対応する第2の状況の何れかであることを知覚することができるだけでなく、前記建設機械の状況が前記第1の状況から前記第2の状況に変化したこと、及び前記建設機械の状況が前記第2の状況から前記第1の状況に変化したことを知覚することができる。このことは、前記建設機械の様々な状況の変化を的確に操作者に伝えることを可能にする。このように前記建設機械では、前記動作目標に対する当該建設機械の実際の状態の隔たりが上記のような振動を介して前記操作者に伝えられるので、前記建設機械の状態を表示装置や音発生装置などを介して伝える必要がなく、また、前記建設機械の状態を操作レバーに補助力を付与して伝える必要もない。したがって、前記建設機械では、前記動作目標に対する当該建設機械の実際の状態の隔たりを前記操作者に伝えるときに、操作者の視線が途切れたり、教示音が聞きづらくなったりすることがなく、且つ、前記操作レバーの動作の煩わしさも低減しつつ、操作者に確実に操作を教示して当該建設機械の操作性を向上させることができる。
 [2]前記建設機械において、当該建設機械の周辺の状態である外界状態を検知する外界状態検知部と、当該外界状態検知部により検知される前記外界状態を含む情報に基づいて前記動作目標を生成する目標生成部と、をさらに備えていることが好ましい。
 この態様では、前記外界状態検知部によって検知される外界状態を含む情報に基づいて前記動作目標が生成されるので、前記外界状態が変化した場合であっても、生成される当該動作目標は、変化後の外界状態が考慮されたものとなる。このことは、変化後の外界状態に対応する前記動作目標に基づいて、前記建設機械の実際の状況の前記隔たりを前記操作者に伝えることを可能にする。これにより、前記外界状態が変化した場合であっても、操作者に確実に操作を教示して前記建設機械の操作性を向上させることができる。
 [3]前記建設機械において、前記動作目標は、前記特定部位が前記目標位置に向かって移動するときに当該特定部位が描く軌道の目標である目標軌道を含み、前記指標値は、前記特定部位と前記目標軌道との距離である距離指標値を含み、前記第1の条件は、前記距離指標値が所定の第1の距離範囲内であるという条件を含み、前記第2の条件は、前記距離指標値が前記第1の距離範囲とは異なる所定の第2の距離範囲内であるという条件を含むことが好ましい。
 この態様では、前記目標軌道に対する前記特定部位の距離である前記距離指標値の大きさに応じて、前記対象部位に、前記第1の振動パターンを有する振動又は前記第2の振動パターンを有する振動が付与される。このことは、前記特定部位から前記目標軌道までの距離を前記振動によって前記操作者が知覚することを可能にし、これにより、前記特定部位が前記目標位置まで前記目標軌道に近い軌道を通って誘導されることを可能にする。
 [4]前記建設機械において、前記第1の振動パターン及び前記第2の振動パターンの少なくとも一方は、前記目標位置と前記特定部位との距離が小さくなるにつれて、前記振動の周波数が大きくなる、又は、前記振動の振幅が大きくなるように設定されていることが好ましい。
 この態様では、前記特定部位から前記目標位置までの距離が小さくなるにつれて、振動付与装置による振動の周波数が大きくなる又は振動の振幅が大きくなるので、前記操作者は、前記周波数の変化または前記振幅の変化によって前記距離の変化を知覚することができる。
 [5]前記建設機械は、前記動作目標を生成する目標生成部をさらに備え、前記動作目標は、前記上部旋回体の旋回動作を停止させるための旋回減速操作を前記操作部が受けることにより前記上部旋回体が減速動作を開始するタイミングの目標である減速目標タイミングを含み、前記目標生成部は、前記旋回減速操作を前記操作部が受けたと仮定した時点から前記旋回動作が停止するまでの予測所要時間を演算し、少なくとも前記予測所要時間を含む情報に基づいて前記減速目標タイミングを演算するように構成されていてもよい。
 この態様では、前記目標生成部は、前記予測所要時間を演算し、前記予測所要時間を含む情報に基づいて前記減速目標タイミングを演算する。このように演算された前記減速目標タイミングに関する情報は、例えば前記減速目標タイミングと一致する時点で振動付与装置により与えられる振動によって操作者に伝えられてもよく、また、前記減速目標タイミングよりも前の時点で振動付与装置により与えられる振動によって操作者に伝えられてもよい。前記操作者は、前記振動によって伝えられた前記減速目標タイミングに関する情報に基づいて前記減速目標タイミングを知覚することができる。このことは、前記特定部位を前記目標位置又はその近傍において停止させることを容易にする。
 具体的には、当該予測所要時間は、例えば、上部旋回体が油圧式アクチュエータ(油圧モータ)により旋回駆動される場合には、上部旋回体の慣性モーメント、上部旋回体の旋回速度などに基づいて演算される運動エネルギーと、前記建設機械における油圧回路が備えるブレーキ特性とに基づいて演算される。前記慣性モーメントは、例えば、作業装置の位置及び姿勢、アタッチメントの位置及び姿勢、アタッチメントに積載される積載物の重量などに応じて定まる。
 [6]前記建設機械において、前記指標値は、前記減速目標タイミングとの時間差の指標となる時間指標値であって当該時間指標値が演算される時点である現在時点を表す時間指標値を含み、前記第1の条件は、前記時間指標値が前記減速目標タイミングよりも前の所定の第1の時間範囲内であるという条件を含み、前記第2の条件は、前記時間指標値が前記減速目標タイミングよりも前で且つ前記第1の時間範囲よりも前記減速目標タイミングに近い所定の第2の時間範囲内であるという条件を含むことが好ましい。
 この態様では、前記指標値は、前記減速目標タイミングと前記建設機械の実際の状態に対応する時点(現在時点)との時間の差の指標となる前記時間指標値を含む。当該時間指標値が前記第1の時間範囲内である場合には、前記第1の振動パターンを有する振動が前記振動付与装置により前記対象部位に与えられ、当該時間指標値が前記第2の時間範囲内である場合には、前記第2の振動パターンを有する振動が前記振動付与装置により前記対象部位に与えられる。これにより、操作者は、前記減速目標タイミングに到達する前に、前記減速目標タイミングが近づいていることを、前記第1の振動パターンを有する振動と前記第2の振動パターンを有する振動とにより段階的に知覚することができる。このことは、前記特定部位を前記目標位置又はその近傍において停止させることをさらに容易にする。
 [7]前記建設機械は、前記動作目標を生成する目標生成部をさらに備え、前記動作目標は、前記上部旋回体の旋回動作を停止させるための旋回減速操作を前記操作部が受けることにより前記上部旋回体が減速動作を開始するときの旋回量の目標である減速目標旋回量を含み、前記目標生成部は、前記旋回減速操作を前記操作部が受けたと仮定した時点から前記旋回動作が停止するまでの予測所要旋回量を演算し、前記目標位置に対応する停止目標旋回量と前記予測所要旋回量とを含む情報に基づいて前記減速目標旋回量を演算するように構成されていてもよい。
 この態様では、前記目標生成部は、前記予測所要旋回量を演算し、前記停止目標旋回量と前記予測所要旋回量とを含む情報に基づいて前記減速目標旋回量を演算する。このように演算された前記減速目標旋回量に関する情報は、例えば上部旋回体の旋回量が前記減速目標旋回量に達した時点で振動付与装置により与えられる振動によって操作者に伝えられてもよく、また、前記上部旋回体の旋回量が前記減速目標旋回量に達する前の時点で振動付与装置により与えられる振動によって操作者に伝えられてもよい。前記操作者は、前記振動によって伝えられた前記減速目標旋回量に関する情報に基づいて前記減速目標旋回量を知覚することができる。このことは、前記特定部位を前記目標位置又はその近傍において停止させることを容易にする。
 具体的には、当該予測所要旋回量は、例えば、上部旋回体が油圧式アクチュエータにより旋回駆動される場合には、上部旋回体の旋回時における運動エネルギーと、前記建設機械における油圧回路が備えるブレーキ特性とに基づいて演算される。
 [8]前記建設機械において、前記指標値は、当該指標値が演算される時点における前記上部旋回体の旋回量を表す旋回指標値を含み、前記第1の条件は、前記旋回指標値が前記減速目標旋回量に達する前の所定の第1の旋回量範囲内であるという条件を含み、前記第2の条件は、前記旋回指標値が前記減速目標旋回量に達する前で且つ前記第1の旋回量範囲よりも前記減速目標旋回量に近い所定の第2の旋回量範囲内であるという条件を含むことが好ましい。
 この態様では、前記指標値は、前記減速目標旋回量と上部旋回体の実際の旋回量との差の指標となる前記旋回指標値を含む。当該旋回指標値が前記第1の旋回量範囲内である場合には、前記第1の振動パターンを有する振動が前記振動付与装置により前記対象部位に与えられ、当該旋回指標値が前記第2の旋回量範囲内である場合には、前記第2の振動パターンを有する振動が前記振動付与装置により前記対象部位に与えられる。これにより、操作者は、前記上部旋回体の旋回量が前記減速目標旋回量に達する前に、前記上部旋回体の旋回量が前記減速目標旋回量に近づいていることを、前記第1の振動パターンを有する振動と前記第2の振動パターンを有する振動とにより段階的に知覚することができる。このことは、前記特定部位を前記目標位置又はその近傍において停止させることをさらに容易にする。
 [9]前記建設機械において、例えば、前記第2の振動パターンは、前記第1の振動パターンに比べて、前記振動の周波数が大きくなる、又は、前記振動の振幅が大きくなるように設定されていることが好ましい。
 この態様では、前記時間指標値が前記第1の時間範囲内である場合に比べて、当該第1の時間範囲よりも前記減速目標タイミングに近い前記第2の時間範囲内である場合の方が、振動付与装置による振動の周波数が大きくなる、又は、振動の振幅が大きくなる。このことは、前記減速目標タイミングが近づいていることを、操作者が振動の周波数または振幅の変化によって段階的に知覚することを可能にし、前記特定部位を前記目標位置又はその近傍において停止させることをさらに容易にする。
 [10]前記建設機械において、前記動作目標は、前記目標位置における前記特定部位の姿勢の目標である目標姿勢を含み、前記指標値は、前記目標姿勢と前記特定部位の実際の姿勢との隔たりの指標となる姿勢指標値を含み、前記第1の条件は、前記姿勢指標値が所定の第1の姿勢範囲内であるという条件を含み、前記第2の条件は、前記姿勢指標値が前記第1の姿勢範囲とは異なる所定の第2の姿勢範囲内であるという条件を含んでいてもよい。
 この態様では、前記目標姿勢と前記特定部位の実際の姿勢との隔たりの大きさに応じて、前記対象部位に、前記第1の振動パターンを有する振動又は前記第2の振動パターンを有する振動が付与される。このことは、前記目標姿勢に対する前記特定部位の姿勢の前記隔たりの大きさを前記振動によって前記操作者が知覚することを可能にし、これにより、前記特定部位の姿勢が前記目標姿勢に誘導されることを可能にする。
 [11]前記建設機械において、前記振動付与装置は、前記操作部のグリップに設けられていることが好ましい。
 この態様では、振動付与装置は操作部のグリップに設けられているので、操作者が手でつかむ操作部のグリップを介して前記振動付与装置による振動を確実に操作者に知覚させることができ、これにより、視線を途切らせたり煩わしさを与えたりすることなく前記操作者に操作を教示することができる。
 [12]前記建設機械において、前記振動付与装置は、前記操作部の操作レバーに着脱可能であることが好ましい。
 この態様では、標準仕様では前記振動付与装置が設けられていない建設機械の操作部の操作レバーに対して、当該振動付与装置をオプションとして装着することができる。
 [13]前記建設機械において、前記対象部位は、アームレストを含み、前記振動付与装置は、前記アームレストに設けられることにより当該アームレストを振動させることが好ましい。
 この態様では、前記アームレストに設けられた振動付与装置による振動が、前記操作者の腕が載せられる前記アームレストを介して当該操作者に伝えられる。これにより、前記操作者は、前記動作目標に対する前記建設機械の実際の状態の隔たりを、前記アームレストに付与される振動を介して知覚することができる。
 [14]前記建設機械において、前記第1の条件、前記第2の条件、前記第1の振動パターン及び前記第2の振動パターンの少なくとも一つは、変更可能又は調整可能であることが好ましい。
 この態様では、前記操作者は、前記条件および前記振動パターンを、当該操作者が知覚し易いように変更又は調整することにより、当該振動を一層知覚しやすくなる。

 

Claims (14)

  1.  建設機械であって、
     下部走行体と、
     当該下部走行体に旋回可能に設けられた上部旋回体と、
     当該上部旋回体に回動自在に連結された作業装置と、
     当該作業装置の先端に連結されたアタッチメントと、
     前記下部走行体、前記上部旋回体、前記作業装置および前記アタッチメントのうちの少なくとも一つを操作するための操作者による操作を受ける操作部と、
     当該操作部を操作する操作者の身体に接触する部位の少なくとも一部である対象部位に振動を与える振動付与装置と、
     前記建設機械の特定部位が移動する移動先として設定される目標位置に当該特定部位を移動させるために前記建設機械の動作の目標として設定される動作目標を記憶する記憶部と、
     前記動作目標と前記建設機械の実際の状態との隔たりの指標となる指標値を演算する演算部と、
     前記振動付与装置の動作を制御する制御装置と、を備え、
     前記振動付与装置は、第1の振動パターンを有する振動を前記対象部位に与える第1の振動付与動作と、前記第1の振動パターンとは異なる第2の振動パターンを有する振動を前記対象部位に与える第2の振動付与動作と、を行うことが可能であり、
     前記制御装置は、前記演算部により演算される前記指標値が所定の第1の条件を満たす場合に前記振動付与装置に前記第1の振動付与動作を行わせ、前記演算部により演算される前記指標値が前記第1の条件とは異なる所定の第2の条件を満たす場合に前記振動付与装置に前記第2の振動付与動作を行わせるように構成されている、建設機械。
  2.  請求項1に記載の建設機械であって、
     当該建設機械の周辺の状態である外界状態を検知する外界状態検知部と、
     当該外界状態検知部により検知される前記外界状態を含む情報に基づいて前記動作目標を生成する目標生成部と、をさらに備える建設機械。
  3.  請求項1又は請求項2に記載の建設機械であって、
     前記動作目標は、前記特定部位が前記目標位置に向かって移動するときに当該特定部位が描く軌道の目標である目標軌道を含み、
     前記指標値は、前記特定部位と前記目標軌道との距離である距離指標値を含み、
     前記第1の条件は、前記距離指標値が所定の第1の距離範囲内であるという条件を含み、
     前記第2の条件は、前記距離指標値が前記第1の距離範囲とは異なる所定の第2の距離範囲内であるという条件を含む、建設機械。
  4.  請求項1~3のいずれか1項に記載の建設機械であって、
     前記第1の振動パターン及び前記第2の振動パターンの少なくとも一方は、前記目標位置と前記特定部位との距離が小さくなるにつれて、前記振動の周波数が大きくなる、又は、前記振動の振幅が大きくなるように設定されている、建設機械。
  5.  請求項1に記載の建設機械であって、
     前記動作目標を生成する目標生成部をさらに備え、
     前記動作目標は、前記上部旋回体の旋回動作を停止させるための旋回減速操作を前記操作部が受けることにより前記上部旋回体が減速動作を開始するタイミングの目標である減速目標タイミングを含み、
     前記目標生成部は、前記旋回減速操作を前記操作部が受けたと仮定した時点から前記旋回動作が停止するまでの予測所要時間を演算し、少なくとも前記予測所要時間を含む情報に基づいて前記減速目標タイミングを演算する、建設機械。
  6.  請求項5に記載の建設機械であって、
     前記指標値は、前記減速目標タイミングとの時間差の指標となる時間指標値であって当該時間指標値が演算される時点である現在時点を表す時間指標値を含み、
     前記第1の条件は、前記時間指標値が前記減速目標タイミングよりも前の所定の第1の時間範囲内であるという条件を含み、
     前記第2の条件は、前記時間指標値が前記減速目標タイミングよりも前で且つ前記第1の時間範囲よりも前記減速目標タイミングに近い所定の第2の時間範囲内であるという条件を含む、建設機械。
  7.  請求項1に記載の建設機械であって、
     前記動作目標を生成する目標生成部をさらに備え、
     前記動作目標は、前記上部旋回体の旋回動作を停止させるための旋回減速操作を前記操作部が受けることにより前記上部旋回体が減速動作を開始するときの旋回量の目標である減速目標旋回量を含み、
     前記目標生成部は、前記旋回減速操作を前記操作部が受けたと仮定した時点から前記旋回動作が停止するまでの予測所要旋回量を演算し、前記目標位置に対応する停止目標旋回量と前記予測所要旋回量とを含む情報に基づいて前記減速目標旋回量を演算する、建設機械。
  8.  請求項7に記載の建設機械であって、
     前記指標値は、当該指標値が演算される時点における前記上部旋回体の旋回量を表す旋回指標値を含み、
     前記第1の条件は、前記旋回指標値が前記減速目標旋回量に達する前の所定の第1の旋回量範囲内であるという条件を含み、
     前記第2の条件は、前記旋回指標値が前記減速目標旋回量に達する前で且つ前記第1の旋回量範囲よりも前記減速目標旋回量に近い所定の第2の旋回量範囲内であるという条件を含む、建設機械。
  9.  請求項6又は8に記載の建設機械であって、
     前記第2の振動パターンは、前記第1の振動パターンに比べて、前記振動の周波数が大きくなる、又は、前記振動の振幅が大きくなるように設定されている、建設機械。
  10.  請求項1に記載の建設機械であって、
     前記動作目標は、前記目標位置における前記特定部位の姿勢の目標である目標姿勢を含み、
     前記指標値は、前記目標姿勢と前記特定部位の実際の姿勢との隔たりの指標となる姿勢指標値を含み、
     前記第1の条件は、前記姿勢指標値が所定の第1の姿勢範囲内であるという条件を含み、
     前記第2の条件は、前記姿勢指標値が前記第1の姿勢範囲とは異なる所定の第2の姿勢範囲内であるという条件を含む、建設機械。
  11.  請求項1~10のいずれか1項に記載の建設機械であって、
     前記振動付与装置は、前記操作部のグリップに設けられている、建設機械。
  12.  請求項1~11のいずれか1項に記載の建設機械であって、
     前記振動付与装置は、前記操作部の操作レバーに着脱可能である、建設機械。
  13.  請求項1~12のいずれか1項に記載の建設機械であって、
     前記対象部位は、アームレストを含み、
     前記振動付与装置は、前記アームレストに設けられることにより当該アームレストを振動させる、建設機械。
  14.  請求項1~13のいずれか1項に記載の建設機械であって、
     前記第1の条件、前記第2の条件、前記第1の振動パターン及び前記第2の振動パターンの少なくとも一つは、変更可能又は調整可能である、建設機械。

     
PCT/JP2019/011030 2018-03-19 2019-03-18 建設機械 WO2019181817A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19770836.5A EP3744907A4 (en) 2018-03-19 2019-03-18 CONSTRUCTION MACHINE
CN201980016110.8A CN111788359B (zh) 2018-03-19 2019-03-18 工程机械
US16/976,345 US11933020B2 (en) 2018-03-19 2019-03-18 Construction machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-051029 2018-03-19
JP2018051029A JP7119457B2 (ja) 2018-03-19 2018-03-19 建設機械

Publications (1)

Publication Number Publication Date
WO2019181817A1 true WO2019181817A1 (ja) 2019-09-26

Family

ID=67986270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011030 WO2019181817A1 (ja) 2018-03-19 2019-03-18 建設機械

Country Status (5)

Country Link
US (1) US11933020B2 (ja)
EP (1) EP3744907A4 (ja)
JP (1) JP7119457B2 (ja)
CN (1) CN111788359B (ja)
WO (1) WO2019181817A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3896223A1 (de) * 2020-04-16 2021-10-20 Joseph Vögele AG Verfahren zum fertigen eines strassenbelags und asphaltierungssystem

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286648B2 (en) * 2019-04-26 2022-03-29 Cnh Industrial America Llc System and method for estimating implement load weights during automated boom movement
EP4386146A1 (en) * 2021-09-29 2024-06-19 Kobelco Construction Machinery Co., Ltd. Trajectory-generating system and work machine comprising same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10157983A (ja) * 1996-11-28 1998-06-16 Komatsu Ltd クレーンの旋回減速制御装置およびその制御方法
JPH11210015A (ja) * 1998-01-27 1999-08-03 Hitachi Constr Mach Co Ltd 建設機械の軌跡制御装置及びその操作装置
JP2003184131A (ja) * 2001-12-19 2003-07-03 Hitachi Constr Mach Co Ltd 建設機械の操作装置
JP2005105582A (ja) * 2003-09-29 2005-04-21 Tone Boring Co Ltd 土壌調査方法およびそれに使用する振動緩衝装置
JP2007009432A (ja) 2005-06-28 2007-01-18 Hitachi Constr Mach Co Ltd 建設機械および建設機械に用いられる制御装置
WO2015173935A1 (ja) 2014-05-15 2015-11-19 株式会社小松製作所 掘削機械の表示システム、掘削機械及び掘削機械の表示方法
JP2016094106A (ja) * 2014-11-14 2016-05-26 株式会社デンソー 車両用ブレーキ制御装置
US20170073935A1 (en) * 2015-09-11 2017-03-16 Caterpillar Inc. Control System for a Rotating Machine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185932A (ja) * 1986-02-13 1987-08-14 Komatsu Ltd 掘削機械の作業状態監視装置
JP3705661B2 (ja) * 1996-12-02 2005-10-12 日立建機株式会社 建設機械の作業機の姿勢制御装置
JP2003106305A (ja) * 2001-09-28 2003-04-09 Kobelco Contstruction Machinery Ltd 旋回制御回路
JP2009197438A (ja) * 2008-02-20 2009-09-03 Caterpillar Japan Ltd 作業機械における干渉防止制御装置
US8768581B2 (en) 2010-05-24 2014-07-01 Hitachi Construction Machinery Co., Ltd. Work machine safety device
US8599027B2 (en) 2010-10-19 2013-12-03 Deere & Company Apparatus and method for alerting machine operator responsive to the gaze zone
US8583361B2 (en) * 2011-08-24 2013-11-12 Modular Mining Systems, Inc. Guided maneuvering of a mining vehicle to a target destination
US9132774B2 (en) * 2012-06-22 2015-09-15 GM Global Technology Operations LLC Alert systems and methods for a vehicle
JP5426742B1 (ja) 2012-10-05 2014-02-26 株式会社小松製作所 掘削機械の表示システム及び掘削機械
US9457718B2 (en) 2014-12-19 2016-10-04 Caterpillar Inc. Obstacle detection system
JP6495729B2 (ja) * 2015-04-28 2019-04-03 日立建機株式会社 建設機械の制御装置
JP6373812B2 (ja) 2015-09-10 2018-08-15 日立建機株式会社 建設機械
US10151830B2 (en) 2016-09-14 2018-12-11 Caterpillar Inc. Systems and methods for detecting objects proximate to a machine utilizing a learned process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10157983A (ja) * 1996-11-28 1998-06-16 Komatsu Ltd クレーンの旋回減速制御装置およびその制御方法
JPH11210015A (ja) * 1998-01-27 1999-08-03 Hitachi Constr Mach Co Ltd 建設機械の軌跡制御装置及びその操作装置
JP2003184131A (ja) * 2001-12-19 2003-07-03 Hitachi Constr Mach Co Ltd 建設機械の操作装置
JP2005105582A (ja) * 2003-09-29 2005-04-21 Tone Boring Co Ltd 土壌調査方法およびそれに使用する振動緩衝装置
JP2007009432A (ja) 2005-06-28 2007-01-18 Hitachi Constr Mach Co Ltd 建設機械および建設機械に用いられる制御装置
WO2015173935A1 (ja) 2014-05-15 2015-11-19 株式会社小松製作所 掘削機械の表示システム、掘削機械及び掘削機械の表示方法
JP2016094106A (ja) * 2014-11-14 2016-05-26 株式会社デンソー 車両用ブレーキ制御装置
US20170073935A1 (en) * 2015-09-11 2017-03-16 Caterpillar Inc. Control System for a Rotating Machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3896223A1 (de) * 2020-04-16 2021-10-20 Joseph Vögele AG Verfahren zum fertigen eines strassenbelags und asphaltierungssystem
US11885079B2 (en) 2020-04-16 2024-01-30 Joseph Voegele Ag Method of paving a road surface and asphalting system

Also Published As

Publication number Publication date
CN111788359A (zh) 2020-10-16
US20210040710A1 (en) 2021-02-11
EP3744907A1 (en) 2020-12-02
EP3744907A4 (en) 2021-05-05
US11933020B2 (en) 2024-03-19
JP7119457B2 (ja) 2022-08-17
JP2019163603A (ja) 2019-09-26
CN111788359B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
JP7358349B2 (ja) 掘削機、情報処理装置
WO2019181817A1 (ja) 建設機械
JPH09268602A (ja) 掘削機の制御装置
JP2012112108A (ja) 作業機械の周囲監視装置
WO2020170687A1 (ja) 安全装置及び建設機械
WO2020166241A1 (ja) 監視装置及び建設機械
JP2019214836A (ja) 作業機械の遠隔制御システム
WO2019181814A1 (ja) 建設機械
CN115516175A (zh) 远程操作支援装置及远程操作支援方法
JP7183744B2 (ja) 建設機械の遠隔操作装置
WO2023002796A1 (ja) 掘削機械の稼働範囲設定システムおよびその制御方法
CN112823226B (zh) 工程机械的远程操作装置
WO2021049535A1 (ja) 作業車両および作業車両の制御方法
JP7225935B2 (ja) 遠隔操作システム
JP7416579B2 (ja) 作業機械
KR20210124442A (ko) 작업 기계
JP2019214824A (ja) 作業機械
JP7205992B2 (ja) 作業機
WO2023100689A1 (ja) 建設機械の駆動装置、これを備えた建設機械及び建設機械システム
JP2869807B2 (ja) 多関節建設機械の作業機操作装置
JP2022046978A (ja) 作業機械の制御システムおよび作業機械の制御方法
JP2024094058A (ja) ショベル
JP2021075883A (ja) 作業機械の周囲監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019770836

Country of ref document: EP

Effective date: 20200828

NENP Non-entry into the national phase

Ref country code: DE