WO2019179290A2 - 一种苯氧羧酸酯的制备方法 - Google Patents

一种苯氧羧酸酯的制备方法 Download PDF

Info

Publication number
WO2019179290A2
WO2019179290A2 PCT/CN2019/076285 CN2019076285W WO2019179290A2 WO 2019179290 A2 WO2019179290 A2 WO 2019179290A2 CN 2019076285 W CN2019076285 W CN 2019076285W WO 2019179290 A2 WO2019179290 A2 WO 2019179290A2
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
salt
hydroxide
carbonate
mol
Prior art date
Application number
PCT/CN2019/076285
Other languages
English (en)
French (fr)
Inventor
孙国庆
侯永生
迟志龙
贺恩静
胡义山
Original Assignee
山东润博生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东润博生物科技有限公司 filed Critical 山东润博生物科技有限公司
Publication of WO2019179290A2 publication Critical patent/WO2019179290A2/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/64Preparation of O-metal compounds with O-metal group bound to a carbon atom belonging to a six-membered aromatic ring
    • C07C37/66Preparation of O-metal compounds with O-metal group bound to a carbon atom belonging to a six-membered aromatic ring by conversion of hydroxy groups to O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form

Definitions

  • the invention relates to the technical field of preparation of herbicides, in particular to a preparation method of phenoxycarboxylates.
  • Phenoxycarboxylate herbicides are the world's first commercially available hormonal selective herbicides. They are environmentally friendly, have short residual periods and low toxicity to humans and other organisms, and rarely produce resistance. It is mainly used in grass crops such as corn and wheat to control dicotyledonous weeds, sedges and some malignant weeds.
  • a widely used phenoxycarboxylate herbicide is a chlorophenoxyacetate series. Among them, 2,4-dichlorophenoxyacetate is the most widely used.
  • the preparation method of 2,4-dichlorophenoxyacetate mainly comprises the following two steps:
  • 2,4-dichlorophenol is condensed with chloroacetic acid under alkaline conditions, and the reaction solution is acidified and filtered to obtain 2,4-dichlorophenoxyacetic acid wet material, which is dried to obtain 2,4-dichlorophenoxy Acetic acid;
  • the esterification reaction is carried out by using 2,4-dichlorophenoxyacetic acid or an alcohol as a raw material in the presence of a catalyst to obtain 2,4-dichlorophenoxyacetate.
  • the intermediate product 2,4-dichlorophenol is formed, which has an extremely unpleasant pungent odor, resulting in extremely poor environment at the production site, and poor chlorination selectivity results in low purity.
  • step 2) the impurities in the chlorophenol, dichlorophenol and polychlorophenol, undergo condensation between the two molecules, resulting in a highly toxic, refractory series of compounds, dioxins, which in turn produce a large amount of
  • dioxins which poses a great risk to the health of the environment and production personnel, and the dioxin will follow the steps 3)
  • the use of the prepared product enters the plant, air, soil and water sources and is enriched with the food chain, causing more serious environmental hazards.
  • the above reaction route has poor chlorination selectivity, post-treatment process has active component loss, product yield is low, and will produce a large amount of wastewater containing glycolic acid and waste salt, and a large amount of chlorinated phenol and chlorobenzene.
  • the hazardous waste of oxyacetic acid has high pressure and high processing cost.
  • the Williamson condensation method disclosed in the prior art is a process in which a phenol is salted in an aqueous phase, and then a product which is neutralized with chloroacetic acid and a base to carry out a Williamson condensation reaction in an aqueous phase to obtain a phenoxyacetate. It is then acidified to obtain phenoxyacetic acid, which is filtered and dried, then esterified with the corresponding alcohol, and finally chlorinated. Since the reaction is carried out in the aqueous phase, there are problems such as high consumption of chloroacetic acid and large amount of waste salt of waste water.
  • the technical problem to be solved by the present invention is to provide a method for preparing a phenoxycarboxylate, which has high production efficiency.
  • the present invention provides a method for preparing a phenoxycarboxylate, comprising the following steps:
  • the organic solvent is a mixture of any two of toluene, xylene, chlorobenzene, phenol, butanol, and isobutanol.
  • reaction equation of the present invention is as follows:
  • R is H or methyl
  • M is Na, K, Ca, Mg or Al.
  • R 1 is preferably a C1-C5 alkylene group; more preferably a C1-C4 alkylene group, further preferably a methylene group (-CH 2 -), a methylmethylene group (-CH(CH 3 )) -), ethylene (-CH 2 -CH 2 -), propylene (-CH 2 -CH 2 -CH 2 -) or butylene (-(CH 2 ) 4 -).
  • R 2 is preferably a C1-C10 alkyl group or a C3-C10 cycloalkyl group; more preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an octyl group, an isooctyl group, or a ring.
  • the phenolic compound is preferably phenol or o-cresol.
  • the alkaline hydroxide is preferably sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide or aluminum hydroxide; more preferably sodium hydroxide, potassium hydroxide or calcium hydroxide.
  • the carbonate is preferably potassium carbonate; sodium carbonate or cesium carbonate or the like.
  • the alkaline hydroxide or carbonate may be added in the form of an aqueous solution or may be added in a solid form, preferably an aqueous solution having a mass concentration of 30% or more.
  • the phenolic compound and the alkali hydroxide or carbonate may be used in a stoichiometric ratio, preferably a molar ratio of 1:1.
  • the phenolic compound and the alkali hydroxide or carbonate are directly dehydrated into a salt in an organic solvent, and the organic solvent has a dehydrating action in addition to the action of dispersing and dissolving the phenate.
  • the organic solvent is a mixture of any two of toluene, xylene, chlorobenzene, phenol, butanol and isobutanol.
  • the mass ratio of the phenolic compound to the organic solvent is preferably 1: (2 to 20), and more preferably 1: (2 to 18).
  • the organic solvent is composed of a solvent A selected from any one of toluene, xylene and chlorobenzene, and a solvent B selected from any one of butanol and isobutanol.
  • a solvent A selected from any one of toluene, xylene and chlorobenzene
  • a solvent B selected from any one of butanol and isobutanol.
  • the mass ratio of the solvent A to the solvent B is preferably (2 to 4): 1.
  • the invention adopts a specific mixed solvent, solves the problem that a single solvent has a large amount of salt precipitation during the dehydration process, avoids the risk of explosion, and makes the system maintain a uniform state during the dehydration condensation process, realizes continuous production, and dehydrates. More efficient.
  • the temperature at which the salt is dehydrated is preferably from 80 to 170 ° C, more preferably from 100 to 135 ° C.
  • the time is preferably from 1 to 5 hours.
  • the dehydration mode of the present invention is not particularly limited and may be a method well known to those skilled in the art, such as reflux dehydration of a water separator, dehydration by a spray drying apparatus, or dehydration by belt vacuum drying.
  • a chlorocarboxylic acid ester is added to carry out a condensation reaction to obtain a phenoxycarboxylate.
  • the manner of adding the chlorocarboxylic acid ester in the present invention is not particularly limited, and a dropping method is preferably employed.
  • the time of the dropwise addition is preferably from 1 to 5 hours, more preferably from 2 to 3 hours.
  • the temperature of the dropwise addition is preferably from 60 to 170 °C.
  • the temperature of the condensation reaction is preferably from 60 to 170 ° C, more preferably from 100 to 130 ° C.
  • the time is preferably from 0.1 to 2 hours, more preferably from 0.3 to 1 hour.
  • the system is cooled, preferably to a temperature of 10 to 70 ° C, and the salt in the oil phase is washed with water, and the layers are separated to obtain an oil phase and an aqueous phase. After the oil phase is distilled to recover the solvent, A phenoxycarboxylate is obtained.
  • the present invention provides a method for preparing a phenoxycarboxylate, comprising the steps of: A) dehydrating a phenolic compound and an alkali hydroxide or a carbonate into an organic solvent; Obtaining a salt of a phenolic compound; B) after forming a salt, adding a chlorocarboxylic acid ester, and performing a condensation reaction to obtain a phenoxycarboxylate; the organic solvent is toluene, xylene, chlorobenzene, phenol, butanol and isobutanol a mixture of any two of them.
  • the invention dehydrates the phenol into a salt in a mixed organic solvent, and the system maintains a uniform state in the dehydration process, realizes continuous production, has high dehydration efficiency, and has high efficiency in the whole production process. Moreover, the raw materials are easy to obtain, the production cycle is short, the energy consumption is low, and the production cost is low.
  • the present invention uses a condensation reaction of phenol with a chlorocarboxylic acid ester in an anhydrous system, which reduces the hydrolysis of the ruthenium-chlorocarboxylic acid, thereby reducing its consumption and greatly reducing the production of the chloride salt.
  • Experimental results show that The invention synthesizes 1 mol of phenoxycarboxylate, the output of waste salt is reduced from 2.45 mol to 1.01 mol, the output of waste salt is reduced by about 60%, the generation of high-salt wastewater is eliminated, and the problem of wastewater caused by metal chloride is solved. At the same time, the amount of wastewater has been reduced from 25 tons to 2 to 3 tons, a reduction of more than 90%.
  • the loss of the active ingredient caused by the solid-liquid separation of the pure chlorophenoxycarboxylic acid in the prior art is effectively avoided, the yield of the active ingredient is improved, and the product has high purity and high yield.
  • the invention does not use chlorophenol as a raw material, and eliminates the huge odor problem caused by chlorophenol, and no dioxin is produced; the prepared phenoxycarboxylate can be further subjected to chlorination to obtain a 2,4-D compound.
  • reaction solution was cooled to 100 ° C, 150 g of water was added, the pH was adjusted to 7, and the layers were allowed to stand.
  • the aqueous layer was extracted with 20 g of xylene, and the organic layer was separated by vacuum distillation to give the product 81.75 g, purity 99.1%, yield 97.5%. .
  • reaction solution was cooled to 100 ° C, 150 g of water was added, the pH was adjusted to 7, the layer was allowed to stand, the aqueous layer was extracted with 20 g of xylene, and the organic layer was separated by vacuum distillation to obtain 65.4 g of product, purity 82%, yield 63.8%. . .
  • reaction solution was cooled to 100 ° C, 150 g of water was added, the pH was adjusted to 7, the layer was allowed to stand, the aqueous layer was extracted with 20 g of xylene, and the organic layer was separated by vacuum distillation to give the product 78.7 g, purity 97%, yield 90.9%. . .
  • the aqueous layer was extracted with 16.6 g of chlorobenzene, and the organic layer was combined and then separated by vacuum distillation to obtain a product of 69 g, purity 98.1%, yield. 80.5%.
  • 19 g of a salt was precipitated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

一种苯氧羧酸酯的制备方法
本申请要求于2018年3月19日提交中国专利局、申请号为201810226090.4、发明名称为“一种苯氧羧酸酯的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及除草剂制备技术领域,尤其涉及一种苯氧羧酸酯的制备方法。
背景技术
苯氧羧酸酯类除草剂是世界上第一类商品化生产的激素型选择性除草剂,对环境友好,具有残留期短和对人及其他生物低毒等特点,极少产生耐药性,主要用于玉米、小麦等禾本科作物田防除双子叶杂草、莎草以及某些恶性杂草。苯氧羧酸酯类除草剂中应用较为广泛的是氯代苯氧乙酸酯系列。其中以2,4-二氯苯氧乙酸酯的应用最为广泛。
目前,2,4-二氯苯氧乙酸酯的制备方法主要包括以下两步:
1)以苯酚为主要原料,经氯化制得2,4-二氯苯酚;
2)2,4-二氯苯酚在碱性条件下与氯乙酸缩合,反应液经过酸化、过滤得到2,4-二氯苯氧乙酸湿料,烘干后得2,4-二氯苯氧乙酸;
3)以2,4-二氯苯氧乙酸、醇为原料,在催化剂存在条件下进行酯化反应,得到2,4-二氯苯氧乙酸酯。
上述制备方法中,生成中间产物2,4-二氯苯酚,此产物具有极难闻的刺激性气味,导致生产现场环境极差,而且氯化选择性较差导致其纯度较低。
在步骤2)缩合的过程中,氯代苯酚中的杂质二氯苯酚和多氯苯酚会发生两分子间的缩合,生成剧毒的、难降解的系列化合物——二噁英,进而产生大量含有氯代酚、氯代苯氧乙酸的危废,而且产出产品中也含有二噁英,这给环境和生产人员的健康带来了极大的风险,二噁英还会随着步骤3)制备的产品的使用进入植物体、空气、土壤和水源,并随着食物链富集,进而造成更加严重的环境危害。
同时,上述反应路线氯化选择性差、后处理工艺有有效成分损失,产品的收率偏低,并且会产出大量的含有羟基乙酸和废盐的废水,以及大量含有氯代苯酚、氯代苯氧乙酸的危废,三废处理压力大、处理成本高。
现有技术公开的Williamson缩合法,生产工艺是:苯酚在水相中成盐,然后再和氯乙酸与碱中和成盐的产物在水相中进行Williamson缩合反应,得到苯氧乙酸盐,然后再酸化,得到苯氧乙酸,过滤烘干后再和对应的醇酯化,最后氯化。由于反应是在水相中进行,存在着氯乙酸消耗高,废水废盐量大等问题。
因此,开发一种先进的合成工艺迫在眉睫。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种苯氧羧酸酯的制备方法,具有较高的生产效率。
为解决以上技术问题,本发明提供了一种苯氧羧酸酯的制备方法,包括以下步骤:
A)酚类化合物和碱性氢氧化物或者和碳酸盐在有机溶剂中脱水成盐,得到酚类化合物的盐;
B)成盐后,加入氯羧酸酯,进行缩合反应,得到苯氧羧酸酯;
所述有机溶剂为甲苯、二甲苯、氯苯、苯酚、丁醇和异丁醇中的任意两种的混合物。
本发明的反应方程式如下:
Figure PCTCN2019076285-appb-000001
其中,所述R为H或甲基。
M为Na、K、Ca、Mg或Al。
R 1优选为C1~C5的亚烷基;更优选为C1~C4的亚烷基,进一步的,优选为亚甲基(-CH 2-),甲基亚甲基(-CH(CH 3)-),亚乙基(-CH 2-CH 2-),亚丙基(-CH 2-CH 2-CH 2-)或亚丁基(-(CH 2) 4-)。
R 2优选为C1~C10的烷基或C3~C10的环烷基;更优选为甲基、乙基、丙 基、异丙基、丁基、异丁基、辛基、异辛基、环丙基或环己基。
所述酚类化合物优选为苯酚或邻甲酚。
所述碱性氢氧化物优选为氢氧化钠、氢氧化钾、氢氧化钙、氢氧化镁或氢氧化铝;更优选为氢氧化钠、氢氧化钾或氢氧化钙。所述碳酸盐优选为碳酸钾;碳酸钠或碳酸铯等。
所述碱性氢氧化物或碳酸盐可以以水溶液的形式添加,也可以以固体形式添加,优选质量浓度30%以上的水溶液。
所述酚类化合物和碱性氢氧化物或碳酸盐的用量按照计量比即可,优选摩尔比1:1。
本发明将酚类化合物和碱性氢氧化物或碳酸盐在有机溶剂中直接脱水成盐,所述有机溶剂除了对酚盐进行分散溶解的作用外,还具有脱水的作用。
本发明优选的,所述有机溶剂为甲苯、二甲苯、氯苯、苯酚、丁醇和异丁醇中的任意两种的混合物。
所述酚类化合物与有机溶剂的质量比优选为1:(2~20),更优选为1:(2~18)。
更优选的,所述有机溶剂由溶剂A和溶剂B组成,所述溶剂A选自甲苯、二甲苯和氯苯中的任意一种,所述溶剂B选自丁醇和异丁醇中的任意一种。
所述溶剂A和溶剂B的质量比优选为(2~4):1。
本发明采用特定的混合溶剂,解决了单一溶剂在脱水过程中,有大量盐析出的问题,避免了***的风险,使得脱水缩合过程中,体系始终保持均一状态,实现了连续化生产,且脱水效率较高。
所述脱水成盐的温度优选为80~170℃,更优选100~135℃。时间优选为1~5h。
本发明对所述脱水方式并无特殊限定,可以为本领域技术人员熟知的方式,如分水器回流脱水,采用喷雾干燥设备脱水,或通过带式真空干燥脱水。
成盐后,加入氯羧酸酯,进行缩合反应,即可得到苯氧羧酸酯。
本发明对所述氯羧酸酯的加入方式并无特殊限定,优选采用滴加的方式。所述滴加的时间优选为1~5h,更优选2~3h。所述滴加的温度优选为60~170℃。
所述缩合反应的温度优选为60~170℃,更优选100~130℃。时间优选为 0.1~2h,更优选0.3~1h。
反应结束后,本发明优选的,对体系进行降温,优选降温至10~70℃,加入水搅拌洗涤油相中的盐,分层,得到油相和水相,油相蒸馏回收溶剂后,即得到苯氧羧酸酯。
与现有技术相比,本发明提供了一种苯氧羧酸酯的制备方法,包括以下步骤:A)酚类化合物和碱性氢氧化物或者和碳酸盐在有机溶剂中脱水成盐,得到酚类化合物的盐;B)成盐后,加入氯羧酸酯,进行缩合反应,得到苯氧羧酸酯;所述有机溶剂为甲苯、二甲苯、氯苯、苯酚、丁醇和异丁醇中的任意两种的混合物。本发明在混合有机溶剂中进行苯酚的脱水成盐,脱水过程中体系始终保持均一状态,实现了连续化生产,且脱水效率较高,整个生产过程效率较高。且原料易得,生产周期短,能耗较低,生产成本较低。
此外,本发明使用苯酚与氯羧酸酯在无水体系中进行缩合反应,降低了ɑ-氯代羧酸的水解,进而降低了其消耗,同时大大降低了氯化盐的产生,实验结果表明,本发明合成1mol苯氧羧酸酯,废盐产量从2.45mol降低到1.01mol,废盐产量降低了60%左右,杜绝了高盐废水的产生,解决了金属氯化物带来的废水问题。同时废水量从25吨降低到2~3吨,降低了90%以上。而且有效避免了现有技术因氯代苯氧羧酸纯品的固液分离导致的有效成分的损失,提高了有效成分的得率,产品纯度高、收率高。
本发明不采用氯代苯酚作为原料,杜绝了氯苯酚带来的巨大气味问题,没有二噁英产生;制备得到的苯氧羧酸酯可再进行氯化反应得到2,4-D类化合物。
具体实施方式
为了进一步说明本发明,下面结合实施例对本发明提供的苯氧羧酸酯的制备方法进行详细描述。
实施例1:
将苯酚47.6g(0.5mol)、二甲苯120g、丁醇30g,质量分数32%的氢氧化钠水溶液62.8g(0.5mol)混合搅拌,升温至140℃左右,带水反应1小时。将中和液稍微冷却至120℃,滴加氯乙酸甲酯53.8g(0.495mol),4小时滴加完毕,升温至146℃,保温反应2小时。将反应液冷却至100℃,加入150g水,调pH至7,静置分层,水层加入20g二甲苯萃取,有机层于真空蒸馏分离,得 产物81.75g,纯度99.1%,收率97.5%。
比较例1
将苯酚47.6g(0.5mol)、二甲苯150g、质量分数32%的氢氧化钠水溶液62.8g(0.5mol)混合搅拌,升温至140℃左右,带水反应1小时,过程中析出大量晶体,反应体系中析出盐43g。将中和液稍微冷却至120℃,滴加氯乙酸甲酯53.8g(0.495mol),4小时滴加完毕,升温至146℃,保温反应2小时。将反应液冷却至100℃,加入150g水,调pH至7,静置分层,水层加入20g二甲苯萃取,有机层于真空蒸馏分离,得产物65.4g,纯度82%,收率63.8%。。
比较例2
将苯酚47.6g(0.5mol)、丁醇150g,质量分数32%的氢氧化钠水溶液62.8g(0.5mol)混合搅拌,升温至140℃左右,带水反应1小时。反应体系中析出盐8g。将中和液稍微冷却至120℃,滴加氯乙酸甲酯53.8g(0.495mol),4小时滴加完毕,升温至146℃,保温反应2小时。将反应液冷却至100℃,加入150g水,调pH至7,静置分层,水层加入20g二甲苯萃取,有机层于真空蒸馏分离,得产物78.7g,纯度97%,收率90.9%。。
实施例2:
将苯酚94.5g(1mol)、甲苯200g、丁醇100g,质量分数48%的KOH水溶116.7g(1mol),混合搅拌,升温至120℃,带水反应4小时,将中和液稍微冷却至110℃,滴加氯乙酸甲酯108g(0.99mol),4小时滴加完毕,升温至120℃,保温反应2小时。冷却至80℃,加入150g水,调节反应液pH至6,静置分层,水层加入120g甲苯萃取后合并加入有机层,然后真空蒸馏分离,得产物160.8g,纯度99.2%,收率96.9%。
实施例3:
将苯酚47.6g(0.5mol)、氯苯80g、20g异辛醇,质量分数25%的K 2CO 3水溶液276g(0.5mol),混合搅拌,升温至135℃,带水反应3小时,将中和液稍微冷却至100℃,滴加氯乙酸甲酯53.8g(0.495mol),5小时滴加完毕,继续反应2小时。冷却至50℃,加入83.2g水,调节反应液pH至8,静置分层,水层加入16.6g氯苯萃取,合并加入有机层然后真空蒸馏分离,得产物77.1g,纯度99.3%,收率91.3%。
比较例3
将苯酚47.6g(0.5mol)、氯苯100g、质量分数25%的K 2CO 3水溶液276g(0.5mol),混合搅拌,升温至135℃,带水反应3小时,将中和液稍微冷却至100℃,滴加氯乙酸甲酯53.8g(0.495mol),5小时滴加完毕,继续反应2小时。冷却至50℃,加入83.2g水,调节反应液pH至8,静置分层,水层加入16.6g氯苯萃取,合并加入有机层然后真空蒸馏分离,得产物69g,纯度98.1%,收率80.5%。反应体系中析出盐19g。
实施例4:
将苯酚47.6g(0.5mol)、二甲苯316g、100g丁醇,质量分数32%的NaOH水溶液75g(0.6mol),混合搅拌,升温至145℃,带水反应5小时,将中和液稍微冷却至90℃,滴加氯乙酸甲酯59.7g(0.55mol),3小时滴加完毕,继续反应2小时后。冷却至60℃,加入150g水,静置分层,水层加入40g二甲苯萃取,合并加入有机层然后真空蒸馏分离,得产物80.2g,纯度99.1%,收率97.0%。
实施例5:
将苯酚47.6g(0.5mol)、甲苯632g、200g丁醇,质量分数20%的Na 2CO 3水溶液424g(0.8mol)混合搅拌,升温至96℃左右,带水反应3小时。往中和液直接滴加氯乙酸甲酯48.8g(0.45mol),1小时滴加完毕,升温至120℃,反应2小时后,将反应液冷却至30℃,加入150g水,碳酸钠调pH至7,静置分层,水层加入100g甲苯萃取,合并加入有机层然后真空蒸馏分离,得产物78.9g,纯度99.3%,收率95.1%。
由上述实施例及比较例可知,本发明提供的制备方法具有较高的收率和纯度。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (9)

  1. 一种苯氧羧酸酯的制备方法,包括以下步骤:
    A)酚类化合物和碱性氢氧化物或者和碳酸盐在有机溶剂中脱水成盐,得到酚类化合物的盐;
    B)成盐后,加入氯羧酸酯,进行缩合反应,得到苯氧羧酸酯;
    所述有机溶剂为甲苯、二甲苯、氯苯、苯酚、丁醇和异丁醇中的任意两种的混合物。
  2. 根据权利要求1所述的制备方法,其特征在于,所述有机溶剂由溶剂A和溶剂B组成,所述溶剂A选自甲苯、二甲苯和氯苯中的任意一种,所述溶剂B选自丁醇和异丁醇中的任意一种。
  3. 根据权利要求2所述的制备方法,其特征在于,所述溶剂A和溶剂B的质量比为(2~4):1。
  4. 根据权利要求1所述的制备方法,其特征在于,所述酚类化合物为苯酚或邻甲酚。
  5. 根据权利要求1所述的制备方法,其特征在于,所述碱性氢氧化物为氢氧化钠、氢氧化钾、氢氧化钙、氢氧化镁或氢氧化铝;所述碳酸盐为碳酸钠、碳酸钾或碳酸铯。
  6. 根据权利要求1所述的制备方法,其特征在于,所述酚类化合物与有机溶剂的质量比为1:(2~20)。
  7. 根据权利要求1所述的制备方法,其特征在于,所述脱水成盐的温度为80~170℃。
  8. 根据权利要求1所述的制备方法,其特征在于,所述氯羧酸酯的加入方式为滴加,所述滴加的温度为60~170℃,滴加的时间为1~5h。
  9. 根据权利要求1所述的制备方法,其特征在于,所述缩合反应的温度为60~170℃,时间为0.1~2h。
PCT/CN2019/076285 2018-03-19 2019-02-27 一种苯氧羧酸酯的制备方法 WO2019179290A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810226090.4 2018-03-19
CN201810226090.4A CN108947825A (zh) 2018-03-19 2018-03-19 一种苯氧羧酸酯的制备方法

Publications (1)

Publication Number Publication Date
WO2019179290A2 true WO2019179290A2 (zh) 2019-09-26

Family

ID=64495200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076285 WO2019179290A2 (zh) 2018-03-19 2019-02-27 一种苯氧羧酸酯的制备方法

Country Status (3)

Country Link
CN (1) CN108947825A (zh)
AR (1) AR115276A1 (zh)
WO (1) WO2019179290A2 (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106242971B (zh) * 2016-08-04 2019-06-25 山东省化工研究院 一种氯乙酸酯水相合成技术及其制备2,4-d酯的新方法

Also Published As

Publication number Publication date
AR115276A1 (es) 2020-12-16
CN108947825A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
CN100564362C (zh) 嘧菌酯及其类似物的制备方法
SE447651B (sv) Sett att framstella 2-/4-(p-klorbensoyl)fenoxi/-2-metyl-propionsyra samt dess isopropylester
WO2019179265A1 (zh) 一种苯氧羧酸类除草剂的制备方法
CN106892808A (zh) 一种2,4‑二氯苯氧乙酸的制备方法
JP2004527577A (ja) 4−フェニル酪酸の合成
WO2019179287A2 (zh) 一种2,4-二氯苯氧乙酸及其盐的制备方法
CN107056714A (zh) 取代氰基苯氧基‑嘧啶基氧基‑苯基丙烯酸酯衍生物的制备方法
RU2470919C2 (ru) Способ получения соединения толуидина
CN111807990B (zh) 一种用于制备肟菌酯的中间体及其合成方法
JPS61158947A (ja) 光学活性2−(4−ヒドロキシフエノキシ)プロピオン酸の製法
WO2019179290A2 (zh) 一种苯氧羧酸酯的制备方法
US8445715B2 (en) Method of synthesizing fenofibrate
CN106674281B (zh) 一种瑞舒伐他汀中间体化合物、制备方法及其用途
RU2684114C1 (ru) Способ получения 2,4-дихлорфеноксиуксусной кислоты
WO2014203270A2 (en) Process for the preparation of acrylate derivatives
CN111646879B (zh) 一种2甲4氯的制备方法
CN108503544A (zh) 2,4-二氯苯氧乙酸的制备方法
CN112174798B (zh) 一种沙库巴曲缬沙坦钠lcz696的合成方法
WO2019179286A2 (zh) 一种苯氧乙酸酯的制备方法
CN108947835A (zh) 一种苯氧乙酸酯的制备方法
JPH0149253B2 (zh)
WO2009054210A1 (en) Process for producing toluidine compound
JP2549173B2 (ja) 光学活性のdー2ー(4ーヒドロキシフェノキシ)プロピオン酸エステルの製造方法
CN110437063B (zh) 安立生坦关键中间体的制备方法
BE1007058A3 (fr) Un procede nouveau pour la preparation de l'acide 5-(2,5-dimethylphenoxy)-2,2-dimethyl pentanoique.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772556

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772556

Country of ref document: EP

Kind code of ref document: A2