WO2019178112A1 - Open architecture power length adjuster assembly for a vehicle seat and method of manufacturing the same - Google Patents

Open architecture power length adjuster assembly for a vehicle seat and method of manufacturing the same Download PDF

Info

Publication number
WO2019178112A1
WO2019178112A1 PCT/US2019/021870 US2019021870W WO2019178112A1 WO 2019178112 A1 WO2019178112 A1 WO 2019178112A1 US 2019021870 W US2019021870 W US 2019021870W WO 2019178112 A1 WO2019178112 A1 WO 2019178112A1
Authority
WO
WIPO (PCT)
Prior art keywords
worm
adjuster assembly
worm gear
gear
housing
Prior art date
Application number
PCT/US2019/021870
Other languages
English (en)
French (fr)
Inventor
Mircea Napau
Doina NAPAU
Ileana Dacia Napau
Ioan Napau
Dean Lenane
Matthew ESSIAN
Antal Teer
Sapan Poptani
Radu Calin Napau-Stoica
Original Assignee
Fisher & Company, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fisher & Company, Incorporated filed Critical Fisher & Company, Incorporated
Priority to KR1020197026939A priority Critical patent/KR102307158B1/ko
Priority to CN201980001659.XA priority patent/CN110475691B/zh
Priority to DE112019000026.8T priority patent/DE112019000026B4/de
Publication of WO2019178112A1 publication Critical patent/WO2019178112A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/0224Non-manual adjustments, e.g. with electrical operation
    • B60N2/02246Electric motors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/04Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
    • B60N2/06Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable slidable
    • B60N2/067Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable slidable by linear actuators, e.g. linear screw mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/0224Non-manual adjustments, e.g. with electrical operation
    • B60N2/02246Electric motors therefor
    • B60N2/02253Electric motors therefor characterised by the transmission between the electric motor and the seat or seat parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/04Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
    • B60N2/06Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable slidable
    • B60N2/07Slide construction
    • B60N2/0702Slide construction characterised by its cross-section
    • B60N2/0705Slide construction characterised by its cross-section omega-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/04Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
    • B60N2/06Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable slidable
    • B60N2/07Slide construction
    • B60N2/0702Slide construction characterised by its cross-section
    • B60N2/0715C or U-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/18Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes the members having helical, herringbone, or like teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/22Toothed members; Worms for transmissions with crossing shafts, especially worms, worm-gears

Definitions

  • the present disclosure relates generally to a seat track assembly and more particularly to a power seat length adjuster assembly having an open architecture, an improved gear drive, and spindle drive actuation for adjusting a longitudinal position of a vehicle seat, and to a method of manufacturing a power seat length adjuster assembly.
  • Vehicles such as automobiles, for example, typically include at least one seat assembly that is movable in one or more directions (e.g., fore-aft, up-down, angular orientation, etc.) relative to a portion (e.g., a floor pan) of the vehicle in order to accommodate occupants of different size and height as well as to provide a comfortable seating position to suit the occupant's preference.
  • seat assemblies often include power operated seat length adjuster assemblies.
  • a power operated seat length adjuster assembly is actuated by an occupant-controlled switch and includes a bi-directional electric motor, mounted centrally or intermediately between the vehicle seat pair of track assemblies.
  • the electric motor operably rotates two flex drive shafts extending outwardly from two gearbox blocks that are fixedly mounted inside of each upper or inner track assemblies.
  • Each gearbox block includes a worm- worm gear or a worm-helical gear drive assembly that are rotationally driven through the flex drive shaft.
  • Each spindle drive assembly includes a rotatable spindle nut that threadingly receives a lead screw extending longitudinally along and fixed to the lower or outer track assembly.
  • the electric motor rotational movement is orthogonally offset to the linear fore and aft movement of the upper tracks relative to the lower tracks, along spindle screw axes.
  • the vehicle seat is attached to a frame supported by the pair of upper tracks, which are disposed parallel to one another, while the pair of lower tracks are fastened to the vehicle chassis.
  • two drive shafts, gear boxes, lead screws and drive nuts are employed in a power length adjuster drive assembly, with one set for each seat track assembly, and both are driven by only one bi-directional electric motor.
  • a seat adjuster assembly having a housing, a worm, and a worm gear.
  • the worm is disposed within the housing and is rotatable about a first axis.
  • the worm has a helical thread.
  • the worm gear is also disposed within the housing and is rotatable about a second axis.
  • the worm gear is meshingly-engaged with a pitch surface of the helical thread of the worm.
  • a spindle screw extends through the housing and the worm gear along the second axis. The spindle screw is meshingly-engaged with the worm gear.
  • the pitch surface of the helical thread of the worm is longitudinally crowned such that the pitch surface has an arcuate profile.
  • the longitudinal crowning of the helical thread of the worm localizes the theoretical point contact in a central region of each tooth of the worm gear, thus avoiding edge contact between the helical thread and worm gear teeth flanks.
  • Longitudinal crowning of the worm may also provide a parabolic function of negative transmission errors (worm gear flanks lags with respect to the helical thread) that is able to absorb the linear functions of transmission errors and reduce vibrations.
  • the worm gear which is configured to meshingly-engage the worm, may be manufactured from steel by a radial infeed hobbing process, using an oversized hob.
  • the oversized hob may increase the radius of curvature of each worm gear tooth, causing a contact location of each worm gear tooth to be concentrated in the center of the worm gear tooth.
  • the hobbing process of the worm gear teeth, using an oversized hob allows for a theoretical point contact between the helical thread and the worm gear tooth flank, instead of a line contact.
  • the point contact location may reduce the sensitivity of the worm and worm gear to center distance variation as well as to any misalignment errors during assembly.
  • using an oversized hob may allow for an increased number of flutes of the hob which considerably improves the quality of the cut surface of the worm gear tooth flank.
  • the helical thread of the worm may be double-crowned along the pitch surface.
  • the pitch surface of the helical thread of the worm is longitudinally crowned such that the pitch surface has an arcuate profile moving from a proximal end of the worm to a distal end of the worm.
  • the pitch surface of the helical thread of the worm also has a tooth profile, which extends in an angular direction between a top land and a bottom land of the helical thread.
  • the tooth profile is crowned outwardly along a convex curve. This arrangement further reduces contact between the pitch surface of the helical thread of the worm and the gear teeth of the worm gear to a theoretical point contact.
  • the present disclosure provides a method of manufacturing a gear drive for a seat adjuster assembly.
  • the method includes the step of applying a cutting process to a worm gear blank to cut gear teeth into the worm gear blank and form a single-enveloping worm gear.
  • the method also includes the step of forming a worm with a helical thread that includes a pitch surface that is configured to mesh with the gear teeth of the single-enveloping worm gear.
  • a longitudinal crown is created on the pitch surface of the helical thread of the worm such that the pitch surface has an arcuate profile moving from a proximal end of the worm to a distal end of the worm.
  • a crowned tooth profile is created on the helical thread of the worm that extends in an angular direction between a top land and a bottom land of the helical thread.
  • the crowned tooth profile bows outwardly along a convex curve.
  • the step of forming the worm can be performed using an injection molding process.
  • the step of applying a cutting process to the worm gear blank can include using an oversized hob to cut the gear teeth into the worm gear blank.
  • FIG. 1 is a partial perspective view of a vehicle seat assembly having a pair of seat track assemblies, including a power seat length adjuster assembly in accordance with the principles of the present disclosure
  • FIG. 2 is a partial perspective view of a seat track assembly, including a power seat length adjuster assembly in accordance with the principles of the present disclosure, a portion of the seat track assembly being removed for clarity;
  • FIG. 3 is an exploded view of the seat track assembly illustrated in FIG. 2;
  • FIG. 4 is a partial perspective view of a power seat length adjuster assembly, including an orthogonal gear drive subassembly having a cylindrical worm in mesh with a mating helical gear, and a spindle screw and spindle nut subassembly, both mounted in a housing secured in a compressible relation to a seat upper track through a U-shaped support member in accordance with the principles of the present disclosure, a portion of the housing and the spindle screw being removed for clarity;
  • FIG. 5 is an exploded view of the power seat length adjuster assembly illustrated in FIG. 4;
  • FIG. 6 is a partial perspective view of a power seat length adjuster assembly, including an orthogonal gear drive subassembly having of a longitudinally crowned cylindrical worm in mesh with a mating single-enveloping worm gear, and a spindle screw and spindle nut subassembly, both mounted in a housing secured in a compressible relation to a seat upper track through a U-shaped support member, in accordance with the principles of the present disclosure, a portion of the housing and the spindle screw being removed for clarity;
  • FIG. 7 is an exploded view of the power seat length adjuster assembly illustrated in FIG. 6;
  • FIG. 8 is a perspective view of a gear drive subassembly including a longitudinally crowned worm in mesh with a mating single-enveloping worm gear manufactured by an oversized hob, in accordance with the principles of the present disclosure
  • FIG. 9 A is a side view of the longitudinally crowned worm, manufactured in accordance with the principles of the present disclosure, illustrated in FIG. 8;
  • FIG. 9B is a side section view showing the tooth profile of a double-crowned worm
  • FIG. 10 is a partial perspective view of a single-enveloping worm gear hobbing process on a conventional hobbing machine using an oversized hob and a radial infeed, in accordance with the principles of the present disclosure
  • FIG. 11 is a top view of a single-enveloping worm gear having its teeth cut through a hobbing process on a conventional hobbing machine using an oversized hob and a radial infeed, in accordance with the principles of the present disclosure
  • FIG. 12 is a partial section view of the single-enveloping worm gear illustrated in FIG. 11, having its teeth cut through a hobbing process on a conventional hobbing machine using an oversized hob and a radial infeed, in accordance with the principles of the present disclosure;
  • FIG. 13A is a side view of an orthogonal gear drive subassembly mounted at the functional center distance CD for a longitudinally crowned worm and its mating single- enveloping worm gear manufactured by an oversized hob, in accordance with the principles of the present disclosure;
  • FIG. 13B is a side view of an orthogonal gear drive subassembly mounted at the functional center distance CD for a longitudinally crowned worm and its mating helical gear drive, in accordance with the principles of the present disclosure
  • FIG. 13C is a side view of an orthogonal gear drive subassembly mounted at the functional center distance CD for a double-crowned worm and its mating single- enveloping worm gear manufactured by an oversized hob, in accordance with the principles of the present disclosure;
  • FIG. 13D is a side view of an orthogonal gear drive subassembly mounted at the functional center distance CD for a double-crowned worm and its mating helical gear drive, in accordance with the principles of the present disclosure
  • FIG. 14A is a perspective view of instantaneous bearing contact patterns between the functional longitudinally crowned worm thread surface in mesh with a single- enveloping worm gear tooth surface having the teeth cut by a hob with a pitch diameter identical to the pitch diameter of the functional worm;
  • FIG. 14B is a perspective view of instantaneous bearing contact patterns between the functional longitudinally crowned worm thread surface in mesh with a helical gear drive, in accordance with the principles of the present disclosure
  • FIG. 14C is a perspective view of instantaneous bearing contact patterns between the double-crowned worm thread surface in mesh with a single-enveloping worm gear tooth surface having the teeth cut by an oversized hob, in accordance with the principles of the present disclosure
  • FIG. 14D is a perspective view of instantaneous bearing contact patterns between the double-crowned worm thread surface in mesh with a helical gear drive, in accordance with the principles of the present disclosure
  • FIG. 15 is a perspective partial view of a power seat length adjuster assembly, including an orthogonal gear drive subassembly having a longitudinally crowned cylindrical worm in mesh with a mating single-enveloping worm gear and, a spindle screw and spindle nut subassembly, both mounted in a housing secured in a compressible relation to a seat upper track through a support subassembly, partially received within the elongate slots of the top wall of the upper track and orbitally riveted or laser welded, in accordance with the principles of the present disclosure, a portion of the housing and the spindle screw being removed for clarity;
  • FIG. 16 is an exploded view of the power seat length adjuster assembly illustrated in FIG. 15;
  • FIG. 17 is a partial perspective view of a power seat length adjuster assembly, including an orthogonal gear drive subassembly having a longitudinally crowned cylindrical worm in mesh with a mating single-enveloping worm gear and, a spindle screw and spindle nut subassembly, both mounted in a housing secured in a compressible relation to a seat upper track through a support subassembly, partially received within the elongate closed slots of both side walls of the upper track and laser welded, in accordance with the principles of the present disclosure, a portion of the housing and the spindle screw being removed for clarity;
  • FIG. 18 is an exploded view of the power seat length adjuster assembly illustrated in FIG. 17.
  • FIG. 19 is an exploded view of an open architecture power seat length adjuster assembly, constructed in accordance with the principles of the present disclosure, where worm-worm gear drives for achieving nine different gear ratios are shown.
  • Example configurations will now be described more fully with reference to the accompanying drawings.
  • Example configurations are provided so that this disclosure will be thorough, and will fully convey the scope of the disclosure to those of ordinary skill in the art. Specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of configurations of the present disclosure. It will be apparent to those of ordinary skill in the art that specific details need not be employed, that example configurations may be embodied in many different forms, and that the specific details and the example configurations should not be construed to limit the scope of the disclosure.
  • first, second, third, etc. may be used herein to describe vanous embodiments, elements, components, regions, layers and/or sections. These elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example configurations.
  • a seat assembly 10 is provided and may include a seatback 12, a seat bottom 14, and one or more seat track assemblies 16.
  • the seat assembly 10 is adjustably mounted to a vehicle (not shown), such as an automobile.
  • a reclining mechanism (not shown) may pivotably move the seatback 12 relative to the seat bottom 14, and a pair of seat track assemblies 16 may translatably move the seat bottom 14 to a certain position relative to the vehicle floor pan (not shown).
  • a user may selectively change the orientation of the seatback 12 relative to the seat bottom 14 using the reclining mechanism (not shown), and the position of the seat assembly 10 relative to the vehicle floor pan using the pair of seat track assemblies 16.
  • each seat track assembly 16 may include a lower track 20, an upper track 22, and an adjustment assembly 24.
  • the lower track 20 may be fixedly attached to a portion of the vehicle using one or more mechanical fasteners 26 (e.g., bolts, screws, rivets, etc.), or any other suitable fastening technique, and may define an axis Al .
  • the upper track 22 may be fixedly attached to a portion of the seat bottom 14 using one or more mechanical fasteners 28 (e.g., bolts, screws, rivets, etc.), or any other suitable fastening technique.
  • the lower track 20 In an assembled orientation (e.g., FIGS. I and 2), the lower track 20 may support the upper track 22 for translation along the axis Al, such that the upper track 22 translates relative to the vehicle.
  • the lower track 20 may slidably support the upper track 22 for translation along the axis Al .
  • the lower track 20 may include a lower wall 30 and a pair of sidewalls 32 supported by, and extending transversely from, the lower wall 30.
  • the pair of sidewalls 32 may be integrally formed with, and extend perpendicularly from, opposed sides of the lower wall 30, such that the lower wall 30 and the sidewalls 32 cooperate to define a channel 34 extending in a direction substantially parallel to the axis Al .
  • the sidewalls 32 may each define a U-shaped profile extending in a direction substantially parallel to the axis Al, such that each sidewall 32 defines a channel 36 extending in a direction substantially parallel to the axis Al .
  • the upper track 22 may include an upper wall 38 and a pair of sidewalls 40 supported by, and extending transversely from, the upper wall 38.
  • the pair of sidewalls 40 may be integrally formed with, and extend perpendicularly from, opposed sides of the upper wall 38, such that the upper wall 38 and the sidewalls 40 cooperate to define a channel 42 extending in a direction substantially parallel to the axis Al .
  • the sidewalls 40 may each define a U-shaped profile extending in a direction substantially parallel to the axis Al, such that each sidewall 40 defines a channel 44 extending in a direction substantially parallel to the axis Al .
  • the upper wall 38 may include a first pair of apertures 46 (e.g., elongate slots), and the sidewalls 40 may each include a second pair of open apertures 48 (e.g., elongate slots).
  • Each of the first pair of apertures 46 and each of the second pairs of open apertures 48 may be in fluid communication with the channel 42.
  • each of the first pair of apertures 46 and each of the second pairs of open apertures 48 may define a through-hole extending through a thickness T (FIG. 2) of the upper wall 38 and the sidewalls 40, respectively.
  • Centerlines of the first pair of apertures 46 may be separated from one another by a first distance along the axis Al, and the second pair of apertures 48 may be separated from one another by a second distance along the axis Al .
  • the first distance is substantially equal to the second distance, such that one aperture of the first pair of apertures 46 is substantially aligned with one aperture of each of the second pair of open apertures 48, and another aperture of the first pair of apertures 46 is substantially aligned with another open aperture of each of the second pair of open apertures 48.
  • At least one of the second pair of open apertures 48 may be an elongate slot 48 defining a height Hl extending in a direction transverse to the axis Al .
  • a portion of the adjustment assembly 24 may be disposed within the first and/or second pairs of apertures 46 in order to secure the adjustment assembly 24 relative to the upper track 20.
  • the upper track 22 translates relative to the lower track 20 to permit selective movement of the seatback 12 and the seat bottom 14 relative to the vehicle.
  • a portion of each sidewall 40 of the upper track 22 may be slidably disposed within one of the channels 36 of the lower track 20, and a portion of each sidewall 32 of the lower track 20 may be slidably disposed within one of the channels 44 of the upper track 22.
  • Movement of the upper track 22 relative to the lower track 20 may be facilitated by a carriage assembly 50, including two pairs of ball-cage assemblies 52, which may be: (i) secured to the upper track 22 and/or the adjustment assembly 24, and (ii) at least partially received within the channel 34 of the lower track 20.
  • the adjustment assembly 24 may include a driver assembly 54, a spindle screw 56, and a length adjuster assembly 58.
  • a portion of the adjustment assembly 24 may be secured relative to the vehicle and another portion of the adjustment assembly 24 may be secured relative to the upper track 22 to facilitate movement of the seatback 12 and the seat bottom 14 relative to the vehicle.
  • the spindle screw 56 may be secured to the lower track 20 and/or to the vehicle floor, while the length adjuster assembly 58 may be secured to the upper track 22. Accordingly, as will be explained in more detail below, movement of the length adjuster assembly 58 relative to the spindle screw 56 causes the fore and aft movement of the upper track 22 and the seat bottom 14 relative to the lower track 20 and ultimately to the vehicle floor.
  • the driver assembly 54 may include an electric bi-directional motor and two flex drive shafts that transfer the speed and torque from the electric motor to the length adjuster assembly 58 to cause the movement of the length adjuster assembly 58 along the spindle screw 56 length and, thus, the fore-and-aft movement of the seat assembly 10, relative to the vehicle floor.
  • the spindle screw 56 may include a front end 62 and a rear end 64.
  • the spindle screw 56 may define a substantially cylindrical rod defining an axis A2 extending from the front end 62 to the rear end 64, and having an outer thread 66 extending along and about the axis A2 from the front end 62 to the rear end 64.
  • the spindle screw 56 may be disposed within one or both of the channel 34 of the lower track 20 and the channel 42 of the upper track 22 such that the axis A2 is substantially parallel to the axis Al .
  • the front end 62 and rear end 64 may be secured relative to the lower track 20 and/or to the vehicle floor through the studs 26 rigidly mounted on the lower track 20.
  • the front end 62 may be supported by a front spindle bracket 68 that is secured to the lower track 20 and/or to the vehicle floor
  • the rear end 64 may be supported by a rear spindle bracket 70 that is also secured to the lower track 20 and/or to the vehicle floor.
  • the power seat length adjuster assembly 58 may include a support member 74, a two-parts split housing assembly 76, a pair of thrust washers 77 each having an axially protruding tab 79, a pair of bearing bushings 78, a cylindrical worm 80 having helical outer threads 150 in mesh with external teeth 160 of a helical gear 82, a spindle nut integrally formed with the helical gear body 82 and having internal threads 158, and the spindle screw 56 with external thread 66 engaging the internal threads 158 of the spindle nut.
  • the support member 74 having a U- shape may include a base 84, a proximal arm 86, a distal arm 88, a proximal leg 90, and a distal leg 92.
  • the proximal and distal arms 86, 88 may be supported by, and extend transversely from, the base 84.
  • the proximal and distal arms 86, 88 may be integrally formed with, and extend perpendicularly from, opposed ends of the base 84, such that the base 84 and the proximal and distal arms 86, 88 cooperate to define a channel 94.
  • the proximal arm 86 may include a proximal aperture 96, a lateral ear 98, and a medial ear 100.
  • the distal arm 88 may include a distal aperture 102, a lateral ear 104, and a medial ear 106.
  • the proximal and distal apertures 96, 102 may be aligned with the axis Al .
  • the lateral and medial ears 98, 100 may be supported by, and extend transversely from, the proximal arm 86.
  • the lateral and medial ears 98, 100 may be integrally formed with, and extend perpendicularly from, opposed sides of the proximal arm 86 by a distance XI (FIG. 4).
  • the distance XI may be substantially equal to the thickness T of the upper wall 38 and the sidewalls 40, respectively, of the upper track 22.
  • the proximal and distal legs 90, 92 may be supported by, and extend transversely from, the proximal and distal arms 86, 88, respectively.
  • the proximal and distal legs 90, 92 may be integrally formed with, and extend perpendicularly from, the proximal and distal arms 86, 88, respectively, such that the proximal and distal legs 90, 92 are substantially parallel to the base 84.
  • the proximal leg 90 may include a proximal retaining feature 108
  • the distal leg 92 may include a distal retaining feature 110.
  • the proximal retaining feature 108 may define a proximal aperture 108
  • the distal retaining feature 1 10 may define a distal aperture 110.
  • the housing assembly 76 may include a lateral housing cover 112 and a medial housing cover 114 made of zinc die-casting material, and two mirrored cover shells, including a proximal cover shell 116 and a distal cover shell 118.
  • the lateral cover 112 may be substantially similar to the medial cover 114, and the proximal cover shell 116 may be substantially similar to the distal cover shell 118. Accordingly, references herein to the lateral cover 112 and the proximal cover shell 116 will be understood to apply equally to the medial cover 114 and the distal cover shell 116, respectively.
  • the lateral cover 112 may include an aperture 120, a longitudinal recess 122, and an upper recess 124.
  • the longitudinal recess 122 may extend from a proximal end 126 of the lateral cover 112 to a distal end 128 of the lateral cover 112.
  • the lateral cover 112 may be mated to the medial cover 114 such that (i) the aperture 120 of the lateral cover 112 is aligned with the aperture 120 of the medial cover 114, (ii) the recess 122 of the lateral cover 112 is aligned with the recess 122 of the medial cover 114 to cooperate to define a through-hole 130 (FIG. 4), and (iii) the recess 124 of the lateral cover 1 12 is aligned with the recess 124 of the medial cover 114 to cooperate to define an aperture 132 (FIG. 2) in communication with the through-hole 130.
  • the proximal cover 116 may include a recess 134 and an aperture 136 in communication with the recess 134, and may be formed from a resilient material having noise and vibration dampening characteristics.
  • the proximal cover 116 may be formed from a polymer such as rubber, for example.
  • the proximal end 126 of the proximal and distal covers 116, 118 may be disposed within the recess 134 of the proximal cover 116, and the distal end 128 of the proximal and distal covers 116, 118 may be disposed within the recess 134 of the distal cover 118, such that the aperture 136 of the proximal cover 116 is aligned with the aperture 136 of the distal cover 1 18.
  • one or more fasteners 137 e.g., bolts or screws
  • the housing assembly 76 may be coupled to the support member 74.
  • the housing assembly 76 may be disposed in a compressible secured relation within the channel 94 of the support member 74.
  • the use of rubber cover shells 116 and 118, in compression against U-shaped bracket arms 86 and 88, will increase the damping capability of the power seat length adjuster assembly 58 in the process of vibration transmission to the seat structure.
  • the bearing bushings 78 may include through-holes 140 that receive the outer bearing surfaces of helical gear 82, an annular flange 142 extending about the through-hole 140, as well as protruding features 143 for securing the bearing bushing against rotation while assembled within the housing assembly 76.
  • each bearing bushing 78 will support both spindle nut bearing projections 145 for rotation relative to the housing assembly 76 within the through-hole 130.
  • thrust washers 77 are inserted over the spindle nut bearing projections 145 and are placed against both end faces of the helical driven gear 82.
  • anti-rotation features or tabs 79 are disposed with, and engage, the helical driven gear teeth spaces.
  • the thrust washers 77 are assembled between the annular flanges 142 and helical gear width sides such that their axial projection tabs 79 engage between two external teeth 160 of the helical gear 82. Thus, in addition to absorbing axial loads, the thrust washers 77 will not wear the bearing bushing flanges 142 during operation.
  • the cylindrical worm 80 may define an axis of rotation A3 extending from a proximal end 146 to a distal end 148, and may include one or more outer helical threads 150 disposed about the axis of rotation A3 between the proximal and distal ends 146, 148.
  • the worm 80 manufactured by an injection molding process from a plastic material such as PEEK 450G may be rotatably supported by the housing assembly 76.
  • the proximal end 146 of the worm 80 may be rotatably disposed within the aperture 120 of the lateral cover 112, and the distal end 148 of the worm 80 may be rotatably disposed within the aperture 120 of the medial cover 114, such that at least a portion of the helical thread 150 is disposed within, and/or visible through, the aperture 132 of the housing 76.
  • the axis of rotation A3 of the worm 80 may extend in a direction transverse (e.g., perpendicular) to the axis A2 of the spindle screw 56.
  • the helical gear 82 may define an axis of rotation A4 extending from a proximal end 154 to a distal end 156, and may include an inner thread 158 and a plurality of outer gear teeth 160.
  • the inner thread 158 and the gear teeth 160 may be disposed about the axis of rotation A4.
  • the gear 82 may be disposed within the through-hole 130 of the housing assembly 76, such that the inner thread 158 is threaded to the outer thread 66 of the spindle screw 56, and the helical gear teeth 160 are meshed with the helical threads surfaces 149 of the cylindrical worm 80.
  • the proximal end 154 bearing surface 143 may be disposed within the through-hole 140 of one of the bearing bushing 78, and the distal end 156 outer bearing surface 143 may be disposed within the through-hole 140 of another bearing bushing 78, such that the gear 82 is supported for rotation within the housing assembly 76.
  • the axis of rotation A4 may be aligned with (e.g., parallel to) the axis A2 of the spindle screw 56.
  • the power length adjuster assembly 58 may be disposed within the channel 34 of the lower track 20 and/or the channel 42 of the upper track 22.
  • the power length adjuster assembly 58 is supported by the upper track 22.
  • the support member 74 may engage the upper track 22.
  • the lateral ear 98 of the proximal arm 86 may be disposed within one of the open apertures 48 of the sidewall 40 of the upper track 22, and the lateral ear 104 of the distal arm 88 may be disposed within another of the open apertures 48 of the sidewall 40 of the upper track 22.
  • the medial ear 100 of the proximal arm 86 may be disposed within one of the open apertures 48 of the sidewall 40 of the upper track 22, and the medial ear 106 of the distal arm 88 may be disposed within another of the open apertures 48 of the sidewall 40 of the upper track 22.
  • the lateral ears 98, 104 and the medial ears 100, 106 may be disposed within the open apertures 48 in a clearance-fit configuration such that opposed sides of the proximal and distal arms 86, 88 abut the upper track 22.
  • One of the apertures 46 of the upper wall 38 of the upper track 22 may be aligned with the proximal aperture 108 of the support member 74, and another of the apertures 46 of the upper wall 38 of the upper track 22 may be aligned with the distal aperture 1 10 of the support member 74.
  • one or more fasteners 162 e.g., a bolt, screw, pin, etc.
  • the power seat length adjuster assembly 58 provides a limitation of axial displacement of the housing assembly 76 and, further, balancing the axial loads, when subjected to a force of a predetermined magnitude.
  • FIGS. 6-8 another power seat length adjuster assembly 58a is illustrated.
  • the structure and function of the power seat length adjuster assembly 58a may be substantially similar to that of the power seat length adjuster assembly 58, apart from any exceptions described below and/or otherwise shown in the figures. Accordingly, the structure and/or function of similar features will not be described again in detail.
  • like reference numerals are used hereinafter and in the drawings to identify like features, while like reference numerals containing letter extensions (i.e., "a") are used to identify those features that have been modified.
  • the power seat length adjuster assembly 58a may include a longitudinally crowned worm 80a and a single-enveloping worm gear 82a.
  • the single-enveloping worm gear 82a includes a plurality of outer gear teeth l60a, defined at least in part by a corresponding plurality of recesses 164, meshed with helical threads l50a of the longitudinally crowned worm 80a.
  • the worm gear teeth l60a may collectively define a proximal annular surface 166 and/or a distal annular surface 168 opposite the proximal annular surface 166.
  • the proximal and/or distal annular surfaces 166, 168 extend radially and continuously about the axis of rotation A4.
  • the worm gear 82a may be disposed within the through-hole 130 of the housing assembly 76, such that the annular surfaces 166, 168 engage the housing 76 through the bearing bushings 78 that are not rotating inside the apertures of the lateral and medial covers 112, 1 14.
  • the power seat length adjuster assembly 58a includes an orthogonal crossed-axis gear drive including the worm 80a with its threads l50a extending along, and about, the axis of rotation A3, and meshed with the teeth l60a of the single-enveloping worm gear 82a, having its axis of rotation A4.
  • Each recess 164 is defined by a single, continuous crescent surface having a radially extending dimension Z, an axially extending dimension Y, and a circumferentially extending dimension C.
  • the teeth l60a height is defined by maximum outer and minimum root diameters Da2 and Df2, respectively.
  • the teeth l60a of the single-enveloping worm gear 82a are generated using an oversized hob such that the instant theoretical contact with the worm threads 80a is a point contact.
  • a gear drive with such a contact exhibits less sensitivity to manufacturing and assembly errors and, thus, reduced vibrations and noise.
  • a longitudinal crowning is applied to the pitch surfaces l49a.
  • the side end faces of the space between the teeth l60a of the single-enveloping worm gear 82a defines uninterrupted, continuous annular surface 166 and 168 at both ends, thus eliminating the need for thrust washers 77 in the power seat length adjuster assembly 58a, and further eliminating the need for a deburring operation in a process of manufacturing the single- enveloping worm gear 82a.
  • undesirable noise specific for changing the direction of spindle nut axial travel along the spindle screw axis can be also eliminated.
  • the robustness of the teeth l60a under bending loads is improved and the mass and the cost of the power seat length adjuster assembly 58a is reduced.
  • the pitch surface l49a of longitudinally crowned worm 80a deviates from a cylindrical shape, having a slightly barrel shape with an arcuate profile 152 that is parabolic and symmetric relative to the centerline 153 of the worm thread length.
  • the pitch surface l49a is similar to the pitch surface of the oversized hob 170 used in manufacturing the single-enveloping worm gear 82a.
  • the maximum amount of longitudinal crowning Slmax is on the order of a couple of tens of micrometers (i.e., 10-30 micrometers), enough to provide the necessary shift of bearing contact pattern on the mating worm gear tooth surface towards its center in the longitudinal dimension and, thus, avoiding an unwanted edge contact and improving the lubrication mechanism under the load.
  • the bearing contact is localized in the central region of worm gear tooth relative to the its side faces, thus avoiding during operation the undesirable edge contact between the helical thread and worm gear teeth flanks.
  • the pitch surface l49a of the helical thread of the worm 80a is longitudinally crowned such that the pitch surface l49a has an arcuate profile 152 moving from the proximal end 146 of the worm 80a to the distal end 148 of the worm 80a.
  • the diameter dl at mid-point M of the worm 80a is larger than the diameter d2 of the helical thread at the proximal and distal ends 146, 148 of the worm 80a.
  • the worm 80a may be manufactured from a plastic material, such as PEEK 450G, by an injection molding process that allows also for its pitch surfaces l49a to be longitudinally crowned through the hollow mold surface shape. Longitudinal crowning of the worm 80a also provides a parabolic function of negative transmission errors, such that worm gear flanks lag with respect to the worm threads l 50a, thus being able to absorb the linear functions of transmission errors and reduce the vibrations in operation.
  • a plastic material such as PEEK 450G
  • the tooth profile 155 of the worm 80b can also be crowned, creating a worm gear drive assembly that exhibits very low transmission errors and very low levels of noise and vibrations during operati on.
  • the result of this is a double-crowning of pitch surfaces 149b of the worm 80b.
  • the teeth 160b of the single-enveloping worm gear 82b generate a theoretical point contact with the helical thread of the worm 80b.
  • a gear drive with such a contact exhibits less sensitivity to manufacturing and assembly errors, and thus, reduced vibrations and noise.
  • crowning in the longitudinal direction and crowning of the tooth profile 155 is applied to the pitch surfaces l49b.
  • the longitudinal crowning of the worm 80b provides a parabolic function of negative transmission errors able to absorb the linear functions of transmission errors, while the tooth profile crowning and use of the oversized hob 170 in the process of cutting the worm gear teeth work together to provide the central localization of the contact pattern relative to the worm gear tooth width and height, respectively.
  • the radial infeed method using the oversized hob 170 will increase the radius of curvature of worm gear tooth, causing the tooth contact to be localized in the center region of the worm gear teeth.
  • the pitch surface l49b of the helical thread of the worm 80b has a parabolic tooth profile 155 that extends in an angular direction AD between a top land 157 and a bottom land 159.
  • the angular direction AD lies at an angle and therefore has a radial component and a longitudinal component.
  • the parabolic tooth profile 155 is crowned (i.e., bows) outwardly along a convex curve 161, which departs from straight line 163 representing the tooth profile of a traditional worm.
  • the maximum amount of crowning in the angular (height) dimension Shmax is on the order of a couple of micrometers, enough to provide the necessary shift of bearing contact pattern on the mating worm gear tooth surface towards its center in the height dimension and, thus, avoiding an unwanted edge contact and improving the lubrication mechanism under the load.
  • the parabolic tooth profile 155 curves in on either side of pitch point 165 to the top and bottom lands 157, 159, respectively. Although other configurations are possible, in the illustrated embodiment, the pitch point 165 is positioned half way between the top and bottom lands 157, 159.
  • the single-enveloping worm gear 82a may be economically and quickly manufactured from a metallic material (e.g., steel) utilizing an oversized hob 170, by a cutting process on a conventional hobbing machine-tool 172, using a radial infeed Sr.
  • a metallic material e.g., steel
  • the recesses 164 of the single-enveloping gear 82a having internal thread 158 and its outer diameter Da2 may be formed by radially feeding an oversized hob 170 of an outer diameter dah into the worm gear blank 174, in a direction 176 perpendicular to the axis of rotation A4.
  • the hob travel to the worm gear tooth full depth (e.g.
  • both the hob 170 and the worm gear blank 174 are rotating about their axes of rotation Ah and A4, respectively, with angular speeds nh and nwg, respectively.
  • Using an oversized hob with its pitch diameter greater that the pitch diameter of the functional worm allows for an increased radius of curvature of the worm gear tooth, causing the tooth bearing contact to be concentrated in the center region of the worm gear teeth surface.
  • the process of the worm gear tooth hobbing using an oversized hob creates worm profile crowning with respect to the hob, allowing for a point contact between the thread l 50a of the worm 80a and flank of the teeth l60a of the worm gear 82a, instead of a line contact.
  • the direction of hob axis Ah is inclined at an angle A relative to the direction of worm axis A3, in a plane parallel to the plane tangent to both worm gear 82a and oversized hob 170 pitch cylinders, due to the difference between the pitch diameters, and implicitly outer diameters dah and dal of hob 170 and functional worm 80a, respectively.
  • the hob 170 is set up in the proper positions 178 or 180 such that the hob axis AhL or AhR is inclined at an angle AL or AR relative to the projection 182 of the worm axis A3 passing through a point 184.
  • This point 184 is the intersection between the direction 176 of the worm gear width centerline and the direction 179 of hob width centerline.
  • the worm gear 82a of similar type as the worm 80a, is manufactured from steel by a radial infeed hobbing process, which eliminates completely the necessity of any axial feed, using the oversized hob 170.
  • This manufacturing process increases the radius of curvature of worm gear tooth, causing the tooth contact to be concentrated in the center of the worm gear teeth width.
  • the hobbing process of the worm gear tooth l60a using the oversized hob 170 also reduces the sensitivity of the gear drive assembly to center distance variation as well as to any misalignment errors, that cause vibrations in exploitation, wear, and noise during operation.
  • Using an oversized hob allows for a more robust tool design with a longer life expectancy and an increased quality of the worm gear cut teeth surfaces while a hob design with a greater number of flutes is possible.
  • the mesh efficiency of such a gear drive subassembly mounted at the functional center distance CD and illustrated in FIG. 13 A including the worm 80a having its threads l50a longitudinally crowned, and meshed with the teeth 160a of a single-enveloping worm gear 82a cut by an oversized hob, is estimated in the range of 65-70%.
  • FIG. 13B including the cylindrical worm 80 having its threads 150 meshed with the teeth 160 of mating helical gear drive 82, is estimated in the range of 60-65%.
  • FIG. 13C Another example of a gear drive subassembly mounted is illustrated in FIG. 13C, including the worm 80b with threads l50b that are double-crowned along the pitch surface l49b. The double-crowned threads l50b of the worm 80b mesh with the teeth l60b of a single-enveloping worm gear 82b cut by an oversized hob. The mesh efficiency of this arrangement is estimated in the range of 70-75%.
  • FIG. 13C Another example of a gear drive subassembly mounted is illustrated in FIG.
  • double-crowning is applied to the pitch surface l49b of the worm 80b, as described earlier.
  • double-crowning is applied to the pitch surface l49c of the worm 80c, as described earlier.
  • the gear drive subassemblies in FIGS 13B and 14B and FIGS 13D and 14D have a crossed-helical type gear drive configuration that consists of a cylindrical driving helical gear 82, 82c having a small number of teeth, e.g., a worm 80, 80c whose starts are engaged with the teeth of the cylindrical driven helical gear 82, 82c.
  • the use of such a configuration has the advantage of a theoretical point contact between the worm starts flanks and helical gear teeth flanks surfaces, e.g., their mesh is insensitive to any axial misalignment of the spindle nut caused by assembly, component tolerances, and wear of the individual components.
  • thrust washers 77 are placed against the both ends of the helical gear 82, 82c. In order to prevent these thrust washers 77 from sliding circumferentially they must have anti-rotation features 79 or tabs, which engage the helical gear teeth spaces. As additional required parts, they increase the fabrication and assembly expense for this type of gear drive subassembly. In addition, thrust washers 77 produce undesirable noises, especially when changing the direction of spindle nut axial travel along the spindle screw axis. When these thrust washers 77 are used, specifically, rattling and frictional noises are produced, caused by deviations in concentricity and shaft-center-distance tolerance variation. In addition, the axial play of the spindle nut within the housing is increased by the summation of individual tolerances. Additional teeth deburring operation is also required on both ends of the helical gear 82, 82c.
  • an orthogonal single- enveloping worm gear drive configuration can be used instead of a crossed-helical gear drive configuration to overcome the aforementioned disadvantages.
  • An orthogonal single-enveloping worm gear drive consists of a worm 80a, 80b and a mating worm gear 82a, 82b. This arrangement is capable of providing a high gear ratio, low noise, and a compact structure. According to DIN 3975 standard, worm gear drives fall into one of five main types: ZA, ZN, ZE (ZI) and ZK-type.
  • both the worm 80a, 80b and worm gear 82a, 82b components may be manufactured from steel or plastic material by a cutting or injection molding process, correspondingly.
  • worm 80b has the pitch surface l49b crowned in both, profile (angular) and longitudinal directions, in comparison with the hob thread surface used to manufacture the mating worm gear 82b. Due to worm thread profile crowning, the bearing contact is localized in the central region of worm gear tooth height, thus avoiding during operation the undesirable tip edge contact between the helical thread and worm gear teeth flanks.
  • FIGS. 15 and 16 another power seat length adjuster assembly 58b is illustrated.
  • the structure and function of the power seat length adjuster assembly 58b may be substantially similar to that of the power seat length adjuster assembly 58, apart from any exceptions described below and/or otherwise shown in the figures. Accordingly, the structure and/or function of similar features will not be described again in detail.
  • like reference numerals are used hereinafter and in the drawings to identify like features, while like reference numerals containing letter extensions (i.e., "b") are used to identify those features that have been modified.
  • the power seat length adjuster assembly 58b may include the longitudinally crowned worm 80a, the single-enveloping worm gear 82a, and a pair of support members 74b.
  • the support members 74b may each include the lateral ear 98, the medial ear 100, and a retaining feature l08b.
  • the retaining feature l08b may define an elongated pin portion l08b extending from each support member 74b.
  • one of the elongate apertures 46b of the upper wall 38 of the upper track 22 may be aligned with the pin portion l08b of a first of the support members 74b, and another of the elongate apertures 46b of the upper wall 38 of the upper track 22 may be aligned with the pin portion l08b of the second of the support members 74b.
  • the pin portions l08b may be disposed within the apertures 46b in a slide-fit configuration such that the support members 74b abut the upper track 22.
  • the elongated pin portion l08b is fastened to the upper wall 38 of the upper track 22 by an orbital riveting process or by a laser welding process as indicated in FIG. 15 by 200.
  • the support subassembly formed by members 74b allows for securing the housing 76 in a compressive relation to the upper track 22 and, ultimately, to the power seat length adjuster assembly 58b.
  • the power length adjuster assembly 58b may be disposed within the channel 34 of the lower track 20 and/or the channel 42 of the upper track 22.
  • the power length adjuster assembly 58b is supported by the upper track 22.
  • the support member 74b may engage the upper track 22.
  • the lateral ear 98 of the proximal arm 86 may be disposed within one of the open apertures 48 of the sidewall 40 of the upper track 22, and the lateral ear 104 of the distal arm 88 may be disposed within another of the open apertures 48 of the sidewall 40 of the upper track 22.
  • the medial ear 100 of the proximal arm 86 may be disposed within one of the open apertures 48 of the sidewall 40 of the upper track 22, and the medial ear 106 of the distal arm 88 may be disposed within another of the open apertures 48 of the sidewall 40 of the upper track 22.
  • the lateral ears 98, 104 and the medial ears 100, 106 may be disposed within the open apertures 48 in a clearance-fit configuration such that opposed sides of the proximal and distal arms 86, 88 abut the upper track 22.
  • the power seat length adjuster assembly 58b provides a limitation of axial displacement of the housing assembly 76, and further, balancing the axial loads when subjected to a force of a predetermined magnitude.
  • a method of assembling the power length adjuster assembly 58b to the upper track 22 may include, in this succession: (i) coupling the pair of support members 74b to the upper track 22, (ii) coupling the housing 76 in a compressive relation between the support members 74b in a friction-fit orientation, and (iii) coupling the lead screw 56 to the power length adjuster assembly 58b in a direction parallel to Al .
  • Coupling the housing 76, to the pair of support members 74b may include applying a force on the housing 76 with the pair of support members 74b in a direction extending substantially parallel to the axis Al .
  • FIGS. 17 and 18 another power seat length adjuster assembly 58c is illustrated.
  • the structure and function of the power seat length adjuster assembly 58c may be substantially similar to that of the power seat length adjuster assembly 58, apart from any exceptions described below and/or otherwise shown in the figures. Accordingly, the structure and/or function of similar features will not be described again in detail.
  • like reference numerals are used hereinafter and in the drawings to identify like features, while like reference numerals containing letter extensions (i.e., "c") are used to identify those features that have been modified.
  • the power seat length adjuster assembly 58c may include the longitudinally crowned worm 80a, the single-enveloping worm gear 82a, and a pair of support members 74c.
  • the support members 74c may each include a lateral ear 98c and a medial ear lOOc.
  • each support member 74c may be disposed within one of the closed elongated apertures 48c of the sidewall 40 of the upper track 22, and the medial ear lOOc of each support member 74c may be disposed within one of the closed elongated apertures 48c of the sidewall 40 of the upper track 22, such that the upper track 22 and an upper side 178 of the support member 74c define a gap or void 202 therebetween.
  • the support member 74c may define a height H2 extending from the upper side l08c to a lower side 204, opposite the upper side l08c. In some implementations, the height H2 may be less than the height HI of the open aperture 48.
  • the support members 74c are laser welded to the sidewall 40 at both ends.
  • a method of assembling the power length adjuster assembly 58c to the upper track 22 may include, in this succession: (i) coupling the pair of support members 74c to the upper track 22, (ii) coupling the housing 76 in a compressive relation between the support members 74c in a friction-fit orientation, and (iii) coupling the lead screw 56 to the power length adjuster assembly 58c in a direction parallel to Al .
  • powered seat length adjuster assemblies operate at a normal linear adjusting speed as low as 20 mm/s and, at a high linear adjusting speed as high as 60 mm/s (when an power easy-entry function is require).
  • the worm may spin at quite considerable speeds, as high as 8,000 rotations per minute.
  • the gear drive can be improved by giving it an open architecture that can accommodate a large range of different gear ratios in the same compact space.
  • an open architecture power seat length adjuster assembly 210 is illustrated that is capable of realizing a large but finite range of different linear adjusting speeds, in the same compact space delimited by the seat upper track aperture and using the same seat structure.
  • a range of different gear ratios smaller electric motors having limited rotational speeds can be utilized to avoid the occurrence of vibrations and consequently noise.
  • a single envelope worm-worm gear drives a reduction mechanisms with theoretical point contact. This provides very low level of noise and vibrations during operation and provides a gear mesh that is insensitive to misalignments and errors/variations in the component manufacturing process.
  • the open architecture of the powered seat length adjuster assembly 210 is capable of providing the required mechanical gear ratios, in the same compact space, using electric motors that have their speed limited to certain values. Because the worm-worm gear drives disclosed herein can be provided in a large range of gear reduction ratios in the same compact space, small electric motors having maximum rotational speeds limited to values that do not create vibrations and noise in operation are able to be used in a wide range of specific applications.
  • typical powered length adjusters operating at a normal or comfort linear adjusting speed as low as 20 mm/s use electric motors with a maximum rotational speed of around 4900 rpm. These electric motors are proven to be relatively quiet in operation and have a reasonable overall dimensional envelope suited for use in such applications.
  • Typical powered length adjusters operating in easy-entry mode at a high linear adjusting speed as high as 60 mm/s use electric motors with a maximum rotational speed of around 8000 rpm. These electric motors have proven to be quite noisy in operation and have a larger overall dimensional envelope. For such applications, it is desirable to have electrical motors with their maximum rotational speed capped (i.e., limited) to around 5000 rpm.
  • the open architecture of the powered seat length adjuster assemblies disclosed herein allow for the use of different gear reduction ratios in the same limited space such that worm-worm gear drives with different gear reduction ratios, in a certain large but limited range, capable of carrying the required load, can be used to overcome the challenges related to manufacturing errors/variances and their noise, vibration, and harshness (NVH) behavior.
  • the open architecture of power seat length adjuster assembly 210 illustrated in FIG. 19 has nine different worm -worm gear drives 280a-i / 282a-i that can be swapped in and out of the housing assembly 276 for one another to pair different combinations of gears.
  • an electric motor having its maximum rotational speed limited to a maximum of 2000 rpm can be used when paired worm-worm gear drives 280a-c / 282a-c with gear ratios of 6.5, 7.5, or 8.5, respectively.
  • an electric motor having its rotational speed limited to a maximum of 5000 rpm can be used when paired worm-worm gear drives 280d-i / 282d-i with gear ratios of 5.667, 5.333, 4.667, 4.333, 3.667, and 3.333, respectively.
  • a single housing assembly 276 and seat structure having the same architecture and dimensions, can be used for achieving the whole range of maximum normal and high longitudinal adjustment speeds, with vibrations and noise in operation within required limits.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Seats For Vehicles (AREA)
PCT/US2019/021870 2018-03-12 2019-03-12 Open architecture power length adjuster assembly for a vehicle seat and method of manufacturing the same WO2019178112A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197026939A KR102307158B1 (ko) 2018-03-12 2019-03-12 차량 시트를 위한 개방형 구조 파워 길이 조절기 결합체 및 그 제조 방법
CN201980001659.XA CN110475691B (zh) 2018-03-12 2019-03-12 用于车辆座椅的调节器组件及其制造方法
DE112019000026.8T DE112019000026B4 (de) 2018-03-12 2019-03-12 Sitzverstellanordnung für einen fahrzeugsitz und verfahren zum herstellen eines getriebeantriebs für eine sitzverstellanordnung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862641780P 2018-03-12 2018-03-12
US62/641,780 2018-03-12

Publications (1)

Publication Number Publication Date
WO2019178112A1 true WO2019178112A1 (en) 2019-09-19

Family

ID=67908064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/021870 WO2019178112A1 (en) 2018-03-12 2019-03-12 Open architecture power length adjuster assembly for a vehicle seat and method of manufacturing the same

Country Status (4)

Country Link
KR (1) KR102307158B1 (de)
CN (1) CN110475691B (de)
DE (1) DE112019000026B4 (de)
WO (1) WO2019178112A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113175501A (zh) * 2021-05-18 2021-07-27 成都理工大学 一种平面二次包络环面蜗轮蜗杆及其制造方法
CN113175498A (zh) * 2021-05-18 2021-07-27 成都理工大学 一种组合式蜗轮蜗杆传动机构及其加工方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11766956B2 (en) 2016-09-08 2023-09-26 Fisher & Company, Incorporated Open architecture power length adjuster assembly for a vehicle seat and method of manufacturing the same
US11760233B2 (en) 2019-02-20 2023-09-19 Fisher & Company, Incorporated Ultra-compact power length adjuster with anti-back drive capability and pinion-rack output for a vehicle seat
DE102020110442A1 (de) 2020-02-04 2021-08-05 Adient Engineering and IP GmbH Längseinsteller und fahrzeugsitz
DE102021204240A1 (de) * 2020-05-01 2021-11-04 Fisher & Company, Incorporated Getriebekasten für einen fahrzeugsitzanpassungsmechanismus
CN112502565B (zh) * 2020-11-18 2021-06-11 宁波职业技术学院 一种汽车车窗升降器蜗杆
DE102021105775A1 (de) 2021-03-10 2022-09-15 Elektro-Metall Export Gesellschaft mit beschränkter Haftung Flugzeugsitz, insbesondere Passagier-Flugzeugsitz

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050269478A1 (en) * 2004-03-16 2005-12-08 Michael Woehrle Drive for an adjustment device with a worm wheel having a globoid toothing with a cylindrical section
US20100320352A1 (en) * 2006-10-23 2010-12-23 Weber James L Power seat track drive assembly
US20110308340A1 (en) * 2009-02-11 2011-12-22 Stefan Bosecker Spindle drive for longitudinally adjusting a motor vehicle seat
KR101470180B1 (ko) * 2013-07-03 2014-12-08 현대다이모스(주) 기어박스
KR101708126B1 (ko) * 2015-09-25 2017-02-17 주식회사다스 차량용 시트 슬라이딩 장치의 기어박스

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881364A (en) * 1974-03-22 1975-05-06 William S Rouverol Low noise gearing
CN1005585B (zh) * 1987-12-12 1989-10-25 中国纺织大学 渐开线内啮合弧面蜗杆蜗轮及其切制工艺
DE19911432A1 (de) 1999-03-05 2000-09-21 Brose Fahrzeugteile Schnecken- oder Spindelgetriebe
DE10203983B4 (de) 2002-01-31 2004-05-27 Sew-Eurodrive Gmbh & Co Kg Getriebe
DE10337475A1 (de) * 2003-08-08 2005-03-03 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Verstellgetriebe für ein Kraftfahrzeug
JP5370845B2 (ja) * 2008-10-09 2013-12-18 Ntn株式会社 ウォームギア用軸受装置および自動車用パワーシートのシートスライド機構用ウォームギア
WO2010057335A1 (en) * 2008-11-21 2010-05-27 Faurecia (Shanghai) Management Co., Ltd. Adjustable seat
CN102672283A (zh) * 2012-01-07 2012-09-19 河南科技大学 一种偏置蜗杆蜗轮传动设计与制造方法
JP5873724B2 (ja) * 2012-01-17 2016-03-01 株式会社ミツバ 歯車装置
KR101501384B1 (ko) * 2013-10-31 2015-03-10 주식회사다스 차량용 시트 슬라이딩 장치의 기어박스
JP2017194127A (ja) * 2016-04-21 2017-10-26 株式会社ジェイテクト ウォーム減速機および電動パワーステアリング装置
US10486554B2 (en) * 2016-09-08 2019-11-26 Fisher & Company, Inc. Power seat length adjuster assembly and method of manufacture
DE102017008036B4 (de) 2016-09-08 2023-04-27 Fisher & Company, Inc. Sitzverstell-Baugruppe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050269478A1 (en) * 2004-03-16 2005-12-08 Michael Woehrle Drive for an adjustment device with a worm wheel having a globoid toothing with a cylindrical section
US20100320352A1 (en) * 2006-10-23 2010-12-23 Weber James L Power seat track drive assembly
US20110308340A1 (en) * 2009-02-11 2011-12-22 Stefan Bosecker Spindle drive for longitudinally adjusting a motor vehicle seat
KR101470180B1 (ko) * 2013-07-03 2014-12-08 현대다이모스(주) 기어박스
KR101708126B1 (ko) * 2015-09-25 2017-02-17 주식회사다스 차량용 시트 슬라이딩 장치의 기어박스

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113175501A (zh) * 2021-05-18 2021-07-27 成都理工大学 一种平面二次包络环面蜗轮蜗杆及其制造方法
CN113175498A (zh) * 2021-05-18 2021-07-27 成都理工大学 一种组合式蜗轮蜗杆传动机构及其加工方法
CN113175501B (zh) * 2021-05-18 2022-04-08 成都理工大学 一种平面二次包络环面蜗轮蜗杆及其制造方法
CN113175498B (zh) * 2021-05-18 2022-07-08 成都理工大学 一种组合式蜗轮蜗杆传动机构及其加工方法

Also Published As

Publication number Publication date
DE112019000026B4 (de) 2023-01-26
DE112019000026T5 (de) 2019-12-05
KR102307158B1 (ko) 2021-10-05
KR20190108652A (ko) 2019-09-24
CN110475691B (zh) 2022-01-11
CN110475691A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
US10953772B2 (en) Open architecture power length adjuster assembly for a vehicle seat and method of manufacturing the same
US10486554B2 (en) Power seat length adjuster assembly and method of manufacture
US11273506B2 (en) Open architecture power length adjuster assembly for a vehicle seat and method of manufacturing the same
WO2019178112A1 (en) Open architecture power length adjuster assembly for a vehicle seat and method of manufacturing the same
CN111591176B (zh) 用于车辆的座椅调节器驱动器
CN100424380C (zh) 用于车辆内的调整装置的驱动装置以及蜗轮的制造方法
US11766956B2 (en) Open architecture power length adjuster assembly for a vehicle seat and method of manufacturing the same
DE102017008036B4 (de) Sitzverstell-Baugruppe
CN105782402A (zh) 汽车减速器
US10821532B2 (en) Advanced herringbone gear design
EP2116746B1 (de) Schaltungssteuerungsmechanismus
EP3274241B1 (de) Getriebeanordnung für eine elektrische servolenkanordnung
US20090120226A1 (en) Rack and pinion type steering device and method of manufacturing the same
US20040171453A1 (en) Actuator for a vehicle steering device
US11485255B2 (en) Gearbox for vehicle seat adjustment mechanism
US20040253912A1 (en) Double flank delash gear mechanism
EP0076615A2 (de) Neigungsverstellmechanismus für einen Sitz
CN115320459B (zh) 一种高强度连续式座椅偏心调角器
CN115320460A (zh) 一种连续式座椅楔块偏心结构调角器
US20230027923A1 (en) Worm Drive
US20240131966A1 (en) Vehicle Seat Adjustment Assembly With Reduced-Backlash Gear System
CN107933383B (zh) 一种电动座椅及其角度调节装置
JP7191573B2 (ja) 歯車構造
US2067969A (en) Forked sector gear
CN116255443A (zh) 齿轮变速器和用于机动车辆的座椅纵向调节装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197026939

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: KR1020197026939

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766932

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19766932

Country of ref document: EP

Kind code of ref document: A1