WO2019177141A1 - 光学材料用重合性組成物、光学材料用重合性組成物の製造方法および光学物品の製造方法 - Google Patents

光学材料用重合性組成物、光学材料用重合性組成物の製造方法および光学物品の製造方法 Download PDF

Info

Publication number
WO2019177141A1
WO2019177141A1 PCT/JP2019/010785 JP2019010785W WO2019177141A1 WO 2019177141 A1 WO2019177141 A1 WO 2019177141A1 JP 2019010785 W JP2019010785 W JP 2019010785W WO 2019177141 A1 WO2019177141 A1 WO 2019177141A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
polymerizable composition
optical material
material according
producing
Prior art date
Application number
PCT/JP2019/010785
Other languages
English (en)
French (fr)
Inventor
龍 昭憲
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2020506668A priority Critical patent/JP7012821B2/ja
Priority to KR1020207024314A priority patent/KR102445277B1/ko
Priority to US16/977,110 priority patent/US11279791B2/en
Priority to CN201980015120.XA priority patent/CN111788245B/zh
Priority to EP19766984.9A priority patent/EP3766910B1/en
Publication of WO2019177141A1 publication Critical patent/WO2019177141A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/242Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3237Polyamines aromatic
    • C08G18/324Polyamines aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/722Combination of two or more aliphatic and/or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8038Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3225
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a polymerizable composition for an optical material, a method for producing a polymerizable composition for an optical material, and a method for producing an optical article.
  • plastic lenses are lighter and harder to break than inorganic lenses and can be dyed, in recent years, plastic lenses have rapidly spread as optical materials such as eyeglass lenses and camera lenses.
  • Glass used as an optical material has been mainly glass since ancient times, but in recent years, various plastics for optical materials have been developed, and its use is expanding as an alternative to glass.
  • plastic materials such as acrylic resin, aliphatic carbonate resin, polycarbonate, and polyurethane are mainly used because they have excellent optical properties, are lightweight, do not crack, and are excellent in moldability. It has become.
  • polyurethane-containing materials are developed as useful polymers for producing optical materials because they have good optical properties such as refractive index and mechanical properties such as impact resistance (for example, Patent Document 1). And Patent Document 2).
  • Patent Document 1 proposes a method for producing a polyurethaneurea-containing composition by reacting a polyisocyanate, a polyol not containing an amino group, a polyol and / or polythiol, and an amino alcohol.
  • Patent Document 1 by using amino alcohol, while making the reaction of isocyanate moderate, the desired physical property is provided to the final product obtained.
  • Patent Document 2 an economical method for producing an impact-resistant polyurethane polymer by reacting a specific primary amine-terminated polyether, an aliphatic polyisocyanate, a polyol and an aromatic diamine in a one-step process. Has been proposed.
  • thiourethane urea resins When amines such as polyetheramine are used to produce thiourethane urea resins with excellent mechanical properties such as impact resistance, the reactivity with isocyanate is high and uniform when the materials are reacted in a one-step process. In some cases, a prepolymer solution cannot be obtained, and the prepolymer is precipitated, and as a result, a transparent thiourethane urea resin cannot be obtained.
  • the present inventors have found that a thiourethane urea resin that is transparent and excellent in impact resistance can be obtained by adjusting the production method to prevent the precipitation of a prepolymer, and has completed the present invention.
  • the first amine compound (A1) is at least one selected from polyetheramine and aromatic amine;
  • the polymerizable composition for an optical material wherein the first polythiol compound (D1) includes a dithiol compound (d1) having two mercapto groups and a polythiol compound (d2) having three or more mercapto groups.
  • the polyether amine includes at least one selected from the group consisting of a polyether amine represented by the formula (1) and a polyether amine represented by the formula (2).
  • a polymerizable composition for optical materials In the formula (1), R 3 to R 5 each represent a hydrogen atom or a methyl group. P represents an integer of 0 to 49, q represents an integer of 0 to 65, and r represents an integer of 1 to 50. P + r satisfies an integer of 1 to 99. Plural R 4 s or R 5 s may be the same or different.
  • R 6 , R 8 and R 9 each represent a hydrogen atom or a methyl group.
  • R 7 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms or carbon atoms.
  • the .x + y + z indicating a cyclic alkyl group having 3 to 20 different from each .n is between R 6 of. plurality of an integer of 0 ⁇ 10, R 8 together or R 9 together are the same for an integer of 1-50 May be.
  • the aromatic amine is at least one selected from the group consisting of 3,5-diethyltoluene-2,4-diamine and 3,5-diethyltoluene-2,6-diamine, [1] The polymerizable composition for optical materials described in 1. [5] The polymerizable composition for an optical material according to any one of [1] to [4], further comprising a second diol compound (B2). [6] The polymerizable composition for an optical material according to any one of [1] to [4], further comprising a second amine compound (A2) having a weight average molecular weight of 400 or more and less than 4000.
  • A2 second amine compound having a weight average molecular weight of 400 or more and less than 4000.
  • a second amine compound (A2) and a second diol compound (B2) having a weight average molecular weight of 400 or more and less than 4000. object.
  • the first diol compound (B1) contains an aliphatic linear diol.
  • a first amine compound (A1) having a weight average molecular weight of less than 4000 and a first diol compound (B1) having a viscosity (25 ° C.) of 100 mPa ⁇ s or less are mixed, A first step of obtaining a mixture, wherein the first amine compound (A1) is at least one selected from a polyetheramine and an aromatic amine; A second step of mixing the first mixture and the polyisocyanate compound (C) to obtain a prepolymer; The prepolymer and the catalyst are mixed, and then a first polythiol compound (D1) including a dithiol compound (d1) having two mercapto groups and a polythiol compound (d2) having three or more mercapto groups is added.
  • D1 including a dithiol compound (d1) having two mercapto groups and a polythiol compound (d2) having three or more mercapto groups is added.
  • a method for producing a polymerizable composition for an optical material [13] The [12], wherein the polyether amine includes at least one selected from the group consisting of a polyether amine represented by the formula (1) and a polyether amine represented by the formula (2).
  • the manufacturing method of polymerizable composition for optical materials (In the formula (1), R 3 to R 5 each represent a hydrogen atom or a methyl group. P represents an integer of 0 to 49, q represents an integer of 0 to 65, and r represents an integer of 1 to 50. P + r satisfies an integer of 1 to 99. Plural R 4 s or R 5 s may be the same or different.
  • R 6 , R 8 and R 9 each represent a hydrogen atom or a methyl group.
  • R 7 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms or carbon atoms.
  • the .x + y + z indicating a cyclic alkyl group having 3 to 20 different from each .n is between R 6 of. plurality of an integer of 0 ⁇ 10, R 8 together or R 9 together are the same for an integer of 1-50 May be.
  • the aromatic amine is at least one selected from the group consisting of 3,5-diethyltoluene-2,4-diamine and 3,5-diethyltoluene-2,6-diamine, [12] The manufacturing method of polymeric composition for optical materials as described in any one of. [16] In the third step, the prepolymer and the catalyst are mixed, then the first polythiol compound (D1) is added and mixed, and then the second diol compound (B2). The method for producing a polymerizable composition for an optical material according to any one of [12] to [15], which comprises a step of adding and mixing them.
  • the prepolymer and the catalyst are mixed, and then the second amine compound (A2) having a weight average molecular weight of 400 or more and less than 4000 and the first polythiol compound (D1)
  • the prepolymer and the catalyst are mixed, and then the second amine compound (A2), the first polythiol compound (D1), and the second diol compound ( The method for producing a polymerizable composition for an optical material according to any one of [12] to [15], comprising a step of adding B2) and mixing them.
  • [21] The method for producing a polymerizable composition for an optical material according to [16] or [18], wherein the second diol compound (B2) has a viscosity (25 ° C.) of 100 mPa ⁇ s or more.
  • a method for producing an optical article comprising a step of polymerizing and curing the polymerizable composition for an optical material according to any one of [1] to [11] by a cast polymerization method to obtain an optical article.
  • a step of obtaining a polymerizable composition for an optical material by the method according to any one of [12] to [21] And a step of polymerizing and curing the polymerizable composition for an optical material by a casting polymerization method to obtain an optical material.
  • a polymerizable resin composition used for producing a thiourethane urea resin that prevents precipitation of a prepolymer is transparent and has excellent impact resistance, and a method for producing this polymerizable composition. A method is provided.
  • the polymerizable composition for optical materials of the present invention includes a first amine compound (A1) having a weight average molecular weight of less than 4000 and a viscosity (25 C.) a prepolymer which is a reaction product of the first diol compound (B1) having a polyisocyanate compound (C), A first polythiol compound (D1), and a catalyst,
  • the first amine compound (A1) is at least one selected from polyether amines and aromatic amines;
  • the first polythiol compound (D1) includes a dithiol compound (d1) having two mercapto groups and a polythiol compound (d2) having three or more mercapto groups.
  • the prepolymer used in the polymerizable composition of the present embodiment is a reaction product obtained by reacting the first amine compound (A1), the first diol compound (B1), and the polyisocyanate compound (C). It is a thing.
  • the amine compound (A1) used in the polymerizable composition of the present embodiment has a weight average molecular weight of less than 4000, and is at least one selected from polyether amine and aromatic amine. By using such an amine compound (A1), the cured product of the resulting polymerizable composition has improved impact resistance.
  • the polyether amine used as the amine compound (A1) is at least one selected from the polyether amine represented by the following formula (1) and the polyether amine represented by the formula (2): including.
  • R 3 to R 5 each represent a hydrogen atom or a methyl group.
  • p represents an integer of 0 to 49
  • q represents an integer of 0 to 65
  • r represents an integer of 1 to 50
  • p + r satisfies an integer of 1 to 99.
  • a plurality of R 4 or R 5 may be the same or different.
  • R 6 , R 8 and R 9 each represent a hydrogen atom or a methyl group.
  • R 7 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, or a cyclic alkyl group having 3 to 20 carbon atoms.
  • x + y + z represents an integer of 1 to 50.
  • n represents an integer of 0 to 10.
  • a plurality of R 6 s , R 8 s, or R 9 s may be the same or different.
  • the linear alkyl group having 1 to 20 carbon atoms represented by R 7 includes methyl group, ethyl group, n-propyl group, n-butyl group, pentyl group, hexyl group, heptyl group, n-octyl group.
  • Nonyl group, decyl group, dodecyl group and the like, and examples of the branched alkyl group having 3 to 20 carbon atoms include isopropyl group, isobutyl group, t-butyl group, isopentyl group, isooctyl group, 2-ethylhexyl group, 2
  • Examples of the cyclic alkyl group having 3 to 20 carbon atoms, such as -propylpentyl group and isodecyl group include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and the like.
  • the compound represented by the formula (1a) is used as the polyetheramine represented by the formula (1).
  • R 3, R 5 and r are each synonymous with R 3, R 5 and r in the general formula (1).
  • the weight average molecular weight of the amine compound (A1) is less than 4000, preferably 3000 or less, more preferably 2000 or less, more preferably 1000 or less, and still more preferably 800 or less. Even more preferably, it is 600 or less.
  • the aromatic amine used as the amine compound (A1) refers to a primary amine or a secondary amine in which an amino group is directly bonded to an aromatic ring.
  • the aromatic amine for example, 3,5-diethyltoluene-2,4-diamine or 3,5-diethyltoluene-2,6-diamine can be used.
  • the weight average molecular weight of the polyether amine is preferably more than 230, more preferably 250 or more, and further preferably 280 or more. Particularly preferably, it is 300 or more.
  • a polyetheramine having such a weight average molecular weight a thiourethane urea resin obtained by curing a polymerizable composition containing a prepolymer obtained from this amine compound (A1) has excellent impact resistance. Have.
  • the first amine compound (A1) and the second amine compound (A2) described later may be the same or different, but are preferably different amine compounds.
  • the diol compound (B1) used in the polymerizable composition for an optical material of the present embodiment has a viscosity (25 ° C.) of 100 mPa ⁇ s or less, preferably a viscosity of 1 mPa ⁇ s or more and 100 mPa ⁇ s or less (25 ° C).
  • the diol compound (B1) preferably has a molecular weight in the range of 50 to 350. Examples of such a diol compound (B1) include, but are not limited to, polyols containing sulfur atoms such as propylene glycol, dipropylene glycol, tripropylene glycol, ethylene glycol, diethylene glycol, and triethylene glycol.
  • polyisocyanate compound (C) used in the polymerizable composition for an optical material of the present embodiment an aliphatic polyisocyanate compound, an alicyclic polyisocyanate compound, an aromatic polyisocyanate compound, a heterocyclic polyisocyanate compound, or the like is used. be able to.
  • polyisocyanate compound (C) pentamethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexane diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanatomethyl ester, Lysine triisocyanate, m-xylylene diisocyanate, p-xylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate, bis (isocyanatomethyl) naphthalene, mesitylenylene triisocyanate, bis (isocyanatomethyl) ) Sulfide, bis (isocyanatoethyl) sulfide, bis (isocyanatomethyl) disulfide, bis (isocyanatoethyl) disulfide, bis (isocyanatomethylthio) methane, bis Ali
  • hexamethylene diisocyanate preferably pentamethylene diisocyanate, m-xylylene diisocyanate, isophorone diisocyanate, bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane-4,4′-diisocyanate, 2,5-bis (isocyanatomethyl) From bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, tolylene diisocyanate, phenylene diisocyanate, and 4,4′-diphenylmethane diisocyanate At least one selected can be used.
  • m-xylylene diisocyanate bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane-4,4′-diisocyanate, 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, And at least one selected from 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane can be used.
  • the polythiol compound (D1) used in the polymerizable composition for an optical material of the present embodiment includes a dithiol compound (d1) having two mercapto groups and a polythiol compound (d2) having three or more mercapto groups.
  • dithiol compound (d1) examples include methanedithiol, 1,2-ethanedithiol, 1,2-cyclohexanedithiol, bis (2-mercaptoethyl) ether, diethylene glycol bis (2-mercaptoacetate), diethylene glycol bis (3- Mercaptopropionate), ethylene glycol bis (2-mercaptoacetate), ethylene glycol bis (3-mercaptopropionate), bis (mercaptomethyl) sulfide, bis (mercaptomethyl) disulfide, bis (mercaptoethyl) sulfide, bis (Mercaptoethyl) disulfide, bis (mercaptopropyl) sulfide, bis (mercaptomethylthio) methane, bis (2-mercaptoethylthio) methane, bis (3-mercaptopropi Thio) methane, 1,2-bis (mercaptomethylthio) ethane, 1,2-bis (2-mercaptoethyl)
  • the dithiol compound (d1) preferably 2,5-dimercaptomethyl-1,4-dithiane, ethylene Glycol bis (3-mercaptopropionate), 4,6-bis (mercaptomethylthio) -1,3-dithiane, 2- (2,2-bis (mercaptomethylthio) ethyl) -1,3-dithietane,
  • 2,5-dimercaptomethyl-1,4-dithiane ethylene glycol bis (3-mercaptopropionate), 4,6-bis (mercaptomethylthio) -1,3-dithiane, and bis (2-mercapto)
  • 2,5-dimercaptomethyl-1,4-dithiane ethylene glycol bis (3-mercaptopropionate), 4,6-bis (mercaptomethylthio) -1,3-dithiane, and bis (2-mercapto)
  • at least one compound selected from the group consisting of (ethyl) sulfide is particularly preferred.
  • Examples of the polythiol compound (d2) having three or more mercapto groups include 1,2,3-propanetrithiol, tetrakis (mercaptomethyl) methane, trimethylolpropane tris (2-mercaptoacetate), trimethylolpropane tris.
  • the polymerizable resin composition includes a second diol (B2) in addition to the prepolymer and the first polythiol compound (D1).
  • the second diol compound (B2) may be the same as or different from the first diol (B1) described above.
  • the second diol compound has a viscosity of 100 mPa ⁇ s or more (25 ° C.), and more preferably has a viscosity of more than 100 mPa ⁇ s and 30000 mPa ⁇ s or less (25 ° C.).
  • the second diol compound (B2) preferably has a molecular weight in the range of 100 to 3000.
  • Examples of such a diol compound (B2) include polyethylene glycol, cyclobutanediol, cyclopentanediol, cyclohexanediol, cycloheptanediol, cyclooctanediol, hydroxypropylcyclohexanol, tricyclo [5.2.1.0 (2,6 )] Decane-dimethanol, bicyclo [4.3.0] -nonanediol, dicyclohexanediol, tricyclo [5.3.1.1] dodecanediol, bicyclo [4.3.0] nonanedimethanol, tricyclo [ 5.3.1.1] dodecanediethanol, hydroxypropyltricyclo [5.3.1.1] dodecanol, spiro [3.4] octanediol, butylcyclohexanediol, 1,1′-bicyclohexylidened
  • the thiourethane urea resin obtained by curing the polymerizable composition containing the second diol has a low haze and excellent heat resistance.
  • the polymerizable resin composition includes a second amine compound (A2) in addition to the prepolymer and the first polythiol compound (D1).
  • the second amine compound (A2) preferably has a weight average molecular weight of 400 or more and less than 4000.
  • the second amine compound (A2) may be the same as or different from the first amine compound (A1), but is preferably a different amine compound, and has a weight average molecular weight of 400 or more and less than 4000. It is preferable that it is 600 or more and 2000 or less.
  • a polyetheramine compound is preferable.
  • the second amine compound (A2) By using the second amine compound (A2), the viscosity (25 ° C.) and pot life of the resulting polymerizable composition can be adjusted.
  • the second amine compound (A2) various physical properties such as optical properties, impact resistance, specific gravity and the like of the thiourethane urea resin obtained by curing the polymerizable composition containing the second amine compound (A2) can be used for the intended use. Can be adjusted accordingly.
  • the polymerizable resin composition includes a second amine compound (A2) and a second diol compound (B2) in addition to the prepolymer and the first polythiol compound (D1).
  • a second amine compound (A2) and a second diol compound (B2) in addition to the prepolymer and the first polythiol compound (D1).
  • the viscosity (25 ° C.) and pot life of the resulting polymerizable composition can be adjusted.
  • various properties, such as optical physical properties, impact resistance, and specific gravity, of the thiourethane urea resin obtained by curing the polymerizable composition can be adjusted according to the intended use.
  • the polymerizable composition of the present embodiment preferably contains a polymerization catalyst in addition to the above components.
  • the polymerization catalyst used include, but are not limited to, dimethyltin chloride, dibutyltin chloride, dibutyltin dilaurate and the like.
  • the amount of the catalyst is preferably 0.005 to 0.5 parts by weight, more preferably 0.005 to 0.3 parts by weight, with respect to 100 parts by weight of the polymerizable composition.
  • the polymerizable composition for an optical material of the present embodiment has an internal mold release agent, a resin modifier, a light stabilizer, a bluing agent, and an ultraviolet absorption depending on the properties desired for the application to which the composition is applied.
  • Additives such as additives, antioxidants, anti-coloring agents, dyes, and photochromic pigments may also be included.
  • the manufacturing method of the polymeric composition for optical materials of this invention is demonstrated based on the following embodiment.
  • the method for producing a polymerizable composition for an optical material of the present invention comprises: The first amine compound (A1) having a weight average molecular weight of less than 4000 and the first diol compound (B1) having a viscosity (25 ° C.) of 100 mPa ⁇ s or less are mixed to obtain a first mixture.
  • the first step A second step of mixing the first mixture and the polyisocyanate compound (C) to obtain a prepolymer;
  • the prepolymer and the catalyst are mixed, and then a first polythiol compound (D1) including a dithiol compound (d1) having two mercapto groups and a polythiol compound (d2) having three or more mercapto groups is added.
  • a third step of mixing them the first amine compound (A1) is at least one selected from polyether amine and aromatic amine.
  • the amine compound (A1) used in the production of the polymerizable composition of the present embodiment is the diol compound (B1), the polyisocyanate compound (C), and the polythiol compound (D1) as described above.
  • the mixture of the amine compound (A1) and the diol compound (B1) produced in the first step is combined with the polyisocyanate compound (C) in the second step.
  • the polyisocyanate compound (C) Subject to reaction.
  • a prepolymer solution in which the prepolymer is uniformly dissolved can be obtained without the prepolymer generated by the above reaction being precipitated in the reaction solution.
  • the thiourethane urea resin obtained by the subsequent reaction with the polythiol compound (D1) has desired optical properties.
  • the above-mentioned polyetheramine as the amine compound (A1), no prepolymer is precipitated in the second step of this embodiment, and the resulting thiourethane urea resin has excellent impact resistance.
  • the first amine compound (A1) and the second amine compound (A2) described later may be the same or different, but are preferably different amine compounds.
  • an amine compound having a weight average molecular weight of less than 400 it is preferable to add it as the first amine compound (A1) in the first step in order to obtain a uniform prepolymer.
  • the amine compound having a weight average molecular weight of 400 or more and less than 4000 may be added as the first amine compound (A1) in the first step or as the second amine compound (A2) in the third step. Good.
  • the diol compound (B1) used in the production of the polymerizable composition for an optical material of the present embodiment has a viscosity (25 ° C.) of 100 mPa ⁇ s or less, preferably 1 mPa ⁇ s or more and 100 mPa ⁇ s or less. (25 ° C).
  • the diol compound (B1) preferably has a molecular weight in the range of 50 to 350.
  • a catalyst may be used in the third step of the method for producing a polymerizable composition for an optical material of the present embodiment.
  • the catalyst used include, but are not limited to, dimethyltin chloride, dibutyltin chloride, and dibutyltin dilaurate.
  • the third step may further include a step of adding a second diol (B2).
  • a step of adding a second diol (B2) in the third step, the prepolymer obtained in the second step and the catalyst are mixed, and then the polythiol compound (D1) is added, and then the second diol compound (B2) is added. And mixing them.
  • the second diol compound (B2) may be the same as or different from the first diol (B1) as described above.
  • the thiourethane urea resin obtained has a low haze and excellent heat resistance.
  • the prepolymer obtained in the second step and the catalyst are mixed, and then the second amine compound (A2) and the polythiol compound (D1) are added.
  • the second amine compound (A2) preferably has a weight average molecular weight of 400 or more and less than 4000.
  • the second amine compound (A2) may be the same as or different from the first amine compound (A1), but is preferably a different amine compound.
  • the second amine compound (A2) is added to the prepolymer simultaneously or separately with the polythiol compound (D1), but preferably the second amine compound (A2) is added before the polythiol compound (D1) is added. It is preferably added to the prepolymer.
  • the viscosity (25 ° C.) and pot life of the resulting polymerizable composition can be adjusted.
  • various physical properties such as optical properties, impact resistance and specific gravity of the thiourethane urea resin obtained by curing the polymerizable composition are adjusted according to the intended use. it can.
  • the prepolymer obtained in the second step and the catalyst are mixed, and then the second amine compound (A2), the polythiol compound (D1), and the second step
  • the diol compound (B2) may be added and mixed.
  • the addition of the second amine compound (A2), the polythiol compound (D1), and the second diol compound (B2) may be simultaneous or separate. It is preferable to add the amine compound (A2) and then add the polythiol compound (D1) and the second diol compound (B2).
  • the viscosity (25 ° C.) and pot life of the resulting polymerizable composition can be adjusted.
  • various properties, such as optical physical properties, impact resistance, and specific gravity, of the thiourethane urea resin obtained by curing the polymerizable composition can be adjusted according to the intended use.
  • the polymerizable composition of the present embodiment can be used for the production of optical articles.
  • an optical material is obtained by a step of obtaining a polymerizable composition for an optical material by the above method and a step of polymerizing and curing the obtained polymerizable composition for an optical material by a cast polymerization method to obtain an optical article.
  • Articles can be manufactured.
  • Optical articles include plastic eyeglass lenses, goggles, eyesight correction eyeglass lenses, imaging equipment lenses, liquid crystal projector Fresnel lenses, lenticular lenses, contact lenses and other plastic lenses, and light emitting diode (LED) seals.
  • LED light emitting diode
  • the method for manufacturing an optical article includes the following steps, for example.
  • Step a1 The polymerizable composition for optical material of the present embodiment is cast into a mold.
  • Step b1 The polymerizable composition for optical material is heated, and the composition is polymerized and cured to obtain a cured product (thiourethane urea resin molded product).
  • step a1 first, a polymerizable composition is injected into a molding mold (mold) held by a gasket or a tape.
  • a defoaming treatment under reduced pressure, a filtration treatment such as pressurization or reduced pressure, and the like as necessary.
  • step b1 casting polymerization is performed.
  • the mold is not limited because the conditions vary greatly depending on the composition of the polymerizable composition, the type and amount of catalyst used, the shape of the mold, etc., but is approximately 1 to 50 hours at a temperature of ⁇ 50 to 150 ° C. It is done over. In some cases, it is preferable to hold in the temperature range of 10 to 150 ° C. or gradually raise the temperature and cure in 1 to 25 hours.
  • the optical article made of the thiourethane urea resin of the present embodiment may be subjected to a treatment such as annealing as necessary.
  • the treatment temperature is usually 50 to 150 ° C., preferably 90 to 140 ° C., more preferably 100 to 130 ° C.
  • the optical article obtained by the method of the present embodiment can be used as a lens substrate for spectacle lenses, for example.
  • the lens base material may be coated with a coating layer on one side or both sides as required.
  • the coating layer include a hard coat layer, an antireflection layer, an anti-fogging coat film layer, an antifouling layer, a water repellent layer, a primer layer, and a photochromic layer.
  • Each of these coating layers can be used alone, or a plurality of coating layers can be used in multiple layers. When a coating layer is applied to both sides, a similar coating layer or a different coating layer may be applied to each surface.
  • a hard coat is formed on at least one surface of the optical article (lens substrate) obtained by curing the polymerizable composition of this embodiment. Forming a layer and / or an antireflection coating layer.
  • the optical article of the present embodiment can also be used as a lens base material for a plastic lens.
  • the prestic polarizing lens is manufactured by a method in which a lens substrate manufactured in advance is bonded to both surfaces of a polarizing film, or a method in which a polymerizable composition is cast-polymerized on both surfaces of the polarizing film. Below, the manufacturing method of the plastic polarizing lens by cast polymerization is demonstrated.
  • the method for producing a plastic polarizing lens by cast polymerization includes the following steps.
  • Step a2 The polarizing film is fixed in a lens casting mold in a state where at least one surface of the polarizing film is separated from the mold.
  • Step b2 The polymerizable composition of the present embodiment is injected into the gap between the polarizing film and the mold.
  • Step c2 The polymerizable composition is heated, the composition is polymerized and cured, and a base material layer made of a cured product of the polymerizable composition of the present embodiment is laminated on at least one surface of the polarizing film.
  • a polarizing film made of thermoplastic polyester or the like is placed in the space of the lens casting mold so that at least one of the film surfaces is parallel to the facing mold inner surface. A gap is formed between the polarizing film and the mold.
  • the polarizing film may be pre-shaped.
  • the polymerizable composition for an optical material of the present embodiment is injected into the gap between the mold and the polarizing film in the space of the lens casting mold by a predetermined injection means.
  • the lens casting mold to which the polarizing film injected with the polymerizable composition for optical material is fixed is heated for several hours to several tens in a predetermined temperature program in a heatable apparatus such as an oven or water. Heat and cure over time.
  • the polymerization curing temperature is not limited because the conditions vary depending on the composition of the polymerizable composition, the type of catalyst, the shape of the mold, and the like, but it is carried out at a temperature of 0 to 140 ° C. for 1 to 48 hours.
  • the plastic polarizing lens in which a layer made of the cured product of the polymerizable composition of the present embodiment is laminated on at least one surface of the polarizing film can be obtained by taking out from the lens casting mold. .
  • ⁇ Distortion When the obtained lens is projected onto a high-pressure UV lamp, no distortion is observed in the lens, “ ⁇ ” (no striae), and distortion is observed in the lens by visual observation. Those with no distortion were marked with “ ⁇ ”, and those with distortion in the lens by visual observation were marked with “x” (with striae).
  • Refractive index (ne), Abbe number ( ⁇ e) Measured at 20 ° C. using a Purfrich refractometer.
  • Heat resistance The glass transition temperature Tg was measured by the TMA penetration method (50 g load, pin tip 0.5 mm ⁇ , heating rate 10 ° C./min).
  • Light resistance QUV test (light source: UVA-340, intensity: 0.50 W / m 2 , test conditions: 50 ° C. ⁇ 200 hours) using a 2 mm thick flat plate with an accelerated light resistance tester manufactured by Q-Lab The change in hue before and after irradiation was measured.
  • ⁇ Solvent resistance A nonwoven fabric soaked with acetone was pressed on the surface of the lens for 10 seconds. If the surface of the lens does not show any swelling, “ ⁇ ” (solvent resistance). What was confirmed was designated as “x” (no solvent resistance).
  • Example 1 [Example 1] ⁇ (First step) In a 20 ml glass beaker, 7.01 parts by weight of A1-1 and 5.00 parts by weight of B1-1 were mixed and dissolved at 25 ° C. for 30 minutes. The viscosity (25 ° C.) of the first mixture obtained by mixing and dissolving was 32 mPa ⁇ s. ⁇ (Second process) The first mixture obtained in the first step was added dropwise to 57.90 parts by weight of C-1 at 25 ° C. over 1 hour to obtain a prepolymer.
  • Example 1 A uniform solution in the third step was obtained in the same manner as in Example 1 except that the type and amount of the compound used were changed as shown in Table 1.
  • Example 8 A uniform solution in the third step was obtained in the same manner as in Example 1 except that the type and amount of the compound used were changed as shown in Table 1, and A2-1 was obtained at 6.00 parts by weight and d-1 was obtained at d-1. 16.81 parts by weight and 17.97 parts by weight of d2-1 were added and mixed and dissolved at 25 ° C.
  • Example 9 A molded body was obtained in the same manner as in Example 8 except that the type and amount of the compound used were changed as shown in Table 1.
  • the evaluation results of the obtained molded body are shown in Table 1.
  • Example 13 A homogeneous solution in the third step was obtained in the same manner as in Example 1 except that the type and amount of the compound used were changed as shown in Table 1.
  • B2-1 was 7.50 parts by weight
  • d-1 was 20 .60 parts by weight
  • 9.45 parts by weight of d2-1 were added and mixed and dissolved at 25 ° C. for 10 minutes to obtain a second mixture.
  • a molded body was produced in the same manner as in Example 1 except that the amount of each compound was changed as shown in Table 1.
  • the evaluation results of the obtained molded body are shown in Table 1.
  • Examples 14 to 18, 21, 26 to 31 A molded body was obtained in the same manner as in Example 13 except that the type and amount of the compound used were changed as shown in Table 1.
  • the evaluation results of the obtained molded body are shown in Table 1.
  • Example 19 A uniform solution in the third step was obtained in the same manner as in Example 1 except that the type and amount of the compound used were changed as shown in Table 1, and 2.5 parts by weight of A2-1 and 5 parts of B2-1 were obtained. 0.000 part by weight, 21.63 parts by weight of d-1 and 9.91 parts by weight of d2-1 were added and mixed and dissolved at 25 ° C. for 10 minutes to obtain a second mixture. Subsequently, a molded body was produced in the same manner as in Example 1 except that the amount of each compound was changed as shown in Table 1. The evaluation results of the obtained molded body are shown in Table 1. [Example 20] The treatment was performed in the same manner as in Example 19 except that the parts by weight of the compound used were changed as shown in Table 1.
  • the second mixture obtained in the third step was degassed under a reduced pressure of 400 Pa, and then poured into a glass mold. This was put into a polymerization oven and polymerized by gradually raising the temperature from 25 ° C. to 120 ° C. over 24 hours. After the polymerization was completed, the product was taken out from the oven and released from the molding mold to obtain a molded body. However, a large amount of bubbles were generated and mixed in the obtained molded body, and physical property data could not be acquired. [Comparative Examples 2 to 3] Without using the diol compound (B-1), the amine compound (A1) was dropped to the polyisocyanate compound (C-1) to try to synthesize the prepolymer in the second step.
  • Comparative Example 10 The molded body of Comparative Example 10 was inferior in impact resistance as compared with Example 1.
  • Comparative Examples 11 and 12 A molded body was produced in the same manner as in Example 1 except that the parts by weight of the compound used were changed as shown in Table 1. However, the obtained molded product contained a large amount of bubbles, and physical property data could not be acquired.
  • Reference Examples 1 to 3 The synthesis of the prepolymer of the second step was attempted in the same manner as in Example 1 except that the type and amount of the compound used were changed as shown in Table 1, but the first mixture obtained in the first step was tried. At the same time as the dropping of the polymer, a polymer was precipitated, and a uniform prepolymer was not obtained, so the preparation was stopped.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

4000未満の重量平均分子量を有する第一のアミン化合物(A1)と、100mPa・s以下の粘度(25℃)を有する第一のジオール化合物(B1)と、ポリイソシアネート化合物(C)との反応生成物であるプレポリマー、および 第一のポリチオール化合物(D1)、を含み、 前記第一のアミン化合物(A1)が、ポリエーテルアミンおよび芳香族アミンから選択される少なくとも1つであり、 前記第のポリチオール化合物(D1)が、2つのメルカプト基を有するジチオール化合物(d1)および3つ以上のメルカプト基を有するポリチオール化合物(d2)を含む、光学材料用重合性組成物。

Description

光学材料用重合性組成物、光学材料用重合性組成物の製造方法および光学物品の製造方法
 本発明は、光学材料用重合性組成物、光学材料用重合性組成物の製造方法および光学物品の製造方法に関する。
 プラスチックレンズは、無機レンズに比べ軽量で割れ難く、染色が可能であるため、近年、眼鏡レンズ、カメラレンズ等の光学材料として急速に普及してきている。
 光学材料として用いられる素材は古来ガラスが主であったが、近年では光学材料用のプラスチックが種々開発され、ガラスの代替として利用が広がっている。眼鏡レンズなどの光学材料としても、優れた光学特性を有し、軽量で割れず、成形性にも優れることから、アクリル樹脂、脂肪族カーボネート樹脂、ポリカーボネート、ポリウレタンなどのプラスチック材料が主として用いられるようになっている。
 中でもポリウレタン含有材料は、屈折率等の光学的特性および耐衝撃性等の機械的特性が良好であることから、光学材料を製造するための有用なポリマーとして開発されている(例えば、特許文献1および特許文献2)。
 特許文献1では、ポリイソシアネート、アミノ基を含まないポリオール、ポリオールおよび/またはポリチオール、ならびにアミノアルコールを反応させてポリウレタン尿素含有組成物を製造する方法が提案されている。特許文献1では、アミノアルコールを用いることにより、イソシアネートの反応を穏やかにするとともに、得られる最終生成物に所望の物理学的性質を付与している。
 特許文献2では、特定の第1級アミン末端ポリエーテル、脂肪族ポリイソシアナート、ポリオールおよび芳香族ジアミンを一段階プロセスで反応させて耐衝撃性ポリウレタンポリマーを製造するための経済性に優れた方法が提案されている。
特表2017-502119号公報 特表2016-507626号公報
 耐衝撃性等の機械的特性に優れたチオウレタンウレア樹脂を製造するためにポリエーテルアミン等のアミンを用いた場合、材料を一段階プロセスで反応させると、イソシアネートとの反応性が高く、均一なプレポリマー溶液が得られず、プレポリマーが析出し、その結果、透明なチオウレタンウレア樹脂が得られない場合があった。
 本発明者らは、製造法を調整することにより、プレポリマーの析出を防止し、透明であり耐衝撃性に優れたチオウレタンウレア樹脂が得られることを見出し本発明を完成するに至った。
 すなわち、本発明は以下に示すことができる。
[1] 4000未満の重量平均分子量を有する第一のアミン化合物(A1)と、100mPa・s以下の粘度(25℃)を有する第一のジオール化合物(B1)と、ポリイソシアネート化合物(C)との反応生成物であるプレポリマー、
 第一のポリチオール化合物(D1)、および
 触媒、を含み、
 前記第一のアミン化合物(A1)が、ポリエーテルアミンおよび芳香族アミンから選択される少なくとも1つであり、
 前記第一のポリチオール化合物(D1)が、2つのメルカプト基を有するジチオール化合物(d1)および3つ以上のメルカプト基を有するポリチオール化合物(d2)を含む、光学材料用重合性組成物。
[2] 前記ポリエーテルアミンが、式(1)で表されるポリエーテルアミンおよび式(2)で表されるポリエーテルアミンからなる群から選択される少なくとも1つを含む、[1]に記載の光学材料用重合性組成物。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、R~Rはそれぞれ水素原子またはメチル基を示す。pは0~49の整数を示し、qは0~65の整数を示し、rは1~50の整数を示し、p+rは1~99の整数を満たす。複数存在するR同士またはR同士は同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000006
(式(2)中、R、R、Rはそれぞれ水素原子またはメチル基を示す。Rは炭素数1~20の直鎖アルキル基、炭素数3~20の分岐アルキル基又は炭素数3~20の環状アルキル基を示す。x+y+zは1~50の整数を示す。nは0~10の整数を示す。複数存在するR同士、R同士またはR同士はそれぞれ同一でも異なっていてもよい。)。
[3] 前記ポリエーテルアミンが、230を超える重量平均分子量を有する、[2]に記載の光学材料用重合性組成物。
[4] 前記芳香族アミンが、3,5-ジエチルトルエン-2,4-ジアミンおよび3,5-ジエチルトルエン-2,6-ジアミンからなる群から選択される少なくとも1つである、[1]に記載の光学材料用重合性組成物。
[5] 第二のジオール化合物(B2)をさらに含む[1]~[4]のいずれかに記載の光学材料用重合性組成物。
[6]
 400以上4000未満の重量平均分子量を有する第二のアミン化合物(A2)をさらに含む、[1]~[4]のいずれかに記載の光学材料用重合性組成物。
[7]
 400以上4000未満の重量平均分子量を有する第二のアミン化合物(A2)および第二のジオール化合物(B2)をさらに含む、[1]~[4]のいずれかに記載の光学材料用重合性組成物。
[8] 前記第一のジオール化合物(B1)が、脂肪族直鎖ジオールを含む、請求項[1]~[7]のいずれかに記載の光学材料用重合性組成物。
[9] 前記第一のジオール化合物(B1)が、1mPa・s以上100mPa・s以下の粘度(25℃)を有する、[1]~[8]のいずれかに記載の光学材料用重合性組成物。
[10] 前記第二のジオール化合物(B2)が、100mPa・s以上の粘度(25℃)を有する、[5]または[7]に記載の光学材料用重合性組成物。
[11]前記触媒が、ジメチル錫クロライド、ジブチル錫クロライド、およびジブチル錫ジラウリレートから選択される少なくとも1つを含む、[1]~[10]のいずれかに記載の光学材料用重合性組成物。
[12] 4000未満の重量平均分子量を有する第一のアミン化合物(A1)と、100mPa・s以下の粘度(25℃)を有する第一のジオール化合物(B1)とを混合して、第一の混合物を得る第一の工程であって、前記第一のアミン化合物(A1)がポリエーテルアミンおよび芳香族アミンから選択される少なくとも1つである、第一の工程と、
 前記第一の混合物と、ポリイソシアネート化合物(C)とを混合して、プレポリマーを得る第二の工程と、
 前記プレポリマーと、触媒とを混合し、次いで2つのメルカプト基を有するジチオール化合物(d1)および3つ以上のメルカプト基を有するポリチオール化合物(d2)を含む第一のポリチオール化合物(D1)を添加してこれらを混合する第三の工程と、を含む、光学材料用重合性組成物の製造方法。
[13] 前記ポリエーテルアミンが、式(1)で表されるポリエーテルアミンおよび式(2)で表されるポリエーテルアミンからなる群から選択される少なくとも1種を含む、[12]に記載の光学材料用重合性組成物の製造方法。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、R~Rはそれぞれ水素原子またはメチル基を示す。pは0~49の整数を示し、qは0~65の整数を示し、rは1~50の整数を示し、p+rは1~99の整数を満たす。複数存在するR同士またはR同士は同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000008
(式(2)中、R、R、Rはそれぞれ水素原子またはメチル基を示す。Rは炭素数1~20の直鎖アルキル基、炭素数3~20の分岐アルキル基又は炭素数3~20の環状アルキル基を示す。x+y+zは1~50の整数を示す。nは0~10の整数を示す。複数存在するR同士、R同士またはR同士はそれぞれ同一でも異なっていてもよい。).
[14] 前記ポリエーテルアミンが、230を超える重量平均分子量を有する、[13]に記載の光学材料用重合性組成物の製造方法。
[15] 前記芳香族アミンが、3,5-ジエチルトルエン-2,4-ジアミンおよび3,5-ジエチルトルエン-2,6-ジアミンからなる群から選択される少なくとも1つである、[12]に記載の光学材料用重合性組成物の製造方法。
[16] 前記第三の工程が、前記プレポリマーと、前記触媒とを混合し、次いで前記第一のポリチオール化合物(D1)を添加してこれらを混合した後、第二のジオール化合物(B2)を添加してこれらを混合する工程を含む[12]~[15]のいずれかに記載の光学材料用重合性組成物の製造方法。
[17] 前記第三の工程が、前記プレポリマーと、前記触媒とを混合し、次いで400以上4000未満の重量平均分子量を有する第二のアミン化合物(A2)および前記第一のポリチオール化合物(D1)を添加してこれらを混合する工程を含む[12]~[15]のいずれかに記載の光学材料用重合性組成物の製造方法。
[18] 前記第三の工程が、前記プレポリマーと、前記触媒とを混合し、次いで前記第二のアミン化合物(A2)、前記第一のポリチオール化合物(D1)、および第二のジオール化合物(B2)を添加してこれらを混合する工程を含む、[12]~[15]のいずれかに記載の光学材料用重合性組成物の製造方法。
[19] 前記第一のジオール化合物(B1)が、脂肪族直鎖ジオールを含む、[12]~[18]のいずれかに記載の光学材料用重合性組成物の製造方法。
[20] 前記第一のジオール化合物(B1)が、1mPa・s以上100mPa・s未満の粘度(25℃)を有する、[12]~[19]のいずれかに記載の光学材料用重合性組成物の製造方法。
[21] 前記第二のジオール化合物(B2)が、100mPa・s以上の粘度(25℃)を有する、[16]または[18]に記載の光学材料用重合性組成物の製造方法。
[22] [1]~[11]のいずれかに記載の光学材料用重合性組成物を、注型重合法により重合硬化して光学物品を得る工程を含む光学物品の製造方法。
[23] [12]~[21]のいずれかに記載の方法により光学材料用重合性組成物を得る工程と、
 前記光学材料用重合性組成物を、注型重合法により重合硬化して光学材料を得る工程と、を含む光学材料の製造方法。
 本発明によれば、プレポリマーの析出を防止し、透明であり耐衝撃性に優れたチオウレタンウレア樹脂を製造するために用いられる重合性樹脂組成物、およびこの重合性組成物を製造するための方法が提供される。
 本発明の光学材料用重合性組成物およびその製造方法を、以下の実施の形態に基づいて説明する。
(光学材料用重合性組成物)
 本発明の光学材料用重合性組成物(以下、「重合性組成物」とも称する)は、4000未満の重量平均分子量を有する第一のアミン化合物(A1)と、100mPa・s以下の粘度(25℃)を有する第一のジオール化合物(B1)と、ポリイソシアネート化合物(C)との反応生成物であるプレポリマー、
 第一のポリチオール化合物(D1)、および
 触媒、を含み、
 第一のアミン化合物(A1)が、ポリエーテルアミンおよび芳香族アミンから選択される少なくとも1つであり、
 前記第一のポリチオール化合物(D1)が、2つのメルカプト基を有するジチオール化合物(d1)および3つ以上のメルカプト基を有するポリチオール化合物(d2)を含む。
 本実施形態の重合性組成物に用いられるプレポリマーは、第一のアミン化合物(A1)と、第一のジオール化合物(B1)と、ポリイソシアネート化合物(C)とを反応させて得られる反応生成物である。
 本実施形態の重合性組成物に用いられるアミン化合物(A1)は、4000未満の重量平均分子量を有し、ポリエーテルアミンおよび芳香族アミンから選択される少なくとも1種である。このようなアミン化合物(A1)を用いることにより、得られる重合性組成物の硬化物が、改善された耐衝撃性を有する。
 一実施形態において、アミン化合物(A1)として用いられるポリエーテルアミンは、以下の式(1)で表されるポリエーテルアミンおよび式(2)で表されるポリエーテルアミンから選択される少なくとも1種を含む。
Figure JPOXMLDOC01-appb-C000009
 式(1)において、R~Rはそれぞれ水素原子またはメチル基を示す。pは0~49の整数を示し、qは0~65の整数を示し、rは1~50の整数を示し、p+rは1~99の整数を満たす。複数存在するR同士またはR同士は同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000010
 式(2)中、R、R、Rはそれぞれ水素原子またはメチル基を示す。Rは炭素数1~20の直鎖アルキル基、炭素数3~20の分岐アルキル基又は炭素数3~20の環状アルキル基を示す。x+y+zは1~50の整数を示す。nは0~10の整数を示す。複数存在するR同士、R同士またはR同士はそれぞれ同一でも異なっていてもよい。
 ここで、Rで表される炭素数1~20の直鎖アルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、n-オクチル基、ノニル基、デシル基、ドデシル基などが、炭素数3~20の分岐状のアルキル基としては、イソプロピル基、イソブチル基、t-ブチル基、イソペンチル基、イソオクチル基、2-エチルヘキシル基、2-プロピルペンチル基、イソデシル基などが、炭素数3~20の環状のアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などが挙げられる。
 一実施形態において、式(1)で表されるポリエーテルアミンとして、式(1a)で表される化合物が用いられる。
Figure JPOXMLDOC01-appb-C000011
 式(1a)において、R、Rおよびrは、それぞれ一般式(1)のR、Rおよびrと同義である。
 アミン化合物(A1)の重量平均分子量は、4000未満であり、好ましくは、3000以下であり、より好ましくは、2000以下であり、より好ましくは、1000以下であり、さらに好ましくは、800以下であり、さらにより好ましくは、600以下である。
 一実施形態において、アミン化合物(A1)として用いられる芳香族アミンは、アミノ基が直接芳香環に結合している1級アミンまたは2級アミンを言う。芳香族アミンとしては、例えば、3,5-ジエチルトルエン-2,4-ジアミン、または3,5-ジエチルトルエン-2,6-ジアミンを使用できる。
 アミン化合物(A1)として上述のポリエーテルアミンを用いる場合、このポリエーテルアミンの重量平均分子量は、好ましくは、230を超え、より好ましくは、250以上であり、さらに好ましくは、280以上であり、特に好ましくは、300以上である。このような重量平均分子量を有するポリエーテルアミンを用いることにより、このアミン化合物(A1)から得られるプレポリマーを含む重合性組成物を硬化して得られるチオウレタンウレア樹脂は優れた耐衝撃性を有する。
 第一のアミン化合物(A1)と後述する第二のアミン化合物(A2)は同じであっても異なっていてもよいが、異なるアミン化合物であることが好ましい。
 本実施形態の光学材料用重合性組成物に用いられるジオール化合物(B1)は、100mPa・s以下の粘度(25℃)を有し、好ましくは、1mPa・s以上100mPa・s以下の粘度(25℃)を有する。ジオール化合物(B1)は、好ましくは、分子量が、50~350の範囲であることが好ましい。このようなジオール化合物(B1)としては、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、などの硫黄原子を含有したポリオール等が挙げられるが、これらに限定されない。
 本実施形態の光学材料用重合性組成物に用いられるポリイソシアネート化合物(C)としては、脂肪族ポリイソシアネート化合物、脂環族ポリイソシアネート化合物、芳香族ポリイソシアネート化合物、複素環ポリイソシアネート化合物等を用いることができる。より具体的には、ポリイソシアネート化合物(C)として、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアナトメチルエステル、リジントリイソシアネート、m-キシリレンジイソシアネート、p-キシレンジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート、ビス(イソシアナトメチル)ナフタリン、メシチリレントリイソシアネート、ビス(イソシアナトメチル)スルフィド、ビス(イソシアナトエチル)スルフィド、ビス(イソシアナトメチル)ジスルフィド、ビス(イソシアナトエチル)ジスルフィド、ビス(イソシアナトメチルチオ)メタン、ビス(イソシアナトエチルチオ)メタン、ビス(イソシアナトエチルチオ)エタン、ビス(イソシアナトメチルチオ)エタン等の脂肪族ポリイソシアネート化合物;
イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、3,8-ビス(イソシアナトメチル)トリシクロデカン、3,9-ビス(イソシアナトメチル)トリシクロデカン、4,8-ビス(イソシアナトメチル)トリシクロデカン、4,9-ビス(イソシアナトメチル)トリシクロデカン等の脂環族ポリイソシアネート化合物;
フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ジフェニルスルフィド-4,4-ジイソシアネート等の芳香族ポリイソシアネート化合物;
2,5-ジイソシアナトチオフェン、2,5-ビス(イソシアナトメチル)チオフェン、2,5-ジイソシアナトテトラヒドロチオフェン、2,5-ビス(イソシアナトメチル)テトラヒドロチオフェン、3,4-ビス(イソシアナトメチル)テトラヒドロチオフェン、2,5-ジイソシアナト-1,4-ジチアン、2,5-ビス(イソシアナトメチル)-1,4-ジチアン、4,5-ジイソシアナト-1,3-ジチオラン、4,5-ビス(イソシアナトメチル)-1,3-ジチオラン等の複素環ポリイソシアネート化合物を用いることができる。
 中でも、好ましくは、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、m-キシリレンジイソシアネート、イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、トリレンジイソシアネート、フェニレンジイソシアネート、および4,4’-ジフェニルメタンジイソシアネートから選択される少なくとも一種を用いることができる。
 さらに好ましくは、m-キシリレンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、および2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンから選択される少なくとも一種を用いることができる。
 本実施形態の光学材料用重合性組成物に用いられるポリチオール化合物(D1)は、2つのメルカプト基を有するジチオール化合物(d1)および3つ以上のメルカプト基を有するポリチオール化合物(d2)を含む。
 ジチオール化合物(d1)としては、例えば、メタンジチオール、1,2-エタンジチオール、1,2-シクロヘキサンジチオール、ビス(2-メルカプトエチル)エーテル、ジエチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、ビス(メルカプトメチル)スルフィド、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(メルカプトプロピル)スルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2-メルカプトエチルチオ)メタン、ビス(3-メルカプトプロピルチオ)メタン、1,2-ビス(メルカプトメチルチオ)エタン、1,2-ビス(2-メルカプトエチルチオ)エタン、1,2-ビス(3-メルカプトプロピルチオ)エタン、2,5-ジメルカプトメチル-1,4-ジチアン、2,5-ジメルカプト-1,4-ジチアン、2,5-ジメルカプトメチル-2,5-ジメチル-1,4-ジチアン、及びこれらのチオグリコール酸およびメルカプトプロピオン酸のエステル;
ビス(2-メルカプトエチル)スルフィド、ヒドロキシメチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシメチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルジスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルジスルフィドビス(3-メルカプトプロピネート)、2-メルカプトエチルエーテルビス(2-メルカプトアセテート)、2-メルカプトエチルエーテルビス(3-メルカプトプロピオネート)、チオジグリコール酸ビス(2-メルカプトエチルエステル)、チオジプロピオン酸ビス(2-メルカプトエチルエステル)、ジチオジグリコール酸ビス(2-メルカプトエチルエステル)、ジチオジプロピオン酸ビス(2-メルカプトエチルエステル)、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン等の脂肪族ポリチオール化合物;
1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(メルカプトエチル)ベンゼン、1,3-ビス(メルカプトエチル)ベンゼン、1,4-ビス(メルカプトエチル)ベンゼン、2,5-トルエンジチオール、3,4-トルエンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール等の芳香族ポリチオール化合物;
2-メチルアミノ-4,6-ジチオール-sym-トリアジン、3,4-チオフェンジチオール、ビスムチオール、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン等の複素環ポリチオール化合物;等が挙げられる。
 ジチオール化合物(d1)として、これを含む重合性組成物を硬化して得られるチオウレタンウレア樹脂の光学的特性の観点から、好ましくは、2,5-ジメルカプトメチル-1,4-ジチアン、エチレングリコールビス(3-メルカプトプロピオネート)、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン、およびビス(2-メルカプトエチル)スルフィドからなる群から選ばれる少なくとも1種の化合物が用いられる。
 中でも、2,5-ジメルカプトメチル-1,4-ジチアン、エチレングリコールビス(3-メルカプトプロピオネート)、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、およびビス(2-メルカプトエチル)スルフィドからなる群から選ばれる少なくとも1種の化合物が特に好ましく用いられる。
 3つ以上のメルカプト基を有するポリチオール化合物(d2)としては、例えば、1,2,3-プロパントリチオール、テトラキス(メルカプトメチル)メタン、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(2-メルカプトアセテート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、ビス(2,3-ジメルカプトプロピル)スルフィド、及びこれらのチオグリコール酸およびメルカプトプロピオン酸のエステル、
1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、トリス(メルカプトメチルチオ)メタン、トリス(メルカプトエチルチオ)メタン等の脂肪族ポリチオール化合物;
1,3,5-トリメルカプトベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチレンオキシ)ベンゼン、1,3,5-トリス(メルカプトエチレンオキシ)ベンゼン等の芳香族ポリチオール化合物;
2,4,6-トリメルカプト-s-トリアジン、2,4,6-トリメルカプト-1,3,5-トリアジン等の複素環ポリチオール化合物;等が挙げられる。
 ポリチオール化合物(d2)として、これを含む重合性組成物を硬化して得られるチオウレタンウレア樹脂の光学的特性の観点から、好ましくは、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパンからなる群から選ばれる少なくとも1種の化合物が用いられる。
 中でも、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンおよび4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンからなる群から選ばれる少なくとも1種の化合物が好ましく用いられる。
 一実施形態において、重合性樹脂組成物は、上記プレポリマーと第一のポリチオール化合物(D1)に加え、第二のジオール(B2)を含む。
 第二のジオール化合物(B2)は、上述の第一のジオール(B1)と同じであってもよいし、異なっていてもよい。好ましくは、第二のジオール化合物は、100mPa・s以上の粘度(25℃)を有し、より好ましくは、100mPa・sより大きく30000mPa・s以下の粘度(25℃)を有する。第二のジオール化合物(B2)は、分子量が100~3000の範囲であることが好ましい。このようなジオール化合物(B2)としては、ポリエチレングリコール、シクロブタンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、ヒドロキシプロピルシクロヘキサノール、トリシクロ[5.2.1.0(2,6)]デカン-ジメタノール、ビシクロ[4.3.0]-ノナンジオール、ジシクロヘキサンジオール、トリシクロ[5.3.1.1]ドデカンジオール、ビシクロ[4.3.0]ノナンジメタノール、トリシクロ[5.3.1.1]ドデカンジエタノール、ヒドロキシプロピルトリシクロ[5.3.1.1]ドデカノール、スピロ[3.4]オクタンジオール、ブチルシクロヘキサンジオール、1,1’-ビシクロヘキシリデンジオール、ジヒドロキシベンゼン、ビスフェノールF、テトラブロムビスフェノールA、テトラブロムビスフェノールA-ビス-(2-ヒドロキシエチルエーテル)、ポリプロピレングリコール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、アルコールエトキシレート、ポリカプロラクトンジオール、エトキシ化ビスフェノールA;
ビス-[4-(ヒドロキシエトキシ)フェニル]スルフィド、ビス-[4-(2-ヒドロキシプロポキシ)フェニル]スルフィド、ビス-[4-(2,3-ジヒドロキシプロポキシ)フェニル]スルフィド、ビス-[4-(4-ヒドロキシシクロヘキシロキシ)フェニル]スルフィド、ビス-[2-メチル-4-(ヒドロキシエトキシ)-6-ブチルフェニル]スルフィドおよびこれらの化合物に水酸基当たり平均3分子以下のエチレンオキシドおよび/またはプロピレンオキシドが付加された化合物;および
ジ-(2-ヒドロキシエチル)スルフィド、1,2-ビス-(2-ヒドロキシエチルメルカプト)エタン、ビス(2-ヒドロキシエチル)ジスルフィド、1,4-ジチアン-2,5-ジオール、ビス(2,3-ジヒドロキシプロピル)スルフィド、テトラキス(4-ヒドロキシ-2-チアブチル)メタン、ビス(4-ヒドロキシフェニル)スルホン(ビスフェノールS)、テトラブロモビスフェノールS、テトラメチルビスフェノールS、4,4’-チオビス(6-tert-ブチル-3-メチルフェノール)、1,3-ビス(2-ヒドロキシエチルチオエチル)-シクロヘキサン等が挙げられるが、これらに限定されない。
 上述の第二のジオール(B2)を用いることにより、これを含む重合性組成物を硬化して得られるチオウレタンウレア樹脂は、低いhazeを有するとともに、優れた耐熱性を有する。
 一実施形態において、重合性樹脂組成物は、上記プレポリマーと第一のポリチオール化合物(D1)に加え、第二のアミン化合物(A2)を含む。ここで第二のアミン化合物(A2)は、400以上4000未満の重量平均分子量を有することが好ましい。第二のアミン化合物(A2)は、第一のアミン化合物(A1)と同じであっても異なっていてもよいが、異なるアミン化合物であることが好ましく、重量平均分子量が、400以上4000未満であることが好ましく、600以上2000以下であることがさらに好ましい。このようなアミン化合物(A2)としては、ポリエーテルアミン化合物が好ましく、具体的には(プロピレングリコール)ビス(2-アミノプロピルエーテル)、(エチレングリコール)ビス(2-アミノプロピルエーテル)、(プロピレングリコール)トリス(2-アミノプロピルエーテル)、(エチレングリコール)トリス(2-アミノプロピルエーテル)等が挙げられ、市販品としてはJeffamineDシリーズ、JeffamineEDシリーズ、JeffamineTシリーズ(HUNTSMAN社製)などが挙げられるが、これらに限定されない。第二のアミン化合物(A2)を用いることにより、得られる重合性組成物の粘度(25℃)やポットライフを調整できる。また、第二のアミン化合物(A2)を用いることにより、これを含む重合性組成物を硬化して得られるチオウレタンウレア樹脂の光学物性、耐衝撃性、比重等の諸物性を目的の用途に応じて調整できる。
 一実施形態において、重合性樹脂組成物は、上記プレポリマーと第一のポリチオール化合物(D1)に加え、第二のアミン化合物(A2)と第二のジオール化合物(B2)とを含む。第二のアミン化合物(A2)および第二のジオール化合物(B2)を用いることにより、得られる重合性組成物の粘度(25℃)やポットライフを調整することができる。また、これらを用いることにより、重合性組成物を硬化して得られるチオウレタンウレア樹脂の、光学物性、耐衝撃性、比重等の諸特性を目的の用途に応じて調整することができる。
 本実施形態の重合性組成物は、上記成分に加え、重合触媒を含むことが好ましい。用いられる重合触媒としては、ジメチル錫クロライド、ジブチル錫クロライド、ジブチル錫ジラウリレート等が挙げられるが、これらに限定されない。触媒の配合量は、重合性組成物100重量部に対して、0.005重量部~0.5重量部が好ましく、0.005重量部~0.3重量部がより好ましい。
 本実施形態の光学材料用重合性組成物は、当該組成物が適用される用途で所望される特性に応じて、内部離型剤、樹脂改質剤、光安定剤、ブルーイング剤、紫外線吸収剤、酸化防止剤、着色防止剤、染料、フォトクロミック色素等の添加剤を含んでもよい。
(重合性組成物の製造方法)
 本発明の光学材料用重合性組成物の製造方法を、以下の実施の形態に基づいて説明する。
 本発明の光学材料用重合性組成物の製造方法は、
 4000未満の重量平均分子量を有する第一のアミン化合物(A1)と、100mPa・s以下の粘度(25℃)を有する第一のジオール化合物(B1)とを混合して、第一の混合物を得る第一の工程と、
 前記第一の混合物と、ポリイソシアネート化合物(C)とを混合して、プレポリマーを得る第二の工程と、
 前記プレポリマーと、触媒とを混合し、次いで2つのメルカプト基を有するジチオール化合物(d1)および3つ以上のメルカプト基を有するポリチオール化合物(d2)を含む第一のポリチオール化合物(D1)を添加してこれらを混合する第三の工程と、を含む。ここで、第一のアミン化合物(A1)はポリエーテルアミンおよび芳香族アミンから選択される少なくとも1種である。
 本実施形態の重合性組成物の製造に用いられるアミン化合物(A1)は、ジオール化合物(B1)およびポリイソシアネート化合物(C)、ならびにポリチオール化合物(D1)は、上述のとおりである。
 本実施形態の重合性組成物の製造において、第一の工程で作製されるアミン化合物(A1)とジオール化合物(B1)との混合物が、第二の工程において、ポリイソシアネート化合物(C)との反応に供される。当該工程を採用することにより、上記反応により生じるプレポリマーが反応溶液中に析出することなく、プレポリマーが均一に溶解したプレポリマー溶液が得られる。これにより、続く、ポリチオール化合物(D1)との反応により得られるチオウレタンウレア樹脂は、所望の光学特性を有する。
 アミン化合物(A1)として上述のポリエーテルアミンを用いることにより、本実施形態の第二の工程において、プレポリマーの析出がなく、また得られるチオウレタンウレア樹脂は優れた耐衝撃性を有する。
 第一のアミン化合物(A1)と後述する第二のアミン化合物(A2)は同じであっても異なっていてもよいが、異なるアミン化合物であることが好ましい。重量平均分子量が400未満のアミン化合物を用いる場合は、均一なプレポリマーを得るために、第一のアミン化合物(A1)として、第一の工程で添加することが好ましい。重量平均分子量が400以上4000未満のアミン化合物は、第一のアミン化合物(A1)として第一の工程で添加しても、第二のアミン化合物(A2)として第三の工程で添加してもよい。
 本実施形態の光学材料用重合性組成物の製造に用いられるジオール化合物(B1)は、100mPa・s以下の粘度(25℃)を有し、好ましくは、1mPa・s以上100mPa・s以下の粘度(25℃)を有する。ジオール化合物(B1)は、好ましくは、分子量が、50~350の範囲であることが好ましい。このようなジオール化合物(B1)を用いることにより、第二の工程におけるアミン化合物(A1)とポリイソシアネート化合物(C)との反応が穏やかに進み、均一なプレポリマー溶液が生成し得る。
 本実施形態の光学材料用重合性組成物の製造方法の第三の工程では、触媒を用いてもよい。用いられる触媒としては、ジメチル錫クロライド、ジブチル錫クロライド、ジブチル錫ジラウリレート等が挙げられるが、これらに限定されない。
 一実施形態において、上記第三の工程は、さらに第二のジオール(B2)を添加する工程を含んでもよい。換言すると、上記第三の工程は、第二の工程で得られたプレポリマーと、触媒とを混合し、次いで、ポリチオール化合物(D1)を添加した後、第二のジオール化合物(B2)を添加してこれらを混合する工程を含み得る。
 第二のジオール化合物(B2)は、上記のとおり第一のジオール(B1)と同じであってもよいし、異なっていてもよい。
 上述の第二のジオール(B2)を用いることにより、得られるチオウレタンウレア樹脂は、低いhazeを有するとともに、優れた耐熱性を有する。
 一実施形態において、上記第三の工程は、第二の工程で得られたプレポリマーと、触媒とを混合し、次いで、第二のアミン化合物(A2)およびポリチオール化合物(D1)を添加してこれらを混合する工程を含んでもよい。ここで第二のアミン化合物(A2)は、400以上4000未満の重量平均分子量を有することが好ましい。第二のアミン化合物(A2)は、第一のアミン化合物(A1)と同じであっても異なっていてもよいが、異なるアミン化合物であることが好ましい。第二のアミン化合物(A2)は、ポリチオール化合物(D1)と同時にまたは別個にプレポリマーに添加されるが、好ましくは、第二のアミン化合物(A2)は、ポリチオール化合物(D1)の添加前に、プレポリマーに添加されることが好ましい。第二のアミン化合物(A2)を用いることにより、得られる重合性組成物の粘度(25℃)やポットライフを調整できる。また、第二のアミン化合物(A2)を用いることにより、重合性組成物を硬化して得られるチオウレタンウレア樹脂の光学物性、耐衝撃性、比重等の諸物性を目的の用途に応じて調整できる。
 一実施形態において、上記第三の工程は、第二の工程で得られたプレポリマーと、触媒とを混合し、次いで、第二のアミン化合物(A2)、ポリチオール化合物(D1)、および第二のジオール化合物(B2)を添加してこれらを混合する工程を含んでもよい。第二のアミン化合物(A2)、ポリチオール化合物(D1)、および第二のジオール化合物(B2)の添加は同時であっても別個であってもよいが、好ましくは、プレポリマーにまず第二のアミン化合物(A2)を添加し、次いでポリチオール化合物(D1)および第二のジオール化合物(B2)を添加することが好ましい。このように第二のアミン化合物(A2)、第二のジオール化合物(B2)を用いることにより、得られる重合性組成物の粘度(25℃)やポットライフを調整することができる。また、これらを用いることにより、重合性組成物を硬化して得られるチオウレタンウレア樹脂の、光学物性、耐衝撃性、比重等の諸特性を目的の用途に応じて調整することができる。
<用途>
 本実施形態の重合性組成物は、光学物品の製造に用いることができる。詳細には、上記の方法により光学材料用重合性組成物を得る工程と、得られた光学材料用重合性組成物を、注型重合法により重合硬化して光学物品を得る工程とにより、光学物品を製造することができる。ここで、光学物品としては、プラスチック眼鏡レンズ、ゴーグル、視力矯正用眼鏡レンズ、撮像機器用レンズ、液晶プロジェクター用フレネルレンズ、レンチキュラーレンズ、コンタクトレンズなどの各種プラスチックレンズ、発光ダイオード(LED)用封止材、光導波路、光学レンズや光導波路の接合に用いる光学用接着剤、光学レンズなどに用いる反射防止膜、液晶表示装置部材(基板、導光板、フィルム、シートなど)に用いる透明性コーティングまたは、車のフロントガラスやバイクのヘルメットに貼り付けるシートやフィルム、透明性基板等を挙げることができる。
 本実施形態において、たとえば、光学物品の製造方法は、例えば、以下の工程を含む。
工程a1:本実施形態の光学材料用重合性組成物を鋳型内に注型する。
工程b1:前記光学材料用重合性組成物を加熱し、該組成物を重合硬化して硬化物(チオウレタンウレア樹脂成形体)を得る。
 工程a1において、はじめに、ガスケットまたはテープ等で保持された成型モールド(鋳型)内に重合性組成物を注入する。この時、得られる光学物品に要求される物性によっては、必要に応じて、減圧下での脱泡処理や加圧、減圧等の濾過処理等を行うことが好ましい場合が多い。
 工程b1において、注型重合が実施される。モールドについては、重合性組成物の組成、触媒の種類と使用量、モールドの形状等によって大きく条件が異なるため限定されるものではないが、およそ、-50~150℃の温度で1~50時間かけて行われる。場合によっては、10~150℃の温度範囲で保持または徐々に昇温して、1~25時間で硬化させることが好ましい。
 本実施形態のチオウレタンウレア樹脂からなる光学物品は、必要に応じて、アニール等の処理を行ってもよい。処理温度は通常50~150℃の間で行われるが、90~140℃で行うことが好ましく、100~130℃で行うことがより好ましい。
 本実施形態の方法により得られる光学物品は、例えば眼鏡レンズ用のレンズ基材として使用することができる。このレンズ基材には、必要に応じて、片面または両面にコーティング層を施してもよい。コーティング層としては、ハードコート層、反射防止層、防曇コート膜層、防汚染層、撥水層、プライマー層、フォトクロミック層等が挙げられる。これらのコーティング層はそれぞれ単独で用いることも複数のコーティング層を多層化して使用することもできる。両面にコーティング層を施す場合、それぞれの面に同様なコーティング層を施しても、異なるコーティング層を施してもよい。
 本実施形態の光学物品を眼鏡レンズ用のレンズ基材に適用する場合、本実施形態の重合性組成物を硬化させて得られる光学物品(レンズ基材)の少なくとも一方の面上に、ハードコート層および/または反射防止コート層とを形成する。
 本実施形態の光学物品はまた、プレスチック偏光レンズのレンズ基材として使用することができる。プレスチック偏光レンズは、偏光フィルムの両面に、あらかじめ製造したレンズ基材を貼り合わせる方法、または偏光フィルムの両面に重合性組成物を注型重合する方法により製造される。以下に、注型重合によるプラスチック偏光レンズの製造方法を説明する。
 注型重合によるプラスチック偏光レンズの製造方法は、以下の工程を含む。
工程a2:レンズ注型用鋳型内に、偏光フィルムの少なくとも一方の面がモールドから離隔した状態で、該偏光フィルムを固定する。
工程b2:前記偏光フィルムと前記モールドとの間の空隙に、本実施形態の重合性組成物を注入する。
工程c2:前記重合性組成物を加熱し、該組成物を重合硬化して、前記偏光フィルムの少なくとも一方の面に本実施形態の重合性組成物の硬化物からなる基材層を積層する。
 工程a2において、レンズ注型用鋳型の空間内に、熱可塑性ポリエステル等からなる偏光フィルムを、フィルム面の少なくとも一方が対向するモールド内面と並行となるように設置する。偏光フィルムとモールドとの間には、空隙部が形成される。偏光フィルムは予め附形されていてもよい。
 続く工程b2において、レンズ注型用鋳型の空間内において、モールドと偏光フィルムとの間の空隙部に、所定の注入手段により本実施形態の光学材料用重合性組成物を注入する。
 続く工程c2において、光学材料用重合性組成物が注入された偏光フィルムが固定されたレンズ注型用鋳型をオーブン中または水中等の加熱可能装置内で所定の温度プログラムにて数時間から数十時間かけて加熱して硬化成型する。
 重合硬化の温度は、重合性組成物の組成、触媒の種類、モールドの形状等によって条件が異なるため限定できないが、0~140℃の温度で1~48時間かけて行われる。
 硬化成形終了後、レンズ注型用鋳型から取り出すことで、偏光フィルムの少なくとも一方の面に本実施形態の重合性組成物の硬化物からなる層が積層された、プラスチック偏光レンズを得ることができる。
 以上、本発明を実施形態により説明したが、本発明前述の実施形態に限定されるものではなく、本発明の効果を損なわない範囲で様々な態様をとることができる。
 以下に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 まず、本発明の実施例で得られる樹脂の評価方法を以下に示す。
<評価方法>
・透明性:得られた樹脂を暗所にてプロジェクターに照射して、曇り(テープからの溶出を含む)、不透明物質の有無を目視にて判断した。曇り(テープからの溶出を含む)、不透明物質が確認されないものを「○」(透明性あり)、確認されたものを「×」(透明性なし)とした。
・HAZE:日本電色工業株式会社製のヘイズメーター(型番:NDH 2000)を使用し、2.5mm厚の平板の樹脂のHAZE値を測定した。
・歪み(脈理):得られたレンズを高圧UVランプに投影して、レンズ内に歪みが見られないものを「◎」(脈理なし)、目視観察にてレンズ内に歪みが見られないものを「○」、目視観察にてレンズ内に歪みが見られるものを「×」(脈理あり)とした。
・屈折率(ne)、アッベ数(νe):プルフリッヒ屈折計を用い、20℃で測定した。
・耐熱性:TMAペネートレーション法(50g荷重、ピン先0.5mmφ、昇温速度10℃/min)でのガラス転移温度Tgを測定した。
・比重:アルキメデス法により測定した。
・耐衝撃性:中心厚1mmのレンズに、米国FDAに準拠する、127cmの高さより軽い鋼球から重い鋼球へ、破断するまで順に落下させて、破断した鋼球重量により耐衝撃性を評価した。鋼球は8g→16g→28g→33g→45g→67g→95g→112g→174g→225g→530gの順で実施した。なお、表中、「>530g」の表記のものは、530gの鋼球を落下させても破断しなかったことを示す。
・耐光性:2mm厚平板を用いてQ-Lab製促進耐光性試験機にてQUV試験(光源:UVA-340、強度:0.50W/m、試験条件:50℃×200時間)を実施し、照射前後の色相変化を測定した。
・耐溶剤性:得られたレンズの表面に、アセトンを染み込ませた不織布を10秒間押し当て、レンズ表面に膨潤の跡が確認されないものを「○」(耐溶剤性あり)、膨潤の跡が確認されるものを「×」(耐溶剤性なし)とした。
[実施例1]
・(第一工程)
 20mlのガラス製ビーカーに、A1-1を7.00重量部と、B1-1を5.00重量部温度25℃において30分かけて混合溶解させた。混合溶解し得られた第一の混合物の粘度(25℃)は32mPa・sであった。
・(第二工程)
 C-1の57.90重量部に、第一工程により得られた第一の混合物を25℃において1時間かけて滴下反応させ、プレポリマーを得た。
・(第三工程)
 第二工程により得られたプレポリマーに、触媒としてジブチルスズジクロライド0.10重量部、内部離型剤(三井化学社製;商品名MR用内部離型剤)0.30重量部を混合溶解し均一溶液とした。得られた均一溶液に、d-1を14.55重量部、d2-1を15.55重量部添加し、25℃で10分混合溶解させ、第二の混合物を得た。
・成形体の製造
 第三工程により得られた第二の混合物を400Paの減圧条件下にて脱泡を行った後、ガラス製の成型モールドへ注入した。これを重合オーブンへ投入して、25℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。得られた成形体を更に120℃で1時間アニール処理を行った。得られた成形体の評価結果を表1に示す。
[実施例2~6、22~25]
 用いる化合物の種類と配合量を表1記載の通り変えた以外は、実施例1と同様の方法で成形体を得た。成形体の評価結果を表1に示す。
[実施例7]
 用いる化合物の種類と配合量を表1記載の通り変えた以外は実施例1と同様の方法で、第三工程における均一溶液を得て、C-2を10.10重量部、d-1を15.25重量部、d2-1を16.25重量部添加し、25℃で10分混合溶解させ、第二の混合物を得た。続いて、各化合物の重量部を表1の通り変えた以外は、実施例1と同様の方法で成形体を製造した。得られた成形体の評価結果を表1に示す。
[実施例8]
 用いる化合物の種類と配合量を表1記載の通り変えた以外は実施例1と同様の方法で、第三工程における均一溶液を得て、A2-1を6.00重量部、d-1を16.81重量部、d2-1を17.97重量部添加し、25℃で10分混合溶解させ、第二の混合物を得た。続いて、各化合物の配合量を表1の通り変えた以外は、実施例6と同様の方法で成形体を製造した。得られた成形体の評価結果を表1に示す。
[実施例9~12]
 用いる化合物の種類と配合量を表1記載の通り変えた以外は実施例8と同様の方法で成形体を得た。得られた成形体の評価結果を表1に示す。
[実施例13]
 用いる化合物の種類と配合量を表1記載の通り変えた以外は実施例1と同様の方法で第三工程における均一溶液を得て、B2-1を7.50重量部、d-1を20.60重量部、d2-1を9.45重量部添加し、25℃で10分混合溶解させ、第二の混合物を得た。続いて各化合物の配合量を表1の通り変えた以外は、実施例1と同様の方法で成形体を製造した。得られた成形体の評価結果を表1に示す。
[実施例14~18、21、26~31]
 用いる化合物の種類と配合量を表1記載の通り変えた以外は実施例13と同様の方法で成形体を得た。得られた成形体の評価結果を表1に示す。
[実施例19]
 用いる化合物の種類と配合量を表1記載の通り変えた以外は実施例1と同様の方法で第三工程における均一溶液を得て、A2-1を2.5重量部、B2-1を5.00重量部、d-1を21.63重量部、d2-1を9.91重量部添加し、25℃で10分混合溶解させ、第二の混合物を得た。続いて各化合物の配合量を表1の通り変えた以外は、実施例1と同様の方法で成形体を製造した。得られた成形体の評価結果を表1に示す。
[実施例20]
 用いる化合物の重量部を表1記載の通り変えた以外は実施例19と同様の方法で処理した。結果は表-1の通りであった。
[比較例1]
 用いる化合物の種類と配合量を表1記載の通り変えた以外は実施例1と同様の方法で、第二工程により得られたプレポリマーに、触媒としてジブチルスズジクロライド0.10重量部、内部離型剤(三井化学社製;商品名MR用内部離型剤)0.30重量部を混合溶解し均一溶液とした。得られた均一溶液に、d-1のみを36.55重量部添加し、25℃で10分混合溶解させ、第二の混合物を得た。第三工程により得られた第二の混合物を400Paの減圧条件下にて脱泡を行った後、ガラス製の成型モールドへ注入した。これを重合オーブンへ投入して、25℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行い、成形体を得たが、得られた成形体は多量の気泡が発生混入しており物性データの取得ができなかった。
[比較例2~3]
 ジオール化合物(B-1)を用いずに、ポリイソシアネート化合物(C-1)にアミン化合物(A1)を滴下反応し第二工程のプレポリマーの合成を試みたが、アミン化合物(A1)滴下と同時にポリマーが析出し、均一なプレポリマーが得られず調合を中止した。
[比較例4~9、13]
 用いる化合物の種類と配合量を表1記載の通り変えた以外は実施例1と同様の方法で、第二工程のプレポリマーの合成を試みたが、第一工程で得られた第一の混合物の滴下と同時にポリマーが析出し、均一なプレポリマーが得られず調合を中止した。
[比較例10]
 用いる化合物の配合量を表1記載の通り変えた以外は実施例1と同様の方法で成形体を作製した。得られた成形体の評価結果を表1に示す。比較例10の成形体は、実施例1と比較し耐衝撃性が劣る結果となった。
[比較例11および12]
 用いる化合物の重量部を表1記載の通り変えた以外は実施例1と同様の方法で成形体を作製した。しかしながら、得られた成形体は多量の気泡が発生混入しており物性データの取得ができなかった。
[参考例1~3]
 用いる化合物の種類と配合量を表1記載の通り変えた以外は実施例1と同様の方法で、第二工程のプレポリマーの合成を試みたが、第一工程で得られた第一の混合物の滴下と同時にポリマーが析出し、均一なプレポリマーが得られず調合を中止した。
Figure JPOXMLDOC01-appb-T000012
 表中の記号は以下の意味を表す。
(アミン化合物(A1))
・A1-1:重量平均分子量400の(プロピレングリコール)ビス(2-アミノプロピルエーテル)(Hunstman社製のJeffamine D-400)
・A1-2:ジエチルトルエンジアミン(Albemarle Corporation社製のEthacure 100)
・A1-3:重量平均分子量230の(プロピレングリコール)ビス(2-アミノプロピルエーテル)(Hunstman社製のJeffamine D-230)
・A1-4:重量平均分子量4000の(プロピレングリコール)ビス(2-アミノプロピルエーテル)(Hunstman社製のJeffamine D-4000)
・A1-5:m-キシリレンジアミン
・A1-6:ヘキサメチレンジアミン
(アミン化合物(A2))
・A2-1:重量平均分子量2000の(プロピレングリコール)ビス(2-アミノプロピルエーテル)(Hunstman社製のJeffamine D-2000)
(ジオール化合物(B1))
・B1-1:プロピレングリコール
・B1-2:ジプロピレングリコール
・B1-3:トリプロピレングリコール
・B1-4:エチレングリコール
・B1-5:ジエチレングリコール
・B1-6:トリエチレングリコール
・B1-7:ポリプロピレングリコール、ジオール型400
・B1-8:トリシクロデカンジメタノール
(ジオール化合物(B2))
・B2-1:1,4-シクロヘキサンジメタノール
・B2-2:トリシクロデカンジメタノール
・B2-3:ポリエーテルポリオール(重量平均分子量2000、三井化学社製、アクトコール ED-56)
・B2-4:ポリカプロラクトンジオール(重量平均分子量500、ダイセル化学社製)
・B2-5:ポリカーボネートジオール(重量平均分子量500、宇部興産社製)
・B2-6:ポリカーボネート(重量平均分子量1000、ジオール宇部興産社製)
・B2-7:ビスフェノールAエトキシレート(数平均分子量492、アルドリッチ試薬EO/phenol,3)
(ポリイソシアネート化合物(C))
・C-1:2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンと2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンの混合物
・C-2:ヘキサメチレンジイソシアネート
(ポリチオール化合物(D1)
・d1:ビス(2-メルカプトエチル)スルフィド
・d2-1:4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン
・d2-2:5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物
 実施例の方法では、プレポリマー合成時にポリマーが析出することなく、光学特性と機械的特性のバランスに優れた樹脂が得られた。一方、比較例の方法では、プレポリマー合成時にポリマーが析出し樹脂の調製ができなかった。
 この出願は、2018年3月16日に出願された日本出願特願2018-048936号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (23)

  1.  4000未満の重量平均分子量を有する第一のアミン化合物(A1)と、100mPa・s以下の粘度(25℃)を有する第一のジオール化合物(B1)と、ポリイソシアネート化合物(C)との反応生成物であるプレポリマー、
     第一のポリチオール化合物(D1)、および
     触媒、を含み、
     前記第一のアミン化合物(A1)が、ポリエーテルアミンおよび芳香族アミンから選択される少なくとも1つであり、
     前記第一のポリチオール化合物(D1)が、2つのメルカプト基を有するジチオール化合物(d1)および3つ以上のメルカプト基を有するポリチオール化合物(d2)を含む、光学材料用重合性組成物。
  2.  前記ポリエーテルアミンが、式(1)で表されるポリエーテルアミンおよび式(2)で表されるポリエーテルアミンからなる群から選択される少なくとも1つを含む、請求項1に記載の光学材料用重合性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R~Rはそれぞれ水素原子またはメチル基を示す。pは0~49の整数を示し、qは0~65の整数を示し、rは1~50の整数を示し、p+rは1~99の整数を満たす。複数存在するR同士またはR同士は同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R、R、Rはそれぞれ水素原子またはメチル基を示す。Rは炭素数1~20の直鎖アルキル基、炭素数3~20の分岐アルキル基又は炭素数3~20の環状アルキル基を示す。x+y+zは1~50の整数を示す。nは0~10の整数を示す。複数存在するR同士、R同士またはR同士はそれぞれ同一でも異なっていてもよい。)。
  3.  前記ポリエーテルアミンが、230を超える重量平均分子量を有する、請求項2に記載の光学材料用重合性組成物。
  4.  前記芳香族アミンが、3,5-ジエチルトルエン-2,4-ジアミンおよび3,5-ジエチルトルエン-2,6-ジアミンからなる群から選択される少なくとも1つである、請求項1に記載の光学材料用重合性組成物。
  5.  第二のジオール化合物(B2)をさらに含む、請求項1~4のいずれかに記載の光学材料用重合性組成物。
  6.  400以上4000未満の重量平均分子量を有する第二のアミン化合物(A2)をさらに含む、請求項1~4のいずれかに記載の光学材料用重合性組成物。
  7.  400以上4000未満の重量平均分子量を有する第二のアミン化合物(A2)および第二のジオール化合物(B2)をさらに含む、請求項1~4のいずれかに記載の光学材料用重合性組成物。
  8.  前記第一のジオール化合物(B1)が、脂肪族直鎖ジオールを含む、請求項1~7のいずれかに記載の光学材料用重合性組成物。
  9.  前記第一のジオール化合物(B1)が、1mPa・s以上100mPa・s以下の粘度(25℃)を有する、請求項1~8のいずれかに記載の光学材料用重合性組成物。
  10.  前記第二のジオール化合物(B2)が、100mPa・s以上の粘度(25℃)を有する、請求項5または7に記載の光学材料用重合性組成物。
  11.  前記触媒が、ジメチル錫クロライド、ジブチル錫クロライド、およびジブチル錫ジラウリレートから選択される少なくとも1つを含む、請求項1~10のいずれかに記載の光学材料用重合性組成物。
  12.  4000未満の重量平均分子量を有する第一のアミン化合物(A1)と、100mPa・s以下の粘度(25℃)を有する第一のジオール化合物(B1)とを混合して、第一の混合物を得る第一の工程であって、前記第一のアミン化合物(A1)がポリエーテルアミンおよび芳香族アミンから選択される少なくとも1つである、第一の工程と、
     前記第一の混合物と、ポリイソシアネート化合物(C)とを混合して、プレポリマーを得る第二の工程と、
     前記プレポリマーと、触媒とを混合し、次いで2つのメルカプト基を有するジチオール化合物(d1)および3つ以上のメルカプト基を有するポリチオール化合物(d2)を含む第一のポリチオール化合物(D1)を添加してこれらを混合する第三の工程と、を含む、光学材料用重合性組成物の製造方法。
  13.  前記ポリエーテルアミンが、式(1)で表されるポリエーテルアミンおよび式(2)で表されるポリエーテルアミンからなる群から選択される少なくとも1つを含む、請求項12に記載の光学材料用重合性組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、R~Rはそれぞれ水素原子またはメチル基を示す。pは0~49の整数を示し、qは0~65の整数を示し、rは1~50の整数を示し、p+rは1~99の整数を満たす。複数存在するR同士またはR同士は同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000004
    (式(2)中、R、R、Rはそれぞれ水素原子またはメチル基を示す。Rは炭素数1~20の直鎖アルキル基、炭素数3~20の分岐アルキル基又は炭素数3~20の環状アルキル基を示す。x+y+zは1~50の整数を示す。nは0~10の整数を示す。複数存在するR同士、R同士またはR同士はそれぞれ同一でも異なっていてもよい。)。
  14.  前記ポリエーテルアミンが、230を超える重量平均分子量を有する、請求項13に記載の光学材料用重合性組成物の製造方法。
  15.  前記芳香族アミンが、3,5-ジエチルトルエン-2,4-ジアミンおよび3,5-ジエチルトルエン-2,6-ジアミンからなる群から選択される少なくとも1つである、請求項12に記載の光学材料用重合性組成物の製造方法。
  16.  前記第三の工程が、前記プレポリマーと、前記触媒とを混合し、次いで前記第一のポリチオール化合物(D1)を添加してこれらを混合した後、第二のジオール化合物(B2)を添加してこれらを混合する工程を含む、請求項12~15のいずれかに記載の光学材料用重合性組成物の製造方法。
  17.  前記第三の工程が、前記プレポリマーと、前記触媒とを混合し、次いで、400以上4000未満の重量平均分子量を有する第二のアミン化合物(A2)および前記第一のポリチオール化合物(D1)を添加してこれらを混合する工程を含む、請求項12~15のいずれかに記載の光学材料用重合性組成物の製造方法。
  18.  前記第三の工程が、前記プレポリマーと、前記触媒とを混合し、次いで、前記第二のアミン化合物(A2)、前記第一のポリチオール化合物(D1)、および第二のジオール化合物(B2)を添加してこれらを混合する工程を含む、請求項12~15のいずれかに記載の光学材料用重合性組成物の製造方法。
  19.  前記第一のジオール化合物(B1)が、脂肪族直鎖ジオールを含む、請求項12~18のいずれかに記載の光学材料用重合性組成物の製造方法。
  20.  前記第一のジオール化合物(B1)が、1mPa・s以上100mPa・s以下の粘度(25℃)を有する、請求項12~19のいずれかに記載の光学材料用重合性組成物の製造方法。
  21.  前記第二のジオール化合物(B2)が、100mPa・s以上の粘度(25℃)を有する、請求項16または18に記載の光学材料用重合性組成物の製造方法。
  22.  請求項1~11のいずれかに記載の光学材料用重合性組成物を、注型重合法により重合硬化して光学物品を得る工程を含む光学物品の製造方法。
  23.  請求項12~21のいずれかに記載の方法により光学材料用重合性組成物を得る工程と、
     前記光学材料用重合性組成物を、注型重合法により重合硬化して光学物品を得る工程と、を含む光学物品の製造方法。
PCT/JP2019/010785 2018-03-16 2019-03-15 光学材料用重合性組成物、光学材料用重合性組成物の製造方法および光学物品の製造方法 WO2019177141A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020506668A JP7012821B2 (ja) 2018-03-16 2019-03-15 光学材料用重合性組成物、光学材料用重合性組成物の製造方法および光学物品の製造方法
KR1020207024314A KR102445277B1 (ko) 2018-03-16 2019-03-15 광학 재료용 중합성 조성물, 광학 재료용 중합성 조성물의 제조 방법 및 광학 물품의 제조 방법
US16/977,110 US11279791B2 (en) 2018-03-16 2019-03-15 Polymerizable composition for optical material, method for manufacturing polymerizable composition for optical material, and method for manufacturing optical article
CN201980015120.XA CN111788245B (zh) 2018-03-16 2019-03-15 光学材料用聚合性组合物、光学材料用聚合性组合物的制造方法及光学物品的制造方法
EP19766984.9A EP3766910B1 (en) 2018-03-16 2019-03-15 Polymerizable composition for optical material, method of producing polymerizable composition for optical material, and method of producing optical article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018048936 2018-03-16
JP2018-048936 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019177141A1 true WO2019177141A1 (ja) 2019-09-19

Family

ID=67907242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010785 WO2019177141A1 (ja) 2018-03-16 2019-03-15 光学材料用重合性組成物、光学材料用重合性組成物の製造方法および光学物品の製造方法

Country Status (6)

Country Link
US (1) US11279791B2 (ja)
EP (1) EP3766910B1 (ja)
JP (1) JP7012821B2 (ja)
KR (1) KR102445277B1 (ja)
CN (1) CN111788245B (ja)
WO (1) WO2019177141A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138962A1 (ja) * 2020-12-25 2022-06-30 三井化学株式会社 イソ(チオ)シアネート化合物、光学材料用重合性組成物、成形体、光学材料、プラスチックレンズ、プラスチック偏光レンズ、イソ(チオ)シアネート化合物の製造方法、光学材料用重合性組成物の製造方法、光学材料の製造方法及びプラスチック偏光レンズの製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184514A (ja) * 1984-02-27 1985-09-20 グ−リト−エセツクス・アクテイエンゲゼルシヤフト ポリウレタンベースの化学硬化性二成分組成物、及び該組成物の調製方法
JPH0693073A (ja) * 1992-09-10 1994-04-05 Toray Chiokoole Kk 一液硬化型組成物
JPH10306210A (ja) * 1997-05-08 1998-11-17 Yokohama Rubber Co Ltd:The 硬化性組成物
JP2003514934A (ja) * 1999-11-18 2003-04-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド 光学重合体の調製方法
WO2004108786A1 (ja) * 2003-06-09 2004-12-16 Hoya Corporation ポリオール化合物、透明成形体、及び透明成形体の製造方法
JP2005509703A (ja) * 2001-11-16 2005-04-14 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 高衝撃ポリ(ウレタンウレア)ポリスルフィド
JP2009520057A (ja) * 2005-12-16 2009-05-21 ピーピージー インダストリーズ オハイオ, インコーポレイテッド ポリウレタン、ポリウレタン(ウレア)、硫黄含有ポリウレタンおよび硫黄含有ポリウレタン(ウレア)ならびに調製方法
JP2009536255A (ja) * 2006-05-05 2009-10-08 ピーピージー インダストリーズ オハイオ インコーポレーテツド チオエーテル官能性ポリチオールオリゴマーから調製される組成物および物品
WO2016006606A1 (ja) * 2014-07-08 2016-01-14 三井化学株式会社 光学材料用重合性組成物およびその用途
WO2016006605A1 (ja) * 2014-07-08 2016-01-14 三井化学株式会社 光学材料用重合性組成物およびその用途
JP2018048936A (ja) 2016-09-23 2018-03-29 セイコーエプソン株式会社 携帯型電子機器
WO2018079518A1 (ja) * 2016-10-25 2018-05-03 三井化学株式会社 光学材料用重合性組成物、該組成物から得られた光学材料及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008296A (en) * 1995-04-19 1999-12-28 Optima, Inc. Optical terpolymer of polyisocyanate, polythiol and polyene monomers
US7087698B1 (en) 1999-11-18 2006-08-08 Ppg Industries Ohio, Inc. Method of preparing an optical polymerizate
MY126872A (en) * 1999-11-18 2006-10-31 Ppg Ind Ohio Inc Method of preparing an optical polymerizate
US7098290B1 (en) 1999-11-18 2006-08-29 Ppg Industries Ohio, Inc. Method of preparing an optical polymerizate
US20070142604A1 (en) * 2005-12-16 2007-06-21 Nina Bojkova Polyurethanes and sulfur-containing polyurethanes and methods of preparation
US20040138401A1 (en) * 2002-11-05 2004-07-15 Nina Bojkova High impact poly (urethane urea) polysulfides
US7009032B2 (en) 2002-12-20 2006-03-07 Ppg Industries Ohio, Inc. Sulfide-containing polythiols
CN100455616C (zh) * 2003-06-09 2009-01-28 Hoya株式会社 多元醇化合物、透明成形体和透明成形体的制造方法
US20110313084A1 (en) 2006-07-27 2011-12-22 Ppg Industries Ohio, Inc. Coating compositions comprising polyurea and graphite
US8178644B2 (en) * 2008-01-02 2012-05-15 Polyplexx, Llc Impact-resistant polyurethane
ITMI20112102A1 (it) * 2011-11-18 2013-05-19 Acomon Ag Composizione polimerizzabile, articolo ottico ottenuto dalla stessa e metodo per la produzione di detto articolo ottico
US9568643B2 (en) 2012-12-13 2017-02-14 Ppg Industries Ohio, Inc. Polyurethane urea-containing compositions and optical articles and methods for preparing them
KR20150117593A (ko) * 2013-02-12 2015-10-20 폴리플렉스, 엘엘씨 투명 폴리우레탄
CN108690180B (zh) * 2013-12-10 2021-07-23 Ppg工业俄亥俄公司 含聚氨酯脲的组合物和光学制品及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184514A (ja) * 1984-02-27 1985-09-20 グ−リト−エセツクス・アクテイエンゲゼルシヤフト ポリウレタンベースの化学硬化性二成分組成物、及び該組成物の調製方法
JPH0693073A (ja) * 1992-09-10 1994-04-05 Toray Chiokoole Kk 一液硬化型組成物
JPH10306210A (ja) * 1997-05-08 1998-11-17 Yokohama Rubber Co Ltd:The 硬化性組成物
JP2003514934A (ja) * 1999-11-18 2003-04-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド 光学重合体の調製方法
JP2005509703A (ja) * 2001-11-16 2005-04-14 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 高衝撃ポリ(ウレタンウレア)ポリスルフィド
WO2004108786A1 (ja) * 2003-06-09 2004-12-16 Hoya Corporation ポリオール化合物、透明成形体、及び透明成形体の製造方法
JP2009520057A (ja) * 2005-12-16 2009-05-21 ピーピージー インダストリーズ オハイオ, インコーポレイテッド ポリウレタン、ポリウレタン(ウレア)、硫黄含有ポリウレタンおよび硫黄含有ポリウレタン(ウレア)ならびに調製方法
JP2009536255A (ja) * 2006-05-05 2009-10-08 ピーピージー インダストリーズ オハイオ インコーポレーテツド チオエーテル官能性ポリチオールオリゴマーから調製される組成物および物品
WO2016006606A1 (ja) * 2014-07-08 2016-01-14 三井化学株式会社 光学材料用重合性組成物およびその用途
WO2016006605A1 (ja) * 2014-07-08 2016-01-14 三井化学株式会社 光学材料用重合性組成物およびその用途
JP2018048936A (ja) 2016-09-23 2018-03-29 セイコーエプソン株式会社 携帯型電子機器
WO2018079518A1 (ja) * 2016-10-25 2018-05-03 三井化学株式会社 光学材料用重合性組成物、該組成物から得られた光学材料及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3766910A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138962A1 (ja) * 2020-12-25 2022-06-30 三井化学株式会社 イソ(チオ)シアネート化合物、光学材料用重合性組成物、成形体、光学材料、プラスチックレンズ、プラスチック偏光レンズ、イソ(チオ)シアネート化合物の製造方法、光学材料用重合性組成物の製造方法、光学材料の製造方法及びプラスチック偏光レンズの製造方法

Also Published As

Publication number Publication date
EP3766910A1 (en) 2021-01-20
US11279791B2 (en) 2022-03-22
CN111788245B (zh) 2022-05-03
US20210009746A1 (en) 2021-01-14
EP3766910B1 (en) 2022-11-09
KR102445277B1 (ko) 2022-09-19
EP3766910A4 (en) 2021-12-15
CN111788245A (zh) 2020-10-16
KR20200110428A (ko) 2020-09-23
JP7012821B2 (ja) 2022-01-28
JPWO2019177141A1 (ja) 2021-01-14

Similar Documents

Publication Publication Date Title
JP6359231B1 (ja) 光学材料用重合性組成物、該組成物から得られた光学材料及びその製造方法
KR102359796B1 (ko) 광학 재료용 중합성 조성물, 광학 재료 및 그 용도
CN105793737B (zh) 光学材料用聚合性组合物
WO2015088013A1 (ja) 光学材料用重合性組成物、光学材料及びその製造方法
BR112016028998B1 (pt) Composição polimerizável para material ótico, seu método de produção, produto moldado, material ótico e lente plástica
WO2015088011A1 (ja) 光学材料用重合性組成物、光学材料およびその用途
JP6691990B1 (ja) 光学材料用チオール含有組成物、光学材料用重合性組成物
US11279791B2 (en) Polymerizable composition for optical material, method for manufacturing polymerizable composition for optical material, and method for manufacturing optical article
JP2020184068A (ja) 光学材料用チオール含有組成物、光学材料用重合性組成物
JP2020094128A (ja) フォトクロミック光学材料用組成物およびその用途
WO2022138962A1 (ja) イソ(チオ)シアネート化合物、光学材料用重合性組成物、成形体、光学材料、プラスチックレンズ、プラスチック偏光レンズ、イソ(チオ)シアネート化合物の製造方法、光学材料用重合性組成物の製造方法、光学材料の製造方法及びプラスチック偏光レンズの製造方法
JP2020139096A (ja) 光学材料用重合性組成物、該組成物から得られた光学材料及びその製造方法
JP2023011059A (ja) 光学材料用重合性組成物、当該組成物から得られる成形体およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506668

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207024314

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019766984

Country of ref document: EP