WO2019177020A1 - Vehicle drive device - Google Patents

Vehicle drive device Download PDF

Info

Publication number
WO2019177020A1
WO2019177020A1 PCT/JP2019/010262 JP2019010262W WO2019177020A1 WO 2019177020 A1 WO2019177020 A1 WO 2019177020A1 JP 2019010262 W JP2019010262 W JP 2019010262W WO 2019177020 A1 WO2019177020 A1 WO 2019177020A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
gear
shaft
differential
differential case
Prior art date
Application number
PCT/JP2019/010262
Other languages
French (fr)
Japanese (ja)
Inventor
井上亮平
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2019177020A1 publication Critical patent/WO2019177020A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating

Definitions

  • the present invention provides a first driving force source for driving a plurality of wheels, an input member drivingly connected to the first driving force source, and a plurality of driving forces from the first driving force source transmitted via the input member. And a hydraulic pump driven by a second driving force source independent of a power transmission path connecting the first driving force source and the plurality of wheels. .
  • Patent Document 1 includes a first driving force source (first motor 24 and second motor 25) for driving a plurality of wheels and a first driving force source (first motor 24 and second motor 25).
  • a differential gear device (differential device 23) that distributes the driving force to a plurality of wheels, and a first hydraulic pump (mechanical oil pump 91) driven by a first driving force source (first motor 24, second motor 25).
  • a first driving force source (first motor 24, second motor 25) and a second hydraulic pump (electrically driven) driven by a second driving force source (third motor) independent of a power transmission path connecting the wheels.
  • An oil pump 105) is disclosed.
  • the first hydraulic pump (mechanical oil pump 91) and the second hydraulic pump (electric oil pump 105) supply lubricating oil to a lubrication target such as a gear mechanism of the differential gear device (differential device 23). Supply.
  • a lubrication target such as a gear mechanism of the differential gear device (differential device 23).
  • symbol shown in a parenthesis are the things of the patent document 1.
  • the differential gear device (differential device 23) includes a hollow differential case (differential case 51) that houses a gear mechanism as a lubrication target.
  • the differential case (differential case 51) is formed with an opening that communicates the inside and the outside, and the first hydraulic pump (mechanical oil pump 91) and the second through the opening. Oil discharged from the hydraulic pump (electric oil pump 105) is supplied to the gear mechanism. Therefore, when a long period of time has elapsed with the first hydraulic pump (mechanical oil pump 91) and the second hydraulic pump (electric oil pump 105) stopped, the oil supplied to the gear mechanism becomes differential. It is discharged from the opening of the case (differential case 51), and the lubrication failure of the differential gear device (differential device 23) is likely to occur immediately after the vehicle starts to travel.
  • the vehicle drive device of Patent Document 1 is driven by a driving force larger than that of the second hydraulic pump (electric oil pump 105).
  • a first hydraulic pump mechanical oil pump 91
  • a first hydraulic pump mechanical oil pump 91
  • the vehicle drive device of Patent Document 1 has a problem that energy loss due to the drive of the hydraulic pump tends to increase, and the energy efficiency of the vehicle drive device tends to decrease accordingly.
  • the characteristic configuration of the vehicle drive device is as follows: A first driving force source for driving a plurality of wheels; An input member drivingly connected to the first driving force source; A differential gear device that distributes the driving force from the first driving force source transmitted through the input member to the plurality of wheels; A hydraulic pump driven by a second driving force source independent of a power transmission path connecting the first driving force source and the plurality of wheels,
  • the differential gear device includes a gear mechanism, and a hollow differential case that houses the gear mechanism,
  • the gear mechanism includes an output element that is drivingly connected to each of the plurality of wheels and rotates around an output shaft, an intermediate element that meshes with the output element, and a gear support that supports the intermediate element with respect to the differential case.
  • the differential case has a central portion that overlaps with the gear support member in a radial view along a radial direction with respect to the output shaft, Inside the central part is formed an oil storage part for storing oil discharged from the hydraulic pump, The oil reservoir is formed continuously in the circumferential direction with the output shaft as a reference.
  • oil is supplied to each part of the vehicle drive device by the hydraulic pump driven by the second driving force source independent of the power transmission path connecting the first driving force source and the plurality of wheels. Therefore, compared to the hydraulic pump driven by the first driving force source, it is easy to drive the pump according to the required hydraulic pressure and oil amount (necessary oil amount) at each time point. Therefore, even when the vehicle is traveling at a high speed or the like, it is difficult to discharge more oil than necessary, and a decrease in energy efficiency due to driving of the hydraulic pump can be suppressed, and the energy efficiency of the vehicle drive device is increased. Can do.
  • the second driving force source of such a hydraulic pump generally has a smaller driving force than the first driving force source for driving the wheels.
  • the vehicle drive device 100 is a drive device mounted on, for example, a hybrid vehicle using an internal combustion engine and a rotating electric machine as a driving force source for a plurality of wheels, or an electric vehicle using a rotating electric machine as a driving force source for a plurality of wheels.
  • the vehicle drive device 100 includes only the rotating electrical machine 1 as a driving force source for the first wheel and the second wheel. In the case of a two-wheel drive four-wheel vehicle, an electric vehicle can be realized.
  • a hybrid vehicle can be realized by driving the other two wheels with the driving force of the internal combustion engine.
  • a four-wheel drive electric vehicle can also be realized by applying the vehicle drive device 100 of the present embodiment to the other two wheels.
  • the “rotary electric machine” is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that performs both functions of the motor and the generator as necessary.
  • driving connection refers to a state in which two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or the two This includes a state in which one rotating element is connected to be able to transmit a driving force via one or more transmission members.
  • Examples of such a transmission member include various members that transmit rotation at the same speed or a variable speed, such as a shaft, a gear mechanism, a belt, and a chain.
  • the transmission member may include an engagement device that selectively transmits rotation and driving force, for example, a friction engagement device, a meshing engagement device, and the like.
  • the vehicle drive device 100 is transmitted via a rotary electric machine 1 that drives the first wheel and the second wheel, an input member 2 that is drivingly connected to the rotary electric machine 1, and the input member 2.
  • the differential gear device 4 that distributes the driving force from the rotating electric machine 1 to the first wheel and the second wheel, and the electric motor independent of the power transmission path P that connects the rotating electric machine 1 to the first wheel and the second wheel.
  • the hydraulic pump 7 driven by 71 is provided.
  • the vehicle drive device 100 further includes a counter gear mechanism 3 and a case 5 that houses the rotating electrical machine 1, the input member 2, the counter gear mechanism 3, and the differential gear device 4.
  • the rotating electrical machine 1 and the input member 2 are arranged on a first axis A1 as their rotation axis, and the counter gear mechanism 3 is arranged on a second axis A2 as its rotation axis, and is a differential gear device.
  • 4 is arrange
  • the first axis A1, the second axis A2, and the third axis A3 are mutually different virtual axes and are arranged in parallel to each other.
  • the third axis A3 corresponds to the “output shaft O” of the vehicle drive device 100.
  • axial direction L the direction parallel to the axes A1 to A3 is referred to as “axial direction L” of the vehicle drive device 100.
  • axial direction first side L1 the side on which the input member 2 is disposed with respect to the rotating electrical machine 1
  • axial direction The second side L2 the side on which the rotating electrical machine 1 is disposed with respect to the input member 2
  • a direction orthogonal to each of the first axis A1, the second axis A2, and the third axis A3 is referred to as a “radial direction R” with reference to each axis.
  • FIG. 1 shows a radial direction R with respect to the first axis A1.
  • the direction about each member represents the direction in the state in which they were assembled to the vehicle drive device 100.
  • the case 5 accommodates the rotating electrical machine 1, the input member 2, the counter gear mechanism 3, and the differential gear device 4 therein.
  • the case 5 has a peripheral wall portion 51 that surrounds the outside in the radial direction R. Further, the case 5 has a first side wall portion 52 and a second side wall portion 53 that extend along the radial direction R.
  • the first side wall 52 is disposed on the first axial side L ⁇ b> 1 with respect to the peripheral wall 51, the input member 2, and the counter gear mechanism 3.
  • the second side wall 53 is disposed on the second axial side L ⁇ b> 2 with respect to the peripheral wall 51 and the rotating electrical machine 1.
  • the peripheral wall portion 51 includes a first peripheral wall portion 511 and a second peripheral wall portion 512 joined to the first peripheral wall portion 511 from the second axial side L2.
  • the 1st surrounding wall part 511 and the 1st side wall part 52 are formed integrally
  • the 2nd surrounding wall part 512 and the 2nd side wall part 53 are formed integrally.
  • the case 5 includes a first case portion having a first peripheral wall portion 511 and a first side wall portion 52, and a second case portion having a second peripheral wall portion 512 and a second side wall portion 53.
  • the first case portion and the second case portion are joined to each other by fastening the first peripheral wall portion 511 and the second peripheral wall portion 512 with a fastening member such as a bolt.
  • the vehicle drive device 100 includes a support member 6 separate from the case 5 in addition to the case 5.
  • the support member 6 is disposed between the first sidewall portion 52 and the second sidewall portion 53 in the axial direction L.
  • the support member 6 is disposed inside the case 5 and is fixed to the case 5.
  • the support member 6 is formed in a plate shape extending along the radial direction R.
  • “plate shape” means that the overall shape of the plate is a plate even if it has some irregular parts (hereinafter referred to as “shape” with respect to the shape, etc. The same applies to the expression of).
  • the internal space of the case 5 formed between the first side wall part 52 and the second side wall part 53 is partitioned by the support member 6.
  • the main portion of the input member 2, the counter gear mechanism 3, and the main portion of the differential gear device 4 are arranged.
  • the rotating electrical machine 1 is disposed in the space between the second side wall portion 53 and the support member 6. In FIG. 1, only the cross sections of the case 5 and the support member 6 are hatched.
  • the rotating electrical machine 1 functions as a “first driving force source” that drives the first wheel and the second wheel.
  • the rotating electrical machine 1 includes a stator 11 and a rotor 12.
  • the stator 11 has a cylindrical stator core 111 fixed to the case 5.
  • the rotor 12 has a cylindrical rotor core 121 that can rotate with respect to the stator 11.
  • a coil 112 is wound around the stator core 111 and a permanent magnet is provided on the rotor core 121.
  • the rotating electrical machine 1 is an inner rotor type rotating electrical machine, the rotor core 121 is disposed inside the stator core 111 in the radial direction R.
  • a cylindrical rotor shaft 13 extending along the axial direction L is connected to the inner peripheral surface of the rotor core 121.
  • the rotor shaft 13 rotates around the first axis A1 integrally with the rotor 12.
  • the rotor shaft 13 extends along the axial direction L so as to protrude from both end surfaces of the rotor core 121 in the axial direction L.
  • An end portion on the first axial side L1 of the rotor shaft 13 is rotatably supported by the support member 6 via a first rotor bearing 91.
  • An end portion on the second axial side L2 of the rotor shaft 13 is rotatably supported by the second side wall portion 53 of the case 5 via a second rotor bearing 92.
  • the input member 2 is connected to the rotor shaft 13, and the rotor shaft 13 and the input member 2 rotate integrally.
  • the input member 2 is drivingly connected to the rotating electrical machine 1.
  • the input member 2 rotates about the first axis A1 integrally with the rotor shaft 13 of the rotating electrical machine 1. That is, the rotating electrical machine 1 and the input member 2 are disposed on the first axis A1.
  • the input member 2 has a shaft portion 21 and a drive gear 22.
  • the shaft portion 21 is formed in a cylindrical shape and extends along the axial direction L.
  • An end portion of the shaft portion 21 on the second axial side L2 is connected to an end portion of the rotor shaft 13 on the first axial direction side L1.
  • the end portion of the axial second side L2 of the shaft portion 21 is the end of the first axial side L1 of the rotor shaft 13 so that the shaft portion 21 is positioned inside the radial direction R of the rotor shaft 13.
  • the end portions are connected to each other by spline engagement.
  • An end portion of the shaft portion 21 on the first axial side L ⁇ b> 1 is rotatably supported by the first side wall portion 52 of the case 5 via the first input bearing 93.
  • a portion of the shaft portion 21 on the first axial side L ⁇ b> 1 with respect to the connecting portion with the rotor shaft 13 is rotatably supported by the support member 6 via the second input bearing 94.
  • the shaft portion 21 is rotatably supported by the first side wall portion 52 and the support member 6, so that the end portion on the first axial side L ⁇ b> 1 of the input member 2 can be rotated by the first side wall portion 52.
  • the end of the input member 2 on the second axial side L2 is rotatably supported by the support member 6.
  • the drive gear 22 is a gear that transmits the driving force from the rotating electrical machine 1 to the counter gear mechanism 3.
  • the drive gear 22 is provided on the shaft portion 21.
  • the drive gear 22 is disposed between the first input bearing 93 and the second input bearing 94.
  • the drive gear 22 is arranged so as to be adjacent to the first input bearing 93 on the second axial side L2.
  • the drive gear 22 is formed integrally with the shaft portion 21.
  • the counter gear mechanism 3 is disposed between the input member 2 and the differential gear device 4 in the driving force transmission path.
  • the counter gear mechanism 3 rotates around a second axis A2 that is different from the first axis A1, which is the rotation axis of the rotating electrical machine 1 and the input member 2. That is, the counter gear mechanism 3 is arranged on the second axis A2 different from the first axis A1.
  • the counter gear mechanism 3 includes a counter shaft 31, a first gear 32 that meshes with a drive gear 22 provided on the input member 2, and a second gear 33 that meshes with a differential input gear 43 of the differential gear device 4. is doing.
  • the counter shaft 31 extends along the axial direction L.
  • An end portion of the counter shaft 31 on the first axial side L1 is rotatably supported by the first side wall portion 52 of the case 5 via a first counter bearing 95.
  • the end of the counter shaft 31 on the second axial side L2 is rotatably supported by the support member 6 via a second counter bearing 96.
  • the counter shaft 31 is rotatably supported by the first side wall portion 52 and the support member 6, so that the end portion of the counter gear mechanism 3 on the first axial side L ⁇ b> 1 can be rotated by the first side wall portion 52.
  • the end of the counter gear mechanism 3 on the second axial side L2 is rotatably supported by the support member 6.
  • the first gear 32 is an input element of the counter gear mechanism 3.
  • the first gear 32 meshes with the drive gear 22 of the input member 2.
  • the first gear 32 is provided on the counter shaft 31 so as to rotate integrally with the counter shaft 31.
  • the first gear 32 is connected to the counter shaft 31 by spline engagement so as to rotate integrally with the counter shaft 31.
  • the first gear 32 is disposed between the first counter bearing 95 and the second counter bearing 96, and is disposed on the second axial side L ⁇ b> 2 with respect to the second gear 33.
  • the first gear 32 is disposed adjacent to the second counter bearing 96 on the first axial side L1.
  • the second gear 33 is an output element of the counter gear mechanism 3.
  • the second gear 33 meshes with a differential input gear 43 of the differential gear device 4 described later.
  • the second gear 33 is formed with a smaller diameter than the first gear 32.
  • the second gear 33 is provided on the counter shaft 31 so as to rotate integrally with the counter shaft 31.
  • the second gear 33 is formed integrally with the counter shaft 31.
  • the second gear 33 is disposed so as to be coaxial with the first gear 32. Further, the second gear 33 is disposed between the first counter bearing 95 and the second counter bearing 96 and on the second axial side L ⁇ b> 2 from the first gear 32. In the present embodiment, the second gear 33 is disposed adjacent to the first counter bearing 95 on the second axial side L2.
  • the differential gear device 4 includes a gear mechanism 41 and a hollow differential case 42 that houses the gear mechanism 41.
  • the gear mechanism 41 includes an output element 41a that is driven and connected to each of the first wheel and the second wheel and rotates around the output shaft O (third axis A3), an intermediate element 41b that meshes with the output element 41a, and an intermediate element A gear support member 41c that supports the differential case 42 with respect to the differential case 42.
  • the gear mechanism 41 includes a pair of pinion gears 411, a first side gear 412 and a second side gear 413, and a pinion shaft 414.
  • the pair of pinion gears 411, the first side gear 412 and the second side gear 413 are all bevel gears. That is, the differential gear device 4 is a bevel gear type differential gear device.
  • the pair of pinion gears 411 are attached to the pinion shaft 414 in a state of facing each other with a space along the radial direction R of the differential gear device 4.
  • the first side gear 412 and the second side gear 413 are provided so as to face each other across the pinion shaft 414 with a space therebetween along the axial direction L.
  • the pair of pinion gears 411, the first side gear 412 and the second side gear 413 are meshed with each other.
  • each of the pair of pinion gears 411 functions as the intermediate element 41b.
  • the first side gear 412 is connected to the first drive shaft DS1 that is drivingly connected to the first wheel. Specifically, the first side gear 412 is connected to the end portion on the second axial side L2 of the first drive shaft DS1.
  • the first drive shaft DS1 is disposed on the third axis A3.
  • the first drive shaft DS ⁇ b> 1 extends from the differential gear device 4 to the first axial side L ⁇ b> 1, extends through the first side wall 52, and extends to the outside of the case 5.
  • the second side gear 413 is connected via the shaft member 8 to the second drive shaft DS2 that is drivingly connected to the second wheel. Specifically, the second side gear 413 is connected to the end portion on the first axial side L1 of the shaft member 8 connected to the second drive shaft DS2. In the present embodiment, each of the first side gear 412 and the second side gear 413 functions as the output element 41a.
  • the shaft member 8 extends along the axial direction L and is disposed on the third axis A3.
  • the shaft member 8 is inserted into the differential case 42 from the end on the first axial side L1 and is connected to the second side gear 413.
  • a portion disposed inside the differential case 42 and connected to the second side gear 413 is a case inner shaft portion 8 ⁇ / b> A, and protrudes outward from the differential case 42 (second axial side L ⁇ b> 2).
  • the arranged portion is the case outer shaft portion 8B.
  • An end of the shaft member 8 on the second axial side L2 is rotatably supported by the second side wall 53 via an output bearing 99.
  • the end of the shaft member 8 on the second axial side L2 is connected to the second drive shaft DS2.
  • the shaft member 8 and the second drive shaft DS2 are integrally formed. That is, in this embodiment, the shaft member 8 constitutes the output member 10 that connects the differential gear device 4 and the second wheel together with the second drive shaft DS2.
  • the second drive shaft DS2 extends through the second side wall portion 53 to the outside of the case 5.
  • the shaft member 8 includes a first oil passage 81 extending along the axial direction L in the shaft member 8, and an oil passage opening communicating with the first oil passage 81 and opening inside the differential case 42. 82.
  • the oil F is supplied to the first oil passage 81 by the hydraulic pump 7 driven by the electric motor 71.
  • the shaft member 8 further includes a second oil passage 83 that communicates the first oil passage 81 and the outer peripheral surface 8 a of the shaft member 8.
  • the second oil passage 83 is formed in the case outer shaft portion 8 ⁇ / b> B outside the differential case 42.
  • the second oil passage 83 is formed along the radial direction R of the shaft member 8, and a plurality of second oil passages 83 are arranged in the circumferential direction of the shaft member 8.
  • the second oil passage 83 is connected to the hydraulic pump 7 via a sliding bearing 84 interposed between the shaft member 8 and the case 5, an oil passage formed in the case 5, and the like.
  • the oil F discharged from the hydraulic pump 7 sequentially passes through the oil passage formed in the case 5, the oil passage of the sliding bearing 84, the second oil passage 83, and the first oil passage 81, and the oil passage opening 82.
  • the oil passage opening 82 opens at a position overlapping with an oil storage portion 421a (see FIG. 3), which will be described later, as viewed in the radial direction R with respect to the output shaft O (third axis A3).
  • “overlapping in a specific direction” means that when the virtual straight line parallel to the visual line direction is moved in each direction orthogonal to the virtual straight line, the virtual straight line is 2 It indicates that there is a region that intersects both members.
  • the pinion shaft 414 extends along a direction orthogonal to the axial direction L with respect to the output shaft O (third axis A3).
  • the pinion shaft 414 is inserted through the pair of pinion gears 411 and supports them rotatably. At least one end of the pinion shaft 414 passes through the differential case 42. In the illustrated example, both end portions of the pinion shaft 414 pass through the differential case 42.
  • the pinion shaft 414 functions as the gear support member 41c.
  • the pinion shaft 414 is locked to the differential case 42 by a locking member 414a and rotates integrally with the differential case 42.
  • the locking member 414a is a rod-like pin inserted through both the differential case 42 and the pinion shaft 414.
  • the differential case 42 is a hollow member that houses the gear mechanism 41.
  • the end portion of the differential case 42 on the first axial side L1 is rotatably supported by the first side wall portion 52 of the case 5 via the first differential bearing 97.
  • An end of the differential case 42 on the second axial side L2 is rotatably supported by the support member 6 via a second differential bearing 98.
  • the differential case 42 is rotatably supported at both ends in the axial direction L by the first side wall 52 and the support member 6.
  • the differential case 42 is connected to a differential input gear 43 that meshes with the second gear 33 of the counter gear mechanism 3.
  • the differential input gear 43 is an input element of the differential gear device 4.
  • the differential input gear 43 is disposed on the outermost side in the radial direction R of the differential gear device 4.
  • the differential input gear 43 is connected to the differential case 42 by a fastening member 43a.
  • the differential input gear 43 rotates around the third axis A3 integrally with the differential case.
  • the hydraulic pump 7 adjusts the required oil amount Ar, which is the amount of oil required by the vehicle drive device 100, regardless of the rotational speed of each part of the power transmission path P (here, the rotating electrical machine 1, the input member 2, etc.). It is controlled to discharge a corresponding amount of oil.
  • the hydraulic pump 7 is an electric hydraulic pump driven by an electric motor 71.
  • an electric motor 71 for example, an internal or external gear pump, a vane pump, or the like can be used.
  • the electric motor 71 functions as a “second driving force source” independent of the power transmission path P.
  • an AC rotating electric machine driven by a plurality of phases of AC power can be used.
  • the electric motor 71 is connected to a DC power source via an inverter that performs power conversion between DC power and AC power, and driving of the electric motor 71 is controlled via the inverter. Is done.
  • the electric motor 71 is a rotary electric machine that is smaller than the rotary electric machine 1 for driving the first wheel and the second wheel. Therefore, the electric motor 71 has a smaller maximum torque value that can be output than the rotating electrical machine 1.
  • the hydraulic pump driven by the rotating electrical machine 1 as the first driving force source is not provided, and only the hydraulic pump 7 driven by the electric motor 71 as the second driving force source is provided. Yes.
  • FIG. 2 the required oil amount Ar and the amount of oil discharged by each of the hydraulic pump and the hydraulic pump 7 driven by the electric motor 71 when it is assumed that a hydraulic pump driven by the rotating electrical machine 1 is provided ( The relationship between the discharge oil amount Ad1, Ad2) and the speed (vehicle speed) of the vehicle on which the vehicle drive device 100 is mounted is shown.
  • the required oil amount Ar increases logarithmically as the vehicle speed increases.
  • the discharge oil amount Ad1 of the hydraulic pump driven by the rotating electrical machine 1 is proportional to the vehicle speed and increases linearly as the vehicle speed increases. This is because the rotating electrical machine 1 functions as a driving force source (first driving force source) for the first wheel and the second wheel.
  • the discharge oil amount Ad1 is set so as to always ensure the required oil amount Ar or more, but particularly exceeds the required oil amount Ar when the vehicle speed exceeds a certain value. That is, when the vehicle speed exceeds a certain value, the hydraulic pump is driven more than necessary. As a result, energy loss LS is caused by driving the hydraulic pump more than necessary. This energy loss LS increases as the vehicle speed increases.
  • the hydraulic pump 7 is controlled to discharge an amount of oil corresponding to the required oil amount Ar, regardless of the rotational speed of each part of the power transmission path P.
  • the rotational speed of each part of the power transmission path P corresponds to the vehicle speed. Therefore, as shown in FIG. 2, the discharge oil amount Ad2 of the hydraulic pump 7 has the same value as the required oil amount Ar.
  • the discharge oil amount Ad2 is an amount corresponding to the required oil amount Ar regardless of the vehicle speed, and therefore, the energy loss LS hardly occurs.
  • the differential case 42 has a central portion 421 that overlaps with the gear support member 41 c in the radial direction R with respect to the output shaft O (third axis A3), and an axis with respect to the central portion 421. It has the 1st side part 422 arrange
  • the central portion 421 is formed in a cylindrical shape that is continuous in the circumferential direction with the output shaft O (third axis A3) as a reference.
  • An oil storage part 421a in which the oil F discharged from the hydraulic pump 7 is stored is formed inside the central part 421.
  • the oil reservoir 421a is formed continuously in the circumferential direction with the output shaft O (third axis A3) as a reference.
  • Each of the first side part 422 and the second side part 423 is formed in a cylindrical shape that is continuous in the circumferential direction with the output shaft O (third axis A3) as a reference.
  • the first side portion 422 is rotatably supported by the first side wall portion 52 of the case 5 via the first differential bearing 97.
  • a first drive shaft DS1 is inserted into the first side portion 422 from the first axial side L1.
  • a portion of the first drive shaft DS 1 in the differential case 42 is connected to the first side gear 412.
  • the end surface on the second axial direction side L2 of the first drive shaft DS1 is in contact with the outer peripheral surface of the pinion shaft 414.
  • the second side portion 423 is rotatably supported by the support member 6 via the second differential bearing 98.
  • the shaft member 8 is inserted into the second side portion 423 from the second axial side L2.
  • a portion of the shaft member 8 in the differential case 42 is connected to the second side gear 413.
  • the end surface 8b on the first axial side L1 of the shaft member 8 is in contact with the outer peripheral surface of the pinion shaft 414.
  • the first oil passage 81 of the shaft member 8 is formed such that the oil passage opening 82 opens on the end surface 8 b of the shaft member 8. That is, in this embodiment, the oil passage opening 82 is formed on the end surface 8b on the opposite side of the case outer shaft portion 8B in the case inner shaft portion 8A.
  • the groove 8c is formed on the end face 8b.
  • the groove 8c is formed so as to be recessed from the end face 8b to the second axial side L2.
  • the groove 8c allows the oil passage opening 82 and the outer peripheral surface 8a of the shaft member 8 to communicate with each other even in a configuration in which the end surface 8b is in contact with the outer peripheral surface of the pinion shaft 414.
  • the number of the groove portions 8 c is not limited, and one groove portion 8 c may be arranged, or a plurality of groove portions 8 c may be arranged at intervals from each other along the circumferential direction of the shaft member 8. Oil F is appropriately supplied from the oil passage opening 82 into the differential case 42 through the groove 8c.
  • the first side part 422 has a first wall part 424
  • the second side part 423 has a second wall part 425.
  • the first wall portion 424 is disposed on the first axial side L1 with respect to the oil storage portion 421a.
  • the 2nd wall part 425 is arrange
  • the first wall portion 424 extends outward in the radial direction R along the radial direction R from the end portion on the second axial side L2 of the first side portion 422.
  • the second wall portion 425 extends outward in the radial direction R along the radial direction R from the end portion on the first axial side L1 of the second side portion 423.
  • the portion excluding the first wall portion 424 in the first side portion 422 and the portion excluding the second wall portion 425 in the second side portion 423 are smaller in the radial direction R than the central portion 421.
  • An outer end portion in the radial direction R of the first wall portion 424 and an outer end portion in the radial direction R of the second wall portion 425 are connected to the central portion 421.
  • the first wall portion 424 and the central portion 421 are coupled together with the differential input gear 43 by the fastening member 43 a.
  • the 2nd wall part 425 and the center part 421 are integrally formed.
  • the oil storage portion 421a is formed in a cylindrical shape that is continuous in the circumferential direction with the output shaft O (third axis A3) as a reference, and a central portion 421 and a pair of wall portions 424 extending along the radial direction R. , 425, the oil F can be stored appropriately.
  • a pair of pinion gears 411, a first side gear 412, and a second side gear 413 are disposed inside the central portion 421 (inside in the radial direction R).
  • Each of the pair of pinion gears 411 is supported on the inner surface of the central portion 421 via a pinion washer 411a.
  • the first side gear 412 is supported by the first wall portion 424 via the first side washer 412a.
  • the second side gear 413 is supported by the second wall portion 425 via the second side washer 413a.
  • Part of the oil F supplied to the oil reservoir 421a by the hydraulic pump 7 (see FIG. 1) stays in the oil reservoir 421a, and the gear mechanism 41 and washers 411a, 412a, 413a are operated by the operation of the differential gear unit 4. Etc.
  • the differential case 42 is a sealed case in which an opening for supplying the oil F into the differential case 42 from the outside in the radial direction R is not formed.
  • a closing structure 45 that closes the gap between the differential case 42 and the end of the pinion shaft 414 that passes through the differential case 42 is provided.
  • the closing structure 45 is provided between each of the differential case 42 and both ends of the pinion shaft 414. ing.
  • the closing structure 45 is, for example, a seal member such as an O-ring provided between the differential case 42 and the end of the pinion shaft 414 that passes through the differential case 42.
  • a lid member may be provided so as to close a through hole through which the pinion shaft 414 in the differential case 42 passes.
  • the size and shape of the differential case 42 are set so that no gap is formed between the differential case 42 and the end of the pinion shaft 414 passing through the differential case 42. Also good.
  • each of the first side portion 422, the central portion 421, and the second side portion 423 of the differential case 42 is cylindrical, a truncated cone surface having a thickness, or a partial portion having a thickness.
  • the shape is spherical or a combination of these.
  • each of the 1st side part 422, the center part 421, and the 2nd side part 423 is formed in the cylindrical shape.
  • an oil drain hole 425a for discharging the oil F from the oil reservoir 421a to the outside of the differential case 42 is formed in at least one of the pair of wall portions 424, 425. ing.
  • an oil drain hole 425 a is formed in the second wall portion 425, and no oil drain hole is formed in the first wall portion 424.
  • the number of oil drain holes 425a is not limited, and one oil drain hole 425a may be formed in at least one of the pair of wall portions 424, 425, or a plurality of oil drain holes 425a may be provided on the output shaft O. They may be formed spaced apart from each other along the circumferential direction with respect to (third axis A3).
  • the oil drain hole 425a may not be formed.
  • the oil drain hole 425a is formed so as to extend along the axial direction L.
  • the oil drain hole 425a may be formed to extend along a direction inclined with respect to the axial direction L.
  • the oil drain hole 425a is formed so that the wall opening 425b opens on the surface of the wall 424, 425 facing the oil reservoir 421a.
  • the wall opening portion 425b opens on the surface of the second wall portion 425 facing the oil storage portion 421a.
  • the wall opening 425b is disposed on the inner side in the radial direction R than the outermost portion in the radial direction R on the inner peripheral surface of the oil storage portion 421a.
  • the wall opening 425b is inside in the radial direction R from the outermost portion in the radial direction R on the inner peripheral surface of the oil reservoir 421a and is more radial than the outer peripheral surface of the second side washer 413a. It is arranged outside R.
  • the configuration in which the oil passage opening 82 is opened in the end surface 8b of the shaft member 8 has been described as an example.
  • the configuration is not limited thereto.
  • the oil passage opening 82 opens to the outer peripheral surface 8a of the shaft member 8 in the oil storage portion 421a, and the oil passage opening 82 and the first oil passage 81 are the third oil passage.
  • the structure connected via 85 may be sufficient. In such a configuration, it is not necessary to form the groove 8c on the end surface 8b of the shaft member 8.
  • the configuration in which the oil drain hole 425a is formed along the axial direction L in at least one of the pair of wall portions 424 and 425 has been described as an example.
  • a part or the whole of the oil drain hole 425a may be formed in the central portion 421.
  • a part or the whole of the oil drain hole 425a is formed in a portion other than the first wall portion 424 in the first side portion 422 or a portion other than the second wall portion 425 in the second side portion 423. It is also good.
  • the configuration in which the shaft member 8 forms part of the output member 10 that connects the differential gear device 4 and the second wheel has been described as an example.
  • the configuration is not limited to such a configuration, and the shaft member 8 may be provided separately from the output member 10.
  • first side portion 422, the center portion 421, and the second side portion 423 of the differential case 42 are formed in a cylindrical shape.
  • at least one of the first side portion 422, the central portion 421, and the second side portion 423 has a cylindrical shape, a truncated cone surface shape, and a thickness. It may have a partial spherical shape or a combination of these.
  • each of the first side portion 422 and the second side portion 423 has a truncated cone shape having a thickness that increases in the radial direction R toward the center portion 421 side, and the center portion 421 has a thickness.
  • the frustoconical surface having a thickness is a configuration in which the outer peripheral surface is a frustoconical surface and the inner peripheral surface is another shape such as a cylindrical shape, or the inner peripheral surface is a frustoconical surface.
  • a configuration in which the outer peripheral surface has another shape such as a cylindrical shape is included.
  • the partial spherical shape having a thickness means a configuration in which the outer peripheral surface is a partial spherical shape and the inner peripheral surface is another shape such as a cylindrical shape, or the inner peripheral surface is a partial spherical shape.
  • the structure whose outer peripheral surface is other shapes, such as cylindrical shape is also included.
  • the shape of each part of the differential case 42 is not limited to the shape enumerated here, You may be made into shapes other than these.
  • the configuration in which the closing structure 45 that closes the gap between the differential case 42 and the end of the pinion shaft 414 that passes through the differential case 42 has been described as an example.
  • the present invention is not limited to this.
  • the closing structure 45 may not be provided between the differential case 42 and the end of the pinion shaft 414.
  • the vehicle drive device (100) includes: A first driving force source (1) for driving a plurality of wheels; An input member (2) drivingly connected to the first driving force source (1); A differential gear device (4) that distributes the driving force from the first driving force source (1) transmitted via the input member (2) to the plurality of wheels; A hydraulic pump (7) driven by a second driving force source (71) independent of a power transmission path (P) connecting the first driving force source (1) and the plurality of wheels,
  • the differential gear device (4) includes a gear mechanism (41) and a hollow differential case (42) that houses the gear mechanism (41).
  • the gear mechanism (41) includes an output element (41a) that is driven and connected to each of the plurality of wheels and rotates around an output shaft (O), an intermediate element (41b) that meshes with the output element (41a), A gear support member (41c) for supporting the intermediate element (41b) with respect to the differential case (42),
  • the differential case (42) has a central portion (421) overlapping the gear support member (41c) when viewed in the radial direction (R) along the radial direction (R) with respect to the output shaft (O). And Inside the central portion (421) is formed an oil storage portion (421a) for storing oil (F) discharged from the hydraulic pump (7),
  • the oil reservoir (421a) is formed continuously in the circumferential direction with the output shaft (O) as a reference.
  • the vehicle is driven by the hydraulic pump (7) driven by the second driving force source (71) independent of the power transmission path (P) connecting the first driving force source (1) and the plurality of wheels.
  • the oil pressure (F) required at each time point is supplied to supply the oil (F) to each part of the driving device (100). It is easy to drive the pump according to the amount (Ar). Therefore, even when the vehicle is traveling at a high speed, it is difficult for the oil (F) to be discharged more than a necessary amount, and a reduction in energy efficiency due to the drive of the hydraulic pump (7) can be suppressed. 100) energy efficiency can be increased.
  • the second driving force source (71) of such a hydraulic pump (7) generally has a smaller driving force than the first driving force source (1) for driving the wheels. Therefore, if no measures are taken, for example, in a low temperature environment where the viscosity of the oil (F) is high, the discharge amount of the oil (F) cannot be secured sufficiently, and immediately after the vehicle starts running after the vehicle has stopped for a long time. There is a possibility that poor lubrication of the differential gear device (4) may occur. However, according to this configuration, part of the oil (F) supplied from the hydraulic pump (7) to the differential gear device (4) is stored in the oil without being discharged outside the differential case (42). Part (421a) remains.
  • the oil (F) stored in the oil storage part (421a) is supplied to each part of the differential gear device (4). Therefore, even if the oil (F) is not sufficiently supplied from the hydraulic pump (7) to the differential gear device (4) immediately after the vehicle starts running, poor lubrication of the differential gear device (4) occurs. Can be suppressed. As described above, according to this configuration, energy efficiency can be increased, and occurrence of poor lubrication in the differential gear device (4) immediately after the start of vehicle travel can be suppressed.
  • a pair of wall portions (424, 425) are arranged on both sides (L1, L2) in the axial direction (L) with respect to the output shaft (O) with respect to the oil storage portion (421a). It is preferable that
  • the flow in the axial direction (L) of the oil (F) supplied to the oil reservoir (421a) is limited by the pair of wall portions (424, 425). Therefore, the amount of oil (F) supplied to the oil reservoir (421a) flowing out from the oil reservoir (421a) can be reduced. Therefore, oil (F) can be appropriately stored in the oil storage part (421a).
  • the oil (F) that has become hot due to the lubrication of the differential gear device (4) can be discharged to the outside of the differential case (42) through the oil drain hole (425a). Therefore, the oil (F) inside the differential case (42) can be actively circulated while the vehicle is running, so that the differential gear device (4) can be properly lubricated.
  • the oil drain hole (425a) is formed such that a wall opening (425b) is opened on the surface of the wall (424, 425) facing the oil reservoir (421a), It is preferable that the wall opening (425b) is disposed on the inner side in the radial direction (R) with respect to the outermost portion in the radial direction (R) on the inner peripheral surface of the oil reservoir (421a). .
  • the oil (F) is stored outside the wall opening (425b) in the oil storage part (421a) in the radial direction (R). Therefore, the amount of oil (F) necessary for lubricating the differential gear device (4) can be appropriately stored in the oil storage section (421a).
  • a case inner shaft (8A) disposed inside the differential case (42) and connected to one of the output elements (41a), and the axial direction with respect to the differential case (42)
  • a case outer shaft portion (8B) arranged to protrude to one side of (L), and further comprising a shaft member (8) arranged along the axial direction (L)
  • the shaft member (8) communicates with the first oil passage (81) extending along the axial direction (L) inside the shaft member (8) and the first oil passage (81). It is preferable to have an oil passage opening (82) that opens at a position overlapping the oil reservoir (421a) in the radial direction (R) view.
  • the oil reservoir (421a) is provided via the first oil passage (81) and the oil passage opening (82) of the shaft member (8) disposed in a state of being inserted into the differential case (42). ) Can be supplied with oil (F). Therefore, it is not necessary to form an opening for supplying oil (F) to the oil reservoir (421a) in the differential case (42). Therefore, it becomes easy to increase the rigidity of the differential case (42). Therefore, it is possible to reduce the thickness of the differential case (42) and reduce the size of the differential case (42), or to use a highly workable material for the differential case (42). The processing cost of (42) can be reduced.
  • the shaft member (8) further includes a second oil passage (83) communicating the first oil passage (81) and the outer peripheral surface (8a) of the shaft member (8),
  • the second oil passage (83) is preferably formed in the case outer shaft portion (8B).
  • oil (F) is supplied to the first oil passage (81) inside the shaft member (8) via the second oil passage (83) formed outside the differential case (42). Can be supplied. Therefore, oil (F) can be appropriately supplied from the outside of the differential case (42) to the oil reservoir (421a) inside the differential case (42).
  • the gear support member (41c) extends along a direction orthogonal to the axial direction (L), At least one end of the gear support member (41c) passes through the differential case (42), It is preferable that a closing structure (45) that closes between the differential case (42) and the end portion of the gear support member (41c) that penetrates the differential case (42) is provided. .
  • the oil (F) stored in the oil storage section (421a) is formed between the differential case (42) and the end of the gear support member (41c) that penetrates the differential case (42). It is possible to suppress discharge from the gap to the outside of the differential case (42). Therefore, the amount of oil (F) necessary for lubricating the differential gear device (4) can be appropriately stored in the oil storage section (421a).
  • a hydraulic pump driven by the first driving force source (1) is not provided.
  • This configuration prevents the hydraulic pump driven by the first driving force source (1) from discharging more oil (F) than necessary when the vehicle is traveling at high speed. Therefore, a decrease in energy efficiency due to driving of the hydraulic pump can be suppressed, and the energy efficiency of the vehicle drive device (100) can be increased.
  • the hydraulic pump (7) is controlled to discharge an amount of oil corresponding to the required oil amount (Ar) regardless of the rotational speed of each part of the power transmission path (P).
  • the hydraulic pump (7) When the hydraulic pump (7) is configured to be driven by a rotating member constituting the power transmission path (P), the hydraulic pump (7) is used when the vehicle is traveling at a high speed when the rotating speed of the rotating member is high. However, the oil (F) exceeding the required oil amount (Ar) is likely to be discharged. In such a state, energy loss occurs due to the hydraulic pump (7) being driven more than necessary, so that the energy efficiency of the vehicle drive device (100) is lowered. However, according to this configuration, the hydraulic pump (7) can discharge the required amount of oil (Ar) without being restricted by the traveling state of the vehicle. Therefore, energy loss due to driving of the hydraulic pump (7) can be reduced, and the energy efficiency of the vehicle drive device (100) can be increased.
  • the technology according to the present disclosure includes a first driving force source that drives a plurality of wheels, an input member that is drivingly connected to the first driving force source, and driving from the first driving force source that is transmitted via the input member.
  • a vehicle comprising: a differential gear device that distributes a force to a plurality of wheels; and a hydraulic pump that is driven by a second driving force source that is independent from a power transmission path that connects the first driving force source and the plurality of wheels. It can utilize for a drive device.
  • Vehicle drive device 1 Rotating electric machine (first driving force source) 2: input member 4: differential gear device 41: gear mechanism 41a: output element 41b: intermediate element 41c: gear support member 42: differential case 421: central part 421a: oil storage part 422: first side part 423: 2nd side part 424: 1st wall part 425: 2nd wall part 7: Hydraulic pump 71: Electric motor (2nd driving force source) 8: Shaft member 8A: Case inner shaft portion 8B: Case outer shaft portion 81: First oil passage 82: Oil passage opening 10: Output member F: Oil O: Output shaft P: Power transmission path L: Axial direction L1: Axial direction first side L2: Axial direction second side R: Radial direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Retarders (AREA)

Abstract

This vehicle drive device (100) is provided with a first drive power source (1) which drives multiple wheels, an input member (2) which is drivably coupled with the first drive power source (1), a differential gear device (4) which distributes drive power from the first drive power source (1) to the multiple wheels, and a hydraulic pump (7) which is driven by a second drive power source (71) that is independent from a power transmission path (P). The differential gear device (4) comprises a gear mechanism (41), and a differential case (42) which houses the gear mechanism (41). The gear mechanism (41) comprises a gear support member (41c) which supports relative to the differential case (42) an intermediate element (41b) that meshes with an output element (41a), and the differential case (42) has a center part (421) which overlaps with the gear support member (41c) seen in the radial direction (R). Inside of the center part (421), an oil reservoir (421a) for storing oil (F) is formed, and the oil reservoir (421a) is formed continuously in the circumferential direction.

Description

車両用駆動装置Vehicle drive device
 本発明は、複数の車輪を駆動する第1駆動力源と、第1駆動力源に駆動連結された入力部材と、入力部材を介して伝達される第1駆動力源からの駆動力を複数の車輪に分配する差動歯車装置と、第1駆動力源と複数の車輪とを結ぶ動力伝達経路から独立した第2駆動力源により駆動される油圧ポンプと、を備えた車両用駆動装置に関する。 The present invention provides a first driving force source for driving a plurality of wheels, an input member drivingly connected to the first driving force source, and a plurality of driving forces from the first driving force source transmitted via the input member. And a hydraulic pump driven by a second driving force source independent of a power transmission path connecting the first driving force source and the plurality of wheels. .
 下記の特許文献1には、複数の車輪を駆動する第1駆動力源(第1モータ24、第2モータ25)と、第1駆動力源(第1モータ24、第2モータ25)からの駆動力を複数の車輪に分配する差動歯車装置(ディファレンシャル装置23)と、第1駆動力源(第1モータ24、第2モータ25)により駆動される第1油圧ポンプ(機械式オイルポンプ91)と、第1駆動力源(第1モータ24、第2モータ25)と車輪とを結ぶ動力伝達経路から独立した第2駆動力源(第3モータ)により駆動される第2油圧ポンプ(電動式オイルポンプ105)と、を備えた車両用駆動装置が開示されている。第1油圧ポンプ(機械式オイルポンプ91)及び第2油圧ポンプ(電動式オイルポンプ105)は、差動歯車装置(ディファレンシャル装置23)の歯車機構等の潤滑対象に対して、潤滑用の油を供給する。なお、括弧内に示す部材名及び符号は、特許文献1のものである。 Patent Document 1 below includes a first driving force source (first motor 24 and second motor 25) for driving a plurality of wheels and a first driving force source (first motor 24 and second motor 25). A differential gear device (differential device 23) that distributes the driving force to a plurality of wheels, and a first hydraulic pump (mechanical oil pump 91) driven by a first driving force source (first motor 24, second motor 25). ) And a first driving force source (first motor 24, second motor 25) and a second hydraulic pump (electrically driven) driven by a second driving force source (third motor) independent of a power transmission path connecting the wheels. An oil pump 105) is disclosed. The first hydraulic pump (mechanical oil pump 91) and the second hydraulic pump (electric oil pump 105) supply lubricating oil to a lubrication target such as a gear mechanism of the differential gear device (differential device 23). Supply. In addition, the member name and code | symbol shown in a parenthesis are the things of the patent document 1. FIG.
 差動歯車装置(ディファレンシャル装置23)は、潤滑対象としての歯車機構を収容する中空の差動ケース(ディファレンシャルケース51)を備えている。一般的に、差動ケース(ディファレンシャルケース51)には、その内部と外部とを連通する開口部が形成されており、当該開口部を通して、第1油圧ポンプ(機械式オイルポンプ91)及び第2油圧ポンプ(電動式オイルポンプ105)から吐出された油が歯車機構に供給される。よって、第1油圧ポンプ(機械式オイルポンプ91)及び第2油圧ポンプ(電動式オイルポンプ105)が停止した状態で長期間が経過した場合には、歯車機構に供給された油が、差動ケース(ディファレンシャルケース51)の開口部から排出され、車両の走行開始直後に、差動歯車装置(ディファレンシャル装置23)の潤滑不良が発生し易い。 The differential gear device (differential device 23) includes a hollow differential case (differential case 51) that houses a gear mechanism as a lubrication target. In general, the differential case (differential case 51) is formed with an opening that communicates the inside and the outside, and the first hydraulic pump (mechanical oil pump 91) and the second through the opening. Oil discharged from the hydraulic pump (electric oil pump 105) is supplied to the gear mechanism. Therefore, when a long period of time has elapsed with the first hydraulic pump (mechanical oil pump 91) and the second hydraulic pump (electric oil pump 105) stopped, the oil supplied to the gear mechanism becomes differential. It is discharged from the opening of the case (differential case 51), and the lubrication failure of the differential gear device (differential device 23) is likely to occur immediately after the vehicle starts to travel.
 ところで、特許文献1の車両用駆動装置には、第2油圧ポンプ(電動式オイルポンプ105)に加えて、当該第2油圧ポンプ(電動式オイルポンプ105)に比べて大きい駆動力により駆動される第1油圧ポンプ(機械式オイルポンプ91)が設けられている。そのため、油の粘性が高い低温環境であっても、車両走行開始直後から十分な量の油を差動歯車装置(ディファレンシャル装置23)に供給することができる。そのため、差動歯車装置(ディファレンシャル装置23)における潤滑不良は発生し難かった。しかしながら、第1油圧ポンプ(機械式オイルポンプ91)は、車輪を駆動する第1駆動力源(第1モータ24、第2モータ25)により駆動されるため、車両の高速走行時には、潤滑対象の潤滑に必要な量以上の余剰な油を吐出する状態となっていた。よって、特許文献1の車両用駆動装置では、油圧ポンプの駆動によるエネルギ損失が大きくなり易く、その分、車両用駆動装置のエネルギ効率が低くなり易いという課題があった。 By the way, in addition to the second hydraulic pump (electric oil pump 105), the vehicle drive device of Patent Document 1 is driven by a driving force larger than that of the second hydraulic pump (electric oil pump 105). A first hydraulic pump (mechanical oil pump 91) is provided. Therefore, even in a low temperature environment where the viscosity of oil is high, a sufficient amount of oil can be supplied to the differential gear device (differential device 23) immediately after the start of vehicle travel. Therefore, poor lubrication in the differential gear device (differential device 23) is unlikely to occur. However, since the first hydraulic pump (mechanical oil pump 91) is driven by the first driving force source (the first motor 24 and the second motor 25) that drives the wheels, when the vehicle is traveling at high speed, It was in a state of discharging excess oil more than the amount necessary for lubrication. Therefore, the vehicle drive device of Patent Document 1 has a problem that energy loss due to the drive of the hydraulic pump tends to increase, and the energy efficiency of the vehicle drive device tends to decrease accordingly.
特開平6-98417号公報(図1)JP-A-6-98417 (FIG. 1)
 そこで、エネルギ効率を高くできると共に、車両走行開始直後における差動歯車装置の潤滑不良が発生することを抑制できる車両用駆動装置の実現が望まれる。 Therefore, it is desired to realize a vehicle drive device that can increase energy efficiency and suppress the occurrence of poor lubrication of the differential gear device immediately after the start of vehicle travel.
 上記に鑑みた、車両用駆動装置の特徴構成は、
 複数の車輪を駆動する第1駆動力源と、
 前記第1駆動力源に駆動連結された入力部材と、
 前記入力部材を介して伝達される前記第1駆動力源からの駆動力を、前記複数の車輪に分配する差動歯車装置と、
 前記第1駆動力源と前記複数の車輪とを結ぶ動力伝達経路から独立した第2駆動力源により駆動される油圧ポンプと、を備え、
 前記差動歯車装置は、歯車機構と、前記歯車機構を収容する中空の差動ケースと、を有し、
 前記歯車機構は、複数の前記車輪のそれぞれに駆動連結されて出力軸周りに回転する出力要素と、前記出力要素に噛み合う中間要素と、前記中間要素を前記差動ケースに対して支持する歯車支持部材と、を有し、
 前記差動ケースは、前記出力軸を基準とした径方向に沿う径方向視で前記歯車支持部材と重複する中央部を有し、
 前記中央部の内部には、前記油圧ポンプから吐出された油が貯留される油貯留部が形成され、
 前記油貯留部は、前記出力軸を基準とした周方向に連続して形成されている点にある。
In view of the above, the characteristic configuration of the vehicle drive device is as follows:
A first driving force source for driving a plurality of wheels;
An input member drivingly connected to the first driving force source;
A differential gear device that distributes the driving force from the first driving force source transmitted through the input member to the plurality of wheels;
A hydraulic pump driven by a second driving force source independent of a power transmission path connecting the first driving force source and the plurality of wheels,
The differential gear device includes a gear mechanism, and a hollow differential case that houses the gear mechanism,
The gear mechanism includes an output element that is drivingly connected to each of the plurality of wheels and rotates around an output shaft, an intermediate element that meshes with the output element, and a gear support that supports the intermediate element with respect to the differential case. A member, and
The differential case has a central portion that overlaps with the gear support member in a radial view along a radial direction with respect to the output shaft,
Inside the central part is formed an oil storage part for storing oil discharged from the hydraulic pump,
The oil reservoir is formed continuously in the circumferential direction with the output shaft as a reference.
 この特徴構成によれば、第1駆動力源と複数の車輪とを結ぶ動力伝達経路から独立した第2駆動力源により駆動される油圧ポンプにより車両用駆動装置の各部への油の供給を行うため、第1駆動力源により駆動される油圧ポンプに比べて、各時点での必要な油圧及び油量(必要油量)に応じたポンプの駆動を行うことが容易な構成となっている。そのため、車両の高速走行時等であっても必要量以上の油を吐出する状態とはなり難く、油圧ポンプの駆動によるエネルギ効率の低下を抑制でき、車両用駆動装置のエネルギ効率を高くすることができる。
 但し、このような油圧ポンプの第2駆動力源は、車輪駆動用の第1駆動力源に比べて駆動力が小さいことが一般的である。そのため、何も対策をしなければ、例えば油の粘性が高い低温環境において油の吐出量が十分に確保できず、車両が長期間停止した後の車両の走行開始直後に差動歯車装置の潤滑不良が発生する可能性がある。しかし、この構成によれば、油圧ポンプから差動歯車装置に供給された油の一部が、差動ケースの外部に排出されることなく油貯留部に留まる。そのため、走行開始直後であっても、油貯留部に貯留された油が差動歯車装置の各部に供給される。よって、車両の走行開始直後における油圧ポンプから差動歯車装置への油の供給が十分でない状況であっても、差動歯車装置の潤滑不良が発生することを抑制できる。以上より、この構成によれば、エネルギ効率を高くできると共に、車両走行開始直後における差動歯車装置に潤滑不良が発生することを抑制できる。
According to this characteristic configuration, oil is supplied to each part of the vehicle drive device by the hydraulic pump driven by the second driving force source independent of the power transmission path connecting the first driving force source and the plurality of wheels. Therefore, compared to the hydraulic pump driven by the first driving force source, it is easy to drive the pump according to the required hydraulic pressure and oil amount (necessary oil amount) at each time point. Therefore, even when the vehicle is traveling at a high speed or the like, it is difficult to discharge more oil than necessary, and a decrease in energy efficiency due to driving of the hydraulic pump can be suppressed, and the energy efficiency of the vehicle drive device is increased. Can do.
However, the second driving force source of such a hydraulic pump generally has a smaller driving force than the first driving force source for driving the wheels. Therefore, if no countermeasures are taken, for example, in a low temperature environment where the viscosity of the oil is high, the oil discharge rate cannot be sufficiently secured, and the differential gear unit is lubricated immediately after the vehicle starts running after the vehicle has been stopped for a long period of time. Defects may occur. However, according to this configuration, a part of the oil supplied from the hydraulic pump to the differential gear device remains in the oil reservoir without being discharged outside the differential case. Therefore, even immediately after the start of traveling, the oil stored in the oil storage part is supplied to each part of the differential gear device. Therefore, it is possible to suppress the occurrence of poor lubrication of the differential gear device even in a situation where oil is not sufficiently supplied from the hydraulic pump to the differential gear device immediately after the vehicle starts to travel. As described above, according to this configuration, energy efficiency can be increased, and occurrence of poor lubrication in the differential gear device immediately after the start of vehicle travel can be suppressed.
実施形態に係る車両用駆動装置を示す図The figure which shows the drive device for vehicles which concerns on embodiment 油量と車速との関係を示す図Diagram showing the relationship between oil quantity and vehicle speed 実施形態に係る車両用駆動装置の要部拡大図The principal part enlarged view of the vehicle drive device which concerns on embodiment 差動歯車装置を示す斜視図Perspective view showing differential gear unit 別の実施形態に係る車両用駆動装置の要部拡大図The principal part enlarged view of the drive device for vehicles which concerns on another embodiment.
 以下では、車両用駆動装置100の実施形態について、図面を参照して説明する。車両用駆動装置100は、例えば、内燃機関及び回転電機を複数の車輪の駆動力源とするハイブリッド自動車や、回転電機を複数の車輪の駆動力源とする電気自動車に搭載される駆動装置である。本実施形態では、図1に示すように、車両用駆動装置100は、第1車輪及び第2車輪の駆動力源として回転電機1のみを備えている。2輪駆動の4輪車の場合には、これによって電気自動車が実現できる。また、4輪駆動の4輪車の場合には、他の2輪を内燃機関の駆動力によって駆動することでハイブリッド車両が実現できる。当然ながら、4輪駆動の4輪車の場合には、本実施形態の車両用駆動装置100を他の2輪にも適用することで、4輪駆動の電気自動車を実現することもできる。 Hereinafter, an embodiment of the vehicle drive device 100 will be described with reference to the drawings. The vehicle drive device 100 is a drive device mounted on, for example, a hybrid vehicle using an internal combustion engine and a rotating electric machine as a driving force source for a plurality of wheels, or an electric vehicle using a rotating electric machine as a driving force source for a plurality of wheels. . In the present embodiment, as shown in FIG. 1, the vehicle drive device 100 includes only the rotating electrical machine 1 as a driving force source for the first wheel and the second wheel. In the case of a two-wheel drive four-wheel vehicle, an electric vehicle can be realized. In addition, in the case of a four-wheel vehicle driven by four wheels, a hybrid vehicle can be realized by driving the other two wheels with the driving force of the internal combustion engine. Of course, in the case of a four-wheel vehicle driven by four wheels, a four-wheel drive electric vehicle can also be realized by applying the vehicle drive device 100 of the present embodiment to the other two wheels.
 本願において「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。また、本願において「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。なお、伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば、摩擦係合装置、噛み合い式係合装置等が含まれていても良い。 In the present application, the “rotary electric machine” is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that performs both functions of the motor and the generator as necessary. In the present application, “driving connection” refers to a state in which two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or the two This includes a state in which one rotating element is connected to be able to transmit a driving force via one or more transmission members. Examples of such a transmission member include various members that transmit rotation at the same speed or a variable speed, such as a shaft, a gear mechanism, a belt, and a chain. The transmission member may include an engagement device that selectively transmits rotation and driving force, for example, a friction engagement device, a meshing engagement device, and the like.
 図1に示すように、車両用駆動装置100は、第1車輪及び第2車輪を駆動する回転電機1と、回転電機1に駆動連結された入力部材2と、入力部材2を介して伝達される回転電機1からの駆動力を第1車輪と第2車輪とに分配する差動歯車装置4と、回転電機1と第1車輪及び第2車輪とを結ぶ動力伝達経路Pから独立した電動モータ71により駆動される油圧ポンプ7と、を備えている。本実施形態では、車両用駆動装置100は、カウンタギヤ機構3と、回転電機1、入力部材2、カウンタギヤ機構3、及び差動歯車装置4を収容するケース5と、を更に備えている。 As shown in FIG. 1, the vehicle drive device 100 is transmitted via a rotary electric machine 1 that drives the first wheel and the second wheel, an input member 2 that is drivingly connected to the rotary electric machine 1, and the input member 2. The differential gear device 4 that distributes the driving force from the rotating electric machine 1 to the first wheel and the second wheel, and the electric motor independent of the power transmission path P that connects the rotating electric machine 1 to the first wheel and the second wheel. The hydraulic pump 7 driven by 71 is provided. In the present embodiment, the vehicle drive device 100 further includes a counter gear mechanism 3 and a case 5 that houses the rotating electrical machine 1, the input member 2, the counter gear mechanism 3, and the differential gear device 4.
 回転電機1及び入力部材2は、それらの回転軸心としての第1軸A1上に配置され、カウンタギヤ機構3は、その回転軸心としての第2軸A2上に配置され、差動歯車装置4は、その回転軸心としての第3軸A3上に配置されている。第1軸A1、第2軸A2、及び第3軸A3は、互いに異なる仮想軸であり、互いに平行に配置される。第3軸A3が、車両用駆動装置100の「出力軸O」に相当する。 The rotating electrical machine 1 and the input member 2 are arranged on a first axis A1 as their rotation axis, and the counter gear mechanism 3 is arranged on a second axis A2 as its rotation axis, and is a differential gear device. 4 is arrange | positioned on the 3rd axis | shaft A3 as the rotating shaft center. The first axis A1, the second axis A2, and the third axis A3 are mutually different virtual axes and are arranged in parallel to each other. The third axis A3 corresponds to the “output shaft O” of the vehicle drive device 100.
 以下の説明では、上記の軸A1~A3に平行な方向を、車両用駆動装置100の「軸方向L」とする。そして、軸方向Lにおいて、回転電機1に対して入力部材2が配置される側を「軸方向第1側L1」とし、入力部材2に対して回転電機1が配置される側を「軸方向第2側L2」とする。また、上記の第1軸A1、第2軸A2、及び第3軸A3のそれぞれに直交する方向を、各軸を基準とした「径方向R」とする。なお、どの軸を基準とするかを区別する必要がない場合やどの軸を基準とするかが明らかである場合には、単に「径方向R」と記す場合がある。図1には、第1軸A1を基準とした径方向Rを示している。ここで、各部材についての方向は、それらが車両用駆動装置100に組み付けられた状態での方向を表す。 In the following description, the direction parallel to the axes A1 to A3 is referred to as “axial direction L” of the vehicle drive device 100. In the axial direction L, the side on which the input member 2 is disposed with respect to the rotating electrical machine 1 is referred to as “axial direction first side L1”, and the side on which the rotating electrical machine 1 is disposed with respect to the input member 2 is defined as “axial direction The second side L2 ”. In addition, a direction orthogonal to each of the first axis A1, the second axis A2, and the third axis A3 is referred to as a “radial direction R” with reference to each axis. When it is not necessary to distinguish which axis is the reference, or when it is clear which axis is the reference, the “radial direction R” may be simply indicated. FIG. 1 shows a radial direction R with respect to the first axis A1. Here, the direction about each member represents the direction in the state in which they were assembled to the vehicle drive device 100.
 ケース5は、回転電機1、入力部材2、カウンタギヤ機構3、及び差動歯車装置4を内部に収容している。ケース5は、これらの径方向Rにおける外側を囲む周壁部51を有している。また、ケース5は、径方向Rに沿って延在する、第1側壁部52及び第2側壁部53を有している。第1側壁部52は、周壁部51、入力部材2、及びカウンタギヤ機構3に対して軸方向第1側L1に配置されている。第2側壁部53は、周壁部51、及び回転電機1に対して軸方向第2側L2に配置されている。 The case 5 accommodates the rotating electrical machine 1, the input member 2, the counter gear mechanism 3, and the differential gear device 4 therein. The case 5 has a peripheral wall portion 51 that surrounds the outside in the radial direction R. Further, the case 5 has a first side wall portion 52 and a second side wall portion 53 that extend along the radial direction R. The first side wall 52 is disposed on the first axial side L <b> 1 with respect to the peripheral wall 51, the input member 2, and the counter gear mechanism 3. The second side wall 53 is disposed on the second axial side L <b> 2 with respect to the peripheral wall 51 and the rotating electrical machine 1.
 周壁部51は、第1周壁部511と、第1周壁部511に対して軸方向第2側L2から接合された第2周壁部512と、を有している。本実施形態では、第1周壁部511と第1側壁部52とは一体的に形成され、第2周壁部512と第2側壁部53とは一体的に形成されている。つまり、ケース5は、第1周壁部511と第1側壁部52とを有する第1ケース部と、第2周壁部512と第2側壁部53とを有する第2ケース部と、を備えている。これらの第1ケース部と第2ケース部とは、第1周壁部511と第2周壁部512とがボルト等の締結部材によって締結されることにより、互いに接合されている。 The peripheral wall portion 51 includes a first peripheral wall portion 511 and a second peripheral wall portion 512 joined to the first peripheral wall portion 511 from the second axial side L2. In this embodiment, the 1st surrounding wall part 511 and the 1st side wall part 52 are formed integrally, and the 2nd surrounding wall part 512 and the 2nd side wall part 53 are formed integrally. That is, the case 5 includes a first case portion having a first peripheral wall portion 511 and a first side wall portion 52, and a second case portion having a second peripheral wall portion 512 and a second side wall portion 53. . The first case portion and the second case portion are joined to each other by fastening the first peripheral wall portion 511 and the second peripheral wall portion 512 with a fastening member such as a bolt.
 本実施形態では、車両用駆動装置100は、ケース5に加えて、ケース5とは別体の支持部材6を備えている。支持部材6は、軸方向Lにおいて第1側壁部52と第2側壁部53との間に配置されている。支持部材6は、ケース5の内部に配置されており、ケース5に固定されている。本実施形態では、支持部材6は、径方向Rに沿って延在する板状に形成されている。ここで、「板状」とは、多少の異形部分を有していたとしてもその全体としての概略形状が板であることを意味する(以下、形状等に関して「状」を付して用いる他の表現に関しても同様とする)。 In the present embodiment, the vehicle drive device 100 includes a support member 6 separate from the case 5 in addition to the case 5. The support member 6 is disposed between the first sidewall portion 52 and the second sidewall portion 53 in the axial direction L. The support member 6 is disposed inside the case 5 and is fixed to the case 5. In the present embodiment, the support member 6 is formed in a plate shape extending along the radial direction R. Here, “plate shape” means that the overall shape of the plate is a plate even if it has some irregular parts (hereinafter referred to as “shape” with respect to the shape, etc. The same applies to the expression of).
 第1側壁部52と第2側壁部53との間に形成されたケース5の内部空間は、支持部材6によって区画されている。第1側壁部52と支持部材6との間の空間には、入力部材2の主要部、カウンタギヤ機構3、及び差動歯車装置4の主要部が配置されている。一方、第2側壁部53と支持部材6との間の空間には、回転電機1が配置されている。なお、図1では、ケース5及び支持部材6の断面にのみハッチングを付している。 The internal space of the case 5 formed between the first side wall part 52 and the second side wall part 53 is partitioned by the support member 6. In the space between the first side wall portion 52 and the support member 6, the main portion of the input member 2, the counter gear mechanism 3, and the main portion of the differential gear device 4 are arranged. On the other hand, the rotating electrical machine 1 is disposed in the space between the second side wall portion 53 and the support member 6. In FIG. 1, only the cross sections of the case 5 and the support member 6 are hatched.
 回転電機1は、第1車輪及び第2車輪を駆動する「第1駆動力源」として機能する。回転電機1は、ステータ11と、ロータ12と、を備えている。ステータ11は、ケース5に固定された円筒状のステータコア111を有している。ロータ12は、ステータ11に対して回転可能な円筒状のロータコア121を有している。本実施形態では、回転電機1は回転界磁型の回転電機であるため、ステータコア111にはコイル112が巻装され、ロータコア121には永久磁石が設けられている。また、本実施形態では、回転電機1はインナロータ型の回転電機であるため、ステータコア111よりも径方向Rの内側にロータコア121が配置されている。更に、ロータコア121の内周面には、軸方向Lに沿って延在する円筒状のロータ軸13が連結されている。 The rotating electrical machine 1 functions as a “first driving force source” that drives the first wheel and the second wheel. The rotating electrical machine 1 includes a stator 11 and a rotor 12. The stator 11 has a cylindrical stator core 111 fixed to the case 5. The rotor 12 has a cylindrical rotor core 121 that can rotate with respect to the stator 11. In this embodiment, since the rotating electrical machine 1 is a rotating field type rotating electrical machine, a coil 112 is wound around the stator core 111 and a permanent magnet is provided on the rotor core 121. In the present embodiment, since the rotating electrical machine 1 is an inner rotor type rotating electrical machine, the rotor core 121 is disposed inside the stator core 111 in the radial direction R. Further, a cylindrical rotor shaft 13 extending along the axial direction L is connected to the inner peripheral surface of the rotor core 121.
 ロータ軸13は、ロータ12と一体的に、第1軸A1回りに回転する。ロータ軸13は、ロータコア121の軸方向Lの両端面から突出するように、軸方向Lに沿って延在している。ロータ軸13の軸方向第1側L1の端部は、第1ロータ軸受91を介して、支持部材6に回転可能に支持されている。ロータ軸13の軸方向第2側L2の端部は、第2ロータ軸受92を介して、ケース5の第2側壁部53に回転可能に支持されている。ロータ軸13には入力部材2が連結されており、ロータ軸13と入力部材2とが一体的に回転する。 The rotor shaft 13 rotates around the first axis A1 integrally with the rotor 12. The rotor shaft 13 extends along the axial direction L so as to protrude from both end surfaces of the rotor core 121 in the axial direction L. An end portion on the first axial side L1 of the rotor shaft 13 is rotatably supported by the support member 6 via a first rotor bearing 91. An end portion on the second axial side L2 of the rotor shaft 13 is rotatably supported by the second side wall portion 53 of the case 5 via a second rotor bearing 92. The input member 2 is connected to the rotor shaft 13, and the rotor shaft 13 and the input member 2 rotate integrally.
 入力部材2は、回転電機1に駆動連結されている。そして、入力部材2は、回転電機1のロータ軸13と一体的に、第1軸A1回りに回転する。つまり、回転電機1及び入力部材2は、第1軸A1上に配置されている。また、入力部材2は、軸部21と、駆動ギヤ22と、を有している。 The input member 2 is drivingly connected to the rotating electrical machine 1. The input member 2 rotates about the first axis A1 integrally with the rotor shaft 13 of the rotating electrical machine 1. That is, the rotating electrical machine 1 and the input member 2 are disposed on the first axis A1. The input member 2 has a shaft portion 21 and a drive gear 22.
 軸部21は、円筒状に形成され、軸方向Lに沿って延在している。軸部21の軸方向第2側L2の端部は、ロータ軸13の軸方向第1側L1の端部と連結されている。本実施形態では、ロータ軸13の径方向Rの内側に軸部21が位置するように、軸部21の軸方向第2側L2の端部がロータ軸13の軸方向第1側L1の端部に挿入され、当該端部同士がスプライン係合によって連結されている。軸部21の軸方向第1側L1の端部は、第1入力軸受93を介して、ケース5の第1側壁部52に回転可能に支持されている。また、軸部21における、ロータ軸13との連結部分よりも軸方向第1側L1の部分が、第2入力軸受94を介して、支持部材6に回転可能に支持されている。このように、軸部21が第1側壁部52及び支持部材6に回転可能に支持されることで、入力部材2の軸方向第1側L1の端部が第1側壁部52に回転可能に支持され、入力部材2の軸方向第2側L2の端部が支持部材6に回転可能に支持されている。 The shaft portion 21 is formed in a cylindrical shape and extends along the axial direction L. An end portion of the shaft portion 21 on the second axial side L2 is connected to an end portion of the rotor shaft 13 on the first axial direction side L1. In the present embodiment, the end portion of the axial second side L2 of the shaft portion 21 is the end of the first axial side L1 of the rotor shaft 13 so that the shaft portion 21 is positioned inside the radial direction R of the rotor shaft 13. The end portions are connected to each other by spline engagement. An end portion of the shaft portion 21 on the first axial side L <b> 1 is rotatably supported by the first side wall portion 52 of the case 5 via the first input bearing 93. In addition, a portion of the shaft portion 21 on the first axial side L <b> 1 with respect to the connecting portion with the rotor shaft 13 is rotatably supported by the support member 6 via the second input bearing 94. As described above, the shaft portion 21 is rotatably supported by the first side wall portion 52 and the support member 6, so that the end portion on the first axial side L <b> 1 of the input member 2 can be rotated by the first side wall portion 52. The end of the input member 2 on the second axial side L2 is rotatably supported by the support member 6.
 駆動ギヤ22は、回転電機1からの駆動力をカウンタギヤ機構3に伝達するギヤである。駆動ギヤ22は、軸部21に設けられている。駆動ギヤ22は、第1入力軸受93と第2入力軸受94との間に配置されている。本実施形態では、駆動ギヤ22は、第1入力軸受93に対して軸方向第2側L2に隣接するように配置されている。そして、本実施形態では、駆動ギヤ22は、軸部21と一体的に形成されている。 The drive gear 22 is a gear that transmits the driving force from the rotating electrical machine 1 to the counter gear mechanism 3. The drive gear 22 is provided on the shaft portion 21. The drive gear 22 is disposed between the first input bearing 93 and the second input bearing 94. In the present embodiment, the drive gear 22 is arranged so as to be adjacent to the first input bearing 93 on the second axial side L2. In the present embodiment, the drive gear 22 is formed integrally with the shaft portion 21.
 カウンタギヤ機構3は、駆動力の伝達経路において、入力部材2と差動歯車装置4との間に配置されている。カウンタギヤ機構3は、回転電機1及び入力部材2の回転軸心である第1軸A1とは異なる第2軸A2回りに回転する。つまり、カウンタギヤ機構3は、第1軸A1とは異なる第2軸A2上に配置されている。カウンタギヤ機構3は、カウンタシャフト31と、入力部材2に設けられた駆動ギヤ22に噛み合う第1ギヤ32と、差動歯車装置4の差動入力ギヤ43に噛み合う第2ギヤ33と、を有している。 The counter gear mechanism 3 is disposed between the input member 2 and the differential gear device 4 in the driving force transmission path. The counter gear mechanism 3 rotates around a second axis A2 that is different from the first axis A1, which is the rotation axis of the rotating electrical machine 1 and the input member 2. That is, the counter gear mechanism 3 is arranged on the second axis A2 different from the first axis A1. The counter gear mechanism 3 includes a counter shaft 31, a first gear 32 that meshes with a drive gear 22 provided on the input member 2, and a second gear 33 that meshes with a differential input gear 43 of the differential gear device 4. is doing.
 カウンタシャフト31は、軸方向Lに沿って延在している。カウンタシャフト31の軸方向第1側L1の端部は、第1カウンタ軸受95を介して、ケース5の第1側壁部52に回転可能に支持されている。カウンタシャフト31の軸方向第2側L2の端部は、第2カウンタ軸受96を介して、支持部材6に回転可能に支持されている。このように、カウンタシャフト31が第1側壁部52及び支持部材6に回転可能に支持されることで、カウンタギヤ機構3の軸方向第1側L1の端部が第1側壁部52に回転可能に支持され、カウンタギヤ機構3の軸方向第2側L2の端部が支持部材6に回転可能に支持されている。 The counter shaft 31 extends along the axial direction L. An end portion of the counter shaft 31 on the first axial side L1 is rotatably supported by the first side wall portion 52 of the case 5 via a first counter bearing 95. The end of the counter shaft 31 on the second axial side L2 is rotatably supported by the support member 6 via a second counter bearing 96. As described above, the counter shaft 31 is rotatably supported by the first side wall portion 52 and the support member 6, so that the end portion of the counter gear mechanism 3 on the first axial side L <b> 1 can be rotated by the first side wall portion 52. The end of the counter gear mechanism 3 on the second axial side L2 is rotatably supported by the support member 6.
 第1ギヤ32は、カウンタギヤ機構3の入力要素である。第1ギヤ32は、入力部材2の駆動ギヤ22と噛み合っている。第1ギヤ32は、カウンタシャフト31と一体的に回転するように、カウンタシャフト31に設けられている。本実施形態では、第1ギヤ32は、カウンタシャフト31と一体的に回転するように、カウンタシャフト31とスプライン係合によって連結されている。第1ギヤ32は、第1カウンタ軸受95と第2カウンタ軸受96との間であって、第2ギヤ33よりも軸方向第2側L2に配置されている。本実施形態では、第1ギヤ32は、第2カウンタ軸受96に対して軸方向第1側L1に隣接するように配置されている。 The first gear 32 is an input element of the counter gear mechanism 3. The first gear 32 meshes with the drive gear 22 of the input member 2. The first gear 32 is provided on the counter shaft 31 so as to rotate integrally with the counter shaft 31. In the present embodiment, the first gear 32 is connected to the counter shaft 31 by spline engagement so as to rotate integrally with the counter shaft 31. The first gear 32 is disposed between the first counter bearing 95 and the second counter bearing 96, and is disposed on the second axial side L <b> 2 with respect to the second gear 33. In the present embodiment, the first gear 32 is disposed adjacent to the second counter bearing 96 on the first axial side L1.
 第2ギヤ33は、カウンタギヤ機構3の出力要素である。第2ギヤ33は、後述する差動歯車装置4の差動入力ギヤ43と噛み合っている。本実施形態では、第2ギヤ33は、第1ギヤ32よりも小径に形成されている。第2ギヤ33は、カウンタシャフト31と一体的に回転するように、カウンタシャフト31に設けられている。本実施形態では、第2ギヤ33は、カウンタシャフト31と一体的に形成されている。第2ギヤ33は、第1ギヤ32と同軸となるように配置されている。更に、第2ギヤ33は、第1カウンタ軸受95と第2カウンタ軸受96との間であって、第1ギヤ32よりも軸方向第2側L2に配置されている。本実施形態では、第2ギヤ33は、第1カウンタ軸受95に対して軸方向第2側L2に隣接するように配置されている。 The second gear 33 is an output element of the counter gear mechanism 3. The second gear 33 meshes with a differential input gear 43 of the differential gear device 4 described later. In the present embodiment, the second gear 33 is formed with a smaller diameter than the first gear 32. The second gear 33 is provided on the counter shaft 31 so as to rotate integrally with the counter shaft 31. In the present embodiment, the second gear 33 is formed integrally with the counter shaft 31. The second gear 33 is disposed so as to be coaxial with the first gear 32. Further, the second gear 33 is disposed between the first counter bearing 95 and the second counter bearing 96 and on the second axial side L <b> 2 from the first gear 32. In the present embodiment, the second gear 33 is disposed adjacent to the first counter bearing 95 on the second axial side L2.
 差動歯車装置4は、歯車機構41と、歯車機構41を収容する中空の差動ケース42と、を有している。 The differential gear device 4 includes a gear mechanism 41 and a hollow differential case 42 that houses the gear mechanism 41.
 歯車機構41は、第1車輪と第2車輪とのそれぞれに駆動連結されて出力軸O(第3軸A3)周りに回転する出力要素41aと、出力要素41aに噛み合う中間要素41bと、中間要素41bを差動ケース42に対して支持する歯車支持部材41cと、を有している。本実施形態では、歯車機構41は、一対のピニオンギヤ411と、第1サイドギヤ412及び第2サイドギヤ413と、ピニオンシャフト414と、を有している。本実施形態では、一対のピニオンギヤ411、並びに第1サイドギヤ412及び第2サイドギヤ413は、いずれも傘歯車である。つまり、差動歯車装置4は、傘歯車型の差動歯車装置である。 The gear mechanism 41 includes an output element 41a that is driven and connected to each of the first wheel and the second wheel and rotates around the output shaft O (third axis A3), an intermediate element 41b that meshes with the output element 41a, and an intermediate element A gear support member 41c that supports the differential case 42 with respect to the differential case 42. In the present embodiment, the gear mechanism 41 includes a pair of pinion gears 411, a first side gear 412 and a second side gear 413, and a pinion shaft 414. In the present embodiment, the pair of pinion gears 411, the first side gear 412 and the second side gear 413 are all bevel gears. That is, the differential gear device 4 is a bevel gear type differential gear device.
 一対のピニオンギヤ411は、差動歯車装置4の径方向Rに沿って互いに間隔を空けて対向した状態でピニオンシャフト414に取り付けられている。第1サイドギヤ412及び第2サイドギヤ413は、軸方向Lに沿って互いに間隔を空けて、ピニオンシャフト414を挟んで対向するように設けられている。一対のピニオンギヤ411と、第1サイドギヤ412及び第2サイドギヤ413とは、互いに噛み合っている。本実施形態では、一対のピニオンギヤ411のそれぞれが中間要素41bとして機能する。 The pair of pinion gears 411 are attached to the pinion shaft 414 in a state of facing each other with a space along the radial direction R of the differential gear device 4. The first side gear 412 and the second side gear 413 are provided so as to face each other across the pinion shaft 414 with a space therebetween along the axial direction L. The pair of pinion gears 411, the first side gear 412 and the second side gear 413 are meshed with each other. In the present embodiment, each of the pair of pinion gears 411 functions as the intermediate element 41b.
 第1サイドギヤ412は、第1車輪に駆動連結された第1ドライブシャフトDS1と連結される。具体的には、第1サイドギヤ412には、第1ドライブシャフトDS1の軸方向第2側L2の端部が連結されている。第1ドライブシャフトDS1は、第3軸A3上に配置されている。第1ドライブシャフトDS1は、差動歯車装置4から軸方向第1側L1に延び、第1側壁部52を貫通してケース5の外部まで延びている。 The first side gear 412 is connected to the first drive shaft DS1 that is drivingly connected to the first wheel. Specifically, the first side gear 412 is connected to the end portion on the second axial side L2 of the first drive shaft DS1. The first drive shaft DS1 is disposed on the third axis A3. The first drive shaft DS <b> 1 extends from the differential gear device 4 to the first axial side L <b> 1, extends through the first side wall 52, and extends to the outside of the case 5.
 第2サイドギヤ413は、軸部材8を介して、第2車輪に駆動連結された第2ドライブシャフトDS2と連結される。具体的には、第2サイドギヤ413には、第2ドライブシャフトDS2に連結された軸部材8の軸方向第1側L1の端部が連結されている。本実施形態では、第1サイドギヤ412と第2サイドギヤ413とのそれぞれが出力要素41aとして機能する。 The second side gear 413 is connected via the shaft member 8 to the second drive shaft DS2 that is drivingly connected to the second wheel. Specifically, the second side gear 413 is connected to the end portion on the first axial side L1 of the shaft member 8 connected to the second drive shaft DS2. In the present embodiment, each of the first side gear 412 and the second side gear 413 functions as the output element 41a.
 軸部材8は、軸方向Lに沿って延在し、第3軸A3上に配置されている。軸部材8は、その軸方向第1側L1の端部から差動ケース42に挿入され、第2サイドギヤ413に連結されている。軸部材8において、差動ケース42の内部に配置されて第2サイドギヤ413に連結された部分がケース内軸部8Aであり、差動ケース42から外側(軸方向第2側L2)に突出して配置された部分がケース外軸部8Bである。軸部材8の軸方向第2側L2の端部は、出力軸受99を介して、第2側壁部53に回転可能に支持されている。また、軸部材8の軸方向第2側L2の端部は、第2ドライブシャフトDS2と連結されている。本実施形態では、軸部材8と第2ドライブシャフトDS2とは一体的に形成されている。つまり、本実施形態では、軸部材8は、差動歯車装置4と第2車輪とを連結する出力部材10を、第2ドライブシャフトDS2と共に構成している。第2ドライブシャフトDS2は、第2側壁部53を貫通してケース5の外部まで延びている。 The shaft member 8 extends along the axial direction L and is disposed on the third axis A3. The shaft member 8 is inserted into the differential case 42 from the end on the first axial side L1 and is connected to the second side gear 413. In the shaft member 8, a portion disposed inside the differential case 42 and connected to the second side gear 413 is a case inner shaft portion 8 </ b> A, and protrudes outward from the differential case 42 (second axial side L <b> 2). The arranged portion is the case outer shaft portion 8B. An end of the shaft member 8 on the second axial side L2 is rotatably supported by the second side wall 53 via an output bearing 99. Further, the end of the shaft member 8 on the second axial side L2 is connected to the second drive shaft DS2. In the present embodiment, the shaft member 8 and the second drive shaft DS2 are integrally formed. That is, in this embodiment, the shaft member 8 constitutes the output member 10 that connects the differential gear device 4 and the second wheel together with the second drive shaft DS2. The second drive shaft DS2 extends through the second side wall portion 53 to the outside of the case 5.
 軸部材8は、当該軸部材8の内部を軸方向Lに沿って延在する第1油路81と、第1油路81に連通すると共に差動ケース42の内部において開口する油路開口部82と、を有している。ここでは、図1に示すように、電動モータ71により駆動される油圧ポンプ7により、第1油路81に油Fが供給される。本実施形態では、軸部材8は、第1油路81と軸部材8の外周面8aとを連通する第2油路83を更に有している。第2油路83は、差動ケース42より外側のケース外軸部8Bに形成されている。第2油路83は、軸部材8の径方向Rに沿って形成され、軸部材8の周方向に複数配置されている。第2油路83は、軸部材8とケース5との間に介在された滑り軸受84やケース5に形成された油路等を介して油圧ポンプ7に接続されている。こうして、油圧ポンプ7から吐出された油Fは、ケース5に形成された油路、滑り軸受84の油路、第2油路83、及び第1油路81を順に通り、油路開口部82から差動ケース42の内部に供給される。 The shaft member 8 includes a first oil passage 81 extending along the axial direction L in the shaft member 8, and an oil passage opening communicating with the first oil passage 81 and opening inside the differential case 42. 82. Here, as shown in FIG. 1, the oil F is supplied to the first oil passage 81 by the hydraulic pump 7 driven by the electric motor 71. In the present embodiment, the shaft member 8 further includes a second oil passage 83 that communicates the first oil passage 81 and the outer peripheral surface 8 a of the shaft member 8. The second oil passage 83 is formed in the case outer shaft portion 8 </ b> B outside the differential case 42. The second oil passage 83 is formed along the radial direction R of the shaft member 8, and a plurality of second oil passages 83 are arranged in the circumferential direction of the shaft member 8. The second oil passage 83 is connected to the hydraulic pump 7 via a sliding bearing 84 interposed between the shaft member 8 and the case 5, an oil passage formed in the case 5, and the like. Thus, the oil F discharged from the hydraulic pump 7 sequentially passes through the oil passage formed in the case 5, the oil passage of the sliding bearing 84, the second oil passage 83, and the first oil passage 81, and the oil passage opening 82. To the inside of the differential case 42.
 本実施形態では、油路開口部82は、出力軸O(第3軸A3)を基準とした径方向R視で、後述する油貯留部421a(図3参照)と重複する位置において開口している。ここで、2つの部材の配置に関して、「特定方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線に直交する各方向に移動させた場合に、当該仮想直線が2つの部材の双方に交わる領域が存在することを指す。 In the present embodiment, the oil passage opening 82 opens at a position overlapping with an oil storage portion 421a (see FIG. 3), which will be described later, as viewed in the radial direction R with respect to the output shaft O (third axis A3). Yes. Here, with respect to the arrangement of the two members, “overlapping in a specific direction” means that when the virtual straight line parallel to the visual line direction is moved in each direction orthogonal to the virtual straight line, the virtual straight line is 2 It indicates that there is a region that intersects both members.
 ピニオンシャフト414は、出力軸O(第3軸A3)を基準とした軸方向Lに直交する方向に沿って延在している。ピニオンシャフト414は、一対のピニオンギヤ411に挿通され、それらを回転可能に支持している。ピニオンシャフト414の少なくとも一方の端部は、差動ケース42を貫通している。図示の例では、ピニオンシャフト414の両端部が差動ケース42を貫通している。本実施形態では、ピニオンシャフト414が歯車支持部材41cとして機能する。また、ピニオンシャフト414は、係止部材414aにより差動ケース42に係止され、差動ケース42と一体的に回転する。本例では、係止部材414aは、差動ケース42とピニオンシャフト414との双方に挿通された棒状ピンとされている。 The pinion shaft 414 extends along a direction orthogonal to the axial direction L with respect to the output shaft O (third axis A3). The pinion shaft 414 is inserted through the pair of pinion gears 411 and supports them rotatably. At least one end of the pinion shaft 414 passes through the differential case 42. In the illustrated example, both end portions of the pinion shaft 414 pass through the differential case 42. In the present embodiment, the pinion shaft 414 functions as the gear support member 41c. The pinion shaft 414 is locked to the differential case 42 by a locking member 414a and rotates integrally with the differential case 42. In this example, the locking member 414a is a rod-like pin inserted through both the differential case 42 and the pinion shaft 414.
 差動ケース42は、歯車機構41を収容する中空の部材である。差動ケース42の軸方向第1側L1の端部は、第1差動軸受97を介して、ケース5の第1側壁部52に回転可能に支持されている。差動ケース42の軸方向第2側L2の端部は、第2差動軸受98を介して、支持部材6に回転可能に支持されている。このように、差動ケース42は、軸方向Lの両端部が、第1側壁部52及び支持部材6によって回転可能に支持されている。 The differential case 42 is a hollow member that houses the gear mechanism 41. The end portion of the differential case 42 on the first axial side L1 is rotatably supported by the first side wall portion 52 of the case 5 via the first differential bearing 97. An end of the differential case 42 on the second axial side L2 is rotatably supported by the support member 6 via a second differential bearing 98. Thus, the differential case 42 is rotatably supported at both ends in the axial direction L by the first side wall 52 and the support member 6.
 差動ケース42には、カウンタギヤ機構3の第2ギヤ33と噛み合う差動入力ギヤ43が連結されている。差動入力ギヤ43は、差動歯車装置4の入力要素である。差動入力ギヤ43は、差動歯車装置4の径方向Rにおける最外側に配置されている。本実施形態では、差動入力ギヤ43は、締結部材43aにより差動ケース42に連結されている。差動入力ギヤ43は、差動ケース42と一体的に第3軸A3回りに回転する。 The differential case 42 is connected to a differential input gear 43 that meshes with the second gear 33 of the counter gear mechanism 3. The differential input gear 43 is an input element of the differential gear device 4. The differential input gear 43 is disposed on the outermost side in the radial direction R of the differential gear device 4. In the present embodiment, the differential input gear 43 is connected to the differential case 42 by a fastening member 43a. The differential input gear 43 rotates around the third axis A3 integrally with the differential case.
 油圧ポンプ7は、動力伝達経路Pの各部(ここでは、回転電機1、入力部材2等)の回転速度に関わらず、車両用駆動装置100が必要とする油の量である必要油量Arに応じた量の油を吐出するように制御される。本実施形態では、油圧ポンプ7は、電動モータ71によって駆動される電動式の油圧ポンプである。油圧ポンプ7として、例えば、内歯又は外歯のギヤポンプ、ベーンポンプ等を採用可能である。電動モータ71は、動力伝達経路Pから独立した「第2駆動力源」として機能する。電動モータ71としては、例えば、複数相の交流電力で駆動される交流回転電機を用いることができる。この場合、図示は省略するが、電動モータ71は、直流電力と交流電力との間で電力変換を行うインバータを介して直流電源に接続されており、インバータを介して電動モータ71の駆動が制御される。電動モータ71は、第1車輪及び第2車輪の駆動用の回転電機1より小型の回転電機である。そのため、電動モータ71は、回転電機1に比べて出力可能なトルクの最大値が小さい。本実施形態では、第1駆動力源としての回転電機1により駆動される油圧ポンプが設けられておらず、第2駆動力源としての電動モータ71により駆動される油圧ポンプ7のみが設けられている。 The hydraulic pump 7 adjusts the required oil amount Ar, which is the amount of oil required by the vehicle drive device 100, regardless of the rotational speed of each part of the power transmission path P (here, the rotating electrical machine 1, the input member 2, etc.). It is controlled to discharge a corresponding amount of oil. In the present embodiment, the hydraulic pump 7 is an electric hydraulic pump driven by an electric motor 71. As the hydraulic pump 7, for example, an internal or external gear pump, a vane pump, or the like can be used. The electric motor 71 functions as a “second driving force source” independent of the power transmission path P. As the electric motor 71, for example, an AC rotating electric machine driven by a plurality of phases of AC power can be used. In this case, although not shown, the electric motor 71 is connected to a DC power source via an inverter that performs power conversion between DC power and AC power, and driving of the electric motor 71 is controlled via the inverter. Is done. The electric motor 71 is a rotary electric machine that is smaller than the rotary electric machine 1 for driving the first wheel and the second wheel. Therefore, the electric motor 71 has a smaller maximum torque value that can be output than the rotating electrical machine 1. In this embodiment, the hydraulic pump driven by the rotating electrical machine 1 as the first driving force source is not provided, and only the hydraulic pump 7 driven by the electric motor 71 as the second driving force source is provided. Yes.
 図2に、必要油量Ar、及び回転電機1により駆動される油圧ポンプを備えると仮定した場合における当該油圧ポンプと電動モータ71により駆動される油圧ポンプ7とのそれぞれが吐出する油の量(吐出油量Ad1,Ad2)と、車両用駆動装置100が搭載された車両の速度(車速)との関係を示す。 In FIG. 2, the required oil amount Ar and the amount of oil discharged by each of the hydraulic pump and the hydraulic pump 7 driven by the electric motor 71 when it is assumed that a hydraulic pump driven by the rotating electrical machine 1 is provided ( The relationship between the discharge oil amount Ad1, Ad2) and the speed (vehicle speed) of the vehicle on which the vehicle drive device 100 is mounted is shown.
 図2に示すように、必要油量Arは、車速が大きくなるに従って、対数関数的に増加している。このような必要油量Arに対して、回転電機1により駆動される油圧ポンプの吐出油量Ad1は、車速に比例しており、車速が大きくなるに従って直線状に増加している。これは、回転電機1が第1車輪及び第2車輪の駆動力源(第1駆動力源)として機能するためである。そして、吐出油量Ad1は常に必要油量Ar以上を確保できるように設定されているが、特に車速が一定の値を超えた状態では必要油量Arを大きく上回っている。つまり、車速が一定の値を超えると、油圧ポンプが必要以上に駆動された状態となっている。その結果、油圧ポンプが必要以上に駆動されることによるエネルギ損失LSが生じている。このエネルギ損失LSは、車速が大きくなるに従って大きくなる。 As shown in FIG. 2, the required oil amount Ar increases logarithmically as the vehicle speed increases. With respect to such a required oil amount Ar, the discharge oil amount Ad1 of the hydraulic pump driven by the rotating electrical machine 1 is proportional to the vehicle speed and increases linearly as the vehicle speed increases. This is because the rotating electrical machine 1 functions as a driving force source (first driving force source) for the first wheel and the second wheel. The discharge oil amount Ad1 is set so as to always ensure the required oil amount Ar or more, but particularly exceeds the required oil amount Ar when the vehicle speed exceeds a certain value. That is, when the vehicle speed exceeds a certain value, the hydraulic pump is driven more than necessary. As a result, energy loss LS is caused by driving the hydraulic pump more than necessary. This energy loss LS increases as the vehicle speed increases.
 これに対して、油圧ポンプ7は、上述したように、動力伝達経路Pの各部の回転速度に関わらず、必要油量Arに応じた量の油を吐出するように制御される。ここで、動力伝達経路Pの各部の回転速度は車速に対応する。そのため、図2に示すように、油圧ポンプ7の吐出油量Ad2は、必要油量Arと同様の値となっている。このように、油圧ポンプ7では、車速に関わらず、吐出油量Ad2が必要油量Arに応じた量となっているため、エネルギ損失LSがほとんど生じていない。 In contrast, as described above, the hydraulic pump 7 is controlled to discharge an amount of oil corresponding to the required oil amount Ar, regardless of the rotational speed of each part of the power transmission path P. Here, the rotational speed of each part of the power transmission path P corresponds to the vehicle speed. Therefore, as shown in FIG. 2, the discharge oil amount Ad2 of the hydraulic pump 7 has the same value as the required oil amount Ar. As described above, in the hydraulic pump 7, the discharge oil amount Ad2 is an amount corresponding to the required oil amount Ar regardless of the vehicle speed, and therefore, the energy loss LS hardly occurs.
 以下では、差動歯車装置4及びその周辺の構造について、更に詳細に説明する。
 図3に示すように、差動ケース42は、出力軸O(第3軸A3)を基準とした径方向R視で歯車支持部材41cと重複する中央部421と、中央部421に対して軸方向第1側L1に配置された第1側方部422と、軸方向第2側L2に配置された第2側方部423と、を有している。
Hereinafter, the differential gear device 4 and the surrounding structure will be described in more detail.
As shown in FIG. 3, the differential case 42 has a central portion 421 that overlaps with the gear support member 41 c in the radial direction R with respect to the output shaft O (third axis A3), and an axis with respect to the central portion 421. It has the 1st side part 422 arrange | positioned at the direction 1st side L1, and the 2nd side part 423 arrange | positioned at the axial direction 2nd side L2.
 中央部421は、出力軸O(第3軸A3)を基準とした周方向に連続する筒状に形成されている。中央部421の内部には、油圧ポンプ7から吐出された油Fが貯留される油貯留部421aが形成されている。油貯留部421aは、出力軸O(第3軸A3)を基準とした周方向に連続して形成されている。 The central portion 421 is formed in a cylindrical shape that is continuous in the circumferential direction with the output shaft O (third axis A3) as a reference. An oil storage part 421a in which the oil F discharged from the hydraulic pump 7 is stored is formed inside the central part 421. The oil reservoir 421a is formed continuously in the circumferential direction with the output shaft O (third axis A3) as a reference.
 第1側方部422と第2側方部423とのそれぞれは、出力軸O(第3軸A3)を基準とした周方向に連続する筒状に形成されている。第1側方部422は、第1差動軸受97を介して、ケース5の第1側壁部52に回転可能に支持されている。第1側方部422には、第1ドライブシャフトDS1が軸方向第1側L1から挿入されている。第1ドライブシャフトDS1における差動ケース42内の部分は、第1サイドギヤ412に連結されている。本実施形態では、第1ドライブシャフトDS1の軸方向第2側L2の端面は、ピニオンシャフト414の外周面に接触している。 Each of the first side part 422 and the second side part 423 is formed in a cylindrical shape that is continuous in the circumferential direction with the output shaft O (third axis A3) as a reference. The first side portion 422 is rotatably supported by the first side wall portion 52 of the case 5 via the first differential bearing 97. A first drive shaft DS1 is inserted into the first side portion 422 from the first axial side L1. A portion of the first drive shaft DS 1 in the differential case 42 is connected to the first side gear 412. In the present embodiment, the end surface on the second axial direction side L2 of the first drive shaft DS1 is in contact with the outer peripheral surface of the pinion shaft 414.
 第2側方部423は、第2差動軸受98を介して、支持部材6に回転可能に支持されている。第2側方部423には、軸部材8が軸方向第2側L2から挿入されている。軸部材8における差動ケース42内の部分は、第2サイドギヤ413に連結されている。本実施形態では、軸部材8の軸方向第1側L1の端面8bは、ピニオンシャフト414の外周面に接触している。 The second side portion 423 is rotatably supported by the support member 6 via the second differential bearing 98. The shaft member 8 is inserted into the second side portion 423 from the second axial side L2. A portion of the shaft member 8 in the differential case 42 is connected to the second side gear 413. In the present embodiment, the end surface 8b on the first axial side L1 of the shaft member 8 is in contact with the outer peripheral surface of the pinion shaft 414.
 また、本実施形態では、軸部材8の第1油路81は、油路開口部82が軸部材8の端面8bに開口するように形成されている。つまり、本実施形態では、油路開口部82は、ケース内軸部8Aにおけるケース外軸部8Bの側とは反対側の端面8bに形成されている。 In the present embodiment, the first oil passage 81 of the shaft member 8 is formed such that the oil passage opening 82 opens on the end surface 8 b of the shaft member 8. That is, in this embodiment, the oil passage opening 82 is formed on the end surface 8b on the opposite side of the case outer shaft portion 8B in the case inner shaft portion 8A.
 また、本実施形態では、端面8bに溝部8cが形成されている。溝部8cは、端面8bから軸方向第2側L2に窪むように形成されている。この溝部8cにより、端面8bがピニオンシャフト414の外周面に接触している構成においても、油路開口部82と軸部材8の外周面8aとが連通している。溝部8cの数は限定されず、一つの溝部8cが配置されていても良いし、複数の溝部8cが軸部材8の周方向に沿って互いに間隔を空けて配置されていても良い。この溝部8cを通して、油Fが、油路開口部82から差動ケース42の内部に適切に供給される。 Further, in the present embodiment, the groove 8c is formed on the end face 8b. The groove 8c is formed so as to be recessed from the end face 8b to the second axial side L2. The groove 8c allows the oil passage opening 82 and the outer peripheral surface 8a of the shaft member 8 to communicate with each other even in a configuration in which the end surface 8b is in contact with the outer peripheral surface of the pinion shaft 414. The number of the groove portions 8 c is not limited, and one groove portion 8 c may be arranged, or a plurality of groove portions 8 c may be arranged at intervals from each other along the circumferential direction of the shaft member 8. Oil F is appropriately supplied from the oil passage opening 82 into the differential case 42 through the groove 8c.
 第1側方部422は、第1壁部424を有し、第2側方部423は、第2壁部425を有している。第1壁部424は、油貯留部421aに対して軸方向第1側L1に配置されている。第2壁部425は、油貯留部421aに対して軸方向第2側L2に配置されている。第1壁部424は、第1側方部422の軸方向第2側L2の端部から径方向Rに沿って径方向Rの外側に延在している。第2壁部425は、第2側方部423の軸方向第1側L1の端部から径方向Rに沿って径方向Rの外側に延在している。つまり、第1側方部422における第1壁部424を除いた部分、及び第2側方部423における第2壁部425を除いた部分は、中央部421よりも径方向Rに小さい。第1壁部424の径方向Rの外側端部、及び第2壁部425の径方向Rの外側端部は、中央部421に連結されている。本実施形態では、第1壁部424と中央部421とが、差動入力ギヤ43と共に締結部材43aによって連結されている。また、本実施形態では、第2壁部425と中央部421とが、一体的に形成されている。 The first side part 422 has a first wall part 424, and the second side part 423 has a second wall part 425. The first wall portion 424 is disposed on the first axial side L1 with respect to the oil storage portion 421a. The 2nd wall part 425 is arrange | positioned with respect to the oil storage part 421a at the axial direction 2nd side L2. The first wall portion 424 extends outward in the radial direction R along the radial direction R from the end portion on the second axial side L2 of the first side portion 422. The second wall portion 425 extends outward in the radial direction R along the radial direction R from the end portion on the first axial side L1 of the second side portion 423. That is, the portion excluding the first wall portion 424 in the first side portion 422 and the portion excluding the second wall portion 425 in the second side portion 423 are smaller in the radial direction R than the central portion 421. An outer end portion in the radial direction R of the first wall portion 424 and an outer end portion in the radial direction R of the second wall portion 425 are connected to the central portion 421. In the present embodiment, the first wall portion 424 and the central portion 421 are coupled together with the differential input gear 43 by the fastening member 43 a. Moreover, in this embodiment, the 2nd wall part 425 and the center part 421 are integrally formed.
 このように、第1側方部422と前記中央部421と前記第2側方部423とが互いに連続して一体的に連結されている。また、油貯留部421aは、出力軸O(第3軸A3)を基準とした周方向に連続する筒状に形成され中央部421と、径方向Rに沿って延在する一対の壁部424,425とによって囲まれた空間であるため、油Fを適切に貯留可能となっている。 Thus, the first side portion 422, the central portion 421, and the second side portion 423 are continuously and integrally connected to each other. The oil storage portion 421a is formed in a cylindrical shape that is continuous in the circumferential direction with the output shaft O (third axis A3) as a reference, and a central portion 421 and a pair of wall portions 424 extending along the radial direction R. , 425, the oil F can be stored appropriately.
 中央部421の内部(径方向Rの内側)には、一対のピニオンギヤ411と、第1サイドギヤ412及び第2サイドギヤ413とが配置されている。一対のピニオンギヤ411のそれぞれは、ピニオンワッシャ411aを介して中央部421の内面に支持されている。第1サイドギヤ412は、第1サイドワッシャ412aを介して第1壁部424に支持されている。第2サイドギヤ413は、第2サイドワッシャ413aを介して第2壁部425に支持されている。油圧ポンプ7(図1参照)によって油貯留部421aに供給された油Fの一部は、油貯留部421aに留まり、差動歯車装置4の作動によって、歯車機構41やワッシャ411a,412a,413a等に供給される。 A pair of pinion gears 411, a first side gear 412, and a second side gear 413 are disposed inside the central portion 421 (inside in the radial direction R). Each of the pair of pinion gears 411 is supported on the inner surface of the central portion 421 via a pinion washer 411a. The first side gear 412 is supported by the first wall portion 424 via the first side washer 412a. The second side gear 413 is supported by the second wall portion 425 via the second side washer 413a. Part of the oil F supplied to the oil reservoir 421a by the hydraulic pump 7 (see FIG. 1) stays in the oil reservoir 421a, and the gear mechanism 41 and washers 411a, 412a, 413a are operated by the operation of the differential gear unit 4. Etc.
 本実施形態では、差動ケース42は、径方向Rにおける外側から差動ケース42内に油Fを供給するための開口部が形成されていない、密閉型のケースとなっている。本実施形態では、差動ケース42と、当該差動ケース42を貫通するピニオンシャフト414の端部との間を閉塞する閉塞構造45が設けられている。図示の例では、前述のようにピニオンシャフト414の両端部が差動ケース42を貫通しているため、差動ケース42とピニオンシャフト414の両端部との間のそれぞれに閉塞構造45が設けられている。閉塞構造45は、例えば、差動ケース42と、当該差動ケース42を貫通するピニオンシャフト414の端部との間に設けられたOリング等のシール部材である。或いは、閉塞構造45として、差動ケース42におけるピニオンシャフト414が貫通する貫通孔を閉塞するように、蓋部材を設けてもよい。また、閉塞構造45として、差動ケース42と、当該差動ケース42を貫通するピニオンシャフト414の端部との間に隙間が形成されないように、それらの大きさ及び形状が設定された構造としても良い。 In the present embodiment, the differential case 42 is a sealed case in which an opening for supplying the oil F into the differential case 42 from the outside in the radial direction R is not formed. In the present embodiment, a closing structure 45 that closes the gap between the differential case 42 and the end of the pinion shaft 414 that passes through the differential case 42 is provided. In the illustrated example, since both ends of the pinion shaft 414 pass through the differential case 42 as described above, the closing structure 45 is provided between each of the differential case 42 and both ends of the pinion shaft 414. ing. The closing structure 45 is, for example, a seal member such as an O-ring provided between the differential case 42 and the end of the pinion shaft 414 that passes through the differential case 42. Alternatively, as the closing structure 45, a lid member may be provided so as to close a through hole through which the pinion shaft 414 in the differential case 42 passes. Further, as the closing structure 45, the size and shape of the differential case 42 are set so that no gap is formed between the differential case 42 and the end of the pinion shaft 414 passing through the differential case 42. Also good.
 本実施形態では、差動ケース42の第1側方部422と中央部421と第2側方部423とのそれぞれが、円筒状、厚さを有する円錐台面状、厚さを有する部分的な球面状、又はこれらを組み合わせた形状とされている。図3及び図4に示す例では、第1側方部422と中央部421と第2側方部423とのそれぞれが、円筒状に形成されている。 In the present embodiment, each of the first side portion 422, the central portion 421, and the second side portion 423 of the differential case 42 is cylindrical, a truncated cone surface having a thickness, or a partial portion having a thickness. The shape is spherical or a combination of these. In the example shown in FIG.3 and FIG.4, each of the 1st side part 422, the center part 421, and the 2nd side part 423 is formed in the cylindrical shape.
 図3に示すように、本実施形態では、一対の壁部424,425の少なくとも一方に、油貯留部421aから差動ケース42の外部に油Fを排出するための排油孔425aが形成されている。図示の例では、第2壁部425に排油孔425aが形成され、第1壁部424には排油孔は形成されていない。なお、排油孔425aの数は限定されず、一対の壁部424,425の少なくとも一方に、一つの排油孔425aが形成されていても良いし、複数の排油孔425aが出力軸O(第3軸A3)を基準とした周方向に沿って互いに間隔を空けて形成されていても良い。また、排油孔425aが形成されていなくても良い。本実施形態では、排油孔425aは、軸方向Lに沿って延在するように形成されている。なお、排油孔425aが軸方向Lに対して傾斜する方向に沿って延在するように形成されていても良い。 As shown in FIG. 3, in this embodiment, an oil drain hole 425a for discharging the oil F from the oil reservoir 421a to the outside of the differential case 42 is formed in at least one of the pair of wall portions 424, 425. ing. In the illustrated example, an oil drain hole 425 a is formed in the second wall portion 425, and no oil drain hole is formed in the first wall portion 424. The number of oil drain holes 425a is not limited, and one oil drain hole 425a may be formed in at least one of the pair of wall portions 424, 425, or a plurality of oil drain holes 425a may be provided on the output shaft O. They may be formed spaced apart from each other along the circumferential direction with respect to (third axis A3). Further, the oil drain hole 425a may not be formed. In the present embodiment, the oil drain hole 425a is formed so as to extend along the axial direction L. The oil drain hole 425a may be formed to extend along a direction inclined with respect to the axial direction L.
 また、本実施形態では、排油孔425aは、壁部424,425における油貯留部421aに対向する表面に壁開口部425bが開口するように形成されている。図示の例では、第2壁部425にのみ排油孔425aが形成されているため、第2壁部425における油貯留部421aに対向する表面に壁開口部425bが開口している。壁開口部425bは、油貯留部421aの内周面における径方向Rの最外側部よりも径方向Rの内側に配置されている。図示の例では、壁開口部425bは、油貯留部421aの内周面における径方向Rの最外側部よりも径方向Rの内側であって、第2サイドワッシャ413aの外周面よりも径方向Rの外側に配置されている。 Further, in the present embodiment, the oil drain hole 425a is formed so that the wall opening 425b opens on the surface of the wall 424, 425 facing the oil reservoir 421a. In the illustrated example, since the oil drain hole 425a is formed only in the second wall portion 425, the wall opening portion 425b opens on the surface of the second wall portion 425 facing the oil storage portion 421a. The wall opening 425b is disposed on the inner side in the radial direction R than the outermost portion in the radial direction R on the inner peripheral surface of the oil storage portion 421a. In the illustrated example, the wall opening 425b is inside in the radial direction R from the outermost portion in the radial direction R on the inner peripheral surface of the oil reservoir 421a and is more radial than the outer peripheral surface of the second side washer 413a. It is arranged outside R.
〔その他の実施形態〕
(1)上記の実施形態では、油路開口部82が軸部材8の端面8bに開口している構成を例として説明したが、そのような構成に限定されない。例えば、図5に示すように、油路開口部82が油貯留部421a内において軸部材8の外周面8aに開口し、当該油路開口部82と第1油路81とが第3油路85を介して接続した構成であっても良い。このような構成では、軸部材8の端面8bに溝部8cが形成される必要はない。
[Other Embodiments]
(1) In the above embodiment, the configuration in which the oil passage opening 82 is opened in the end surface 8b of the shaft member 8 has been described as an example. However, the configuration is not limited thereto. For example, as shown in FIG. 5, the oil passage opening 82 opens to the outer peripheral surface 8a of the shaft member 8 in the oil storage portion 421a, and the oil passage opening 82 and the first oil passage 81 are the third oil passage. The structure connected via 85 may be sufficient. In such a configuration, it is not necessary to form the groove 8c on the end surface 8b of the shaft member 8.
(2)上記の実施形態では、径方向Rにおける外側から差動ケース42内に油Fを供給するための開口部が差動ケース42に形成されていない構成を例として説明した。しかし、そのような構成に限定されることなく、油Fを油貯留部421aに貯留することができれば、径方向Rにおける外側から差動ケース42内に油Fを供給するための開口部が差動ケース42に形成された構成としても良い。なお、このような構成の場合、軸部材8に第1油路81及び油路開口部82を設けずに、差動ケース42の開口部と連通する油路に、油圧ポンプ7によって油Fを供給しても良い。 (2) In the above embodiment, the configuration in which the opening for supplying the oil F from the outside in the radial direction R into the differential case 42 is not formed in the differential case 42 has been described as an example. However, without being limited to such a configuration, if the oil F can be stored in the oil storage portion 421a, the opening for supplying the oil F from the outside in the radial direction R into the differential case 42 is different. It is good also as a structure formed in the moving case 42. FIG. In the case of such a configuration, the oil F is supplied by the hydraulic pump 7 to the oil passage communicating with the opening of the differential case 42 without providing the first oil passage 81 and the oil passage opening 82 in the shaft member 8. You may supply.
(3)上記の実施形態では、第1油路81と軸部材8の外周面8aとを連通する第2油路83が、軸部材8のケース外軸部8Bに形成された構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、第2油路83の一部又は全体がケース内軸部8Aに形成された構成としても良い。 (3) In the above embodiment, a configuration in which the second oil passage 83 communicating the first oil passage 81 and the outer peripheral surface 8a of the shaft member 8 is formed in the case outer shaft portion 8B of the shaft member 8 is taken as an example. explained. However, without being limited to such a configuration, for example, a part or the whole of the second oil passage 83 may be formed in the case inner shaft portion 8A.
(4)上記の実施形態では、一対の壁部424,425の少なくとも一方に、排油孔425aが軸方向Lに沿って形成された構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、排油孔425aの一部又は全体が中央部421に形成された構成としても良い。或いは、排油孔425aの一部又は全体が、第1側方部422における第1壁部424以外の部分、又は第2側方部423における第2壁部425以外の部分に形成された構成としても良い。 (4) In the above-described embodiment, the configuration in which the oil drain hole 425a is formed along the axial direction L in at least one of the pair of wall portions 424 and 425 has been described as an example. However, without being limited to such a configuration, for example, a part or the whole of the oil drain hole 425a may be formed in the central portion 421. Alternatively, a part or the whole of the oil drain hole 425a is formed in a portion other than the first wall portion 424 in the first side portion 422 or a portion other than the second wall portion 425 in the second side portion 423. It is also good.
(5)上記の実施形態では、軸部材8が差動歯車装置4と第2車輪とを連結する出力部材10の一部を成している構成を例として説明した。しかし、そのような構成に限定されることなく、出力部材10とは別に軸部材8が設けられた構成としても良い。 (5) In the above embodiment, the configuration in which the shaft member 8 forms part of the output member 10 that connects the differential gear device 4 and the second wheel has been described as an example. However, the configuration is not limited to such a configuration, and the shaft member 8 may be provided separately from the output member 10.
(6)上記の実施形態では、差動ケース42の第1側方部422と中央部421と第2側方部423とのそれぞれが、円筒状に形成された構成を例として説明した。しかし、そのような構成に限定されることなく、第1側方部422と中央部421と第2側方部423との少なくとも一つが、円筒状、厚さを有する円錐台面状、厚さを有する部分的な球面状、又はこれらを組み合わせた形状であっても良い。例えば、第1側方部422と第2側方部423とが、それぞれ、中央部421側へ向かうに従って径方向Rに大きくなる厚さを有する円錐台面状とされ、中央部421が厚さを有する部分的な球面状とされてもよい。本実施形態において、厚さを有する円錐台面状とは、外周面が円錐台面状であって内周面が円筒状等の他の形状である構成や、内周面が円錐台面状であって外周面が円筒状等の他の形状である構成も含む。また、厚さを有する部分的な球面状とは、外周面が部分的な球面状であって内周面が円筒状等の他の形状である構成や、内周面が部分的な球面状であって外周面が円筒状等の他の形状である構成も含む。なお、差動ケース42の各部の形状は、ここに列挙した形状に限定されず、これら以外の形状とされていても良い。 (6) In the above embodiment, the configuration in which the first side portion 422, the center portion 421, and the second side portion 423 of the differential case 42 are formed in a cylindrical shape has been described as an example. However, without being limited to such a configuration, at least one of the first side portion 422, the central portion 421, and the second side portion 423 has a cylindrical shape, a truncated cone surface shape, and a thickness. It may have a partial spherical shape or a combination of these. For example, each of the first side portion 422 and the second side portion 423 has a truncated cone shape having a thickness that increases in the radial direction R toward the center portion 421 side, and the center portion 421 has a thickness. It may have a partial spherical shape. In this embodiment, the frustoconical surface having a thickness is a configuration in which the outer peripheral surface is a frustoconical surface and the inner peripheral surface is another shape such as a cylindrical shape, or the inner peripheral surface is a frustoconical surface. A configuration in which the outer peripheral surface has another shape such as a cylindrical shape is included. Further, the partial spherical shape having a thickness means a configuration in which the outer peripheral surface is a partial spherical shape and the inner peripheral surface is another shape such as a cylindrical shape, or the inner peripheral surface is a partial spherical shape. And the structure whose outer peripheral surface is other shapes, such as cylindrical shape, is also included. In addition, the shape of each part of the differential case 42 is not limited to the shape enumerated here, You may be made into shapes other than these.
(7)上記の実施形態では、差動ケース42と、当該差動ケース42を貫通するピニオンシャフト414の端部との間を閉塞する閉塞構造45が設けられている構成を例として説明したが、これには限定されない。例えば、差動ケース42とピニオンシャフト414の端部との間に、閉塞構造45が設けられていなくても良い。 (7) In the above-described embodiment, the configuration in which the closing structure 45 that closes the gap between the differential case 42 and the end of the pinion shaft 414 that passes through the differential case 42 has been described as an example. However, the present invention is not limited to this. For example, the closing structure 45 may not be provided between the differential case 42 and the end of the pinion shaft 414.
(8)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。 (8) It should be noted that the configurations disclosed in the above-described embodiments can be applied in combination with the configurations disclosed in other embodiments as long as no contradiction arises. Regarding other configurations, the embodiments disclosed herein are merely examples in all respects. Accordingly, various modifications can be made as appropriate without departing from the spirit of the present disclosure.
〔上記実施形態の概要〕
 以下、上記において説明した車両用駆動装置(100)の概要について説明する。
[Overview of the above embodiment]
Hereinafter, the outline | summary of the vehicle drive device (100) demonstrated above is demonstrated.
 車両用駆動装置(100)は、
 複数の車輪を駆動する第1駆動力源(1)と、
 前記第1駆動力源(1)に駆動連結された入力部材(2)と、
 前記入力部材(2)を介して伝達される前記第1駆動力源(1)からの駆動力を、前記複数の車輪に分配する差動歯車装置(4)と、
 前記第1駆動力源(1)と前記複数の車輪とを結ぶ動力伝達経路(P)から独立した第2駆動力源(71)により駆動される油圧ポンプ(7)と、を備え、
 前記差動歯車装置(4)は、歯車機構(41)と、前記歯車機構(41)を収容する中空の差動ケース(42)と、を有し、
 前記歯車機構(41)は、複数の前記車輪のそれぞれに駆動連結されて出力軸(O)周りに回転する出力要素(41a)と、前記出力要素(41a)に噛み合う中間要素(41b)と、前記中間要素(41b)を前記差動ケース(42)に対して支持する歯車支持部材(41c)と、を有し、
 前記差動ケース(42)は、前記出力軸(O)を基準とした径方向(R)に沿う径方向(R)視で前記歯車支持部材(41c)と重複する中央部(421)を有し、
 前記中央部(421)の内部には、前記油圧ポンプ(7)から吐出された油(F)が貯留される油貯留部(421a)が形成され、
 前記油貯留部(421a)は、前記出力軸(O)を基準とした周方向に連続して形成されている。
The vehicle drive device (100) includes:
A first driving force source (1) for driving a plurality of wheels;
An input member (2) drivingly connected to the first driving force source (1);
A differential gear device (4) that distributes the driving force from the first driving force source (1) transmitted via the input member (2) to the plurality of wheels;
A hydraulic pump (7) driven by a second driving force source (71) independent of a power transmission path (P) connecting the first driving force source (1) and the plurality of wheels,
The differential gear device (4) includes a gear mechanism (41) and a hollow differential case (42) that houses the gear mechanism (41).
The gear mechanism (41) includes an output element (41a) that is driven and connected to each of the plurality of wheels and rotates around an output shaft (O), an intermediate element (41b) that meshes with the output element (41a), A gear support member (41c) for supporting the intermediate element (41b) with respect to the differential case (42),
The differential case (42) has a central portion (421) overlapping the gear support member (41c) when viewed in the radial direction (R) along the radial direction (R) with respect to the output shaft (O). And
Inside the central portion (421) is formed an oil storage portion (421a) for storing oil (F) discharged from the hydraulic pump (7),
The oil reservoir (421a) is formed continuously in the circumferential direction with the output shaft (O) as a reference.
 この構成によれば、第1駆動力源(1)と複数の車輪とを結ぶ動力伝達経路(P)から独立した第2駆動力源(71)により駆動される油圧ポンプ(7)により車両用駆動装置(100)の各部への油(F)の供給を行うため、第1駆動力源(1)により駆動される油圧ポンプに比べて、各時点での必要な油圧及び油量(必要油量(Ar))に応じたポンプの駆動を行うことが容易な構成となっている。そのため、車両の高速走行時等であっても必要量以上の油(F)を吐出する状態とはなり難く、油圧ポンプ(7)の駆動によるエネルギ効率の低下を抑制でき、車両用駆動装置(100)のエネルギ効率を高くすることができる。
 但し、このような油圧ポンプ(7)の第2駆動力源(71)は、車輪駆動用の第1駆動力源(1)に比べて駆動力が小さいことが一般的である。そのため、何も対策をしなければ、例えば油(F)の粘性が高い低温環境において油(F)の吐出量が十分に確保できず、車両が長期間停止した後の車両の走行開始直後に差動歯車装置(4)の潤滑不良が発生する可能性がある。しかし、この構成によれば、油圧ポンプ(7)から差動歯車装置(4)に供給された油(F)の一部が、差動ケース(42)の外部に排出されることなく油貯留部(421a)に留まる。そのため、走行開始直後であっても、油貯留部(421a)に貯留された油(F)が差動歯車装置(4)の各部に供給される。よって、車両の走行開始直後における油圧ポンプ(7)から差動歯車装置(4)への油(F)の供給が十分でない状況であっても、差動歯車装置(4)の潤滑不良が発生することを抑制できる。以上より、この構成によれば、エネルギ効率を高くできると共に、車両走行開始直後における差動歯車装置(4)に潤滑不良が発生することを抑制できる。
According to this configuration, the vehicle is driven by the hydraulic pump (7) driven by the second driving force source (71) independent of the power transmission path (P) connecting the first driving force source (1) and the plurality of wheels. Compared with the hydraulic pump driven by the first driving force source (1), the oil pressure (F) required at each time point (necessary oil) is supplied to supply the oil (F) to each part of the driving device (100). It is easy to drive the pump according to the amount (Ar). Therefore, even when the vehicle is traveling at a high speed, it is difficult for the oil (F) to be discharged more than a necessary amount, and a reduction in energy efficiency due to the drive of the hydraulic pump (7) can be suppressed. 100) energy efficiency can be increased.
However, the second driving force source (71) of such a hydraulic pump (7) generally has a smaller driving force than the first driving force source (1) for driving the wheels. Therefore, if no measures are taken, for example, in a low temperature environment where the viscosity of the oil (F) is high, the discharge amount of the oil (F) cannot be secured sufficiently, and immediately after the vehicle starts running after the vehicle has stopped for a long time. There is a possibility that poor lubrication of the differential gear device (4) may occur. However, according to this configuration, part of the oil (F) supplied from the hydraulic pump (7) to the differential gear device (4) is stored in the oil without being discharged outside the differential case (42). Part (421a) remains. Therefore, even immediately after the start of traveling, the oil (F) stored in the oil storage part (421a) is supplied to each part of the differential gear device (4). Therefore, even if the oil (F) is not sufficiently supplied from the hydraulic pump (7) to the differential gear device (4) immediately after the vehicle starts running, poor lubrication of the differential gear device (4) occurs. Can be suppressed. As described above, according to this configuration, energy efficiency can be increased, and occurrence of poor lubrication in the differential gear device (4) immediately after the start of vehicle travel can be suppressed.
 ここで、前記油貯留部(421a)に対して、前記出力軸(O)を基準とした軸方向(L)の両側(L1,L2)に、一対の壁部(424,425)が配置されていると好適である。 Here, a pair of wall portions (424, 425) are arranged on both sides (L1, L2) in the axial direction (L) with respect to the output shaft (O) with respect to the oil storage portion (421a). It is preferable that
 この構成によれば、油貯留部(421a)に供給された油(F)の軸方向(L)の流動が一対の壁部(424,425)によって制限される。そのため、油貯留部(421a)に供給された油(F)が油貯留部(421a)から流出する量を小さく抑えることができる。したがって、油貯留部(421a)に油(F)を適切に貯留することができる。 According to this configuration, the flow in the axial direction (L) of the oil (F) supplied to the oil reservoir (421a) is limited by the pair of wall portions (424, 425). Therefore, the amount of oil (F) supplied to the oil reservoir (421a) flowing out from the oil reservoir (421a) can be reduced. Therefore, oil (F) can be appropriately stored in the oil storage part (421a).
 また、一対の壁部(424,425)が配置された構成において、
 前記一対の壁部(424,425)の少なくとも一方に、前記差動ケース(42)の内部から前記差動ケース(42)の外部に油(F)を排出するための排油孔(425a)が形成されていると好適である。
Further, in the configuration in which the pair of wall portions (424, 425) is arranged,
An oil drain hole (425a) for discharging oil (F) from the inside of the differential case (42) to the outside of the differential case (42) in at least one of the pair of wall portions (424, 425). Is preferably formed.
 この構成によれば、差動歯車装置(4)の潤滑によって高温となった油(F)を、排油孔(425a)を通して差動ケース(42)の外部に排出することができる。したがって、車両の走行中に、差動ケース(42)の内部の油(F)を積極的に循環させ、差動歯車装置(4)の潤滑を適切に行うことができる。 According to this configuration, the oil (F) that has become hot due to the lubrication of the differential gear device (4) can be discharged to the outside of the differential case (42) through the oil drain hole (425a). Therefore, the oil (F) inside the differential case (42) can be actively circulated while the vehicle is running, so that the differential gear device (4) can be properly lubricated.
 また、前記排油孔(425a)が形成された構成において、
 前記排油孔(425a)は、前記壁部(424,425)における前記油貯留部(421a)に対向する表面に壁開口部(425b)が開口するように形成され、
 前記壁開口部(425b)は、前記油貯留部(421a)の内周面における前記径方向(R)の最外側部よりも前記径方向(R)の内側に配置されていると好適である。
In the configuration in which the oil drain hole (425a) is formed,
The oil drain hole (425a) is formed such that a wall opening (425b) is opened on the surface of the wall (424, 425) facing the oil reservoir (421a),
It is preferable that the wall opening (425b) is disposed on the inner side in the radial direction (R) with respect to the outermost portion in the radial direction (R) on the inner peripheral surface of the oil reservoir (421a). .
 この構成によれば、油貯留部(421a)における壁開口部(425b)よりも径方向(R)の外側に油(F)が貯留される。したがって、差動歯車装置(4)の潤滑に必要な量の油(F)を油貯留部(421a)に適切に貯留することができる。 According to this configuration, the oil (F) is stored outside the wall opening (425b) in the oil storage part (421a) in the radial direction (R). Therefore, the amount of oil (F) necessary for lubricating the differential gear device (4) can be appropriately stored in the oil storage section (421a).
 また、前記差動ケース(42)の内部に配置されて前記出力要素(41a)の一つに連結されたケース内軸部(8A)と、前記差動ケース(42)に対して前記軸方向(L)の一方側に突出して配置されたケース外軸部(8B)とを有し、前記軸方向(L)に沿って配置された軸部材(8)を更に備え、
 前記軸部材(8)は、当該軸部材(8)の内部を前記軸方向(L)に沿って延在する第1油路(81)と、前記第1油路(81)に連通すると共に前記径方向(R)視で前記油貯留部(421a)と重複する位置において開口する油路開口部(82)と、を有していると好適である。
Also, a case inner shaft (8A) disposed inside the differential case (42) and connected to one of the output elements (41a), and the axial direction with respect to the differential case (42) A case outer shaft portion (8B) arranged to protrude to one side of (L), and further comprising a shaft member (8) arranged along the axial direction (L),
The shaft member (8) communicates with the first oil passage (81) extending along the axial direction (L) inside the shaft member (8) and the first oil passage (81). It is preferable to have an oil passage opening (82) that opens at a position overlapping the oil reservoir (421a) in the radial direction (R) view.
 この構成によれば、差動ケース(42)に挿入された状態で配置される軸部材(8)の第1油路(81)及び油路開口部(82)を介して油貯留部(421a)に油(F)を供給することができる。そのため、油貯留部(421a)に油(F)を供給するための開口部を差動ケース(42)に形成する必要がない。よって、差動ケース(42)の剛性を高めることが容易となる。したがって、差動ケース(42)の厚みを小さく抑えて、差動ケース(42)を小型化することができ、或いは、加工性の高い素材を差動ケース(42)に用いて、差動ケース(42)の加工費を低減することができる。 According to this configuration, the oil reservoir (421a) is provided via the first oil passage (81) and the oil passage opening (82) of the shaft member (8) disposed in a state of being inserted into the differential case (42). ) Can be supplied with oil (F). Therefore, it is not necessary to form an opening for supplying oil (F) to the oil reservoir (421a) in the differential case (42). Therefore, it becomes easy to increase the rigidity of the differential case (42). Therefore, it is possible to reduce the thickness of the differential case (42) and reduce the size of the differential case (42), or to use a highly workable material for the differential case (42). The processing cost of (42) can be reduced.
 また、前記軸部材(8)を備えた構成において、
 前記軸部材(8)は、前記第1油路(81)と前記軸部材(8)の外周面(8a)とを連通する第2油路(83)を更に有し、
 前記第2油路(83)は、前記ケース外軸部(8B)に形成されていると好適である。
Moreover, in the structure provided with the said shaft member (8),
The shaft member (8) further includes a second oil passage (83) communicating the first oil passage (81) and the outer peripheral surface (8a) of the shaft member (8),
The second oil passage (83) is preferably formed in the case outer shaft portion (8B).
 この構成によれば、差動ケース(42)の外部に形成された第2油路(83)を介して、軸部材(8)の内部の第1油路(81)に油(F)を供給することができる。したがって、差動ケース(42)の外側から差動ケース(42)の内部の油貯留部(421a)に適切に油(F)を供給することができる。 According to this configuration, oil (F) is supplied to the first oil passage (81) inside the shaft member (8) via the second oil passage (83) formed outside the differential case (42). Can be supplied. Therefore, oil (F) can be appropriately supplied from the outside of the differential case (42) to the oil reservoir (421a) inside the differential case (42).
 また、前記歯車支持部材(41c)は、前記軸方向(L)に直交する方向に沿って延在し、
 前記歯車支持部材(41c)の少なくとも一方の端部が、前記差動ケース(42)を貫通し、
 前記差動ケース(42)と、当該差動ケース(42)を貫通する前記歯車支持部材(41c)の前記端部との間を閉塞する閉塞構造(45)が設けられていると好適である。
The gear support member (41c) extends along a direction orthogonal to the axial direction (L),
At least one end of the gear support member (41c) passes through the differential case (42),
It is preferable that a closing structure (45) that closes between the differential case (42) and the end portion of the gear support member (41c) that penetrates the differential case (42) is provided. .
 この構成によれば、油貯留部(421a)に貯留された油(F)が、差動ケース(42)と当該差動ケース(42)を貫通する歯車支持部材(41c)の端部との間から差動ケース(42)の外部に排出されることを抑制することができる。したがって、差動歯車装置(4)の潤滑に必要な量の油(F)を油貯留部(421a)に適切に貯留することができる。 According to this configuration, the oil (F) stored in the oil storage section (421a) is formed between the differential case (42) and the end of the gear support member (41c) that penetrates the differential case (42). It is possible to suppress discharge from the gap to the outside of the differential case (42). Therefore, the amount of oil (F) necessary for lubricating the differential gear device (4) can be appropriately stored in the oil storage section (421a).
 また、前記第1駆動力源(1)により駆動される油圧ポンプを備えていないと好適である。 It is preferable that a hydraulic pump driven by the first driving force source (1) is not provided.
 この構成によれば、車両の高速走行時等に、第1駆動力源(1)により駆動される油圧ポンプが必要量以上の油(F)を吐出する状態となることがない。そのため、油圧ポンプの駆動によるエネルギ効率の低下を抑制でき、車両用駆動装置(100)のエネルギ効率を高くすることができる。 This configuration prevents the hydraulic pump driven by the first driving force source (1) from discharging more oil (F) than necessary when the vehicle is traveling at high speed. Therefore, a decrease in energy efficiency due to driving of the hydraulic pump can be suppressed, and the energy efficiency of the vehicle drive device (100) can be increased.
 前記油圧ポンプ(7)は、前記動力伝達経路(P)の各部の回転速度に関わらず、必要油量(Ar)に応じた量の油を吐出するように制御されると好適である。 It is preferable that the hydraulic pump (7) is controlled to discharge an amount of oil corresponding to the required oil amount (Ar) regardless of the rotational speed of each part of the power transmission path (P).
 油圧ポンプ(7)が動力伝達経路(P)を構成する回転部材によって駆動される構成とした場合には、当該回転部材の回転速度が高くなる車両の高速走行時等に、油圧ポンプ(7)が必要油量(Ar)以上の油(F)を吐出する状態になり易い。そのような状態では、油圧ポンプ(7)が必要以上に駆動されることによるエネルギ損失が生じるため、車両用駆動装置(100)のエネルギ効率が低下することになる。しかし、本構成によれば、車両の走行状態による制約を受けることなく、油圧ポンプ(7)が必要油量(Ar)の油(F)を吐出する状態とすることができる。そのため、油圧ポンプ(7)の駆動によるエネルギ損失を低減でき、車両用駆動装置(100)のエネルギ効率を高くすることができる。 When the hydraulic pump (7) is configured to be driven by a rotating member constituting the power transmission path (P), the hydraulic pump (7) is used when the vehicle is traveling at a high speed when the rotating speed of the rotating member is high. However, the oil (F) exceeding the required oil amount (Ar) is likely to be discharged. In such a state, energy loss occurs due to the hydraulic pump (7) being driven more than necessary, so that the energy efficiency of the vehicle drive device (100) is lowered. However, according to this configuration, the hydraulic pump (7) can discharge the required amount of oil (Ar) without being restricted by the traveling state of the vehicle. Therefore, energy loss due to driving of the hydraulic pump (7) can be reduced, and the energy efficiency of the vehicle drive device (100) can be increased.
 本開示に係る技術は、複数の車輪を駆動する第1駆動力源と、第1駆動力源に駆動連結された入力部材と、入力部材を介して伝達される第1駆動力源からの駆動力を複数の車輪に分配する差動歯車装置と、第1駆動力源と複数の車輪とを結ぶ動力伝達経路から独立した第2駆動力源により駆動される油圧ポンプと、を備えた車両用駆動装置に利用することができる。 The technology according to the present disclosure includes a first driving force source that drives a plurality of wheels, an input member that is drivingly connected to the first driving force source, and driving from the first driving force source that is transmitted via the input member. A vehicle comprising: a differential gear device that distributes a force to a plurality of wheels; and a hydraulic pump that is driven by a second driving force source that is independent from a power transmission path that connects the first driving force source and the plurality of wheels. It can utilize for a drive device.
100 :車両用駆動装置
1   :回転電機(第1駆動力源)
2   :入力部材
4   :差動歯車装置
41  :歯車機構
41a :出力要素
41b :中間要素
41c :歯車支持部材
42  :差動ケース
421 :中央部
421a:油貯留部
422 :第1側方部
423 :第2側方部
424 :第1壁部
425 :第2壁部
7   :油圧ポンプ
71  :電動モータ(第2駆動力源)
8   :軸部材
8A  :ケース内軸部
8B  :ケース外軸部
81  :第1油路
82  :油路開口部
10  :出力部材
F   :油
O   :出力軸
P   :動力伝達経路
L   :軸方向
L1  :軸方向第1側
L2  :軸方向第2側
R   :径方向
100: Vehicle drive device 1: Rotating electric machine (first driving force source)
2: input member 4: differential gear device 41: gear mechanism 41a: output element 41b: intermediate element 41c: gear support member 42: differential case 421: central part 421a: oil storage part 422: first side part 423: 2nd side part 424: 1st wall part 425: 2nd wall part 7: Hydraulic pump 71: Electric motor (2nd driving force source)
8: Shaft member 8A: Case inner shaft portion 8B: Case outer shaft portion 81: First oil passage 82: Oil passage opening 10: Output member F: Oil O: Output shaft P: Power transmission path L: Axial direction L1: Axial direction first side L2: Axial direction second side R: Radial direction

Claims (9)

  1.  複数の車輪を駆動する第1駆動力源と、
     前記第1駆動力源に駆動連結された入力部材と、
     前記入力部材を介して伝達される前記第1駆動力源からの駆動力を、複数の前記車輪に分配する差動歯車装置と、
     前記第1駆動力源と複数の前記車輪とを結ぶ動力伝達経路から独立した第2駆動力源により駆動される油圧ポンプと、を備え、
     前記差動歯車装置は、歯車機構と、前記歯車機構を収容する中空の差動ケースと、を有し、
     前記歯車機構は、複数の前記車輪のそれぞれに駆動連結されて出力軸周りに回転する出力要素と、前記出力要素に噛み合う中間要素と、前記中間要素を前記差動ケースに対して支持する歯車支持部材と、を有し、
     前記差動ケースは、前記出力軸を基準とした径方向に沿う径方向視で前記歯車支持部材と重複する中央部を有し、
     前記中央部の内部には、前記油圧ポンプから吐出された油が貯留される油貯留部が形成され、
     前記油貯留部は、前記出力軸を基準とした周方向に連続して形成されている、車両用駆動装置。
    A first driving force source for driving a plurality of wheels;
    An input member drivingly connected to the first driving force source;
    A differential gear device that distributes the driving force from the first driving force source transmitted through the input member to the plurality of wheels;
    A hydraulic pump driven by a second driving force source independent of a power transmission path connecting the first driving force source and the plurality of wheels,
    The differential gear device includes a gear mechanism, and a hollow differential case that houses the gear mechanism,
    The gear mechanism includes an output element that is drivingly connected to each of the plurality of wheels and rotates around an output shaft, an intermediate element that meshes with the output element, and a gear support that supports the intermediate element with respect to the differential case. A member, and
    The differential case has a central portion that overlaps with the gear support member in a radial view along a radial direction with respect to the output shaft,
    Inside the central part is formed an oil storage part for storing oil discharged from the hydraulic pump,
    The oil storage unit is a vehicle drive device that is continuously formed in a circumferential direction with the output shaft as a reference.
  2.  前記油貯留部に対して、前記出力軸を基準とした軸方向の両側に、一対の壁部が配置されている、請求項1に記載の車両用駆動装置。 The vehicle drive device according to claim 1, wherein a pair of wall portions are disposed on both sides of the oil storage portion in an axial direction with respect to the output shaft.
  3.  前記一対の壁部の少なくとも一方に、前記差動ケースの内部から前記差動ケースの外部に油を排出するための排油孔が形成されている、請求項2に記載の車両用駆動装置。 The vehicle drive device according to claim 2, wherein an oil drain hole for discharging oil from the inside of the differential case to the outside of the differential case is formed in at least one of the pair of wall portions.
  4.  前記排油孔は、前記壁部における前記油貯留部に対向する表面に壁開口部が開口するように形成され、
     前記壁開口部は、前記油貯留部の内周面における前記径方向の最外側部よりも前記径方向の内側に配置されている、請求項3に記載の車両用駆動装置。
    The oil drainage hole is formed such that a wall opening is opened on a surface of the wall that faces the oil reservoir.
    4. The vehicle drive device according to claim 3, wherein the wall opening is disposed on an inner side in the radial direction than an outermost portion in the radial direction on an inner peripheral surface of the oil storage portion.
  5.  前記差動ケースの内部に配置されて前記出力要素の一つに連結されたケース内軸部と、前記差動ケースに対して前記軸方向の一方側に突出して配置されたケース外軸部とを有し、前記軸方向に沿って配置された軸部材を更に備え、
     前記軸部材は、当該軸部材の内部を前記軸方向に沿って延在する第1油路と、前記第1油路に連通すると共に前記径方向視で前記油貯留部と重複する位置において開口する油路開口部と、を有している、請求項1から4のいずれか一項に記載の車両用駆動装置。
    A case inner shaft disposed inside the differential case and connected to one of the output elements; a case outer shaft disposed so as to protrude to one side in the axial direction with respect to the differential case; And further comprising a shaft member disposed along the axial direction,
    The shaft member is opened at a position where the interior of the shaft member extends along the axial direction and communicates with the first oil passage and overlaps with the oil reservoir in the radial direction. The vehicle drive device according to any one of claims 1 to 4, further comprising an oil passage opening.
  6.  前記軸部材は、前記第1油路と前記軸部材の外周面とを連通する第2油路を更に有し、
     前記第2油路は、前記ケース外軸部に形成されている、請求項5に記載の車両用駆動装置。
    The shaft member further includes a second oil passage communicating the first oil passage and the outer peripheral surface of the shaft member;
    The vehicle drive device according to claim 5, wherein the second oil passage is formed in the case outer shaft portion.
  7.  前記歯車支持部材は、前記軸方向に直交する方向に沿って延在し、
     前記歯車支持部材の少なくとも一方の端部が、前記差動ケースを貫通し、
     前記差動ケースと、当該差動ケースを貫通する前記歯車支持部材の前記端部との間を閉塞する閉塞構造が設けられている、請求項1から6のいずれか一項に記載の車両用駆動装置。
    The gear support member extends along a direction orthogonal to the axial direction;
    At least one end of the gear support member passes through the differential case;
    The vehicular structure according to any one of claims 1 to 6, wherein a closing structure that closes a gap between the differential case and the end portion of the gear support member that passes through the differential case is provided. Drive device.
  8.  前記第1駆動力源により駆動される油圧ポンプを備えていない、請求項1から7のいずれか一項に記載の車両用駆動装置。 The vehicle drive device according to any one of claims 1 to 7, wherein a hydraulic pump driven by the first drive force source is not provided.
  9.  前記油圧ポンプは、前記動力伝達経路の各部の回転速度に関わらず、必要油量に応じた量の油を吐出するように制御される、請求項1から8のいずれか一項に記載の車両用駆動装置。 The vehicle according to any one of claims 1 to 8, wherein the hydraulic pump is controlled to discharge an amount of oil corresponding to a required amount of oil regardless of a rotational speed of each part of the power transmission path. Drive device.
PCT/JP2019/010262 2018-03-15 2019-03-13 Vehicle drive device WO2019177020A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018048414 2018-03-15
JP2018-048414 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019177020A1 true WO2019177020A1 (en) 2019-09-19

Family

ID=67908426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010262 WO2019177020A1 (en) 2018-03-15 2019-03-13 Vehicle drive device

Country Status (1)

Country Link
WO (1) WO2019177020A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112769288A (en) * 2019-10-21 2021-05-07 日本电产株式会社 Drive device
WO2022089999A1 (en) * 2020-10-28 2022-05-05 Deere & Company Differential having lubricant channel
JP7490937B2 (en) 2019-09-30 2024-05-28 株式会社アイシン Vehicle drive transmission device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55174025U (en) * 1979-05-31 1980-12-13
JPH04236851A (en) * 1991-01-21 1992-08-25 Toyota Motor Corp Lubricating device for differential gear
JPH06323404A (en) * 1993-05-10 1994-11-25 Toyota Motor Corp Power train lubricating device for electric automobile
JPH07269684A (en) * 1994-03-31 1995-10-20 Suzuki Motor Corp Lubricator for transaxle
WO2016158059A1 (en) * 2015-03-27 2016-10-06 アイシン・エィ・ダブリュ株式会社 Differential apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55174025U (en) * 1979-05-31 1980-12-13
JPH04236851A (en) * 1991-01-21 1992-08-25 Toyota Motor Corp Lubricating device for differential gear
JPH06323404A (en) * 1993-05-10 1994-11-25 Toyota Motor Corp Power train lubricating device for electric automobile
JPH07269684A (en) * 1994-03-31 1995-10-20 Suzuki Motor Corp Lubricator for transaxle
WO2016158059A1 (en) * 2015-03-27 2016-10-06 アイシン・エィ・ダブリュ株式会社 Differential apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7490937B2 (en) 2019-09-30 2024-05-28 株式会社アイシン Vehicle drive transmission device
CN112769288A (en) * 2019-10-21 2021-05-07 日本电产株式会社 Drive device
WO2022089999A1 (en) * 2020-10-28 2022-05-05 Deere & Company Differential having lubricant channel
US11988275B2 (en) 2020-10-28 2024-05-21 Deere & Company Differential having lubricant channel

Similar Documents

Publication Publication Date Title
JP5374215B2 (en) Cycloid reducer, in-wheel motor drive device, and vehicle motor drive device
JP6621997B2 (en) Motor drive unit with reduction gear for automobile
WO2019177020A1 (en) Vehicle drive device
JP5066925B2 (en) Wheel drive device
WO2014125856A1 (en) Cooling device for motor drive unit
US20220048375A1 (en) Left-right wheel driving device
JP2013208024A (en) Motor
JP2012034481A (en) Vehicle motor driving apparatus
US11608884B2 (en) Vehicle drive device
WO2018207557A1 (en) Differential gear device, and drive device for vehicle
JP2018189193A (en) Power transmission device
JP7380903B2 (en) Vehicle drive system
WO2017026258A1 (en) Motor driving device for vehicle
JP5687839B2 (en) In-wheel motor drive device
JP6098619B2 (en) Vehicle drive device and method of assembling the same
JP6176266B2 (en) Planetary gear unit
WO2019177015A1 (en) Vehicle drive device
WO2020203916A1 (en) Vehicle drive device
JP2019094933A (en) Drive unit for vehicle
US20220213957A1 (en) Vehicle drive device
JP2005114089A (en) Differential gear device for vehicle
JP2017040300A (en) Power transmission device
JPWO2020174811A1 (en) Differential device
WO2017026216A1 (en) Motor driving device for vehicle
JP7241670B2 (en) Vehicle drive transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP