WO2019169813A1 - 磨边方法及装置 - Google Patents

磨边方法及装置 Download PDF

Info

Publication number
WO2019169813A1
WO2019169813A1 PCT/CN2018/093803 CN2018093803W WO2019169813A1 WO 2019169813 A1 WO2019169813 A1 WO 2019169813A1 CN 2018093803 W CN2018093803 W CN 2018093803W WO 2019169813 A1 WO2019169813 A1 WO 2019169813A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
sensor
distance
ground
edge
Prior art date
Application number
PCT/CN2018/093803
Other languages
English (en)
French (fr)
Inventor
高军召
林健
朱凯
齐维滨
Original Assignee
北京铂阳顶荣光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京铂阳顶荣光伏科技有限公司 filed Critical 北京铂阳顶荣光伏科技有限公司
Priority to AU2018217247A priority Critical patent/AU2018217247A1/en
Priority to EP18189662.2A priority patent/EP3537245A1/en
Priority to US16/112,958 priority patent/US20190275635A1/en
Priority to JP2018190174A priority patent/JP2019155583A/ja
Priority to KR1020180125349A priority patent/KR20190106643A/ko
Publication of WO2019169813A1 publication Critical patent/WO2019169813A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/0076Other grinding machines or devices grinding machines comprising two or more grinding tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/04Protective covers for the grinding wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass

Definitions

  • the present application relates to the field of electromechanical, and in particular to a method and device for edging.
  • the current edging process grinds the edge of the workpiece to be ground in the direction of the guide wheel of the grinding wheel, grinding only in the direction of one axis. Once the positioning unit of the edger is inaccurate or the workpiece size deviation is large after cutting, this grinding method will cause uneven grinding of the edge, too much grinding on the edge of the workpiece, and too little grinding in some places. This affects the edging quality of the workpiece.
  • the grinding machine is unevenly ground, it is necessary to manually adjust the grinding wheel to improve the grinding precision.
  • adjusting the grinding wheel it is generally necessary to shut down the edger, adjust the grinding wheel to a suitable position, and then continue the grinding process. On the one hand, this kind of adjustment has higher requirements for the operators, and skilled workers are required to complete the adjustment of the grinding wheel. On the other hand, it is cumbersome and time consuming. If the component to be ground is curved, it needs to be adjusted frequently.
  • a method of edging comprising the following steps:
  • the sensing distance is zero.
  • the sensing distance is greater than zero.
  • the S400 specifically includes:
  • the sensor detects that the sensing distance between the sensor and the edge to be worn does not change, and the change value is zero;
  • the edge to be worn does not coincide with the reference line: when the sensor detects that the sensing distance between the sensor and the edge to be ground becomes larger, the change value is a positive value; The sensor detects that the sensing distance between the sensor and the edge to be worn becomes small, and the change value is a negative value.
  • the grinding feed amount is equal to the change value plus the grinding amount set value.
  • the edging apparatus includes at least one grinding assembly for performing grinding, the edging method further comprising:
  • the set threshold is a lifetime value of the normal operation of the grinding component.
  • the grinding assembly has two directions of movement, a first direction of motion is a grinding direction of the grinding assembly, and a second direction of motion is a feeding direction of the grinding assembly for completing the grinding
  • a first direction of motion is a grinding direction of the grinding assembly
  • a second direction of motion is a feeding direction of the grinding assembly for completing the grinding
  • the grinding feed is controlled by a servo controller or by a numerically controlled machine.
  • An edging device for grinding a workpiece to be ground, the workpiece to be polished having an edge to be ground, comprising:
  • a sensor for detecting a change value of a sensing distance between the sensor and the edge to be worn
  • a controller in communication with the sensor, configured to adjust a grinding feed amount of the workpiece to be ground according to the change value
  • At least one set of abrasive assemblies in communication with the sensor for grinding a predetermined depth at the first position in accordance with the amount of grinding feed.
  • the senor is a non-contact sensor that detects the change value using an optical feedback principle.
  • the senor is a touch sensor that detects the change in value using a mechanical contact principle.
  • the senor has a measurement range of 3 mm to 10 mm.
  • the controller is configured to set a sensing distance of the sensor to the edge to be worn.
  • the method further includes:
  • At least one working mileage detector electrically connected to the grinding assembly and the controller
  • the working mileage detector is configured to cumulatively detect a working mileage value of the grinding assembly, and transmit the working mileage value to the controller;
  • the controller is further configured to prompt to replace the grinding assembly when the working mileage value is greater than or equal to a set threshold, the set threshold being a life value of the grinding assembly working normally.
  • the edging device comprises:
  • a first grinding assembly comprising a first grinding wheel and a first protective cover fixedly coupled to the first grinding wheel for protecting the first grinding wheel;
  • a second grinding assembly comprising a second grinding wheel and a second protective cover fixedly coupled to the second grinding wheel for protecting the second grinding wheel;
  • a first sensor fixedly disposed outside the first protective cover and located at a front end of the first grinding wheel in a feeding direction;
  • the second sensor is fixedly disposed outside the second protective cover and located at the front end of the second grinding wheel in the feeding direction.
  • An edging method is applied to an edging device, the edging device includes a sensor, a grinding assembly, and a controller, the controller being electrically connected to the sensor and the grinding assembly, respectively,
  • Methods include:
  • the controller acquires a first distance detected by the sensor during grinding of the workpiece to be ground by the grinding assembly, wherein the first distance is the edge to be ground of the sensor to the workpiece to be ground The distance of the first position;
  • the controller adjusts a position of the grinding assembly according to the grinding feed amount when the grinding assembly is to be ground to the first position, so that the grinding assembly is ground in the first position Set the depth.
  • the method further includes:
  • the controller acquires a second distance detected by the sensor, wherein the second distance is a distance from the sensor to a second position of an edge to be ground in the workpiece to be grounded, the first position is a previous position of the second position in the feed direction, the first position being any position other than the initial grinding position in the edge to be sharpened;
  • the controller Determining, according to the first distance, the grinding feed amount corresponding to the first position, the controller includes:
  • the controller calculates a distance difference between the second distance minus the first distance
  • the controller adjusts the position of the grinding assembly according to the grinding feed amount, including:
  • the controller controls the grinding assembly to move the grinding feed change amount in a grinding direction when the grinding assembly is to be ground in the first position.
  • the method further includes:
  • the set threshold is a lifetime value of the normal operation of the grinding component.
  • An edging device for grinding a workpiece to be ground, the workpiece to be polished having an edge to be ground, comprising:
  • a sensor for detecting a distance of the sensor to a first position of the edge to be worn
  • a controller electrically connected to the sensor for acquiring the first distance, and determining a grinding feed amount corresponding to the first position according to the first distance;
  • a grinding assembly electrically coupled to the controller for grinding the grinding assembly to a predetermined depth in the first position according to the grinding feed amount.
  • the senor is a non-contact sensor that detects the change value using an optical feedback principle.
  • the senor is a touch sensor that detects the change in value using a mechanical contact principle.
  • the senor has a measurement range of 3 mm to 10 mm.
  • the senor is further configured to detect a second distance of the sensor to the second position of the edge to be worn, wherein the first position is a previous position of the second position
  • the first position is any position other than the initial grinding position in the edge to be worn
  • the controller is further configured to acquire the second distance from the sensor, calculate a distance difference between the second distance minus the first distance, and determine, according to the distance difference, the first position relative to a grinding feed change amount of the second position;
  • the grinding assembly is further configured to perform grinding on the workpiece to be polished according to the grinding feed variation amount.
  • the method further includes:
  • a working mileage detector electrically connected to the grinding assembly and the controller
  • the working mileage detector is configured to cumulatively detect a working mileage value of the grinding assembly, and transmit the working mileage value to the controller;
  • the controller is further configured to prompt to replace the grinding assembly when the working mileage value is greater than or equal to a set threshold, the set threshold being a life value of the grinding assembly working normally.
  • the edging device comprises:
  • a first grinding assembly comprising a first grinding wheel and a first protective cover fixedly coupled to the first grinding wheel for protecting the first grinding wheel;
  • a second grinding assembly comprising a second grinding wheel and a second protective cover fixedly coupled to the second grinding wheel for protecting the second grinding wheel;
  • a first sensor fixedly disposed outside the first protective cover and located at a front end of the first grinding wheel in a feeding direction;
  • the second sensor is fixedly disposed outside the first protective cover and located at a front end of the first grinding wheel in a feeding direction.
  • an edging apparatus and method are provided.
  • the edging method includes providing an edging device including at least one sensor for detecting a distance.
  • a workpiece to be abraded is provided, the workpiece to be abraded having an edge to be abraded.
  • a sensing distance of the sensor to the edge to be worn is set.
  • a change in the sensed distance between the sensor and the edge to be worn is detected.
  • the grinding feed amount of the workpiece to be ground is adjusted according to the change value.
  • the edging method detects a change value of the sensing distance between the sensor and the edge to be ground by a sensor.
  • the controller may adjust the grinding feed amount of the workpiece to be ground according to the change value.
  • the method enables the edging device to perform grinding according to the edge to be ground of the workpiece to be ground, thereby ensuring uniformity of the edging process and reducing the defect rate of edging.
  • FIG. 2 is a schematic structural view of the edging apparatus disclosed in the embodiment of the present application.
  • FIG. 3 is a schematic structural view of the edging apparatus disclosed in the embodiment of the present application.
  • FIG. 4 is a flow chart of the edging method disclosed in an embodiment of the present application.
  • FIG. 2 a partial structural diagram of an edging apparatus 10 is provided.
  • the edging method includes the following steps:
  • an edging device 10 is provided, the edging device 10 comprising at least one sensor 100 for detecting a distance.
  • the edging device 10 can be an edger.
  • the edging device 10 can grind various types of materials.
  • the edging device 10 can fix the sensor 100.
  • the sensor 100 is used to detect a distance within a certain range.
  • the edging device 10 may be provided with one or more of the sensors 100 for accurately detecting the edge of the workpiece to be abraded.
  • the specific form of the workpiece 20 to be polished is not limited and may be selected according to the type of the edging device 10.
  • the workpiece to be polished 20 may be a workpiece having an edge to be ground, such as glass, a solar photovoltaic module, or a semiconductor substrate.
  • the edging device 10 completes the grinding of the edge 21 to be ground.
  • the sensing distance of the sensor 100 with the edge 21 to be ground can be set before the grinding process begins.
  • the edging device 10 is in contact with the reference line of the edge 21 to be grounded at the sensing distance.
  • the reference line may be a position that is relatively collimated when the workpiece 20 to be ground is ground.
  • the specific value of the sensing distance setting is not specifically limited. In one embodiment, the sensing distance can be zero. In another embodiment, the sensing distance is greater than zero.
  • a change value of the sensing distance is detected by the sensor 100. Specifically, detecting the change value of the sensing distance between the sensor 100 and the edge to be ground 21 before performing the grinding can improve the processing precision, the processing speed, and the manual operation step.
  • the grinding feed amount is adjusted according to the change value of the sensing distance between the sensor 100 and the edge to be ground 21, it is ensured that the entire grinding process is adjusted according to the change of the line of the edge 21 to be ground.
  • the change value of the sensing distance reflects the change of the edge 21 to be ground.
  • the edge of the workpiece 20 to be polished may have a convex, concave or a straight line with a certain inclination angle.
  • the change value of the edge of the workpiece 20 to be polished may be a positive number, a negative number or zero.
  • the change value may be a positive number when it is defined that the edge of the workpiece to be polished 20 is recessed inward or inward. When the edge of the workpiece 20 to be polished is convex outward or inclined outward, the change value is a negative number. When the edge of the workpiece 20 to be polished is a straight line, the change value is zero.
  • the edging device 10 has an initial grinding state when it starts working. A change value of the sensing distance between the sensor 100 and the edge to be worn 21 is detected. The initial grinding state is adjusted based on the change value. As shown in FIG. 2, the edging device 10 can have two directions of motion, a first direction of motion and a second direction of motion, respectively. Each time the edging device 10 feeds a unit in the second direction of motion, the sensor 100 detects a change in the sensed distance between the sensor 100 and the edge to be worn 21 once. The detected change value is fed back to the edging device 10. The edging device 10 further adjusts the grinding progress of the edging device 10 according to the change value. The grinding process of the edging device 10 is a grinding of a predetermined depth along the first moving direction. It will of course be understood that the edging method can also be applied to other samples of the workpiece to be ground.
  • the edging device 10 is provided.
  • the edging device 10 includes at least one sensor 100 for detecting a distance.
  • a workpiece 20 to be abraded is provided, the workpiece 20 to be abraded having an edge 21 to be abraded.
  • a change value of the sensing distance between the sensor 100 and the edge to be worn 21 is detected by the sensor 100.
  • the grinding feed amount of the workpiece 20 to be ground is adjusted according to the change value.
  • the edging method by detecting a change value of the sensing distance between the sensor 100 and the edge to be worn 21 before setting a grinding process, so that the edging device 10 can follow the workpiece 20 to be ground.
  • the grinding edge 21 is ground to ensure the uniformity of the edging process and reduce the edging defect rate.
  • the sensing distance is zero.
  • the sensing distance is zero. That is, the sensor 100 is in contact with the edge 21 to be ground.
  • the sensor 100 can employ a touch sensor, such as a mechanical sensor.
  • the sensor 100 is a contact sensor that detects the change value using a mechanical contact principle.
  • the sensor 100 needs to be in contact with the edge 21 to be ground once every time the distance change is detected. More specifically, the sensor 100 may be a contact sensor such as a mechanical probe or a spring contact.
  • the sensing distance is greater than zero.
  • the sensing distance is greater than zero. That is, the sensor 100 is non-contact with the edge 21 to be ground.
  • the sensor 100 can employ a non-contact sensor.
  • the sensor 100 may be a non-contact sensor such as a photoelectric sensor or a laser sensor.
  • the sensor 100 is a non-contact sensor that detects the change value using an optical feedback principle.
  • the sensor 100 sends a light or electrical detection signal to the edge to be ground 21, and the change value is obtained by data of a feedback value photosensor or a laser sensor.
  • the S400 specifically includes:
  • a reference line of the edge to be ground is provided according to the specific shape of the workpiece 20 to be ground.
  • the baseline here may not be a line that exists in reality.
  • the baseline can be a reference standard.
  • the workpiece 20 to be ground is photovoltaic glass.
  • the photovoltaic glass needs to be ground.
  • the baseline may be generated by the controller 300 or stored by an operator.
  • the controller 300 may acquire an edge state of the workpiece 20 to be grounded, and the reference line may be generated according to the edge state.
  • the grinding reference line of the photovoltaic glass may be set first, and which part of the edge of the photovoltaic glass is required to be ground according to the reference line.
  • the edge of the photovoltaic glass has a prominent profile, and the final grinding amount needs to be determined with reference to the grinding reference line of the photovoltaic glass and the specific grinding setting.
  • the sensor detects that the sensing distance between the sensor and the edge to be worn does not change, and the change value is zero.
  • the sensing distance changes when the edge to be worn does not coincide with the reference line.
  • the change value is a positive value when the sensor detects that the sensing distance between the sensor and the edge to be sharpened becomes large.
  • the sensor detects that the sensing distance between the sensor and the edge to be worn becomes small, and the change value is a negative value.
  • the grinding feed amount is equal to the change value plus the grinding amount setting value (the grinding amount setting value may also be referred to as a preset depth).
  • the sensor 100 is a touch sensor, and the sensing distance can be zero at this time.
  • the grinding feed amount is directly equal to the change value plus the grinding amount set value.
  • the grinding feed amount is adjusted according to the change value.
  • the change value is a change value of the sensing distance of the sensor 100 and the edge to be worn 21 by detection.
  • the change value as described above may be positive, negative or zero.
  • the amount of grinding is set to a depth at which the workpiece 20 to be polished needs to be ground.
  • the workpiece 20 to be polished needs to be ground to a depth of 2 mm, that is, the grinding amount is set to 2.
  • the change value detected by the edging device 10 is 0 at each moment. In this case, the grinding feed amount is equal to the grinding amount set value.
  • the change value is a positive value
  • the grinding feed amount is equal to the sum of the change value and the grinding set value.
  • the change value of the workpiece 20 to be polished is a negative value
  • the grinding feed amount is equal to the grinding set value minus the change value.
  • the grinding feed amount is correspondingly increased by 2 mm. This ensures that the grinding assembly maintains the same amount of grinding set for the grinding of the entire edge of the workpiece 20 to be ground.
  • the edging apparatus 10 includes at least one abrasive assembly 200 for completing the grinding.
  • the abrasive assembly 20 can include a grinding wheel.
  • the edging method further includes: after the edging device 10 is operated, cumulatively detecting the working mileage value of the edging device 10. When the working mileage value is greater than or equal to the set threshold, prompting to replace the grinding assembly of the edging device 10.
  • the set threshold is a lifetime value of the grinding assembly operating normally.
  • the service life of the grinding assembly is taken into consideration to determine the service life of the grinding assembly, thereby further ensuring the accuracy in the grinding process.
  • the life of the grinding assembly ranges from 6 kilometers. The grinding assembly is replaced when the grinding assembly is operated for 6 kilometers.
  • the grinding process of the grinding assembly 200 is controlled by a servo controller or by a numerically controlled machine tool.
  • control method of the grinding assembly 200 may not be limited.
  • the grinding process of the grinding assembly 200 is controlled by a servo controller.
  • the grinding process of the grinding assembly 200 can be controlled by a numerically controlled machine tool.
  • the abrasive assembly 200 has two directions of motion, the first direction of motion being that the abrasive assembly 200 completes the abrasive direction along the first direction of motion in FIG.
  • the second direction of motion is the adjustment of the position of the grinding assembly 200 by the grinding assembly 200 along the second direction of motion illustrated in FIG.
  • the grinding process of the grinding assembly 200 can be along the first direction of motion in FIG. 2 and the second direction of motion in FIG. Specifically, when it is detected that the edge of the workpiece 20 to be polished is a straight line, the grinding process does not change. When it is detected that the edge of the workpiece 20 to be polished changes, the grinding process changes.
  • an edging apparatus 10 that includes at least one sensor 100, a controller 300, and at least one set of grinding assemblies 200.
  • the at least one sensor 100 is configured to detect a change value of a to-be-polished edge 21 of the workpiece 20 to be ground.
  • the controller 300 is communicatively coupled to the sensor 100 for regulating the grinding process of the workpiece 20 to be ground according to the change value.
  • the at least one set of grinding assemblies 200 are communicatively coupled to the sensor 100 for performing a grinding operation on the workpiece 20 to be ground according to a grinding process regulated by the controller 300.
  • the tangent of the grinding wheel that acts as a grinding action in the sensor 100 and the grinding assembly 200 is on the same flat line.
  • the sensor 100 can employ a touch sensor to implement the above-described edging method.
  • the sensor 100 is not on the same flat line as the tangent of the grinding wheel in the grinding assembly 200 that acts as a grinding action. In this way, the sensor 100 can adopt a non-contact sensor to implement the above-described edging method.
  • an edging apparatus 10 includes at least one sensor 100, a controller 300, and at least one set of grinding assemblies 200.
  • the change of the workpiece 20 to be ground is obtained by the sensor 100 detecting the workpiece 20 to be ground.
  • the controller 300 is communicatively coupled to the sensor 100 for regulating the grinding progress of the workpiece 20 to be ground according to the change value.
  • the sensor 100 may be a high precision contact type measuring sensor capable of accurately measuring a distance.
  • the sensor 100 can detect the edge of the workpiece 20 to be ground in real time, so that the grinding process can be adjusted and corrected in real time.
  • the edging device 10 can be edging according to the shape of the edge of the glass so as not to be edging in a single straight line standard.
  • the edging method can perform grinding according to the edge condition of the workpiece to be polished, thereby ensuring the uniformity of the edging process and reducing the edging defect rate of the workpiece to be polished.
  • the at least one sensor 100 has a measurement range of 3 mm to 10 mm. That is, the sensor 100 is capable of measuring a range of 3 mm to 10 mm.
  • the sensor 100 can be set according to the measurement range of the sensor 100 when the sensor 100 is installed. For example, it can be provided that the sensor 100 is arranged within a range of 6 mm from the workpiece 20 to be measured to be measured. Thus, the concave and convex range of the workpiece 20 to be polished that the sensor 100 can detect can be more extensive.
  • the grinding feed amount is set by the controller 300.
  • the controller 300 can control the grinding progress of the grinding assembly 200 by the set grinding feed amount.
  • the grinding assembly 200 can be a grinding wheel, and the movement of the grinding wheel can be more precisely controlled by a servo motor.
  • the controller 300 regulates the grinding process of the workpiece 20 to be grounded, including:
  • a reference line of the edge to be ground is provided according to the specific shape of the workpiece 20 to be ground.
  • the baseline here may not be a line that exists in reality.
  • the baseline can be a reference standard.
  • the workpiece 20 to be ground is photovoltaic glass.
  • the photovoltaic glass needs to be ground.
  • the grinding reference line of the photovoltaic glass may be set first, and which part of the edge of the photovoltaic glass is required to be ground according to the reference line.
  • the edge of the photovoltaic glass has a prominent profile, and the final grinding amount needs to be determined with reference to the polishing reference line of the photovoltaic glass and the specific grinding setting.
  • the sensor detects that the sensing distance between the sensor and the edge to be worn does not change, and the change value is zero.
  • the sensing distance changes when the edge to be worn does not coincide with the reference line.
  • the change value is a positive value when the sensor detects that the sensing distance between the sensor and the edge to be sharpened becomes large.
  • the sensor detects that the sensing distance between the sensor and the edge to be worn becomes small, and the change value is a negative value.
  • the edging apparatus 10 further includes at least one working mileage detector 400.
  • the working range detector 400 is electrically coupled to the grinding assembly 200 and the controller 300.
  • the working mileage detector 400 is configured to cumulatively detect the operating mileage value of the grinding assembly 200 after the edging device 10 is in operation, and transmit the working mileage value to the controller 300.
  • the controller 300 is further configured to prompt to replace the grinding assembly 200 when the working mileage value is greater than or equal to a set threshold, and the setting threshold is a lifetime value of the grinding assembly working normally.
  • the setting of the working mileage detector 400 can make the application process of the edging device 10 more safe and reliable, and reduce the error caused by the wear of the edging device 10.
  • the edging apparatus 10 includes a first abrasive assembly 210 and a second abrasive assembly 220.
  • the first grinding assembly 210 includes a first grinding wheel 211 and a first protective cover 212 fixedly coupled to the first grinding wheel 211 for protecting the first grinding wheel 211.
  • the second grinding assembly 220 includes a second grinding wheel 221 and a second protective cover 222 fixedly coupled to the second grinding wheel 221 for protecting the second grinding wheel 221.
  • the sensor 100 includes a first sensor 110 and a second sensor 120.
  • the first sensor 110 is located in the second direction of motion in FIG. 2 and at the front end of the direction of movement of the first grinding wheel 211.
  • the first sensor 110 is fixedly disposed outside the first protective cover 212 .
  • the second sensor 120 first detects the distance value and feeds back to the controller 300.
  • the second sensor 120 is located in the second direction of motion in FIG. 2 and at the front end of the second grinding wheel 221 in the direction of motion.
  • the second sensor 120 is fixedly disposed outside the second protective cover 222 .
  • the sensor 100 includes the first sensor 110 and the second sensor 120. Each of the sensors 100 is fixedly disposed on a protective cover of the grinding assembly 200.
  • the grinding assembly 200 includes a first grinding assembly 210 and a second grinding assembly 220.
  • the first grinding assembly 210 includes the first grinding wheel 211 and the first protective cover 212.
  • the second grinding assembly 220 includes the second grinding wheel 221 and the second protective cover 222.
  • the first sensor 210 is fixedly disposed outside the first protective cover 212.
  • the sensor 100 is fixedly disposed on the outer side of the protective cover of the polishing assembly 200, and has a simple structure, convenient operation, good dustproof effect, and can be sealed and processed, and the powder can be prevented from harming human health during processing.
  • an edging method is provided for use in the edging apparatus 10.
  • the edging device 10 includes a sensor 100, a grinding assembly 200, and a controller 300, and the controller 300 is electrically connected to the sensor 100 and the grinding assembly 200, respectively.
  • the method includes:
  • the controller 300 acquires a first distance detected by the sensor 100.
  • the first distance is the distance from the sensor 100 to the first position of the workpiece to be ground 20 to be ground 21 .
  • the sensor 100 may be a sensor whose detection accuracy satisfies a preset condition, and may be a sensor that does not perceive a burr on the edge to be worn.
  • the senor 100 will travel through multiple locations during the implementation of the grinding process.
  • the grinding assembly 200 also moves past a plurality of locations through which the sensor 100 passes.
  • the polishing assembly 200 can perform a grinding action.
  • the controller 300 determines a grinding feed amount corresponding to the first position according to the first distance.
  • the depth of the grinding (which may be referred to as a preset depth) is preset in the controller 300.
  • the controller 300 acquires the first distance detected by the sensor 100, the first distance and the preset depth may be set. And determining the grinding feed amount corresponding to the first position, in which case the grinding feed amount may be the position of the grinding assembly 200 when the first position is ground and the sensor 100 is in the first position The distance at which the position is in the grinding direction (ie the first direction of motion).
  • the controller 300 adjusts the position of the grinding assembly 200 according to the grinding feed amount, so that the grinding assembly 200 is in the The first position is ground away from the preset depth.
  • the sensor 100 first senses the first position of the sensor 100 to the first position of the edge 21 to be ground in the workpiece 20 to be ground. a distance.
  • the controller 300 determines the grinding feed amount corresponding to the first position according to the first distance, when the grinding assembly 200 is to be ground to the first position, the controller may determine The first position corresponds to the amount of grinding feed to adjust the position of the abrasive assembly 200 such that the abrasive assembly 200 grinds the edge 21 to be ground in the first position.
  • the controller may adjust the position of the grinding assembly 200 based on the grinding feed amount corresponding to the first position, wherein the second position may be The edge to be ground is located at the latter position of the first position in the second direction of motion described in FIG.
  • the shape to be worn 21 may be uniformly ground to a predetermined depth according to a preset depth.
  • the first position may be any position other than the initial grinding position in the edge 21 to be ground. The method enables the edging device 10 to be ground according to the actual condition of the edge to be ground 21, thereby ensuring the uniformity of the edging process and reducing the defective rate of edging.
  • the method further includes:
  • the controller 300 acquires a second distance detected by the sensor 100.
  • the second distance is the distance from the sensor 100 to the second position of the workpiece to be ground 20 to be ground. That is, the grinding assembly 200 first grinds the second position.
  • the next state is that the abrasive assembly 200 grinds the first location.
  • the first position is any position in the edge to be sharpened other than the initial grinding position.
  • the controller 300 determines the grinding feed amount corresponding to the first position according to the first distance, and the controller 300 calculates the second distance minus the first distance. Poor distance. And determining, according to the distance difference, a grinding feed change amount of the first position relative to the second position.
  • the controller 300 adjusts the position of the grinding assembly 200 according to the grinding feed amount, including: when the grinding When the assembly 200 is to grind the first position, the controller 300 controls the grinding assembly 200 to move the grinding feed change amount in the first movement direction in FIG.
  • the sensor 100 first detects the second distance from the sensor 100 to the second position of the workpiece to be ground 20 to be ground. The detection result is transmitted to the controller 300. Subsequently, the sensor 100 moves to a position corresponding to the first position, detects the first distance and transmits it to the controller 300. After the controller 300 obtains the first distance, the distance difference between the second distance and the first distance may be calculated. Further, the controller 300 may determine, according to the distance difference, the first position relative to the first distance.
  • the grinding feed change amount of the second position wherein, for the convex portion to be sharpened, if the distance detected by the sensor 200 is larger, the distance difference may be determined as the grinding of the first position relative to the second position Given the amount of change, if the distance detected by the sensor 200 is smaller, the opposite of the distance difference can be determined as the amount of grinding feed change of the first position relative to the second position.
  • the grinding assembly 200 When the grinding assembly 200 is to be ground to the first position, the grinding assembly 200 performs a predetermined depth grinding of the first position according to the grinding feed change amount.
  • the sensor 100 in the embodiment can fully perceive the size of the second distance and the first distance, and calculate the grinding feed change amount by the controller 300, and then pass the grinding component. 200 performs a predetermined depth of grinding on the first position.
  • the method can sufficiently detect the difference between the to-be-polished edges 21 that the grinding assembly 200 needs to grind, and the difference can be perceived by the sensor 100, and the controller 300 calculates the The feed change amount is milled, and the grinding of the predetermined depth according to the shape of the edge 21 to be ground is achieved by the grinding assembly 200.
  • the method further includes cumulatively detecting a working mileage value of the grinding assembly 200.
  • the working mileage value is greater than or equal to the set threshold, prompting to replace the grinding assembly 200, the set threshold is a lifetime value of the grinding assembly 200 operating normally.
  • the service life of the grinding assembly 200 is taken into consideration to determine the service life of the grinding assembly 200, thereby further ensuring the accuracy during the grinding process.
  • the life of the grinding assembly 200 ranges from 10 kilometers. When the grinding assembly 200 is working for 10 kilometers, the grinding assembly 200 can be prompted to be replaced.
  • An edging device 10 for grinding a workpiece 20 to be ground The workpiece 20 to be ground has an edge 21 to be ground.
  • the edging apparatus 10 includes a sensor 100, a grinding assembly 200, and a controller 300.
  • the sensor 100 is configured to detect a distance of the sensor 100 to a first position of the edge to be worn.
  • the controller 300 is electrically connected to the sensor 100 for acquiring the first distance, and determining a grinding feed amount corresponding to the first position according to the first distance.
  • the grinding assembly 200 is electrically connected to the controller 300 for grinding the workpiece 20 to be ground according to the grinding feed amount, so that the grinding assembly 200 is grounded at the first position. depth.
  • the more specific structure of the edging device 10 is not limited, and may be set in combination with a conventional design in the art.
  • the sensor 100 can select the non-contact sensor 100 to detect the change value using an optical feedback principle. In one embodiment, the sensor 100 can select the touch sensor 100 to detect the change value using a mechanical contact principle.
  • the sensor 100 has a measurement range of 3 mm to 10 mm.
  • the sensor 100 is further configured to detect a second distance of the sensor 100 to a second position of the edge to be worn, wherein the first position is the second motion in FIG. A previous position of the second position in the direction, the first position being any position in the edge to be worn other than the initial grinding position.
  • the controller 300 is further configured to acquire the second distance from the sensor 100, calculate a distance difference between the second distance minus the first distance, and determine the first position according to the distance difference.
  • the amount of grinding feed change relative to the second position.
  • the grinding assembly 200 is further configured to perform grinding on the workpiece 20 to be polished according to the grinding feed variation amount.
  • the application of the edging device 10 can refer to the application in the edging method described above, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

一种磨边方法,包括:提供磨边装置(10),所述磨边装置(10)包括至少一个用于检测距离的传感器(100)。提供待研磨工件(20),所述待研磨工件(20)具有一待磨边缘(21)。设定所述传感器(100)与所述待磨边缘(21)的感测距离。通过所述传感器(100)检测所述传感器(100)与所述待磨边缘(21)之间所述感测距离的变化值。一种磨边装置,包括:传感器(100);控制器(300);研磨组件(200)。该装置和方法保证了磨边过程的均匀性,减少了磨边的不良率。

Description

磨边方法及装置
相关申请
本申请要求2018年3月8日申请的,申请号为201810191129.3,名称为“磨边方法及装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及机电领域,特别是涉及一种磨边方法及装置。
背景技术
目前的磨边工艺为研磨轮沿着导轨的方向对待研磨工件的边缘进行研磨,只沿着一个轴的方向进行研磨。一旦磨边机定位单元定位不精确或者切割后工件尺寸偏差较大,这种研磨方式会造成边部研磨不均匀,工件边部有的地方磨的过多,有的地方磨的过少。从而影响工件的磨边品质。另外,出现磨边机研磨不均匀的情况时需要人工调整研磨轮以提高研磨精度。当调整研磨轮时一般需要关停磨边机,将研磨轮调整至合适的位置,然后进行继续的研磨进程。这种调整一方面对操作工人的要求比较高,需要熟练的工人才能完成对研磨轮的调整。另一方面比较繁琐和费时,如果遇到待研磨组件呈曲线的情况,更是需要频繁的调整。
发明内容
基于此,有必要针对传统的磨边方法会出现磨边不均匀的问题,提供一种磨边方法及装置。
一种磨边方法,包括以下步骤:
S100,提供磨边装置,所述磨边装置包括至少一个用于检测距离的传感器;
S200,提供待研磨工件,所述待研磨工件具有一待磨边缘;
S300,设定所述传感器与所述待磨边缘的感测距离;
S400,检测所述传感器与所述待磨边缘之间所述感测距离的变化值;
S500,根据所述变化值调控所述待研磨工件的研磨进给量。
在一个实施例中,在所述S300中,所述感测距离为零。
在一个实施例中,在所述S300中,所述感测距离大于零。
在一个实施例中,所述S400具体包括:
根据所述待研磨工件的具体形状,提供所述待磨边缘的基准线;
当所述待磨边缘与所述基准线重合时,所述传感器检测到所述传感器与所述待磨边缘之间所述感测距离没有发生变化,所述变化值为零;
当所述待磨边缘与所述基准线不重合时:所述传感器检测到所述传感器与所述待磨边缘之间所述感测距离变大时,所述变化值为正值;所述传感器检测到所述传感器与所述待磨边缘之间所述感测距离变小时,所述变化值为负值。
在一个实施例中,在所述S500中,所述研磨进给量等于所述变化值加上研磨量设定值。
在一个实施例中,所述磨边装置包括至少一个用于完成研磨的研磨组件,所述磨边方法还包括:
累积检测所述研磨组件的工作里程值;
当所述工作里程值大于等于设定阈值时,提示更换所研磨组件,所述设定阈值为研磨组件正常工作的寿命值。
在一个实施例中,所述研磨组件具有两个运动方向,第一运动方向是所述研磨组件的研磨方向,第二运动方向是所述研磨组件的进给方向,用于完成对所述研磨组件位置的调整,所述第一运动方向与所述第二运动方向相互垂直。
在一个实施例中,所述研磨进给量通过伺服控制器进行控制或者通过数控机床进行控制。
一种磨边装置,用于对待研磨工件进行研磨,所述待研磨工件具有一待磨边缘,包括:
传感器,用于检测所述传感器与所述待磨边缘之间感测距离的变化值;
控制器,与所述传感器通信连接,用于根据所述变化值调控所述待研磨工件的研磨进给量;
至少一组研磨组件,与所述传感器通信连接,用于根据所述研磨进给量在所述第一位置研磨掉预设深度。
在一个实施例中,所述传感器为非接触式传感器,采用光学反馈原理检测所述变化值。
在一个实施例中,所述传感器为接触式传感器,采用机械接触原理检测所述变化值。
在一个实施例中,所述传感器的测量范围为3mm到10mm。
在一个实施例中,所述控制器用于设定所述传感器与所述待磨边缘的感测距离。
在一个实施例中,还包括:
至少一个工作里程检测器,与所述研磨组件和所述控制器电连接;
所述工作里程检测器用于累积检测所述研磨组件的工作里程值,并将所述工作里程值传送至所述控制器;
所述控制器还用于当所述工作里程值大于等于设定阈值时,提示更换所述研磨组件,所述设定阈值为所述研磨组件正常工作的寿命值。
在一个实施例中,所述磨边装置包括:
第一研磨组件,包括第一研磨轮和与所述第一研磨轮固定连接,用于保护所述第一研磨轮的第一保护罩;
第二研磨组件,包括第二研磨轮和与所述第二研磨轮固定连接,用于保护所述第二研磨轮的第二保护罩;
第一传感器,固定设置于所述第一保护罩的外侧,在进给方向上位于所述第一研磨轮的前端;
第二传感器,固定设置于所述第二保护罩的外侧,在进给方向上位于所述第二研磨轮的前端。
一种磨边方法,所述磨边方法应用于磨边装置,所述磨边装置包括传感器、研磨组件以及控制器,所述控制器分别与所述传感器、所述研磨组件电连接,所述方法包括:
在所述研磨组件对待研磨工件进行研磨的过程中,所述控制器获取所述传感器检测到的第一距离,其中,所述第一距离是所述传感器到所述待研磨工件中待磨边缘的第一位置的距离;
所述控制器根据所述第一距离,确定所述第一位置对应的研磨进给量;
当所述研磨组件待对所述第一位置进行研磨时,所述控制器根据所述研磨进给量调控所述研磨组件的位置,以使所述研磨组件在所述第一位置研磨掉预设深度。
在一个实施例中,所述方法还包括:
所述控制器获取所述传感器检测到的第二距离,其中,所述第二距离是所述传感器到所述待研磨工件中待磨边缘的第二位置的距离,所述第一位置是在进给方向上所述第二位置的前一位置,所述第一位置是所述待磨边缘中除初始研磨位置之外的任意位置;
所述控制器根据所述第一距离,确定所述第一位置对应的研磨进给量,包括:
所述控制器计算所述第二距离减去所述第一距离的距离差;
根据所述距离差,确定所述第一位置相对于所述第二位置的研磨进给变化量;
所述当所述研磨组件待对所述第一位置进行研磨时,所述控制器根据所述研磨进给量调控所述研磨组件的位置,包括:
当所述研磨组件待对所述第一位置进行研磨时,所述控制器控制所述研磨组件在研磨 方向上运动所述研磨进给变化量。
在一个实施例中,所述方法还包括:
累积检测所述研磨组件的工作里程值;
当所述工作里程值大于等于设定阈值时,提示更换所研磨组件,所述设定阈值为研磨组件正常工作的寿命值。
一种磨边装置,用于对待研磨工件进行研磨,所述待研磨工件具有一待磨边缘,包括:
传感器,用于检测所述传感器到所述待磨边缘的第一位置的距离;
控制器,与所述传感器电连接,用于获取所述第一距离,并根据所述第一距离确定所述第一位置对应的研磨进给量;
研磨组件,与所述控制器电连接,用于根据所述研磨进给量使所述研磨组件在所述第一位置研磨掉预设深度。
在一个实施例中,所述传感器为非接触式传感器,采用光学反馈原理检测所述变化值。
在一个实施例中,所述传感器为接触式传感器,采用机械接触原理检测所述变化值。
在一个实施例中,所述传感器的测量范围为3mm到10mm。
在一个实施例中,所述传感器还用于检测所述传感器到所述待磨边缘的第二位置的第二距离,其中,所述第一位置是在上所述第二位置的前一位置,所述第一位置是所述待磨边缘中除初始研磨位置之外的任意位置;
所述控制器还用于从所述传感器获取所述第二距离,计算所述第二距离减去所述第一距离的距离差,并根据所述距离差,确定所述第一位置相对于所述第二位置的研磨进给变化量;
所述研磨组件还用于根据所述研磨进给变化量,对所述待研磨工件实施研磨。
在一个实施例中,还包括:
工作里程检测器,与所述研磨组件和所述控制器电连接;
所述工作里程检测器用于累积检测所述研磨组件的工作里程值,并将所述工作里程值传送至所述控制器;
所述控制器还用于当所述工作里程值大于等于设定阈值时,提示更换所述研磨组件,所述设定阈值为所述研磨组件正常工作的寿命值。
在一个实施例中,所述磨边装置包括:
第一研磨组件,包括第一研磨轮和与所述第一研磨轮固定连接,用于保护所述第一研磨轮的第一保护罩;
第二研磨组件,包括第二研磨轮和与所述第二研磨轮固定连接,用于保护所述第二研磨轮的第二保护罩;
第一传感器,固定设置于所述第一保护罩的外侧,在进给方向上位于所述第一研磨轮的前端;
第二传感器,固定设置于所述第一保护罩的外侧,在进给方向上位于所述第一研磨轮的前端。
本申请中,提供一种磨边装置及方法。所述磨边方法包括:提供磨边装置,所述磨边装置包括至少一个用于检测距离的传感器。提供待研磨工件,所述待研磨工件具有一待磨边缘。设定所述传感器与所述待磨边缘的感测距离。检测所述传感器与所述待磨边缘之间所述感测距离的变化值。根据所述变化值调控所述待研磨工件的研磨进给量。所述磨边方法,通过传感器检测所述传感器与所述待磨边缘之间所述感测距离的变化值。控制器可以根据所述变化值调控所述待研磨工件的研磨进给量。所述方法使得所述磨边装置能够按照所述待研磨工件的所述待磨边缘情况进行研磨,保证了磨边过程的均匀性,减少了磨边的不良率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请实施例公开的所述磨边方法的流程图;
图2为本申请实施例公开的所述磨边装置的结构示意图;
图3为本申请实施例公开的所述磨边装置的结构示意图;
图4为本申请一个实施例公开的所述磨边方法的流程图。
附图标号说明:
磨边装置10
待研磨工件20
待磨边缘21
传感器100
第一传感器110
第二传感器120
研磨组件200
第一研磨组件210
第一研磨轮211
第一保护罩212
第二研磨组件220
第二研磨轮221
第二保护罩222
控制器300
工作里程检测器400
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1提供了一种磨边方法的流程图。请参阅图2,提供一种磨边装置10的部分结构示意图。一种磨边方法,采用磨边装置10对待研磨工件20进行研磨。所述磨边方法包括以下步骤:
S100,提供磨边装置10,所述磨边装置10包括至少一个用于检测距离的传感器100。
所述磨边装置10可以是磨边机。所述磨边装置10可以研磨多种类型的材料。所述磨边装置10可以固定设置所述传感器100。所述传感器100用于检测一定范围内的距离。所述磨边装置10可以设置一个或者多个所述传感器100,用于精确检测待研磨工件的边缘。
S200,提供待研磨工件20,所述待研磨工件20具有一待磨边缘21。
所述待研磨工件20的具体形式并不限定,可以根据所述磨边装置10的类型进行选择。所述待研磨工件20可以是玻璃、太阳能光伏组件、半导体基板等具有待磨边缘的工件。所述磨边装置10完成对所述待磨边缘21的研磨。
S300,设定所述传感器100与所述待磨边缘21的感测距离。
在研磨工艺开始之前可以设定所述传感器100与所述待磨边缘21的感测距离。在所述感测距离下,所述磨边装置10与所述待磨边缘21的基准线接触。所述基准线可以是对 所述待研磨工件20实现研磨时相对准直的位置。所述感测距离设置的具体数值并不做具体限定。在一个实施例中,所述感测距离可以为零。在另一个实施例中,所述感测距离大于零。
S400,检测所述传感器100与所述待磨边缘21之间所述感测距离的变化值。
通过所述传感器100检测所述感测距离的变化值。具体的,在实施研磨之前检测所述传感器100与所述待磨边缘21之间所述感测距离的变化值可以提高加工精度、加工速度,减少人工操作步骤。根据所述传感器100与所述待磨边缘21之间所述感测距离的变化值对研磨进给量进行调整时,保证了整个研磨进程按照所述待磨边缘21线条的变化进行调整。所述感测距离的变化值,体现了所述待磨边缘21的变化。比如,所述待研磨工件20边缘会有凸起、凹陷或者一定的倾斜角度的直线。以上这些边缘情况在进行研磨之前都需要通过所述传感器100进行检测,并通过所述感测距离的变化值进行体现。所述待研磨工件20边缘的变化值可以是正数、负数或者零。可以定义所述待研磨工件20边缘向内凹陷或者向内倾斜时,所述变化值为正数。所述待研磨工件20边缘向外凸出或者向外倾斜时,所述变化值为负数。所述待研磨工件20边缘为直线时,所述变化值为零。
S500,根据所述变化值调控所述待研磨工件20的研磨进给量。
具体的,所述磨边装置10开始工作时有一个初始的研磨状态。检测所述传感器100与所述待磨边缘21之间所述感测距离的变化值。根据所述变化值对初始的研磨状态进行调整。如图2所示,所述磨边装置10可以具有两个运动方向,分别为第一运动方向和第二运动方向。每当所述磨边装置10沿所述第二运动方向进给一个单位,所述传感器100就会检测一次所述传感器100与所述待磨边缘21之间所述感测距离的变化值。将检测到的所述变化值反馈至所述磨边装置10。所述磨边装置10根据所述变化值进一步调整所述磨边装置10的研磨进程。所述磨边装置10的研磨进程为沿所述第一运动方向进行预设深度的研磨。当然可以理解,所述磨边方法也可以应用于其他的待研磨工件的样品。
本实施例中,提供所述磨边装置10。所述磨边装置10包括至少一个用于检测距离的传感器100。提供待研磨工件20,所述待研磨工件20具有一待磨边缘21。通过所述传感器100检测所述传感器100与所述待磨边缘21之间所述感测距离的变化值。根据所述变化值调控所述待研磨工件20的研磨进给量。所述磨边方法,在设置研磨进程之前通过检测所述传感器100与所述待磨边缘21之间所述感测距离的变化值,使得所述磨边装置10能够按照所述待研磨工件20的所述待磨边缘21情况进行研磨,保证了磨边过程的均匀性,减少了磨边不良率。
在一个实施例中,在所述S300中,所述感测距离为零。
本实施例中,所述感测距离为零。即所述传感器100与所述待磨边缘21是接触的。所述传感器100可以采用接触式传感器,比如机械式的传感器。所述传感器100为接触式传感器,采用机械接触原理检测所述变化值。所述传感器100每检测一次距离变化,需要与所述待磨边缘21接触一次。更具体的,所述传感器100可以是机械探头或弹性触头等接触式传感器。
在一个实施例中,在所述S300中,所述感测距离大于零。
本实施例中,所述感测距离大于零。即所述传感器100与所述待磨边缘21是非接触的。所述传感器100可以采用非接触式传感器。比如所述传感器100可以是光电传感器、激光传感器等非接触式传感器。所述传感器100为非接触式传感器,采用光学反馈原理检测所述变化值。所述传感器100发送光或者电检测信号至所述待磨边缘21,通过反馈值光电传感器或者激光传感器的数据获取所述变化值。
在一个实施例中,所述S400具体包括:
根据所述待研磨工件20的具体形状,提供所述待磨边缘的基准线。
可以理解,这里的基准线可以不是现实存在的线条。所述基准线可以是一个参考标准。比如,所述待研磨工件20为光伏玻璃。为了使得光伏玻璃的边缘光滑或者准直,需要对所述光伏玻璃进行研磨。所述基准线可以是所述控制器300生成的或者操作者存储的。比如,所述控制器300可以获取某一种所述待研磨工件20的边缘状态,根据边缘状态可以生成所述基准线。
在实施研磨的过程中,可以先设定所述光伏玻璃的研磨基准线,根据基准线去比对所述光伏玻璃边缘的具体哪一部分是需要研磨的。比如,所述光伏玻璃的边沿存在突出的异形,需要参考所述光伏玻璃的研磨基准线和具体的研磨设定值,确定最终的研磨量。
可以理解,当所述待磨边缘与所述基准线重合时,所述传感器检测到所述传感器与所述待磨边缘之间所述感测距离没有发生变化,所述变化值为零。
同样可以理解,当所述待磨边缘与所述基准线不重合时,所述感测距离就会发生变化。当所述传感器检测到所述传感器与所述待磨边缘之间所述感测距离变大时,所述变化值为正值。所述传感器检测到所述传感器与所述待磨边缘之间所述感测距离变小时,所述变化值为负值。
在一个实施例中,在所述S500中,所述研磨进给量等于所述变化值加上研磨量设定值(研磨量设置值还可称为预设深度)。比如,所述传感器100为接触式传感器,此时所述感测距离可以为零。所述研磨进给量直接等于所述变化值加上研磨量设定值。
本实施例中,即,所述研磨进给量是根据所述变化值进行调整的。所述变化值是通 过检测得出的所述传感器100与所述待磨边缘21的所述感测距离的变化值。如上述所述变化值可能是正数,负数或者零。所述研磨量设定值为所述待研磨工件20需要研磨掉的深度。比如,所述待研磨工件20需要整体研磨2mm的深度,即所述研磨量设定值为2。当所述待研磨工件20的边缘为直线,无凹陷、凸出或者弯曲的情况时,每个时刻所述磨边装置10检测到的所述变化值均为0。这种情况下所述研磨进给量等于所述研磨量设定值。比如,当所述待研磨工件20向内凹陷时,所述变化值为正值,所述研磨进给量等于所述变化值与所述研磨设定值之和。再比如,当所述待研磨工件20向外凸出时,所述待研磨工件20的所述变化值为负值,所述研磨进给量等于所述研磨设定值减去所述变化值。再比如,具体的当检测到所述待研磨工件20的边缘向内凹陷了2mm,则所述研磨进给量就相应的加上2mm。这样保证了研磨组件对整个所述待研磨工件20边缘的研磨能够保持相同的研磨量设定值。在一个实施例中,所述磨边装置10包括至少一个用于完成研磨的研磨组件200。所述研磨组件20可以包括研磨轮。所述磨边方法还包括:所述磨边装置10工作后,累积检测所述磨边装置10的工作里程值。当所述工作里程值大于等于设定阈值时,提示更换所述磨边装置10的研磨组件。所述设定阈值为所述研磨组件正常工作的寿命值。
本实施例中,通过所述研磨组件的工作里程考量所述研磨组件的使用寿命,进一步保证了研磨过程中的精确度。比如:所述研磨组件的寿命范围是6千米。当所述研磨组件工作满6千米时,更换所述研磨组件。
在一个实施例中,所述研磨组件200的研磨进程通过伺服控制器进行控制或者通过数控机床进行控制。
本实施例中,所述研磨组件200的控制方法可以不作限制。具体的在一个实施例中,通过伺服控制器控制所述研磨组件200的研磨进程。在另一个实施例中,可以通过数控机床控制所述研磨组件200的研磨进程。
在一个实施例中,所述研磨组件200具有两个运动方向,第一运动方向是所述研磨组件200沿着图2中所述第一运动方向完成研磨方向。第二运动方向是所述研磨组件200沿着图2中所述第二运动方向,完成对所述研磨组件200位置的调整。
本实施例中,所述研磨组件200的研磨进程可以沿着图2中的第一运动方向和图2中的第二运动方向。具体的,当检测到所述待研磨工件20边缘为直线时,所述研磨进程不变。当检测到所述待研磨工件20边缘发生变化时,所述研磨进程会发生改变的。
请参阅图2,提供一种磨边装置10包括:至少一个传感器100、控制器300和至少一组研磨组件200。
所述至少一个传感器100,用于检测待研磨工件20的一待磨边缘21的变化值。所述控制器300与所述传感器100通信连接,用于根据所述变化值调控所述待研磨工件20的研磨进程。所述至少一组研磨组件200与所述传感器100通信连接,用于根据所述控制器300调控的研磨进程完成对所述待研磨工件20的研磨工作。
可以设置,所述传感器100和所述研磨组件200中起到研磨作用的研磨轮的切线在同一平线上。这样设置,所述传感器100可以采用接触式传感器,实现上述的磨边方法。也可以设置,所述传感器100与所述研磨组件200中起到研磨作用的研磨轮的切线不在同一平线上。这样设置,所述传感器100可以采用非接触式传感器,实现上述磨边方法。
本实施例中,一种磨边装置10包括:至少一个传感器100、控制器300和至少一组研磨组件200。通过所述传感器100检测所述待研磨工件20的,得出所述待研磨工件20的变化值。通过所述控制器300与所述传感器100通信连接,用于根据所述变化值调控所述待研磨工件20的研磨进程。所述传感器100可以是能够精确测量距离的高精度接触式数测量传感器。所述传感器100可以实时检测所述待研磨工件20边缘的,因此可以实时的对所述研磨进程进行调整和修正。所述磨边装置10可以根据玻璃边缘形状进行磨边,不至于以单一直线标准进行磨边。所述磨边方法能够按照待研磨工件的边缘情况进行研磨,保证了磨边过程的均匀性,减少了待研磨工件的磨边不良率。
在一个实施例中,所述至少一个传感器100的测量范围为3mm到10mm。即,所述传感器100能够测量的范围为3mm-10mm。在安装所述传感器100时可以根据所述传感器100的测量范围进行设置。比如可以设置将所述传感器100设置在距离待测量的所述待研磨工件20为6mm的范围内。这样所述传感器100可以检测到的所述待研磨工件20的凹凸范围会更加的广泛。
在一个实施例中,通过所述控制器300设置所述研磨进给量。所述控制器300可以通过设定的所述研磨进给量控制所述研磨组件200的研磨进程。具体的,所述研磨组件200可以是研磨轮,研磨轮的运动可以通过伺服电机进行更精确的控制。
在一个实施例中,所述控制器300调控所述待研磨工件20的研磨进程包括:
根据所述待研磨工件20的具体形状,提供所述待磨边缘的基准线。
可以理解,这里的基准线可以不是现实存在的线条。所述基准线可以是一个参考标准。比如,所述待研磨工件20为光伏玻璃。为了使得光伏玻璃的边缘光滑或者准直,需要对所述光伏玻璃进行研磨。在实施研磨的过程中,可以先设定所述光伏玻璃的研磨基准线,根据基准线去比对所述光伏玻璃边缘的具体哪一部分是需要研磨的。比如,所述光伏玻璃的边沿存在突出的异形,需要参考所述光伏玻璃的研磨基准线和具体的研磨设定值,确定 最终的研磨量。
可以理解,当所述待磨边缘与所述基准线重合时,所述传感器检测到所述传感器与所述待磨边缘之间所述感测距离没有发生变化,所述变化值为零。
同样可以理解,当所述待磨边缘与所述基准线不重合时,所述感测距离就会发生变化。当所述传感器检测到所述传感器与所述待磨边缘之间所述感测距离变大时,所述变化值为正值。所述传感器检测到所述传感器与所述待磨边缘之间所述感测距离变小时,所述变化值为负值。
请参阅图3,提供一种所述磨边装置10还包括:至少一个工作里程检测器400。所述工作里程检测器400与所述研磨组件200和所述控制器300电连接。
所述工作里程检测器400用于在所述磨边装置10工作后,累积检测所述研磨组件200的工作里程值,并将所述工作里程值传送至所述控制器300。所述控制器300还用于当所述工作里程值大于等于设定阈值时,提示更换所述研磨组件200,所述设定阈值为所述研磨组件正常工作的寿命值。所述工作里程检测器400的设置可以使得所述磨边装置10的应用过程更加安全可靠,减少了所述磨边装置10磨损带来的误差。
在一个实施例中,所述磨边装置10包括:第一研磨组件210和第二研磨组件220。所述第一研磨组件210包括第一研磨轮211和与所述第一研磨轮211固定连接,用于保护所述第一研磨轮211的第一保护罩212。
所述第二研磨组件220包括第二研磨轮221和与所述第二研磨轮221固定连接,用于保护所述第二研磨轮221的第二保护罩222。
所述传感器100包括第一传感器110和第二传感器120。为了保证所述第一传感器110先检测距离值并且反馈给所述控制器300。所述第一传感器110位于图2中所述第二运动方向上,并且在所述第一研磨轮211运动方向的前端。所述第一传感器110固定设置于所述第一保护罩212的外侧。同样为了保证所述第二传感器120先检测距离值并且反馈给所述控制器300。所述第二传感器120位于图2中所述第二运动方向,并且在所述第二研磨轮221运动方向的前端。所述第二传感器120固定设置于所述第二保护罩222的外侧。
本实施例中,所述传感器100包括所述第一传感器110和所述第二传感器120。每个所述传感器100固定设置在所述研磨组件200的保护罩。具体的,所述研磨组件200包括的第一研磨组件210和第二研磨组件220。所述第一研磨组件210包括所述第一研磨轮211和所述第一保护罩212。所述第二研磨组件220包括所述第二研磨轮221和所述第二保护罩222。将所述第一传感器210固定设置于所述第一保护罩212的外侧。具体的,将所述传感器100固定设置在所述研磨组件200保护罩的外侧,结构简单,操作方便,防尘效果 好,且可以密封加工,加工时可以避免粉末危害人体健康。
请参阅图4,提供一种磨边方法,应用于磨边装置10。所述磨边装置10包括传感器100、研磨组件200以及控制器300,所述控制器300分别与所述传感器100、所述研磨组件200电连接。所述方法包括:
S100’,在所述研磨组件200对待研磨工件20进行研磨的过程中,所述控制器300获取所述传感器100检测到的第一距离。其中,所述第一距离是所述传感器100到所述待研磨工件20中待磨边缘21的第一位置的距离。
其中,传感器100可以是检测精度满足预设条件的传感器,可以是感知不到待磨边缘上的毛刺的传感器。
可以理解,在实施研磨的过程中所述传感器100会经过多个位置。所述传感器100经过的多个位置所述研磨组件200也会运动经过。所述研磨组件200可以实施研磨的动作。
S200’,所述控制器300根据所述第一距离,确定所述第一位置对应的研磨进给量。比如,所述控制器300中预先设置有研磨深度(可称为预设深度),所述控制器300获取到所述传感器100检测到的第一距离后,可以将第一距离与预设深度的和,确定为第一位置对应的研磨进给量,此种情况下,研磨进给量可以是所述研磨组件200在研磨第一位置时所处的位置与所述传感器100在第一位置时所处的位置在研磨方向(即第一运动方向)上的距离。
S300’,当所述研磨组件200待对所述第一位置进行研磨时,所述控制器300根据所述研磨进给量调控所述研磨组件200的位置,以使所述研磨组件200在所述第一位置研磨掉预设深度。
本步骤中,对所述待研磨工件20进行研磨的过程中,所述传感器100先感测所述传感器100到所述待研磨工件20中所述待磨边缘21的第一位置的所述第一距离。所述控制器300根据所述第一距离,确定出所述第一位置对应的所述研磨进给量后,当所述研磨组件200待对第一位置进行研磨时,控制器可以基于确定出的第一位置对应的研磨进给量调整研磨组件200的位置,以使研磨组件200对所述第一位置的所述待磨边缘21进行研磨。比如,当研磨组件在第二位置研磨结束后待对第一位置进行研磨时,控制器可以基于第一位置对应的研磨进给量对研磨组件200的位置进行调整,其中,第二位置可以是待磨边缘中在图2中所述第二运动方向上位于第一位置的后一位置。
本实施例中,可以按照预设深度对所述待磨边缘21进行所述待磨边缘21固有的形状统一研磨预设深度。本实施例中,所述第一位置可以是所述待磨边缘21中除初始研磨位置之外的任意位置。本方法使得所述磨边装置10能够按照所述待磨边缘21的实际情况进 行研磨,保证了磨边过程的均匀性,减少了磨边的不良率。
在一个实施例中,所述方法还包括:
所述控制器300获取所述传感器100检测到的第二距离。其中,所述第二距离是所述传感器100到所述待研磨工件20中待磨边缘的第二位置的距离。即所述研磨组件200先对所述第二位置处进行研磨。下一个状态是所述研磨组件200对所述第一位置处进行研磨。所述第一位置是所述待磨边缘中除初始研磨位置之外的任意位置。
本步骤中,所述控制器300根据所述第一距离,确定所述第一位置对应的研磨进给量,包括:所述控制器300计算所述第二距离减去所述第一距离的距离差。根据所述距离差,确定所述第一位置相对于所述第二位置的研磨进给变化量。
本步骤中,所述当所述研磨组件200待对所述第一位置进行研磨时,所述控制器300根据所述研磨进给量调控所述研磨组件200的位置,包括:当所述研磨组件200待对所述第一位置进行研磨时,所述控制器300控制所述研磨组件200在图2中所述第一运动方向上运动所述研磨进给变化量。
本实施例中,所述传感器100先检测所述传感器100到所述待研磨工件20中待磨边缘的第二位置的所述第二距离。并将检测结果传送至所述控制器300。随后,所述传感器100运动到所述第一位置对应的位置,检测所述第一距离并将其传送至所述控制器300。所述控制器300获取到第一距离后,可以计算所述第二距离减去所述第一距离的距离差,进而,控制器300可以根据所述距离差,确定所述第一位置相对于所述第二位置的研磨进给变化量,其中,对于待磨边缘外凸部分,如果传感器200检测到的距离越大,则可以将距离差确定为第一位置相对于第二位置的研磨进给变化量,如果传感器200检测到的距离越小,则可以将距离差的相反数,确定为第一位置相对于第二位置的研磨进给变化量。当所述研磨组件200待对所述第一位置进行研磨时,所述研磨组件200按照所述研磨进给变化量对所述第一位置进行预设深度的研磨。本实施例中所述传感器100可以充分的感知所述第二距离与所述第一距离的大小,并通过所述控制器300计算得出所述研磨进给变化量,再通过所述研磨组件200对所述第一位置实现预设深度的研磨。本实施例中,所述方法可以充分的检测到所述研磨组件200需要研磨的所述待磨边缘21之间的差异,可以通过所述传感器100感知差异,通过所述控制器300计算所述研磨进给变化量,再通过所述研磨组件200实现按照所述待磨边缘21形状的预设深度的研磨。
在一个实施例中,所述方法还包括:累积检测所述研磨组件200的工作里程值。当所述工作里程值大于等于设定阈值时,提示更换所研磨组件200,所述设定阈值为研磨组件200正常工作的寿命值。
本实施例中,通过所述研磨组件200的工作里程考量所述研磨组件200的使用寿命,进一步保证了研磨过程中的精确度。比如:所述研磨组件200的寿命范围是10千米。当所述研磨组件200工作满10千米时,可以提示更换所述研磨组件200。
一种磨边装置10,用于对待研磨工件20进行研磨。所述待研磨工件20具有一待磨边缘21。所述磨边装置10包括:传感器100、研磨组件200和控制器300。
所述传感器100用于检测所述传感器100到所述待磨边缘的第一位置的距离。
所述控制器300与所述传感器100电连接,用于获取所述第一距离,并根据所述第一距离确定所述第一位置对应的研磨进给量。
所述研磨组件200与所述控制器300电连接,用于根据所述研磨进给量对所述待研磨工件20实施研磨,以使所述研磨组件200在所述第一位置研磨掉预设深度。
本实施例中,所述磨边装置10更具体的结构并不做限定,可以结合本领域的常规设计进行设置。所述磨边装置10的应用可以参考上述所述磨边方法中的应用,在此不再赘述。
在一个实施例中,所述传感器100可以选取非接触式传感器100,采用光学反馈原理检测所述变化值。在一个实施例中,所述传感器100可以选取接触式传感器100,采用机械接触原理检测所述变化值。所述传感器100的测量范围为3mm到10mm。
在一个实施例中,所述传感器100还用于检测所述传感器100到所述待磨边缘的第二位置的第二距离,其中,所述第一位置是在图2中所述第二运动方向上所述第二位置的前一位置,所述第一位置是所述待磨边缘中除初始研磨位置之外的任意位置。所述控制器300还用于从所述传感器100获取所述第二距离,计算所述第二距离减去所述第一距离的距离差,并根据所述距离差,确定所述第一位置相对于所述第二位置的研磨进给变化量。所述研磨组件200还用于根据所述研磨进给变化量,对所述待研磨工件20实施研磨。本实施例中,所述磨边装置10的应用可以参考上述所述磨边方法中的应用,在此不再赘述。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施 例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (20)

  1. 一种磨边方法,其特征在于,包括以下步骤:
    S100,提供磨边装置,所述磨边装置包括至少一个用于检测距离的传感器;
    S200,提供待研磨工件,所述待研磨工件具有一待磨边缘;
    S300,设定所述传感器与所述待磨边缘的感测距离;
    S400,检测所述传感器与所述待磨边缘之间所述感测距离的变化值;
    S500,根据所述变化值调控所述待研磨工件的研磨进给量。
  2. 如权利要求1所述的磨边方法,其特征在于,所述S400具体包括:
    根据所述待研磨工件的具体形状,提供所述待磨边缘的基准线;
    当所述待磨边缘与所述基准线重合时,所述传感器检测到所述传感器与所述待磨边缘之间所述感测距离没有发生变化,所述变化值为零;
    当所述待磨边缘与所述基准线不重合时:所述传感器检测到所述传感器与所述待磨边缘之间所述感测距离变大时,所述变化值为正值;所述传感器检测到所述传感器与所述待磨边缘之间所述感测距离变小时,所述变化值为负值。
  3. 如权利要求1所述的磨边方法,其特征在于,在所述S500中,所述研磨进给量等于所述变化值加上研磨量设定值。
  4. 如权利要求1所述的磨边方法,其特征在于,所述磨边装置包括至少一个用于完成研磨的研磨组件,所述磨边方法还包括:
    累积检测所述研磨组件的工作里程值;
    当所述工作里程值大于等于设定阈值时,提示更换所研磨组件,所述设定阈值为研磨组件正常工作的寿命值。
  5. 如权利要求4所述的磨边方法,其特征在于,所述研磨组件具有两个运动方向,第一运动方向是所述研磨组件的研磨方向,第二运动方向是所述研磨组件的进给方向,用于完成对所述研磨组件位置的调整,所述第一运动方向与所述第二运动方向相互垂直。
  6. 如权利要求1所述的磨边方法,其特征在于,所述研磨进给量通过伺服控制器进行控制或者通过数控机床进行控制。
  7. 一种磨边装置,用于对待研磨工件进行研磨,所述待研磨工件具有一待磨边缘,其特征在于,包括:
    传感器,用于检测所述传感器与所述待磨边缘之间感测距离的变化值;
    控制器,与所述传感器通信连接,用于根据所述变化值调控所述待研磨工件的研磨进 给量;
    至少一组研磨组件,与所述传感器通信连接,用于根据所述研磨进给量在所述第一位置研磨掉预设深度。
  8. 如权利要求7所述的磨边装置,其特征在于,所述传感器的测量范围为3mm到10mm。
  9. 如权利要求7所述的磨边装置,其特征在于,所述控制器用于设定所述传感器与所述待磨边缘的感测距离。
  10. 如权利要求7所述的磨边装置,其特征在于,还包括:
    至少一个工作里程检测器,与所述研磨组件和所述控制器电连接;
    所述工作里程检测器用于累积检测所述研磨组件的工作里程值,并将所述工作里程值传送至所述控制器;
    所述控制器还用于当所述工作里程值大于等于设定阈值时,提示更换所述研磨组件,所述设定阈值为所述研磨组件正常工作的寿命值。
  11. 如权利要求7所述的磨边装置,其特征在于,所述磨边装置包括:
    第一研磨组件,包括第一研磨轮和与所述第一研磨轮固定连接,用于保护所述第一研磨轮的第一保护罩;
    第二研磨组件,包括第二研磨轮和与所述第二研磨轮固定连接,用于保护所述第二研磨轮的第二保护罩;
    第一传感器,固定设置于所述第一保护罩的外侧,在进给方向上位于所述第一研磨轮的前端;
    第二传感器,固定设置于所述第二保护罩的外侧,在进给方向上位于所述第二研磨轮的前端。
  12. 一种磨边方法,其特征在于,所述磨边方法应用于磨边装置,所述磨边装置包括传感器、研磨组件以及控制器,所述控制器分别与所述传感器、所述研磨组件电连接,所述方法包括:
    在所述研磨组件对待研磨工件进行研磨的过程中,所述控制器获取所述传感器检测到的第一距离,其中,所述第一距离是所述传感器到所述待研磨工件中待磨边缘的第一位置的距离;
    所述控制器根据所述第一距离,确定所述第一位置对应的研磨进给量;
    当所述研磨组件待对所述第一位置进行研磨时,所述控制器根据所述研磨进给量调控所述研磨组件的位置,以使所述研磨组件在所述第一位置研磨掉预设深度。
  13. 如权利要求12所述的磨边方法,其特征在于,所述方法还包括:
    所述控制器获取所述传感器检测到的第二距离,其中,所述第二距离是所述传感器到所述待研磨工件中待磨边缘的第二位置的距离,所述第一位置是在进给方向上所述第二位置的前一位置,所述第一位置是所述待磨边缘中除初始研磨位置之外的任意位置;
    所述控制器根据所述第一距离,确定所述第一位置对应的研磨进给量,包括:
    所述控制器计算所述第二距离减去所述第一距离的距离差;
    根据所述距离差,确定所述第一位置相对于所述第二位置的研磨进给变化量;
    所述当所述研磨组件待对所述第一位置进行研磨时,所述控制器根据所述研磨进给量调控所述研磨组件的位置,包括:
    当所述研磨组件待对所述第一位置进行研磨时,所述控制器控制所述研磨组件在研磨方向上运动所述研磨进给变化量。
  14. 如权利要求12所述的磨边方法,其特征在于,所述方法还包括:
    累积检测所述研磨组件的工作里程值;
    当所述工作里程值大于等于设定阈值时,提示更换所研磨组件,所述设定阈值为研磨组件正常工作的寿命值。
  15. 一种磨边装置,其特征在于,用于对待研磨工件进行研磨,所述待研磨工件具有一待磨边缘,包括:
    传感器,用于检测所述传感器到所述待磨边缘的第一位置的距离;
    控制器,与所述传感器电连接,用于获取所述第一距离,并根据所述第一距离确定所述第一位置对应的研磨进给量;
    研磨组件,与所述控制器电连接,用于根据所述研磨进给量使所述研磨组件在所述第一位置研磨掉预设深度。
  16. 如权利要求15所述的磨边装置,其特征在于,所述传感器为非接触式传感器,采用光学反馈原理检测所述变化值。
  17. 如权利要求15所述的磨边装置,其特征在于,所述传感器为接触式传感器,采用机械接触原理检测所述变化值。
  18. 如权利要求15所述的磨边装置,其特征在于,
    所述传感器还用于检测所述传感器到所述待磨边缘的第二位置的第二距离,其中,所述第一位置是在进给方向上所述第二位置的前一位置,所述第一位置是所述待磨边缘中除初始研磨位置之外的任意位置;
    所述控制器还用于从所述传感器获取所述第二距离,计算所述第二距离减去所述第一 距离的距离差,并根据所述距离差,确定所述第一位置相对于所述第二位置的研磨进给变化量;
    所述研磨组件还用于根据所述研磨进给变化量,对所述待研磨工件实施研磨。
  19. 如权利要求15所述的磨边装置,其特征在于,还包括:
    工作里程检测器,与所述研磨组件和所述控制器电连接;
    所述工作里程检测器用于累积检测所述研磨组件的工作里程值,并将所述工作里程值传送至所述控制器;
    所述控制器还用于当所述工作里程值大于等于设定阈值时,提示更换所述研磨组件,所述设定阈值为所述研磨组件正常工作的寿命值。
  20. 如权利要求15-19中任一项所述的磨边装置,其特征在于,所述磨边装置包括:
    第一研磨组件,包括第一研磨轮和与所述第一研磨轮固定连接,用于保护所述第一研磨轮的第一保护罩;
    第二研磨组件,包括第二研磨轮和与所述第二研磨轮固定连接,用于保护所述第二研磨轮的第二保护罩;
    第一传感器,固定设置于所述第一保护罩的外侧,在进给方向上位于所述第一研磨轮的前端;
    第二传感器,固定设置于所述第一保护罩的外侧,在进给方向上位于所述第二研磨轮的前端。
PCT/CN2018/093803 2018-03-08 2018-06-29 磨边方法及装置 WO2019169813A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2018217247A AU2018217247A1 (en) 2018-03-08 2018-08-14 Edging method and apparatus
EP18189662.2A EP3537245A1 (en) 2018-03-08 2018-08-20 Edging method and apparatus
US16/112,958 US20190275635A1 (en) 2018-03-08 2018-08-27 Edging method and apparatus
JP2018190174A JP2019155583A (ja) 2018-03-08 2018-10-05 端面加工方法及び端面加工装置
KR1020180125349A KR20190106643A (ko) 2018-03-08 2018-10-19 에지 가공 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810191129.3 2018-03-08
CN201810191129.3A CN108436650A (zh) 2018-03-08 2018-03-08 磨边方法及装置

Publications (1)

Publication Number Publication Date
WO2019169813A1 true WO2019169813A1 (zh) 2019-09-12

Family

ID=63193819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093803 WO2019169813A1 (zh) 2018-03-08 2018-06-29 磨边方法及装置

Country Status (5)

Country Link
JP (1) JP2019155583A (zh)
KR (1) KR20190106643A (zh)
CN (1) CN108436650A (zh)
AU (1) AU2018217247A1 (zh)
WO (1) WO2019169813A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109227276A (zh) * 2018-10-19 2019-01-18 佛山市巴赛尔机电有限公司 一种自动化磨边机
CN111002139B (zh) * 2019-11-27 2021-03-02 湖南科创信息技术股份有限公司 磨边机智能控制***
CN112388511B (zh) * 2020-09-23 2021-11-12 广东博智林机器人有限公司 打磨机器人的控制方法、装置、电子设备及存储介质
CN114505758A (zh) * 2022-01-20 2022-05-17 西门子(中国)有限公司 磨床***、磨床控制方法、数控设备及存储介质
CN114559325B (zh) * 2022-03-11 2023-04-14 青岛融合光电科技有限公司 一种通过固定纠偏提高载板玻璃研磨精度的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123643A (ja) * 1997-10-21 1999-05-11 Nomura Seisakusho:Kk 板材の加工装置
JP3971980B2 (ja) * 2002-09-13 2007-09-05 有限会社岡杉巧作所 研削装置
CN101164148A (zh) * 2005-04-19 2008-04-16 日本微涂料株式会社 半导体晶片周缘的研磨装置及方法
CN105658377A (zh) * 2013-10-04 2016-06-08 福吉米株式会社 研磨装置以及研磨方法
CN106392815A (zh) * 2016-11-16 2017-02-15 广东科达洁能股份有限公司 一种数控智能磨边倒角机
CN106680288A (zh) * 2017-01-03 2017-05-17 京东方科技集团股份有限公司 一种研磨设备及研磨方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI503206B (zh) * 2009-08-27 2015-10-11 Corning Inc 用以精確修整邊緣的設備及方法
JP2011110648A (ja) * 2009-11-26 2011-06-09 Asahi Glass Co Ltd ガラス基板の加工方法及びその装置
KR101389377B1 (ko) * 2012-09-05 2014-04-25 삼성코닝정밀소재 주식회사 유리기판 면취 장치
JP6050086B2 (ja) * 2012-10-30 2016-12-21 AvanStrate株式会社 ガラス基板の製造方法
CN202878049U (zh) * 2012-10-31 2013-04-17 张伟群 瓷砖磨边装置
JP6190654B2 (ja) * 2013-07-30 2017-08-30 中村留精密工業株式会社 削り代の均一化方法及び板材の周縁研削装置
AT515011B1 (de) * 2013-11-14 2015-08-15 Lisec Austria Gmbh Verfahren und Vorrichtung zum Bearbeiten der Ränder flächiger Werkstücke
CN104690637A (zh) * 2015-03-18 2015-06-10 合肥京东方光电科技有限公司 一种柔性基板研磨控制方法及装置
CN105234820B (zh) * 2015-08-24 2018-07-03 哈尔滨工业大学 一种非接触式金属基砂轮圆度误差及磨损量在线检测方法及实现该方法的装置
CN105729267B (zh) * 2016-02-03 2018-06-12 华中科技大学 一种基于视觉控制的磨边装置及方法
CN105598783B (zh) * 2016-03-02 2018-10-02 郑州旭飞光电科技有限公司 研磨机研磨轮磨耗补正控制方法、装置、***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123643A (ja) * 1997-10-21 1999-05-11 Nomura Seisakusho:Kk 板材の加工装置
JP3971980B2 (ja) * 2002-09-13 2007-09-05 有限会社岡杉巧作所 研削装置
CN101164148A (zh) * 2005-04-19 2008-04-16 日本微涂料株式会社 半导体晶片周缘的研磨装置及方法
CN105658377A (zh) * 2013-10-04 2016-06-08 福吉米株式会社 研磨装置以及研磨方法
CN106392815A (zh) * 2016-11-16 2017-02-15 广东科达洁能股份有限公司 一种数控智能磨边倒角机
CN106680288A (zh) * 2017-01-03 2017-05-17 京东方科技集团股份有限公司 一种研磨设备及研磨方法

Also Published As

Publication number Publication date
JP2019155583A (ja) 2019-09-19
AU2018217247A1 (en) 2019-09-26
CN108436650A (zh) 2018-08-24
KR20190106643A (ko) 2019-09-18

Similar Documents

Publication Publication Date Title
WO2019169813A1 (zh) 磨边方法及装置
US6336057B1 (en) Lens grinding apparatus
EP1938923B1 (en) Method of grinding eyeglass lens, and eyeglass lens grinding apparatus
JP7089136B2 (ja) ウエーハの研削方法
KR102070367B1 (ko) 안경 렌즈 가공 장치
US10377011B2 (en) Eyeglass lens processing apparatus and eyeglass lens processing program
CN104128884B (zh) 蜗杆磨床的齿形误差控制方法及装置
KR20090072999A (ko) 안경 렌즈 가공 장치
US9475242B2 (en) Eyeglass lens processing apparatus
US20190275635A1 (en) Edging method and apparatus
CN107953154B (zh) 玻璃基板的研磨方法及研磨装置
KR20130086747A (ko) 휠 마모량 보정이 가능한 기판 연마장치
EP2305421B1 (en) Eyeglass lens processing apparatus and calibration sensor unit
KR20120106577A (ko) 박판형 워크의 연삭 방법 및 양두 평면 연삭반
JP7252837B2 (ja) 研削装置
CN114762954A (zh) 研磨装置、研磨方法及输出基板的膜厚分布的可视化信息的方法
CN205380566U (zh) 偏心轴的激光检测装置和控制***
JP6888397B2 (ja) 工作機械システム
KR101782377B1 (ko) 절삭유닛의 절삭툴 정상 설치장치 및 이를 이용한 절삭툴의 정상 설치방법
JPH06258050A (ja) 砥石形状計測装置
JPH0241871A (ja) 数値制御研削盤
KR101490494B1 (ko) 안경 렌즈 가공 방법 및 장치
JP7501943B1 (ja) といし測定手段及びそれを用いたドレス実施システムと研削盤
JP4988534B2 (ja) センタレス研削盤の段取り装置、その段取り方法およびセンタレス研削盤
JPH0919858A (ja) ビードの自動研削制御方法及びその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18909082

Country of ref document: EP

Kind code of ref document: A1