WO2019168145A1 - Heat sink - Google Patents

Heat sink Download PDF

Info

Publication number
WO2019168145A1
WO2019168145A1 PCT/JP2019/008029 JP2019008029W WO2019168145A1 WO 2019168145 A1 WO2019168145 A1 WO 2019168145A1 JP 2019008029 W JP2019008029 W JP 2019008029W WO 2019168145 A1 WO2019168145 A1 WO 2019168145A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat pipe
heating element
pipe
predetermined
Prior art date
Application number
PCT/JP2019/008029
Other languages
French (fr)
Japanese (ja)
Inventor
川畑 賢也
義勝 稲垣
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2019168145A1 publication Critical patent/WO2019168145A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat sink for cooling a heating element, and more particularly to a heat pipe heat sink.
  • heating elements such as electronic components are mounted with high density inside the electronic device.
  • a heat sink provided with a heat pipe heat pipe type heat sink
  • the heat sink for example, there has been proposed a heat pipe heat sink that protrudes in the radial direction on the outer peripheral surface of a heat pipe provided with a plurality of flat plate-like heat radiating fins (Patent Document 1).
  • Patent Document 1 a plurality of heat pipes are arranged in parallel along the flow direction of cooling air supplied from a fan for forced air cooling. That is, the plurality of heat pipes are provided with a heat pipe in which the condensing part is disposed on the leeward side of the cooling air and a heat pipe in which the condensing part is disposed on the leeward side of the cooling air.
  • the heat pipe in which the evaporation unit is attached at a position near the heating element to be cooled has a larger amount of heat input from the heating element than the heat pipe in which the evaporation part is attached at a position far from the heating element. Therefore, a better maximum heat transport amount is required.
  • the maximum heat transport amount of the heat pipe is improved when the operating temperature of the heat pipe is high. This is because the higher the operating temperature of the heat pipe, the lower the viscosity of the working fluid sealed in the heat pipe and the lower the flow resistance of the working fluid.
  • Patent Document 1 the plurality of heat pipes are arranged in parallel so that their longitudinal directions are substantially parallel, and one end of each heat pipe is thermally connected to the heating unit and the other end is It is only thermally connected to the radiating fins. Therefore, since there may be a case where a more excellent maximum heat transport amount cannot be given to a heat pipe having a large amount of heat input from the heating element, there is room for improvement in the heat dissipation characteristics of the heat sink.
  • the present invention provides cooling heat by providing a higher maximum heat transport amount to a heat pipe having a relatively large amount of heat input from a heating element to be cooled among a plurality of heat pipes. It aims at providing the heat sink which can exhibit the outstanding cooling performance with respect to object.
  • aspects of the present invention include a heat receiving portion thermally connected to a heating element, a plurality of heat pipes thermally connected to the heat receiving portion at predetermined portions, and the predetermined portions of the plurality of heat pipes.
  • a heat dissipating part thermally connected to another part different from the above, and among the plurality of heat pipes, the predetermined part extends from at least a part of the predetermined part or an end of the predetermined part.
  • the other part of the first heat pipe in which a virtual straight line extending along the direction overlaps a part having a high heat generation density of the heating element in a plan view is from the predetermined part or an end of the predetermined part.
  • the imaginary straight line extended along the extending direction of the predetermined part has a cooling air leeward than the other part of the second heat pipe in which the imaginary straight line does not overlap with the part having a high heat generation density of the heating element in plan view.
  • Heat provided on the side It is a link.
  • the predetermined part is the evaporation part, and the heat from the heating element is released to the heat radiation part at the other part. It is a condensing part.
  • the “plan view” means a state viewed from the direction orthogonal to the heat transport direction of the heat pipe and from the direction orthogonal to the arrangement direction of predetermined portions of the heat pipe.
  • An aspect of the present invention is a heat sink having an intersecting portion where the first heat pipe and the second heat pipe intersect in a plan view.
  • An aspect of the present invention includes an intermediate portion of the first heat pipe between the predetermined portion and the other portion, and the predetermined portion and the other portion of the second heat pipe.
  • the intermediate part located between them is a heat sink having an intersecting part intersecting in plan view.
  • An aspect of the present invention is a heat sink in which the first heat pipe and / or the second heat pipe are flattened at the intersection.
  • An aspect of the present invention is a heat sink in which the predetermined portion is one end portion in the longitudinal direction of the heat pipe and the other portion is the other end portion in the longitudinal direction of the heat pipe.
  • An aspect of the present invention is a heat sink in which the predetermined part is a central part in the longitudinal direction of the heat pipe, and the other part is one end and the other end in the longitudinal direction of the heat pipe. is there.
  • the imaginary straight line extending along the extending direction of the evaporation unit from at least a part of the evaporation unit or the end of the evaporation unit has a high heat generation density of the heating element.
  • the imaginary straight line in which the condensing part of the first heat pipe that overlaps with the part in plan view extends along the extending direction of the evaporating part from the evaporating part or the end of the evaporating part is flat with the part having a high heat generation density of the heating element
  • the operating temperature of the first heat pipe is higher than the operating temperature of the second heat pipe by being provided on the leeward side of the cooling air from the condensing part of the second heat pipe that does not overlap in view.
  • the maximum heat transport amount of the first heat pipe is improved more than the maximum heat transport amount of the second heat pipe.
  • the first heat pipe having a relatively large amount of heat input from the heating element is given a more excellent maximum heat transport amount, and as a result, excellent for the object to be cooled.
  • a heat sink capable of exhibiting cooling performance can be obtained.
  • the heating element to be cooled is thermally connected to the central portion of the heat receiving portion by including the intersecting portion where the first heat pipe and the second heat pipe intersect in plan view. Even if it is, the condensation part of the 1st heat pipe can be arranged in the leeward side of cooling air rather than the condensation part of the 2nd heat pipe.
  • the first heat pipe and / or the second heat pipe is flattened at the intersection, the thickness of the intersection can be reduced and the heat sink can be made compact. . Therefore, a heat sink can be installed even in a narrow space.
  • the heat sink 1 includes a heat receiving plate 31 that is thermally connected to a heating element 100 that is a cooling target, and a plurality of heat receiving plates 31 that are thermally connected to the heat receiving plate 31. (In FIG. 1, three) heat pipes 11 are provided. The plurality of heat pipes 11 are all thermally connected to the common heat radiating portion 20 of the heat sink 1.
  • the heat pipe 11 is a heat transport member in which a working fluid is sealed inside a container made of a long tube material.
  • the container is a sealed container, and the inside of the container is in a decompressed state.
  • the longitudinal direction of the heat pipe 11 is the heat transport direction of the heat pipe 11.
  • the plurality of heat pipes 11 are arranged in parallel in a direction substantially orthogonal to the longitudinal direction of the heat pipes 11 to form a heat pipe group 12. Each of the plurality of heat pipes 11 is opposed to another adjacent heat pipe 11 at the side portion. Each of the plurality of heat pipes 11 has one end 13 thermally connected to the heating element 100, so that one end of the heat pipe group 12 is thermally connected to the heating element 100. Has been. In the heat sink 1, one end 13 of the heat pipe 11 indirectly contacts the surface of the heating element 100 via the flat heat receiving plate 31, so that the one end 13 of the heat pipe 11 and the heating element 100 are Are thermally connected.
  • one end 13 of the heat pipe 11 is thermally connected to the heat receiving plate 31 and functions as an evaporation unit by being thermally connected to the heat receiving plate 31.
  • the longitudinal direction of one end 13 of the heat pipe 11 extends along the planar direction of the heat receiving plate 31.
  • the first heat pipe 11-1 located at the center of the parallel arrangement has one end 13 connected to the heating element 100. It is provided in the position which overlaps in planar view. Therefore, one end 13 of the first heat pipe 11-1 is provided at a position overlapping with a portion having a high heat generation density, which is a hot spot of the heating element 100, in a plan view. In FIG. 1, for the sake of convenience, the entire heating element 100 is a portion having a high heat generation density.
  • the number of the first heat pipes 11-1 provided at the position where one end 13 overlaps the heating element 100 in plan view is not particularly limited, and the number of the first heat pipes 11-1 is one.
  • the second arranged at both sides of the first heat pipe 11-1 (that is, positions at both ends of the parallel arrangement at one end of the heat pipe group 12).
  • the heat pipe 11-2 is provided at a position where one end 13 of the heat pipe 11-2 does not overlap the heating element 100 in plan view. Therefore, one end 13 of the second heat pipe 11-2 is provided at a position where it does not overlap with the high heat generation density portion of the heating element 100 in plan view.
  • the number of the second heat pipes 11-2 provided at a position where one end portion 13 does not overlap the heating element 100 in a plan view is not particularly limited.
  • the number of the first heat pipes 11-1 is not limited. One is provided on each side.
  • the first heat pipe 11-1 is the heat pipe 11 in which the amount of heat input from the heating element 100 is larger than that of the second heat pipe 11-2.
  • all of the plurality of heat pipes 11 have the other end portion 14 thermally connected to the heat radiating portion 20, so that the other end portion of the heat pipe group 12 radiates heat.
  • the unit 20 is thermally connected. Therefore, the other end 14 of the heat pipe 11 functions as a condensing part.
  • the heat radiating portion 20 has a substantially rectangular parallelepiped shape.
  • the other end portions 14 of the plurality of heat pipes 11 are arranged in parallel in the heat radiating portion 20 in a direction substantially orthogonal to the longitudinal direction of the heat pipe 11.
  • Each of the other end portions 14 of the plurality of heat pipes 11 faces the other end portion 14 of another adjacent heat pipe 11 at the side portion.
  • a bent portion 15 is formed in front of a portion of the first heat pipe 11-1 and the second heat pipe 11-2 that are thermally connected to the heat radiating portion 20. Accordingly, the first heat pipe 11-1 and the second heat pipe 11-2 are both substantially L-shaped in plan view.
  • the bent portion 15 of the first heat pipe 11-1 and the bent portion of the second heat pipe 11-2 are corresponding to the fact that the heat pipe 11 is introduced into the heat radiating portion 20 from the left end portion of the heat radiating portion 20. All of the portions 15 are bent in the right direction.
  • the first heat pipe 11-1 and the second heat pipe 11-2 have the other end portion 14 in a direction substantially parallel to the longitudinal direction of the heat radiating portion 20 whose outer shape is a substantially rectangular parallelepiped due to the bent portion 15. It has become the mode which is distracted.
  • the heat dissipating unit 20 includes a plurality of heat dissipating fins 21.
  • the heat radiation fin 21 is a thin flat plate-like member.
  • the radiating fins 21 are arranged in parallel at predetermined intervals in a direction substantially parallel to the longitudinal direction of the radiating portion 20.
  • the main surface of the radiation fin 21 is a surface that mainly exhibits the heat radiation function of the radiation fin 21.
  • the main surface of each radiating fin 21 is disposed so as to be substantially orthogonal to the other end portion 14 of the heat pipe 11 that is linear in plan view. Therefore, the main surface of the radiating fin 21 forms the short direction of the radiating portion 20.
  • the heat sink 1 is forcibly cooled by a blower fan (not shown). Cooling air F derived from the blower fan is supplied to the heat radiating unit 20 along the short direction of the heat radiating unit 20.
  • the first heat pipe 11-1 and the second heat pipe 11-2 are provided with an intersecting portion 16 that intersects in plan view.
  • the first heat pipe 11-1 forms an intersection 16 with one of a plurality (two in FIG. 1) of second heat pipes 11-2.
  • the first heat pipe 11-1 forms an intersection 16 with the second heat pipe 11-2 whose one end 13 is located on the outer surface of the heat pipe group 12 arranged in parallel.
  • the first heat pipe 11-1 whose one end 13 is located in the center of the parallel arrangement of the heat pipe group 12 is the second heat pipe whose one end 13 is located on the outer surface of the parallel arrangement of the heat pipe group 12.
  • the other end portion 14 of the first heat pipe 11-1 is located on the outer surface of the parallel arrangement of the heat pipe group 12, and the second end portion 13 is located on the outer side.
  • the cooling air F is located below the other end 14 of the pipe 11-2.
  • the second heat pipe 11-2 whose one end 13 is located on the inner surface of the heat pipe group 12 arranged in parallel is the first heat pipe 11-1. Even if the intersection is not formed, the other end 14 is located on the most upstream side of the cooling air F. Therefore, the second heat pipe 11-2 whose one end 13 is located on the inner surface of the parallel arrangement of the heat pipe group 12 does not form the intersection 16 with the first heat pipe 11-1.
  • the first heat pipe 11-1 has a plurality of second heat pipes 11-2 extending from the center of the parallel arrangement of the heat pipe groups 12 toward the end of the outer surface in the direction from the one end 13 to the other end 14. One of them intersects at the intersection 16 from the end of the outer surface of the parallel arrangement of the heat pipe group 12 to the center in the direction from the one end 13 to the other end 14 so that the first heat
  • the other end portion 14 of the pipe 11-1 is located further down the cooling air F than the other end portion 14 of the second heat pipe 11-2. Accordingly, the other end portion 14 of the first heat pipe 11-1 is located more downstream of the cooling air F than the other end portion 14 of any second heat pipe 11-2.
  • the first heat pipe 11-1 and / or the second heat pipe 11-2 may be flattened. Since the first heat pipe 11-1 and / or the second heat pipe 11-2 is flattened at the intersecting portion 16, the thickness of the intersecting portion 16 can be reduced and the heat sink 1 can be made compact. As a result, the heat sink 1 can be installed even in a narrow space, particularly a space where the thickness direction is narrow.
  • the material of the heat radiation fin 21 is not particularly limited, and examples thereof include metals such as copper, copper alloy, aluminum, and aluminum alloy.
  • the material of the container of the heat pipe 11 is not particularly limited, and examples thereof include metals such as copper, copper alloy, aluminum, aluminum alloy, and stainless steel.
  • the working fluid sealed in the heat pipe 11 can be appropriately selected according to the material of the container, and examples thereof include water, alternative chlorofluorocarbon, perfluorocarbon, and cyclopentane.
  • heat is transmitted from the heating element 100 to one end 13 of the heat pipe 11 through the heat receiving plate 31.
  • the transmitted heat is transferred along the longitudinal direction of the heat pipe 11 by the heat transporting action of the heat pipe 11. It is transported from one end 13 to the other end 14 which is a condensing part.
  • the first heat pipe 11-1 having a larger amount of heat input from the heating element 100 than the second heat pipe 11-2 contributes to more heat transport.
  • the heat transported to the other end portion 14 of the heat pipe 11 is transmitted from the other end portion 14 of the heat pipe 11 to the heat radiating portion 20, and the heat transmitted to the heat radiating portion 20 is released from the heat radiating portion 20 to the outside. Is done.
  • the heat generating body 100 is cooled by releasing the heat of the heat generating body 100 from the heat radiating unit 20 to the outside.
  • the condensing part (the other end part 14) of the first heat pipe 11-1 having a larger amount of heat input from the heating element 100 than the second heat pipe 11-2 is condensing by the second heat pipe 11-2.
  • the operating temperature of the first heat pipe 11-1 is higher than the operating temperature of the second heat pipe 11-2.
  • the flow of the working fluid inside the heat pipe 11 is facilitated.
  • the maximum heat transport amount is improved more than the maximum heat transport amount of the second heat pipe 11-2.
  • the first heat pipe 11-1 having a relatively large amount of heat input from the heating element is given a superior maximum heat transport amount, and as a result, the heat sink 1 Then, it is possible to exhibit excellent cooling performance for the object to be cooled.
  • one end portion 13 of the heat pipe 11 functions as an evaporation portion
  • the other end portion 14 functions as a condensation portion
  • the one end portion 13 functions as a heat receiving plate 31.
  • the central portion 17 of the heat pipe 11 functions as an evaporation portion
  • one end portion 13 and the other end portion 14 are condensed.
  • the heat receiving plate 31 extends from one end 13 to the other end 14 of the heat pipe 11.
  • the heating element 100 is thermally connected to the approximate center of the heat receiving plate 31.
  • a plurality of (three in FIG. 2) heat pipes 11 are arranged in parallel in a direction substantially orthogonal to the longitudinal direction of the heat pipes 11 to form a heat pipe group 12.
  • the heating element 100 is thermally connected to the central portion 17 of the heat pipe 11 in response to the heating element 100 being thermally connected to the approximate center of the heat receiving plate 31. Therefore, the center part 17 of the heat pipe 11 functions as an evaporation part.
  • the first heat pipe 11-1 located at the center of the parallel arrangement at the center in the longitudinal direction of the heat pipe group 12 has a central portion 17 that is connected to the heating element 100. It is provided in the position which overlaps in planar view.
  • the second heat pipe 11-2 arranged on both sides of the heat pipe group 12 (that is, the positions of both ends of the parallel arrangement in the central portion in the longitudinal direction of the heat pipe group 12) has a central portion 17 having a heating element. It is provided at a position that does not overlap with 100 in plan view.
  • the cooling air F is supplied to one end 13 and the other end 14 of the heat pipe 11. Therefore, one end 13 and the other end 14 of the heat pipe 11 function as a condensing part.
  • a plurality of heat radiation fins 21 are erected on the heat receiving plate 31 to form the heat radiation portion 20.
  • the heat radiating fins 21 are arranged in parallel on the heat receiving plate 31 at predetermined intervals.
  • the heat radiating fins 21 are arranged in parallel from a portion corresponding to one end 13 of the heat pipe 11 to a portion corresponding to the other end 14.
  • the central portion 17 of the heat pipe 11 functions as an evaporation portion, and the one end portion 13 and the other end portion 14 function as a condensing portion.
  • the second heat sink 11-2 forming the intersecting portion 16-1 also intersects with the second heat sink 11-2 forming the intersecting portion 16-1 between the central portion 17 and the other end portion 14 of the first heat pipe 11-1.
  • An intersection 16-2 is provided.
  • the first heat pipe 11-1 forms intersections 16-1 and 16-2 with the second heat pipe 11-2 that is located at the most leeward side of the cooling air F among the plurality of second heat pipes 11-2. ing.
  • the first heat pipe 11-1 extends from the center of the parallel arrangement of the heat pipe group 12 in the direction of the one end 13 from the center 17 to the end of the leeward surface. One crosses in the direction of one end 13 from the central portion 17 from the end of the leeward surface of the heat pipe group 12 arranged in parallel to the central direction at the intersecting portion 16-1, so that the first heat pipe 11
  • the one end 13 of -1 is located further down the cooling air F than the one end 13 of the second heat pipe 11-2. Accordingly, one end 13 of the first heat pipe 11-1 is located further down the cooling air F than one end 13 of any second heat pipe 11-2.
  • the first heat pipe 11-1 has a plurality of second heat pipes 11-2 extending from the center of the parallel arrangement of the heat pipe groups 12 to the end direction of the leeward surface in the direction of the other end portion 14 from the center portion 17. One of them crosses at the intersection 16-2 from the end of the leeward surface of the parallel arrangement of the heat pipe group 12 in the direction of the other end 14 from the center 17 at the intersection 16-2.
  • the other end portion 14 of the pipe 11-1 is located further down the cooling air F than the other end portion 14 of the second heat pipe 11-2. Accordingly, the other end portion 14 of the first heat pipe 11-1 is located more downstream of the cooling air F than the other end portion 14 of any second heat pipe 11-2.
  • the maximum heat transport amount of the first heat pipe 11-1 is the second heat pipe 11-1.
  • the maximum heat transport amount of the pipe 11-2 is improved. From the above, among the plurality of heat pipes 11, the first heat pipe 11-1 having a relatively large amount of heat input from the heating element is given a superior maximum heat transport amount, and as a result, the heat sink 2 However, it is possible to exhibit excellent cooling performance for the heating element 100 that is a cooling target.
  • the longitudinal direction of the heat pipe 11 extends along the planar direction of the heat receiving plate 31, but instead of this, as shown in FIG.
  • a plurality of heat pipes 11 are erected on the heat receiving plate 31. That is, the heat sink 3 is a tower type heat sink.
  • the heat pipe 11 extends in the vertical direction with respect to the flat portion of the heat receiving plate 31.
  • the heating element 100 is thermally connected to the approximate center of the heat receiving plate 31.
  • a plurality (three in FIG. 3) of heat pipes 11 are arranged in parallel in a direction substantially orthogonal to the longitudinal direction (the standing direction) of the heat pipes 11 to form a heat pipe group 12.
  • the heating element 100 is thermally connected to the heat receiving plate 31
  • the heating element 100 is thermally connected to the heat receiving part side base 33 of the heat pipe 11. Therefore, the heat receiving part side base 33 of the heat pipe 11 functions as an evaporation part.
  • the first heat pipe 11-1 located at the center of the parallel arrangement in the heat receiving part side base of the heat pipe group 12 is the end of the heat receiving part side base 33.
  • the virtual straight line L extended along the extending direction of the heat receiving part side base 33 is provided at a position overlapping the heating element 100 in plan view. Accordingly, the heat receiving portion side base 33 of the first heat pipe 11-1 is provided at a position where the virtual straight line L overlaps with the portion of the heat generating element 100 where the heat generation density is high in plan view.
  • the entire heating element 100 is a portion having a high heat generation density.
  • the second heat pipe 11-2 arranged on both sides of the heat pipe group 12 (that is, the positions of both ends of the parallel arrangement in the heat receiving part side base of the heat pipe group 12) is connected to the heat receiving part side base 33.
  • An imaginary straight line L that extends from the end portion along the extending direction of the heat receiving portion side base portion 33 is provided at a position that does not overlap the heating element 100 in plan view. Therefore, the heat receiving portion side base portion 33 of the second heat pipe 11-2 is provided at a position where the virtual straight line L does not overlap the portion of the heating element 100 where the heat generation density is high in plan view.
  • the heat radiating portion 20 is formed by attaching the heat radiating fins 21 to the heat pipe 11. Moreover, the site
  • the attachment position of the radiation fin 21 is not particularly limited, in the heat sink 3, the plurality of radiation fins 21 are attached from the front end portion 34 to the longitudinal center portion 37 of the heat pipe 11. The heat radiating fins 21 are arranged in parallel at a predetermined interval substantially parallel to the extending direction of the heat pipe 11. Further, the cooling air F is mainly supplied from the front end portion 34 of the heat pipe 11 to the central portion 37 in the longitudinal direction.
  • the heat receiving part side base 33 of the heat pipe 11 functions as an evaporating part, and functions as a condensing part from the tip part 34 to the longitudinal center part 37. Between the direction center portion 37 and the heat receiving portion side base portion 33 (intermediate portion), it intersects with one of a plurality (two in FIG. 3) of the second heat pipes 11-2 in a plan view. An intersection 16 is provided.
  • the first heat pipe 11-1 forms an intersecting portion 16 with the second heat pipe 11-2 located at the leemost side of the cooling air F among the plurality of second heat pipes 11-2.
  • the first heat pipe 11-1 includes a plurality of second heat pipes 11-2 from the center of the parallel arrangement of the heat pipe groups 12 toward the end of the leeward surface in the direction from the heat receiving part side base 33 to the tip 34.
  • One of the first heat pipes 11-1 intersects from the end of the leeward surface of the heat pipe group 12 arranged in parallel to the center in the direction from the heat receiving part side base 33 to the tip part 34 at the crossing part 16.
  • the front end portion 34 and the longitudinal center portion 37 of the second heat pipe 11-2 are located further down the cooling air F than the front end portion 34 and the longitudinal center portion 37 of the second heat pipe 11-2. Therefore, the front end portion 34 and the longitudinal center portion 37 of the first heat pipe 11-1 are positioned more downstream of the cooling air F than the front end portion 34 and the longitudinal center portion 37 of any second heat pipe 11-2. doing.
  • the operating temperature of the first heat pipe 11-1 is higher than the operating temperature of the second heat pipe 11-2.
  • the amount is higher than the maximum heat transport amount of the second heat pipe 11-2.
  • the number of heat pipes constituting the heat pipe group was three. However, if the number of heat pipes in the heat pipe group is plural, depending on the amount of heat generated by the heating element, etc. It can be selected as appropriate, and may be two or four or more. Moreover, in each said embodiment, although the 1st heat pipe was one, the number of the 1st heat pipe is not specifically limited, Two or more may be sufficient. Moreover, in each said embodiment, although the 2nd heat pipe was two, the number of the 2nd heat pipe is not specifically limited, One may be sufficient and three or more may be sufficient.
  • the central portion of the first heat pipe and the central portion of the second heat pipe intersect in a plan view to form an intersecting portion.
  • the one end of the first heat pipe and the one end of the second heat pipe may intersect in a plan view to form an intersection, and the other end of the first heat pipe, The other end of the second heat pipe may intersect with each other in plan view to form an intersection.
  • the imaginary line extended from the evaporation portion or the evaporation portion of the first heat pipe corresponding to the heat generation density of the center portion of the heating element is flat with the center portion of the heating element.
  • the first heat pipes were arranged so as to overlap in view.
  • the imaginary line extended from the evaporating part or the evaporating part of the first heat pipe is arranged at a position overlapping with a part having a high heat generation density in a plan view in the heating element. Therefore, when the high heat generation density portion of the heating element is other than the central portion, the imaginary line extending from the evaporation portion or the evaporation portion of the first heat pipe overlaps at least the portion other than the central portion in plan view.
  • the first heat pipe is arranged.
  • the heat sink of the present invention can be used in a wide range of fields, it can provide a superior maximum heat transport amount to a heat pipe that has a relatively large amount of heat input from a heating element. It is highly useful in the field of cooling electronic components mounted on computers and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Provided is a heat sink which is equipped with a heat receiving part thermally connected to a heating element, a plurality of heat pipes each thermally connected to the heat receiving part at a prescribed site thereon, and a heat dissipating part thermally connected to another site on the plurality of heat pipes differing from the aforementioned prescribed site, wherein, among the plurality of heat pipes, said other site on a first heat pipe, in which a virtual straight line extending along the extension direction of the prescribed site thereon from at least a portion of the prescribed site or the end of the prescribed site overlaps in plan view with a high heat density portion of the heating element, is provided further downwind of cooling air than said other site on a second heat pipe, in which a virtual straight line extending along the extension direction of the prescribed site thereon from the prescribed site or the end of the prescribed site does not overlap in plan view with the high heat density portion of the heating element.

Description

ヒートシンクheatsink
 本発明は、発熱体を冷却するヒートシンクに関し、特に、ヒートパイプ式ヒートシンクに関するものである。 The present invention relates to a heat sink for cooling a heating element, and more particularly to a heat pipe heat sink.
 電子機器の高機能化に伴い、電子機器内部には、電子部品等の発熱体が高密度に搭載されている。電子部品等の発熱体を冷却する手段として、ヒートパイプを備えたヒートシンク(ヒートパイプ式ヒートシンク)が使用される場合がある。上記ヒートシンクとしては、例えば、平板状の多数の放熱フィンが複数設けられたヒートパイプの外周面に半径方向に向けて突出して設けられたヒートパイプ式ヒートシンクが提案されている(特許文献1)。 With the increasing functionality of electronic devices, heating elements such as electronic components are mounted with high density inside the electronic device. As means for cooling a heating element such as an electronic component, a heat sink provided with a heat pipe (heat pipe type heat sink) may be used. As the heat sink, for example, there has been proposed a heat pipe heat sink that protrudes in the radial direction on the outer peripheral surface of a heat pipe provided with a plurality of flat plate-like heat radiating fins (Patent Document 1).
 特許文献1では、強制空冷のためのファンから供給される冷却風の流れ方向に沿って、複数のヒートパイプが並列配置されている。すなわち、複数のヒートパイプには、凝縮部が冷却風の風上側に配置されたヒートパイプと、凝縮部が冷却風の風下側に配置されたヒートパイプとが設けられている。 In Patent Document 1, a plurality of heat pipes are arranged in parallel along the flow direction of cooling air supplied from a fan for forced air cooling. That is, the plurality of heat pipes are provided with a heat pipe in which the condensing part is disposed on the leeward side of the cooling air and a heat pipe in which the condensing part is disposed on the leeward side of the cooling air.
 一方で、冷却対象である発熱体に近い位置に蒸発部が取り付けられるヒートパイプは、該発熱体から遠い位置に蒸発部が取り付けられるヒートパイプと比較して、該発熱体からの入熱量が多いので、より優れた最大熱輸送量が要求される。ヒートパイプの最大熱輸送量は、ヒートパイプの作動温度が高い方が向上する。これは、ヒートパイプの作動温度が高い方が、ヒートパイプに封入された作動流体の粘度が小さくなり、作動流体の流路抵抗が低減されるためである。 On the other hand, the heat pipe in which the evaporation unit is attached at a position near the heating element to be cooled has a larger amount of heat input from the heating element than the heat pipe in which the evaporation part is attached at a position far from the heating element. Therefore, a better maximum heat transport amount is required. The maximum heat transport amount of the heat pipe is improved when the operating temperature of the heat pipe is high. This is because the higher the operating temperature of the heat pipe, the lower the viscosity of the working fluid sealed in the heat pipe and the lower the flow resistance of the working fluid.
 しかし、特許文献1では、複数のヒートパイプは、その長手方向が略平行となるように並列配置されており、いずれのヒートパイプも、その一端が加熱部と熱的に接続され、他端が放熱フィンと熱的に接続されているにすぎない。従って、発熱体からの入熱量が多いヒートパイプに、より優れた最大熱輸送量を付与することができない場合があるので、ヒートシンクの放熱特性に改善の余地があった。 However, in Patent Document 1, the plurality of heat pipes are arranged in parallel so that their longitudinal directions are substantially parallel, and one end of each heat pipe is thermally connected to the heating unit and the other end is It is only thermally connected to the radiating fins. Therefore, since there may be a case where a more excellent maximum heat transport amount cannot be given to a heat pipe having a large amount of heat input from the heating element, there is room for improvement in the heat dissipation characteristics of the heat sink.
特開2003-110072号公報Japanese Patent Laid-Open No. 2003-110072
 上記事情に鑑み、本発明は、複数のヒートパイプのうち、冷却対象である発熱体からの入熱量が相対的に多いヒートパイプに、より優れた最大熱輸送量が付与されることにより、冷却対象に対して優れた冷却性能を発揮できるヒートシンクを提供することを目的とする。 In view of the above circumstances, the present invention provides cooling heat by providing a higher maximum heat transport amount to a heat pipe having a relatively large amount of heat input from a heating element to be cooled among a plurality of heat pipes. It aims at providing the heat sink which can exhibit the outstanding cooling performance with respect to object.
 本発明の態様は、発熱体と熱的に接続される受熱部と、該受熱部と所定の部位にて熱的に接続された複数のヒートパイプと、複数の該ヒートパイプの該所定の部位とは異なる他の部位と熱的に接続された放熱部と、を備え、複数の前記ヒートパイプのうち、前記所定の部位の少なくとも一部分または前記所定の部位の端部から該所定の部位の伸延方向に沿って延出させた仮想直線が前記発熱体の発熱密度の高い部分と平面視において重なり合う第1ヒートパイプの、前記他の部位が、前記所定の部位または前記所定の部位の端部から該所定の部位の伸延方向に沿って延出させた仮想直線が前記発熱体の発熱密度の高い部分と平面視において重なり合わない第2ヒートパイプの、前記他の部位よりも、冷却風の風下側に設けられているヒートシンクである。 Aspects of the present invention include a heat receiving portion thermally connected to a heating element, a plurality of heat pipes thermally connected to the heat receiving portion at predetermined portions, and the predetermined portions of the plurality of heat pipes. A heat dissipating part thermally connected to another part different from the above, and among the plurality of heat pipes, the predetermined part extends from at least a part of the predetermined part or an end of the predetermined part The other part of the first heat pipe in which a virtual straight line extending along the direction overlaps a part having a high heat generation density of the heating element in a plan view is from the predetermined part or an end of the predetermined part. The imaginary straight line extended along the extending direction of the predetermined part has a cooling air leeward than the other part of the second heat pipe in which the imaginary straight line does not overlap with the part having a high heat generation density of the heating element in plan view. Heat provided on the side It is a link.
 上記態様では、ヒートパイプは所定の部位にて発熱体から受熱するので、所定の部位が蒸発部であり、他の部位にて発熱体からの熱を放熱部へ放出するので、他の部位が凝縮部である。なお、本明細書中、「平面視」とは、ヒートパイプの熱輸送方向に対して直交方向且つヒートパイプの所定の部位の配列方向に対して直交方向から視認した状態を意味する。 In the above aspect, since the heat pipe receives heat from the heating element at a predetermined part, the predetermined part is the evaporation part, and the heat from the heating element is released to the heat radiation part at the other part. It is a condensing part. In the present specification, the “plan view” means a state viewed from the direction orthogonal to the heat transport direction of the heat pipe and from the direction orthogonal to the arrangement direction of predetermined portions of the heat pipe.
 本発明の態様は、前記第1ヒートパイプと前記第2ヒートパイプとが、平面視において交差している交差部を備えたヒートシンクである。 An aspect of the present invention is a heat sink having an intersecting portion where the first heat pipe and the second heat pipe intersect in a plan view.
 本発明の態様は、前記第1ヒートパイプの、前記所定の部位と前記他の部位との間に位置する中間部と、前記第2ヒートパイプの、前記所定の部位と前記他の部位との間に位置する中間部とが、平面視において交差している交差部を備えたヒートシンクである。 An aspect of the present invention includes an intermediate portion of the first heat pipe between the predetermined portion and the other portion, and the predetermined portion and the other portion of the second heat pipe. The intermediate part located between them is a heat sink having an intersecting part intersecting in plan view.
 本発明の態様は、前記交差部において、前記第1ヒートパイプ及び/または前記第2ヒートパイプが扁平加工されているヒートシンクである。 An aspect of the present invention is a heat sink in which the first heat pipe and / or the second heat pipe are flattened at the intersection.
 本発明の態様は、前記所定の部位が、前記ヒートパイプの長手方向における一方の端部であり、前記他の部位が、前記ヒートパイプの長手方向における他方の端部であるヒートシンクである。 An aspect of the present invention is a heat sink in which the predetermined portion is one end portion in the longitudinal direction of the heat pipe and the other portion is the other end portion in the longitudinal direction of the heat pipe.
 本発明の態様は、前記所定の部位が、前記ヒートパイプの長手方向における中央部であり、前記他の部位が、前記ヒートパイプの長手方向における一方の端部及び他方の端部であるヒートシンクである。 An aspect of the present invention is a heat sink in which the predetermined part is a central part in the longitudinal direction of the heat pipe, and the other part is one end and the other end in the longitudinal direction of the heat pipe. is there.
 本発明の態様によれば、複数のヒートパイプのうち、蒸発部の少なくとも一部分または蒸発部の端部から該蒸発部の伸延方向に沿って延出させた仮想直線が発熱体の発熱密度の高い部分と平面視において重なり合う第1ヒートパイプの凝縮部が、蒸発部または蒸発部の端部から該蒸発部の伸延方向に沿って延出させた仮想直線が発熱体の発熱密度の高い部分と平面視において重なり合わない第2ヒートパイプの凝縮部よりも冷却風の風下側に設けられていることにより、第1ヒートパイプの作動温度が、第2ヒートパイプの作動温度よりも高くなる。第1ヒートパイプの作動温度が第2ヒートパイプの作動温度よりも高くなることにより、第1ヒートパイプの最大熱輸送量は、第2ヒートパイプの最大熱輸送量よりも向上する。従って、複数のヒートパイプのうち、発熱体からの入熱量が相対的に多い第1ヒートパイプに、より優れた最大熱輸送量が付与されることになり、結果、冷却対象に対して優れた冷却性能を発揮できるヒートシンクを得ることができる。 According to the aspect of the present invention, among the plurality of heat pipes, the imaginary straight line extending along the extending direction of the evaporation unit from at least a part of the evaporation unit or the end of the evaporation unit has a high heat generation density of the heating element. The imaginary straight line in which the condensing part of the first heat pipe that overlaps with the part in plan view extends along the extending direction of the evaporating part from the evaporating part or the end of the evaporating part is flat with the part having a high heat generation density of the heating element The operating temperature of the first heat pipe is higher than the operating temperature of the second heat pipe by being provided on the leeward side of the cooling air from the condensing part of the second heat pipe that does not overlap in view. When the operating temperature of the first heat pipe is higher than the operating temperature of the second heat pipe, the maximum heat transport amount of the first heat pipe is improved more than the maximum heat transport amount of the second heat pipe. Therefore, among the plurality of heat pipes, the first heat pipe having a relatively large amount of heat input from the heating element is given a more excellent maximum heat transport amount, and as a result, excellent for the object to be cooled. A heat sink capable of exhibiting cooling performance can be obtained.
 本発明の態様によれば、第1ヒートパイプと第2ヒートパイプとが平面視において交差している交差部を備えることにより、受熱部の中央部に冷却対象である発熱体が熱的に接続されても、第1ヒートパイプの凝縮部が第2ヒートパイプの凝縮部よりも冷却風の風下側に配置することができる。 According to the aspect of the present invention, the heating element to be cooled is thermally connected to the central portion of the heat receiving portion by including the intersecting portion where the first heat pipe and the second heat pipe intersect in plan view. Even if it is, the condensation part of the 1st heat pipe can be arranged in the leeward side of cooling air rather than the condensation part of the 2nd heat pipe.
 本発明の態様によれば、交差部において、第1ヒートパイプ及び/または第2ヒートパイプが扁平加工されていることにより、交差部の厚さが低減されて、ヒートシンクをコンパクト化することができる。従って、狭小空間であっても、ヒートシンクを設置することができる。 According to the aspect of the present invention, since the first heat pipe and / or the second heat pipe is flattened at the intersection, the thickness of the intersection can be reduced and the heat sink can be made compact. . Therefore, a heat sink can be installed even in a narrow space.
本発明の第1実施形態例に係るヒートシンクの平面視の説明図である。It is explanatory drawing of planar view of the heat sink which concerns on the example of 1st Embodiment of this invention. 本発明の第2実施形態例に係るヒートシンクの平面視の説明図である。It is explanatory drawing of planar view of the heat sink which concerns on the 2nd Example of this invention. 本発明の第2実施形態例に係るヒートシンクの平面視の説明図である。It is explanatory drawing of planar view of the heat sink which concerns on the 2nd Example of this invention.
 以下に、本発明の第1実施形態例に係るヒートシンクについて、図面を用いながら説明する。図1に示すように、第1実施形態例に係るヒートシンク1は、冷却対象である発熱体100と熱的に接続されている受熱板31と、受熱板31と熱的に接続されている複数(図1では、3本)のヒートパイプ11と、を備えている。複数のヒートパイプ11は、いずれも、ヒートシンク1の共通の放熱部20と熱的に接続されている。 The heat sink according to the first embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the heat sink 1 according to the first embodiment includes a heat receiving plate 31 that is thermally connected to a heating element 100 that is a cooling target, and a plurality of heat receiving plates 31 that are thermally connected to the heat receiving plate 31. (In FIG. 1, three) heat pipes 11 are provided. The plurality of heat pipes 11 are all thermally connected to the common heat radiating portion 20 of the heat sink 1.
 ヒートパイプ11は、長尺の管材からなるコンテナ内部に作動流体が封入されている熱輸送部材である。コンテナは密閉容器であり、コンテナ内部は減圧状態となっている。ヒートパイプ11の長手方向が、ヒートパイプ11の熱輸送方向となっている。 The heat pipe 11 is a heat transport member in which a working fluid is sealed inside a container made of a long tube material. The container is a sealed container, and the inside of the container is in a decompressed state. The longitudinal direction of the heat pipe 11 is the heat transport direction of the heat pipe 11.
 複数のヒートパイプ11は、ヒートパイプ11の長手方向に対して略直交方向に並列に配置されてヒートパイプ群12を形成している。複数のヒートパイプ11は、いずれも、隣接する別のヒートパイプ11と側部にて対向した状態となっている。複数のヒートパイプ11は、いずれも、その一方の端部13が発熱体100と熱的に接続されていることで、ヒートパイプ群12の一方の端部が、発熱体100と熱的に接続されている。ヒートシンク1では、ヒートパイプ11の一方の端部13が発熱体100表面と平板状の受熱板31を介して間接的に接触することにより、ヒートパイプ11の一方の端部13と発熱体100とが熱的に接続されている。従って、ヒートパイプ11の一方の端部13は、受熱板31と熱的に接続されており、受熱板31と熱的に接続されていることで蒸発部として機能する。ヒートシンク1では、ヒートパイプ11の一方の端部13は、受熱板31の平面方向に沿って、その長手方向が伸延している。 The plurality of heat pipes 11 are arranged in parallel in a direction substantially orthogonal to the longitudinal direction of the heat pipes 11 to form a heat pipe group 12. Each of the plurality of heat pipes 11 is opposed to another adjacent heat pipe 11 at the side portion. Each of the plurality of heat pipes 11 has one end 13 thermally connected to the heating element 100, so that one end of the heat pipe group 12 is thermally connected to the heating element 100. Has been. In the heat sink 1, one end 13 of the heat pipe 11 indirectly contacts the surface of the heating element 100 via the flat heat receiving plate 31, so that the one end 13 of the heat pipe 11 and the heating element 100 are Are thermally connected. Accordingly, one end 13 of the heat pipe 11 is thermally connected to the heat receiving plate 31 and functions as an evaporation unit by being thermally connected to the heat receiving plate 31. In the heat sink 1, the longitudinal direction of one end 13 of the heat pipe 11 extends along the planar direction of the heat receiving plate 31.
 並列配置された複数のヒートパイプ11のうち、ヒートパイプ群12の一方の端部において、並列配置の中央に位置する第1ヒートパイプ11-1は、その一方の端部13が発熱体100と平面視において重なり合う位置に設けられている。従って、第1ヒートパイプ11-1の一方の端部13は、発熱体100のホットスポットである発熱密度の高い部分と平面視において重なり合う位置に設けられている。なお、図1では、便宜上、発熱体100全体を発熱密度の高い部分としている。一方の端部13が発熱体100と平面視において重なり合う位置に設けられている第1ヒートパイプ11-1の本数は、特に限定されず、ヒートシンク1では、1本となっている。一方で、ヒートパイプ群12の一方の端部において、第1ヒートパイプ11-1の両側(すなわち、ヒートパイプ群12の一方の端部における、並列配置の両端の位置)に配置された第2ヒートパイプ11-2は、その一方の端部13が発熱体100と平面視において重なり合わない位置に設けられている。従って、第2ヒートパイプ11-2の一方の端部13は、発熱体100の発熱密度の高い部分と平面視において重なり合わない位置に設けられている。一方の端部13が発熱体100と平面視において重なり合わない位置に設けられている第2ヒートパイプ11-2の本数は、特に限定されず、ヒートシンク1では、第1ヒートパイプ11-1の両側に、それぞれ1本ずつ設けられている。 Among the plurality of heat pipes 11 arranged in parallel, at one end of the heat pipe group 12, the first heat pipe 11-1 located at the center of the parallel arrangement has one end 13 connected to the heating element 100. It is provided in the position which overlaps in planar view. Therefore, one end 13 of the first heat pipe 11-1 is provided at a position overlapping with a portion having a high heat generation density, which is a hot spot of the heating element 100, in a plan view. In FIG. 1, for the sake of convenience, the entire heating element 100 is a portion having a high heat generation density. The number of the first heat pipes 11-1 provided at the position where one end 13 overlaps the heating element 100 in plan view is not particularly limited, and the number of the first heat pipes 11-1 is one. On the other hand, at one end of the heat pipe group 12, the second arranged at both sides of the first heat pipe 11-1 (that is, positions at both ends of the parallel arrangement at one end of the heat pipe group 12). The heat pipe 11-2 is provided at a position where one end 13 of the heat pipe 11-2 does not overlap the heating element 100 in plan view. Therefore, one end 13 of the second heat pipe 11-2 is provided at a position where it does not overlap with the high heat generation density portion of the heating element 100 in plan view. The number of the second heat pipes 11-2 provided at a position where one end portion 13 does not overlap the heating element 100 in a plan view is not particularly limited. In the heat sink 1, the number of the first heat pipes 11-1 is not limited. One is provided on each side.
 上記から、第1ヒートパイプ11-1は、発熱体100からの入熱量が第2ヒートパイプ11-2よりも多いヒートパイプ11である。 From the above, the first heat pipe 11-1 is the heat pipe 11 in which the amount of heat input from the heating element 100 is larger than that of the second heat pipe 11-2.
 図1に示すように、複数のヒートパイプ11は、いずれも、その他方の端部14が放熱部20と熱的に接続されていることで、ヒートパイプ群12の他方の端部が、放熱部20と熱的に接続されている。従って、ヒートパイプ11の他方の端部14は、凝縮部として機能する。放熱部20は、外観形状が略直方体となっている。複数のヒートパイプ11の他方の端部14は、放熱部20において、ヒートパイプ11の長手方向に対して略直交方向に並列配置されている。複数のヒートパイプ11の他方の端部14は、いずれも、隣接する別のヒートパイプ11の他方の端部14と側部にて対向した状態となっている。 As shown in FIG. 1, all of the plurality of heat pipes 11 have the other end portion 14 thermally connected to the heat radiating portion 20, so that the other end portion of the heat pipe group 12 radiates heat. The unit 20 is thermally connected. Therefore, the other end 14 of the heat pipe 11 functions as a condensing part. The heat radiating portion 20 has a substantially rectangular parallelepiped shape. The other end portions 14 of the plurality of heat pipes 11 are arranged in parallel in the heat radiating portion 20 in a direction substantially orthogonal to the longitudinal direction of the heat pipe 11. Each of the other end portions 14 of the plurality of heat pipes 11 faces the other end portion 14 of another adjacent heat pipe 11 at the side portion.
 ヒートシンク1では、第1ヒートパイプ11-1と第2ヒートパイプ11-2について、放熱部20と熱的に接続された部分の手前に、曲げ部15が形成されている。従って、第1ヒートパイプ11-1と第2ヒートパイプ11-2は、いずれも、平面視略L字状となっている。ヒートシンク1では、ヒートパイプ11が放熱部20の左端部から放熱部20に導入されていることに対応して、第1ヒートパイプ11-1の曲げ部15と第2ヒートパイプ11-2の曲げ部15は、いずれも右方向の曲げとなっている。よって、第1ヒートパイプ11-1と第2ヒートパイプ11-2は、曲げ部15により、外観形状が略直方体である放熱部20の長手方向に対して略平行方向に他方の端部14が伸延している態様となっている。 In the heat sink 1, a bent portion 15 is formed in front of a portion of the first heat pipe 11-1 and the second heat pipe 11-2 that are thermally connected to the heat radiating portion 20. Accordingly, the first heat pipe 11-1 and the second heat pipe 11-2 are both substantially L-shaped in plan view. In the heat sink 1, the bent portion 15 of the first heat pipe 11-1 and the bent portion of the second heat pipe 11-2 are corresponding to the fact that the heat pipe 11 is introduced into the heat radiating portion 20 from the left end portion of the heat radiating portion 20. All of the portions 15 are bent in the right direction. Therefore, the first heat pipe 11-1 and the second heat pipe 11-2 have the other end portion 14 in a direction substantially parallel to the longitudinal direction of the heat radiating portion 20 whose outer shape is a substantially rectangular parallelepiped due to the bent portion 15. It has become the mode which is distracted.
 放熱部20は、複数の放熱フィン21を備えている。放熱フィン21は、薄い平板状の部材である。放熱フィン21は、それぞれ、放熱部20の長手方向に対して略平行方向に所定間隔にて並列配列されている。放熱フィン21の主表面が、主に放熱フィン21の放熱機能を発揮する面である。各放熱フィン21の主表面は、ヒートパイプ11の、平面視直線状である他方の端部14に対して、略直交方向となるように配置されている。従って、放熱フィン21の主表面が、放熱部20の短手方向を形成している。 The heat dissipating unit 20 includes a plurality of heat dissipating fins 21. The heat radiation fin 21 is a thin flat plate-like member. The radiating fins 21 are arranged in parallel at predetermined intervals in a direction substantially parallel to the longitudinal direction of the radiating portion 20. The main surface of the radiation fin 21 is a surface that mainly exhibits the heat radiation function of the radiation fin 21. The main surface of each radiating fin 21 is disposed so as to be substantially orthogonal to the other end portion 14 of the heat pipe 11 that is linear in plan view. Therefore, the main surface of the radiating fin 21 forms the short direction of the radiating portion 20.
 ヒートシンク1は、送風ファン(図示せず)により強制空冷される。送風ファン由来の冷却風Fが、放熱部20の短手方向に沿って放熱部20へ供給される。 The heat sink 1 is forcibly cooled by a blower fan (not shown). Cooling air F derived from the blower fan is supplied to the heat radiating unit 20 along the short direction of the heat radiating unit 20.
 図1に示すように、ヒートシンク1では、第1ヒートパイプ11-1と第2ヒートパイプ11-2とが、平面視において交差している交差部16を備えている。第1ヒートパイプ11-1は、複数(図1では、2本)の第2ヒートパイプ11-2のうちの1本と、交差部16を形成している。ここでは、第1ヒートパイプ11-1は、一方の端部13がヒートパイプ群12の並列配置の外方面に位置する第2ヒートパイプ11-2と交差部16を形成している。一方の端部13がヒートパイプ群12の並列配置の中央に位置する第1ヒートパイプ11-1が、一方の端部13がヒートパイプ群12の並列配置の外方面に位置する第2ヒートパイプ11-2と交差部16を形成することにより、第1ヒートパイプ11-1の他方の端部14が、一方の端部13がヒートパイプ群12の並列配置の外方面に位置する第2ヒートパイプ11-2の他方の端部14よりも、冷却風Fの風下に位置することとなる。 As shown in FIG. 1, in the heat sink 1, the first heat pipe 11-1 and the second heat pipe 11-2 are provided with an intersecting portion 16 that intersects in plan view. The first heat pipe 11-1 forms an intersection 16 with one of a plurality (two in FIG. 1) of second heat pipes 11-2. Here, the first heat pipe 11-1 forms an intersection 16 with the second heat pipe 11-2 whose one end 13 is located on the outer surface of the heat pipe group 12 arranged in parallel. The first heat pipe 11-1 whose one end 13 is located in the center of the parallel arrangement of the heat pipe group 12 is the second heat pipe whose one end 13 is located on the outer surface of the parallel arrangement of the heat pipe group 12. By forming the crossing portion 16 with 11-2, the other end portion 14 of the first heat pipe 11-1 is located on the outer surface of the parallel arrangement of the heat pipe group 12, and the second end portion 13 is located on the outer side. The cooling air F is located below the other end 14 of the pipe 11-2.
 なお、複数の第2ヒートパイプ11-2のうち、一方の端部13がヒートパイプ群12の並列配置の内方面に位置する第2ヒートパイプ11-2は、第1ヒートパイプ11-1と交差部を形成しなくても、その他方の端部14は冷却風Fの最も風上に位置している。従って、一方の端部13がヒートパイプ群12の並列配置の内方面に位置する第2ヒートパイプ11-2は、第1ヒートパイプ11-1と交差部16を形成していない。 Of the plurality of second heat pipes 11-2, the second heat pipe 11-2 whose one end 13 is located on the inner surface of the heat pipe group 12 arranged in parallel is the first heat pipe 11-1. Even if the intersection is not formed, the other end 14 is located on the most upstream side of the cooling air F. Therefore, the second heat pipe 11-2 whose one end 13 is located on the inner surface of the parallel arrangement of the heat pipe group 12 does not form the intersection 16 with the first heat pipe 11-1.
 第1ヒートパイプ11-1が、一方の端部13から他方の端部14方向において、ヒートパイプ群12の並列配置の中央から外方面の端方向へ、複数の第2ヒートパイプ11-2のうちの1本が、一方の端部13から他方の端部14方向において、ヒートパイプ群12の並列配置の外方面の端から中央方向へ、交差部16にて交差することで、第1ヒートパイプ11-1の他方の端部14が第2ヒートパイプ11-2の他方の端部14よりも冷却風Fの風下に位置している。従って、第1ヒートパイプ11-1の他方の端部14は、いずれの第2ヒートパイプ11-2の他方の端部14よりも、冷却風Fの風下に位置している。 The first heat pipe 11-1 has a plurality of second heat pipes 11-2 extending from the center of the parallel arrangement of the heat pipe groups 12 toward the end of the outer surface in the direction from the one end 13 to the other end 14. One of them intersects at the intersection 16 from the end of the outer surface of the parallel arrangement of the heat pipe group 12 to the center in the direction from the one end 13 to the other end 14 so that the first heat The other end portion 14 of the pipe 11-1 is located further down the cooling air F than the other end portion 14 of the second heat pipe 11-2. Accordingly, the other end portion 14 of the first heat pipe 11-1 is located more downstream of the cooling air F than the other end portion 14 of any second heat pipe 11-2.
 ヒートシンク1では、第1ヒートパイプ11-1の、一方の端部13と他方の端部14との間に位置する中央部17と、第2ヒートパイプ11-2の、一方の端部13と他方の端部14との間に位置する中央部17とが、平面視において交差して交差部16を形成している。 In the heat sink 1, the center portion 17 located between the one end portion 13 and the other end portion 14 of the first heat pipe 11-1, the one end portion 13 of the second heat pipe 11-2, The central part 17 located between the other end part 14 intersects in plan view to form an intersecting part 16.
 また、交差部16において、第1ヒートパイプ11-1及び/または第2ヒートパイプ11-2が扁平加工されていてもよい。第1ヒートパイプ11-1及び/または第2ヒートパイプ11-2が交差部16において扁平加工されていることにより、交差部16の厚さが低減されてヒートシンク1をコンパクト化することができ、ひいては、狭小空間、特に、厚さ方向が狭い空間でも、ヒートシンク1を設置することができる。 Further, at the intersection 16, the first heat pipe 11-1 and / or the second heat pipe 11-2 may be flattened. Since the first heat pipe 11-1 and / or the second heat pipe 11-2 is flattened at the intersecting portion 16, the thickness of the intersecting portion 16 can be reduced and the heat sink 1 can be made compact. As a result, the heat sink 1 can be installed even in a narrow space, particularly a space where the thickness direction is narrow.
 放熱フィン21の材質は、特に限定されず、例えば、銅、銅合金、アルミニウム、アルミニウム合金等の金属を挙げることができる。ヒートパイプ11のコンテナの材質は、特に限定されず、例えば、銅、銅合金、アルミニウム、アルミニウム合金、ステンレス鋼等の金属を挙げることができる。また、ヒートパイプ11に封入される作動流体は、コンテナの材質に応じて適宜選択可能であり、例えば、水、代替フロン、パーフルオロカーボン、シクロペンタン等を挙げることができる。 The material of the heat radiation fin 21 is not particularly limited, and examples thereof include metals such as copper, copper alloy, aluminum, and aluminum alloy. The material of the container of the heat pipe 11 is not particularly limited, and examples thereof include metals such as copper, copper alloy, aluminum, aluminum alloy, and stainless steel. The working fluid sealed in the heat pipe 11 can be appropriately selected according to the material of the container, and examples thereof include water, alternative chlorofluorocarbon, perfluorocarbon, and cyclopentane.
 次に、ヒートシンク1の冷却機能のメカニズムについて説明する。まず、発熱体100から、受熱板31を介して、ヒートパイプ11の一方の端部13へ熱が伝達される。発熱体100からヒートパイプ11の一方の端部13へ熱が伝達されると、ヒートパイプ11の熱輸送作用によって、前記伝達された熱は、ヒートパイプ11の長手方向に沿って、蒸発部である一方の端部13から凝縮部である他方の端部14へ輸送される。このとき、第2ヒートパイプ11-2よりも発熱体100からの入熱量の多い第1ヒートパイプ11-1が、より多くの熱輸送に寄与する。ヒートパイプ11の他方の端部14へ輸送された熱は、ヒートパイプ11の他方の端部14から放熱部20へ伝達され、放熱部20へ伝達された熱は、放熱部20から外部へ放出される。発熱体100の熱が放熱部20から外部へ放出されることで、発熱体100が冷却される。 Next, the mechanism of the cooling function of the heat sink 1 will be described. First, heat is transmitted from the heating element 100 to one end 13 of the heat pipe 11 through the heat receiving plate 31. When heat is transmitted from the heating element 100 to the one end 13 of the heat pipe 11, the transmitted heat is transferred along the longitudinal direction of the heat pipe 11 by the heat transporting action of the heat pipe 11. It is transported from one end 13 to the other end 14 which is a condensing part. At this time, the first heat pipe 11-1 having a larger amount of heat input from the heating element 100 than the second heat pipe 11-2 contributes to more heat transport. The heat transported to the other end portion 14 of the heat pipe 11 is transmitted from the other end portion 14 of the heat pipe 11 to the heat radiating portion 20, and the heat transmitted to the heat radiating portion 20 is released from the heat radiating portion 20 to the outside. Is done. The heat generating body 100 is cooled by releasing the heat of the heat generating body 100 from the heat radiating unit 20 to the outside.
 ヒートシンク1では、第2ヒートパイプ11-2よりも発熱体100からの入熱量の多い第1ヒートパイプ11-1の凝縮部(他方の端部14)が、第2ヒートパイプ11-2の凝縮部(他方の端部14)よりも冷却風の風下に設けられていることにより、第1ヒートパイプ11-1の作動温度が、第2ヒートパイプ11-2の作動温度よりも高くなる。第1ヒートパイプ11-1の作動温度が第2ヒートパイプ11-2の作動温度よりも高くなると、ヒートパイプ11内部における作動流体の流通が円滑化することから、第1ヒートパイプ11-1の最大熱輸送量は、第2ヒートパイプ11-2の最大熱輸送量よりも向上する。上記から、複数のヒートパイプ11のうち、発熱体からの入熱量が相対的に多い第1ヒートパイプ11-1に、より優れた最大熱輸送量が付与されることになり、結果、ヒートシンク1では、冷却対象に対して優れた冷却性能を発揮できる。 In the heat sink 1, the condensing part (the other end part 14) of the first heat pipe 11-1 having a larger amount of heat input from the heating element 100 than the second heat pipe 11-2 is condensing by the second heat pipe 11-2. By being provided below the cooling unit (the other end 14), the operating temperature of the first heat pipe 11-1 is higher than the operating temperature of the second heat pipe 11-2. When the operating temperature of the first heat pipe 11-1 becomes higher than the operating temperature of the second heat pipe 11-2, the flow of the working fluid inside the heat pipe 11 is facilitated. The maximum heat transport amount is improved more than the maximum heat transport amount of the second heat pipe 11-2. From the above, among the plurality of heat pipes 11, the first heat pipe 11-1 having a relatively large amount of heat input from the heating element is given a superior maximum heat transport amount, and as a result, the heat sink 1 Then, it is possible to exhibit excellent cooling performance for the object to be cooled.
 また、発熱体100からの入熱量の多い第1ヒートパイプ11-1において作動流体の流通が円滑化することから、第1ヒートパイプ11-1のドライアウトを防止することができる。 Further, since the working fluid flows smoothly in the first heat pipe 11-1 having a large amount of heat input from the heating element 100, dry-out of the first heat pipe 11-1 can be prevented.
 次に、本発明の第2実施形態例に係るヒートシンクについて、図面を用いながら説明する。なお、第1実施形態例に係るヒートシンクと同じ構成要素については、同じ符号を用いて説明する。 Next, a heat sink according to a second embodiment of the present invention will be described with reference to the drawings. The same components as those of the heat sink according to the first embodiment will be described using the same reference numerals.
 第1実施形態例に係るヒートシンク1では、ヒートパイプ11の一方の端部13が蒸発部として機能し、他方の端部14が凝縮部として機能し、また、一方の端部13が受熱板31と熱的に接続されていた。これに代えて、図2に示すように、第2実施形態例に係るヒートシンク2では、ヒートパイプ11の中央部17が蒸発部として機能し、一方の端部13と他方の端部14が凝縮部として機能し、また、ヒートパイプ11の一方の端部13から他方の端部14まで受熱板31が延在している。発熱体100は、受熱板31の略中心に熱的に接続される。 In the heat sink 1 according to the first embodiment, one end portion 13 of the heat pipe 11 functions as an evaporation portion, the other end portion 14 functions as a condensation portion, and the one end portion 13 functions as a heat receiving plate 31. And was thermally connected. Instead, as shown in FIG. 2, in the heat sink 2 according to the second embodiment, the central portion 17 of the heat pipe 11 functions as an evaporation portion, and one end portion 13 and the other end portion 14 are condensed. The heat receiving plate 31 extends from one end 13 to the other end 14 of the heat pipe 11. The heating element 100 is thermally connected to the approximate center of the heat receiving plate 31.
 複数(図2では、3本)のヒートパイプ11は、ヒートパイプ11の長手方向に対して略直交方向に並列配置されてヒートパイプ群12を形成している。発熱体100が受熱板31の略中心に熱的に接続されることに対応して、ヒートパイプ11の中央部17に発熱体100が熱的に接続される。よって、ヒートパイプ11の中央部17が蒸発部として機能する。 A plurality of (three in FIG. 2) heat pipes 11 are arranged in parallel in a direction substantially orthogonal to the longitudinal direction of the heat pipes 11 to form a heat pipe group 12. The heating element 100 is thermally connected to the central portion 17 of the heat pipe 11 in response to the heating element 100 being thermally connected to the approximate center of the heat receiving plate 31. Therefore, the center part 17 of the heat pipe 11 functions as an evaporation part.
 また、並列配置された複数のヒートパイプ11のうち、ヒートパイプ群12の長手方向中央部において、並列配置の中央に位置する第1ヒートパイプ11-1は、その中央部17が発熱体100と平面視において重なり合う位置に設けられている。一方で、ヒートパイプ群12の両側(すなわち、ヒートパイプ群12の長手方向中央部における、並列配置の両端の位置)に配置された第2ヒートパイプ11-2は、その中央部17が発熱体100と平面視において重なり合わない位置に設けられている。 Further, among the plurality of heat pipes 11 arranged in parallel, the first heat pipe 11-1 located at the center of the parallel arrangement at the center in the longitudinal direction of the heat pipe group 12 has a central portion 17 that is connected to the heating element 100. It is provided in the position which overlaps in planar view. On the other hand, the second heat pipe 11-2 arranged on both sides of the heat pipe group 12 (that is, the positions of both ends of the parallel arrangement in the central portion in the longitudinal direction of the heat pipe group 12) has a central portion 17 having a heating element. It is provided at a position that does not overlap with 100 in plan view.
 主に、ヒートパイプ11の一方の端部13と他方の端部14に冷却風Fが供給される。よって、ヒートパイプ11の一方の端部13と他方の端部14が凝縮部として機能する。 Primarily, the cooling air F is supplied to one end 13 and the other end 14 of the heat pipe 11. Therefore, one end 13 and the other end 14 of the heat pipe 11 function as a condensing part.
 ヒートシンク2では、受熱板31上に複数の放熱フィン21が立設されることで、放熱部20が形成されている。放熱フィン21は、受熱板31上に所定間隔で並列配置されている。放熱フィン21は、ヒートパイプ11の一方の端部13に対応する部位から他方の端部14に対応する部位まで並列に配置されている。 In the heat sink 2, a plurality of heat radiation fins 21 are erected on the heat receiving plate 31 to form the heat radiation portion 20. The heat radiating fins 21 are arranged in parallel on the heat receiving plate 31 at predetermined intervals. The heat radiating fins 21 are arranged in parallel from a portion corresponding to one end 13 of the heat pipe 11 to a portion corresponding to the other end 14.
 ヒートシンク2では、ヒートパイプ11の中央部17が蒸発部として機能し、一方の端部13と他方の端部14が凝縮部として機能することに対応して、第1ヒートパイプ11-1の中央部17と一方の端部13との間に、複数(図2では、2本)の第2ヒートパイプ11-2のうちの1本と、平面視において交差している交差部16-1が設けられている。さらに、第1ヒートパイプ11-1の中央部17と他方の端部14との間にも、交差部16-1を形成している第2ヒートシンク11-2と、平面視において交差している交差部16-2が設けられている。第1ヒートパイプ11-1は、複数の第2ヒートパイプ11-2のうち、冷却風Fの最も風下に位置する第2ヒートパイプ11-2と交差部16-1、16-2を形成している。 In the heat sink 2, the central portion 17 of the heat pipe 11 functions as an evaporation portion, and the one end portion 13 and the other end portion 14 function as a condensing portion. Between the portion 17 and one end portion 13, there is an intersecting portion 16-1 intersecting with one of the plurality (two in FIG. 2) of the second heat pipes 11-2 in a plan view. Is provided. Furthermore, the second heat sink 11-2 forming the intersecting portion 16-1 also intersects with the second heat sink 11-2 forming the intersecting portion 16-1 between the central portion 17 and the other end portion 14 of the first heat pipe 11-1. An intersection 16-2 is provided. The first heat pipe 11-1 forms intersections 16-1 and 16-2 with the second heat pipe 11-2 that is located at the most leeward side of the cooling air F among the plurality of second heat pipes 11-2. ing.
 第1ヒートパイプ11-1は、中央部17から一方の端部13方向において、ヒートパイプ群12の並列配置の中央から風下方面の端方向へ、複数の第2ヒートパイプ11-2のうちの1本は、中央部17から一方の端部13方向において、ヒートパイプ群12の並列配置の風下方面の端から中央方向へ、交差部16-1にて交差することで、第1ヒートパイプ11-1の一方の端部13が第2ヒートパイプ11-2の一方の端部13よりも冷却風Fの風下に位置している。従って、第1ヒートパイプ11-1の一方の端部13は、いずれの第2ヒートパイプ11-2の一方の端部13よりも、冷却風Fの風下に位置している。 The first heat pipe 11-1 extends from the center of the parallel arrangement of the heat pipe group 12 in the direction of the one end 13 from the center 17 to the end of the leeward surface. One crosses in the direction of one end 13 from the central portion 17 from the end of the leeward surface of the heat pipe group 12 arranged in parallel to the central direction at the intersecting portion 16-1, so that the first heat pipe 11 The one end 13 of -1 is located further down the cooling air F than the one end 13 of the second heat pipe 11-2. Accordingly, one end 13 of the first heat pipe 11-1 is located further down the cooling air F than one end 13 of any second heat pipe 11-2.
 また、第1ヒートパイプ11-1は、中央部17から他方の端部14方向において、ヒートパイプ群12の並列配置の中央から風下方面の端方向へ、複数の第2ヒートパイプ11-2のうちの1本は、中央部17から他方の端部14方向において、ヒートパイプ群12の並列配置の風下方面の端から中央方向へ、交差部16-2にて交差することで、第1ヒートパイプ11-1の他方の端部14が第2ヒートパイプ11-2の他方の端部14よりも冷却風Fの風下に位置している。従って、第1ヒートパイプ11-1の他方の端部14は、いずれの第2ヒートパイプ11-2の他方の端部14よりも、冷却風Fの風下に位置している。 Further, the first heat pipe 11-1 has a plurality of second heat pipes 11-2 extending from the center of the parallel arrangement of the heat pipe groups 12 to the end direction of the leeward surface in the direction of the other end portion 14 from the center portion 17. One of them crosses at the intersection 16-2 from the end of the leeward surface of the parallel arrangement of the heat pipe group 12 in the direction of the other end 14 from the center 17 at the intersection 16-2. The other end portion 14 of the pipe 11-1 is located further down the cooling air F than the other end portion 14 of the second heat pipe 11-2. Accordingly, the other end portion 14 of the first heat pipe 11-1 is located more downstream of the cooling air F than the other end portion 14 of any second heat pipe 11-2.
 ヒートシンク2でも、第1ヒートパイプ11-1の作動温度が、第2ヒートパイプ11-2の作動温度よりも高くなることから、第1ヒートパイプ11-1の最大熱輸送量は、第2ヒートパイプ11-2の最大熱輸送量よりも向上する。上記から、複数のヒートパイプ11のうち、発熱体からの入熱量が相対的に多い第1ヒートパイプ11-1に、より優れた最大熱輸送量が付与されることになり、結果、ヒートシンク2でも、冷却対象である発熱体100に対して優れた冷却性能を発揮できる。 Even in the heat sink 2, since the operating temperature of the first heat pipe 11-1 is higher than the operating temperature of the second heat pipe 11-2, the maximum heat transport amount of the first heat pipe 11-1 is the second heat pipe 11-1. The maximum heat transport amount of the pipe 11-2 is improved. From the above, among the plurality of heat pipes 11, the first heat pipe 11-1 having a relatively large amount of heat input from the heating element is given a superior maximum heat transport amount, and as a result, the heat sink 2 However, it is possible to exhibit excellent cooling performance for the heating element 100 that is a cooling target.
 次に、本発明の第3実施形態例に係るヒートシンクについて、図面を用いながら説明する。なお、第1、第2実施形態例に係るヒートシンクと同じ構成要素については、同じ符号を用いて説明する。 Next, a heat sink according to a third embodiment of the present invention will be described with reference to the drawings. The same constituent elements as those of the heat sink according to the first and second embodiments will be described using the same reference numerals.
 第1、第2実施形態例に係るヒートシンク1、2では、受熱板31の平面方向に沿ってヒートパイプ11の長手方向が伸延していたが、これに代えて、図3に示すように、第3実施形態例に係るヒートシンク3では、受熱板31に複数のヒートパイプ11が立設した態様となっている。すなわち、ヒートシンク3は、タワー型ヒートシンクである。ヒートシンク3では、受熱板31の平面部に対し、鉛直方向にヒートパイプ11が伸延している。発熱体100は、受熱板31の略中心に熱的に接続される。 In the heat sinks 1 and 2 according to the first and second embodiments, the longitudinal direction of the heat pipe 11 extends along the planar direction of the heat receiving plate 31, but instead of this, as shown in FIG. In the heat sink 3 according to the third embodiment, a plurality of heat pipes 11 are erected on the heat receiving plate 31. That is, the heat sink 3 is a tower type heat sink. In the heat sink 3, the heat pipe 11 extends in the vertical direction with respect to the flat portion of the heat receiving plate 31. The heating element 100 is thermally connected to the approximate center of the heat receiving plate 31.
 複数(図3では、3本)のヒートパイプ11は、ヒートパイプ11の長手方向(立設されている方向)に対して略直交方向に並列配置されてヒートパイプ群12を形成している。発熱体100が受熱板31に熱的に接続されることに対応して、ヒートパイプ11の受熱部側基部33に発熱体100が熱的に接続される。よって、ヒートパイプ11の受熱部側基部33が蒸発部として機能する。 A plurality (three in FIG. 3) of heat pipes 11 are arranged in parallel in a direction substantially orthogonal to the longitudinal direction (the standing direction) of the heat pipes 11 to form a heat pipe group 12. Corresponding to the fact that the heating element 100 is thermally connected to the heat receiving plate 31, the heating element 100 is thermally connected to the heat receiving part side base 33 of the heat pipe 11. Therefore, the heat receiving part side base 33 of the heat pipe 11 functions as an evaporation part.
 また、並列配置された複数のヒートパイプ11のうち、ヒートパイプ群12の受熱部側基部において、並列配置の中央に位置する第1ヒートパイプ11-1は、その受熱部側基部33の端部から受熱部側基部33の伸延方向に沿って延出させた仮想直線Lが発熱体100と平面視において重なり合う位置に設けられている。従って、第1ヒートパイプ11-1の受熱部側基部33は、仮想直線Lが発熱体100の発熱密度の高い部分と平面視において重なり合う位置に設けられている。なお、図3では、便宜上、発熱体100全体を発熱密度の高い部分としている。一方で、ヒートパイプ群12の両側(すなわち、ヒートパイプ群12の受熱部側基部における、並列配置の両端の位置)に配置された第2ヒートパイプ11-2は、その受熱部側基部33の端部から受熱部側基部33の伸延方向に沿って延出させた仮想直線Lが発熱体100と平面視において重なり合わない位置に設けられている。従って、第2ヒートパイプ11-2の受熱部側基部33は、仮想直線Lが発熱体100の発熱密度の高い部分と平面視において重なり合わない位置に設けられている。 Of the plurality of heat pipes 11 arranged in parallel, the first heat pipe 11-1 located at the center of the parallel arrangement in the heat receiving part side base of the heat pipe group 12 is the end of the heat receiving part side base 33. The virtual straight line L extended along the extending direction of the heat receiving part side base 33 is provided at a position overlapping the heating element 100 in plan view. Accordingly, the heat receiving portion side base 33 of the first heat pipe 11-1 is provided at a position where the virtual straight line L overlaps with the portion of the heat generating element 100 where the heat generation density is high in plan view. In FIG. 3, for the sake of convenience, the entire heating element 100 is a portion having a high heat generation density. On the other hand, the second heat pipe 11-2 arranged on both sides of the heat pipe group 12 (that is, the positions of both ends of the parallel arrangement in the heat receiving part side base of the heat pipe group 12) is connected to the heat receiving part side base 33. An imaginary straight line L that extends from the end portion along the extending direction of the heat receiving portion side base portion 33 is provided at a position that does not overlap the heating element 100 in plan view. Therefore, the heat receiving portion side base portion 33 of the second heat pipe 11-2 is provided at a position where the virtual straight line L does not overlap the portion of the heating element 100 where the heat generation density is high in plan view.
 ヒートシンク3では、ヒートパイプ11に放熱フィン21が取り付けられることで、放熱部20が形成されている。また、放熱フィン21が取り付けられている部位が、ヒートパイプ11の凝縮部として機能する。放熱フィン21の取り付け位置は、特に限定されないが、ヒートシンク3では、ヒートパイプ11の先端部34から長手方向中央部37にかけて複数の放熱フィン21が取り付けられている。放熱フィン21は、ヒートパイプ11の伸延方向に対し略平行に、所定間隔にて並列配置されている。また、主に、ヒートパイプ11の先端部34から長手方向中央部37にかけて冷却風Fが供給される。 In the heat sink 3, the heat radiating portion 20 is formed by attaching the heat radiating fins 21 to the heat pipe 11. Moreover, the site | part to which the radiation fin 21 is attached functions as a condensation part of the heat pipe 11. Although the attachment position of the radiation fin 21 is not particularly limited, in the heat sink 3, the plurality of radiation fins 21 are attached from the front end portion 34 to the longitudinal center portion 37 of the heat pipe 11. The heat radiating fins 21 are arranged in parallel at a predetermined interval substantially parallel to the extending direction of the heat pipe 11. Further, the cooling air F is mainly supplied from the front end portion 34 of the heat pipe 11 to the central portion 37 in the longitudinal direction.
 ヒートシンク3では、ヒートパイプ11の受熱部側基部33が蒸発部として機能し、先端部34から長手方向中央部37にかけて凝縮部として機能することに対応して、第1ヒートパイプ11-1の長手方向中央部37と受熱部側基部33との間(中間部)に、複数(図3では、2本)の第2ヒートパイプ11-2のうちの1本と、平面視において交差している交差部16が設けられている。第1ヒートパイプ11-1は、複数の第2ヒートパイプ11-2のうち、冷却風Fの最も風下に位置する第2ヒートパイプ11-2と交差部16を形成している。 In the heat sink 3, the heat receiving part side base 33 of the heat pipe 11 functions as an evaporating part, and functions as a condensing part from the tip part 34 to the longitudinal center part 37. Between the direction center portion 37 and the heat receiving portion side base portion 33 (intermediate portion), it intersects with one of a plurality (two in FIG. 3) of the second heat pipes 11-2 in a plan view. An intersection 16 is provided. The first heat pipe 11-1 forms an intersecting portion 16 with the second heat pipe 11-2 located at the leemost side of the cooling air F among the plurality of second heat pipes 11-2.
 第1ヒートパイプ11-1は、受熱部側基部33から先端部34方向において、ヒートパイプ群12の並列配置の中央から風下方面の端方向へ、複数の第2ヒートパイプ11-2のうちの1本は、受熱部側基部33から先端部34方向において、ヒートパイプ群12の並列配置の風下方面の端から中央方向へ、交差部16にて交差することで、第1ヒートパイプ11-1の先端部34と長手方向中央部37が第2ヒートパイプ11-2の先端部34と長手方向中央部37よりも冷却風Fの風下に位置している。従って、第1ヒートパイプ11-1の先端部34と長手方向中央部37は、いずれの第2ヒートパイプ11-2の先端部34と長手方向中央部37よりも、冷却風Fの風下に位置している。 The first heat pipe 11-1 includes a plurality of second heat pipes 11-2 from the center of the parallel arrangement of the heat pipe groups 12 toward the end of the leeward surface in the direction from the heat receiving part side base 33 to the tip 34. One of the first heat pipes 11-1 intersects from the end of the leeward surface of the heat pipe group 12 arranged in parallel to the center in the direction from the heat receiving part side base 33 to the tip part 34 at the crossing part 16. The front end portion 34 and the longitudinal center portion 37 of the second heat pipe 11-2 are located further down the cooling air F than the front end portion 34 and the longitudinal center portion 37 of the second heat pipe 11-2. Therefore, the front end portion 34 and the longitudinal center portion 37 of the first heat pipe 11-1 are positioned more downstream of the cooling air F than the front end portion 34 and the longitudinal center portion 37 of any second heat pipe 11-2. doing.
 タワー型のヒートシンクであるヒートシンク3でも、第1ヒートパイプ11-1の作動温度が、第2ヒートパイプ11-2の作動温度よりも高くなることから、第1ヒートパイプ11-1の最大熱輸送量は、第2ヒートパイプ11-2の最大熱輸送量よりも向上する。上記から、複数のヒートパイプ11のうち、発熱体からの入熱量が相対的に多い第1ヒートパイプ11-1に、より優れた最大熱輸送量が付与されることになり、結果、ヒートシンク3でも、冷却対象である発熱体100に対して優れた冷却性能を発揮できる。 Even in the heat sink 3 that is a tower-type heat sink, the operating temperature of the first heat pipe 11-1 is higher than the operating temperature of the second heat pipe 11-2. The amount is higher than the maximum heat transport amount of the second heat pipe 11-2. From the above, among the plurality of heat pipes 11, the first heat pipe 11-1 having a relatively large amount of heat input from the heating element is given a superior maximum heat transport amount, and as a result, the heat sink 3 However, it is possible to exhibit excellent cooling performance for the heating element 100 that is a cooling target.
 次に、本発明のヒートシンクの他の実施形態例について説明する。上記各実施形態例では、ヒートパイプ群を構成するヒートパイプの本数は、3本であったが、ヒートパイプ群におけるヒートパイプの本数は、複数であれば、発熱体の発熱量等に応じて適宜選択可能であり、2本でもよく、4本以上でもよい。また、上記各実施形態例では、第1ヒートパイプは1本であったが、第1ヒートパイプの本数は、特に限定されず、2本以上でもよい。また、上記各実施形態例では、第2ヒートパイプは2本であったが、第2ヒートパイプの本数は、特に限定されず、1本でもよく、3本以上でもよい。 Next, another embodiment of the heat sink of the present invention will be described. In each of the above embodiments, the number of heat pipes constituting the heat pipe group was three. However, if the number of heat pipes in the heat pipe group is plural, depending on the amount of heat generated by the heating element, etc. It can be selected as appropriate, and may be two or four or more. Moreover, in each said embodiment, although the 1st heat pipe was one, the number of the 1st heat pipe is not specifically limited, Two or more may be sufficient. Moreover, in each said embodiment, although the 2nd heat pipe was two, the number of the 2nd heat pipe is not specifically limited, One may be sufficient and three or more may be sufficient.
 また、第1実施形態例に係るヒートシンクでは、第1ヒートパイプの中央部と、第2ヒートパイプの中央部とが、平面視において交差して交差部を形成していたが、これに代えて、第1ヒートパイプの一方の端部と、第2ヒートパイプの一方の端部とが、平面視において交差して交差部を形成してもよく、第1ヒートパイプの他方の端部と、第2ヒートパイプの他方の端部とが、平面視において交差して交差部を形成してもよい。また、上記各実施形態例では、発熱体の中央部が発熱密度の高いことに対応して第1ヒートパイプの蒸発部または蒸発部から延出させた仮想線が、発熱体の中央部と平面視において重なり合うように第1ヒートパイプが配置されていた。しかし、第1ヒートパイプの蒸発部または蒸発部から延出させた仮想線は、発熱体のうち、発熱密度の高い部分と平面視において重なり合う位置に配置される。従って、発熱体の発熱密度の高い部分が中央部以外の場合には、第1ヒートパイプの蒸発部または蒸発部から延出させた仮想線が、少なくとも該中央部以外の部分と平面視において重なり合うように第1ヒートパイプが配置される。 Further, in the heat sink according to the first embodiment, the central portion of the first heat pipe and the central portion of the second heat pipe intersect in a plan view to form an intersecting portion. The one end of the first heat pipe and the one end of the second heat pipe may intersect in a plan view to form an intersection, and the other end of the first heat pipe, The other end of the second heat pipe may intersect with each other in plan view to form an intersection. Further, in each of the above-described embodiments, the imaginary line extended from the evaporation portion or the evaporation portion of the first heat pipe corresponding to the heat generation density of the center portion of the heating element is flat with the center portion of the heating element. The first heat pipes were arranged so as to overlap in view. However, the imaginary line extended from the evaporating part or the evaporating part of the first heat pipe is arranged at a position overlapping with a part having a high heat generation density in a plan view in the heating element. Therefore, when the high heat generation density portion of the heating element is other than the central portion, the imaginary line extending from the evaporation portion or the evaporation portion of the first heat pipe overlaps at least the portion other than the central portion in plan view. Thus, the first heat pipe is arranged.
 本発明のヒートシンクは、広汎な分野で利用可能であるが、発熱体からの入熱量が相対的に多いヒートパイプに、より優れた最大熱輸送量を付与できるので、例えば、サーバやデスクトップ型パーソナルコンピュータ等に搭載された電子部品を冷却する分野で、利用価値が高い。 Although the heat sink of the present invention can be used in a wide range of fields, it can provide a superior maximum heat transport amount to a heat pipe that has a relatively large amount of heat input from a heating element. It is highly useful in the field of cooling electronic components mounted on computers and the like.
 1、2、3          ヒートシンク
 11             ヒートパイプ
 11-1           第1ヒートパイプ
 11-2           第2ヒートパイプ
 13             一方の端部
 14             他方の端部
 16             交差部
 17             中央部
 20             放熱部
1, 2, 3 Heat sink 11 Heat pipe 11-1 First heat pipe 11-2 Second heat pipe 13 One end portion 14 The other end portion 16 Crossing portion 17 Central portion 20 Heat radiation portion

Claims (6)

  1.  発熱体と熱的に接続される受熱部と、該受熱部と所定の部位にて熱的に接続された複数のヒートパイプと、複数の該ヒートパイプの該所定の部位とは異なる他の部位と熱的に接続された放熱部と、を備え、
     複数の前記ヒートパイプのうち、前記所定の部位の少なくとも一部分または前記所定の部位の端部から該所定の部位の伸延方向に沿って延出させた仮想直線が前記発熱体の発熱密度の高い部分と平面視において重なり合う第1ヒートパイプの、前記他の部位が、前記所定の部位または前記所定の部位の端部から該所定の部位の伸延方向に沿って延出させた仮想直線が前記発熱体の発熱密度の高い部分と平面視において重なり合わない第2ヒートパイプの、前記他の部位よりも、冷却風の風下側に設けられているヒートシンク。
    A heat receiving part thermally connected to the heating element, a plurality of heat pipes thermally connected to the heat receiving part at a predetermined part, and another part different from the predetermined part of the plurality of heat pipes And a heat dissipating part thermally connected,
    Of the plurality of heat pipes, a portion where the heat generating element has a high heat generation density is an imaginary straight line extending from at least a part of the predetermined portion or an end portion of the predetermined portion along the extending direction of the predetermined portion. A virtual straight line in which the other part of the first heat pipe that overlaps in plan view extends from the end of the predetermined part or the predetermined part along the extending direction of the predetermined part is the heating element. The heat sink provided in the leeward side of cooling air rather than the said other site | part of the 2nd heat pipe which does not overlap with the part with high heat_generation | fever density of planar view.
  2.  前記第1ヒートパイプと前記第2ヒートパイプとが、平面視において交差している交差部を備えた請求項1に記載のヒートシンク。 The heat sink according to claim 1, further comprising an intersecting portion where the first heat pipe and the second heat pipe intersect in plan view.
  3.  前記第1ヒートパイプの、前記所定の部位と前記他の部位との間に位置する中間部と、前記第2ヒートパイプの、前記所定の部位と前記他の部位との間に位置する中間部とが、平面視において交差している交差部を備えた請求項1または2に記載のヒートシンク。 An intermediate portion of the first heat pipe positioned between the predetermined portion and the other portion, and an intermediate portion of the second heat pipe positioned between the predetermined portion and the other portion. The heat sink according to claim 1, further comprising an intersecting portion intersecting in plan view.
  4.  前記交差部において、前記第1ヒートパイプ及び/または前記第2ヒートパイプが扁平加工されている請求項2または3に記載のヒートシンク。 The heat sink according to claim 2 or 3, wherein the first heat pipe and / or the second heat pipe are flattened at the intersection.
  5.  前記所定の部位が、前記ヒートパイプの長手方向における一方の端部であり、前記他の部位が、前記ヒートパイプの長手方向における他方の端部である請求項1乃至4のいずれか1項に記載のヒートシンク。 5. The device according to claim 1, wherein the predetermined portion is one end portion in the longitudinal direction of the heat pipe, and the other portion is the other end portion in the longitudinal direction of the heat pipe. The heat sink described.
  6.  前記所定の部位が、前記ヒートパイプの長手方向における中央部であり、前記他の部位が、前記ヒートパイプの長手方向における一方の端部及び他方の端部である請求項1乃至4のいずれか1項に記載のヒートシンク。 5. The device according to claim 1, wherein the predetermined part is a central part in the longitudinal direction of the heat pipe, and the other part is one end and the other end in the longitudinal direction of the heat pipe. The heat sink according to item 1.
PCT/JP2019/008029 2018-03-01 2019-03-01 Heat sink WO2019168145A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-036147 2018-03-01
JP2018036147A JP2019152351A (en) 2018-03-01 2018-03-01 Heat sink

Publications (1)

Publication Number Publication Date
WO2019168145A1 true WO2019168145A1 (en) 2019-09-06

Family

ID=67806251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008029 WO2019168145A1 (en) 2018-03-01 2019-03-01 Heat sink

Country Status (2)

Country Link
JP (1) JP2019152351A (en)
WO (1) WO2019168145A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117352A (en) * 1985-11-18 1987-05-28 Toshiba Corp Cooler of power semiconductor element
JP2003336976A (en) * 2002-05-17 2003-11-28 Furukawa Electric Co Ltd:The Heat sink and mounting structure therefor
US20070234741A1 (en) * 2006-04-11 2007-10-11 Tsung-Chu Lee Heat radiator having a thermo-electric cooler and multiple heat radiation modules and the method of the same
JP2009150561A (en) * 2007-12-18 2009-07-09 Furukawa Electric Co Ltd:The Heat sink
JP3168433U (en) * 2011-04-01 2011-06-09 崇賢 ▲黄▼ Radiator
JP2017059768A (en) * 2015-09-18 2017-03-23 古河電気工業株式会社 heat sink

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117352A (en) * 1985-11-18 1987-05-28 Toshiba Corp Cooler of power semiconductor element
JP2003336976A (en) * 2002-05-17 2003-11-28 Furukawa Electric Co Ltd:The Heat sink and mounting structure therefor
US20070234741A1 (en) * 2006-04-11 2007-10-11 Tsung-Chu Lee Heat radiator having a thermo-electric cooler and multiple heat radiation modules and the method of the same
JP2009150561A (en) * 2007-12-18 2009-07-09 Furukawa Electric Co Ltd:The Heat sink
JP3168433U (en) * 2011-04-01 2011-06-09 崇賢 ▲黄▼ Radiator
JP2017059768A (en) * 2015-09-18 2017-03-23 古河電気工業株式会社 heat sink

Also Published As

Publication number Publication date
JP2019152351A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
US5409055A (en) Heat pipe type radiation for electronic apparatus
JP6606267B1 (en) heatsink
WO2019151291A1 (en) Heat sink
TWI692613B (en) heat sink
JP6667544B2 (en) heatsink
TWI700472B (en) Heat dissipation module
JP2006310740A (en) Cooling apparatus for electronic equipment
JP5192797B2 (en) heatsink
CN101415312B (en) Radiating device
WO2005043620A1 (en) Cooling device and electronic device
US20110108244A1 (en) Heat sink
US10578368B2 (en) Two-phase fluid heat transfer structure
WO2019168146A1 (en) Heat sink
WO2019168145A1 (en) Heat sink
JP7157591B2 (en) heatsink
JP6265949B2 (en) heatsink
JPWO2014092176A1 (en) Cooling system
JP7269422B1 (en) heat sink
TW202041132A (en) Cooling module
TWI843632B (en) Radiator
JPH07176661A (en) Heat sink
RU101309U1 (en) RADIATOR
JP2011149563A (en) Heat pipe and heat sink with heat pipe
JP2004198098A (en) Heat pipe, and heat exchange device using heat pipe
JP6767837B2 (en) Cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19759903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19759903

Country of ref document: EP

Kind code of ref document: A1