WO2019164225A1 - Method for manufacturing carbon nanotubes doped with heteroatoms from carbon dioxide - Google Patents

Method for manufacturing carbon nanotubes doped with heteroatoms from carbon dioxide Download PDF

Info

Publication number
WO2019164225A1
WO2019164225A1 PCT/KR2019/002005 KR2019002005W WO2019164225A1 WO 2019164225 A1 WO2019164225 A1 WO 2019164225A1 KR 2019002005 W KR2019002005 W KR 2019002005W WO 2019164225 A1 WO2019164225 A1 WO 2019164225A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
boron
metal catalyst
carbon dioxide
reducing agent
Prior art date
Application number
PCT/KR2019/002005
Other languages
French (fr)
Korean (ko)
Inventor
이재우
김기민
이희천
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190016813A external-priority patent/KR102201998B1/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2019164225A1 publication Critical patent/WO2019164225A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/178Opening; Filling

Definitions

  • the present invention relates to a method for producing carbon nanotubes doped with heterogeneous elements from carbon dioxide. More specifically, the present invention relates to a chemical vapor deposition method using a complex composed of a boron hydride reducing agent and a metal catalyst based on an exhaust gas containing carbon dioxide. It relates to a method for producing a carbon nanotube doped with a hetero element by vapor deposition (CVD).
  • CVD vapor deposition
  • Fossil fuels the main energy sources of civilization, now emit greenhouse gases such as carbon dioxide during combustion. Emissions of greenhouse gases cause side effects that are harmful to humankind, including global warming and the occurrence of abnormal climates.
  • Representative technologies to reduce carbon dioxide include capture, conversion, and storage technologies, which are collectively defined as carbon capture, utilization, and storage technologies, among which conversion technology has added value using carbon dioxide as a raw material. It is recently attracting attention because it can be synthesized.
  • carbon nanotubes have very high thermal conductivity and mechanical and electrical properties, and thus, they are highly valuable because they are new materials that can be used in various fields such as nanotechnology, electrical engineering, optical engineering, and materials engineering.
  • a method for synthesizing carbon nanotubes from carbon dioxide has been proposed by Motiei in 2001 (Motiei, M. et al., J. Am. Chem. Soc . 2001, 123 (35), 8624-8625.) Carbon dioxide molecules are very stable. Therefore, it is difficult to induce a reaction, making carbon dioxide a supercritical fluid. However, in this process, the reaction conditions reach 1,000 ° C. and 10,000 bar, which is very unsuitable for industrialization that needs to be scaled up. As such, carbon nanotubes can be produced from gaseous carbon dioxide under mild conditions rather than supercritical fluids requiring extreme reaction conditions.
  • the present inventors have made efforts to solve the above problems and to break down the stability of carbon dioxide gas molecules and convert them to carbon nanotubes under mild reaction conditions.
  • a complex composed of sodium borohydride and a transition metal or alkaline earth metal catalyst was introduced.
  • the use of carbon dioxide-based chemical vapor deposition which is based on hydrocarbon-based chemical vapor deposition, enables the stable carbon dioxide gas to be activated under mild conditions, and at the same time confirms the mass production of carbon nanotubes, thereby completing the present invention. .
  • the present invention comprises the steps of (a) heating a complex of a solidified boron hydride reducing agent and a metal catalyst in the atmosphere of an inert gas; And (b) supplying and activating a gas containing carbon dioxide to decompose carbon dioxide molecules into carbon atoms to synthesize boron-coated carbon nanotubes, thereby providing a method for producing boron-coated carbon nanotubes from carbon dioxide.
  • the present invention also provides a boron-coated carbon nanotube manufactured by the above method, having a multi-walled structure, and having a storage rate of 50% or more at 900 ° C. and oxidizing conditions.
  • the present invention also provides a catalyst composite for producing carbon nanotubes comprising a boron hydride reducing agent and a transition metal or alkaline metal catalyst.
  • the present invention also provides a method of preparing a composite of a boron hydride reducing agent and a metal catalyst by mixing (a-1) a boron hydride reducing agent dispersed in a first solvent and a metal catalyst precursor or metal nanoparticles dispersed in a second solvent; And (a-2) evaporating the solvent in the metal catalyst complex to solidify the complex of the boron hydride reducing agent and the metal catalyst.
  • the present invention also provides an electrode or a separator of a supercapacitor, a lithium ion battery or a lithium sulfur battery containing carbon nanotubes.
  • FIG. 1 is a schematic diagram schematically showing a manufacturing process for performing an embodiment of the present invention.
  • Figure 2 is a photograph showing an electron microscope image of the carbon nanotubes prepared by Example 1 of the present invention.
  • Example 3 is an electron micrograph and a graph showing that the carbon nanotubes prepared by Example 1 of the present invention had a boron coating.
  • Example 5 is a photograph showing a process preparation process for implementing Example 2 of the present invention.
  • Figure 6 is a graph confirming the electron microscope image and synthesis of carbon nanotubes prepared by Example 2 of the present invention.
  • Example 7 is a photograph showing a process preparation process for implementing Example 3 of the present invention.
  • Example 8 is a graph confirming the electron microscope image and synthesis of the carbon nanotubes prepared by Example 3 of the present invention.
  • Example 9 is an electron microscope image of a carbon nanotube prepared and a process preparation process for carrying out Example 4 of the present invention.
  • Example 10 is a graph illustrating a cyclic voltammetry curve of a supercapacitor electrode using carbon nanotubes prepared in Example 5 of the present invention.
  • FIG. 11 is a graph showing charge and discharge curves of supercapacitor electrodes using carbon nanotubes prepared in Example 5 of the present invention.
  • Example 12 is a graph showing a storage capacity of a supercapacitor electrode using carbon nanotubes prepared in Example 5 of the present invention.
  • FIG. 13 is a graph showing charge and discharge curves of a lithium ion battery electrode using carbon nanotubes prepared in Example 6 of the present invention.
  • Example 14 is a graph illustrating a cycle curve of a lithium ion battery electrode using carbon nanotubes prepared in Example 6 of the present invention.
  • FIG. 15 is a graph showing a charge / discharge curve of a lithium sulfur battery electrode using carbon nanotubes prepared in Example 7 of the present invention.
  • FIG. 16 is a graph illustrating a cycle curve of a lithium sulfur battery electrode using carbon nanotubes prepared in Example 7 of the present invention.
  • the present invention is to introduce a complex consisting of a sodium borohydride as a reducing agent and a transition metal or alkaline earth metal catalyst to activate a carbon dioxide-based chemical vapor deposition method according to the hydrocarbon-based chemical vapor deposition method to activate a stable carbon dioxide gas under mild conditions, At the same time, it was confirmed that carbon nanotubes can be mass produced.
  • the present invention comprises the steps of (a) heating the complex of the solidified boron hydride reducing agent and the metal catalyst under an atmosphere of inert gas; And (b) supplying and activating a gas containing carbon dioxide to decompose carbon dioxide molecules into carbon atoms to synthesize boron-coated carbon nanotubes. .
  • Carbon dioxide-based chemical vapor deposition method proposed by the present invention is shown in the schematic diagram of FIG.
  • the boron hydride reducing agent used in step (a) is sodium borohydride (NaBH 4 ), lithium borohydride (LiBH 4 ), potassium borohydride (KBH 4 ), magnesium borohydride (Mg (BH 4) 2 ), calcium borohydride (Ca (BH 4 ) 2 ) and strontium borohydride (Sr (BH 4 ) 2 ), preferably sodium borohydride, but is not limited thereto. no.
  • the complex of the solidified boron hydride reducing agent and the metal catalyst in the step (a) is (a-1) a metal catalyst precursor or metal nano dispersed in the boron hydride reducing agent and the second solvent dispersed in the first solvent Mixing the particles to prepare a complex of a boron hydride reducing agent and a metal catalyst; And (a-2) evaporating the solvent in the metal catalyst complex to solidify the complex of the boron hydride reducing agent and the metal catalyst.
  • the metal catalyst precursor is a transition metal or magnesium selected from the group consisting of nickel (Ni), iron (Fe), cobalt (Co), manganese (Mn), zinc (Zn) and copper (cu). It may be a chloride or nitrate of alkaline earth metal, and the metal nanoparticle may be a nanoparticle of alkaline earth metal such as magnesium or transition metal selected from the group consisting of nickel, iron, cobalt, manganese, zinc and copper. And, preferably, a transition metal of nickel, iron or cobalt is used, but is not limited thereto.
  • the first solvent and the second solvent of step (a-1) may be each independently selected from the group consisting of dihydric alcohol, trihydric alcohol and amide, preferably isopropyl alcohol or dimethylform
  • amide preferably isopropyl alcohol or dimethylform
  • step (a-1) may be performed by ultrasonication or stirrer, and the ultrasonication is effective for 30 minutes to 1 hour or more. It is effective to be accompanied by dispersion through sonication in the mixing process.
  • the metal catalyst precursor of step (a-1) is reduced from a salt form to a metal form by a boron hydride reducing agent.
  • the evaporation process is effective at atmospheric pressure and temperatures above 80 ° C.
  • the supply of the inert gas is started.
  • the inert gas may be used without limitation, if it is an inert gas commonly recognized in the scientific community, such as nitrogen and argon.
  • the step (a) is effective in the temperature range of 400 ⁇ 700 °C and the temperature increase rate of 1 ⁇ 10 °C min -1 , preferably 2 ⁇ 5 °C min-1.
  • the appropriate flow rate is preferably 200mlmin -1 or less.
  • the carbon dioxide gas molecules activated and destabilized by the boron hydride reducing agent in step (b) are decomposed into carbon atoms and grown into carbon nanotubes by a metal catalyst.
  • step (b) (c) may further comprise the step of purifying with hydrochloric acid, water or ethanol, and further, after the step (c) (d) drying the carbon nanotubes It may further comprise a step.
  • the step (d) is to remove the salts remaining in the carbon nanotube powder after the heat treatment and carbon dioxide conversion, at this time, hydrochloric acid, distilled water, ethanol is used sequentially.
  • the step (d) is preferably dried at a temperature of 150 °C or less.
  • carbon nanotubes coated with boron based on carbon dioxide may be obtained.
  • the synthesized carbon nanotubes can be utilized in fields requiring heat resistance as well as nano and electronic fields.
  • the present invention provides a boron-coated carbon nanotube, which is manufactured by the above method in another aspect, has a multi-walled structure, and exhibits a retention of 50% or more at 900 ° C. and oxidation conditions. It is about.
  • the present invention relates to a catalyst composite for producing carbon nanotubes comprising a boron hydride reducing agent and a transition metal or alkaline metal catalyst.
  • the present invention (a-1) to prepare a complex of a borohydride reducing agent and a metal catalyst by mixing a boron hydride reducing agent dispersed in a first solvent and a metal catalyst precursor or metal nanoparticles dispersed in a second solvent. Making; And (a-2) evaporating the solvent in the metal catalyst composite to solidify the complex of the boron hydride reducing agent and the metal catalyst.
  • the boron hydride reducing agent, the transition metal and alkaline earth metal catalyst, the first solvent and the second solvent can be used as mentioned above, and the conditions of the dispersing and mixing process can also be applied as mentioned above. .
  • charge and discharge curves and cycle curves of carbon nanotubes prepared using a carbon dioxide-based chemical vapor deposition method in which a complex composed of a sodium borohydride and a transition metal or alkaline earth metal catalyst according to the present invention were introduced It has been confirmed that it can be used as an electrode or separator of a supercapacitor, a lithium ion battery or a lithium sulfur battery with an excellent capacitance.
  • the present invention relates to an electrode or separator of a supercapacitor, a lithium ion battery, or a lithium sulfur battery including carbon nanotubes in another aspect.
  • the storage capacity of the electrode of the supercapacitor according to the present invention is excellent value of 300 F / g (current density: 0.1 A / g) to 70 F / g (current density: 204.8 A / g) in the voltage range of 0 ⁇ 2.7 V Can have
  • Electrode of the lithium ion battery according to the present invention is 300 ⁇ 900 mAh / g, preferably 300 ⁇ 700 mAh / g, more preferably 300 based on a voltage range of 0.01 V ⁇ 3.0 V and a current density of 1 A / g It can have a capacity of ⁇ 400 mAh / g.
  • the electrode of the lithium sulfur battery according to the present invention has a voltage range of 1.7 V to 2.8 V and a current density of 1 C (1672 mA / g) based on 300 to 1000 mAh / g, preferably 500 to 900 mAh / g, more Preferably it may have a capacity of 650 ⁇ 750 mAh / g.
  • the overall manufacturing process is as shown in FIG.
  • FIG. 2 An electron microscope image of the synthesized carbon nanotubes is shown in FIG. 2.
  • FIG. 1 and 2 of FIG. 2 are scanning electron microscope (SEM) images, and the carbon nanotubes manufactured have a form of carbon nanotube fibers (CNT fibers) in which several strands form a fiber phase.
  • Shows. 3 and 4 of the Figure 2 is a transmission electron microscope (TEM) image, showing that the individual carbon nanotubes made are multi-walled CNTs.
  • FIG. 3 shows that the surface of the prepared carbon nanotubes is coated with boron. Scanning is performed in a direction perpendicular to the axis of the carbon nanotubes through an electron energy loss spectroscopy (EELS) analysis technique installed in a Cs-corrected TEM (No. 1 in FIG. 3). If the signal obtained through scanning is integrated and shown in a graph, it can be seen that boron (represented by a red line) covers the surface of the carbon nanotube (represented by a black line) (No. 2 in FIG. 3). . In the image on the transmission electron microscope, the coating layer by boron was confirmed (No. 3 in FIG. 3).
  • EELS electron energy loss spectroscopy
  • the dashed line represents normal boron coating the sample prior to high temperature and oxidation conditions and the solid line represents boron oxidized after high temperature and oxidation conditions.
  • Raman analysis was performed to determine whether the structure of the carbon nanotubes was not destroyed, and the structure of the carbon nanotubes was not destroyed but was very well preserved (No. 3 in FIG. 4).
  • Black lines are samples after high temperature and oxidation treatment and red lines are samples after high temperature and oxidation treatment. The sharper the peaks, the more excellent the development of the structure of the carbon nanotubes. Since the peaks are very sharp even after high temperature and oxidation treatment, the carbon nanotube structure is well preserved.
  • the overall manufacturing process is as shown in FIG.
  • 6 is data showing that the synthesis of carbon nanotubes is successful.
  • 6 is a scanning electron microscope image, showing that the manufactured carbon nanotubes have a form of a CNT array showing a specific array as a toothbrush.
  • 6 is a transmission electron microscope image, showing that the individual carbon nanotubes made are multi-walled carbon nanotubes.
  • 6 is X-ray diffraction spectroscopy (XRD), and shows that the C (002) peak representing carbon nanotubes is well developed, proving that the synthesis of carbon nanotubes is successful.
  • XRD X-ray diffraction spectroscopy
  • the overall manufacturing process is as shown in FIG.
  • 8 is data showing that the synthesis of carbon nanotubes is successful.
  • 8 is a scanning electron microscope image, showing that the prepared carbon nanotubes have a form of carbon nanotube fibers in which several strands form a fiber phase.
  • Figure 2 of Figure 8 shows that the individual carbon nanotubes made are multi-walled carbon nanotubes.
  • 8 is X-ray diffraction spectroscopy (XRD), and shows that the C (002) peak representing carbon nanotubes is well developed, proving that the synthesis of carbon nanotubes is successful.
  • XRD X-ray diffraction spectroscopy
  • Example 1 was carried out in the same manner as in Example 1 except that the nickel metal nanoparticles that are not a precursor such as a salt is added immediately.
  • Carbon nanotubes synthesized according to the preparation method of Example 1 were used as an electrode material of a supercapacitor, and the specific process is as follows.
  • N-metyl-2-pyrrolidone solvent is taken with 0.2 g of carbon nanotubes and 0.067 g of binder polyvinylidene fluoride and 0.067 g of carbon black conductive material. Under stirring at 1000 rpm for 24 hours to form a mixed solution. The mixed solution in the form of a slurry was evenly applied to aluminum foil and then placed in an oven at 80 ° C. for 12 hours to evaporate the solvent.
  • a two-electrode symmetric system consisting of two electrodes made as described above was constructed and a 1 M tetraethylammonium tetrafluoroborate / acetonitrile solution (TEABF4 / AN) was used as an electrolyte.
  • TEABF4 / AN 1 M tetraethylammonium tetrafluoroborate / acetonitrile solution
  • a lithium metal punched into a case with a diameter of 10 mm was fixed in a case, 5 ⁇ l of electrolyte, a separator punched into 14 mm in diameter, 15 ⁇ l of electrolyte, and a working electrode punched into 10 mm in diameter, a gasket, Cells were assembled by stacking spacers and springs in order and covering them with caps. The cell assembly was all done in a glove box in an argon environment where water and oxygen were blocked, and the assembled cell was attached to a measuring device to observe the electrode performance.
  • Carbon nanotubes synthesized according to the preparation method of Example 1 were used as electrode materials for lithium ion batteries, and the specific process is as follows.
  • the electrode made as above is used as a working electrode, lithium metal is used as a standard electrode and a counter electrode, and 1 M lithium hexafluorophosphate solution in ethyl carbonate / diethyl carbonate ( Half cell experiments using EC / DEC), 50/50 (v / v)) as electrolyte.
  • a lithium metal punched into a case with a diameter of 10 mm was fixed in a case, a separator punched with 5 ⁇ L of electrolyte and a diameter of 14 mm, a working electrode punched with 10 ⁇ L of electrolyte and a diameter of 10 mm, a gasket, Cells are assembled by stacking spacers and springs in order and covering them with caps. The cell assembly is all done in a glove box in an argon environment where water and oxygen are blocked, and the assembled cell is attached to a measuring device to observe the electrode performance.
  • Carbon nanotubes synthesized according to the preparation method of Example 1 were used as electrode materials for lithium sulfur batteries, and the specific process thereof is as follows.
  • the electrode made as above is used as a working electrode, lithium metal is used as a standard electrode and a counter electrode, and 1 M trifluoromethane sulfonamide lithium salt (LiTFSi) in Using dimethoxymethane / 1,3-dioxolane (DME / DOL) 50/50 (v / v)) as an electrolyte, the half cells were assembled in the same manner as in Example 6 to observe the electrode performance.
  • LiTFSi trifluoromethane sulfonamide lithium salt
  • carbon nanotubes having high added value can be activated by removing carbon dioxide, which is the main culprit of global warming, by activating carbon dioxide gas that is stable under mild conditions and according to hydrocarbon-based chemical vapor deposition. Can be mass produced.
  • the carbon nanotubes synthesized through the present invention are coated with boron on the surface to maintain structural stability even under high temperature and oxidation conditions of about 900 ° C. or more. Therefore, it can be used not only in nano and electronic fields but also in fields requiring heat resistance.

Abstract

The present invention relates to a method for manufacturing carbon nanotubes doped with heteroatoms from carbon dioxide. More specifically, a complex formed of a boron hydride reductant and a metal catalyst is introduced and carbon dioxide-based chemical vapor deposition is employed, so that stable carbon dioxide gas can be activated even in mild conditions, while simultaneously carbon nanotubes can be mass-produced therefrom.

Description

이산화탄소로부터 이종원소가 도핑된 탄소나노튜브의 제조방법Method for producing carbon nanotubes doped with hetero elements from carbon dioxide
본 발명은 이산화탄소로부터 이종원소가 도핑된 탄소나노튜브의 제조방법에 관한 것으로서, 보다 상세하게는 이산화탄소가 포함된 배기가스를 원료로 하여 수소화붕소 환원제와 금속 촉매로 구성된 복합체를 이용한 화학기상증착법(chemical vapor deposition, CVD)에 의한 이종원소가 도핑된 탄소나노튜브의 제조방법에 관한 것이다.The present invention relates to a method for producing carbon nanotubes doped with heterogeneous elements from carbon dioxide. More specifically, the present invention relates to a chemical vapor deposition method using a complex composed of a boron hydride reducing agent and a metal catalyst based on an exhaust gas containing carbon dioxide. It relates to a method for producing a carbon nanotube doped with a hetero element by vapor deposition (CVD).
현재 인류의 주 에너지원인 화석 연료는 연소 시에 이산화탄소와 같은 온실가스를 배출한다. 온실가스의 배출은 지구온난화 현상과 이로 인한 이상 기후의 발생 등 인류에 해가 되는 부작용을 낳기에 전세계적으로 이산화탄소 저감에 노력을 기울이고 있다. 이산화탄소를 저감하기 위한 기술에는 대표적으로 포집, 전환, 저장 기술이 있으며, 이들을 통틀어 CCUS(carbon capture, utilization and storage 기술이라 정의한다. 이 중 전환(conversion) 기술은 이산화탄소를 원료로 하여 부가가치를 지닌 물질을 합성할 수 있기에 최근 주목을 받고 있다.Fossil fuels, the main energy sources of mankind, now emit greenhouse gases such as carbon dioxide during combustion. Emissions of greenhouse gases cause side effects that are harmful to humankind, including global warming and the occurrence of abnormal climates. Representative technologies to reduce carbon dioxide include capture, conversion, and storage technologies, which are collectively defined as carbon capture, utilization, and storage technologies, among which conversion technology has added value using carbon dioxide as a raw material. It is recently attracting attention because it can be synthesized.
이산화탄소로부터 합성 가능한 물질 중 탄소나노튜브는 열전도율 그리고 기계적 및 전기적 특성이 매우 특이하여 나노, 전기공학, 광학 및 재료공학 등의 다양한 분야에 활용될 수 있는 신소재이기 때문에 그 부가가치가 상당히 높다. 이산화탄소로부터 탄소나노튜브를 합성하는 방법은 2001년 Motiei에 의해 제시된 바 있다(Motiei, M. et al., J. Am. Chem. Soc. 2001, 123 (35), 8624-8625.) 기체 상태의 이산화탄소 분자는 매우 안정하다. 따라서 반응을 유도하기가 어렵기 때문에 이산화탄소를 초임계유체(supercritical fluid)로 만들어주게 된다. 하지만 이 과정에서 반응 조건이 1,000℃ 및 10,000bar에 이르기 때문에 규모를 확장해야 하는 산업화에 매우 부적합하다. 이와 같이 극한의 반응 조건이 필요한 초임계 유체가 아닌 온화한 조건(mild condition)에서 기체 상의 이산화탄소로부터 탄소나노튜브를 생산할 수 있어야 한다.Among the materials that can be synthesized from carbon dioxide, carbon nanotubes have very high thermal conductivity and mechanical and electrical properties, and thus, they are highly valuable because they are new materials that can be used in various fields such as nanotechnology, electrical engineering, optical engineering, and materials engineering. A method for synthesizing carbon nanotubes from carbon dioxide has been proposed by Motiei in 2001 (Motiei, M. et al., J. Am. Chem. Soc . 2001, 123 (35), 8624-8625.) Carbon dioxide molecules are very stable. Therefore, it is difficult to induce a reaction, making carbon dioxide a supercritical fluid. However, in this process, the reaction conditions reach 1,000 ° C. and 10,000 bar, which is very unsuitable for industrialization that needs to be scaled up. As such, carbon nanotubes can be produced from gaseous carbon dioxide under mild conditions rather than supercritical fluids requiring extreme reaction conditions.
최근에 전기화학적 방법을 도입해 온화한 조건에서 이산화탄소를 탄소나노튜브로 전환한 사례가 있다(Wu, H. et al., Carbon 2016, 106 (Supplement C), 208-217). 상기에서 한계점으로 인식하였던 극한의 초임계 조건이 아니라는 점에서 강점을 지닌다. 이산화탄소 기체를 탄산리튬(lithium carbonate, Li2CO3)과 같은 용융염(molten salt)에 녹인 뒤, 전기에너지를 가해주면 환원 전극에서 이산화탄소가 탄소나노튜브로 환원되는 것이 주 원리이다. 하지만 용융염을 만들기 위해서 약 750~770℃의 조건을 유지해야 하고, 무엇보다 이산화탄소 기체의 용매 역할을 하는 용융염의 점도와 같은 물리적 특성을 잘 조절해야 한다. 이는 생산되는 탄소나노튜브의 수율 및 결정성과 직결되기 때문이다. 따라서 규모가 더 커질 경우 안정적인 용융염을 유지하는데 추가 공정 및 그에 따른 비용이 발생한다. 결정적으로 배치(batch) 방식이기에 대규모 생산 방식에 적합하지 않다는 한계점을 지닌다.Recently, electrochemical methods have been introduced to convert carbon dioxide to carbon nanotubes under mild conditions (Wu, H. et al., Carbon 2016 , 106 (Supplement C), 208-217). It has strengths in that it is not an extreme supercritical condition recognized as a limit point. The main principle is that carbon dioxide gas is dissolved in molten salt such as lithium carbonate (Li2CO3) and then applied with electrical energy to reduce carbon dioxide to carbon nanotubes at the reduction electrode. However, in order to make molten salt, the conditions of about 750 ~ 770 ℃ must be maintained, and above all, the physical properties such as the viscosity of the molten salt that serves as a solvent of carbon dioxide gas must be well controlled. This is because it is directly connected to the yield and crystallinity of the carbon nanotubes produced. As a result, larger scales incur additional processes and the associated costs of maintaining a stable molten salt. It is critical that it is not suitable for large scale production because it is batch type.
이처럼 기존의 이산화탄소로부터 탄소나노튜브를 생산하는 연구 및 제조법들은 극한의 반응 조건을 요구하거나 복잡한 공정을 필요로 하는 배치 공정이기 때문에 산업화에 적합하지 않다. 무엇보다 탄화수소(hydrocarbon)를 원료로 하여 탄소나노튜브를 이미 상업적으로 대량 생산하고 있는 화학기상증착법에 비해 경쟁력이 떨어진다. 따라서 탄화수소 기반의 화학기상증착법에 준하는 반응조건과 산업화에 유리한 연속 공정(continuous process)을 갖춘 이산화탄소 기반의 화학기상증착법 개발이 필요한 실정이다.As such, research and manufacturing methods for producing carbon nanotubes from carbon dioxide are not suitable for industrialization because they are batch processes requiring extreme reaction conditions or complex processes. Above all, it is less competitive than chemical vapor deposition, which is already commercially mass producing carbon nanotubes using hydrocarbon as a raw material. Therefore, it is necessary to develop a carbon dioxide-based chemical vapor deposition method having a reaction process similar to the hydrocarbon-based chemical vapor deposition method and a continuous process advantageous for industrialization.
이에, 본 발명자들은 상기 문제점을 해결하고 온화한 반응 조건에서 이산화탄소 기체 분자의 안정성을 깨뜨리고 탄소나노튜브로 전환시키기 위하여 예의 노력한 결과, 환원제인 수소화붕소나트륨과 전이금속 또는 알칼리토금속 촉매로 구성된 복합체를 도입하여 탄화수소 기반의 화학기상증착법에 준하는 이산화탄소 기반의 화학기상증착법을 이용할 경우 온화한 조건에서도 안정한 이산화탄소 기체를 활성화시킬 수 있고, 동시에 이로부터 탄소나노튜브를 대량 생산할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to solve the above problems and to break down the stability of carbon dioxide gas molecules and convert them to carbon nanotubes under mild reaction conditions. As a result, a complex composed of sodium borohydride and a transition metal or alkaline earth metal catalyst was introduced. The use of carbon dioxide-based chemical vapor deposition, which is based on hydrocarbon-based chemical vapor deposition, enables the stable carbon dioxide gas to be activated under mild conditions, and at the same time confirms the mass production of carbon nanotubes, thereby completing the present invention. .
발명의 요약Summary of the Invention
본 발명의 목적은 탄화수소 기반의 화학기상증착법에 필적할만한 이산화탄소 기반의 화학기상증착법을 이용하여 지구온난화의 주범인 이산화탄소를 제거함과 동시에 고부가가치의 탄소나노튜브를 생산하는 탄소나노튜브의 제조방법을 제공하는데 있다.It is an object of the present invention to provide a method for producing carbon nanotubes that produce carbon nanotubes of high value while removing carbon dioxide, which is the main culprit of global warming, by using carbon dioxide-based chemical vapor deposition, which is comparable to hydrocarbon-based chemical vapor deposition. It is.
상기 목적을 달성하기 위하여, 본 발명은 (a) 고형화된 수소화붕소 환원제와 금속 촉매의 복합체를 비활성기체의 분위기 하에서 가열시키는 단계; 및 (b) 이산화탄소가 포함된 기체를 공급하고 활성화시켜 이산화탄소 분자를 탄소원자로 분해시켜 붕소가 코팅된 탄소나노튜브를 합성하는 단계를 포함하는 이산화탄소로부터 붕소가 코팅된 탄소나노튜브의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of (a) heating a complex of a solidified boron hydride reducing agent and a metal catalyst in the atmosphere of an inert gas; And (b) supplying and activating a gas containing carbon dioxide to decompose carbon dioxide molecules into carbon atoms to synthesize boron-coated carbon nanotubes, thereby providing a method for producing boron-coated carbon nanotubes from carbon dioxide. .
본 발명은 또한, 상기 방법에 의해 제조되고, 다중벽 구조를 가지며, 900℃ 및 산화 조건에서 50% 이상의 보존율을 나타내는 것을 특징으로 하는 붕소가 코팅된 탄소나노튜브를 제공한다.The present invention also provides a boron-coated carbon nanotube manufactured by the above method, having a multi-walled structure, and having a storage rate of 50% or more at 900 ° C. and oxidizing conditions.
본 발명은 또한, 수소화붕소 환원제와 전이금속 또는 알카리토금속 촉매를 포함하는 탄소나노튜브 제조용 촉매 복합체를 제공한다.The present invention also provides a catalyst composite for producing carbon nanotubes comprising a boron hydride reducing agent and a transition metal or alkaline metal catalyst.
본 발명은 또한, (a-1) 제1 용매에 분산된 수소화붕소 환원제와 제2 용매에 분산된 금속 촉매 전구체 또는 금속 나노입자를 혼합하여 수소화붕소 환원제와 금속 촉매의 복합체를 제조하는 단계; 및 (a-2) 상기 금속 촉매 복합체에서 용매를 증발시켜 수소화붕소 환원제와 금속 촉매의 복합체를 고형화시키는 단계를 포함하는 상기 탄소나노튜브 제조용 촉매 복합체의 제조방법을 제공한다.The present invention also provides a method of preparing a composite of a boron hydride reducing agent and a metal catalyst by mixing (a-1) a boron hydride reducing agent dispersed in a first solvent and a metal catalyst precursor or metal nanoparticles dispersed in a second solvent; And (a-2) evaporating the solvent in the metal catalyst complex to solidify the complex of the boron hydride reducing agent and the metal catalyst.
본 발명은 또한, 탄소나노튜브를 포함하는 슈퍼커패시터, 리튬이온전지 또는 리튬황전지의 전극 또는 분리막을 제공한다.The present invention also provides an electrode or a separator of a supercapacitor, a lithium ion battery or a lithium sulfur battery containing carbon nanotubes.
도 1은 본 발명의 일 실시예를 수행하는 제조공정을 개략적으로 나타내는 모식도이다.1 is a schematic diagram schematically showing a manufacturing process for performing an embodiment of the present invention.
도 2는 본 발명의 실시예 1에 의해 제조된 탄소나노튜브의 전자현미경 이미지를 나타낸 사진이다.Figure 2 is a photograph showing an electron microscope image of the carbon nanotubes prepared by Example 1 of the present invention.
도 3은 본 발명의 실시예 1에 의해 제조된 탄소나노튜브가 붕소 코팅이 되었음을 보여주는 전자현미경 사진 및 그래프이다.3 is an electron micrograph and a graph showing that the carbon nanotubes prepared by Example 1 of the present invention had a boron coating.
도 4는 본 발명의 실시예 1에 의해 제조된 탄소나노튜브의 내열성 확인 데이타이다.4 is heat resistance confirmation data of the carbon nanotubes prepared by Example 1 of the present invention.
도 5는 본 발명의 실시예 2를 실시하기 위한 공정 준비 과정을 나타낸 사진이다.5 is a photograph showing a process preparation process for implementing Example 2 of the present invention.
도 6은 본 발명의 실시예 2에 의해 제조된 탄소나노튜브의 전자현미경 이미지와 합성을 확인하는 그래프이다.Figure 6 is a graph confirming the electron microscope image and synthesis of carbon nanotubes prepared by Example 2 of the present invention.
도 7은 본 발명의 실시예 3을 실시하기 위한 공정 준비 과정을 나타낸 사진이다.7 is a photograph showing a process preparation process for implementing Example 3 of the present invention.
도 8은 본 발명의 실시예 3에 의해 제조된 탄소나노튜브의 전자현미경 이미지와 합성을 확인하는 그래프이다.8 is a graph confirming the electron microscope image and synthesis of the carbon nanotubes prepared by Example 3 of the present invention.
도 9는 본 발명의 실시예 4를 실시하기 위한 공정 준비 과정 및 제조된 탄소나노튜브의 전자현미경 이미지이다.9 is an electron microscope image of a carbon nanotube prepared and a process preparation process for carrying out Example 4 of the present invention.
도 10은 본 발명의 실시예 5에서 제조된 탄소나노튜브를 이용한 슈퍼커패시터 전극의 순환전압전류법(Cyclic voltammetry)곡선을 도시한 그래프이다.10 is a graph illustrating a cyclic voltammetry curve of a supercapacitor electrode using carbon nanotubes prepared in Example 5 of the present invention.
도 11은 본 발명의 실시예 5에서 제조된 탄소나노튜브를 이용한 슈퍼커패시터 전극의 충방전곡선을 도시한 그래프이다.FIG. 11 is a graph showing charge and discharge curves of supercapacitor electrodes using carbon nanotubes prepared in Example 5 of the present invention.
도 12는 본 발명의 실시예 5에서 제조된 탄소나노튜브를 이용한 슈퍼커패시터 전극의 저장 용량을 도시한 그래프이다.12 is a graph showing a storage capacity of a supercapacitor electrode using carbon nanotubes prepared in Example 5 of the present invention.
도 13은 본 발명의 실시예 6에서 제조된 탄소나노튜브를 이용한 리튬이온전지 전극의 충방전곡선을 도시한 그래프이다.FIG. 13 is a graph showing charge and discharge curves of a lithium ion battery electrode using carbon nanotubes prepared in Example 6 of the present invention.
도 14는 본 발명의 실시예 6에서 제조된 탄소나노튜브를 이용한 리튬이온전지 전극의 사이클곡선을 도시한 그래프이다.14 is a graph illustrating a cycle curve of a lithium ion battery electrode using carbon nanotubes prepared in Example 6 of the present invention.
도 15는 본 발명의 실시예 7에서 제조된 탄소나노튜브를 이용한 리튬황전지 전극의 충방전곡선을 도시한 그래프이다.FIG. 15 is a graph showing a charge / discharge curve of a lithium sulfur battery electrode using carbon nanotubes prepared in Example 7 of the present invention.
도 16은 본 발명의 실시예 7에서 제조된 탄소나노튜브를 이용한 리튬황전지 전극의 사이클곡선을 도시한 그래프이다.FIG. 16 is a graph illustrating a cycle curve of a lithium sulfur battery electrode using carbon nanotubes prepared in Example 7 of the present invention.
발명의 상세한 설명 및 구체적인 구현예Detailed Description of the Invention and Specific Embodiments
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명은 환원제인 수소화붕소나트륨과 전이금속 또는 알칼리토금속 촉매로 구성된 복합체를 도입하여 탄화수소 기반의 화학기상증착법에 준하는 이산화탄소 기반의 화학기상증착법을 이용할 경우 온화한 조건에서도 안정한 이산화탄소 기체를 활성화시킬 수 있고, 동시에 이로부터 탄소나노튜브를 대량 생산할 수 있다는 것을 확인하였다.The present invention is to introduce a complex consisting of a sodium borohydride as a reducing agent and a transition metal or alkaline earth metal catalyst to activate a carbon dioxide-based chemical vapor deposition method according to the hydrocarbon-based chemical vapor deposition method to activate a stable carbon dioxide gas under mild conditions, At the same time, it was confirmed that carbon nanotubes can be mass produced.
따라서, 본 발명은 일 관점에서 (a) 고형화된 수소화붕소 환원제와 금속 촉매의 복합체를 비활성기체의 분위기 하에서 가열시키는 단계; 및 (b) 이산화탄소가 포함된 기체를 공급하고 활성화시켜 이산화탄소 분자를 탄소원자로 분해시켜 붕소가 코팅된 탄소나노튜브를 합성하는 단계를 포함하는 이산화탄소로부터 붕소가 코팅된 탄소나노튜브의 제조방법에 관한 것이다.Therefore, in one aspect, the present invention comprises the steps of (a) heating the complex of the solidified boron hydride reducing agent and the metal catalyst under an atmosphere of inert gas; And (b) supplying and activating a gas containing carbon dioxide to decompose carbon dioxide molecules into carbon atoms to synthesize boron-coated carbon nanotubes. .
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
이산화탄소 기반의 화학기상증착법을 구축하기 위해선 온화한 반응 조건에서 이산화탄소의 안정성을 깨뜨릴 수 있는 특별한 방법이 필요하다. 기체 상태의 이산화탄소는 열역학적으로 매우 안정하기 때문에, 극한 조건 하의 초임계유체로 만들거나 복잡한 공정을 추가할 수 밖에 없으므로, 온화한 반응 조건에서 이산화탄소 기체 분자의 안정성을 깨뜨리고 탄소나노튜브로 전환시키기 위해 환원제인 수소화붕소나트륨과 전이금속 또는 알칼리토금속 촉매로 구성된 복합체를 도입하여 탄화수소 기반의 화학기상증착법에 준하는 이산화탄소 기반의 화학기상증착법을 이용할 수 있다.To build carbon dioxide-based chemical vapor deposition, a special method is needed to break the stability of carbon dioxide under mild reaction conditions. Since gaseous carbon dioxide is very thermodynamically stable, it is inevitable to make supercritical fluids under extreme conditions or to add complex processes. Thus, in mild reaction conditions, carbon dioxide is a reducing agent to break down the stability of carbon dioxide gas molecules and convert them into carbon nanotubes. By introducing a complex composed of sodium borohydride and a transition metal or alkaline earth metal catalyst, a carbon dioxide-based chemical vapor deposition method based on a hydrocarbon-based chemical vapor deposition method may be used.
본 발명이 제시하는 이산화탄소 기반의 화학기상증착법은 도 1의 모식도에 나타내었다.Carbon dioxide-based chemical vapor deposition method proposed by the present invention is shown in the schematic diagram of FIG.
본 발명에 있어서, 상기 (a) 단계에서 사용되는 상기 수소화붕소 환원제는 수소화붕소나트륨(NaBH4), 수소화붕소리튬(LiBH4), 수소화붕소칼륨(KBH4), 수소화붕소마그네슘(Mg(BH4)2), 수소화붕소칼슘(Ca(BH4)2) 및 수소화붕소 스트론튬(Sr(BH4)2)으로 구성된 군에서 선택될 수 있으며, 바람직하게는 수소화붕소나트륨을 사용하나, 이에 한정되는 것은 아니다.In the present invention, the boron hydride reducing agent used in step (a) is sodium borohydride (NaBH 4 ), lithium borohydride (LiBH 4 ), potassium borohydride (KBH 4 ), magnesium borohydride (Mg (BH 4) 2 ), calcium borohydride (Ca (BH 4 ) 2 ) and strontium borohydride (Sr (BH 4 ) 2 ), preferably sodium borohydride, but is not limited thereto. no.
본 발명에 있어서, 상기 (a) 단계에서의 고형화된 수소화붕소 환원제와 금속 촉매의 복합체는 (a-1) 제1 용매에 분산된 수소화붕소 환원제와 제2 용매에 분산된 금속 촉매 전구체 또는 금속 나노입자를 혼합하여 수소화붕소 환원제와 금속 촉매의 복합체를 제조하는 단계; 및 (a-2) 상기 금속 촉매 복합체에서 용매를 증발시켜 수소화붕소 환원제와 금속 촉매의 복합체를 고형화시키는 단계를 포함하는 방법에 의하여 제조될 수 있다.In the present invention, the complex of the solidified boron hydride reducing agent and the metal catalyst in the step (a) is (a-1) a metal catalyst precursor or metal nano dispersed in the boron hydride reducing agent and the second solvent dispersed in the first solvent Mixing the particles to prepare a complex of a boron hydride reducing agent and a metal catalyst; And (a-2) evaporating the solvent in the metal catalyst complex to solidify the complex of the boron hydride reducing agent and the metal catalyst.
본 발명에 있어서, 상기 금속 촉매 전구체는 니켈(Ni), 철(Fe), 코발트(Co), 망간(Mn), 아연(Zn) 및 구리(cu)로 구성된 군에서 선택된 전이금속 또는 마그네슘과 같은 알칼리토금속의 염화물(chloride) 또는 질산염(nitrate)일 수 있고, 상기 금속 나노입자는 니켈, 철, 코발트, 망간, 아연 및 구리로 구성된 군에서 선택된 전이금속 또는 마그네슘과 같은 알칼리토금속의 나노입자일 수 있으며, 바람직하게는 니켈, 철 또는 코발트의 전이금속을 사용하나, 이에 한정되는 것은 아니다.In the present invention, the metal catalyst precursor is a transition metal or magnesium selected from the group consisting of nickel (Ni), iron (Fe), cobalt (Co), manganese (Mn), zinc (Zn) and copper (cu). It may be a chloride or nitrate of alkaline earth metal, and the metal nanoparticle may be a nanoparticle of alkaline earth metal such as magnesium or transition metal selected from the group consisting of nickel, iron, cobalt, manganese, zinc and copper. And, preferably, a transition metal of nickel, iron or cobalt is used, but is not limited thereto.
본 발명에 있어서, (a-1) 단계의 제1 용매 및 제2 용매는 각각 독립적으로 2가 알코올, 3가 알코올 및 아미드로 구성된 군에서 선택될 수 있으며, 바람직하게는 아이소프로필알코올 또는 디메틸포름아미드를 사용하나, 환원력이 큰 수소화붕소나트륨을 분해하지 않고 안정적으로 보호할 수 있는 분산용매면 그 종류에 한정 없이 사용 가능하다.In the present invention, the first solvent and the second solvent of step (a-1) may be each independently selected from the group consisting of dihydric alcohol, trihydric alcohol and amide, preferably isopropyl alcohol or dimethylform Although an amide is used, it is possible to use any type of dispersion solvent that can stably protect the sodium borohydride without decomposing it with great reducing power.
본 발명에 있어서, (a-1) 단계의 분산 및 혼합은 초음파처리(ultrasonication)또는 교반기로 수행될 수 있으며, 초음파 처리는 30분 내지 1시간 이상이 효과적이다. 혼합 과정에서 초음파 처리를 통한 분산이 동반되는 것이 효과적이다.In the present invention, the dispersion and mixing of step (a-1) may be performed by ultrasonication or stirrer, and the ultrasonication is effective for 30 minutes to 1 hour or more. It is effective to be accompanied by dispersion through sonication in the mixing process.
본 발명에 있어서, (a-1) 단계의 금속 촉매 전구체는 수소화붕소 환원제에 의해 염(salt)의 형태에서 금속의 형태로 환원된다. 증발 과정은 상압 및 80℃ 이상의 온도가 효과적이다.In the present invention, the metal catalyst precursor of step (a-1) is reduced from a salt form to a metal form by a boron hydride reducing agent. The evaporation process is effective at atmospheric pressure and temperatures above 80 ° C.
본 발명에 있어서, 상기 (a) 단계에서 고형화된 수소화붕소 환원제와 금속 촉매의 복합체가 가열로에 투입된 후 외부 공기와 차단되며, 비활성기체의 공급이 시작된다. 상기 비활성기체는 질소와 아르곤과 같이 과학계에서 통상적으로 인식되는 비활성 기체면 그 종류에 한정 없이 사용할 수 있다.In the present invention, after the complex of the boron hydride reducing agent and the metal catalyst solidified in the step (a) is put into the heating furnace is cut off with the outside air, the supply of the inert gas is started. The inert gas may be used without limitation, if it is an inert gas commonly recognized in the scientific community, such as nitrogen and argon.
본 발명에 있어서, 상기 (a) 단계는 400~700℃의 온도 범위 및 1~10℃min-1, 바람직하게는 2~5℃min-1의 승온 속도가 효과적이다.In the present invention, the step (a) is effective in the temperature range of 400 ~ 700 ℃ and the temperature increase rate of 1 ~ 10 ℃ min -1 , preferably 2 ~ 5 ℃ min-1.
본 발명에 있어서, 상기 (b) 단계의 이산화탄소 공급 시, 적정 유량은 200㎖min-1 이하가 바람직하다.In the present invention, when supplying the carbon dioxide in the step (b), the appropriate flow rate is preferably 200mlmin -1 or less.
본 발명에 있어서, 상기 (b) 단계에서 수소화붕소 환원제에 의해 활성화(activation) 및 불안정해진 이산화탄소 기체 분자가 탄소 원자로 분해되며 금속 촉매에 의해 탄소나노튜브로 성장하게 된다.In the present invention, the carbon dioxide gas molecules activated and destabilized by the boron hydride reducing agent in step (b) are decomposed into carbon atoms and grown into carbon nanotubes by a metal catalyst.
본 발명에 있어서, 상기 (b) 단계 이후에 (c) 염산, 물 또는 에탄올로 정제하는 단계를 추가로 포함할 수 있고, 또한, 상기 (c) 단계 이후에 (d) 탄소나노튜브를 건조하는 단계를 추가로 포함할 수 있다.In the present invention, after the step (b) (c) may further comprise the step of purifying with hydrochloric acid, water or ethanol, and further, after the step (c) (d) drying the carbon nanotubes It may further comprise a step.
본 발명에 있어서, 상기 (d) 단계는 열처리 및 이산화탄소 전환 후 탄소나노튜브 분말에 남아있는 염들을 제거하는 것이 주 목적이며, 이 때 염산, 증류수, 에탄올을 순차적으로 사용하게 된다. 상기 (d) 단계는 150℃ 이하의 온도에서 건조하는 것이 바람직하다.In the present invention, the step (d) is to remove the salts remaining in the carbon nanotube powder after the heat treatment and carbon dioxide conversion, at this time, hydrochloric acid, distilled water, ethanol is used sequentially. The step (d) is preferably dried at a temperature of 150 ℃ or less.
본 발명의 바람직한 일 실시예에 의한 제조법은 다음의 단계로 구성된다:The preparation method according to one preferred embodiment of the present invention consists of the following steps:
(a) 수소화붕소나트륨과 전이금속 촉매 전구체(precursor)를 각각 아이소프로필 알코올(isopropyl alcohol, IPA)에 투입하는 단계; (b) (a)에서 초음파 처리(ultrasonication)를 통해 분산시키는 단계; (c) 아이소프로필 알코올에 분산된 수소화붕소나트륨과 전이금속촉매 전구체를 혼합하여 전이금속 촉매로 환원시키는 단계; (d) 상기 (c)에서 제조된 수소화붕소나트륨 및 전이금속 촉매 복합체에서 분산 용매인 아이소프로필 알코올을 증발시키는 단계; (e) 상기 (d)에서 고형화(solidification)된 수소화붕소나트륨 및 전이금속 촉매의 복합체를 가열로(furnace)에 투입하는 단계; (f) 비활성기체(inert gas)하에서 특정 온도까지 가열하는 단계; (g) 특정 온도에서 이산화탄소로 공급기체를 바꿔주어 이산화탄소 전환을 통해 탄소나노튜브를 합성하는 단계; (h) 상기 (g)에서 생산된 탄소나노튜브를 염산, 물, 에탄올로 정제(purification)하는 단계; (i) 정제 후의 탄소나노튜브를 건조시키는 단계; (j) 이산화탄소를 원료로 하는 붕소가 코팅된 탄소나노튜브의 완성.(a) injecting sodium borohydride and a transition metal catalyst precursor (precursor) into isopropyl alcohol (IPA), respectively; (b) dispersing via ultrasonication in (a); (c) mixing sodium borohydride and the transition metal catalyst precursor dispersed in isopropyl alcohol to reduce the transition metal catalyst; (d) evaporating isopropyl alcohol as a dispersion solvent in the sodium borohydride and transition metal catalyst composite prepared in (c); (e) injecting a complex of sodium borohydride and a transition metal catalyst solidified in (d) into a furnace; (f) heating to a specific temperature under inert gas; (g) converting the feed gas into carbon dioxide at a specific temperature to synthesize carbon nanotubes through carbon dioxide conversion; (h) purifying the carbon nanotubes produced in (g) with hydrochloric acid, water and ethanol; (i) drying the carbon nanotubes after purification; (j) The completion of boron-coated carbon nanotubes based on carbon dioxide.
본 발명에 의하여 최종적으로 이산화탄소를 원료로 한 붕소가 코팅된 탄소나노튜브를 얻을 수 있다. 합성된 탄소나노튜브는 나노 및 전자 분야뿐만 아니라 내열성을 필요로 하는 분야에 활용될 수 있다.According to the present invention, finally, carbon nanotubes coated with boron based on carbon dioxide may be obtained. The synthesized carbon nanotubes can be utilized in fields requiring heat resistance as well as nano and electronic fields.
따라서, 본 발명은 다른 관점에서 상기 방법에 의해 제조되고, 다중벽(multi-walled) 구조를 가지며, 900℃ 및 산화 조건에서 50% 이상의 보존율을 나타내는 것을 특징으로 하는 붕소가 코팅된 탄소나노튜브에 관한 것이다.Accordingly, the present invention provides a boron-coated carbon nanotube, which is manufactured by the above method in another aspect, has a multi-walled structure, and exhibits a retention of 50% or more at 900 ° C. and oxidation conditions. It is about.
또한, 본 발명은 또 다른 관점에서 수소화붕소 환원제와 전이금속 또는 알카리토금속 촉매를 포함하는 탄소나노튜브 제조용 촉매 복합체에 관한 것이다.In another aspect, the present invention relates to a catalyst composite for producing carbon nanotubes comprising a boron hydride reducing agent and a transition metal or alkaline metal catalyst.
또한, 본 발명은 또 다른 관점에서 (a-1) 제1 용매에 분산된 수소화붕소 환원제와 제2 용매에 분산된 금속 촉매 전구체 또는 금속 나노입자를 혼합하여 수소화붕소 환원제와 금속 촉매의 복합체를 제조하는 단계; 및 (a-2) 상기 금속 촉매 복합체에서 용매를 증발시켜 수소화붕소 환원제와 금속 촉매의 복합체를 고형화시키는 단계를 포함하는 상기 탄소나노튜브 제조용 촉매 복합체의 제조방법에 관한 것이다.In another aspect, the present invention (a-1) to prepare a complex of a borohydride reducing agent and a metal catalyst by mixing a boron hydride reducing agent dispersed in a first solvent and a metal catalyst precursor or metal nanoparticles dispersed in a second solvent. Making; And (a-2) evaporating the solvent in the metal catalyst composite to solidify the complex of the boron hydride reducing agent and the metal catalyst.
본 발명에 있어서, 수소화붕소 환원제, 전이금속 및 알카리토금속 촉매, 제1 용매 및 제2 용매는 상기에 언급한 바와 같이 사용할 수 있으며, 분산 및 혼합 공정의 조건도 상기에 언급한 바와 같이 적용될 수 있다.In the present invention, the boron hydride reducing agent, the transition metal and alkaline earth metal catalyst, the first solvent and the second solvent can be used as mentioned above, and the conditions of the dispersing and mixing process can also be applied as mentioned above. .
또한, 본 발명에 의한 환원제인 수소화붕소나트륨과 전이금속 또는 알칼리토금속 촉매로 구성된 복합체를 도입한 이산화탄소 기반의 화학기상증착법을 이용하여 제조한 탄소나노튜브의 충방전 곡선과 사이클곡선을 측정한 결과, 우수한 전기용량을 가져 슈퍼커패시터, 리튬이온전지 또는 리튬황전지의 전극 또는 분리막으로 사용될 수 있다는 것을 확인하였다.In addition, the charge and discharge curves and cycle curves of carbon nanotubes prepared using a carbon dioxide-based chemical vapor deposition method in which a complex composed of a sodium borohydride and a transition metal or alkaline earth metal catalyst according to the present invention were introduced, It has been confirmed that it can be used as an electrode or separator of a supercapacitor, a lithium ion battery or a lithium sulfur battery with an excellent capacitance.
따라서, 본 발명은 또 다른 관점에서 탄소나노튜브를 포함하는 슈퍼커패시터, 리튬이온전지 또는 리튬황전지의 전극 또는 분리막에 관한 것이다.Accordingly, the present invention relates to an electrode or separator of a supercapacitor, a lithium ion battery, or a lithium sulfur battery including carbon nanotubes in another aspect.
본 발명에 따른 슈퍼커패시터의 전극의 저장용량은 0 ~ 2.7 V의 전압 범위에서 300 F/g (전류 밀도: 0.1 A/g) 내지 70 F/g (전류 밀도: 204.8 A/g)의 우수한 값을 가질 수 있다.The storage capacity of the electrode of the supercapacitor according to the present invention is excellent value of 300 F / g (current density: 0.1 A / g) to 70 F / g (current density: 204.8 A / g) in the voltage range of 0 ~ 2.7 V Can have
본 발명에 따른 리튬이온전지의 전극은 0.01 V ~ 3.0 V의 전압 범위와 1 A/g의 전류밀도 기준으로 300~900 mAh/g, 바람직하게는 300~700 mAh/g, 더욱 바람직하게는 300~400 mAh/g의 전기용량(capacity)을 가질 수 있다.Electrode of the lithium ion battery according to the present invention is 300 ~ 900 mAh / g, preferably 300 ~ 700 mAh / g, more preferably 300 based on a voltage range of 0.01 V ~ 3.0 V and a current density of 1 A / g It can have a capacity of ˜400 mAh / g.
본 발명에 따른 리튬황전지의 전극은 1.7 V ~ 2.8 V의 전압 범위와 1 C (1672 mA/g)의 전류밀도 기준으로 300~1000 mAh/g, 바람직하게는 500~900 mAh/g, 더욱 바람직하게는 650~750 mAh/g의 전기 용량(capacity)을 가질 수 있다.The electrode of the lithium sulfur battery according to the present invention has a voltage range of 1.7 V to 2.8 V and a current density of 1 C (1672 mA / g) based on 300 to 1000 mAh / g, preferably 500 to 900 mAh / g, more Preferably it may have a capacity of 650 ~ 750 mAh / g.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.
[실시예]EXAMPLE
실시예 1: 니켈 촉매 기반의 이산화탄소 화학기상증착법 구축 및 붕소가 코팅된 탄소나노튜브의 합성Example 1 Construction of Carbon Dioxide Chemical Vapor Deposition Based on Nickel Catalyst and Synthesis of Boron-Coated Carbon Nanotubes
전체적인 제조 공정은 도 1에 도시된 바와 같다.The overall manufacturing process is as shown in FIG.
0.5g의 수소화붕소나트륨과 니켈 촉매의 전구체인 0.0563g의 염화니켈(nickel chloride, NiCl2)이 아이소프로필 알코올에 투입된 후 약 1시간 동안 초음파 처리하여 분산시켰다(도 1의 1번: 아이소프로필 알코올에 분산된 수소화붕소나트륨, 도 1의 2번: 아이소프로필 알코올에 분산된 염화니켈). 분산된 수소화붕소나트륨과 염화니켈을 혼합하게 되면 환원을 통해 니켈 촉매가 생성되고 이 과정에서 용액이 검게 변하였다(도 1의 3번). 이후 도 1의 모식도와 같은 과정을 거치게 된다. 도 1의 4번은 정제 과정까지 거친 후의 탄소나노튜브를 포함한 탄소 물질의 분말을 나타낸다.0.5 g of sodium borohydride and 0.0563 g of nickel chloride (NiCl 2), which are precursors of nickel catalyst, were added to isopropyl alcohol and dispersed by sonication for about 1 hour (No. 1 in FIG. 1: in isopropyl alcohol). Dispersed sodium borohydride, No. 2: nickel chloride dispersed in isopropyl alcohol. When the dispersed sodium borohydride and nickel chloride were mixed, a nickel catalyst was formed through reduction, and the solution turned black in the process (No. 3 in FIG. 1). After that, the same process as the schematic diagram of FIG. Figure 4 of Figure 1 shows a powder of the carbon material including carbon nanotubes after the purification process.
합성된 탄소나노튜브의 전자현미경 이미지를 도 2에 나타내었다.An electron microscope image of the synthesized carbon nanotubes is shown in FIG. 2.
도 2의 1번과 2번은 주사전자현미경(scanning electron microscope, SEM) 이미지이며, 제조된 탄소나노튜브들이 여러 가닥이 모여 섬유 상을 이루는 이른 바 탄소나노튜브 섬유(CNT fiber)의 형태를 가지고 있음을 보여준다. 도 2의 3번과 4번은 투과전자현미경(transmission electron microscope, TEM) 이미지이며, 만들어진 개개의 탄소나노튜브가 다중벽 탄소나노튜브(multi-walled CNT)임을 보여준다.1 and 2 of FIG. 2 are scanning electron microscope (SEM) images, and the carbon nanotubes manufactured have a form of carbon nanotube fibers (CNT fibers) in which several strands form a fiber phase. Shows. 3 and 4 of the Figure 2 is a transmission electron microscope (TEM) image, showing that the individual carbon nanotubes made are multi-walled CNTs.
도 3은 제조된 탄소나노튜브의 표면이 붕소에 의해 코팅이 되어 있음을 보여준다. Cs-corrected TEM에 장치되어 있는 EELS(electron energy loss spectroscopy) 분석 기법을 통해 탄소나노튜브의 축에 수직한 방향으로 스캐닝(scanning)을 해준다(도 3의 1번). 스캐닝을 통해 얻어진 신호(signal)를 통합하여 그래프로 도시하게 되면 탄소나노튜브(검은색 선으로 표현)의 표면을 붕소(빨간색 선으로 표현)가 뒤덮고 있음을 확인할 수 있다(도 3의 2번). 투과전자현미경 상의 이미지에서도 붕소에 의한 코팅층이 확인되었다(도 3의 3번).3 shows that the surface of the prepared carbon nanotubes is coated with boron. Scanning is performed in a direction perpendicular to the axis of the carbon nanotubes through an electron energy loss spectroscopy (EELS) analysis technique installed in a Cs-corrected TEM (No. 1 in FIG. 3). If the signal obtained through scanning is integrated and shown in a graph, it can be seen that boron (represented by a red line) covers the surface of the carbon nanotube (represented by a black line) (No. 2 in FIG. 3). . In the image on the transmission electron microscope, the coating layer by boron was confirmed (No. 3 in FIG. 3).
도 4는 상기에서 언급한 붕소 코팅에 의해 탄소나노튜브가 고온·산화 조건 하에서 내열성을 지님을 보여준다. 탄소나노튜브 샘플에 대한 열 중량 분석(thermogravimetric analysis)을 실시하게 되면 900℃ 및 산화 조건에서도 50% 이상의 보존율을 보여준다(도 4의 1번). 통상적인 탄소나노튜브의 경우 산화 기체하의 800℃ 조건에서 존재할 수 없다. 900℃ 및 산화 조건을 거친 뒤 샘플에 대한 XPS(X-ray photoelectron spectroscopy) 분석을 실시하게 되면 코팅된 붕소 층이 먼저 산화되며 내부의 탄소나노튜브를 보호한 것임을 파악할 수 있다(도 4의 2번). 점선이 고온 및 산화 조건을 거치기 전 샘플을 코팅하고 있는 일반 붕소이고 실선이 고온 및 산화 조건을 거친 후 산화된 붕소를 나타낸다. 끝으로, 탄소나노튜브의 구조가 파괴되지 않았는지를 파악하기 위해 라만분석(Raman analysis)을 실시했으며, 탄소나노튜브의 구조는 파괴되지 않고 매우 잘 보존되었음을 보여준다(도 4의 3번). 검은색 선이 고온 및 산화 처리 전의 샘플이고 빨간색 선이 고온 및 산화 처리 후의 샘플이다. 각 피크(peak)들이 뾰족할 수록 탄소나노튜브의 구조 발달 정도가 뛰어남을 의미하는데, 고온 및 산화 처리 후에도 매우 뾰족한 피크들을 보여주기 때문에 탄소나노튜브 구조가 잘 보존되었음을 파악할 수 있다.4 shows that the carbon nanotubes are heat-resistant under high temperature and oxidation conditions by the above-mentioned boron coating. Thermogravimetric analysis of the carbon nanotube samples showed a 50% or more retention even at 900 ° C. and oxidation conditions (No. 1 in FIG. 4). Conventional carbon nanotubes cannot be present at 800 ° C. under oxidizing gas. X-ray photoelectron spectroscopy (XPS) analysis of the sample after 900 ° C. and oxidation conditions reveals that the coated boron layer is oxidized first and protects the carbon nanotubes inside (No. 2 in FIG. 4). ). The dashed line represents normal boron coating the sample prior to high temperature and oxidation conditions and the solid line represents boron oxidized after high temperature and oxidation conditions. Finally, Raman analysis was performed to determine whether the structure of the carbon nanotubes was not destroyed, and the structure of the carbon nanotubes was not destroyed but was very well preserved (No. 3 in FIG. 4). Black lines are samples after high temperature and oxidation treatment and red lines are samples after high temperature and oxidation treatment. The sharper the peaks, the more excellent the development of the structure of the carbon nanotubes. Since the peaks are very sharp even after high temperature and oxidation treatment, the carbon nanotube structure is well preserved.
실시예 2: 철 촉매 기반의 이산화탄소 화학기상증착법 구축 및 탄소나노튜브의 합성Example 2 Construction of Carbon Dioxide Chemical Vapor Deposition Method Based on Iron Catalyst and Synthesis of Carbon Nanotubes
전체적인 제조 공정은 도 1에 도시된 바와 같다.The overall manufacturing process is as shown in FIG.
0.5g의 수소화붕소나트륨과 철 촉매의 전구체인 0.0727g의 염화철(iron chloride, FeCl3)이 아이소프로필 알코올에 투입된 후 약 1시간 동안 초음파 처리를 하여 분산시켰다(도 5의 1번: 아이소프로필 알코올에 분산된 수소화붕소나트륨, 도 5의 2번: 아이소프로필 알코올에 분산된 염화철). 분산된 수소화붕소나트륨과 염화철을 혼합하게 되면 환원을 통해 철 촉매가 생성되고 이 과정에서 용액이 검게 변하였다(도 5의 3번). 이후 도1의 모식도와 같은 과정을 거치게 된다.0.5 g sodium borohydride and 0.0727 g of iron chloride (iron chloride, FeCl 3 ), a precursor of an iron catalyst, were added to isopropyl alcohol and dispersed by sonication for about 1 hour (No. 1 in FIG. 5: isopropyl alcohol). Sodium borohydride dispersed in No. 2 of FIG. 5: iron chloride dispersed in isopropyl alcohol). When the dispersed sodium borohydride and iron chloride were mixed, an iron catalyst was produced through reduction, and the solution turned black in the process (No. 3 in FIG. 5). After that, the same process as the schematic diagram of FIG.
도 6은 탄소나노튜브의 합성이 성공적임을 보여주는 데이터들이다. 도 6의 1번은 주사전자현미경 이미지이며, 제조된 탄소나노튜브들이 칫솔의 모처럼 특정 배열(array)을 보여주는 CNT array의 형태를 가지고 있음을 보여준다. 도 6의 2번은 투과전자현미경 이미지이며, 만들어진 개개의 탄소나노튜브가 다중벽 탄소나노튜브임을 보여준다. 도 6의 3번은 X-선 회절 분석법(X-ray diffraction spectroscopy, XRD)이며, 탄소나노튜브를 의미하는 C(002) 피크가 잘 발달했음을 보여주어 탄소나노튜브의 합성이 성공적임을 증명한다.6 is data showing that the synthesis of carbon nanotubes is successful. 6 is a scanning electron microscope image, showing that the manufactured carbon nanotubes have a form of a CNT array showing a specific array as a toothbrush. 6 is a transmission electron microscope image, showing that the individual carbon nanotubes made are multi-walled carbon nanotubes. 6 is X-ray diffraction spectroscopy (XRD), and shows that the C (002) peak representing carbon nanotubes is well developed, proving that the synthesis of carbon nanotubes is successful.
실시예 3: 코발트 촉매 기반의 이산화탄소 화학기상증착법 구축 및 탄소나노튜브의 합성Example 3 Cobalt Catalyst-Based Carbon Dioxide Chemical Vapor Deposition and Synthesis of Carbon Nanotubes
전체적인 제조 공정은 도 1에 도시된 바와 같다.The overall manufacturing process is as shown in FIG.
0.5g의 수소화붕소나트륨과 코발트 촉매의 전구체인 0.0551g의 염화코발트(cobalt chloride, CoCl2)이 아이소프로필 알코올에 투입된 후 약 1시간 동안 초음파 처리하여 분산시켰다(도 7의 1번: 아이소프로필 알코올에 분산된 수소화붕소나트륨, 도 7의 2번: 아이소프로필 알코올에 분산된 염화코발트). 분산된 수소화붕소나트륨과 염화코발트를 혼합하게 되면 환원을 통해 코발트 촉매가 생성되고 이 과정에서 용액이 검게 변하였다(도 7의 3번). 이후 도 1의 모식도와 같은 과정을 거치게 된다.0.5 g of sodium borohydride and 0.0551 g of cobalt chloride (Cobalt chloride, CoCl 2), which are precursors of the cobalt catalyst, were added to isopropyl alcohol and dispersed by sonication for about 1 hour (No. 1 in FIG. 7: in isopropyl alcohol). Dispersed sodium borohydride, No. 2: cobalt chloride dispersed in isopropyl alcohol. When the dispersed sodium borohydride and cobalt chloride were mixed, a cobalt catalyst was produced through reduction, and the solution turned black in the process (No. 3 in FIG. 7). After that, the same process as the schematic diagram of FIG.
도 8은 탄소나노튜브의 합성이 성공적임을 보여주는 데이터들이다. 도 8의 1번은 주사전자현미경 이미지이며, 제조된 탄소나노튜브들이 여러 가닥이 모여 섬유 상을 이루는 이른 바 탄소나노튜브 섬유의 형태를 가지고 있음을 보여준다. 도 8의 2번은 만들어진 개개의 탄소나노튜브가 다중벽 탄소나노튜브임을 보여준다. 도 8의 3번은 X-선 회절 분석법(X-ray diffraction spectroscopy, XRD)이며, 탄소나노튜브를 의미하는 C(002) 피크가 잘 발달했음을 보여주어 탄소나노튜브의 합성이 성공적임을 증명한다.8 is data showing that the synthesis of carbon nanotubes is successful. 8 is a scanning electron microscope image, showing that the prepared carbon nanotubes have a form of carbon nanotube fibers in which several strands form a fiber phase. Figure 2 of Figure 8 shows that the individual carbon nanotubes made are multi-walled carbon nanotubes. 8 is X-ray diffraction spectroscopy (XRD), and shows that the C (002) peak representing carbon nanotubes is well developed, proving that the synthesis of carbon nanotubes is successful.
실시예 4: 니켈 금속 나노입자 기반의 이산화탄소 화학기상증착법 구축 및 탄소나노튜브의 합성Example 4 Manufacture of Carbon Dioxide Chemical Vapor Deposition Based on Nickel Metal Nanoparticles and Synthesis of Carbon Nanotubes
실시예 1에서 염과 같은 전구체가 아닌 니켈 금속 나노입자를 곧바로 투입한다는 것을 제외하고는 실시예 1과 동일하게 실시하였다.Example 1 was carried out in the same manner as in Example 1 except that the nickel metal nanoparticles that are not a precursor such as a salt is added immediately.
0.5g의 수소화붕소나트륨과 0.05g의 니켈 금속 나노입자를 아이소프로필 알코올에 투입한 후 약 1시간 동안 초음파 처리하여 분산시켰다. 분산된 수소화붕소나트륨과 니켈 나노입자를 혼합하여 도가니(crucible)에 투입하고 아이소프로필 알코올을 증발시키면 도 9의 1번과 같이 고형화된 수소화붕소나트륨 및 니켈 촉매 복합체를 얻을 수 있다. 이후 이산화탄소 전환을 거치게 되면 생성된 탄소나노튜브를 포함한 탄소 물질로 인해 도가니가 검게 변하였다(도 9의 2번). 도 9의 3번은 투과전자현미경 이미지이며, 탄소나노튜브가 성공적으로 합성되었음을 보여준다.0.5 g of sodium borohydride and 0.05 g of nickel metal nanoparticles were added to isopropyl alcohol and dispersed by sonication for about 1 hour. When the dispersed sodium borohydride and nickel nanoparticles are mixed and introduced into a crucible and the isopropyl alcohol is evaporated, the solidified sodium borohydride and nickel catalyst complexes can be obtained as shown in FIG. 9. After the carbon dioxide conversion, the crucible turned black due to the carbon material including the carbon nanotubes produced (No. 2 in FIG. 9). 9 is a transmission electron microscope image, showing that carbon nanotubes were successfully synthesized.
실시예 5: 니켈 촉매 기반의 이산화탄소 화학기상증착법으로 합성한 탄소나노튜브의 슈퍼커패시터 전극으로의 응용Example 5 Application of Carbon Nanotubes to Supercapacitor Electrodes Synthesized by Nickel Catalyst-Based Carbon Dioxide Chemical Vapor Deposition
실시예 1의 제조법에 따라 합성된 탄소나노튜브를 슈퍼커패시터(supercapacitor)의 전극 소재로 사용하였고, 그 구체적인 과정은 다음과 같다.Carbon nanotubes synthesized according to the preparation method of Example 1 were used as an electrode material of a supercapacitor, and the specific process is as follows.
탄소나노튜브 0.2g을 취하여 바인더(binder)인 플루오르화 폴리비닐리덴(polyvinylidene fluoride) 0.067 g과 도전재인 카본 블랙(carbon black) 0.067 g과 함께 메틸피롤리돈(N-metyl-2-pyrrolidone) 용매 하에 1000 rpm으로 24시간 동안 교반시켜 혼합 용액을 만들었다. 슬러리 형태의 혼합 용액을 알루미늄 호일에 고르게 바른 뒤 80℃의 오븐에서 12시간 동안 두어 용매를 증발시켰다.N-metyl-2-pyrrolidone solvent is taken with 0.2 g of carbon nanotubes and 0.067 g of binder polyvinylidene fluoride and 0.067 g of carbon black conductive material. Under stirring at 1000 rpm for 24 hours to form a mixed solution. The mixed solution in the form of a slurry was evenly applied to aluminum foil and then placed in an oven at 80 ° C. for 12 hours to evaporate the solvent.
위와 같이 만든 전극 2개로 이루어진 2전극 대칭 시스템(two electrode symmetric system)을 구축하여 1 M 테트라에틸암모늄 테트라플루오로보레이트 /아세토니트릴 용액(tetraethylammonium tetrafluoroborate/acetonitrile, TEABF4/AN))을 전해질로 사용하여 단전지(single cell) 실험을 진행하였다.A two-electrode symmetric system consisting of two electrodes made as described above was constructed and a 1 M tetraethylammonium tetrafluoroborate / acetonitrile solution (TEABF4 / AN) was used as an electrolyte. A cell experiment was conducted.
케이스(case)에 지름 10 mm로 펀칭한 리튬 금속을 고정시킨 뒤 전해질 5 ㎕, 지름 14 mm로 펀칭한 분리막(separator), 전해질 15 ㎕, 지름 10 mm로 펀칭한 작동 전극, 개스킷(gasket), 스페이서(spacer), 스프링(spring)을 순서대로 쌓고 캡(cap)으로 덮어 셀을 조립하였다. 셀 조립은 모두 수분과 산소가 차단된 아르곤 환경의 글로브박스 안에서 이루어지며, 조립한 셀을 측정 장치에 달아 전극의 성능을 관찰하였다.A lithium metal punched into a case with a diameter of 10 mm was fixed in a case, 5 μl of electrolyte, a separator punched into 14 mm in diameter, 15 μl of electrolyte, and a working electrode punched into 10 mm in diameter, a gasket, Cells were assembled by stacking spacers and springs in order and covering them with caps. The cell assembly was all done in a glove box in an argon environment where water and oxygen were blocked, and the assembled cell was attached to a measuring device to observe the electrode performance.
측정 실험 결과, 슈퍼커패시터의 성능을 보여주는 순환전압전류법(Cyclic voltammetry)곡선(도 10)과 충방전곡선(도 11)을 얻었다. 저장 용량 계산 시, 0 ~ 2.7 V의 전압 범위에서 300 F/g (전류 밀도: 0.1 A/g) 그리고 70 F/g (전류 밀도: 204.8 A/g)의 성능 수치를 탄소나노튜브 전극이 보여주며, 이는 상업적으로 사용되고 있는 활성탄 전극보다 우수한 값이다(도 12).As a result of the measurement experiments, a cyclic voltammetry curve (FIG. 10) and a charge / discharge curve (FIG. 11) showing the performance of the supercapacitor were obtained. When calculating storage capacity, carbon nanotube electrodes show performance figures of 300 F / g (current density: 0.1 A / g) and 70 F / g (current density: 204.8 A / g) in the voltage range of 0 to 2.7 V. This is better than the commercially available activated carbon electrode (FIG. 12).
실시예 6: 니켈 금속 나노입자 기반의 이산화탄소 화학기상증착법 구축으로 합성한 탄소나노튜브의 리튬이온전지(lithium-ion battery) 전극 소재로의 응용Example 6 Application of Carbon Nanotubes to Lithium-ion Battery Electrode Material Synthesized by Carbon Dioxide Chemical Vapor Deposition
실시예 1의 제조법에 따라 합성한 탄소나노튜브를 리튬이온전지의 전극 소재로 사용하였고, 그 구체적 과정은 다음과 같다.Carbon nanotubes synthesized according to the preparation method of Example 1 were used as electrode materials for lithium ion batteries, and the specific process is as follows.
탄소나노튜브 0.09 g을 바인더인 플루오르화 폴리비닐리덴(polyvinylidene fluoride) 0.03 g과 도전재인 카본 블랙(carbon black) 0.03 g과 함께 2 ml의 메틸피롤리돈(N-Metyl-2-pyrrolidone) 용매 하에 1000 rpm으로 24시간 동안 교반시켜 혼합 용액을 만든다. 슬러리 형태의 혼합 용액을 구리 호일에 고르게 바른 뒤 80도 오븐에서 12시간 동안 두어 용매를 증발시킨다. 0.09 g of carbon nanotubes together with 0.03 g of polyvinylidene fluoride as a binder and 0.03 g of carbon black as a conductive material, under 2 ml of N-Metyl-2-pyrrolidone solvent Stir at 1000 rpm for 24 hours to form a mixed solution. The mixed solution in the form of a slurry is evenly applied to copper foil and placed in an 80 degree oven for 12 hours to evaporate the solvent.
위와 같이 만든 전극을 작동 전극(working electrode)으로, 리튬 금속을 기준 전극(standard electrode) 및 상대 전극(counter electrode)으로 사용하고, 1 M 육불화인산리튬(lithium hexafluorophosphate solution in ethyl carbonate/diethyl carbonate (EC/DEC), 50/50 (v/v))을 전해질로 사용하여 반쪽 셀(half cell) 실험을 진행한다.The electrode made as above is used as a working electrode, lithium metal is used as a standard electrode and a counter electrode, and 1 M lithium hexafluorophosphate solution in ethyl carbonate / diethyl carbonate ( Half cell experiments using EC / DEC), 50/50 (v / v)) as electrolyte.
케이스(case)에 지름 10 mm로 펀칭한 리튬 금속을 고정시킨 뒤 전해질 5 μL, 지름 14 mm로 펀칭한 분리막(separator), 전해질 10 μL, 지름 10 mm로 펀칭한 작동 전극, 개스킷(gasket), 스페이서(spacer), 스프링(spring)을 순서대로 쌓고 캡(cap)으로 덮어 셀을 조립한다. 셀 조립은 모두 수분과 산소가 차단된 아르곤 환경의 글로브박스 안에서 이루어지며, 조립한 셀을 측정 장치에 달아 전극의 성능을 관찰한다.A lithium metal punched into a case with a diameter of 10 mm was fixed in a case, a separator punched with 5 μL of electrolyte and a diameter of 14 mm, a working electrode punched with 10 μL of electrolyte and a diameter of 10 mm, a gasket, Cells are assembled by stacking spacers and springs in order and covering them with caps. The cell assembly is all done in a glove box in an argon environment where water and oxygen are blocked, and the assembled cell is attached to a measuring device to observe the electrode performance.
실험 결과, 도 13과 도 14에서 보이는 충방전곡선과 사이클곡선을 얻었으며, 이로부터 0.01 V ~ 3.0 V의 전압 범위와 1 A/g의 전류밀도 기준으로 330 mAh/g의 전기 용량(capacity)을 나타내었다.As a result, the charge and discharge curves and the cycle curves shown in FIGS. 13 and 14 were obtained. From this, a capacity of 330 mAh / g was obtained based on a voltage range of 0.01 V to 3.0 V and a current density of 1 A / g. Indicated.
실시예 7: 니켈 금속 나노입자 기반의 이산화탄소 화학기상증착법 구축으로 합성한 탄소나노튜브의 리튬황전지(lithium-sulfur battery) 전극 소재로의 응용Example 7 Application of Carbon Nanotubes to Lithium-Sulfur Battery Electrode Material Synthesized by Nickel Metal Nanoparticle-Based Carbon Dioxide Chemical Vapor Deposition
실시예 1의 제조법에 따라 합성한 탄소나노튜브를 리튬황전지의 전극 소재로 사용하였고, 그 구체적인 과정은 다음과 같다.Carbon nanotubes synthesized according to the preparation method of Example 1 were used as electrode materials for lithium sulfur batteries, and the specific process thereof is as follows.
먼저 탄소나노튜브 0.3 g과 황 0.2 g을 볼밀링(ball milling) 방법으로 24시간 동안 혼합하였다. 후에 도가니에 혼합물을 옮겨 담고 튜브 퍼니스를 이용해 질소 환경 하에 155℃에서 20시간 동안 열처리를 진행하였다. 이렇게 황을 입힌 탄소나노튜브 중 0.14 g을 바인더인 플루오르화 폴리비닐리덴(polyvinylidene fluoride) 0.03 g과 도전재인 카본 블랙(carbon black) 0.03 g과 함께 2 ml의 메틸피롤리돈(N-metyl-2-pyrrolidone) 용매 하에 1000 rpm으로 24시간 동안 교반시켜 혼합 용액을 만들었다. 슬러리 형태의 혼합물을 알루미늄 호일에 고르게 바른 뒤 80℃의 오븐에서 12시간 동안 두어 용매를 증발시켰다.First, 0.3 g of carbon nanotubes and 0.2 g of sulfur were mixed for 24 hours by a ball milling method. Thereafter, the mixture was transferred to a crucible and subjected to a heat treatment for 20 hours at 155 ° C. under a nitrogen environment using a tube furnace. 0.14 g of the sulfurized carbon nanotubes together with 0.03 g of polyvinylidene fluoride, a binder, and 0.03 g of carbon black, a conductive material, 2 ml of methylpyrrolidone (N-metyl-2). -pyrrolidone) was stirred for 24 hours at 1000 rpm to form a mixed solution. The mixture in slurry form was evenly applied to aluminum foil and then placed in an oven at 80 ° C. for 12 hours to evaporate the solvent.
위와 같이 만든 전극을 작동 전극(working electrode)으로, 리튬 금속을 기준 전극(standard electrode) 및 상대 전극(counter electrode)으로 사용하고, 1 M 리튬비스마이드(bis(trifluoromethane) sulfonamide lithium salt (LiTFSi) in dimethoxymethane/1,3-dioxolane (DME/DOL) 50/50(v/v))을 전해질로 사용하여, 실시예 6에서의 과정과 동일하게 반쪽 셀을 조립하여 전극의 성능을 관찰하였다.The electrode made as above is used as a working electrode, lithium metal is used as a standard electrode and a counter electrode, and 1 M trifluoromethane sulfonamide lithium salt (LiTFSi) in Using dimethoxymethane / 1,3-dioxolane (DME / DOL) 50/50 (v / v)) as an electrolyte, the half cells were assembled in the same manner as in Example 6 to observe the electrode performance.
실험 결과, 도 15와 도 16에 나타낸 충방전곡선과 사이클곡선을 얻었으며, 이로부터 1.7 V ~ 2.8 V의 전압 범위와 1 C (1672 mA/g)의 전류밀도 기준으로 670 mAh/g의 전기 용량(capacity)을 나타내었다.As a result of the experiment, the charge and discharge curves and the cycle curves shown in FIGS. 15 and 16 were obtained. Capacity is shown.
본 발명에 따라서 온화한 조건에서도 안정한 이산화탄소 기체를 활성화 시킬 수 있고 탄화수소 기반의 화학기상증착법에 준하는 이산화탄소 기반의 화학기상증착법을 이용하여 지구온난화 현상의 주범인 이산화탄소를 제거함과 동시에 고부가가치를 지닌 탄소나노튜브를 대량 생산할 수 있다.According to the present invention, carbon nanotubes having high added value can be activated by removing carbon dioxide, which is the main culprit of global warming, by activating carbon dioxide gas that is stable under mild conditions and according to hydrocarbon-based chemical vapor deposition. Can be mass produced.
본 발명을 통해 합성된 탄소나노튜브는 표면에 붕소가 코팅되어 있어 약 900℃ 이상의 고온·산화 조건에서도 구조적 안정성을 유지한다. 따라서 나노 및 전자 분야뿐만 아니라 내열성을 필요로 하는 분야에서도 활용될 수 있다.The carbon nanotubes synthesized through the present invention are coated with boron on the surface to maintain structural stability even under high temperature and oxidation conditions of about 900 ° C. or more. Therefore, it can be used not only in nano and electronic fields but also in fields requiring heat resistance.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (21)

  1. 다음 단계를 포함하는 이산화탄소로부터 붕소가 코팅된 탄소나노튜브의 제조방법:A method for preparing boron-coated carbon nanotubes from carbon dioxide, comprising the following steps:
    (a) 고형화된 수소화붕소 환원제와 금속 촉매의 복합체를 비활성기체의 분위기 하에서 가열시키는 단계; 및(a) heating the solidified boron hydride reducing agent and the metal catalyst complex under an atmosphere of inert gas; And
    (b) 이산화탄소가 포함된 기체를 공급하고 활성화시켜 이산화탄소 분자를 탄소원자로 분해시켜 붕소가 코팅된 탄소나노튜브를 합성하는 단계.(b) supplying and activating a gas containing carbon dioxide to decompose carbon dioxide molecules into carbon atoms to synthesize boron-coated carbon nanotubes.
  2. 제1항에 있어서, 상기 수소화붕소 환원제는 수소화붕소나트륨(NaBH4), 수소화붕소리튬(LiBH4), 수소화붕소칼륨(KBH4), 수소화붕소마그네슘(Mg(BH4)2), 수소화붕소칼슘(Ca(BH4)2) 및 수소화붕소 스트론튬(Sr(BH4)2)으로 구성된 군에서 선택되는 것을 특징으로 하는 이산화탄소로부터 붕소가 코팅된 탄소나노튜브의 제조방법.The method of claim 1, wherein the borohydride reducing agent is sodium borohydride (NaBH 4 ), lithium borohydride (LiBH 4 ), potassium borohydride (KBH 4 ), magnesium borohydride (Mg (BH 4 ) 2 ), calcium borohydride (Ca (BH 4 ) 2 ) and boron strontium hydride (Sr (BH 4 ) 2 ) A method for producing boron-coated carbon nanotubes, characterized in that selected from the group consisting of.
  3. 제1항에 있어서, 상기 (a) 단계의 고형화된 수소화붕소 환원제와 금속 촉매의 복합체는The complex of claim 1, wherein the solidified boron hydride reducing agent of step (a) and the metal catalyst are
    (a-1) 제1 용매에 분산된 수소화붕소 환원제와 제2 용매에 분산된 금속 촉매 전구체 또는 금속 나노입자를 혼합하여 수소화붕소 환원제와 금속 촉매의 복합체를 제조하는 단계; 및(a-1) preparing a complex of a boron hydride reducing agent and a metal catalyst by mixing a boron hydride reducing agent dispersed in a first solvent and a metal catalyst precursor or metal nanoparticles dispersed in a second solvent; And
    (a-2) 상기 금속 촉매 복합체에서 용매를 증발시켜 수소화붕소 환원제와 금속 촉매의 복합체를 고형화시키는 단계를 포함하는 방법에 의하여 제조되는 것을 특징으로 하는 이산화탄소로부터 붕소가 코팅된 탄소나노튜브의 제조방법.(A-2) A method for producing boron-coated carbon nanotubes from carbon dioxide, characterized in that prepared by the method comprising the step of evaporating the solvent in the metal catalyst complex to solidify the complex of the boron hydride reducing agent and the metal catalyst. .
  4. 제1항에 있어서, 상기 (b) 단계 이후에 (c) 염산, 물 또는 에탄올로 정제하는 단계를 추가로 포함하는 이산화탄소로부터 붕소가 코팅된 탄소나노튜브의 제조방법.The method of claim 1, further comprising (c) purifying with hydrochloric acid, water or ethanol after step (b).
  5. 제4항에 있어서, 상기 (c) 단계 이후에 (d) 탄소나노튜브를 건조하는 단계를 추가로 포함하는 이산화탄소로부터 붕소가 코팅된 탄소나노튜브의 제조방법.5. The method of claim 4, further comprising (d) drying the carbon nanotubes after the step (c).
  6. 제3항에 있어서, 제1 용매 및 제2 용매는 각각 독립적으로 2가 알코올, 3가 알코올 및 아미드로 구성된 군에서 선택되는 것을 특징으로 하는 이산화탄소로부터 붕소가 코팅된 탄소나노튜브의 제조방법.The method of claim 3, wherein the first solvent and the second solvent are each independently selected from the group consisting of dihydric alcohols, trihydric alcohols, and amides.
  7. 제3항에 있어서, 상기 (a-1) 단계의 분산 및 혼합은 초음파처리(ultrasonication)또는 교반기로 수행되는 것을 특징으로 하는 이산화탄소로부터 붕소가 코팅된 탄소나노튜브의 제조방법.The method of claim 3, wherein the dispersing and mixing of the step (a-1) are performed by ultrasonication or agitator.
  8. 제3항에 있어서, 상기 금속 촉매 전구체는 니켈, 철, 코발트, 망간, 아연, 구리 및 마그네슘으로 구성된 군에서 선택된 금속의 염화물 또는 질산염이고, 상기 금속 나노입자는 니켈, 철, 코발트, 망간, 아연, 구리 및 마그네슘으로 구성된 군에서 선택된 금속의 나노입자인 것을 특징으로 하는 이산화탄소로부터 붕소가 코팅된 탄소나노튜브의 제조방법.The metal catalyst precursor of claim 3, wherein the metal catalyst precursor is a chloride or nitrate of a metal selected from the group consisting of nickel, iron, cobalt, manganese, zinc, copper, and magnesium, and the metal nanoparticles are nickel, iron, cobalt, manganese, zinc. A method for producing boron-coated carbon nanotubes from carbon dioxide, characterized in that the nanoparticles of the metal selected from the group consisting of copper and magnesium.
  9. 제1항에 있어서, 상기 (a) 단계는 1~10℃min-1의 속도로 400~700℃까지 승온시키는 것을 특징으로 하는 이산화탄소로부터 붕소가 코팅된 탄소나노튜브의 제조방법.The method of claim 1, wherein the step (a) is a method for producing boron-coated carbon nanotubes from carbon dioxide, characterized in that the temperature is raised to 400 ~ 700 ℃ at a rate of 1 ~ 10 ℃ min -1 .
  10. 제1항에 있어서, 상기 (b) 단계는 이산화탄소의 공급유량이 200mlmin-1 이하인 것을 특징으로 하는 이산화탄소로부터 붕소가 코팅된 탄소나노튜브의 제조방법.The method of claim 1, wherein the step (b) is a method for producing boron-coated carbon nanotubes from carbon dioxide, characterized in that the supply flow rate of carbon dioxide is 200mlmin -1 or less.
  11. 제1항 내지 제10항 중 어느 한 항의 방법에 의해 제조되고, 다중벽 구조를 가지며, 900℃ 및 산화 조건에서 50% 이상의 보존율을 나타내는 것을 특징으로 하는 붕소가 코팅된 탄소나노튜브.A boron-coated carbon nanotube manufactured by the method of any one of claims 1 to 10, having a multi-walled structure, and having a storage rate of 50% or more at 900 ° C and oxidizing conditions.
  12. 수소화붕소 환원제와 전이금속이나 알카리토금속 촉매를 포함하는 탄소나노튜브 제조용 촉매 복합체.A catalyst composite for producing carbon nanotubes comprising a boron hydride reducing agent and a transition metal or alkaline metal catalyst.
  13. 제12항에 있어서, 상기 수소화붕소 환원제는 수소화붕소나트륨(NaBH4), 수소화붕소리튬(LiBH4), 수소화붕소칼륨(KBH4), 수소화붕소마그네슘(Mg(BH4)2), 수소화붕소칼슘(Ca(BH4)2) 및 수소화붕소 스트론튬(Sr(BH4)2)으로 구성된 군에서 선택되는 것을 특징으로 하는 탄소나노튜브 제조용 촉매 복합체.The method of claim 12, wherein the borohydride reducing agent is sodium borohydride (NaBH 4 ), lithium borohydride (LiBH 4 ), potassium borohydride (KBH 4 ), magnesium borohydride (Mg (BH 4 ) 2 ), calcium borohydride ( A catalyst composite for producing carbon nanotubes, characterized in that it is selected from the group consisting of Ca (BH 4 ) 2 ) and strontium borohydride (Sr (BH 4 ) 2 ).
  14. 제12항에 있어서, 상기 금속 촉매는 니켈, 철, 코발트, 망간, 아연, 마그네슘 및 구리로 구성된 군에서 선택된 것을 특징으로 하는 탄소나노튜브 제조용 촉매 복합체.The catalyst composite of claim 12, wherein the metal catalyst is selected from the group consisting of nickel, iron, cobalt, manganese, zinc, magnesium, and copper.
  15. 다음 단계를 포함하는 제12항의 탄소나노튜브 제조용 촉매 복합체의 제조방법:A method for preparing a catalyst composite for producing carbon nanotubes according to claim 12 comprising the following steps:
    (a-1) 제1 용매에 분산된 수소화붕소 환원제와 제2 용매에 분산된 금속 촉매 전구체 또는 금속 나노입자를 혼합하여 수소화붕소 환원제와 금속 촉매의 복합체를 제조하는 단계; 및(a-1) preparing a complex of a boron hydride reducing agent and a metal catalyst by mixing a boron hydride reducing agent dispersed in a first solvent and a metal catalyst precursor or metal nanoparticles dispersed in a second solvent; And
    (a-2) 상기 금속 촉매 복합체에서 용매를 증발시켜 수소화붕소 환원제와 금속 촉매의 복합체를 고형화시키는 단계.(a-2) solidifying the complex of the boron hydride reducing agent and the metal catalyst by evaporating the solvent in the metal catalyst complex.
  16. 제11항의 탄소나노튜브를 포함하는 슈퍼커패시터의 전극.The electrode of the supercapacitor comprising the carbon nanotubes of claim 11.
  17. 제11항의 탄소나노튜브를 포함하는 리튬이온전지의 전극.An electrode of a lithium ion battery comprising the carbon nanotubes of claim 11.
  18. 제11항의 탄소나노튜브를 포함하는 리튬황전지의 전극.An electrode of a lithium sulfur battery comprising the carbon nanotubes of claim 11.
  19. 제11항의 탄소나노튜브를 포함하는 슈퍼커패시터의 분리막.Separation membrane of the supercapacitor comprising the carbon nanotubes of claim 11.
  20. 제11항의 탄소나노튜브를 포함하는 리튬이온전지의 분리막.Separation membrane of a lithium ion battery comprising the carbon nanotubes of claim 11.
  21. 제11항의 탄소나노튜브를 포함하는 리튬황전지의 분리막.Separation membrane of a lithium sulfur battery comprising the carbon nanotubes of claim 11.
PCT/KR2019/002005 2018-02-20 2019-02-20 Method for manufacturing carbon nanotubes doped with heteroatoms from carbon dioxide WO2019164225A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180019631 2018-02-20
KR10-2018-0019631 2018-02-20
KR1020190016813A KR102201998B1 (en) 2018-02-20 2019-02-13 Method of Synthesizing Heteroatom-Doped Carbon Nanotube Derived From Carbon Dioxide
KR10-2019-0016813 2019-02-13

Publications (1)

Publication Number Publication Date
WO2019164225A1 true WO2019164225A1 (en) 2019-08-29

Family

ID=67686983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002005 WO2019164225A1 (en) 2018-02-20 2019-02-20 Method for manufacturing carbon nanotubes doped with heteroatoms from carbon dioxide

Country Status (1)

Country Link
WO (1) WO2019164225A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220214A (en) * 2001-01-23 2002-08-09 National Institute Of Advanced Industrial & Technology Method for manufacturing carbon nano tube
KR20040031714A (en) * 2001-07-03 2004-04-13 패컬티스 유니버시테이레스 노트레-다메 드 라 파익스 Catalyst supports and carbon nanotubes produced thereon
KR101340009B1 (en) * 2013-03-06 2013-12-11 한국과학기술원 Method for the synthesis of carbon materials using carbon dioxide
KR20150027580A (en) * 2013-09-04 2015-03-12 한국과학기술원 Method of Preparing Metal-Doped Carbon Materials Using Carbon Dioxide
KR20170120494A (en) * 2016-04-21 2017-10-31 한국과학기술원 Method of Synthesizing Boron-Doped Carbon Materials from Carbon Dioxide by Impregnation of Transition Metal Oxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220214A (en) * 2001-01-23 2002-08-09 National Institute Of Advanced Industrial & Technology Method for manufacturing carbon nano tube
KR20040031714A (en) * 2001-07-03 2004-04-13 패컬티스 유니버시테이레스 노트레-다메 드 라 파익스 Catalyst supports and carbon nanotubes produced thereon
KR101340009B1 (en) * 2013-03-06 2013-12-11 한국과학기술원 Method for the synthesis of carbon materials using carbon dioxide
KR20150027580A (en) * 2013-09-04 2015-03-12 한국과학기술원 Method of Preparing Metal-Doped Carbon Materials Using Carbon Dioxide
KR20170120494A (en) * 2016-04-21 2017-10-31 한국과학기술원 Method of Synthesizing Boron-Doped Carbon Materials from Carbon Dioxide by Impregnation of Transition Metal Oxide

Similar Documents

Publication Publication Date Title
Yang et al. Constructing SbOC bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries
Banerjee et al. Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries
Liu et al. Multifunctional CoO@ C metasequoia arrays for enhanced lithium storage
AU2010358633B2 (en) Sulfide solid electrolyte glass, lithium solid-state battery, and method for producing sulfide solid electrolyte glass
CN101492576B (en) Carbon nano-complex particle, preparation and uses thereof
RU2501128C2 (en) Method of producing carbon composite material
WO2011019218A9 (en) Amorphous anode active material, preparation method of electrode using same, secondary battery containing same, and hybrid capacitor
WO2013005887A1 (en) Cathode active material using silicone-carbon core-shell for lithium secondary battery and method for manufacturing same
CN107293743A (en) A kind of sodium-ion battery positive material of Fe-laden acid nickel porous nanotube and preparation method thereof
CN112777571A (en) Method for synthesizing battery-grade lithium sulfide
Zhu et al. Urchin-like hollow-structured cobalt oxides with excellent anode performance for lithium-ion batteries
Gao et al. Scalable synthesis of high-performance anode material SiOx/C for lithium-ion batteries by employing the Rochow reaction process
Wang et al. Fabrication of high-performance lithium ion battery anode materials from polysilsesquioxane nanotubes
Zhang et al. Three-dimensional interconnected porous carbon nanoflakes with improved electron transfer and ion storage for lithium-ion batteries
Wan et al. Lithium sulfide nanocrystals as cathode materials for advanced batteries
Tian et al. Silicon-carbon anode with high interfacial stability by a facile thermal reaction involving alkaline nitrogenous carbon source for lithium ion batteries
KR102235013B1 (en) Method of Synthesizing Heteroatom-Doped Carbon Nanotube Derived From Carbon Dioxide
Huang et al. V2O5 nanocrystals: Chemical solution synthesis, hydrogen thermal treatment and enhanced rate capability as cathode materials for lithium-ion batteries
WO2019164225A1 (en) Method for manufacturing carbon nanotubes doped with heteroatoms from carbon dioxide
CN102950015B (en) Method for preparing boron carbon nitride nanotube with high oxygen reduction catalytic activity
CN111945252B (en) Method for preparing hollow antimony-based binary alloy composite nanofiber material based on electrostatic spinning and potassium storage application thereof
WO2017018855A1 (en) Metal-doped graphene plate
Dar et al. Self-assembled Co3O4 nanoplatelets into micro-spheres via a simple solvothermal route: Structural and electrochemical properties
WO2016153255A1 (en) Cathode active material and preparation method therefor
WO2022025370A1 (en) Capillary driven formation of iron nanoparticles embedded in carbon nanotubes for catalytic lithium-carbon dioxide reaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19756858

Country of ref document: EP

Kind code of ref document: A1