WO2017018855A1 - Metal-doped graphene plate - Google Patents

Metal-doped graphene plate Download PDF

Info

Publication number
WO2017018855A1
WO2017018855A1 PCT/KR2016/008374 KR2016008374W WO2017018855A1 WO 2017018855 A1 WO2017018855 A1 WO 2017018855A1 KR 2016008374 W KR2016008374 W KR 2016008374W WO 2017018855 A1 WO2017018855 A1 WO 2017018855A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
metal
graphene plate
graphite
plate
Prior art date
Application number
PCT/KR2016/008374
Other languages
French (fr)
Korean (ko)
Inventor
백종범
전인엽
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2017018855A1 publication Critical patent/WO2017018855A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a graphene plate in which a metal is introduced, and more particularly, to a graphene plate in which a post-transition metal or metalloid is introduced into an edge of graphene.
  • Fuel cells have many advantages over batteries, such as energy safety, low operating costs, stable power generation, fuel selection, clean emissions and high power efficiency.
  • two major technical risks (manufacturing costs and reliability) have, to date, hindered commercialization.
  • ORR anodic oxygen reduction reaction
  • Platinum (Pt) based materials have been found to be the most efficient catalysts to date.
  • manufacturing costs are high, and fuel cells using them have various problems related to carbon monoxide poisoning, fuel selectivity, and long-term stability.
  • platinum substitutes including platinum based alloys, non-noble metal metal based catalysts, enzymatic electrochemical catalysts and hetero-doped carbon based materials.
  • hetero-doped carbonaceous materials such as carbon black, carbon nanoparticles, carbon nanotubes, and graphene have been studied as efficient metal free electrochemical catalysts for ORR.
  • Graphene is a carbon-based material composed of a single layer of sp 2 carbon having a two-dimensional honeycomb lattice layer, and has many specific properties including excellent electrical conductivity, large surface area, excellent mechanical flexibility, and high thermal / chemical stability.
  • boron Wang, S. et al. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed.
  • Korean Patent Publication No. 2013-009070 of the present applicant discloses a technique in which a functional group such as a carboxyl group is introduced at the edge of graphene.
  • a metal preferably post-transition metal or metalloid, is introduced at the edge part, based on the most optimized ball milling method.
  • the above object is achieved by a graphene plate in which a post-transition metal or metalloid is bonded with carbon at the edge portion.
  • the post-transition metal may be selected from the group consisting of aluminum, gallium, indium, tin, lead and bismuth.
  • the metalloid may be selected from the group consisting of silicon, germanium, arsenic and tellurium.
  • the total element content of the post-transition metal or metalloid in the graphene plate may be 0.1 element% to 5 element%.
  • the grain size of the graphene plate may be 0.1 to 100 ⁇ m.
  • the graphene plate may be prepared by mixing the metal or metalloid and graphite after the transition in a weight ratio of 1:10 to 10: 1, and then mechanically pulverizing. It can be achieved in a vacuum for 24 to 60 hours at a rate.
  • An object of the present invention is to prepare a mixture of graphite and a metal or post-transition metal in a weight ratio of 1:10 to 10: 1; Reacting the graphene with the metal by grinding with a ball mill under vacuum; Washing the reactants with a solvent to remove unreacted materials; And lyophilizing the reactant, thereby achieving a graphene plate having a metal bonded to carbon at an edge portion thereof.
  • the graphene plate according to the present invention provides a graphene plate into which a post-transition metal and a metalloid are introduced, which could not be manufactured by the conventional graphene manufacturing process. Since the graphene plate according to the present invention has excellent electrochemical activity and durability, it can be applied more quickly and easily in various fields and contribute to the commercialization of graphene.
  • Figure 1c is a natural graphite (a), CGnP (b), HGnP (c) before grinding SEM pictures of AlGnP (d), GaGnP (e), InGnP (f), GeGnP (g), SnGnP (h), PbGnP (i), AsGnP (j), SbGnP (k), BiGnP (l) Scale bar: 1 ⁇ m).
  • FIG. 2A illustrates an XPS spectra image of natural graphite
  • FIG. 2B is an enlarged view of an XPS spectra image of graphene (AlGnP) in which aluminum is introduced into a post-transition metal.
  • FIG. 3 shows an XPS spectra image of graphene (XGnP) into which post-transition metal is introduced.
  • FIG. 4 shows an XPS spectra image of graphene (XGnP) in which a metal is introduced.
  • FIG. 5a shows graphene (SbGnP) incorporating antimony
  • FIG. 5b shows graphene (AlGnP) incorporating aluminum
  • FIG. 5c shows graphene (InGnP) incorporating indium
  • FIG. Fin PbGnP
  • FIG. 5E shows an image of the atomic magnification transmission electron microscope of bismuth introduced graphene (BiGnP).
  • Figure 6 is a graph showing the electrochemical activity of graphite, commercial platinum catalyst and the graphene introduced antimony according to the present invention.
  • FIG. 7 is a graph comparing the stability of graphite, commercial platinum catalyst and graphene introduced antimony according to the present invention.
  • graphene Since graphene is electrochemically inert, it is necessary to give electrochemical activity to graphene to expand its field of application. For this purpose, graphene using non-metal elements nitrogen (N), phosphorus (P), sulfur (S), selenium (Se), fluoro (F), chlorine (Cl), boron (Br), and iodine (I) A method of doping is known. However, when heterogeneous elements are introduced into graphene using the conventional chemical vapor deposition method or the oxidation method, the introduction itself is not good, and the excellent properties of the graphene itself are often weakened. Therefore, the graphene produced by the conventional method has a limit to exhibit the excellent characteristics of the graphene itself.
  • the present invention provides a graphene plate incorporating a metal into the edge portion of the graphene.
  • the present invention relates to a graphene plate in which a metal, such as a post-transition metal or a metalloid, is introduced at the edge of the graphene in order to impart electrochemical activity and stability to the electrochemically inactive graphene. Relates to a graphene plate in which the carbon of the edge of graphene and the metal are bonded.
  • the present invention provides graphene polarized by introducing heterogeneous elements, preferably metals, more preferably transition metals or metalloids, on the edges of graphene.
  • the metal after the transition may be selected from the group consisting of aluminum (Al), gallium (Ga), indium (In), tin (Sn), lead (Pb), and bismuth (Bi).
  • the metalloid may be selected from the group consisting of silicon, germanium, arsenic, and tellurium.
  • the method for preparing a graphene plate into which a metal is introduced according to the present invention includes the following steps:
  • the grinding process is preferably made for 24 to 60 hours at a speed of 100 to 10,000 rpm.
  • FIG. 1A schematically illustrates a manufacturing process of a graphene plate into which a metal (antimony) is introduced according to the present invention
  • FIG. 1B schematically illustrates a manufacturing process of a graphene plate into which a metal is introduced.
  • the graphite (C) located at the edge of the graphene plate is activated while the graphite is crushed into the graphene plate. And some of them combine with the metal.
  • the graphene plate has a grain size of 0.1 to 100 ⁇ m.
  • 1C shows natural graphite (a), CGnP (b), HGnP (c), AlGnP (d), GaGnP (e), InGnP (f), GeGnP (g), SnGnP (h), PbGnP before grinding into a ball mill. SEM pictures of (i), AsGnP (j), SbGnP (k) and BiGnP (l).
  • the size of natural graphite is about 150 ⁇ m, but the grain size of the graphene plate into which the metal according to the present invention is introduced is 1 ⁇ m or less (scale bar: 1 ⁇ m).
  • the natural graphite is ball milled together with a solid metal or a post-transition metal, thereby producing graphite having a multi-layered structure into a plurality of graphene plates, and introducing the metal into the edge portion to have a large surface area and pore volume.
  • Graphene plates can be provided. Graphene plates having this particular feature can contribute to the improvement of electrocatalyst performance.
  • FIGS. 2b and 3a The results are shown in FIGS. 2b and 3a. 2B and 3A, it can be seen that C-Al bonds formed by bonding C and Al of graphene are formed at the edges of the graphene. Compared with the natural graphite shown in FIG. 2, Al-introduced graphene showed O1s peaks and Al2p peaks in addition to the strong C1s peaks present in graphite, and it was confirmed that C-Al bonds were formed.
  • Atomic-resolution transmission electron microscopy (AR-TEM) photographs of AlGnP are shown in FIG. 5B.
  • 5B dark Al atoms are observed only along the edges of AlGnP. This confirms that Al is introduced only at the edge of the graphene plate.
  • the GaGnP spectrum of FIG. 3b was analyzed to calculate the element content (at.%) Of C, O, and Ga in the finally manufactured GaGnP, and is shown in Table 1 below.
  • FIG. 5C Atomic-resolution transmission electron microscopy (AR-TEM) photographs of InGnP are shown in FIG. 5C.
  • AR-TEM Atomic-resolution transmission electron microscopy
  • FIG. 5D Atomic-resolution transmission electron microscopy (AR-TEM) photographs of PbGnP are shown in FIG. 5D. 5D, dark colored Pb atoms are only observed along the edges of PbGnP. This confirmed that the Pb is introduced only at the edge of the graphene plate.
  • AR-TEM Atomic-resolution transmission electron microscopy
  • Si in the final manufactured SiGnP is shown in Table 1 below.
  • Ge in the final GeGnP produced is shown in Table 1 below.
  • FIG. 5A is an AR-TEM photograph obtained at the edge of SbGnP where dark colored Sb atoms are observed only along the edge of SbGnP. This confirmed that Sb is introduced only at the edge of the graphene plate.
  • Te in the final TeGnP produced is shown in Table 1 below.
  • the results are shown in FIG. 8 (a: CGnP, b: HGnP, c: GaGnP, d: SnGnP, e: SbGnP).
  • SEI solid-electrolyte interphase
  • the starting cathode peak near 0.5 V is associated with the insertion of Li + into the graphite layer, indicating that graphene is capable of lithium storage.

Abstract

The present invention relates to a metal-doped graphene plate and, specifically, relates to a graphene plate in which a post-transition metal or a metalloid is doped to the edge of graphene. The present invention discloses the graphene plate, wherein a post-transition metal or a metalloid, which cannot be produced by conventional graphene production processes, is doped to the edge of graphene, thereby exhibiting excellent electrochemical activity and durability. Due to the features, the graphene plate according to the present invention can be applied more quickly and easily in various fields, and can contribute to commercialization of graphene.

Description

금속이 도입된 그래핀 플레이트Graphene Plate with Metal
본 발명은 금속이 도입된 그래핀 플레이트에 관한 것으로서, 구체적으로는 전이후 금속 또는 준금속이 그래핀의 가장자리부에 도입된 그래핀 플레이트에 관한 것이다.The present invention relates to a graphene plate in which a metal is introduced, and more particularly, to a graphene plate in which a post-transition metal or metalloid is introduced into an edge of graphene.
에너지 수요는 지속적으로 증가하고 있다. 그러나 화석 연료는 공급이 감소되고 있고, 급속한 산업화와 인구 증가로 인해 온실가스는 증가하고 있다. 에너지 수요의 대부분은 석탄, 석유 및 천연가스와 같은 기존의 화석연료에 의해 충족되고 있다. 하지만, 현재 인류는 천연 에너지원의 고갈과 환경 오염이라는 문제에 직면하고 있다. 따라서, 태양광, 바람, 열, 수력발전, 바이오매스 및 연료전지와 같은 재생가능한 대체 에너지원에 대한 연구가 대단한 관심을 받고 있다. Energy demand continues to rise. However, fossil fuel supply is decreasing and greenhouse gases are increasing due to rapid industrialization and population growth. Most of the energy demand is met by existing fossil fuels such as coal, oil and natural gas. However, human beings now face the problem of depletion of natural energy sources and pollution. Thus, research on renewable alternative energy sources such as solar, wind, heat, hydro, biomass and fuel cells is of great interest.
연료 전지는 배터리보다 많은 장점들, 예를 들면 에너지 안전성, 낮은 작동 비용, 안정적인 전력 발생, 연료 선택, 청정 방출 및 높은 전력 효율을 갖고 있다. 그러나 2 가지 주요 기술적 위험(제조 비용 및 신뢰성)이 현재까지 상업화를 방해하고 있다. 특히, 주요 단점은 빠른 음극 수소 산화 반응과 비교하여 양극 산소 환원 반응(ORR)이 동역학적으로 느리다는 것이다. 백금(Pt)계 물질이 지금까지 가장 효율적인 촉매로 밝혀졌다. 그러나, 백금의 희귀성으로 인해 제조 비용이 높고, 이들을 이용한 연료 전지는 일산화탄소 중독, 연료 선택도 및 장기간 안정성과 관련된 다양한 문제를 갖고 있다. 그러므로, 대량의 상업적 적용을 위하여, 저비용, 연료 선택도, 내구성 및 고활성 전기촉매를 개발할 필요가 있다. 이를 위해, 백금계 합금, 비귀금속 금속계 촉매, 효소학적 전기화학 촉매 및 이종원소 도핑된 탄소계 물질들을 포함하여 가능한 백금의 대체제를 찾기 위해 상당한 노력이 기울여지고 있다. 이들 후보 중에서, 이종원소 도핑된 탄소계 물질들, 예를 들어 카본 블랙, 탄소 나노입자, 탄소 나노튜브 및 그래핀이 ORR을 위한 효율적인 금속 프리 전기화학촉매로서 많이 연구되고 있다.Fuel cells have many advantages over batteries, such as energy safety, low operating costs, stable power generation, fuel selection, clean emissions and high power efficiency. However, two major technical risks (manufacturing costs and reliability) have, to date, hindered commercialization. In particular, the main disadvantage is that the anodic oxygen reduction reaction (ORR) is kinematically slow compared to the fast cathodic hydrogen oxidation reaction. Platinum (Pt) based materials have been found to be the most efficient catalysts to date. However, due to the rareness of platinum, manufacturing costs are high, and fuel cells using them have various problems related to carbon monoxide poisoning, fuel selectivity, and long-term stability. Therefore, for large commercial applications, there is a need to develop low cost, fuel selectivity, durability and high activity electrocatalyst. To this end, considerable effort is being made to find possible platinum substitutes, including platinum based alloys, non-noble metal metal based catalysts, enzymatic electrochemical catalysts and hetero-doped carbon based materials. Among these candidates, hetero-doped carbonaceous materials such as carbon black, carbon nanoparticles, carbon nanotubes, and graphene have been studied as efficient metal free electrochemical catalysts for ORR.
그래핀은 2차원 벌집 격자층을 갖는 sp2 탄소의 단일 층으로 이루어진 탄소계 물질로서, 뛰어난 전기 전도성, 넓은 표면적, 우수한 기계적 유연성, 및 높은 열적/화학적 안정성을 포함한 많은 특이한 물성을 갖고 있다. 현재, 다양한 이종 원소로 도핑된 그래핀과 관련하여 다수의 연구들이 보고되고 있다. 예를 들어, 붕소(Wang, S. et al. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 51, 4209-4212, 2012; Sheng, Z.H., Gao, H.L., Bao, W.J., Wang, F.B. & Xia, X.H. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 22, 390395, 2012) 질소(Qu, L., Liu, Y., Baek, J.B. & Dai, L. Nitrogen-doped graphene as efficient metalfree electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 13211326, 2010; Geng, D. et al. High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 4, 760-764, 2011), 황(Yang, Z. et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205-211, 2011; Jeon, I.Y. et al. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect. Adv. Mater. 25, 6138-6145, 2013), 인(Jeon, I.Y. et al. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 3, 1795-1810, 2013), 요오드(Jeon, I.Y. et al. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 3, 1795-1810, 2013), 셀레늄(Jin, Z. et al. Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale 4, 6455-6460, 2012) 및 이들의 혼합물(Yang, S. et al. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 22, 3634-3640, 2012; Liang, J., Jiao, Y., Jaroniec, M. & Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51, 11496-11500, 2012)에 대하여 보고되고 있다. Graphene is a carbon-based material composed of a single layer of sp 2 carbon having a two-dimensional honeycomb lattice layer, and has many specific properties including excellent electrical conductivity, large surface area, excellent mechanical flexibility, and high thermal / chemical stability. Currently, a number of studies have been reported on graphene doped with various heterogeneous elements. For example, boron (Wang, S. et al. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 51, 4209-4212, 2012; Sheng, ZH, Gao, HL , Bao, WJ, Wang, FB & Xia, XH Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells.J. Mater. Chem. 22, 390395, 2012) Nitrogen (Qu, L., Liu, Y., Baek , JB & Dai, L. Nitrogen-doped graphene as efficient metalfree electrocatalyst for oxygen reduction in fuel cells.ACS Nano 4, 13211326, 2010; Geng, D. et al.High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 4, 760-764, 2011), Yang, Z. et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction.ACS Nano 6, 205-211, 2011; Jeon , IY et al. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect.Adv. Mater. 25, 6138-6145, 2013), phosphorus (Jeon, IY et al. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 3, 1795-1810, 2013), iodine (Jeon, IY et al. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction.Sci.Rep. 3, 1795-1810, 2013) , Selenium (Jin, Z. et al. Metal-free selenium doped carbon nanotube / graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction.Nanoscale 4, 6455-6460, 2012) and mixtures thereof (Yang, S. et. al.Efficient synthesis of heteroatom (N or S) -doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions.Adv.Funct. Mater. 22, 3634-3640, 2012; Liang, J., Jiao, Y , Jaroniec, M. & Qiao, SZ Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance.Angew. Chem. Int. Ed. 51, 11496-11500, 2012).
일반적으로, 화학 기상 증착법과 그래파이트 산화 방법은 이종 원소 도핑된 그래핀과 그래핀 나노플레이트(GnPs)의 합성을 위해 사용되어 왔다. 그러나, 이러한 방법들은 복잡한 제조 과정과 유해한 시약(예를 들어, 강산, 발암성 환원제)의 사용으로 인해 경제성이 낮고 상업화에 많은 제약이 있다. 긴 수명은 상업화를 위한 가장 중요한 요소인데, Pt/C와 이종원소 도핑된 탄소계 물질을 포함하는 대부분의 전기화학촉매들의 수명은 산소에 의해 이산화탄소가 되는 탄소의 전기화학적 붕괴(에칭)와 관련된다. 탄소의 전기화학적 에칭(C+O2->CO2)은 추가로 에너지 전환과 긴 수명을 갖는 저장장치와 상업적 실현가능성의 실현을 방해한다. In general, chemical vapor deposition and graphite oxidation have been used for the synthesis of hetero-doped graphene and graphene nanoplates (GnPs). However, these methods have low economical and many commercial restrictions due to the complicated manufacturing process and the use of harmful reagents (eg strong acids, carcinogenic reducing agents). Long life is the most important factor for commercialization, where the lifetime of most electrochemical catalysts, including Pt / C and hetero-doped carbonaceous materials, is related to the electrochemical decay of carbon, which becomes carbon dioxide by oxygen. . Electrochemical etching of carbon (C + O 2- > CO 2 ) further hinders the realization of energy conversion and long lifetime storage and commercial feasibility.
본 발명자들은 볼 밀링에 의해 GnPs의 가장자리 선택적으로 기능화하기 위한 방법으로서, 단순하지만 친환경적인 기계화학적 반응을 고안한 바 있다. 본 출원인의 한국공개특허 제2013-009070호에서는 카르복실기와 같은 기능기가 그래핀의 가장자리에 도입되는 기술을 개시하고 있다.The inventors have devised a simple but environmentally friendly mechanochemical reaction as a method for selectively functionalizing the edges of GnPs by ball milling. Korean Patent Publication No. 2013-009070 of the present applicant discloses a technique in which a functional group such as a carboxyl group is introduced at the edge of graphene.
본 발명은 전기화학적으로 활성을 나타내는, 금속이 도입된 그래핀 플레이트를 제공하는 것을 목적으로 한다. 구체적으로, 본 발명은, 가장 최적화된 볼 밀링 방법에 기초하여, 금속, 바람직하게는 전이후 금속 또는 준금속이 가장자리 부분에 도입된 그래핀 플레이트를 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a graphene plate into which a metal is introduced, which is electrochemically active. In particular, it is an object of the present invention to provide a graphene plate in which a metal, preferably post-transition metal or metalloid, is introduced at the edge part, based on the most optimized ball milling method.
상기한 목적은, 전이후 금속 또는 준금속이 가장자리 부분의 탄소와 결합되어 있는 그래핀 플레이트에 의해 달성된다.The above object is achieved by a graphene plate in which a post-transition metal or metalloid is bonded with carbon at the edge portion.
바람직하게는, 상기 전이후 금속은 알루미늄, 갈륨, 인듐, 주석, 납 및 비스무트로 이루어진 군에서 선택될 수 있다.Preferably, the post-transition metal may be selected from the group consisting of aluminum, gallium, indium, tin, lead and bismuth.
또한 바람직하게는, 상기 준금속은 실리콘, 게르마늄, 비소 및 텔루륨으로 이루어진 군에서 선택될 수 있다.Also preferably, the metalloid may be selected from the group consisting of silicon, germanium, arsenic and tellurium.
바람직하게는, 상기 그래핀 플레이트 중 전이후 금속 또는 준금속의 총 원소함량은 0.1 원소% 내지 5 원소%일 수 있다.Preferably, the total element content of the post-transition metal or metalloid in the graphene plate may be 0.1 element% to 5 element%.
바람직하게는, 상기 그래핀 플레이트의 입자크기(grain size)는 0.1 내지 100㎛일 수 있다.Preferably, the grain size of the graphene plate may be 0.1 to 100㎛.
또한 바람직하게는, 상기 그래핀 플레이트는 전이후 금속 또는 준금속과 그래파이트를 1:10 내지 10:1의 중량비로 혼합한 후 기계적으로 분쇄하여 제조된 것일 수 있고, 상기 분쇄는 100 내지 10,000 rpm의 속도로 24 내지 60시간 동안 진공상태에서 이루질 수 있다.Also preferably, the graphene plate may be prepared by mixing the metal or metalloid and graphite after the transition in a weight ratio of 1:10 to 10: 1, and then mechanically pulverizing. It can be achieved in a vacuum for 24 to 60 hours at a rate.
본 발명의 목적은 그래파이트와 준금속 또는 전이후 금속을 1:10 내지 10:1의 중량비로 혼합하여 준비하는 단계; 진공 하에서 상기 그래핀과 상기 금속을 볼밀로 분쇄하면서 반응시키는 단계; 상기 반응물을 용매로 세척하여 미반응물을 제거하는 단계; 및 상기 반응물을 동결건조하는 단계를 포함하는, 금속이 가장자리 부분의 탄소와 결합되어 있는 그래핀 플레이트의 제조방법이 의해서 달성된다.An object of the present invention is to prepare a mixture of graphite and a metal or post-transition metal in a weight ratio of 1:10 to 10: 1; Reacting the graphene with the metal by grinding with a ball mill under vacuum; Washing the reactants with a solvent to remove unreacted materials; And lyophilizing the reactant, thereby achieving a graphene plate having a metal bonded to carbon at an edge portion thereof.
본 발명에 따른 그래핀 플레이트는 기존 그래핀 제조공정으로는 제조할 수 없었던 전이후 금속과 준금속이 도입된 그래핀 플레이트를 제공한다. 본 발명에 따른 그래핀 플레이트는 우수한 전기화학적 활성과 내구성을 갖고 있기 때문에 다양한 분야에서 더 빠르고 쉽게 응용될 수 있고, 그래핀의 상용화에 기여할 수 있다.The graphene plate according to the present invention provides a graphene plate into which a post-transition metal and a metalloid are introduced, which could not be manufactured by the conventional graphene manufacturing process. Since the graphene plate according to the present invention has excellent electrochemical activity and durability, it can be applied more quickly and easily in various fields and contribute to the commercialization of graphene.
도 1a 및 도 1b는 본 발명에 따른 금속이 도입된 그래핀 플레이트(XGnP)의 제조공정을 개략적으로 도시한 것이고, 도 1c는 분쇄 전 천연 그래파이트(a), CGnP(b), HGnP(c), AlGnP(d), GaGnP(e), InGnP(f), GeGnP(g), SnGnP(h), PbGnP(i), AsGnP(j), SbGnP(k), BiGnP(l)의 SEM 사진이다(스케일 바: 1 ㎛).1a and 1b schematically show the manufacturing process of the graphene plate (XGnP) is introduced metal according to the present invention, Figure 1c is a natural graphite (a), CGnP (b), HGnP (c) before grinding SEM pictures of AlGnP (d), GaGnP (e), InGnP (f), GeGnP (g), SnGnP (h), PbGnP (i), AsGnP (j), SbGnP (k), BiGnP (l) Scale bar: 1 μm).
도 2a는 천연 그래파이트의 XPS 스펙트라 이미지를 도시한 것이고, 도 2b는 전이후 금속 중 알루미늄이 도입된 그래핀(AlGnP)의 XPS 스펙트라 이미지의 확대도이다.FIG. 2A illustrates an XPS spectra image of natural graphite, and FIG. 2B is an enlarged view of an XPS spectra image of graphene (AlGnP) in which aluminum is introduced into a post-transition metal.
도 3은 전이후 금속이 도입된 그래핀(XGnP)의 XPS 스펙트라 이미지를 도시한 것이다.3 shows an XPS spectra image of graphene (XGnP) into which post-transition metal is introduced.
도 4는 준금속이 도입된 그래핀(XGnP)의 XPS 스펙트라 이미지를 도시한 것이다.4 shows an XPS spectra image of graphene (XGnP) in which a metal is introduced.
도 5a는 안티몬이 도입된 그래핀(SbGnP), 도 5b는 알루미늄이 도입된 그래핀(AlGnP), 도 5c는 인듐이 도입된 그래핀(InGnP), 도 5(d)는 납이 도입된 그래핀(PbGnP), 도 5e는 비스무트가 도입된 그래핀(BiGnP)의 원자배율 투과전자현미경의 이미지를 도시한 것이다.5a shows graphene (SbGnP) incorporating antimony, FIG. 5b shows graphene (AlGnP) incorporating aluminum, and FIG. 5c shows graphene (InGnP) incorporating indium, and FIG. Fin (PbGnP), FIG. 5E shows an image of the atomic magnification transmission electron microscope of bismuth introduced graphene (BiGnP).
도 6은 흑연, 상업용 백금촉매 및 본 발명에 따른 안티몬이 도입된 그래핀의 전기화학적 활성을 나타낸 그래프이다.Figure 6 is a graph showing the electrochemical activity of graphite, commercial platinum catalyst and the graphene introduced antimony according to the present invention.
도 7은 흑연, 상업용 백금촉매 및 본 발명에 따른 안티몬이 도입된 그래핀의 안정성을 비교한 그래프이다. 7 is a graph comparing the stability of graphite, commercial platinum catalyst and graphene introduced antimony according to the present invention.
도 8은 0.2 mVs-1의 스캔 속도에서 0.02V 내지 3V에서 초기 3회 사이클 동안 XGnP(X=C, H, Ga, Sn 또는 Sb)의 순환전압전류곡선(cyclic voltammogram)을 나타낸 그래프이다(a: CGnP, b: HGnP, c: GaGnP, d: SnGnP, e:SbGnP).8 is a graph showing a cyclic voltammogram of XGnP (X = C, H, Ga, Sn or Sb) during the initial three cycles from 0.02V to 3V at a scan rate of 0.2 mVs −1 (a : CGnP, b: HGnP, c: GaGnP, d: SnGnP, e: SbGnP).
그래핀은 전기화학적으로 비활성이므로, 활용 분야를 확대하기 위해서는 그래핀에 전기화학적 활성을 부여할 필요가 있다. 이를 위해 비금속원소인 질소(N), 인(P), 황(S), 셀레늄(Se), 플루오로(F), 염소(Cl), 붕소(Br), 요오드(I)를 이용하여 그래핀을 도핑하는 방법이 알려져 있다. 하지만, 기존의 방법인 화학기상증착법이나 산화법을 이용하여 이종 원소를 그래핀에 도입하는 경우, 도입 자체가 잘 되지 않고, 그래핀 자체의 우수한 특성을 약화시키는 경우가 많다. 따라서, 기존의 방법으로 제조된 그래핀은 그래핀 자체의 우수한 특성을 발휘하는데는 한계가 있다. Since graphene is electrochemically inert, it is necessary to give electrochemical activity to graphene to expand its field of application. For this purpose, graphene using non-metal elements nitrogen (N), phosphorus (P), sulfur (S), selenium (Se), fluoro (F), chlorine (Cl), boron (Br), and iodine (I) A method of doping is known. However, when heterogeneous elements are introduced into graphene using the conventional chemical vapor deposition method or the oxidation method, the introduction itself is not good, and the excellent properties of the graphene itself are often weakened. Therefore, the graphene produced by the conventional method has a limit to exhibit the excellent characteristics of the graphene itself.
본 발명은 그래핀의 가장자리 부분에 금속을 도입한 그래핀 플레이트를 제공한다. 본 발명은 전기화학적으로 비활성인 그래핀에 전기화학적 활성과 안정성을 부여하기 위하여 금속, 예를 들면 전이후 금속 또는 준금속을 그래핀의 가장자리 부분에 도입한 그래핀 플레이트에 관한 것이며, 보다 구체적으로는 그래핀의 가장자리의 탄소와 상기 금속을 결합시킨 그래핀 플레이트에 관한 것이다.The present invention provides a graphene plate incorporating a metal into the edge portion of the graphene. The present invention relates to a graphene plate in which a metal, such as a post-transition metal or a metalloid, is introduced at the edge of the graphene in order to impart electrochemical activity and stability to the electrochemically inactive graphene. Relates to a graphene plate in which the carbon of the edge of graphene and the metal are bonded.
본 발명은 그래핀의 가장자리에 이종 원소, 바람직하게는 금속, 보다 바람직하게는 전이후 금속 또는 준금속을 도입하여 분극화시킨 그래핀을 제공한다. The present invention provides graphene polarized by introducing heterogeneous elements, preferably metals, more preferably transition metals or metalloids, on the edges of graphene.
상기에서 전이후 금속은 알루미늄(Al), 갈륨(Ga), 인듐(In), 주석(Sn), 납(Pb) 및 비스무트(Bi)로 이루어진 군에서 선택될 수 있다.The metal after the transition may be selected from the group consisting of aluminum (Al), gallium (Ga), indium (In), tin (Sn), lead (Pb), and bismuth (Bi).
상기에서 준금속은 실리콘, 게르마늄, 비소 및 텔루륨으로 이루어진 군에서 선택될 수 있다.The metalloid may be selected from the group consisting of silicon, germanium, arsenic, and tellurium.
본 발명에 따른 금속이 도입된 그래핀 플레이트의 제조방법은 다음의 단계들을 포함한다:The method for preparing a graphene plate into which a metal is introduced according to the present invention includes the following steps:
그래파이트와 준금속 또는 전이후 금속을 1:10 내지 10:1의 중량비로 준비하는 단계; 진공 하에서 상기 그래핀과 상기 금속을 볼밀로 분쇄하면서 반응시키는 단계; 상기 반응물을 용매로 세척하여 미반응물을 제거하는 단계; 및 상기 반응물을 동결건조하는 단계.Preparing a graphite and a metal or post-transition metal in a weight ratio of 1:10 to 10: 1; Reacting the graphene with the metal by grinding with a ball mill under vacuum; Washing the reactants with a solvent to remove unreacted materials; And lyophilizing the reaction.
상기에서 분쇄 공정은 100 내지 10,000 rpm의 속도로 24 내지 60시간 동안 이루어지는 것이 바람직하다.The grinding process is preferably made for 24 to 60 hours at a speed of 100 to 10,000 rpm.
도 1a는 본 발명에 따른 금속(안티몬)이 도입된 그래핀 플레이트의 제조공정을 개략적으로 도시한 것으로서, 도 1b는 금속이 도입된 그래핀 플레이트의 제조공정을 개략적으로 도시한 것이다.FIG. 1A schematically illustrates a manufacturing process of a graphene plate into which a metal (antimony) is introduced according to the present invention, and FIG. 1B schematically illustrates a manufacturing process of a graphene plate into which a metal is introduced.
도 1a 및 도 1b를 보면, 그래파이트와 고체 금속을 진공 조건하에서 금속 볼밀(steel ball)을 이용하여 교반하게 되면, 그래파이트가 그래핀 플레이트로 분쇄되면서 그래핀 플레이트의 가장자리에 위치한 탄소(C)가 활성화되고, 이들 중 일부가 금속과 결합하게 된다. 이때 그래핀 플레이트는 0.1 내지 100㎛의 크기(grain size)를 갖게 된다.1A and 1B, when graphite and a solid metal are stirred using a metal ball mill under vacuum conditions, the graphite (C) located at the edge of the graphene plate is activated while the graphite is crushed into the graphene plate. And some of them combine with the metal. In this case, the graphene plate has a grain size of 0.1 to 100 μm.
도 1c는 볼밀로 분쇄하기전 천연 그래파이트(a), CGnP(b), HGnP(c), AlGnP(d), GaGnP(e), InGnP(f), GeGnP(g), SnGnP(h), PbGnP(i), AsGnP(j), SbGnP(k), BiGnP(l)의 SEM 사진이다. 도 1c를 보면, 천연 그래파이트의 크기는 약 150 ㎛이지만, 발명에 따른 금속이 도입된 그래핀 플레이트의 크기(grain size)가 1 ㎛ 이하인 것을 알 수 있다(스케일 바: 1 ㎛).1C shows natural graphite (a), CGnP (b), HGnP (c), AlGnP (d), GaGnP (e), InGnP (f), GeGnP (g), SnGnP (h), PbGnP before grinding into a ball mill. SEM pictures of (i), AsGnP (j), SbGnP (k) and BiGnP (l). Referring to FIG. 1C, the size of natural graphite is about 150 μm, but the grain size of the graphene plate into which the metal according to the present invention is introduced is 1 μm or less (scale bar: 1 μm).
본 발명에서는 천연 그래파이트를 고체인 준금속 또는 전이후 금속과 함께 볼밀로 분쇄함으로써, 다층 구조의 그래파이트를 다수의 그래핀 플레이트로 제조하고, 가장자리 부분에 상기 금속을 도입하여 넓은 표면적과 기공 부피를 갖는 그래핀 플레이트를 제공할 수 있다. 이러한 특정을 갖는 그래핀 플레이트는 전기촉매 성능의 향상에 기여할 수 있다. In the present invention, the natural graphite is ball milled together with a solid metal or a post-transition metal, thereby producing graphite having a multi-layered structure into a plurality of graphene plates, and introducing the metal into the edge portion to have a large surface area and pore volume. Graphene plates can be provided. Graphene plates having this particular feature can contribute to the improvement of electrocatalyst performance.
이하에서 실시예를 들어서 본 발명을 상세하게 설명하지만, 본 발명의 권리범위가 이들 실시예에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited to these Examples.
실시예 1Example 1
흑연 5g과 알루미늄(Al) 5g을 스테인리스 스틸 용기(250ml)에 넣고, 스테인리스 스틸 볼 500g을 상기 용기에 넣고 밀봉하였다. 이후 용기에 아르곤 가스를 5회 충전(70 psi)/방전(0.05 mmHg)하여 공기를 완전히 제거한 후 약 500 rpm에서 48시간 동안 반응시켰다. 생성물에 포함된 금속은 1M의 염산으로 제거한 후 추가로 미반응 알루미늄은 진한 염산으로 제거하였다. 이후, 생성물을 동결건조하여 알루미늄이 도입된 그래핀(AlGnP) 7.73 g을 얻었다. 제조된 AlGnP의 SEM 사진을 도 1c에 나타내었고, 그래핀에 알루미늄이 도입되었는지 여부를 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)을 사용하여 확인하였다. 5 g of graphite and 5 g of aluminum (Al) were placed in a stainless steel vessel (250 ml), and 500 g of stainless steel balls were placed in the vessel and sealed. Thereafter, the vessel was charged with argon gas five times (70 psi) / discharge (0.05 mmHg) to completely remove the air and reacted at about 500 rpm for 48 hours. The metal contained in the product was removed with 1 M hydrochloric acid, and then unreacted aluminum was further removed with concentrated hydrochloric acid. Thereafter, the product was lyophilized to obtain 7.73 g of graphene (AlGnP) into which aluminum was introduced. A SEM image of the prepared AlGnP is shown in FIG. 1C, and whether aluminum was introduced into graphene was confirmed using X-ray photoelectron spectroscopy (XPS).
그 결과를 도 2b와 도 3a에 나타내었다. 도 2b와 도 3a를 보면, 그래핀의 C와 Al이 결합한 C-Al 결합이 그래핀의 가장자리에 생성된 것을 알 수 있다. Al이 도입된 그래핀은 도 2에 나타낸 천연 그래파이트와 비교하여, 그래파이트에 존재하는 강한 C1s 피크에 더하여, O1s 피크와 Al2p 피크를 나타내고 있어 C-Al 결합이 형성되어 있는 것을 확인할 수 있었다. The results are shown in FIGS. 2b and 3a. 2B and 3A, it can be seen that C-Al bonds formed by bonding C and Al of graphene are formed at the edges of the graphene. Compared with the natural graphite shown in FIG. 2, Al-introduced graphene showed O1s peaks and Al2p peaks in addition to the strong C1s peaks present in graphite, and it was confirmed that C-Al bonds were formed.
또한 도 3a의 AlGnP 스펙트럼을 분석하여 최종 제조된 AlGnP 중 C, O, Al의 원소함량(at.%)을 계산하여 아래 표 1에 나타내었다.In addition, by analyzing the AlGnP spectrum of Figure 3a to calculate the element content (at.%) Of C, O, Al in the final AlGnP prepared in Table 1 below.
AlGnP의 AR-TEM(Atomic-resolution transmission electron microscopy) 사진을 도 5b에 도시하였다. 도 5b를 보면, 어두운 색을 갖는 Al 원자가 AlGnP의 가장자리를 따라서만 관찰된다. 이를 통해 Al이 그래핀 플레이트의 가장자리에만 도입되어 있는 것을 확인할 수 있었다. Atomic-resolution transmission electron microscopy (AR-TEM) photographs of AlGnP are shown in FIG. 5B. 5B, dark Al atoms are observed only along the edges of AlGnP. This confirms that Al is introduced only at the edge of the graphene plate.
실시예 2Example 2
흑연 5g과 갈륨(Ga) 5g을 스테인리스 스틸 용기(250ml)에 넣고, 스테인리스 스틸 볼 500g을 상기 용기에 넣고 밀봉하였다. 이후 용기에 아르곤 가스를 5회 충전(70 psi)/방전(0.05 mmHg)하여 공기를 완전히 제거한 후 약 500 rpm에서 48시간 동안 반응시켰다. 생성물에 포함된 금속은 1M의 염산으로 제거한 후 추가로 미반응 갈륨은 진한 염산으로 제거하였다. 이후, 생성물을 동결건조하여 갈륨이 도입된 그래핀(GaGnP) 5.40 g을 얻었다. 제조된 GaGnP의 SEM 사진을 도 1c에 나타내었고, 그래핀에 갈륨이 도입되었는지 여부를 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)을 사용하여 확인하였다. 5 g of graphite and 5 g of gallium (Ga) were placed in a stainless steel vessel (250 ml), and 500 g of stainless steel balls were placed in the vessel and sealed. Thereafter, the vessel was charged with argon gas five times (70 psi) / discharge (0.05 mmHg) to completely remove the air and reacted at about 500 rpm for 48 hours. The metal contained in the product was removed with 1 M hydrochloric acid, and then unreacted gallium was further removed with concentrated hydrochloric acid. Thereafter, the product was lyophilized to obtain 5.40 g of graphene (GaGnP) into which gallium was introduced. SEM pictures of the prepared GaGnP are shown in FIG. 1C, and whether gallium was introduced into graphene was confirmed using X-ray photoelectron spectroscopy (XPS).
그 결과를 도 3b에 나타내었다. 도 3b를 보면, 그래핀의 C와 Ga이 결합한 C-Ga 결합이 그래핀의 가장자리에 생성된 것을 알 수 있다. Ga이 도입된 그래핀은 그래파이트에 존재하는 강한 C1s 피크에 더하여, O1s 피크와 Ga3d 피크를 나타내고 있어 C-Ga 결합이 형성되어 있는 것을 확인할 수 있었다. The results are shown in Figure 3b. Referring to FIG. 3B, it can be seen that C-Ga bonds in which C and Ga are bonded to graphene are formed at the edges of the graphene. In addition to the strong C1s peak present in graphite, Ga-introduced graphene showed O1s peak and Ga3d peak, and it was confirmed that C-Ga bonds were formed.
또한 도 3b의 GaGnP 스펙트럼을 분석하여 최종 제조된 GaGnP 중 C, O, Ga의 원소함량(at.%)을 산출하여 아래 표 1에 나타내었다.In addition, the GaGnP spectrum of FIG. 3b was analyzed to calculate the element content (at.%) Of C, O, and Ga in the finally manufactured GaGnP, and is shown in Table 1 below.
실시예 3Example 3
흑연 5g과 인듐(In) 5g을 스테인리스 스틸 용기(250ml)에 넣고, 스테인리스 스틸 볼 500g을 상기 용기에 넣고 밀봉하였다. 이후 용기에 아르곤 가스를 5회 충전(70 psi)/방전(0.05 mmHg)하여 공기를 완전히 제거한 후 약 500 rpm에서 48시간 동안 반응시켰다. 생성물에 포함된 금속은 1M의 염산으로 제거한 후 추가로 미반응 인듐은 왕수로 제거하였다. 이후, 생성물을 동결건조하여 인듐이 도입된 그래핀(InGnP) 5.89 g을 얻었다. 제조된 InGnP의 SEM 사진을 도 1c에 나타내었고, 그래핀에 인듐이 도입되었는지 여부를 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)을 사용하여 확인하였다. 5 g of graphite and 5 g of indium (In) were placed in a stainless steel vessel (250 ml), and 500 g of stainless steel balls were placed in the vessel and sealed. Thereafter, the vessel was charged with argon gas five times (70 psi) / discharge (0.05 mmHg) to completely remove the air and reacted at about 500 rpm for 48 hours. The metal contained in the product was removed with 1 M hydrochloric acid, and then unreacted indium was further removed with aqua regia. Thereafter, the product was lyophilized to obtain 5.89 g of graphene (InGnP) to which indium was introduced. SEM pictures of the prepared InGnP are shown in FIG. 1C, and whether indium was introduced into graphene was confirmed by X-ray photoelectron spectroscopy (XPS).
그 결과를 도 3c에 나타내었다. 도 3c를 보면, 그래핀의 C와 In이 결합한 C-In 결합이 그래핀의 가장자리에 생성된 것을 알 수 있다. In이 도입된 그래핀은 그래파이트에 존재하는 강한 C1s 피크에 더하여, O1s 피크와 In3d 피크를 나타내고 있어 C-In 결합이 형성되어 있는 것을 확인할 수 있었다. The results are shown in Figure 3c. Referring to Figure 3c, it can be seen that the C-In bond is bonded to the graphene C and In is formed on the edge of the graphene. Graphene introduced with In showed O1s peak and In3d peak in addition to the strong C1s peak present in graphite, and it was confirmed that C-In bond was formed.
또한 도 3c의 InGnP 스펙트럼을 분석하여 최종 제조된 InGnP 중 C, O, In의 원소함량(at.%)을 산출하여 아래 표 1에 나타내었다.In addition, the InGnP spectrum of FIG. 3c was analyzed to calculate element contents (at.%) Of C, O, and In in the final InGnP, and are shown in Table 1 below.
InGnP의 AR-TEM(Atomic-resolution transmission electron microscopy) 사진을 도 5c에 도시하였다. 도 5c를 보면, 어두운 색을 갖는 In 원자가 InGnP의 가장자리를 따라서만 관찰된다. 이를 통해 In이 그래핀 플레이트의 가장자리에만 도입되어 있는 것을 확인할 수 있었다. Atomic-resolution transmission electron microscopy (AR-TEM) photographs of InGnP are shown in FIG. 5C. In FIG. 5C, dark In atoms are observed only along the edges of InGnP. This confirmed that In is introduced only at the edge of the graphene plate.
실시예 4Example 4
흑연 5g과 주석(Sn) 5g을 스테인리스 스틸 용기(250ml)에 넣고, 스테인리스 스틸 볼 500g을 상기 용기에 넣고 밀봉하였다. 이후 용기에 아르곤 가스를 5회 충전(70 psi)/방전(0.05 mmHg)하여 공기를 완전히 제거한 후 약 500 rpm에서 48시간 동안 반응시켰다. 생성물에 포함된 금속은 1M의 염산으로 제거한 후 추가로 미반응 주석은 진한 염산으로 제거하였다. 이후, 생성물을 동결건조하여 주석이 도입된 그래핀(SnGnP) 6.44 g을 얻었다. 제조된 SnGnP의 SEM 사진을 도 1c에 나타내었고, 그래핀에 주석이 도입되었는지 여부를 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)을 사용하여 확인하였다. 5 g of graphite and 5 g of tin (Sn) were placed in a stainless steel vessel (250 ml), and 500 g of stainless steel balls were placed in the vessel and sealed. Thereafter, the vessel was charged with argon gas five times (70 psi) / discharge (0.05 mmHg) to completely remove the air and reacted at about 500 rpm for 48 hours. The metal contained in the product was removed with 1 M hydrochloric acid and then unreacted tin was further removed with concentrated hydrochloric acid. Thereafter, the product was lyophilized to obtain 6.44 g of graphene (SnGnP) to which tin was introduced. SEM pictures of the prepared SnGnP are shown in FIG. 1C, and whether tin was introduced into graphene was confirmed using X-ray photoelectron spectroscopy (XPS).
그 결과를 도 3d에 나타내었다. 도 3d를 보면, 그래핀의 C와 Sn이 결합한 C-Sn 결합이 그래핀의 가장자리에 생성된 것을 알 수 있다. Sn이 도입된 그래핀은 그래파이트에 존재하는 강한 C1s 피크에 더하여, O1s 피크와 Sn3d 피크를 나타내고 있어 C-Sn 결합이 형성되어 있는 것을 확인할 수 있었다. The results are shown in Figure 3d. Referring to FIG. 3D, it can be seen that C-Sn bonds formed by bonding C and Sn of graphene are formed at the edges of graphene. In addition to the strong C1s peak present in graphite, Sn-introduced graphene showed O1s peak and Sn3d peak, and it was confirmed that C-Sn bonds were formed.
또한 도 3d의 SnGnP 스펙트럼을 분석하여 최종 제조된 SnGnP 중 C, O, Sn의 원소함량(at.%)을 산출하여 아래 표 1에 나타내었다.In addition, by analyzing the SnGnP spectrum of Figure 3d to calculate the element content (at.%) Of C, O, Sn in the final manufactured SnGnP is shown in Table 1 below.
실시예 5Example 5
흑연 5g과 납(Pb) 5g을 스테인리스 스틸 용기(250ml)에 넣고, 스테인리스 스틸 볼 500g을 상기 용기에 넣고 밀봉하였다. 이후 용기에 아르곤 가스를 5회 충전(70 psi)/방전(0.05 mmHg)하여 공기를 완전히 제거한 후 약 500 rpm에서 48시간 동안 반응시켰다. 생성물에 포함된 금속은 1M의 염산으로 제거한 후 추가로 미반응 납은 왕수로 제거하였다. 이후, 생성물을 동결건조하여 납이 도입된 그래핀(PbGnP) 5.20 g을 얻었다. 제조된 PbGnP의 SEM 사진을 도 1c에 나타내었고, 그래핀에 납이 도입되었는지 여부를 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)을 사용하여 확인하였다. 5 g of graphite and 5 g of lead (Pb) were placed in a stainless steel container (250 ml), and 500 g of stainless steel balls were placed in the container and sealed. Thereafter, the vessel was charged with argon gas five times (70 psi) / discharge (0.05 mmHg) to completely remove the air and reacted at about 500 rpm for 48 hours. The metal contained in the product was removed with 1 M hydrochloric acid, and further unreacted lead was removed with aqua regia. Thereafter, the product was lyophilized to obtain 5.20 g of graphene (PbGnP) to which lead was introduced. SEM pictures of the prepared PbGnP are shown in FIG. 1C, and whether lead was introduced into graphene was confirmed using X-ray photoelectron spectroscopy (XPS).
그 결과를 도 3e에 나타내었다. 도 3e를 보면, 그래핀의 C와 Pb이 결합한 C-Pb 결합이 그래핀의 가장자리에 생성된 것을 알 수 있다. Pb이 도입된 그래핀은 그래파이트에 존재하는 강한 C1s 피크에 더하여, O1s 피크와 Pb4f 피크를 나타내고 있어 C-Pb 결합이 형성되어 있는 것을 확인할 수 있었다. The results are shown in Figure 3e. Referring to Figure 3e, it can be seen that the C-Pb bond formed by the bonding of C and Pb of graphene is formed at the edge of the graphene. Graphene with Pb introduced showed O1s peak and Pb4f peak in addition to the strong C1s peak present in graphite, and it was confirmed that C-Pb bond was formed.
또한 도 3e의 PbGnP 스펙트럼을 분석하여 최종 제조된 PbGnP 중 C, O, Pb의 원소함량(at.%)을 산출하여 아래 표 1에 나타내었다.In addition, by analyzing the PbGnP spectrum of Figure 3e to calculate the element content (at.%) Of C, O, Pb in the finally prepared PbGnP is shown in Table 1 below.
PbGnP의 AR-TEM(Atomic-resolution transmission electron microscopy) 사진을 도 5d에 도시하였다. 도 5d를 보면, 어두운 색을 갖는 Pb 원자가 PbGnP의 가장자리를 따라서만 관찰된다. 이를 통해 Pb이 그래핀 플레이트의 가장자리에만 도입되어 있는 것을 확인할 수 있었다. Atomic-resolution transmission electron microscopy (AR-TEM) photographs of PbGnP are shown in FIG. 5D. 5D, dark colored Pb atoms are only observed along the edges of PbGnP. This confirmed that the Pb is introduced only at the edge of the graphene plate.
실시예 6Example 6
흑연 5g과 비스무트(Bi) 5g을 스테인리스 스틸 용기(250ml)에 넣고, 스테인리스 스틸 볼 500g을 상기 용기에 넣고 밀봉하였다. 이후 용기에 아르곤 가스를 5회 충전(70 psi)/방전(0.05 mmHg)하여 공기를 완전히 제거한 후 약 500 rpm에서 48시간 동안 반응시켰다. 생성물에 포함된 금속은 1M의 염산으로 제거한 후 추가로 미반응 비스무트는 진한 질산으로 제거하였다. 이후, 생성물을 동결건조하여 비스무트가 도입된 그래핀(BiGnP) 5.20 g을 얻었다. 제조된 BiGnP의 SEM 사진을 도 1c에 나타내었고, 그래핀에 비스무트가 도입되었는지 여부를 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)을 사용하여 확인하였다. 5 g of graphite and 5 g of bismuth (Bi) were placed in a stainless steel vessel (250 ml), and 500 g of stainless steel balls were placed in the vessel and sealed. Thereafter, the vessel was charged with argon gas five times (70 psi) / discharge (0.05 mmHg) to completely remove the air and reacted at about 500 rpm for 48 hours. The metal contained in the product was removed with 1 M hydrochloric acid and then unreacted bismuth was removed with concentrated nitric acid. Thereafter, the product was lyophilized to obtain 5.20 g of graphene (BiGnP) to which bismuth was introduced. SEM pictures of the prepared BiGnP are shown in FIG. 1C, and whether bismuth was introduced into graphene was confirmed by X-ray photoelectron spectroscopy (XPS).
그 결과를 도 3f에 나타내었다. 도 3f를 보면, 그래핀의 C와 Bi가 결합한 C-Bi 결합이 그래핀의 가장자리에 생성된 것을 알 수 있다. Bi가 도입된 그래핀은 그래파이트에 존재하는 강한 C1s 피크에 더하여, O1s 피크와 Bi4f 피크를 나타내고 있어 C-Bi 결합이 형성되어 있는 것을 확인할 수 있었다. The results are shown in Figure 3f. Referring to Figure 3f, it can be seen that the C-Bi bond that is bonded to C and Bi of graphene is generated at the edge of the graphene. Graphene with Bi introduced showed O1s peak and Bi4f peak in addition to the strong C1s peak present in graphite, and it was confirmed that C-Bi bond was formed.
또한 도 3f의 BiGnP 스펙트럼을 분석하여 최종 제조된 BiGnP 중 C, O, Bi의 원소함량(at.%)을 산출하여 아래 표 1에 나타내었다.In addition, the BiGnP spectrum of FIG. 3F was analyzed to calculate the element content (at.%) Of C, O, and Bi in the final manufactured BiGnP, and is shown in Table 1 below.
BiGnP의 AR-TEM(Atomic-resolution transmission electron microscopy) 사진을 도 5e에 도시하였다. 도 5e를 보면, 어두운 색을 갖는 Bi 원자가 BiGnP의 가장자리를 따라서만 관찰된다. 이를 통해 Bi가 그래핀 플레이트의 가장자리에만 도입되어 있는 것을 확인할 수 있었다. Atomic-resolution transmission electron microscopy (AR-TEM) photographs of BiGnP are shown in FIG. 5E. 5E, dark colored Bi atoms are observed only along the edges of BiGnP. This confirmed that Bi is introduced only at the edge of the graphene plate.
실시예 7Example 7
흑연 5g과 실리콘(Si) 5g을 스테인리스 스틸 용기(250ml)에 넣고, 스테인리스 스틸 볼 500g을 상기 용기에 넣고 밀봉하였다. 이후 용기에 아르곤 가스를 5회 충전(70 psi)/방전(0.05 mmHg)하여 공기를 완전히 제거한 후 약 500 rpm에서 48시간 동안 반응시켰다. 생성물에 포함된 금속은 1M의 염산으로 제거한 후 추가로 미반응 실리콘은 HF 용액으로 제거하였다. 이후, 생성물을 동결건조하여 실리콘이 도입된 그래핀(SiGnP) 10.37 g을 얻었다. 그래핀에 실리콘이 도입되었는지 여부를 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)을 사용하여 확인하였다. 5 g of graphite and 5 g of silicon (Si) were placed in a stainless steel vessel (250 ml), and 500 g of stainless steel balls were placed in the vessel and sealed. Thereafter, the vessel was charged with argon gas five times (70 psi) / discharge (0.05 mmHg) to completely remove the air and reacted at about 500 rpm for 48 hours. The metal contained in the product was removed with 1 M hydrochloric acid, and then unreacted silicon was further removed with HF solution. Thereafter, the product was lyophilized to obtain 10.37 g of graphene (SiGnP) into which silicon was introduced. Whether silicon was introduced into graphene was confirmed by X-ray photoelectron spectroscopy (XPS).
그 결과를 도 4a에 나타내었다. 도 4a를 보면, 그래핀의 C와 Si이 결합한 C-Si 결합이 그래핀의 가장자리에 생성된 것을 알 수 있다. Si이 도입된 그래핀은 그래파이트에 존재하는 강한 C1s 피크에 더하여, O1s 피크와 Si2p 피크를 나타내고 있어 C-Si 결합이 형성되어 있는 것을 확인할 수 있었다. The results are shown in Figure 4a. Referring to Figure 4a, it can be seen that the C-Si bond is bonded to the graphene C and Si is formed on the edge of the graphene. In addition to the strong C1s peak present in graphite, Si-introduced graphene exhibited O1s peak and Si2p peak, and it was confirmed that C-Si bonds were formed.
또한 도 4a의 SiGnP 스펙트럼을 분석하여 최종 제조된 SiGnP 중 C, O, Si의 원소함량(at.%)을 산출하여 아래 표 1에 나타내었다.In addition, by analyzing the SiGnP spectrum of Figure 4a to calculate the element content (at.%) Of C, O, Si in the final manufactured SiGnP is shown in Table 1 below.
실시예 8Example 8
흑연 5g과 게르마늄(Ge) 5g을 스테인리스 스틸 용기(250ml)에 넣고, 스테인리스 스틸 볼 500g을 상기 용기에 넣고 밀봉하였다. 이후 용기에 아르곤 가스를 5회 충전(70 psi)/방전(0.05 mmHg)하여 공기를 완전히 제거한 후 약 500 rpm에서 48시간 동안 반응시켰다. 생성물에 포함된 금속은 1M의 염산으로 제거한 후 추가로 미반응 게르마늄은 왕수로 제거하였다. 이후, 생성물을 동결건조하여 게르마늄이 도입된 그래핀(GeGnP) 7.21 g을 얻었다. 제조된 GeGnP의 SEM 사진을 도 1c에 나타내었고, 그래핀에 게르마늄이 도입되었는지 여부를 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)을 사용하여 확인하였다. 5 g of graphite and 5 g of germanium (Ge) were placed in a stainless steel vessel (250 ml), and 500 g of stainless steel balls were placed in the vessel and sealed. Thereafter, the vessel was charged with argon gas five times (70 psi) / discharge (0.05 mmHg) to completely remove the air and reacted at about 500 rpm for 48 hours. The metal contained in the product was removed with 1 M hydrochloric acid, and then unreacted germanium was further removed with aqua regia. Thereafter, the product was lyophilized to obtain 7.21 g of graphene (GeGnP) to which germanium was introduced. SEM image of the prepared GeGnP is shown in Figure 1c, it was confirmed using X-ray photoelectron spectroscopy (XPS) whether germanium was introduced into the graphene.
그 결과를 도 4b에 나타내었다. 도 4b를 보면, 그래핀의 C와 Ge이 결합된 C-Ge 결합이 그래핀의 가장자리에 생성된 것을 알 수 있다. Ge이 도입된 그래핀은 그래파이트에 존재하는 강한 C1s 피크에 더하여, O1s 피크와 Ge3d 피크를 나타내고 있어 C-Ge 결합이 형성되어 있는 것을 확인할 수 있었다. The results are shown in Figure 4b. Referring to Figure 4b, it can be seen that the C-Ge bond is bonded to the graphene C and Ge is formed on the edge of the graphene. In addition to the strong C1s peak present in graphite, the graphene into which Ge was introduced showed O1s peak and Ge3d peak, and it was confirmed that C-Ge bond was formed.
또한 도 4b의 GeGnP 스펙트럼을 분석하여 최종 제조된 GeGnP 중 C, O, Ge의 원소함량(at.%)을 산출하여 아래 표 1에 나타내었다.In addition, by analyzing the GeGnP spectrum of FIG. 4b to calculate the element content (at.%) Of C, O, Ge in the final GeGnP produced is shown in Table 1 below.
실시예 9Example 9
흑연 5g과 비소(As) 5g을 스테인리스 스틸 용기(250ml)에 넣고, 스테인리스 스틸 볼 500g을 상기 용기에 넣고 밀봉하였다. 이후 용기에 아르곤 가스를 5회 충전(70 psi)/방전(0.05 mmHg)하여 공기를 완전히 제거한 후 약 500 rpm에서 48시간 동안 반응시켰다. 생성물에 포함된 금속은 1M의 염산으로 제거한 후 추가로 미반응 비소는 5% HF 용액으로 제거하였다. 이후, 생성물을 동결건조하여 비소가 도입된 그래핀(AsGnP) 6.31 g을 얻었다. 제조된 AsGnP의 SEM 사진을 도 1c에 나타내었고, 그래핀에 비소가 도입되었는지 여부를 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)을 사용하여 확인하였다. 5 g of graphite and 5 g of arsenic (As) were placed in a stainless steel container (250 ml), and 500 g of stainless steel balls were placed in the container and sealed. Thereafter, the vessel was charged with argon gas five times (70 psi) / discharge (0.05 mmHg) to completely remove the air and reacted at about 500 rpm for 48 hours. The metal contained in the product was removed with 1 M hydrochloric acid, followed by further removal of unreacted arsenic with 5% HF solution. Thereafter, the product was lyophilized to obtain 6.31 g of graphene (AsGnP) to which arsenic was introduced. SEM pictures of the prepared AsGnP are shown in FIG. 1C, and whether or not arsenic was introduced into graphene was confirmed using X-ray photoelectron spectroscopy (XPS).
그 결과를 도 4c에 나타내었다. 도 4c를 보면, 그래핀의 C와 As이 결합한 C-As 결합이 그래핀의 가장자리에 생성된 것을 알 수 있다. As가 도입된 그래핀은 그래파이트에 존재하는 강한 C1s 피크에 더하여, O1s 피크와 As3d 피크를 나타내고 있어 C-As 결합이 형성되어 있는 것을 확인할 수 있었다. The results are shown in Figure 4c. Referring to Figure 4c, it can be seen that the C-As bond formed by the bonding of C and As of graphene is formed at the edge of the graphene. Graphene containing As exhibited O1s peak and As3d peak in addition to the strong C1s peak present in graphite, and it was confirmed that C-As bonds were formed.
또한 도 4c의 AsGnP 스펙트럼을 분석하여 최종 제조된 AsGnP 중 C, O, As의 원소함량(at.%)을 산출하여 아래 표 1에 나타내었다.In addition, the AsGnP spectrum of FIG. 4C was analyzed to calculate element contents (at.%) Of C, O, and As in the final manufactured AsGnP, and are shown in Table 1 below.
실시예 10Example 10
흑연 5g과 안티몬(Sb) 5g을 스테인리스 스틸 용기(250ml)에 넣고, 스테인리스 스틸 볼 500g을 상기 용기에 넣고 밀봉하였다. 이후 용기에 아르곤 가스를 5회 충전(70 psi)/방전(0.05 mmHg)하여 공기를 완전히 제거한 후 약 500 rpm에서 48시간 동안 반응시켰다. 생성물에 포함된 금속은 1M의 염산으로 제거한 후 추가로 미반응 안티몬은 왕수로 제거하였다. 이후, 생성물을 동결건조하여 안티몬이 도입된 그래핀(SbGnP) 6.11 g을 얻었다. 제조된 SbGnP의 SEM 사진을 도 1c에 나타내었고, 그래핀에 안티몬이 도입되었는지 여부를 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)을 사용하여 확인하였다. 5 g of graphite and 5 g of antimony (Sb) were placed in a stainless steel container (250 ml), and 500 g of stainless steel balls were placed in the container and sealed. Thereafter, the vessel was charged with argon gas five times (70 psi) / discharge (0.05 mmHg) to completely remove the air and reacted at about 500 rpm for 48 hours. The metal contained in the product was removed with 1 M hydrochloric acid, and then unreacted antimony was removed with aqua regia. Thereafter, the product was lyophilized to obtain 6.11 g of graphene (SbGnP) into which antimony was introduced. SEM pictures of the prepared SbGnP are shown in FIG. 1C, and whether or not antimony was introduced into graphene was confirmed using X-ray photoelectron spectroscopy (XPS).
그 결과를 도 4d에 나타내었다. 도 4d를 보면, 그래핀의 C와 Sb이 결합한 C-Sb 결합이 그래핀의 가장자리에 생성된 것을 알 수 있다. Sb가 도입된 그래핀은 그래파이트에 존재하는 강한 C1s 피크에 더하여, O1s 피크와 Sb3d 피크를 나타내고 있어 C-Sb 결합이 형성되어 있는 것을 확인할 수 있었다. The results are shown in Figure 4d. Referring to FIG. 4D, it can be seen that C-Sb bonds formed by binding C and Sb of graphene are formed at the edges of graphene. Graphene with Sb introduced showed O1s peak and Sb3d peak in addition to the strong C1s peak present in graphite, and it was confirmed that C-Sb bond was formed.
또한 도 4d의 SbGnP 스펙트럼을 분석하여 최종 제조된 SbGnP 중 C, O, Sb의 원소함량(at.%)을 산출하여 아래 표 1에 나타내었다.In addition, by analyzing the SbGnP spectrum of FIG. 4d to calculate the element content (at.%) Of C, O, Sb in the final manufactured SbGnP is shown in Table 1 below.
또한, 상기 SbGnP의 AR-TEM(Atomic-resolution transmission electron microscopy) 사진을 도 5a에 도시하였다. 도 5a는 SbGnP의 가장자리에서 얻은 AR-TEM 사진으로서, 어두운 색을 갖는 Sb 원자가 SbGnP의 가장자리를 따라서만 관찰된다. 이를 통해 Sb가 그래핀 플레이트의 가장자리에만 도입되어 있는 것을 확인할 수 있었다. In addition, an atomic-resolution transmission electron microscopy (AR-TEM) photograph of the SbGnP is shown in FIG. 5A. FIG. 5A is an AR-TEM photograph obtained at the edge of SbGnP where dark colored Sb atoms are observed only along the edge of SbGnP. This confirmed that Sb is introduced only at the edge of the graphene plate.
실시예 11Example 11
흑연 5g과 텔루륨(Te) 5g을 스테인리스 스틸 용기(250ml)에 넣고, 스테인리스 스틸 볼 500g을 상기 용기에 넣고 밀봉하였다. 이후 용기에 아르곤 가스를 5회 충전(70 psi)/방전(0.05 mmHg)하여 공기를 완전히 제거한 후 약 500 rpm에서 48시간 동안 반응시켰다. 생성물에 포함된 금속은 1M의 염산으로 제거한 후 추가로 미반응 텔루륨은 KOH 용액(3~5M)으로 제거하였다. 이후, 생성물을 동결건조하여 텔루륨이 도입된 그래핀(TeGnP) 6.07 g을 얻었다. 그래핀에 텔루륨이 도입되었는지 여부를 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)을 사용하여 확인하였다. 5 g of graphite and 5 g of tellurium (Te) were placed in a stainless steel vessel (250 ml), and 500 g of stainless steel balls were placed in the vessel and sealed. Thereafter, the vessel was charged with argon gas five times (70 psi) / discharge (0.05 mmHg) to completely remove the air and reacted at about 500 rpm for 48 hours. The metal contained in the product was removed with 1 M hydrochloric acid, and then unreacted tellurium was further removed with KOH solution (3-5 M). Thereafter, the product was lyophilized to obtain 6.07 g of graphene (TeGnP) to which tellurium was introduced. Whether tellurium was introduced into graphene was confirmed by X-ray photoelectron spectroscopy (XPS).
그 결과를 도 4e에 나타내었다. 도 4e를 보면, 그래핀의 C와 Te가 결합한 C-Te 결합이 그래핀의 가장자리에 생성된 것을 알 수 있다. Te가 도입된 그래핀은 그래파이트에 존재하는 강한 C1s 피크에 더하여, O1s 피크와 Te3d 피크를 나타내고 있어 C-Te 결합이 형성되어 있는 것을 확인할 수 있었다. The results are shown in Figure 4e. Referring to Figure 4e, it can be seen that the C-Te bond formed by the bonding of C and Te of graphene is formed at the edge of the graphene. Graphene with Te introduced showed O1s peak and Te3d peak in addition to the strong C1s peak present in graphite, and it was confirmed that C-Te bond was formed.
또한 도 4e의 TeGnP 스펙트럼을 분석하여 최종 제조된 TeGnP 중 C, O, Te의 원소함량(at.%)을 산출하여 아래 표 1에 나타내었다.In addition, by analyzing the TeGnP spectrum of FIG. 4e to calculate the element content (at.%) Of C, O, Te in the final TeGnP produced is shown in Table 1 below.
Figure PCTKR2016008374-appb-T000001
Figure PCTKR2016008374-appb-T000001
시험예 1Test Example 1
양극 산소 환원 반응(Cathodic oxygen reduction reation, ORR) 동안, 본 발명에 따른 금속이 도입된 그래핀 플레이트의 전기촉매 거동을 확인하기 위하여, 회전 디스크 전극 측정을 실시하였다. 본 시험은 실시예 10에서 제조된 SbGnP, 천연 그래파이트, Pt/C 촉매를 이용하여, 다양한 회전 속도(600~2500 rpm) 및 10 mVs-1의 일정 스캔 속도로 O2-포화 0.1M KOH 수용액 중에서 수행하였다. 결과를 도 6에 나타내었다. 도 6을 보면, 본 발명의 SbGnP에 대한 제한(limiting) 전류 밀도가 천연 그래파이트, Pt/C와 비교하여 상당히 높은 것을 알 수 있다. During cathodic oxygen reduction reaction (ORR), a rotating disk electrode measurement was performed to confirm the electrocatalyst behavior of the graphene plate into which the metal according to the invention was introduced. This test was performed using SbGnP, natural graphite, and Pt / C catalyst prepared in Example 10, in an O 2 -saturated 0.1M KOH aqueous solution at various rotational speeds (600 to 2500 rpm) and a constant scan rate of 10 mVs -1 . Was performed. The results are shown in FIG. 6, it can be seen that the limiting current density for SbGnP of the present invention is considerably higher compared to natural graphite, Pt / C.
시험예 2Test Example 2
본 발명에 따른 금속이 도입된 그래핀 플레이트의 전기촉매적 활성을 확인하기 위하여, 순환전압전류곡선(cyclic voltammogram)을 측정하였다. 본 시험은 실시예 10에서 제조된 SbGnP, 천연 그래파이트, Pt/C 촉매를 이용하여, N2- 및 O2-포화 0.1M KOH 수용액에서 측정하였다. In order to confirm the electrocatalytic activity of the graphene plate in which the metal according to the present invention was introduced, a cyclic voltammogram was measured. This test was measured in N 2 -and O 2 -saturated 0.1 M KOH aqueous solution using SbGnP, natural graphite, and Pt / C catalyst prepared in Example 10.
그 결과를 도 7에 나타내었다. 도 7을 보면, 실시예 10에서 제조된 SbGnP가 O2-포화 0.1M KOH 수용액 중에서 100,000회 후에도 용량 손실이 거의 없는 것으로 나타났다. 반면에 천연 그래파이트와 상용 Pt/C의 경우에는 각각 6.4%와 18.9%의 용량 손실을 나타내었다. 이러한 결과는, 가장자리 부분에 도입된 Sb가 그래핀 플레이트의 전체 ORR 성능의 개선에 중요한 역할을 할 수 있음을 의미한다. The results are shown in FIG. Referring to FIG. 7, it was shown that the SbGnP prepared in Example 10 had almost no capacity loss even after 100,000 times in an O 2 -saturated 0.1M KOH aqueous solution. On the other hand, natural graphite and commercial Pt / C showed a capacity loss of 6.4% and 18.9%, respectively. This result means that Sb introduced at the edge portion can play an important role in improving the overall ORR performance of the graphene plate.
추가로 0.2 mVs-1의 스캔 속도에서 0.02V 내지 3V의 전압 범위에서 초기 3회 사이클 동안 XGnP(X=C, H, Ga, Sn 또는 Sb)의 순환전압전류곡선(cyclic voltammogram)을 측정하였다. 그 결과를 도 8에 나타내었다(a: CGnP, b: HGnP, c: GaGnP, d: SnGnP, e:SbGnP). 도 8을 보면, 1회 사이클에서 첫 번째 음극 피크(cathodic peaks)는 약 0.9V에 중심이 있었고, 이어지는 사이클들에서는 거의 나타나지 않았다. 이것은 1회 사이클에서 샘플 위에 강한 고체-전해질 인터페이스(solid-electrolyte interphase, SEI) 층이 형성된 것을 나타낸다. SEI 층이 형성된 후, 0.5V 근처의 출발 음극 피크는 Li+가 그래파이트 층에 삽인된 것과 관련되고, 이것은 그래핀이 리튬 저장능력이 있다는 것을 나타낸다. 음극 스캔(anodic scan) 동안, XGnP(X=Ga, Sn 또는 Sb)는 0.5V, 1V, 및 2.5V 근처에서 부분적으로 가역성의 산화환원반응(redox) 피크를 분명하게 나타내었고, 이것은 리튬 이온과, 그래파이트 층의 가장자리에서의 결함/산소화(oxygenated) 작용기 사이의 상호작용 때문으로 추정된다. 이것은 본 발명에 따른 금속이 도입된 그래핀 플레이트가 HGnP와 CGnP보다 더 우수한 전기적 활성을 갖는다는 것을 보여준다. In addition, a cyclic voltammogram of XGnP (X = C, H, Ga, Sn or Sb) was measured during the initial three cycles in a voltage range of 0.02V to 3V at a scan rate of 0.2 mVs −1 . The results are shown in FIG. 8 (a: CGnP, b: HGnP, c: GaGnP, d: SnGnP, e: SbGnP). Referring to FIG. 8, the first cathodic peaks in one cycle were centered at about 0.9 V and rarely appeared in subsequent cycles. This indicates that a strong solid-electrolyte interphase (SEI) layer was formed on the sample in one cycle. After the SEI layer is formed, the starting cathode peak near 0.5 V is associated with the insertion of Li + into the graphite layer, indicating that graphene is capable of lithium storage. During the anode scan, XGnP (X = Ga, Sn or Sb) clearly showed a partially reversible redox peak near 0.5V, 1V, and 2.5V, which was associated with lithium ions. Presumably due to the interaction between defect / oxygenated functional groups at the edge of the graphite layer. This shows that the graphene plate into which the metal according to the present invention is introduced has better electrical activity than HGnP and CGnP.

Claims (11)

  1. 전이후 금속 또는 준금속이 가장자리 부분의 탄소와 결합되어 있는 그래핀 플레이트.Graphene plate with post-transition metal or metalloid bonded to carbon at the edges.
  2. 제1항에 있어서, 상기 전이후 금속은 알루미늄, 갈륨, 인듐, 주석, 납 및 비스무트로 이루어진 군에서 선택된 것을 특징으로 하는 그래핀 플레이트.The graphene plate of claim 1, wherein the post-transition metal is selected from the group consisting of aluminum, gallium, indium, tin, lead, and bismuth.
  3. 제1항에 있어서, 상기 준금속은 실리콘, 게르마늄, 비소 및 텔루륨으로 이루어진 군에서 선택된 것을 특징으로 하는 그래핀 플레이트.The graphene plate of claim 1, wherein the metalloid is selected from the group consisting of silicon, germanium, arsenic, and tellurium.
  4. 제1항에 있어서, 상기 그래핀 플레이트 중 전이후 금속 또는 준금속의 총 원소함량은 0.1 원소% 내지 5 원소%인 것을 특징으로 하는 그래핀 플레이트.The graphene plate of claim 1, wherein the total element content of the post-transition metal or metalloid in the graphene plate is 0.1 element% to 5 element%.
  5. 제1항에 있어서, 상기 그래핀 플레이트의 길이 및 폭은 각각 0.1 내지 100㎛인 것을 특징으로 하는 그래핀 플레이트.The graphene plate of claim 1, wherein the graphene plate has a length and a width of 0.1 to 100 μm, respectively.
  6. 제1항에 있어서, 상기 그래핀 플레이트는 전이후 금속 또는 준금속과 그래파이트를 1:10 내지 10:1의 중량비로 혼합한 후 기계적으로 분쇄하여 제조된 것을 특징으로 하는 그래핀 플레이트.The graphene plate of claim 1, wherein the graphene plate is prepared by mixing a metal or metalloid with graphite in a weight ratio of 1:10 to 10: 1 and then mechanically crushing the graphite plate.
  7. 제6항에 있어서, 상기 분쇄는 100 내지 10,000 rpm의 속도로 24 내지 60시간 동안 진공상태에서 이루어지는 것을 특징으로 하는 그래핀 플레이트.The graphene plate of claim 6, wherein the grinding is performed in a vacuum state for 24 to 60 hours at a speed of 100 to 10,000 rpm.
  8. 그래파이트와 준금속 또는 전이후 금속을 1:10 내지 10:1의 중량비로 혼합하여 준비하는 단계;Preparing a mixture of graphite and a metal or a post-transition metal in a weight ratio of 1:10 to 10: 1;
    진공 하에서 상기 그래핀과 상기 금속을 볼밀로 분쇄하면서 반응시키는 단계;Reacting the graphene with the metal by grinding with a ball mill under vacuum;
    상기 반응물을 용매로 세척하여 미반응물을 제거하는 단계; 및 Washing the reactants with a solvent to remove unreacted materials; And
    상기 반응물을 동결건조하는 단계를 포함하는, 금속이 가장자리 부분의 탄소와 결합되어 있는 그래핀 플레이트의 제조방법. Comprising a step of lyophilizing the reactant, a method for producing a graphene plate metal is bonded to the carbon of the edge portion.
  9. 제8항에 있어서, 상기 분쇄는 100 내지 10,000 rpm의 속도로 24 내지 60시간 동안 이루어지는 것을 특징으로 하는, 그래핀 플레이트의 제조방법. The method of claim 8, wherein the grinding is performed for 24 to 60 hours at a speed of 100 to 10,000 rpm.
  10. 제8항에 있어서, 상기 전이후 금속은 알루미늄, 갈륨, 인듐, 주석, 납 및 비스무트로 이루어진 군에서 선택된 것을 특징으로 하는, 그래핀 플레이트의 제조방법. The method of claim 8, wherein the post-transition metal is selected from the group consisting of aluminum, gallium, indium, tin, lead, and bismuth.
  11. 제8항에 있어서, 상기 준금속은 실리콘, 게르마늄, 비소 및 텔루륨으로 이루어진 군에서 선택된 것을 특징으로 하는, 그래핀 플레이트의 제조방법. The method of claim 8, wherein the metalloid is selected from the group consisting of silicon, germanium, arsenic, and tellurium.
PCT/KR2016/008374 2015-07-29 2016-07-29 Metal-doped graphene plate WO2017018855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0107277 2015-07-29
KR1020150107277A KR101765672B1 (en) 2015-07-29 2015-07-29 Metal-doped Graphene Plates

Publications (1)

Publication Number Publication Date
WO2017018855A1 true WO2017018855A1 (en) 2017-02-02

Family

ID=57884773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008374 WO2017018855A1 (en) 2015-07-29 2016-07-29 Metal-doped graphene plate

Country Status (2)

Country Link
KR (1) KR101765672B1 (en)
WO (1) WO2017018855A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3651226B1 (en) * 2018-11-09 2021-09-29 Lg Chem, Ltd. Pouch forming method and pouch forming device
KR102324367B1 (en) * 2020-02-20 2021-11-09 원광대학교산학협력단 Edge-nitrogenated graphene nanoplate without iron doping and method for producing the same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BHATTACHARJY A, DHRUBAJYOTI ET AL.: "Graphene Nanoplatelets with Selectively Functionalized Edges as Electrode Material for Electrochemical Energy Storage", LANGMUIR, vol. 31, no. 20, 5 May 2015 (2015-05-05), pages 5676 - 5683, XP055302979 *
CHANG, JUNGBO ET AL.: "Multilayered Si Nanoparticle/reduced Graphene Oxide Hybrid as High-performance Lithium-ion Battery Anode", ADVANCED MATERIALS, vol. 26, no. 5, 2014, pages 758 - 764, XP055353206 *
JEON, IN - YUP ET AL.: "Antimony-doped Graphene Nanoplatelets", NATURE COMMUNICATIONS, vol. 6, no. 7123, 22 May 2015 (2015-05-22), pages 1 - 8, XP055353208 *
JEON, IN - YUP ET AL.: "Edge-selectively Sulfurized Graphene Nanoplatelets as Efficient Metal-free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect", ADVANCED MATERIALS, vol. 25, no. 42, 2013, pages 6138 - 6145, XP055353123 *
JEON, IN - YUP ET AL.: "Facile, Scalable Synthesis of Edge-halogenated Graphene Nanoplatelets as Efficient Metal-free Eletrocatalysts for Oxygen Reduction Reaction", SCIENTIFIC REPORTS, vol. 3, no. 1810, 2013, pages 1 - 7, XP055353209 *
RASHAD, MUHAMMAD ET AL.: "Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-powder Method", PROGRESS IN NATURAL SCIENCE : MATERIALS INTERNATIONAL, vol. 24, no. 2, 2014, pages 101 - 108, XP028849827 *

Also Published As

Publication number Publication date
KR20170014252A (en) 2017-02-08
KR101765672B1 (en) 2017-08-08

Similar Documents

Publication Publication Date Title
Perveen et al. Prospects in anode materials for sodium ion batteries-A review
Li et al. Bamboo‐like nitrogen‐doped carbon nanotube forests as durable metal‐free catalysts for self‐powered flexible Li–CO2 batteries
Guo et al. The application of transition metal cobaltites in electrochemistry
Cao et al. Hydrothermal synthesis of SnO2 embedded MoO3-x nanocomposites and their synergistic effects on lithium storage
Qin et al. Oxygen-enriched carbon nanotubes as a bifunctional catalyst promote the oxygen reduction/evolution reactions in Li-O2 batteries
CN107634207B (en) Silicon-inlaid redox graphene/graphite-phase carbon nitride composite material and preparation and application thereof
Wang et al. Multi-functional NiS2/FeS2/N-doped carbon nanorods derived from metal-organic frameworks with fast reaction kinetics for high performance overall water splitting and lithium-ion batteries
EP3062372A1 (en) Tungsten-based material super battery and supercapacitor
CN101937985A (en) Graphene/titanium dioxide lithium ion battery cathode material and preparation method
CN102237519A (en) Fluorine-free preparation method for three-dimensional porous silica powder anode material of lithium ion battery
Zhao et al. Growth of hierarchal porous CoO nanowire arrays on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries
Kumar et al. Three-dimensional graphene-decorated copper-phosphide (Cu3P@ 3DG) heterostructure as an effective electrode for a supercapacitor
KR20130005102A (en) Anode active material for lithium secondary battery using silicon-carbon core-shell and manufacturing method thereof
CN112018349A (en) CoTe2/MXene composite material and preparation method thereof
Li et al. Interconnected Bi5Nb3O15@ CNTs network as high-performance anode materials of Li-ion battery
Wang et al. In-situ grown flower-like C@ SnO2/Cu2O nanosheet clusters on Cu foam as high performance anode for lithium-ion batteries
CN107293743A (en) A kind of sodium-ion battery positive material of Fe-laden acid nickel porous nanotube and preparation method thereof
WO2022032745A1 (en) Vo2/mxene composite material, preparation method therefor and use thereof
WO2019050100A1 (en) Lithium secondary battery anode active material and manufacturing method therefor
Kang et al. Copper-cobalt-nickel oxide nanowire arrays on copper foams as self-standing anode materials for lithium ion batteries
Yang et al. La0. 7Ca0. 3MnO3 nanoparticles anchored on N-doped graphene: highly efficient bifunctional catalyst as counter electrode for dye-sensitized solar cells
Xue et al. Black phosphorus-based materials for energy storage and electrocatalytic applications
WO2017018855A1 (en) Metal-doped graphene plate
JP2016536743A (en) Fullerene cathode for rechargeable magnesium battery
CN112786853B (en) High-rate composite negative electrode material of sodium ion battery and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830888

Country of ref document: EP

Kind code of ref document: A1