WO2019163389A1 - Electrostatic spraying apparatus - Google Patents

Electrostatic spraying apparatus Download PDF

Info

Publication number
WO2019163389A1
WO2019163389A1 PCT/JP2019/002273 JP2019002273W WO2019163389A1 WO 2019163389 A1 WO2019163389 A1 WO 2019163389A1 JP 2019002273 W JP2019002273 W JP 2019002273W WO 2019163389 A1 WO2019163389 A1 WO 2019163389A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solution
solution tank
electrostatic atomizer
nozzle
Prior art date
Application number
PCT/JP2019/002273
Other languages
French (fr)
Japanese (ja)
Inventor
成正 岩本
勉 櫟原
斐 劉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019163389A1 publication Critical patent/WO2019163389A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/035Discharge apparatus, e.g. electrostatic spray guns characterised by gasless spraying, e.g. electrostatically assisted airless spraying

Definitions

  • the present invention relates to an electrostatic atomizer.
  • Patent Document 1 discloses a refrigerator including the electrolyzed water generating device and the electrostatic atomizer.
  • the mist in which the electrolyzed water is atomized also has high sterilization and deodorization effects.
  • the present invention provides an electrostatic atomizer capable of spraying mist having a simple structure and high effects such as sterilization and deodorization.
  • an electrostatic atomizer includes a first solution tank that contains a solution containing at least an electrolyte, a first electrode provided in the first solution tank, and the first electrode.
  • a second electrode which is provided in the solution tank and which is paired with the first electrode and electrolyzes the solution by applying a voltage between the first electrode and the electrolyzed solution in the first solution tank;
  • the nozzle is disposed outside the first solution tank and opposed to the nozzle, and a voltage is applied between the nozzle and the electrolyzed solution.
  • a counter electrode that is atomized by being discharged from the substrate.
  • an electrostatic atomizer capable of spraying a mist having a simple structure and high effects such as sterilization and deodorization is realized.
  • FIG. 1 is a diagram showing a configuration of the electrostatic atomizer according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the electrostatic atomizer according to the second embodiment.
  • FIG. 3 is a diagram illustrating a configuration of the electrostatic atomizer according to the first modification of the second embodiment.
  • FIG. 4 is a diagram illustrating a configuration of an electrostatic atomizer according to a second modification of the second embodiment.
  • FIG. 5 is a diagram illustrating a configuration of the electrostatic atomizer according to the third embodiment.
  • sterilization refers to fungi such as Staphylococcus aureus and Staphylococcus epidermidis, Escherichia coli. (Escherichia coli), Pseudomonas sp. (Pseudomonas aeruginosa), Klebsiella sp. Bacteria such as Klebsiella pneumonia, Cladosporium. Sp. (Black mold), fungi containing molds such as Aspergillus (black mold), and / or to reduce the total number of bacteria, such as norovirus, meaning to disinfect or sterilize Including.
  • the fungi, bacteria, fungi, viruses and the like to be sterilized are examples, and are not limited.
  • Embodiment 1 [Overview] First, with reference to FIG. 1, the outline
  • FIG. 1 is a perspective view showing the configuration of the electrostatic atomizer 100 according to the first embodiment.
  • the electrostatic atomizer 100 according to Embodiment 1 includes a first solution tank 10, an ejection plate 20, a counter electrode 30, a first voltage application unit 40, and a second voltage application.
  • the unit 41 includes a first electrode 110, a second electrode 120, and a controller 70.
  • the ejection plate 20 includes an electrode support plate 21 and a plurality of nozzles 26.
  • the controller 70 is represented as a functional block.
  • the controller 70 is realized by, for example, a microcomputer (microcontroller) or the like, and is disposed inside an outer casing (not shown) of the electrostatic atomizer 100.
  • the controller 70 may be attached to the outside of the first solution tank 10.
  • the electrostatic atomizer 100 is a spray device that atomizes the solution 200 and ejects it. Specifically, the electrostatic atomizer 100 generates electrolyzed water having a bactericidal effect by applying a voltage to the solution 200 (in other words, functional water), and applies a high voltage to the generated electrolyzed water to generate static electricity. A force is generated, and the solution 200 is atomized and atomized by the generated electrostatic force.
  • the electrostatic atomizer 100 is used for a sterilizer or a sterilizer, for example.
  • the electrostatic atomizer 100 guides the solution 200 accommodated in the first solution tank 10 to each tip of the plurality of nozzles 26 by a pump or the like (not shown), and the solution 200 is atomized from the opening 27 provided at the tip.
  • the mist M made is ejected.
  • the first voltage application unit 40 applies a high voltage between the first electrode 110 and the counter electrode 30, the mist-like solution 200 is ejected from the openings 27 of the plurality of nozzles 26.
  • the high voltage is, for example, about 5 kV when the ground potential (0 V) shown in FIG. 1 is used as a reference, but is not particularly limited.
  • the voltage of the counter electrode 30 may be positive or negative with respect to the ground potential.
  • a guide for the solution 200 in the first solution tank 10 to the opening 27 Inside the nozzle 26 is formed a guide for the solution 200 in the first solution tank 10 to the opening 27.
  • the shape of the solution 200 that has passed through the flow path from the opening 27 is changed by an electric field, and is tailored. Form a cone.
  • the mist M is produced
  • FIG. 1 four nozzles 26 are illustrated, but the number of nozzles formed on the ejection plate 20 is not particularly limited, and may be 3 or less, or 5 or more. Good.
  • the mist M generated at the tip of each of the plurality of nozzles 26 is discharged toward the counter electrode 30.
  • the flat plate portion 31 of the counter electrode 30 is provided with a through hole 32 at a position corresponding to the front surface of the nozzle 26. Thereby, the mist M is discharged to the front of the counter electrode 30 through the through hole 32.
  • the “front” is a direction in which the mist M is emitted and is a direction opposite to the nozzle 26 with respect to the counter electrode 30.
  • solution 200 the solution stored in the first solution tank 10 and before being electrolyzed by the first electrode 110 and the second electrode 120 and the solution after being electrolyzed are collectively referred to. , Sometimes referred to as solution 200.
  • the electrostatic atomizer 100 according to Embodiment 1 generates electrolyzed water by electrolyzing the solution 200 accommodated in the first solution tank 10.
  • the electrostatic atomizer 100 according to Embodiment 1 includes the first electrode 110 and the first electrode provided in the first solution tank 10 so as to contact the solution 200 accommodated in the first solution tank 10. By applying a potential to the two electrodes 120, a voltage is applied to the solution 200 contained in the first solution tank 10 to electrolyze the solution 200 to generate electrolyzed water.
  • the electrostatic atomizer 100 applies a voltage between the first electrode 110 and the counter electrode 30 by applying a potential to the first electrode 110 and the counter electrode 30 with the generated electrolyzed water, By atomizing the electrolyzed solution 200, mist M having a high sterilizing effect is generated.
  • the mist M is a collection of fine liquid particles having a diameter of, for example, nanometer order or micrometer order.
  • the diameter of the liquid particles constituting the mist M is 10 nm or more and 1 ⁇ m or less.
  • the first solution tank 10 is a container for storing a solution 200 containing at least an electrolyte.
  • the electrolyte is, for example, chlorine ions (Cl ⁇ )
  • the solution 200 is water (H 2 O) containing chlorine ions (Cl ⁇ ).
  • the solution 200 is water containing chlorine ions as an electrolyte by dissolving sodium chloride (NaCl) in water.
  • Water containing chlorine ions is electrolyzed by the first electrode 110 and the second electrode 120, whereby electrolyzed water containing a substance having a bactericidal effect such as hypochlorous acid (HClO) is generated.
  • HClO hypochlorous acid
  • Electrolyzed water is a solution (aqueous solution) that has acquired a reproducible and useful function by artificial processing, and has a scientific basis for processing and function, and is about to be revealed. It is what. Specifically, the electrolyzed water is electrolyzed water such as hypochlorous acid water generated by electrolyzing the solution 200.
  • the first solution tank 10 is formed using a metal material such as stainless steel, but may be formed using a resin material. At this time, the 1st solution tank 10 may be formed using the material which has acid resistance or alkali resistance, or both these properties.
  • the shape of the first solution tank 10 is, for example, a cylindrical shape with an open upper surface, but is not limited thereto.
  • the shape of the first solution tank 10 may be a cube or a rectangular parallelepiped, or may be a flat tray.
  • the opened upper surface of the first solution tank 10 is covered with the ejection plate 20.
  • the first solution tank 10 and the ejection plate 20 are combined to form a sealed container so that the solution 200 does not leak from other than the opening 27 of the nozzle 26.
  • the first electrode 110 is an electrode provided in the first solution tank 10.
  • the second electrode 120 is an electrode that is provided in the first solution tank 10 and electrolyzes the solution 200 when a voltage is applied between the first electrode 110 in a pair with the first electrode 110.
  • the first electrode 110 and the second electrode 120 form a pair for applying a voltage to the solution 200 to electrolyze the solution 200 when a potential is applied to the second voltage application unit 41. It is an electrode pair.
  • the first electrode 110 and the second electrode 120 are provided in the first solution tank 10.
  • the first electrode 110 and the second electrode 120 are disposed at a position where a voltage can be applied to the solution 200 in the first solution tank 10, specifically, a position where the first electrode 110 and the second electrode 120 are in contact with the solution 200.
  • the material of the first electrode 110 and the second electrode 120 is not particularly limited, but is, for example, a metal electrode mainly composed of platinum.
  • a voltage may be applied between the first electrode 110 and the second electrode 120 in a direction opposite to the direction shown in FIG.
  • the first electrode 110 is a negative electrode
  • the second electrode 120 is a negative electrode
  • the shapes of the first electrode 110 and the second electrode 120 are illustrated in a disc shape, but may be a rod shape or the like, and the shape is not particularly limited.
  • the first electrode 110 and the second electrode 120 may have different shapes.
  • the first electrode 110 and the second electrode 120 each have a long shape and are arranged side by side in a direction orthogonal to the respective longitudinal directions, but the first electrode 110 and the second electrode 120 are The positional relationship, orientation, and the like are not particularly limited.
  • the ejection plate 20 has a plurality of openings 27 for ejecting the solution 200.
  • the ejection plate 20 includes a flat electrode support plate 21 and a plurality of nozzles 26.
  • a plurality of openings 27 are provided at the tip of each nozzle 26.
  • the electrode support plate 21 is a plate-like member that supports the plurality of nozzles 26.
  • the electrode support plate 21 is formed using, for example, a resin material, but may be formed using a metal material. At this time, the electrode support plate 21 may be formed using a material having acid resistance or alkali resistance, or both of these properties.
  • the electrode support plate 21 is fixed by press-fitting a plurality of nozzles 26.
  • the electrode support plate 21 is provided with through holes at positions where a plurality of openings 27 are to be provided, and the nozzles 26 are inserted and fixed in the through holes.
  • the electrode support plate 21 is a flat plate having a uniform plate thickness, but is not limited thereto, and may be a curved plate.
  • the electrode support plate 21 is fixed to the first solution tank 10.
  • the electrode support plate 21 may be formed integrally with the first solution tank 10 using the same material as the first solution tank 10.
  • the plurality of nozzles 26 are nozzles that discharge the solution 200 electrolyzed by the first electrode 110 and the second electrode 120 to the outside of the first solution tank 10. Specifically, the plurality of nozzles 26 are supported by the electrode support plate 21 and are accommodated in the first solution tank 10, and the solution 200 electrolyzed by the first electrode 110 and the second electrode 120 is supplied to the first solution tank 10. 1 Released outside the solution tank 10. Each of the plurality of nozzles 26 protrudes from the electrode support plate 21 toward the counter electrode 30. Each of the plurality of nozzles 26 has an opening 27 at the tip. Each of the plurality of nozzles 26 has an opening at the rear end (that is, the first solution tank 10 side) and a flow path from the opening to the opening 27.
  • the plurality of nozzles 26 have the same configuration.
  • the shape of the nozzle 26 is a cylindrical shape having a uniform inner diameter and outer diameter.
  • the inner diameter is the diameter of the flow path, for example, 0.3 mm, but is not limited thereto.
  • an outer diameter is 0.5 mm, for example, it is not restricted to this.
  • the outer diameter may be in the range of 0.5 mm to 1.5 mm.
  • the shape of the flow path formed in the nozzle 26 is a cylindrical shape having a uniform flow path area.
  • At least one of the inner diameter and the outer diameter of the nozzle 26 may gradually decrease from the rear end toward the tip.
  • the opening 27 on the front end side may be smaller than the opening on the rear end side, and the shape of the flow path connecting these openings may be a truncated cone.
  • the rear end of the nozzle 26 is located at a position in contact with the solution 200 accommodated in the first solution tank 10. Specifically, the rear end of the nozzle 26 is located inside the first solution tank 10. As a result, the solution 200 is guided from the opening on the rear end side of the nozzle 26 to the opening 27 on the front end side through the flow path in the nozzle 26.
  • the nozzle 26 is erected vertically to the main surface 22 of the electrode support plate 21.
  • the main surface 22 is a surface facing the counter electrode 30 of the electrode support plate 21, and is a surface opposite to the solution 200.
  • the nozzle 26 may have a height ratio to the outer diameter (hereinafter referred to as an aspect ratio) of 4 or more.
  • the height of the nozzle 26 is represented by the distance from the tip of the nozzle 26 to the main surface 22.
  • the height is, for example, 2 mm or more.
  • the aspect ratio of the nozzle 26 may be 6 or more, for example. According to the study by the present inventors, it was confirmed that when the aspect ratio is 4 or more, the shape of the tailor cone is stabilized and the spray amount of the mist M is stabilized.
  • the material of the nozzle 26 is not particularly limited, but may be formed using a metal material such as stainless steel having conductivity, for example.
  • the nozzle 26 may be formed using a material having acid resistance or alkali resistance, or both of these properties.
  • the nozzle 26 may be made of a material such as an insulating resin.
  • the counter electrode 30 is located outside the first solution tank 10 and has a plurality of through holes 32 facing the plurality of openings 27. Specifically, the counter electrode 30 is disposed outside the first solution tank 10 so as to face the nozzle 26, and a voltage is applied between the counter electrode 30 and the first electrode 110, whereby the solution 200 is introduced from the tip of the nozzle 26. To atomize.
  • the counter electrode 30 is disposed so as to be parallel to the electrode support plate 21 of the ejection plate 20, for example. Specifically, the rear surface of the counter electrode 30 is parallel to the main surface 22 of the electrode support plate 21.
  • the counter electrode 30 has conductivity and is formed using a metal material such as stainless steel, for example.
  • the counter electrode 30 may be formed using a material having acid resistance or alkali resistance, or both of these properties.
  • the counter electrode 30 has a flat plate portion 31 and a plurality of through holes 32.
  • the flat plate portion 31 has conductivity and is electrically connected to the first voltage application unit 40.
  • the flat plate portion 31 has a substantially uniform plate thickness.
  • the plurality of through holes 32 all penetrate the flat plate portion 31 in the plate thickness direction (that is, the front-rear direction). Further, the plurality of through holes 32 are all provided for passing the atomized solution 200, that is, the mist M ejected from the plurality of openings 27.
  • Each of the plurality of through holes 32 has a flat cylindrical shape. In FIG. 1, the plurality of through holes 32 are illustrated to have the same size and the same shape, but at least one of the size and the shape may be different and is not limited. Further, the shape of the opening of the through hole 32 may not be circular, and may be square, rectangular, elliptical or the like.
  • the plurality of through holes 32 are formed in the flat plate portion 31 by the same number as the plurality of nozzles 26, for example.
  • the opening diameter of the through-hole 32 is not specifically limited, For example, it is the range of 1 mm or more and 2.25 mm or less. Further, for example, the opening diameter of the through hole 32 may be formed so as to be 5 to 10 times the outer diameter of the nozzle 26.
  • the mist M is discharged in a conical shape from the tip of the tailor cone. For this reason, it becomes easier to pass the mist M as the opening diameter of the through hole 32 is larger.
  • the first voltage application unit 40 applies a predetermined voltage between the solution 200 and the counter electrode 30. Specifically, the first voltage application unit 40 is connected to the counter electrode 30 and the first electrode 110 and applies a potential so that a predetermined potential difference is created between the counter electrode 30 and the first electrode 110. In the first embodiment, the first electrode 110 is grounded, and a ground potential is applied to the solution 200. The first voltage application unit 40 applies a predetermined voltage between the counter electrode 30 and the solution 200 by applying a potential to the counter electrode 30. Note that the second electrode 120 may be at a ground potential.
  • the predetermined voltage applied by the first voltage application unit 40 is, for example, a DC voltage of 3.5 kV to 10 kV. Alternatively, the predetermined voltage may be 4.5 kV or more and 8.5 kV or less. The predetermined voltage may be a pulse voltage, a pulsating voltage, or an alternating voltage.
  • the first voltage application unit 40 is realized by a power supply circuit including a converter and the like.
  • the first voltage application unit 40 generates a predetermined voltage based on electric power received from an external power source such as a commercial power source and applies it between the solution 200 and the counter electrode 30.
  • the second voltage application unit 41 electrolyzes the solution 200 by applying a voltage between the first electrode 110 and the second electrode 120.
  • the predetermined voltage applied by the second voltage application unit 41 is, for example, a DC voltage of 5.0V.
  • the predetermined voltage may be a pulse voltage or a pulsating voltage.
  • the second voltage application unit 41 applies a potential to the first electrode 110 and the second electrode 120 so that the first electrode 110 is an anode electrode and the second electrode 120 is a cathode electrode.
  • a potential may be applied to the first electrode 110 and the second electrode 120 so that the first electrode 110 is a cathode electrode and the second electrode 120 is an anode electrode.
  • the second voltage application unit 41 is specifically realized by a power supply circuit including a converter and the like.
  • the second voltage application unit 41 generates a predetermined voltage based on electric power received from an external power source such as a commercial power source and applies it between the first electrode 110 and the second electrode 120.
  • the controller 70 is a control device that controls the overall operation of the electrostatic atomizer 100. Specifically, the controller 70 controls the operations of the first voltage application unit 40 and the second voltage application unit 41. For example, the controller 70 controls the first voltage application unit 40 to control the timing of applying a voltage between the counter electrode 30 and the first electrode 110, the magnitude of the voltage, and the like. Further, for example, the controller 70 controls the second voltage application unit 41 to control the timing of applying a voltage between the first electrode 110 and the second electrode 120, the magnitude of the voltage, and the like.
  • the controller 70 is realized by, for example, a microcontroller. Specifically, the controller 70 is realized by a nonvolatile memory in which a program is stored, a volatile memory that is a temporary storage area for executing the program, an input / output port, a processor that executes the program, and the like. The controller 70 may be realized by a dedicated electronic circuit that performs each operation.
  • the controller 70 only needs to be able to control the first voltage application unit 40 and the second voltage application unit 41, and controls the first voltage application unit 40 and the second voltage application unit 41 by transmitting a radio signal.
  • the first voltage application unit 40 and the second voltage application unit 41 may be connected by a control line or the like.
  • the electrostatic atomizer 100 includes the first solution tank 10 that contains the solution 200 containing at least the electrolyte, the first electrode 110 provided in the first solution tank 10, and the first A second electrode 120 that is provided in the solution tank 10 and electrolyzes the solution 200 when a voltage is applied between the first electrode 110 and a pair with the first electrode 110, and the electrolyzed solution 200 is the first solution.
  • a voltage is applied between the nozzle 26 that discharges to the outside of the tank 10 and the nozzle 26 outside the first solution tank 10, and the electrolyzed solution is applied to the first electrode 110.
  • a counter electrode 30 which is discharged from the nozzle 26 and atomized.
  • an electrode pair that electrolyzes the solution to generate electrolyzed water and the electrolyzed water in the form of a mist A pair of electrodes to be ejected was provided separately.
  • the electrostatic atomizer 100 one of the electrode pair that electrolyzes the solution 200 to generate electrolyzed water and one of the electrode pair that ejects the electrolyzed water in a mist form are shared.
  • the first electrode 110 included in the electrostatic atomizer 100 electrolyzes the solution 200 by applying a voltage between the second electrode 120 and the voltage between the first electrode 110 and the counter electrode 30. Is applied to atomize the electrolyzed solution 200.
  • the number of electrodes can be reduced as compared with the conventional configuration. That is, according to such a configuration, the electrostatic atomizer 100 can spray a mist-like liquid (mist M) having a simple structure and high effects such as sterilization and deodorization.
  • a mist-like liquid ist M
  • the electrolyte contained in the solution 200 accommodated in the first solution tank 10 contains chlorine ions.
  • hypochlorous acid having a high bactericidal effect can be generated. That is, according to such a structure, since the electrostatic atomizer 100 can produce
  • Embodiment 2 Then, with reference to FIG. 2, the electrolyzed water generating apparatus which concerns on Embodiment 2 is demonstrated.
  • the electrostatic atomizer according to the second embodiment further includes an ion permeable membrane that is a diaphragm that restricts the movement of ions in the solution 200 in addition to the configuration of the electrostatic atomizer 100 according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the electrostatic atomizer 101 according to the second embodiment.
  • the electrostatic atomizer 101 according to the second embodiment is opposite to the first solution tank 10, the ejection plate 20, and the electrostatic atomizer 100 according to the first embodiment.
  • the electrode 30, the first voltage application unit 40, the second voltage application unit 41, the first electrode 110, the second electrode 120, and the controller 70 are included.
  • the electrostatic atomizer 101 further includes an ion permeable film 140.
  • the ion permeable membrane 140 is a member that restricts the movement of ions contained in the solution 200 in the first solution tank 10.
  • the ion permeable membrane 140 is, for example, a porous membrane or an ion exchange membrane.
  • the material of the porous membrane for example, a ceramic material or a resin material is adopted, but is not particularly limited.
  • a cation exchange membrane or an anion exchange membrane may be employ
  • the ion permeable membrane 140 is disposed between the first electrode 110 and the second electrode 120 in the first solution tank 10.
  • the first electrode 110 is disposed in the first chamber 10 a that is one side of the first solution tank 10 partitioned by the ion permeable membrane 140, and the second electrode 120 is on the opposite side of the first electrode 110. It arrange
  • the ion permeable membrane 140 is connected to the inside of the first solution tank 10 with the nozzle 26, and is not connected to the inside of the first chamber 10 a on the side where the solution 200 can directly move and the nozzle 26.
  • the solution 200 is partitioned from the second chamber 10b, which is the side that cannot directly move.
  • the first electrode 110 is disposed in the first chamber 10 a on the nozzle 26 side in the first solution tank 10 partitioned by the ion permeable membrane 140.
  • Electrolyzed water is generated by applying a voltage between the first electrode 110 and the second electrode 120 to electrolyze the solution 200. More specifically, for example, the first voltage is applied by the second voltage application unit 41 so that the solution 200 is water containing chlorine ions, the first electrode 110 is an anode electrode, and the second electrode is a cathode.
  • an electric potential is applied to 110 and the second electrode 120, acidic electrolyzed water containing a substance having a high bactericidal effect such as hypochlorous acid is generated on the first electrode 110 side, and on the second electrode 120 side, Alkaline electrolyzed water is generated.
  • the electrostatic atomizer 101 according to the second embodiment further includes the first electrode 110 and the second electrode 120.
  • the ion permeable membrane 140 is disposed between the two.
  • the electrolyzed water generated on the first electrode 110 side in the second embodiment, acidic electrolysis) Water
  • electrolyzed water produced on the second electrode 120 side alkaline electrolyzed water in the second embodiment
  • the electrolyzed water Since it becomes difficult to mix, when the electrolyzed water is ejected as mist M, it is possible to prevent sodium ions from mixing into the mist M and taking out sodium ions to the outside of the first solution tank 10. Moreover, according to such a structure, the fall of the bactericidal effect of the electrolyzed water produced
  • the ion permeable membrane 140 partitions the inside of the first solution tank 10 into a first chamber 10 a connected to the nozzle 26 and a second chamber 10 b not connected to the nozzle 26.
  • the first electrode 110 may be disposed in the first chamber 10a
  • the second electrode 120 may be disposed in the second chamber 10b.
  • the distance between the first electrode 110 and the counter electrode 30 is shorter than when the first electrode 110 is disposed in the second chamber 10b. Therefore, since a voltage is easily applied to the electrolyzed solution 200 discharged from the nozzle 26, the solution 200 is easily atomized.
  • the electrostatic atomizer 101 includes one ion permeable membrane 140.
  • the electrostatic atomizer may include, for example, two ion permeable membranes.
  • FIG. 3 is a diagram illustrating a configuration of an electrostatic atomizer 101a according to the first modification of the second embodiment.
  • the electrostatic atomizer 101a includes two ion permeable membranes 140a and 140b.
  • the two ion permeable membranes 140 a and 140 b are both disposed between the first electrode 110 and the second electrode 120 in the housing 10.
  • a third chamber 10c that is a space for storing the solution 200 in which the first electrode 110 and the second electrode 120 are not disposed is formed in the first solution tank 10.
  • a solution containing an electrolyte such as chlorine ion such as sodium chloride is accommodated in the third chamber 10c in the first solution tank 10, and the first electrode 110 is Water is accommodated in the first chamber 10a, which is a space where the second electrode 120 is disposed, and the second chamber 10b, which is a space where the second electrode 120 is disposed.
  • an anion permeable membrane is employed for the ion permeable membrane 140a on the side disposed on the first electrode 110 side serving as the anode, and the second electrode 120 side serving as the cathode.
  • a cation permeable membrane is adopted as the ion permeable membrane 140b on the side disposed on the surface.
  • both ion exchange membranes may be adopted for the two ion permeable membranes 140a and 140b, respectively, both ion exchange membranes are adopted on one side, and cation permeable membranes or anion permeable membranes are adopted on the other side. Changes may be made as appropriate.
  • the second electrode 120 is designed to be a ground electrode.
  • the electrode to be the ground electrode may be the first electrode 110.
  • FIG. 4 is a diagram illustrating a configuration of the electrostatic atomizer 102 according to the second modification of the second embodiment.
  • the electrostatic atomizer 102 according to the second modification of the second embodiment has the same components as the electrostatic atomizer 101 according to the second embodiment.
  • the electrostatic atomizer 102 according to the second modification of the second embodiment is different from the electrostatic atomizer 101 according to the second embodiment in the grounded electrode.
  • the 2nd electrode 120 which the electrostatic atomizer 102 has is a ground electrode.
  • a potential of about +5 kV or ⁇ 5 kV as viewed from the second electrode 120 is applied to the counter electrode 30 by the first voltage application unit 40.
  • a potential of about +5 V or ⁇ 5 V as viewed from the second electrode 120 is applied to the first electrode 110 by the second voltage application unit 41.
  • the electrostatic atomizer 102 according to the second modification of the second embodiment has the same effects as the electrostatic atomizer 101 according to the second embodiment.
  • the electrolyzed water generating apparatus is further provided with a mechanism for circulating the solution 200 in the first solution tank 10 to another location in the configuration of the electrostatic atomizer 100 according to Embodiment 1.
  • FIG. 5 is a diagram illustrating a configuration of the electrostatic atomizer 103 according to the third embodiment.
  • the electrostatic atomizer 103 is opposite to the first solution tank 10, the ejection plate 20, and the electrostatic atomizer 100 according to the first embodiment.
  • the electrode 30, the first voltage application unit 40, the second voltage application unit 41, the first electrode 110, the second electrode 120, and the controller 70 are included.
  • the electrostatic atomizer 103 further includes a second solution tank 11 and a circulation unit 80.
  • the second solution tank 11 is connected to the first solution tank 10 and contains a solution 200 containing at least an electrolyte. Specifically, the second solution tank 11 only needs to store a solution similar to the solution 200 stored in the first solution tank 10. Therefore, the electrolyte contained in the solution 200 accommodated in the second solution tank 11 may be the same as the electrolyte contained in the solution 200 accommodated in the first solution tank 10.
  • the electrolyte includes, for example, chlorine ions.
  • the second solution tank 11 is formed using, for example, a metal material such as stainless steel, but may be formed using a resin material. At this time, the second solution tank 11 may be formed using a material having acid resistance, alkali resistance, or both of these properties.
  • the shape of the second solution tank 11 is, for example, a cylindrical shape with an open upper surface, but is not limited thereto.
  • the shape of the second solution tank 11 may be a cube or a rectangular parallelepiped, or may be a flat tray.
  • the open upper surface of the 2nd solution tank 11 is covered with the plate etc., for example.
  • the second solution tank 11 and the plate body are combined to form a sealed container so that the solution 200 in the second solution tank 11 does not leak.
  • the through-hole for inserting piping 60, 61 is formed in the said plate, for example.
  • the circulation unit 80 sends the solution 200 accommodated in the first solution tank 10 to the second solution tank 11, and the solution 200 accommodated in the second solution tank 11 is transferred to the first solution tank 11.
  • 10 is a mechanism for circulating the solution 200 in the first solution tank 10 and the second solution tank 11 so as to be fed to the liquid.
  • the circulation unit 80 includes, for example, pumps 50 and 51 and pipes 60 and 61.
  • the pump 50 is a liquid feeding device that feeds the solution 200 in the first solution tank 10 to the second solution tank 11. By adjusting the supply amount of the solution 200 to the second solution tank 11 by the pump 50, the amount of liquid to be circulated is controlled.
  • the pipe 60 is a pipe connecting the first solution tank 10 and the second solution tank 11 in order to send the solution 200 from the first solution tank 10 to the second solution tank 11.
  • a pump 50 is provided in the middle of the pipe 60.
  • the pipe 60 is formed using a metal material such as stainless steel, for example.
  • the pipe 60 may be formed using a material having acid resistance or alkali resistance, or both of these characteristics, depending on the properties of the solution 200.
  • the pump 51 is a liquid feeding device that feeds the solution 200 in the second solution tank 11 to the first solution tank 10. By adjusting the supply amount of the solution 200 to the first solution tank 10 by the pump 51, the amount of liquid to be circulated is also controlled.
  • the pipe 61 is a pipe connecting the first solution tank 10 and the second solution tank 11 in order to send the solution 200 from the second solution tank 11 to the first solution tank 10.
  • a pump 51 is provided in the middle of the pipe 61.
  • the piping 61 is formed using metal materials, such as stainless steel, for example.
  • the pipe 61 may be formed using a material having acid resistance or alkali resistance, or both of these characteristics depending on the properties of the solution 200.
  • the pumps 50 and 51 included in the circulation unit 80 may be designed so that they can be driven independently, or may be controlled by the controller 70.
  • the controller 70 controls the pumps 50 and 51 to control the amount, flow rate, timing, and the like of the solution 200 that circulates between the first solution tank 10 and the second solution tank 11.
  • the controller 70 only needs to be able to control the pumps 50 and 51, and may control the pumps 50 and 51 by transmitting radio signals, or is connected to the pumps 50 and 51 by a control line or the like. May be.
  • the pumps 50 and 51 may be constituted by independent pumps or may be constituted by a liquid feeding device such as one pump capable of feeding in both directions.
  • the pipe may be configured by one pipe connecting the first solution tank 10 and the second solution tank 11.
  • the electrostatic atomizer 103 according to Embodiment 3 is further connected to the first solution tank 10 in addition to the components of the electrostatic atomizer 100 according to Embodiment 1, and at least the electrolyte.
  • a second solution tank 11 that contains a solution 200 containing, and a circulation unit 80 that circulates the solution 200 contained in the first solution tank 10 and the second solution tank 11.
  • the solution 200 accommodated in each of the first solution tank 10 and the second solution tank 11 is transferred from one of the first solution tank 10 and the second solution tank 11 to the other. Since the solution 200 is moved, the solution 200 can be easily stirred, so that bubbles or the like in the solution 200 that adversely affect the generation of the mist M can be removed. In addition, when a chlorine-based substance having a bactericidal effect such as hypochlorous acid is generated by electrolysis, uneven concentration of the chlorine-based substance in the solution 200 can be suppressed. Furthermore, since the electrostatic atomizer 103 includes the circulation unit 80, the solution 200 can be supplied to the nozzle 26 by the circulation pressure generated when the circulation unit 80 circulates the solution 200. A pump or the like for feeding the solution 200 in the solution tank 10 to the nozzle 26 becomes unnecessary, and the structure is simplified.
  • the electrostatic atomizer 103 according to the third embodiment may further include an ion permeable membrane 140 as in the electrostatic atomizer 101 according to the second embodiment.
  • the electrostatic atomizer 103 according to Embodiment 3 can further obtain the same effects as the electrostatic atomizer 101 according to Embodiment 2.
  • the electrode support plate 21 is provided so as to cover the upper surface of the solution 200, and the plurality of nozzles 26 protrude upward.
  • the electrode support plate 21 may cover the lower surface or side surface of the solution 200, and the plurality of nozzles 26 may protrude downward, laterally, or obliquely.
  • the spraying direction of the mist M by the electrostatic atomizer according to the present invention is not limited to the upper side, and may be the lower side, the side, or the oblique direction.
  • the ejection plate 20 may be formed integrally with the electrode support plate 21 and the plurality of nozzles 26.
  • the ejection plate 20 may be integrally formed by injection molding using, for example, a metal material or a resin material.
  • the counter electrode 30 may not be a flat electrode, and may be a smoothly curved electrode plate, for example.
  • the through hole 32 may penetrate the electrode plate in the thickness direction, or may penetrate the electrode plate in the protruding direction of the nozzle 26.
  • all or a part of the components such as the controller 70 may be configured by dedicated hardware, or realized by executing a software program suitable for each component. Also good.
  • Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading out and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
  • a program execution unit such as a CPU (Central Processing Unit) or a processor reading out and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
  • the components such as the controller 70 may be configured by one or a plurality of electronic circuits.
  • Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit.
  • the one or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), an LSI (Large Scale Integration), or the like.
  • the IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Here, it is called IC or LSI, but the name changes depending on the degree of integration, and may be called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • An FPGA Field Programmable Gate Array programmed after manufacturing the LSI can be used for the same purpose.
  • the general or specific aspect of the present invention may be realized by a system, apparatus, method, integrated circuit, or computer program. Alternatively, it may be realized by a computer-readable non-transitory recording medium such as an optical disk, HDD, or semiconductor memory in which the computer program is stored. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

This electrostatic spraying apparatus (100) comprises: a first solution tank (10) for accommodating a solution (200) containing at least an electrolyte; a first electrode (110) provided to the first solution tank (10); a second electrode (120) provided to the first solution tank (10) and constituting a pair with the first electrode (110), and which by having voltage applied together with the first electrode (110) electrolyzes the solution (200); a nozzle (26) which discharges electrolyzed solution (200) to the exterior of the solution tank (10); and a counter electrode (30) which is positioned facing the nozzle on the exterior of the first solution tank (10), and which, by having a voltage applied together with the first electrode (110), discharges electrolyzed solution (200) from the nozzle (26), generating a spray.

Description

静電霧化装置Electrostatic atomizer
 本発明は、静電霧化装置に関する。 The present invention relates to an electrostatic atomizer.
 従来、溶液に電圧を印加して溶液を電気分解することで、殺菌、脱臭等の用途に用いられる電解水を生成する電解水生成装置が知られている。また、溶液に高電圧を印加することで溶液に生じる静電気力を利用して、液体を霧化して噴霧する静電霧化装置が知られている。特許文献1には、上記電解水生成装置と、上記静電霧化装置とを備える冷蔵庫が開示されている。 Conventionally, an electrolyzed water generating apparatus that generates electrolyzed water used for sterilization, deodorization, and the like by applying a voltage to the solution to electrolyze the solution is known. There is also known an electrostatic atomizer that atomizes and sprays a liquid using electrostatic force generated in a solution by applying a high voltage to the solution. Patent Document 1 discloses a refrigerator including the electrolyzed water generating device and the electrostatic atomizer.
特開2011-075144号公報Japanese Patent Application Laid-Open No. 2011-075144
 上記従来技術によれば、殺菌、脱臭等の用途に用いられる電解水を霧化するために、電解水が霧化されたミストもまた、高い殺菌、脱臭等の効果を有する。 According to the above prior art, in order to atomize the electrolyzed water used for sterilization, deodorization and the like, the mist in which the electrolyzed water is atomized also has high sterilization and deodorization effects.
 しかしながら、従来技術のように、溶液を電気分解して電解水を生成する装置と、溶液を霧化して噴霧する装置とを単に組み合わせた装置では、当該装置が大型化、複雑化する等の問題がある。 However, as in the prior art, in a device that simply combines a device that electrolyzes a solution to generate electrolyzed water and a device that atomizes and sprays the solution, the device becomes large and complicated. There is.
 そこで、本発明は、簡便な構造で、殺菌、脱臭等の効果の高いミストを噴霧できる静電霧化装置を提供する。 Therefore, the present invention provides an electrostatic atomizer capable of spraying mist having a simple structure and high effects such as sterilization and deodorization.
 上記目的を達成するため、本発明の一態様に係る静電霧化装置は、少なくとも電解質を含む溶液を収容する第1溶液槽と、前記第1溶液槽に備わる第1電極と、前記第1溶液槽に備わり、前記第1電極と対となり前記第1電極との間に電圧が印加されることで前記溶液を電気分解する第2電極と、電気分解された前記溶液を前記第1溶液槽の外部へ放出するノズルと、前記第1溶液槽の外部で前記ノズルに対向して配置され、前記第1電極との間に電圧が印加されることで、電気分解された前記溶液を前記ノズルから放出させて霧化する対向電極と、を有する。 In order to achieve the above object, an electrostatic atomizer according to one aspect of the present invention includes a first solution tank that contains a solution containing at least an electrolyte, a first electrode provided in the first solution tank, and the first electrode. A second electrode which is provided in the solution tank and which is paired with the first electrode and electrolyzes the solution by applying a voltage between the first electrode and the electrolyzed solution in the first solution tank; The nozzle is disposed outside the first solution tank and opposed to the nozzle, and a voltage is applied between the nozzle and the electrolyzed solution. And a counter electrode that is atomized by being discharged from the substrate.
 本発明によれば、簡便な構造で、殺菌、脱臭等の効果の高いミストを噴霧できる静電霧化装置が実現される。 According to the present invention, an electrostatic atomizer capable of spraying a mist having a simple structure and high effects such as sterilization and deodorization is realized.
図1は、実施の形態1に係る静電霧化装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of the electrostatic atomizer according to the first embodiment. 図2は、実施の形態2に係る静電霧化装置の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of the electrostatic atomizer according to the second embodiment. 図3は、実施の形態2の変形例1に係る静電霧化装置の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of the electrostatic atomizer according to the first modification of the second embodiment. 図4は、実施の形態2の変形例2に係る静電霧化装置の構成を示す図である。FIG. 4 is a diagram illustrating a configuration of an electrostatic atomizer according to a second modification of the second embodiment. 図5は、実施の形態3に係る静電霧化装置の構成を示す図である。FIG. 5 is a diagram illustrating a configuration of the electrostatic atomizer according to the third embodiment.
 以下では、本発明の実施の形態に係る静電霧化装置について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序等は、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, the electrostatic atomizer according to the embodiment of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangement and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺等は必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Therefore, for example, the scales and the like do not necessarily match in each drawing. Moreover, in each figure, the same code | symbol is attached | subjected about the substantially same structure, The overlapping description is abbreviate | omitted or simplified.
 また、本明細書において、垂直又は同じ等の要素間の関係性を示す用語、及び、円形又は正六角形等の要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 In addition, in this specification, terms indicating the relationship between elements such as vertical or the same, terms indicating the shape of elements such as a circle or a regular hexagon, and numerical ranges are not expressed in a strict sense only. It is an expression meaning that it includes a substantially equivalent range, for example, a difference of about several percent.
 また、本明細書において、殺菌とは、例えば、黄色ブドウ球菌、表皮ブドウ球菌等の菌類、Escherichia coli.(大腸菌)、Pseudomonas sp.(緑膿菌)、Klebsiella sp.(肺炎桿菌)等の細菌、Cladosporium. sp.(黒カビ)、Aspergillus(黒コウジカビ)等のカビ類を含む真菌類、及び/又は、ノロウィルス等のウィルスを分解して菌等の全体数を減らすことを意味し、除菌又は滅菌する意味も含む。なお、上記の殺菌の対象とする菌類、細菌類、真菌、ウィルス等は一例であり、限定されるものではない。 In this specification, sterilization refers to fungi such as Staphylococcus aureus and Staphylococcus epidermidis, Escherichia coli. (Escherichia coli), Pseudomonas sp. (Pseudomonas aeruginosa), Klebsiella sp. Bacteria such as Klebsiella pneumonia, Cladosporium. Sp. (Black mold), fungi containing molds such as Aspergillus (black mold), and / or to reduce the total number of bacteria, such as norovirus, meaning to disinfect or sterilize Including. The fungi, bacteria, fungi, viruses and the like to be sterilized are examples, and are not limited.
 (実施の形態1)
 [概要]
 まず、図1を参照して、実施の形態1に係る静電霧化装置の概要について説明する。
(Embodiment 1)
[Overview]
First, with reference to FIG. 1, the outline | summary of the electrostatic atomizer which concerns on Embodiment 1 is demonstrated.
 図1は、実施の形態1に係る静電霧化装置100の構成を示す斜視図である。図1に示すように、実施の形態1に係る静電霧化装置100は、第1溶液槽10と、噴出板20と、対向電極30と、第1電圧印加部40と、第2電圧印加部41と、第1電極110と、第2電極120と、コントローラ70とを備える。噴出板20は、電極支持板21と、複数のノズル26とを有する。 FIG. 1 is a perspective view showing the configuration of the electrostatic atomizer 100 according to the first embodiment. As shown in FIG. 1, the electrostatic atomizer 100 according to Embodiment 1 includes a first solution tank 10, an ejection plate 20, a counter electrode 30, a first voltage application unit 40, and a second voltage application. The unit 41 includes a first electrode 110, a second electrode 120, and a controller 70. The ejection plate 20 includes an electrode support plate 21 and a plurality of nozzles 26.
 なお、図1では、コントローラ70を機能的なブロックとして表している。コントローラ70は、例えばマイコン(マイクロコントローラ)等で実現され、静電霧化装置100の外殻筐体(図示せず)の内部に配置されている。コントローラ70は、例えば、第1溶液槽10の外側に取り付けられていてもよい。 In FIG. 1, the controller 70 is represented as a functional block. The controller 70 is realized by, for example, a microcomputer (microcontroller) or the like, and is disposed inside an outer casing (not shown) of the electrostatic atomizer 100. For example, the controller 70 may be attached to the outside of the first solution tank 10.
 静電霧化装置100は、溶液200を霧化して噴出する噴霧装置である。具体的には、静電霧化装置100は、溶液200に電圧を印加して殺菌効果を有する電解水(言い換えると、機能水)を生成し、生成した電解水に高電圧を印加して静電気力を発生させ、発生させた静電気力によって溶液200を微細化し霧化させる。静電霧化装置100は、例えば、殺菌装置又は除菌装置等に利用される。 The electrostatic atomizer 100 is a spray device that atomizes the solution 200 and ejects it. Specifically, the electrostatic atomizer 100 generates electrolyzed water having a bactericidal effect by applying a voltage to the solution 200 (in other words, functional water), and applies a high voltage to the generated electrolyzed water to generate static electricity. A force is generated, and the solution 200 is atomized and atomized by the generated electrostatic force. The electrostatic atomizer 100 is used for a sterilizer or a sterilizer, for example.
 静電霧化装置100は、図示しないポンプ等により第1溶液槽10内に収容された溶液200を複数のノズル26の各々の先端へ導き、先端に設けられた開口27から溶液200を霧状にしたミストMを噴出する。具体的には、第1電圧印加部40が第1電極110と対向電極30との間に高電圧を印加することで、複数のノズル26の開口27から、霧状の溶液200を噴出する。ここで、高電圧とは、例えば、図1に示すグランド電位(0V)を基準とした場合に、5kV程度であるが、特に限定されない。なお、対向電極30の電圧は、グランド電位に対して、正であってもよいし、負であってもよい。 The electrostatic atomizer 100 guides the solution 200 accommodated in the first solution tank 10 to each tip of the plurality of nozzles 26 by a pump or the like (not shown), and the solution 200 is atomized from the opening 27 provided at the tip. The mist M made is ejected. Specifically, when the first voltage application unit 40 applies a high voltage between the first electrode 110 and the counter electrode 30, the mist-like solution 200 is ejected from the openings 27 of the plurality of nozzles 26. Here, the high voltage is, for example, about 5 kV when the ground potential (0 V) shown in FIG. 1 is used as a reference, but is not particularly limited. Note that the voltage of the counter electrode 30 may be positive or negative with respect to the ground potential.
 ノズル26の内部には、第1溶液槽10内の溶液200を開口27へ導くが形成されており、当該流路を通って開口27から出た溶液200は、電界によって形状が変化し、テーラーコーンを形成する。テーラーコーンの先端で溶液200が微細化されることで、ミストMが生成される。 Inside the nozzle 26 is formed a guide for the solution 200 in the first solution tank 10 to the opening 27. The shape of the solution 200 that has passed through the flow path from the opening 27 is changed by an electric field, and is tailored. Form a cone. The mist M is produced | generated when the solution 200 is refined | miniaturized by the front-end | tip of a tailor cone.
 なお、図1には、ノズル26を4つ図示しているが、噴出板20に形成されるノズルの数は、特に限定されず、3以下であってもよいし、5以上であってもよい。 In FIG. 1, four nozzles 26 are illustrated, but the number of nozzles formed on the ejection plate 20 is not particularly limited, and may be 3 or less, or 5 or more. Good.
 複数のノズル26の各々の先端で生成されたミストMは、対向電極30に向けて放出される。ミストMを対向電極30の前方に放出させるために、対向電極30の平板部31には、ノズル26の正面に対応する位置に、貫通孔32が設けられている。これにより、ミストMは、貫通孔32を介して対向電極30の前方に放出される。なお、「前方」とは、ミストMが放出される方向であって、対向電極30を基準としてノズル26とは反対側の方向である。 The mist M generated at the tip of each of the plurality of nozzles 26 is discharged toward the counter electrode 30. In order to discharge the mist M to the front of the counter electrode 30, the flat plate portion 31 of the counter electrode 30 is provided with a through hole 32 at a position corresponding to the front surface of the nozzle 26. Thereby, the mist M is discharged to the front of the counter electrode 30 through the through hole 32. The “front” is a direction in which the mist M is emitted and is a direction opposite to the nozzle 26 with respect to the counter electrode 30.
 なお、本明細書においては、第1溶液槽10に収容されており、第1電極110及び第2電極120によって電気分解される前の溶液、及び、電気分解された後の溶液を総称して、溶液200と呼称する場合がある。 In the present specification, the solution stored in the first solution tank 10 and before being electrolyzed by the first electrode 110 and the second electrode 120 and the solution after being electrolyzed are collectively referred to. , Sometimes referred to as solution 200.
 実施の形態1に係る静電霧化装置100は、第1溶液槽10に収容された溶液200を電気分解することで、電解水を生成する。具体的には、実施の形態1に係る静電霧化装置100は、第1溶液槽10内に収容されている溶液200に接触するように第1溶液槽10に備わる第1電極110及び第2電極120に電位を印加することで、第1溶液槽10に収容された溶液200に電圧を印加することで溶液200を電気分解して、電解水を生成する。さらには、静電霧化装置100は、生成した電解水を第1電極110及び対向電極30に電位を印加することで、第1電極110と対向電極30との間に電圧を印加して、電気分解された溶液200を霧化することにより、殺菌効果の高いミストMを発生させる。 The electrostatic atomizer 100 according to Embodiment 1 generates electrolyzed water by electrolyzing the solution 200 accommodated in the first solution tank 10. Specifically, the electrostatic atomizer 100 according to Embodiment 1 includes the first electrode 110 and the first electrode provided in the first solution tank 10 so as to contact the solution 200 accommodated in the first solution tank 10. By applying a potential to the two electrodes 120, a voltage is applied to the solution 200 contained in the first solution tank 10 to electrolyze the solution 200 to generate electrolyzed water. Furthermore, the electrostatic atomizer 100 applies a voltage between the first electrode 110 and the counter electrode 30 by applying a potential to the first electrode 110 and the counter electrode 30 with the generated electrolyzed water, By atomizing the electrolyzed solution 200, mist M having a high sterilizing effect is generated.
 ミストMは、例えばナノメートルオーダ又はマイクロメートルオーダの径の微細な液体粒子の集合である。例えば、ミストMを構成する液体粒子の径は、10nm以上1μm以下である。 The mist M is a collection of fine liquid particles having a diameter of, for example, nanometer order or micrometer order. For example, the diameter of the liquid particles constituting the mist M is 10 nm or more and 1 μm or less.
 以下では、静電霧化装置100が備える各構成要素の詳細について説明する。 Hereinafter, details of each component included in the electrostatic atomizer 100 will be described.
 [第1溶液槽]
 第1溶液槽10は、少なくとも電解質を含む溶液200を収容するための容器である。ここで、電解質は、例えば、塩素イオン(Cl)であり、溶液200は、塩素イオン(Cl)を含む水(HO)である。具体的には、溶液200は、塩化ナトリウム(NaCl)が水に溶かされることで、塩素イオンを電解質として含む水である。塩素イオンを含む水が第1電極110及び第2電極120によって電気分解されることで、次亜塩素酸(HClO)等の殺菌効果を有する物質を含む電解水が生成される。電解水とは、人為的な処理によって再現性のある有用な機能を獲得した溶液(水溶液)の中で、処理と機能とに関して科学的根拠が明らかにされたもの、及び、明らかにされようとしているものである。具体的には、電解水は、溶液200が電気分解されて生成される次亜塩素酸水等の電解水である。第1溶液槽10は、例えばステンレス等の金属材料を用いて形成されているが、樹脂材料を用いて形成されていてもよい。このとき、第1溶液槽10は、耐酸性若しくは耐アルカリ性又はこれらの両方の性質を有する材料を用いて形成されていてもよい。
[First solution tank]
The first solution tank 10 is a container for storing a solution 200 containing at least an electrolyte. Here, the electrolyte is, for example, chlorine ions (Cl ), and the solution 200 is water (H 2 O) containing chlorine ions (Cl ). Specifically, the solution 200 is water containing chlorine ions as an electrolyte by dissolving sodium chloride (NaCl) in water. Water containing chlorine ions is electrolyzed by the first electrode 110 and the second electrode 120, whereby electrolyzed water containing a substance having a bactericidal effect such as hypochlorous acid (HClO) is generated. Electrolyzed water is a solution (aqueous solution) that has acquired a reproducible and useful function by artificial processing, and has a scientific basis for processing and function, and is about to be revealed. It is what. Specifically, the electrolyzed water is electrolyzed water such as hypochlorous acid water generated by electrolyzing the solution 200. The first solution tank 10 is formed using a metal material such as stainless steel, but may be formed using a resin material. At this time, the 1st solution tank 10 may be formed using the material which has acid resistance or alkali resistance, or both these properties.
 第1溶液槽10の形状は、例えば、上面が開放された円柱状であるが、これに限らない。第1溶液槽10の形状は、立方体又は直方体状でもよく、扁平なトレイ状でもよい。実施の形態1では、第1溶液槽10の開放された上面が噴出板20によって覆われている。具体的には、第1溶液槽10と噴出板20とが組み合わされて、ノズル26の開口27以外から溶液200が漏れ出ないように密閉容器を形成している。 The shape of the first solution tank 10 is, for example, a cylindrical shape with an open upper surface, but is not limited thereto. The shape of the first solution tank 10 may be a cube or a rectangular parallelepiped, or may be a flat tray. In the first embodiment, the opened upper surface of the first solution tank 10 is covered with the ejection plate 20. Specifically, the first solution tank 10 and the ejection plate 20 are combined to form a sealed container so that the solution 200 does not leak from other than the opening 27 of the nozzle 26.
 [第1電極及び第2電極]
 第1電極110は、第1溶液槽10内に備わる電極である。また、第2電極120は、第1溶液槽10内に備わり、第1電極110と対となり第1電極110との間に電圧が印加されることで溶液200を電気分解する電極である。具体的には、第1電極110及び第2電極120は、第2電圧印加部41に電位を印加されることで、溶液200に電圧を印加して溶液200を電気分解するための対をなす電極対である。
[First electrode and second electrode]
The first electrode 110 is an electrode provided in the first solution tank 10. The second electrode 120 is an electrode that is provided in the first solution tank 10 and electrolyzes the solution 200 when a voltage is applied between the first electrode 110 in a pair with the first electrode 110. Specifically, the first electrode 110 and the second electrode 120 form a pair for applying a voltage to the solution 200 to electrolyze the solution 200 when a potential is applied to the second voltage application unit 41. It is an electrode pair.
 第1電極110及び第2電極120は、第1溶液槽10に備えられている。第1電極110及び第2電極120は、第1溶液槽10内の溶液200に電圧を印加可能な位置、具体的には、溶液200と接触する位置に、配置される。 The first electrode 110 and the second electrode 120 are provided in the first solution tank 10. The first electrode 110 and the second electrode 120 are disposed at a position where a voltage can be applied to the solution 200 in the first solution tank 10, specifically, a position where the first electrode 110 and the second electrode 120 are in contact with the solution 200.
 第1電極110及び第2電極120の材料は、特に限定されるものではないが、例えば、プラチナを主成分とする金属電極である。 The material of the first electrode 110 and the second electrode 120 is not particularly limited, but is, for example, a metal electrode mainly composed of platinum.
 なお、第1電極110と第2電極120との間には、図1に示す方向とは反対側の方向に電圧が印加されてもよい。この場合、第1電極110が負極となり、第2電極120が負極となる。 Note that a voltage may be applied between the first electrode 110 and the second electrode 120 in a direction opposite to the direction shown in FIG. In this case, the first electrode 110 is a negative electrode, and the second electrode 120 is a negative electrode.
 また、図1には、第1電極110及び第2電極120の形状を円盤状に図示しているが、棒状等でもよく、形状は特に限定されない。第1電極110と第2電極120とで、互いに異なる形状でもよい。また、第1電極110と第2電極120とは、それぞれ長尺な形状を有し、それぞれの長手方向に直交する方向に並んで配置されているが、第1電極110及び第2電極120が配置される位置関係、向き等は特に限定されない。 Further, in FIG. 1, the shapes of the first electrode 110 and the second electrode 120 are illustrated in a disc shape, but may be a rod shape or the like, and the shape is not particularly limited. The first electrode 110 and the second electrode 120 may have different shapes. In addition, the first electrode 110 and the second electrode 120 each have a long shape and are arranged side by side in a direction orthogonal to the respective longitudinal directions, but the first electrode 110 and the second electrode 120 are The positional relationship, orientation, and the like are not particularly limited.
 [噴出板]
 噴出板20は、溶液200を噴出させるための複数の開口27を有する。具体的には、噴出板20は、平板状の電極支持板21と、複数のノズル26とを備える。複数の開口27は、ノズル26の各々の先端に設けられている。
[Blowout plate]
The ejection plate 20 has a plurality of openings 27 for ejecting the solution 200. Specifically, the ejection plate 20 includes a flat electrode support plate 21 and a plurality of nozzles 26. A plurality of openings 27 are provided at the tip of each nozzle 26.
 電極支持板21は、複数のノズル26を支持する板状の部材である。電極支持板21は、例えば樹脂材料を用いて形成されているが、金属材料を用いて形成されていてもよい。このとき、電極支持板21は、耐酸性若しくは耐アルカリ性又はこれらの両方の性質を有する材料を用いて形成されていてもよい。 The electrode support plate 21 is a plate-like member that supports the plurality of nozzles 26. The electrode support plate 21 is formed using, for example, a resin material, but may be formed using a metal material. At this time, the electrode support plate 21 may be formed using a material having acid resistance or alkali resistance, or both of these properties.
 電極支持板21には、複数のノズル26が圧入されることで固定されている。例えば、電極支持板21には、複数の開口27を設けるべき位置にそれぞれ貫通孔が設けられ、当該貫通孔にノズル26が挿入されて固定されている。電極支持板21は、板厚が均一な平板であるが、これに限らず、湾曲板であってもよい。 The electrode support plate 21 is fixed by press-fitting a plurality of nozzles 26. For example, the electrode support plate 21 is provided with through holes at positions where a plurality of openings 27 are to be provided, and the nozzles 26 are inserted and fixed in the through holes. The electrode support plate 21 is a flat plate having a uniform plate thickness, but is not limited thereto, and may be a curved plate.
 電極支持板21は、第1溶液槽10に固定されている。なお、電極支持板21は、第1溶液槽10と同一の材料を用いて、第1溶液槽10と一体に形成されていてもよい。 The electrode support plate 21 is fixed to the first solution tank 10. The electrode support plate 21 may be formed integrally with the first solution tank 10 using the same material as the first solution tank 10.
 複数のノズル26は、第1電極110及び第2電極120によって電気分解された溶液200を第1溶液槽10の外部へ放出するノズルである。具体的には、複数のノズル26は、電極支持板21に支持されており、第1溶液槽10に収容されており、第1電極110及び第2電極120によって電気分解された溶液200を第1溶液槽10の外部へ放出。複数のノズル26の各々は、電極支持板21から対向電極30に向かって突出している。複数のノズル26の各々は、先端に開口27を有する。また、複数のノズル26の各々は、後端(つまり、第1溶液槽10側)に開口を有し、かつ、当該開口から開口27に至る流路を有する。 The plurality of nozzles 26 are nozzles that discharge the solution 200 electrolyzed by the first electrode 110 and the second electrode 120 to the outside of the first solution tank 10. Specifically, the plurality of nozzles 26 are supported by the electrode support plate 21 and are accommodated in the first solution tank 10, and the solution 200 electrolyzed by the first electrode 110 and the second electrode 120 is supplied to the first solution tank 10. 1 Released outside the solution tank 10. Each of the plurality of nozzles 26 protrudes from the electrode support plate 21 toward the counter electrode 30. Each of the plurality of nozzles 26 has an opening 27 at the tip. Each of the plurality of nozzles 26 has an opening at the rear end (that is, the first solution tank 10 side) and a flow path from the opening to the opening 27.
 また、複数のノズル26は、互いに同じ構成を有する。ノズル26の形状は、内径及び外径が均一な円筒状である。内径は、流路の径であり、例えば0.3mmであるが、これに限らない。また、外径は、例えば0.5mmであるが、これに限らない。例えば、外径は、0.5mm以上1.5mm以下の範囲でもよい。また、ノズル26内に形成される流路の形状は、流路面積が均一の円柱状である。 The plurality of nozzles 26 have the same configuration. The shape of the nozzle 26 is a cylindrical shape having a uniform inner diameter and outer diameter. The inner diameter is the diameter of the flow path, for example, 0.3 mm, but is not limited thereto. Moreover, although an outer diameter is 0.5 mm, for example, it is not restricted to this. For example, the outer diameter may be in the range of 0.5 mm to 1.5 mm. Moreover, the shape of the flow path formed in the nozzle 26 is a cylindrical shape having a uniform flow path area.
 なお、ノズル26の内径及び外径の少なくとも一方は、後端から先端に向かって漸次小さくなってもよい。例えば、後端側の開口より先端側の開口27が小さくてもよく、これら開口を繋ぐ流路の形状は、円錐台状であってもよい。 Note that at least one of the inner diameter and the outer diameter of the nozzle 26 may gradually decrease from the rear end toward the tip. For example, the opening 27 on the front end side may be smaller than the opening on the rear end side, and the shape of the flow path connecting these openings may be a truncated cone.
 ノズル26の後端は、第1溶液槽10に収容されている溶液200に接触する位置に位置している。具体的には、ノズル26の後端は、第1溶液槽10の内部に位置している。これにより、溶液200は、ノズル26の後端側の開口からノズル26内の流路を通って先端側の開口27まで導かれる。 The rear end of the nozzle 26 is located at a position in contact with the solution 200 accommodated in the first solution tank 10. Specifically, the rear end of the nozzle 26 is located inside the first solution tank 10. As a result, the solution 200 is guided from the opening on the rear end side of the nozzle 26 to the opening 27 on the front end side through the flow path in the nozzle 26.
 ノズル26は、電極支持板21の主面22に対して垂直に立設されている。主面22は、電極支持板21の対向電極30に対向する面であり、溶液200とは反対側の面である。ノズル26は、外径に対する高さの比(以下、アスペクト比と記載する)が4以上であるとよい。ここで、ノズル26の高さは、ノズル26の先端から主面22までの距離で表される。当該高さは、例えば2mm以上である。ノズル26のアスペクト比が大きい程、ノズル26の先端に電界が集中しやすくなる。このため、ノズル26のアスペクト比は、例えば、6以上でもよい。本発明者らの検討により、アスペクト比が4以上であれば、テーラーコーンの形状が安定し、ミストMの噴霧量が安定することが確認された。 The nozzle 26 is erected vertically to the main surface 22 of the electrode support plate 21. The main surface 22 is a surface facing the counter electrode 30 of the electrode support plate 21, and is a surface opposite to the solution 200. The nozzle 26 may have a height ratio to the outer diameter (hereinafter referred to as an aspect ratio) of 4 or more. Here, the height of the nozzle 26 is represented by the distance from the tip of the nozzle 26 to the main surface 22. The height is, for example, 2 mm or more. As the aspect ratio of the nozzle 26 increases, the electric field tends to concentrate on the tip of the nozzle 26. For this reason, the aspect ratio of the nozzle 26 may be 6 or more, for example. According to the study by the present inventors, it was confirmed that when the aspect ratio is 4 or more, the shape of the tailor cone is stabilized and the spray amount of the mist M is stabilized.
 ノズル26の材料は、特に限定されないが、例えば、導電性を有するステンレス等の金属材料を用いて形成されていてもよい。また、ノズル26は、耐酸性若しくは耐アルカリ性又はこれらの両方の性質を有する材料を用いて形成されていてもよい。また、ノズル26は、絶縁性を有する樹脂等の材料によって形成されていてもよい。 The material of the nozzle 26 is not particularly limited, but may be formed using a metal material such as stainless steel having conductivity, for example. The nozzle 26 may be formed using a material having acid resistance or alkali resistance, or both of these properties. The nozzle 26 may be made of a material such as an insulating resin.
 [対向電極]
 対向電極30は、第1溶液槽10の外部であって、複数の開口27に対して複数の貫通孔32が向かい合って配置されている。具体的には、対向電極30は、第1溶液槽10の外部でノズル26に対向して配置され、第1電極110との間に電圧が印加されることで、ノズル26の先端から溶液200を放出させて霧化する。対向電極30は、例えば、噴出板20の電極支持板21と平行になるように配置されている。具体的には、対向電極30の後面は、電極支持板21の主面22と平行である。
[Counter electrode]
The counter electrode 30 is located outside the first solution tank 10 and has a plurality of through holes 32 facing the plurality of openings 27. Specifically, the counter electrode 30 is disposed outside the first solution tank 10 so as to face the nozzle 26, and a voltage is applied between the counter electrode 30 and the first electrode 110, whereby the solution 200 is introduced from the tip of the nozzle 26. To atomize. The counter electrode 30 is disposed so as to be parallel to the electrode support plate 21 of the ejection plate 20, for example. Specifically, the rear surface of the counter electrode 30 is parallel to the main surface 22 of the electrode support plate 21.
 対向電極30は、導電性を有し、例えば、ステンレス等の金属材料を用いて形成されている。対向電極30は、耐酸性若しくは耐アルカリ性又はこれらの両方の性質を有する材料を用いて形成されていてもよい。 The counter electrode 30 has conductivity and is formed using a metal material such as stainless steel, for example. The counter electrode 30 may be formed using a material having acid resistance or alkali resistance, or both of these properties.
 対向電極30は、平板部31と、複数の貫通孔32とを有する。平板部31は、導電性を有し、第1電圧印加部40と電気的に接続されている。平板部31は、板厚が略均一である。 The counter electrode 30 has a flat plate portion 31 and a plurality of through holes 32. The flat plate portion 31 has conductivity and is electrically connected to the first voltage application unit 40. The flat plate portion 31 has a substantially uniform plate thickness.
 複数の貫通孔32は、いずれも、平板部31を板厚方向(すなわち、前後方向)に貫通している。また、複数の貫通孔32は、いずれも、複数の開口27から噴出される霧化した溶液200、すなわち、ミストMを通過させるために設けられている。複数の貫通孔32の各々の形状は、扁平な円柱状である。図1には、複数の貫通孔32は、互いに同じ大きさ及び同じ形状を有するように図示しているが、大きさ及び形状の少なくとも一方が異なっていてもよく、限定されない。また、貫通孔32の開口の形状は、円形でなくてもよく、正方形、長方形又は楕円形等でもよい。 The plurality of through holes 32 all penetrate the flat plate portion 31 in the plate thickness direction (that is, the front-rear direction). Further, the plurality of through holes 32 are all provided for passing the atomized solution 200, that is, the mist M ejected from the plurality of openings 27. Each of the plurality of through holes 32 has a flat cylindrical shape. In FIG. 1, the plurality of through holes 32 are illustrated to have the same size and the same shape, but at least one of the size and the shape may be different and is not limited. Further, the shape of the opening of the through hole 32 may not be circular, and may be square, rectangular, elliptical or the like.
 複数の貫通孔32は、例えば、複数のノズル26と同じ数だけ平板部31に形成されている。貫通孔32の開口径は、特に限定されないが、例えば、1mm以上2.25mm以下の範囲である。また、例えば、貫通孔32の開口径は、ノズル26の外径の5倍以上10倍以下となるように形成されていてもよい。ミストMは、テーラーコーンの先端から円錐状に広がって放出される。このため、貫通孔32の開口径が大きい程、ミストMを通過させやすくなる。 The plurality of through holes 32 are formed in the flat plate portion 31 by the same number as the plurality of nozzles 26, for example. Although the opening diameter of the through-hole 32 is not specifically limited, For example, it is the range of 1 mm or more and 2.25 mm or less. Further, for example, the opening diameter of the through hole 32 may be formed so as to be 5 to 10 times the outer diameter of the nozzle 26. The mist M is discharged in a conical shape from the tip of the tailor cone. For this reason, it becomes easier to pass the mist M as the opening diameter of the through hole 32 is larger.
 [第1電圧印加部]
 第1電圧印加部40は、溶液200と対向電極30との間に所定の電圧を印加する。具体的には、第1電圧印加部40は、対向電極30と第1電極110とに接続されており、対向電極30と第1電極110とに所定の電位差がつくように電位を印加する。実施の形態1においては、第1電極110が接地されており、溶液200にグランド電位を与える。第1電圧印加部40は、対向電極30に電位を与えることで、対向電極30と溶液200との間に所定の電圧を印加する。なお、第2電極120がグランド電位となっていてもよい。
[First voltage application unit]
The first voltage application unit 40 applies a predetermined voltage between the solution 200 and the counter electrode 30. Specifically, the first voltage application unit 40 is connected to the counter electrode 30 and the first electrode 110 and applies a potential so that a predetermined potential difference is created between the counter electrode 30 and the first electrode 110. In the first embodiment, the first electrode 110 is grounded, and a ground potential is applied to the solution 200. The first voltage application unit 40 applies a predetermined voltage between the counter electrode 30 and the solution 200 by applying a potential to the counter electrode 30. Note that the second electrode 120 may be at a ground potential.
 第1電圧印加部40が印加する所定の電圧は、例えば、3.5kV以上10kV以下の直流電圧である。或いは、所定の電圧は、4.5kV以上8.5kV以下であってもよい。なお、所定の電圧は、パルス電圧、脈流電圧、又は、交流電圧でもよい。 The predetermined voltage applied by the first voltage application unit 40 is, for example, a DC voltage of 3.5 kV to 10 kV. Alternatively, the predetermined voltage may be 4.5 kV or more and 8.5 kV or less. The predetermined voltage may be a pulse voltage, a pulsating voltage, or an alternating voltage.
 第1電圧印加部40は、具体的には、コンバータ等を含む電源回路で実現される。例えば、第1電圧印加部40は、商用電源等の外部電源から受けた電力に基づいて所定の電圧を生成して、溶液200と対向電極30との間に印加する。 Specifically, the first voltage application unit 40 is realized by a power supply circuit including a converter and the like. For example, the first voltage application unit 40 generates a predetermined voltage based on electric power received from an external power source such as a commercial power source and applies it between the solution 200 and the counter electrode 30.
 [第2電圧印加部]
 第2電圧印加部41は、第1電極110と第2電極120との間に電圧を与えることで、溶液200を電気分解する。
[Second voltage application unit]
The second voltage application unit 41 electrolyzes the solution 200 by applying a voltage between the first electrode 110 and the second electrode 120.
 第2電圧印加部41が印加する所定の電圧は、例えば、5.0Vの直流電圧である。なお、所定の電圧は、パルス電圧、又は、脈流電圧でもよい。また、図1には、第1電極110を陽極電極とし、第2電極120を陰極電極とするように、第2電圧印加部41は、第1電極110及び第2電極120に電位を印加しているが、第1電極110を陰極電極とし、第2電極120を陽極電極とするように、第1電極110及び第2電極120に電位を印加してもよい。 The predetermined voltage applied by the second voltage application unit 41 is, for example, a DC voltage of 5.0V. The predetermined voltage may be a pulse voltage or a pulsating voltage. In FIG. 1, the second voltage application unit 41 applies a potential to the first electrode 110 and the second electrode 120 so that the first electrode 110 is an anode electrode and the second electrode 120 is a cathode electrode. However, a potential may be applied to the first electrode 110 and the second electrode 120 so that the first electrode 110 is a cathode electrode and the second electrode 120 is an anode electrode.
 第2電圧印加部41は、具体的には、コンバータ等を含む電源回路で実現される。例えば、第2電圧印加部41は、商用電源等の外部電源から受けた電力に基づいて所定の電圧を生成して、第1電極110と第2電極120との間に印加する。 The second voltage application unit 41 is specifically realized by a power supply circuit including a converter and the like. For example, the second voltage application unit 41 generates a predetermined voltage based on electric power received from an external power source such as a commercial power source and applies it between the first electrode 110 and the second electrode 120.
 [コントローラ]
 コントローラ70は、静電霧化装置100の全体的な動作を制御する制御装置である。具体的には、コントローラ70は、第1電圧印加部40及び第2電圧印加部41の動作を制御する。例えば、コントローラ70は、第1電圧印加部40を制御することで、対向電極30と第1電極110との間に電圧を印加するタイミング、及び、電圧の大きさ等を制御する。また、例えば、コントローラ70は、第2電圧印加部41を制御することで、第1電極110と第2電極120との間に電圧を印加するタイミング、及び、電圧の大きさ等を制御する。
[controller]
The controller 70 is a control device that controls the overall operation of the electrostatic atomizer 100. Specifically, the controller 70 controls the operations of the first voltage application unit 40 and the second voltage application unit 41. For example, the controller 70 controls the first voltage application unit 40 to control the timing of applying a voltage between the counter electrode 30 and the first electrode 110, the magnitude of the voltage, and the like. Further, for example, the controller 70 controls the second voltage application unit 41 to control the timing of applying a voltage between the first electrode 110 and the second electrode 120, the magnitude of the voltage, and the like.
 コントローラ70は、例えば、マイクロコントローラ等で実現される。具体的には、コントローラ70は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサ等で実現される。コントローラ70は、各動作を実行する専用の電子回路で実現されてもよい。 The controller 70 is realized by, for example, a microcontroller. Specifically, the controller 70 is realized by a nonvolatile memory in which a program is stored, a volatile memory that is a temporary storage area for executing the program, an input / output port, a processor that executes the program, and the like. The controller 70 may be realized by a dedicated electronic circuit that performs each operation.
 なお、コントローラ70は、第1電圧印加部40及び第2電圧印加部41を制御することができればよく、無線信号を送信することで第1電圧印加部40及び第2電圧印加部41を制御してもよいし、第1電圧印加部40及び第2電圧印加部41と制御線等により接続されていてもよい。 The controller 70 only needs to be able to control the first voltage application unit 40 and the second voltage application unit 41, and controls the first voltage application unit 40 and the second voltage application unit 41 by transmitting a radio signal. Alternatively, the first voltage application unit 40 and the second voltage application unit 41 may be connected by a control line or the like.
 [効果等]
 以上のように、実施の形態1に係る静電霧化装置100は、少なくとも電解質を含む溶液200を収容する第1溶液槽10と、第1溶液槽10に備わる第1電極110と、第1溶液槽10に備わり、第1電極110と対となり第1電極110との間に電圧が印加されることで溶液200を電気分解する第2電極120と、電気分解された溶液200を第1溶液槽10の外部へ放出するノズル26と、第1溶液槽10の外部でノズル26に対向して配置され、第1電極110との間に電圧が印加されることで、電気分解された溶液をノズル26から放出させて霧化する対向電極30と、を有する。
[Effects]
As described above, the electrostatic atomizer 100 according to Embodiment 1 includes the first solution tank 10 that contains the solution 200 containing at least the electrolyte, the first electrode 110 provided in the first solution tank 10, and the first A second electrode 120 that is provided in the solution tank 10 and electrolyzes the solution 200 when a voltage is applied between the first electrode 110 and a pair with the first electrode 110, and the electrolyzed solution 200 is the first solution. A voltage is applied between the nozzle 26 that discharges to the outside of the tank 10 and the nozzle 26 outside the first solution tank 10, and the electrolyzed solution is applied to the first electrode 110. A counter electrode 30 which is discharged from the nozzle 26 and atomized.
 従来、溶液を電気分解して電解水を生成し、生成した電解水を霧状にして噴出する装置では、溶液を電気分解して電解水を生成する電極対と、電解水を霧状にして噴出する電極対とがそれぞれ別に設けられていた。 Conventionally, in an apparatus that electrolyzes a solution to generate electrolyzed water, and sprays the generated electrolyzed water in the form of a mist, an electrode pair that electrolyzes the solution to generate electrolyzed water and the electrolyzed water in the form of a mist A pair of electrodes to be ejected was provided separately.
 しかしながら、静電霧化装置100は、溶液200を電気分解して電解水を生成する電極対の一方と、電解水を霧状にして噴出する電極対の一方とが、共通化されている。具体的には、静電霧化装置100が有する第1電極110は、第2電極120との間に電圧が印加されることで溶液200の電気分解を行い、対向電極30との間に電圧が印加されることで電気分解された溶液200の霧化とを行う。 However, in the electrostatic atomizer 100, one of the electrode pair that electrolyzes the solution 200 to generate electrolyzed water and one of the electrode pair that ejects the electrolyzed water in a mist form are shared. Specifically, the first electrode 110 included in the electrostatic atomizer 100 electrolyzes the solution 200 by applying a voltage between the second electrode 120 and the voltage between the first electrode 110 and the counter electrode 30. Is applied to atomize the electrolyzed solution 200.
 そのため、このような構成によれば、従来の構成と比較して、電極の数を減らすことができる。つまり、このような構成によれば、静電霧化装置100は、簡便な構造で、殺菌、脱臭等の効果の高い霧状の液体(ミストM)を噴霧することができる。 Therefore, according to such a configuration, the number of electrodes can be reduced as compared with the conventional configuration. That is, according to such a configuration, the electrostatic atomizer 100 can spray a mist-like liquid (mist M) having a simple structure and high effects such as sterilization and deodorization.
 例えば、第1溶液槽10に収容される溶液200に含まれる電解質は、塩素イオンを含む。 For example, the electrolyte contained in the solution 200 accommodated in the first solution tank 10 contains chlorine ions.
 このような構成によれば、殺菌効果の高い次亜塩素酸を生成することができる。つまり、このような構成によれば、静電霧化装置100は、殺菌効果の高い電解水を生成することができるため、殺菌効果の高いミストMを噴霧させることができる。 According to such a configuration, hypochlorous acid having a high bactericidal effect can be generated. That is, according to such a structure, since the electrostatic atomizer 100 can produce | generate electrolyzed water with a high bactericidal effect, it can spray the mist M with a high bactericidal effect.
 (実施の形態2)
 続いて、図2を参照して、実施の形態2に係る電解水生成装置について説明する。
(Embodiment 2)
Then, with reference to FIG. 2, the electrolyzed water generating apparatus which concerns on Embodiment 2 is demonstrated.
 実施の形態2に係る静電霧化装置は、実施の形態1に係る静電霧化装置100の構成に、さらに、溶液200内のイオンの移動を制限する隔膜であるイオン透過膜を備える。 The electrostatic atomizer according to the second embodiment further includes an ion permeable membrane that is a diaphragm that restricts the movement of ions in the solution 200 in addition to the configuration of the electrostatic atomizer 100 according to the first embodiment.
 なお、実施の形態2に係る静電霧化装置の説明においては、実施の形態1に係る静電霧化装置100と実質的に同一の構成に関しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。 In addition, in description of the electrostatic atomizer which concerns on Embodiment 2, the same code | symbol is attached | subjected about the structure substantially the same as the electrostatic atomizer 100 which concerns on Embodiment 1, and it overlaps. The description may be omitted or simplified.
 図2は、実施の形態2に係る静電霧化装置101の構成を示す図である。 FIG. 2 is a diagram illustrating a configuration of the electrostatic atomizer 101 according to the second embodiment.
 図2に示すように、実施の形態2に係る静電霧化装置101は、実施の形態1に係る静電霧化装置100と同様に、第1溶液槽10と、噴出板20と、対向電極30と、第1電圧印加部40と、第2電圧印加部41と、第1電極110と、第2電極120と、コントローラ70とを有する。また、静電霧化装置101は、さらに、イオン透過膜140を有する。 As shown in FIG. 2, the electrostatic atomizer 101 according to the second embodiment is opposite to the first solution tank 10, the ejection plate 20, and the electrostatic atomizer 100 according to the first embodiment. The electrode 30, the first voltage application unit 40, the second voltage application unit 41, the first electrode 110, the second electrode 120, and the controller 70 are included. The electrostatic atomizer 101 further includes an ion permeable film 140.
 イオン透過膜140は、第1溶液槽10内の溶液200に含まれるイオンの移動を制限する部材である。イオン透過膜140は、例えば、多孔質膜又はイオン交換膜である。多孔質膜の材料は、例えば、セラミック材料、樹脂材料が採用されるが、特に限定されない。また、イオン交換膜としては、例えば、陽イオン交換膜又は陰イオン交換膜が採用されてもよいし、両イオン交換膜が採用されてもよい。 The ion permeable membrane 140 is a member that restricts the movement of ions contained in the solution 200 in the first solution tank 10. The ion permeable membrane 140 is, for example, a porous membrane or an ion exchange membrane. As the material of the porous membrane, for example, a ceramic material or a resin material is adopted, but is not particularly limited. Moreover, as an ion exchange membrane, a cation exchange membrane or an anion exchange membrane may be employ | adopted, for example, and both ion exchange membranes may be employ | adopted.
 イオン透過膜140は、第1溶液槽10内で、第1電極110と第2電極120との間に配置される。言い換えると、第1電極110は、イオン透過膜140によって仕切られた第1溶液槽10の一方側である第1室10aに配置され、第2電極120は、第1電極110とは反対側の他方側である第2室10bに配置される。また、イオン透過膜140は、第1溶液槽10内を、ノズル26と内部が繋がっており、溶液200が直接移動可能な側である第1室10aと、ノズル26と内部が繋がっておらず、溶液200が直接移動不可能な側である第2室10bとに仕切っている。第1電極110は、イオン透過膜140によって仕切られた第1溶液槽10内のノズル26側である第1室10aに配置されている。 The ion permeable membrane 140 is disposed between the first electrode 110 and the second electrode 120 in the first solution tank 10. In other words, the first electrode 110 is disposed in the first chamber 10 a that is one side of the first solution tank 10 partitioned by the ion permeable membrane 140, and the second electrode 120 is on the opposite side of the first electrode 110. It arrange | positions at the 2nd chamber 10b which is the other side. The ion permeable membrane 140 is connected to the inside of the first solution tank 10 with the nozzle 26, and is not connected to the inside of the first chamber 10 a on the side where the solution 200 can directly move and the nozzle 26. The solution 200 is partitioned from the second chamber 10b, which is the side that cannot directly move. The first electrode 110 is disposed in the first chamber 10 a on the nozzle 26 side in the first solution tank 10 partitioned by the ion permeable membrane 140.
 電解水は、第1電極110及び第2電極120の間に電圧が印加されて溶液200が電気分解されることで、生成される。より具体的には、例えば、溶液200が塩素イオンを含む水であり、且つ、第1電極110を陽極電極とし、第2電極を陰極とするように、第2電圧印加部41によって第1電極110及び第2電極120に電位が印加された場合、第1電極110側に、次亜塩素酸等の高い殺菌効果を有する物質を含む酸性の電解水が生成され、第2電極120側に、アルカリ性の電解水が生成される。このような配置とすることで、第1電極110側に生成される殺菌効果の高い次亜塩素酸等の塩素系物質を含む酸性の電解水は、ミストMとして第1溶液槽10内から噴出され易くなる。 Electrolyzed water is generated by applying a voltage between the first electrode 110 and the second electrode 120 to electrolyze the solution 200. More specifically, for example, the first voltage is applied by the second voltage application unit 41 so that the solution 200 is water containing chlorine ions, the first electrode 110 is an anode electrode, and the second electrode is a cathode. When an electric potential is applied to 110 and the second electrode 120, acidic electrolyzed water containing a substance having a high bactericidal effect such as hypochlorous acid is generated on the first electrode 110 side, and on the second electrode 120 side, Alkaline electrolyzed water is generated. With this arrangement, acidic electrolyzed water containing a chlorine-based substance such as hypochlorous acid having a high bactericidal effect generated on the first electrode 110 side is ejected from the first solution tank 10 as mist M. It becomes easy to be done.
 [効果等]
 以上のように、実施の形態2に係る静電霧化装置101は、実施の形態1に係る静電霧化装置100の構成要素に加えて、さらに、第1電極110と第2電極120との間に配置されるイオン透過膜140を有する。
[Effects]
As described above, in addition to the components of the electrostatic atomizer 100 according to the first embodiment, the electrostatic atomizer 101 according to the second embodiment further includes the first electrode 110 and the second electrode 120. The ion permeable membrane 140 is disposed between the two.
 このような構成によれば、実施の形態1に係る静電霧化装置100の効果に加えて、さらに、第1電極110側に生成される電解水(実施の形態2においては、酸性の電解水)と、第2電極120側に生成される電解水(実施の形態2においては、アルカリ性の電解水)とを分離して混ざりにくくすることができる効果を得ることができる。そのため、例えば、溶液200に塩化ナトリウムが添加されている場合、ナトリウムイオンが陽極となっている第1電極110側へ移動しにくくなり、第1電極110側に生成された電解水にナトリウムイオンが混ざりにくくなるため、当該電解水がミストMとなって噴出される際に、ミストMにナトリウムイオンが混ざりこんで、ナトリウムイオンが第1溶液槽10の外部に取り出されることを抑制できる。また、このような構成によれば、陽極となっている第1電極110側に生成される電解水の殺菌効果の低下を抑制することができる。 According to such a configuration, in addition to the effect of the electrostatic atomizer 100 according to the first embodiment, the electrolyzed water generated on the first electrode 110 side (in the second embodiment, acidic electrolysis) Water) and electrolyzed water produced on the second electrode 120 side (alkaline electrolyzed water in the second embodiment) can be separated and made difficult to mix. Therefore, for example, when sodium chloride is added to the solution 200, it becomes difficult for sodium ions to move to the first electrode 110 side serving as an anode, and sodium ions are generated in the electrolyzed water generated on the first electrode 110 side. Since it becomes difficult to mix, when the electrolyzed water is ejected as mist M, it is possible to prevent sodium ions from mixing into the mist M and taking out sodium ions to the outside of the first solution tank 10. Moreover, according to such a structure, the fall of the bactericidal effect of the electrolyzed water produced | generated on the 1st electrode 110 side used as an anode can be suppressed.
 例えば、イオン透過膜140は、ノズル26と繋がる第1室10aと、ノズル26と繋がらない第2室10bとに第1溶液槽10の内部を仕切る。この場合、第1電極110は、第1室10aに配置され、第2電極120は、第2室10bに配置されるとよい。 For example, the ion permeable membrane 140 partitions the inside of the first solution tank 10 into a first chamber 10 a connected to the nozzle 26 and a second chamber 10 b not connected to the nozzle 26. In this case, the first electrode 110 may be disposed in the first chamber 10a, and the second electrode 120 may be disposed in the second chamber 10b.
 このような構成によれば、第2室10bに第1電極110が配置される場合と比較して、第1電極110と対向電極30との距離が近くなる。そのためノズル26から放出される電気分解された溶液200に電圧が印加されやすくなるため、当該溶液200が霧化されやすくなる。 According to such a configuration, the distance between the first electrode 110 and the counter electrode 30 is shorter than when the first electrode 110 is disposed in the second chamber 10b. Therefore, since a voltage is easily applied to the electrolyzed solution 200 discharged from the nozzle 26, the solution 200 is easily atomized.
 (実施の形態2の変形例1)
 上記実施の形態2においては、静電霧化装置101は、1つのイオン透過膜140を備える。しかしながら、静電霧化装置は、例えば、2つのイオン透過膜を備えてもよい。
(Modification 1 of Embodiment 2)
In the second embodiment, the electrostatic atomizer 101 includes one ion permeable membrane 140. However, the electrostatic atomizer may include, for example, two ion permeable membranes.
 図3は、実施の形態2の変形例1に係る静電霧化装置101aの構成を示す図である。 FIG. 3 is a diagram illustrating a configuration of an electrostatic atomizer 101a according to the first modification of the second embodiment.
 図3に示すように、静電霧化装置101aは、2つのイオン透過膜140a、140bを備える。2つのイオン透過膜140a、140bは、いずれも筐体10内で第1電極110及び第2電極120の間に配置される。また、第1溶液槽10の内部には、第1電極110及び第2電極120が配置されない溶液200が収容される空間である第3室10cが形成される。静電霧化装置101aが電気分解を実行する前には、第1溶液槽10内において、第3室10cに塩化ナトリウム等の塩素イオン等の電解質を含む溶液が収容され、第1電極110が配置される空間である第1室10a及び第2電極120が配置される空間である第2室10bには水が収容される。 As shown in FIG. 3, the electrostatic atomizer 101a includes two ion permeable membranes 140a and 140b. The two ion permeable membranes 140 a and 140 b are both disposed between the first electrode 110 and the second electrode 120 in the housing 10. In addition, a third chamber 10c that is a space for storing the solution 200 in which the first electrode 110 and the second electrode 120 are not disposed is formed in the first solution tank 10. Before the electrostatic atomizer 101a performs electrolysis, a solution containing an electrolyte such as chlorine ion such as sodium chloride is accommodated in the third chamber 10c in the first solution tank 10, and the first electrode 110 is Water is accommodated in the first chamber 10a, which is a space where the second electrode 120 is disposed, and the second chamber 10b, which is a space where the second electrode 120 is disposed.
 例えば、2つのイオン透過膜140a、140bのうち、陽極となる第1電極110側に配置される側のイオン透過膜140aには、陰イオン透過膜が採用され、陰極となる第2電極120側に配置される側のイオン透過膜140bには、陽イオン透過膜が採用される。 For example, of the two ion permeable membranes 140a and 140b, an anion permeable membrane is employed for the ion permeable membrane 140a on the side disposed on the first electrode 110 side serving as the anode, and the second electrode 120 side serving as the cathode. A cation permeable membrane is adopted as the ion permeable membrane 140b on the side disposed on the surface.
 このような構成によれば、第1電極110側に生成された電解水にナトリウムイオンがより混ざりにくくなる。もちろん、2つのイオン透過膜140a、140bには、それぞれ両イオン交換膜が採用されてもよいし、一方に両イオン交換膜が採用され、他方に陽イオン透過膜又は陰イオン透過膜が採用される等、適宜変更がなされてよい。 According to such a configuration, sodium ions are less likely to be mixed with the electrolyzed water generated on the first electrode 110 side. Of course, both ion exchange membranes may be adopted for the two ion permeable membranes 140a and 140b, respectively, both ion exchange membranes are adopted on one side, and cation permeable membranes or anion permeable membranes are adopted on the other side. Changes may be made as appropriate.
 (実施の形態2の変形例2)
 上記実施の形態2においては、第2電極120がグランド電極となるように設計されていたが、グランド電極となる電極は、第1電極110でもよい。
(Modification 2 of Embodiment 2)
In the second embodiment, the second electrode 120 is designed to be a ground electrode. However, the electrode to be the ground electrode may be the first electrode 110.
 図4は、実施の形態2の変形例2に係る静電霧化装置102の構成を示す図である。 FIG. 4 is a diagram illustrating a configuration of the electrostatic atomizer 102 according to the second modification of the second embodiment.
 図4に示すように、実施の形態2の変形例2に係る静電霧化装置102は、実施の形態2に係る静電霧化装置101と同様の構成要素を有する。ここで、実施の形態2の変形例2に係る静電霧化装置102は、実施の形態2に係る静電霧化装置101と、接地される電極が異なる。具体的には、静電霧化装置102が有する第2電極120が、グランド電極となっている。この場合、例えば、対向電極30には、第2電極120から見て+5kV又は-5kV程度の電位が第1電圧印加部40によって印加される。また、第1電極110には、第2電極120から見て+5V又は-5V程度の電位が第2電圧印加部41によって印加される。このような構成によってもまた、実施の形態2の変形例2に係る静電霧化装置102は、実施の形態2に係る静電霧化装置101と同様の効果を奏する。 As shown in FIG. 4, the electrostatic atomizer 102 according to the second modification of the second embodiment has the same components as the electrostatic atomizer 101 according to the second embodiment. Here, the electrostatic atomizer 102 according to the second modification of the second embodiment is different from the electrostatic atomizer 101 according to the second embodiment in the grounded electrode. Specifically, the 2nd electrode 120 which the electrostatic atomizer 102 has is a ground electrode. In this case, for example, a potential of about +5 kV or −5 kV as viewed from the second electrode 120 is applied to the counter electrode 30 by the first voltage application unit 40. In addition, a potential of about +5 V or −5 V as viewed from the second electrode 120 is applied to the first electrode 110 by the second voltage application unit 41. Also with such a configuration, the electrostatic atomizer 102 according to the second modification of the second embodiment has the same effects as the electrostatic atomizer 101 according to the second embodiment.
 (実施の形態3)
 続いて、図5を参照して、実施の形態3に係る静電霧化装置について説明する。
(Embodiment 3)
Next, an electrostatic atomizer according to Embodiment 3 will be described with reference to FIG.
 実施の形態3に係る電解水生成装置は、実施の形態1に係る静電霧化装置100の構成に、さらに、第1溶液槽10内の溶液200を別箇所に循環させる機構を備える。 The electrolyzed water generating apparatus according to Embodiment 3 is further provided with a mechanism for circulating the solution 200 in the first solution tank 10 to another location in the configuration of the electrostatic atomizer 100 according to Embodiment 1.
 なお、実施の形態3に係る静電霧化装置の説明においては、実施の形態1に係る静電霧化装置100と実質的に同一の構成に関しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。 In addition, in description of the electrostatic atomizer which concerns on Embodiment 3, about the structure substantially the same as the electrostatic atomizer 100 which concerns on Embodiment 1, the same code | symbol is attached | subjected and it overlaps. The description may be omitted or simplified.
 図5は、実施の形態3に係る静電霧化装置103の構成を示す図である。 FIG. 5 is a diagram illustrating a configuration of the electrostatic atomizer 103 according to the third embodiment.
 図5に示すように、実施の形態3に係る静電霧化装置103は、実施の形態1に係る静電霧化装置100と同様に、第1溶液槽10と、噴出板20と、対向電極30と、第1電圧印加部40と、第2電圧印加部41と、第1電極110と、第2電極120と、コントローラ70とを有する。また、静電霧化装置103は、さらに、第2溶液槽11と、循環部80とを有する。 As shown in FIG. 5, the electrostatic atomizer 103 according to the third embodiment is opposite to the first solution tank 10, the ejection plate 20, and the electrostatic atomizer 100 according to the first embodiment. The electrode 30, the first voltage application unit 40, the second voltage application unit 41, the first electrode 110, the second electrode 120, and the controller 70 are included. The electrostatic atomizer 103 further includes a second solution tank 11 and a circulation unit 80.
 第2溶液槽11は、第1溶液槽10と繋がり、少なくとも電解質を含む溶液200を収容する。具体的には、第2溶液槽11には、第1溶液槽10に収容されている溶液200と同様の溶液が収容されていればよい。そのため、第2溶液槽11に収容されている溶液200の含まれる電解質もまた、第1溶液槽10に収容されている溶液200に含まれる電解質と同様であればよい。当該電解質は、例えば、塩素イオンを含む。 The second solution tank 11 is connected to the first solution tank 10 and contains a solution 200 containing at least an electrolyte. Specifically, the second solution tank 11 only needs to store a solution similar to the solution 200 stored in the first solution tank 10. Therefore, the electrolyte contained in the solution 200 accommodated in the second solution tank 11 may be the same as the electrolyte contained in the solution 200 accommodated in the first solution tank 10. The electrolyte includes, for example, chlorine ions.
 第2溶液槽11は、例えばステンレス等の金属材料を用いて形成されているが、樹脂材料を用いて形成されていてもよい。このとき、第2溶液槽11は、耐酸性若しくは耐アルカリ性又はこれらの両方の性質を有する材料を用いて形成されていてもよい。 The second solution tank 11 is formed using, for example, a metal material such as stainless steel, but may be formed using a resin material. At this time, the second solution tank 11 may be formed using a material having acid resistance, alkali resistance, or both of these properties.
 第2溶液槽11の形状は、例えば、上面が開放された円柱状であるが、これに限らない。第2溶液槽11の形状は、立方体又は直方体状でもよく、扁平なトレイ状でもよい。第2溶液槽11は、例えば、第2溶液槽11の開放された上面が板体等によって覆われている。具体的には、第2溶液槽11と当該板体とが組み合わされて、第2溶液槽11内の溶液200が漏れ出ないように密閉容器を形成している。また、当該板体には、例えば、配管60、61を差し込むための貫通孔が形成されている。 The shape of the second solution tank 11 is, for example, a cylindrical shape with an open upper surface, but is not limited thereto. The shape of the second solution tank 11 may be a cube or a rectangular parallelepiped, or may be a flat tray. As for the 2nd solution tank 11, the open upper surface of the 2nd solution tank 11 is covered with the plate etc., for example. Specifically, the second solution tank 11 and the plate body are combined to form a sealed container so that the solution 200 in the second solution tank 11 does not leak. Moreover, the through-hole for inserting piping 60, 61 is formed in the said plate, for example.
 循環部80は、第1溶液槽10内に収容されている溶液200を第2溶液槽11へ送液し、且つ、第2溶液槽11内に収容されている溶液200を、第1溶液槽10へ送液するように、第1溶液槽10内及び第2溶液槽11内の溶液200を循環させるための機構である。循環部80は、例えば、ポンプ50、51と、配管60、61とを備える。 The circulation unit 80 sends the solution 200 accommodated in the first solution tank 10 to the second solution tank 11, and the solution 200 accommodated in the second solution tank 11 is transferred to the first solution tank 11. 10 is a mechanism for circulating the solution 200 in the first solution tank 10 and the second solution tank 11 so as to be fed to the liquid. The circulation unit 80 includes, for example, pumps 50 and 51 and pipes 60 and 61.
 ポンプ50は、第1溶液槽10内の溶液200を、第2溶液槽11に送液する送液装置である。ポンプ50による第2溶液槽11への溶液200の供給量を調整することで、循環される液量が制御される。 The pump 50 is a liquid feeding device that feeds the solution 200 in the first solution tank 10 to the second solution tank 11. By adjusting the supply amount of the solution 200 to the second solution tank 11 by the pump 50, the amount of liquid to be circulated is controlled.
 配管60は、溶液200を第1溶液槽10から第2溶液槽11へ送液するために、第1溶液槽10と第2溶液槽11とを繋ぐ管である。図5では、配管60の途中にポンプ50が設けられている。 The pipe 60 is a pipe connecting the first solution tank 10 and the second solution tank 11 in order to send the solution 200 from the first solution tank 10 to the second solution tank 11. In FIG. 5, a pump 50 is provided in the middle of the pipe 60.
 配管60は、例えば、ステンレス等の金属材料を用いて形成されている。配管60は、溶液200の性質に応じて、耐酸性若しくは耐アルカリ性又はこれらの両方の性質を有する材料を用いて形成されていてもよい。 The pipe 60 is formed using a metal material such as stainless steel, for example. The pipe 60 may be formed using a material having acid resistance or alkali resistance, or both of these characteristics, depending on the properties of the solution 200.
 ポンプ51は、第2溶液槽11内の溶液200を、第1溶液槽10に送液する送液装置である。ポンプ51による第1溶液槽10への溶液200の供給量を調整することでもまた、循環される液量が制御される。 The pump 51 is a liquid feeding device that feeds the solution 200 in the second solution tank 11 to the first solution tank 10. By adjusting the supply amount of the solution 200 to the first solution tank 10 by the pump 51, the amount of liquid to be circulated is also controlled.
 配管61は、溶液200を第2溶液槽11から第1溶液槽10へ送液するために、第1溶液槽10と第2溶液槽11とを繋ぐ管である。図5では、配管61の途中にポンプ51が設けられている。 The pipe 61 is a pipe connecting the first solution tank 10 and the second solution tank 11 in order to send the solution 200 from the second solution tank 11 to the first solution tank 10. In FIG. 5, a pump 51 is provided in the middle of the pipe 61.
 配管61は、例えば、ステンレス等の金属材料を用いて形成されている。配管61は、溶液200の性質に応じて、耐酸性若しくは耐アルカリ性又はこれらの両方の性質を有する材料を用いて形成されていてもよい。 The piping 61 is formed using metal materials, such as stainless steel, for example. The pipe 61 may be formed using a material having acid resistance or alkali resistance, or both of these characteristics depending on the properties of the solution 200.
 なお、循環部80が有するポンプ50、51は、それぞれ独立して駆動できるように設計されていてもよいし、コントローラ70によって制御されてもよい。例えば、コントローラ70は、ポンプ50、51を制御することで、第1溶液槽10及び第2溶液槽11の間を循環する溶液200の液量、流速、及び、タイミング等を制御する。この場合、コントローラ70は、ポンプ50、51を制御することができればよく、無線信号を送信することでポンプ50、51を制御してもよいし、ポンプ50、51と制御線等により接続されていてもよい。 The pumps 50 and 51 included in the circulation unit 80 may be designed so that they can be driven independently, or may be controlled by the controller 70. For example, the controller 70 controls the pumps 50 and 51 to control the amount, flow rate, timing, and the like of the solution 200 that circulates between the first solution tank 10 and the second solution tank 11. In this case, the controller 70 only needs to be able to control the pumps 50 and 51, and may control the pumps 50 and 51 by transmitting radio signals, or is connected to the pumps 50 and 51 by a control line or the like. May be.
 また、例えば、ポンプ50、51は、それぞれ独立したポンプで構成されてもよいし、双方向に送液可能な1つのポンプ等の送液装置により構成されてもよい。この場合、配管は、第1溶液槽10と第2溶液槽11とを繋ぐ1つの配管によって構成されてもよい。 Further, for example, the pumps 50 and 51 may be constituted by independent pumps or may be constituted by a liquid feeding device such as one pump capable of feeding in both directions. In this case, the pipe may be configured by one pipe connecting the first solution tank 10 and the second solution tank 11.
 [効果等]
 以上のように、実施の形態3に係る静電霧化装置103は、実施の形態1に係る静電霧化装置100の構成要素に加えて、さらに、第1溶液槽10と繋がり、少なくとも電解質を含む溶液200を収容する第2溶液槽11と、第1溶液槽10及び第2溶液槽11に収容されている溶液200を循環させる循環部80と、を有する。
[Effects]
As described above, the electrostatic atomizer 103 according to Embodiment 3 is further connected to the first solution tank 10 in addition to the components of the electrostatic atomizer 100 according to Embodiment 1, and at least the electrolyte. A second solution tank 11 that contains a solution 200 containing, and a circulation unit 80 that circulates the solution 200 contained in the first solution tank 10 and the second solution tank 11.
 このような構成によれば、第1溶液槽10内及び第2溶液槽11内のそれぞれに収容されている溶液200が、第1溶液槽10内及び第2溶液槽11内の一方から他方へ移動されるために、溶液200を簡便に攪拌することができるため、ミストMを生成するために悪影響を及ぼす溶液200内の気泡等を取り除くことができる。また、電気分解によって次亜塩素酸等の殺菌効果を有する塩素系物質を生成した場合に、当該塩素系物質の溶液200中の濃度むらを抑制することができる。さらには、静電霧化装置103が循環部80を有することにより、循環部80が溶液200を循環する際に生じる循環圧によって、ノズル26へ溶液200を供給することができるため、別途第1溶液槽10内の溶液200をノズル26へ送液するためのポンプ等が不要となり、構造が簡略化される。 According to such a configuration, the solution 200 accommodated in each of the first solution tank 10 and the second solution tank 11 is transferred from one of the first solution tank 10 and the second solution tank 11 to the other. Since the solution 200 is moved, the solution 200 can be easily stirred, so that bubbles or the like in the solution 200 that adversely affect the generation of the mist M can be removed. In addition, when a chlorine-based substance having a bactericidal effect such as hypochlorous acid is generated by electrolysis, uneven concentration of the chlorine-based substance in the solution 200 can be suppressed. Furthermore, since the electrostatic atomizer 103 includes the circulation unit 80, the solution 200 can be supplied to the nozzle 26 by the circulation pressure generated when the circulation unit 80 circulates the solution 200. A pump or the like for feeding the solution 200 in the solution tank 10 to the nozzle 26 becomes unnecessary, and the structure is simplified.
 なお、実施の形態3に係る静電霧化装置103は、実施の形態2に係る静電霧化装置101と同様に、イオン透過膜140をさらに備えてもよい。こうすることで、実施の形態3に係る静電霧化装置103は、実施の形態2に係る静電霧化装置101と同様の効果をさらに得ることができる。 Note that the electrostatic atomizer 103 according to the third embodiment may further include an ion permeable membrane 140 as in the electrostatic atomizer 101 according to the second embodiment. By doing so, the electrostatic atomizer 103 according to Embodiment 3 can further obtain the same effects as the electrostatic atomizer 101 according to Embodiment 2.
 (その他の実施の形態)
 以上、本発明に係る静電霧化装置について、上記の実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Other embodiments)
As mentioned above, although the electrostatic atomizer concerning the present invention was explained based on the above-mentioned embodiment, the present invention is not limited to the above-mentioned embodiment.
 例えば、上記の実施の形態では、電極支持板21が溶液200の上面を覆うように設けられ、複数のノズル26が上方に向かって突出する例を示したが、これに限らない。例えば、電極支持板21は、溶液200の下面又は側面を覆っていてもよく、複数のノズル26は、下方、側方又は斜め方向に突出していてもよい。本発明に係る静電霧化装置によるミストMの噴霧方向は、上方に限らず、下方、側方又は斜め方向でもよい。 For example, in the above-described embodiment, the electrode support plate 21 is provided so as to cover the upper surface of the solution 200, and the plurality of nozzles 26 protrude upward. For example, the electrode support plate 21 may cover the lower surface or side surface of the solution 200, and the plurality of nozzles 26 may protrude downward, laterally, or obliquely. The spraying direction of the mist M by the electrostatic atomizer according to the present invention is not limited to the upper side, and may be the lower side, the side, or the oblique direction.
 また、例えば、噴出板20は、電極支持板21と複数のノズル26とが一体に形成されていてもよい。噴出板20は、例えば金属材料又は樹脂材料を用いた射出成形により一体的に形成されてもよい。 Further, for example, the ejection plate 20 may be formed integrally with the electrode support plate 21 and the plurality of nozzles 26. The ejection plate 20 may be integrally formed by injection molding using, for example, a metal material or a resin material.
 また、例えば、対向電極30は、平板状の電極でなくてもよく、例えば、滑らかに湾曲した電極板であってもよい。貫通孔32は、厚み方向に電極板を貫通していてもよく、ノズル26の突出方向に電極板を貫通していてもよい。 For example, the counter electrode 30 may not be a flat electrode, and may be a smoothly curved electrode plate, for example. The through hole 32 may penetrate the electrode plate in the thickness direction, or may penetrate the electrode plate in the protruding direction of the nozzle 26.
 また、上記実施の形態において、コントローラ70等の構成要素の全部又は一部は、専用のハードウェアで構成されてもよく、或いは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)又はプロセッサ等のプログラム実行部が、HDD(Hard Disk Drive)又は半導体メモリ等の記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 In the above embodiment, all or a part of the components such as the controller 70 may be configured by dedicated hardware, or realized by executing a software program suitable for each component. Also good. Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading out and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
 また、コントローラ70等の構成要素は、1つ又は複数の電子回路で構成されてもよい。1つ又は複数の電子回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 Further, the components such as the controller 70 may be configured by one or a plurality of electronic circuits. Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit.
 1つ又は複数の電子回路には、例えば、半導体装置、IC(Integrated Circuit)又はLSI(Large Scale Integration)等が含まれてもよい。IC又はLSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、IC又はLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、又は、ULSI(Ultra Large Scale Integration)と呼ばれるかもしれない。また、LSIの製造後にプログラムされるFPGA(Field Programmable Gate Array)も同じ目的で使うことができる。 The one or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), an LSI (Large Scale Integration), or the like. The IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Here, it is called IC or LSI, but the name changes depending on the degree of integration, and may be called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). An FPGA (Field Programmable Gate Array) programmed after manufacturing the LSI can be used for the same purpose.
 また、本発明の全般的又は具体的な態様は、システム、装置、方法、集積回路又はコンピュータプログラムで実現されてもよい。或いは、当該コンピュータプログラムが記憶された光学ディスク、HDD若しくは半導体メモリ等のコンピュータ読み取り可能な非一時的記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 The general or specific aspect of the present invention may be realized by a system, apparatus, method, integrated circuit, or computer program. Alternatively, it may be realized by a computer-readable non-transitory recording medium such as an optical disk, HDD, or semiconductor memory in which the computer program is stored. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
 10 第1溶液槽
 10a 第1室
 10b 第2室
 11 第2溶液槽
 20 噴出板
 21 電極支持板
 26 ノズル
 30 対向電極
 80 循環部
 100、101、101a、102、103 静電霧化装置
 110 第1電極
 120 第2電極
 140、140a、140b イオン透過膜
 200 溶液
DESCRIPTION OF SYMBOLS 10 1st solution tank 10a 1st chamber 10b 2nd chamber 11 2nd solution tank 20 Ejection plate 21 Electrode support plate 26 Nozzle 30 Counter electrode 80 Circulation part 100,101,101a, 102,103 Electrostatic atomizer 110 1st Electrode 120 Second electrode 140, 140a, 140b Ion permeable membrane 200 Solution

Claims (5)

  1.  少なくとも電解質を含む溶液を収容する第1溶液槽と、
     前記第1溶液槽に備わる第1電極と、
     前記第1溶液槽に備わり、前記第1電極と対となり前記第1電極との間に電圧が印加されることで前記溶液を電気分解する第2電極と、
     電気分解された前記溶液を前記第1溶液槽の外部へ放出するノズルと、
     前記第1溶液槽の外部で前記ノズルに対向して配置され、前記第1電極との間に電圧が印加されることで、電気分解された前記溶液を前記ノズルから放出させて霧化する対向電極と、を有する、
     静電霧化装置。
    A first solution tank containing a solution containing at least an electrolyte;
    A first electrode provided in the first solution tank;
    A second electrode that is provided in the first solution tank and that electrolyzes the solution by applying a voltage between the first electrode and a pair of the first electrode;
    A nozzle for discharging the electrolyzed solution to the outside of the first solution tank;
    Opposing to be disposed outside the first solution tank so as to face the nozzle and to be atomized by discharging the electrolyzed solution from the nozzle by applying a voltage between the first electrode and the first electrode. An electrode,
    Electrostatic atomizer.
  2.  さらに、前記第1電極と前記第2電極との間に配置されるイオン透過膜を有する、
     請求項1に記載の静電霧化装置。
    And an ion permeable membrane disposed between the first electrode and the second electrode.
    The electrostatic atomizer of Claim 1.
  3.  前記イオン透過膜は、前記ノズルと繋がる第1室と、前記ノズルと繋がらない第2室とに前記第1溶液槽の内部を仕切り、
     前記第1電極は、前記第1室に配置され、
     前記第2電極は、前記第2室に配置される、
     請求項2に記載の静電霧化装置。
    The ion permeable membrane partitions the inside of the first solution tank into a first chamber connected to the nozzle and a second chamber not connected to the nozzle,
    The first electrode is disposed in the first chamber;
    The second electrode is disposed in the second chamber;
    The electrostatic atomizer of Claim 2.
  4.  さらに、
     前記第1溶液槽と繋がり、少なくとも電解質を含む溶液を収容する第2溶液槽と、
     前記第1溶液槽及び前記第2溶液槽に収容されている溶液を循環させる循環部と、を有する、
     請求項1~3のいずれか1項に記載の静電霧化装置。
    further,
    A second solution tank connected to the first solution tank and containing a solution containing at least an electrolyte;
    A circulation part for circulating the solution stored in the first solution tank and the second solution tank,
    The electrostatic atomizer according to any one of claims 1 to 3.
  5.  前記電解質は、塩素イオンを含む、
     請求項1~4のいずれか1項に記載の静電霧化装置。
    The electrolyte contains chlorine ions,
    The electrostatic atomizer according to any one of claims 1 to 4.
PCT/JP2019/002273 2018-02-22 2019-01-24 Electrostatic spraying apparatus WO2019163389A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-029289 2018-02-22
JP2018029289 2018-02-22

Publications (1)

Publication Number Publication Date
WO2019163389A1 true WO2019163389A1 (en) 2019-08-29

Family

ID=67686954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002273 WO2019163389A1 (en) 2018-02-22 2019-01-24 Electrostatic spraying apparatus

Country Status (1)

Country Link
WO (1) WO2019163389A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112974007A (en) * 2021-02-02 2021-06-18 重庆大学 Flat-plate electrospray emission device with micro-channel
CN114901599A (en) * 2020-02-10 2022-08-12 松下知识产权经营株式会社 Portable electrolytic water sprayer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202059A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Electrostatic atomizing apparatus
JP2010082213A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Hair care appliance incorporating reduced water mist spraying device
JP2010099640A (en) * 2008-10-27 2010-05-06 Panasonic Electric Works Co Ltd Electrostatic atomizing device
JP2011067739A (en) * 2009-09-24 2011-04-07 Panasonic Electric Works Co Ltd Electrostatic atomization apparatus
JP2011075144A (en) * 2009-09-29 2011-04-14 Toshiba Corp Refrigerator
JP2012065979A (en) * 2010-09-27 2012-04-05 Panasonic Corp Functional mist generating device
JP2014168726A (en) * 2013-03-01 2014-09-18 Metawater Co Ltd Deodorization apparatus and deodorization method
JP2014193464A (en) * 2003-08-05 2014-10-09 Panasonic Corp Electrostatic atomizer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193464A (en) * 2003-08-05 2014-10-09 Panasonic Corp Electrostatic atomizer
JP2009202059A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Electrostatic atomizing apparatus
JP2010082213A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Hair care appliance incorporating reduced water mist spraying device
JP2010099640A (en) * 2008-10-27 2010-05-06 Panasonic Electric Works Co Ltd Electrostatic atomizing device
JP2011067739A (en) * 2009-09-24 2011-04-07 Panasonic Electric Works Co Ltd Electrostatic atomization apparatus
JP2011075144A (en) * 2009-09-29 2011-04-14 Toshiba Corp Refrigerator
JP2012065979A (en) * 2010-09-27 2012-04-05 Panasonic Corp Functional mist generating device
JP2014168726A (en) * 2013-03-01 2014-09-18 Metawater Co Ltd Deodorization apparatus and deodorization method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114901599A (en) * 2020-02-10 2022-08-12 松下知识产权经营株式会社 Portable electrolytic water sprayer
CN112974007A (en) * 2021-02-02 2021-06-18 重庆大学 Flat-plate electrospray emission device with micro-channel
CN112974007B (en) * 2021-02-02 2022-11-25 重庆大学 Flat-plate electrospray emission device with micro-channel

Similar Documents

Publication Publication Date Title
US9907877B2 (en) Sanitization mist shower apparatus
WO2019163389A1 (en) Electrostatic spraying apparatus
CN107073147B (en) Hydrogen peroxide plasma ionization generating device with double nozzles
WO2012132596A1 (en) Plasma generator and cleaning/purification apparatus using same
US20170128604A1 (en) Treatment device, sterilization device, sterilization water, and sterilization method
US11964294B2 (en) Mist-generating device
US20150273097A1 (en) Sterilizing component removal device, disinfection device, disinfected environment maintaining system, and sterilizing component removal method
TW201700180A (en) Device for imparting negative charge and discharging atomized liquid
WO2019064673A1 (en) Functional mist generating device
KR101865574B1 (en) Sterilization humidifier with electrolysis module
TW201914697A (en) Silver ion antimicrobial agent spraying device
WO2019102894A1 (en) Electrostatic atomizer
JP2019205981A (en) Electrostatic atomizer
JP2016040508A (en) Humidifier using platinum shield technology
JP2020065944A (en) Electrostatic atomization device
JP2019076800A (en) Functional water generator
WO2021085075A1 (en) Spray device and culture device
US10561760B2 (en) Space modulation apparatus
KR102397033B1 (en) Apparatus for spraying antiseptic solution
KR102271266B1 (en) Nozzle and apparatus for activating a media including the nozzle
JP2021053550A (en) Electrostatic atomizer
JP2020005993A (en) Floating froth material and froth material generator
KR20170114867A (en) A plasma power supply device for generating to a ionized hydrogen peroxide aerosol
CN213146818U (en) Humidifier capable of automatically generating HClO
KR102311139B1 (en) Media atomizing gun and apparatus for activating a media including the gun

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP