WO2019159651A1 - 画素回路、表示装置、画素回路の駆動方法および電子機器 - Google Patents

画素回路、表示装置、画素回路の駆動方法および電子機器 Download PDF

Info

Publication number
WO2019159651A1
WO2019159651A1 PCT/JP2019/002460 JP2019002460W WO2019159651A1 WO 2019159651 A1 WO2019159651 A1 WO 2019159651A1 JP 2019002460 W JP2019002460 W JP 2019002460W WO 2019159651 A1 WO2019159651 A1 WO 2019159651A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
pixel circuit
period
light emitting
voltage
Prior art date
Application number
PCT/JP2019/002460
Other languages
English (en)
French (fr)
Inventor
直史 豊村
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2020500364A priority Critical patent/JP7237918B2/ja
Priority to US16/967,559 priority patent/US11398186B2/en
Publication of WO2019159651A1 publication Critical patent/WO2019159651A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present disclosure relates to a pixel circuit, a display device, a driving method of the pixel circuit, and an electronic device.
  • flat (flat panel) display devices in which pixels including light-emitting portions are arranged in a matrix (matrix shape) have become mainstream.
  • a so-called current-driven electro-optical element for example, an organic electroluminescence (EL) element, in which light emission luminance changes according to a current value flowing through a light-emitting portion, is used.
  • EL organic electroluminescence
  • Patent Document 1 discloses a display device technique that can shorten the write time of the initialization voltage for the gate node of the drive transistor in performing the correction operation of the characteristics of the drive transistor.
  • Reduction of the time required for correcting the threshold voltage of the driving transistor leads to speeding up the driving of the pixel circuit.
  • the number of transistors in one pixel is increased in order to shorten the time required for correcting the threshold voltage of the driving transistor, the size of the pixel circuit is increased.
  • a new and improved pixel capable of shortening the time required for correcting the threshold voltage of the driving transistor and increasing the driving speed of the pixel circuit without increasing the size of the pixel circuit.
  • a circuit, a display device, a driving method of a pixel circuit, and an electronic device are proposed.
  • a light emitting element a driving transistor that supplies current to the light emitting element, a light emission control transistor that controls connection between a drain node of the driving transistor and an anode of the light emitting element, and the light emitting element
  • a first reset transistor that sets the potential of the anode of the transistor to a predetermined potential
  • a second reset transistor that controls the connection between the drain node and the gate node of the drive transistor, and a signal voltage at the gate node of the drive transistor
  • a pixel circuit includes a write transistor that controls writing, a signal line to which the signal voltage is applied, and a capacitor provided between a source node of the write transistor.
  • a light emitting element a driving transistor that supplies current to the light emitting element, a light emission control transistor that controls connection between a drain node of the driving transistor and an anode of the light emitting element, A first reset transistor that sets a potential of an anode of the light emitting element to a predetermined potential; a second reset transistor that controls connection between a drain node and a gate node of the drive transistor; and a gate node of the drive transistor.
  • a writing transistor that controls writing of a signal voltage; a first capacitor element provided between a gate node of the driving transistor and a power supply line; a signal line to which the signal voltage is applied; and a source node of the writing transistor; A second capacitor element provided between the first capacitor element and the second capacitor element.
  • the emission control transistor is turned off at the start of the period, the anode potential of the light emitting element is set to a predetermined potential by turning on the first reset transistor, and the second period after the first period starts. Sometimes the write transistor and the light emission control transistor are turned on, and the second reset transistor is turned on to set the potential of the gate node of the driving transistor to the preparation voltage, and the third period after the second period.
  • the light emission control transistor is turned off at the start of the period, the threshold voltage of the drive transistor is corrected, the second reset transistor is turned on at the start of the fourth period after the third period, and the fourth period
  • the write transistor is turned off at the start of a later fifth period, and the first reset transistor is turned off during the fifth period. In the off, the current is supplied to the light emitting element to turn on the light emission control transistor at the start of the sixth period after the fifth period, the driving method of the pixel circuit is provided.
  • an improved pixel circuit, display device, pixel circuit driving method, and electronic device can be provided.
  • FIG. 4 is an explanatory diagram illustrating a configuration example of a display device 100 according to an embodiment of the present disclosure.
  • FIG. 4 is an explanatory diagram illustrating a more detailed configuration example of the display device 100 according to the embodiment.
  • FIG. 4 is an explanatory diagram illustrating a driving example of the pixel circuit illustrated in FIG. 3. It is explanatory drawing which shows the structural example of the pixel circuit used as a comparative example.
  • 4 is an explanatory diagram illustrating a configuration example of a pixel circuit according to the embodiment.
  • FIG. FIG. 7 is an explanatory diagram illustrating a driving example of the pixel circuit illustrated in FIG. 6.
  • the display device of the present disclosure is a flat type display device in which a pixel transistor having a sampling transistor and a storage capacitor is arranged in addition to a driving transistor for driving a light emitting unit.
  • the flat display device include an organic EL display device, a liquid crystal display device, and a plasma display device.
  • the organic EL display device uses an organic EL element using a phenomenon in which light is emitted when an electric field is applied to an organic thin film using electroluminescence of an organic material as a light emitting element (electro-optical element) of a pixel. ing.
  • An organic EL display device using an organic EL element as a light emitting portion of a pixel has the following features. That is, since the organic EL element can be driven with an applied voltage of 10 V or less, the organic EL display device has low power consumption. Since the organic EL element is a self-luminous element, the organic EL display device has higher image visibility than a liquid crystal display device that is the same flat display device, and an illumination member such as a backlight. Therefore, it is easy to reduce the weight and thickness. Furthermore, since the response speed of the organic EL element is as high as several microseconds, the organic EL display device does not generate an afterimage when displaying a moving image.
  • the organic EL element is a self-luminous element and a current-driven electro-optical element.
  • Examples of current-driven electro-optical elements include inorganic EL elements, LED elements, and semiconductor laser elements in addition to organic EL elements.
  • a flat display device such as an organic EL display device can be used as a display unit (display device) in various electronic devices including a display unit.
  • Various electronic devices include television systems, head mounted displays, digital cameras, video cameras, game consoles, notebook personal computers, portable information devices such as electronic books, PDAs (Personal Digital Assistants), and mobile phones.
  • a mobile communication device etc. can be illustrated.
  • the driving unit may be configured such that after the gate node of the driving transistor is in a floating state, the source node is in a floating state.
  • the driving unit can be configured to perform signal voltage writing by the sampling transistor while the source node of the driving transistor is in a floating state.
  • the initialization voltage can be supplied to the signal line at a timing different from that of the signal voltage and written to the gate node of the driving transistor by sampling by the sampling transistor from the signal line.
  • the pixel circuit can be formed on a semiconductor such as silicon.
  • the drive transistor can be configured by a P-channel transistor. The reason why the P-channel transistor is used as the driving transistor instead of the N-channel transistor is as follows.
  • the transistor When a transistor is formed on a semiconductor such as silicon instead of an insulator such as a glass substrate, the transistor is not a three-terminal source / gate / drain, but a source / gate / drain / back gate (base). 4 terminals.
  • the back gate (substrate) voltage becomes 0 V, which adversely affects the operation of correcting the variation in the threshold voltage of the driving transistor for each pixel.
  • the variation in transistor characteristics is smaller in the P-channel transistor without the LDD region than in the N-channel transistor having the LDD (Lightly Doped Drain) region, and the pixel size is reduced. This is advantageous for achieving high definition.
  • a P-channel transistor as a driving transistor instead of an N-channel transistor.
  • the sampling transistor can also be configured by a P-channel transistor.
  • the pixel circuit includes a light emission control transistor that controls light emission / non-light emission of the light emitting unit. It can be. At this time, the light emission control transistor can also be configured by a P-channel transistor.
  • the storage capacitor is connected between the gate node and the source node of the driving transistor. It can be. Further, the pixel circuit can have a configuration in which an auxiliary capacitor is connected between the source node of the driving transistor and the node of the fixed potential.
  • the pixel circuit is connected between the drain node of the driving transistor and the cathode node of the light emitting unit.
  • the switching transistor can be configured as described above.
  • the switching transistor can also be configured by a P-channel transistor.
  • a drive part it can be set as the structure which makes a switching transistor a conduction
  • the driving unit samples the signal for driving the switching transistor, and samples the initialization voltage by the sampling transistor. Activate before timing. Then, the signal for driving the light emission control transistor can be set in an inactive state after being set in an active state. At this time, the driving unit can be configured to complete the sampling of the initialization voltage by the sampling transistor before the signal for driving the light emission control transistor is made inactive.
  • FIG. 1 is an explanatory diagram illustrating a configuration example of the display device 100 according to the embodiment of the present disclosure.
  • FIG. 1 is an explanatory diagram illustrating a configuration example of the display device 100 according to the embodiment of the present disclosure.
  • a configuration example of the display device 100 according to the embodiment of the present disclosure will be described with reference to FIG.
  • the pixel unit 110 has a configuration in which pixels each provided with an organic EL element and other self-luminous elements are arranged in a matrix.
  • scanning lines are provided in the horizontal direction in units of lines with respect to pixels arranged in a matrix, and signal lines are provided for each column so as to be orthogonal to the scanning lines.
  • the horizontal selector 120 distributes the image data to each signal line by sequentially transferring a predetermined sampling pulse and sequentially latching the image data by the sampling pulse. Further, the horizontal selector 120 performs analog-digital conversion processing on the image data distributed to each signal line, thereby generating a drive signal indicating the light emission luminance of each pixel connected to each signal line by time division. The horizontal selector 120 outputs this drive signal to the corresponding signal line.
  • the vertical scanner 130 generates a driving signal for each pixel in response to the driving of the signal line by the horizontal selector 120 and outputs it to the scanning line SCN.
  • the display device 100 sequentially drives each pixel arranged in the pixel unit 110 by the vertical scanner 130, and causes each pixel to emit light at the signal level of each signal line set by the horizontal selector 120. This is displayed on the section 110.
  • FIG. 2 is an explanatory diagram illustrating a more detailed configuration example of the display device 100 according to the embodiment of the present disclosure.
  • a configuration example of the display device 100 according to the embodiment of the present disclosure will be described with reference to FIG.
  • pixels 111R that display red, pixels 111G that display green, and pixels 111B that display blue are arranged in a matrix.
  • the vertical scanner 130 includes an auto zero scanner 131, a driving scanner 132, and a writing scanner 133. By supplying signals from the respective scanners to the pixels arranged in a matrix in the pixel portion 110, the TFTs provided in the respective pixels are turned on and off.
  • Each pixel provided in the pixel portion 110 can have various forms, but the following description shows a case where five P-channel MOS transistors are provided. Subsequently, a detailed circuit configuration example of each pixel provided in the pixel unit 110 will be described. Before describing the pixel circuit according to the present embodiment in detail, a configuration example of a pixel circuit serving as a comparative example will be described.
  • FIG. 3 is an explanatory diagram showing a configuration example of a pixel circuit as a comparative example.
  • the pixel circuit shown in FIG. 3 includes P-channel transistors T1 to T5, an organic EL element EL, and a capacitor element Cs.
  • a signal line for supplying the video signal Vsig to the pixel circuit is provided with a capacitor element Csig and a transfer gate TF.
  • FIG. 3 also shows the signal line parasitic capacitance Cp for the signal line that supplies the video signal Vsig.
  • the transistor T1 functions as a light emission control transistor, the gate is connected to the signal line DS, the drain is connected to the anode of the organic EL element EL, and the source is connected to the drain of the transistor T2.
  • the video signal Vsig is supplied to the gate of the transistor T2 via the transistor T3, and the source is connected to the power supply voltage VCCP.
  • the gate of the transistor T3 is connected to the signal line WS.
  • the gate of the transistor T4 is connected to the signal line AZ1.
  • the gate of the transistor T5 is connected to the signal line AZ2.
  • FIG. 3 shows a level shift circuit configured by a capacitive element Csig and P-channel transistors T6 and T7 for shifting the output voltage of the transfer gate TF.
  • FIG. 4 is an explanatory diagram showing an example of driving the pixel circuit shown in FIG.
  • the light emission period of the previous frame ends, and the signal line DS changes from low to high. This turns off the transistor T1.
  • the signal line AZ1 changes from high to low. Thereby, the transistor T4 is turned on, and the anode potential of the organic EL element EL is set to Vss.
  • the extinction period ends and the initialization period starts.
  • the signal line WS changes from high to low, and the transistor T3 is turned on.
  • the signal line AZ2 changes from high to low, and the transistor T5 is turned on.
  • the signal line OFS changes from high to low, and the transistor T6 is turned on. Therefore, the gate potential of the transistor T2 is set to Vofs.
  • the initialization period ends and the Vth correction period starts.
  • the signal line OFS changes from low to high, and the transistor T6 is turned off.
  • the gate potential of the transistor T2 gradually rises from Vofs.
  • the gate potential of the transistor T2 rises until the potential difference from the power supply voltage VCCP reaches the threshold voltage Vth of the transistor T2.
  • the Vth correction period ends and the signal writing period starts.
  • the signal line AZ2 changes from low to high, and the transistor T5 is turned off. Therefore, the gate and drain of the transistor T2 are short-circuited. As a result, the gate potential of the transistor T2 becomes the potential of the video signal Vsig.
  • the signal writing period ends, the signal line WS changes from low to high, and the transistor T3 is turned off. Thereafter, the signal line AZ1 is changed from low to high, so that the transistor T4 is turned off. At time t6, the signal line DS changes from high to low, whereby the transistor T1 is turned on.
  • a current corresponding to the video signal Vsig flows through the organic EL element EL, and the organic EL element EL emits light according to the amount of current. To do.
  • the Vth correction operation is performed with the signal line WS low and the transistor T3 turned on.
  • the Vth correction voltage is written not only to the capacitor Cs but also to the signal line parasitic capacitor Cp and the capacitor Csig.
  • the capacitance Cp has a capacitance value of one signal line and is very large, and the capacitance value of the capacitance Csig is also large in order to write to the signal line having this capacitance. Therefore, it takes time until the gate potential of the transistor T2 converges to VCCP ⁇ Vth, which is an obstacle to increase in driving speed.
  • FIG. 5 is an explanatory diagram illustrating a configuration example of a pixel circuit as a comparative example.
  • the pixel circuit shown in FIG. 5 includes P-channel transistors T1 to T5 and T8, an organic EL element EL, and capacitive elements Cs and C1.
  • the pixel circuit shown in FIG. 5 has a capacitor line for Vth correction provided between the signal line for supplying the video signal Vsig and the transistor T3. .
  • the capacitive element C1 is provided between the Vth correction capacitive line and the signal line for supplying the video signal Vsig.
  • the capacitances of the capacitors Cp and Csig can be reduced, and the time until the gate potential of the transistor T2 converges to VCCP ⁇ Vth We are trying to speed up.
  • the pixel circuit shown in FIG. 5 has one more transistor than the pixel circuit shown in FIG. An increase in the number of transistors leads to an increase in circuit area and hinders miniaturization of the display.
  • the present disclosure has intensively studied a technique capable of speeding up driving without increasing the number of transistors in a pixel circuit including five transistors.
  • the present inventor has devised a technique capable of speeding up driving without increasing the number of transistors in a pixel circuit including five transistors, as will be described below. .
  • FIG. 6 is an explanatory diagram illustrating a configuration example of the pixel circuit according to the embodiment of the present disclosure.
  • the pixel circuit according to the embodiment of the present disclosure includes P-channel transistors T11 to T15, an organic EL element EL, and capacitive elements Cs1 and Cs2.
  • a transfer gate TF is provided on a signal line that supplies the video signal Vsig to the pixel circuit.
  • the transistor T11 functions as a light emission control transistor, the gate is connected to the signal line DS, the drain is connected to the anode of the organic EL element EL, and the source is connected to the drain of the transistor T12.
  • the transistor T12 is a driving transistor.
  • the video signal Vsig is supplied to the gate of the transistor T12 via the transistor T13, and the source is connected to the power supply voltage VCCP.
  • the transistor T13 is a write transistor.
  • the gate of the transistor T13 is connected to the signal line WS.
  • a capacitive element Cs2 is provided between the source of the transistor T13 and the signal line 151 that supplies the video signal Vsig.
  • Transistors T14 and T15 are reset transistors.
  • the gate of the transistor T14 is connected to the signal line AZ1.
  • the gate of the transistor T15 is connected to the signal line AZ2.
  • the capacitive element Cs2 is provided between the signal line 151 and the transistor T13.
  • the threshold voltage of the transistor T12 that is a driving transistor can be corrected at high speed by providing the capacitor Cs2.
  • FIG. 7 is an explanatory diagram showing an example of driving the pixel circuit shown in FIG.
  • the light emission period of the previous frame ends, and the signal line DS changes from low to high. This turns off the transistor T11.
  • the signal line AZ1 changes from high to low. Thereby, the transistor T14 is turned on, and the anode potential of the organic EL element EL is set to Vss.
  • the extinction period ends and the initialization period starts.
  • the signal line WS changes from high to low, and the transistor T13 is turned on.
  • the signal line DS changes from high to low, and the transistor T11 is turned on.
  • the signal line AZ2 changes from high to low, and the transistor T15 is turned on.
  • the gate voltage of the transistor T12 decreases from VCCP, and a preparation voltage for Vth correction is written to the gate of the transistor T12.
  • Vg Vth
  • + V_low, and Vg Vss when Vss ⁇
  • the initialization period ends and the Vth correction period starts.
  • the signal line DS changes from low to high, and the transistor T11 is turned off.
  • the gate potential of the transistor T12 gradually increases from Vg.
  • the gate potential of the transistor T12 increases until the potential difference from the power supply voltage VCCP reaches the threshold voltage Vth of the transistor T12. The effect of providing the capacitive element Cs2 can shorten the Vth correction period.
  • the Vth correction period ends and the signal writing period starts.
  • the signal line AZ2 changes from low to high, and the transistor T15 is turned off. Therefore, the gate and drain of the transistor T12 are short-circuited.
  • the voltage of the video signal Vsig transits from VCCP to VCCP-Vdata.
  • the gate voltage of the transistor T12 becomes VCCP ⁇ Vth ⁇ Vdata * Cs2 / (Cs1 + Cs2). That is, the gate voltage of the transistor T12 becomes a voltage reflecting the threshold voltage Vth, and the threshold voltage Vth of the transistor T12 is canceled at the time of light emission.
  • the signal writing period ends, the signal line WS changes from low to high, and the transistor T13 is turned off. Thereafter, the signal line AZ1 is changed from low to high, so that the transistor T14 is turned off. Then, at time t6, the signal line DS changes from high to low, whereby the transistor T11 is turned on, a current corresponding to the video signal Vsig flows through the organic EL element EL, and the organic EL element EL emits light according to the amount of current. To do.
  • the pixel circuit according to the embodiment of the present disclosure has a configuration as illustrated in FIG. 6 and is driven as illustrated in FIG. 7, thereby increasing the number of transistors in the pixel circuit including five transistors. It is possible to increase the driving speed without doing so. That is, in the comparative example described above, it is necessary to charge the signal line when correcting the threshold voltage of the driving transistor, which hinders high-speed driving. On the other hand, the pixel circuit according to the embodiment of the present disclosure can appropriately perform the correction of the threshold voltage of the drive transistor by providing the capacitor Cs2 appropriately for each pixel.
  • the pixel circuit shown in FIG. 6 has one power supply reduced compared to the comparative example shown in FIG. That is, the pixel circuit according to the embodiment of the present disclosure illustrated in FIG. 6 can reduce the power supply necessary for driving the circuit by sharing the Vth correction preparation voltage with the extinction reset power supply Vss. ing.
  • a pixel circuit including five transistors, a pixel circuit capable of increasing the driving speed without increasing the number of transistors is provided.
  • Such electronic devices include mobile phones such as TVs and smart phones, tablet portable terminals, personal computers, portable game consoles, portable music players, digital still cameras, digital video cameras, wristwatch portable terminals, and wearable devices. and so on.
  • a light emitting element A driving transistor for supplying a current to the light emitting element; A light emission control transistor for controlling connection between a drain node of the driving transistor and an anode of the light emitting element; A first reset transistor that sets a potential of an anode of the light emitting element to a predetermined potential; A second reset transistor for controlling a connection between a drain node and a gate node of the driving transistor; A write transistor that controls writing of a signal voltage at a gate node of the drive transistor; A first capacitive element provided between a gate node of the driving transistor and a power supply line; A second capacitive element provided between a signal line to which the signal voltage is applied and a source node of the write transistor; A pixel circuit.
  • the preparation voltage set when correcting the threshold voltage of the driving transistor is the threshold of the first reset transistor If the predetermined potential is equal to or higher than the value obtained by adding the low potential to the threshold voltage of the first reset transistor, the predetermined potential is equal to (1). ) Described pixel circuit. (3) A display device comprising the pixel circuit according to (1) or (2). (4) An electronic apparatus comprising the display device according to (3).
  • a light emitting element A driving transistor for supplying a current to the light emitting element; A light emission control transistor for controlling connection between a drain node of the driving transistor and an anode of the light emitting element; A first reset transistor that sets a potential of an anode of the light emitting element to a predetermined potential; A second reset transistor for controlling a connection between a drain node and a gate node of the driving transistor; A write transistor that controls writing of a signal voltage at a gate node of the drive transistor; A first capacitive element provided between a gate node of the driving transistor and a power supply line; A second capacitive element provided between a signal line to which the signal voltage is applied and a source node of the write transistor; In a pixel circuit comprising: Turning off the light emission control transistor at the start of the first period and turning on the first reset transistor to set the anode potential of the light emitting element to a predetermined potential; At the start of the second period after the first period, the writing transistor and the light emission control transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

画素回路のサイズを大きくすることなく、駆動トランジスタの閾値電圧の補正に要する時間を短縮させて、画素回路の駆動を高速化することが可能な画素回路を提供する。 発光素子と、前記発光素子へ電流を供給する駆動トランジスタと、前記駆動トランジスタのドレインノードと前記発光素子のアノードとの間の接続を制御する発光制御トランジスタと、前記発光素子のアノードの電位を所定の電位に設定する第1リセットトランジスタと、前記駆動トランジスタのドレインノードとゲートノードとの間の接続を制御する第2リセットトランジスタと、前記駆動トランジスタのゲートノードでの信号電圧の書き込みを制御する書込みトランジスタと、前記信号電圧が印加される信号線と、前記書込みトランジスタのソースノードとの間に設けられる容量素子と、を備える、画素回路が提供される。

Description

画素回路、表示装置、画素回路の駆動方法および電子機器
 本開示は、画素回路、表示装置、画素回路の駆動方法および電子機器に関する。
 近年、表示装置の分野では、発光部を含む画素が行列状(マトリクス状)に配置されて成る平面型(フラットパネル型)の表示装置が主流となっている。平面型の表示装置の一つとして、発光部に流れる電流値に応じて発光輝度が変化する、所謂、電流駆動型の電気光学素子、例えば、有機エレクトロルミネッセンス(Electro Luminescence:EL)素子を用いる有機EL表示装置がある。
 この有機EL表示装置に代表される平面型の表示装置にあっては、電気光学素子を駆動する駆動トランジスタのトランジスタ特性(例えば、閾値電圧)が、プロセスの変動などによって画素毎にばらつく場合がある。その駆動トランジスタの特性の補正動作を行うに当たって、駆動トランジスタのゲートノードに対する初期化電圧の書込み時間の短縮化を可能にした表示装置の技術が、例えば特許文献1に開示されている。
特開2015-34861号公報
 駆動トランジスタの閾値電圧の補正に要する時間を短縮させることは、画素回路の駆動を高速化することに繋がる。しかし、駆動トランジスタの閾値電圧の補正に要する時間を短縮させるために1つの画素におけるトランジスタの数を増加させてしまうと、画素回路のサイズが大きくなってしまう。
 そこで、本開示では、画素回路のサイズを大きくすることなく、駆動トランジスタの閾値電圧の補正に要する時間を短縮させて、画素回路の駆動を高速化することが可能な、新規かつ改良された画素回路、表示装置、画素回路の駆動方法および電子機器を提案する。
 本開示によれば、発光素子と、前記発光素子へ電流を供給する駆動トランジスタと、前記駆動トランジスタのドレインノードと前記発光素子のアノードとの間の接続を制御する発光制御トランジスタと、前記発光素子のアノードの電位を所定の電位に設定する第1リセットトランジスタと、前記駆動トランジスタのドレインノードとゲートノードとの間の接続を制御する第2リセットトランジスタと、前記駆動トランジスタのゲートノードでの信号電圧の書き込みを制御する書込みトランジスタと、前記信号電圧が印加される信号線と、前記書込みトランジスタのソースノードとの間に設けられる容量素子と、を備える、画素回路が提供される。
 また、本開示によれば、発光素子と、前記発光素子へ電流を供給する駆動トランジスタと、前記駆動トランジスタのドレインノードと前記発光素子のアノードとの間の接続を制御する発光制御トランジスタと、前記発光素子のアノードの電位を所定の電位に設定する第1リセットトランジスタと、前記駆動トランジスタのドレインノードとゲートノードとの間の接続を制御する第2リセットトランジスタと、前記駆動トランジスタのゲートノードでの信号電圧の書き込みを制御する書込みトランジスタと、前記駆動トランジスタのゲートノードと電源線との間に設けられる第1容量素子と、前記信号電圧が印加される信号線と、前記書込みトランジスタのソースノードとの間に設けられる第2容量素子と、を備える、画素回路において、第1期間の開始時に前記発光制御トランジスタをオフにし、前記第1リセットトランジスタをオンにすることで前記発光素子のアノードの電位を所定の電位に設定し、前記第1期間の後の第2期間の開始時に前記書込みトランジスタ及び前記発光制御トランジスタをオンにして、前記第2リセットトランジスタをオンにすることで前記駆動トランジスタのゲートノードの電位を準備電圧に設定し、前記第2期間の後の第3期間の開始時に前記発光制御トランジスタをオフにして、前記駆動トランジスタの閾値電圧を補正し、前記第3期間の後の第4期間の開始時に前記第2リセットトランジスタをオンにして、前記第4期間の後の第5期間の開始時に前記書込みトランジスタをオフにして、前記第5期間の間に前記第1リセットトランジスタをオフにして、前記第5期間の後の第6期間の開始時に前記発光制御トランジスタをオンにして前記発光素子に電流を供給する、画素回路の駆動方法が提供される。
 以上説明したように本開示によれば、画素回路のサイズを大きくすることなく、駆動トランジスタの閾値電圧の補正に要する時間を短縮させて、画素回路の駆動を高速化することが可能な、新規かつ改良された画素回路、表示装置、画素回路の駆動方法および電子機器を提供することが出来る。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の実施の形態に係る表示装置100の構成例を示す説明図である。 同実施の形態に係る表示装置100のより詳細な構成例を示す説明図である。 比較例となる画素回路の構成例を示す説明図である。 図3に示した画素回路の駆動例を示す説明図である。 比較例となる画素回路の構成例を示す説明図である。 同実施の形態に係る画素回路の構成例を示す説明図である。 図6に示した画素回路の駆動例を示す説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.本開示の実施の形態
  1.1.本開示の表示装置、表示装置の駆動方法、及び、電子機器、全般に関する説明
  1.2.構成例及び動作例
 2.まとめ
 <1.本開示の実施の形態>
 [1.1.本開示の表示装置、表示装置の駆動方法、及び、電子機器、全般に関する説明]
 本開示の表示装置は、発光部を駆動する駆動トランジスタの他に、サンプリングトランジスタ及び保持容量を有する画素回路が配置されて成る平面型(フラットパネル型)の表示装置である。平面型の表示装置としては、有機EL表示装置、液晶表示装置、プラズマ表示装置などを例示することができる。これらの表示装置のうち、有機EL表示装置は、有機材料のエレクトロルミネッセンスを利用し、有機薄膜に電界をかけると発光する現象を用いた有機EL素子を画素の発光素子(電気光学素子)として用いている。
 画素の発光部として有機EL素子を用いた有機EL表示装置は次のような特長を持っている。すなわち、有機EL素子が10V以下の印加電圧で駆動できるために、有機EL表示装置は低消費電力である。有機EL素子が自発光型の素子であるために、有機EL表示装置は、同じ平面型の表示装置である液晶表示装置に比べて、画像の視認性が高く、しかも、バックライト等の照明部材を必要としないために軽量化及び薄型化が容易である。更に、有機EL素子の応答速度が数マイクロ秒程度と非常に高速であるために、有機EL表示装置は動画表示時の残像が発生しない。
 有機EL素子は、自発光型の素子であるとともに、電流駆動型の電気光学素子である。電流駆動型の電気光学素子としては、有機EL素子の他に、無機EL素子、LED素子、半導体レーザー素子などを例示することができる。
 有機EL表示装置等の平面型の表示装置は、表示部を備える各種の電子機器において、その表示部(表示装置)として用いることができる。各種の電子機器としては、テレビジョンシステムの他、ヘッドマウントディスプレイ、デジタルカメラ、ビデオカメラ、ゲーム機、ノート型パーソナルコンピュータ、電子書籍等の携帯情報機器、PDA(Personal Digital Assistant)や携帯電話機等の携帯通信機器などを例示することができる。
 本開示の表示装置、表示装置の駆動方法、及び、電子機器にあっては、駆動部について、駆動トランジスタのゲートノードをフローティング状態にした後ソースノードをフローティング状態にする構成とすることができる。また、駆動部について、駆動トランジスタのソースノードをフローティング状態にしたままサンプリングトランジスタによる信号電圧の書込みを行う構成とすることができる。初期化電圧については、信号電圧と異なるタイミングで信号線に供給され、信号線からサンプリングトランジスタによるサンプリングによって駆動トランジスタのゲートノードに書き込まれる構成とすることができる。
 上述した好ましい構成を含む本開示の表示装置、表示装置の駆動方法、及び、電子機器にあっては、画素回路について、シリコンのような半導体上に形成する構成とすることができる。また、駆動トランジスタについて、Pチャネル型のトランジスタから成る構成とすることができる。駆動トランジスタとして、Nチャネル型のトランジスタではなく、Pチャネル型のトランジスタを用いるのは次の理由による。
 トランジスタをガラス基板のような絶縁体上ではなく、シリコンのような半導体上に形成する場合、トランジスタは、ソース/ゲート/ドレインの3端子ではなく、ソース/ゲート/ドレイン/バックゲート(ベース)の4端子となる。そして、駆動トランジスタとしてNチャネル型のトランジスタを用いた場合、バックゲート(基板)電圧が0Vとなり、駆動トランジスタの閾値電圧の画素毎のばらつきを補正する動作などに悪影響を及ぼすことになる。
 また、トランジスタの特性ばらつきは、LDD(Lightly Doped Drain)領域を持つNチャネル型のトランジスタに比べて、LDD領域を持たないPチャネル型のトランジスタの方が小さく、画素の微細化、ひいては、表示装置の高精細化を図る上で有利である。このような理由などから、シリコンのような半導体上への形成を想定した場合、駆動トランジスタとして、Nチャネル型のトランジスタではなく、Pチャネル型のトランジスタを用いるのが好ましい。
 上述した好ましい構成を含む本開示の表示装置、表示装置の駆動方法、及び、電子機器にあっては、サンプリングトランジスタについても、Pチャネル型のトランジスタから成る構成とすることができる。
 あるいは又、上述した好ましい構成を含む本開示の表示装置、表示装置の駆動方法、及び、電子機器にあっては、画素回路について、発光部の発光/非発光を制御する発光制御トランジスタを有する構成とすることができる。このとき、発光制御トランジスタについても、Pチャネル型のトランジスタから成る構成とすることができる。
 あるいは又、上述した好ましい構成を含む本開示の表示装置、表示装置の駆動方法、及び、電子機器にあっては、保持容量について、駆動トランジスタのゲートノードとソースノードとの間に接続された構成とすることができる。また、画素回路について、駆動トランジスタのソースノードと固定電位のノードとの間に接続された補助容量を有する構成とすることができる。
 あるいは又、上述した好ましい構成を含む本開示の表示装置、表示装置の駆動方法、及び、電子機器にあっては、画素回路について、駆動トランジスタのドレインノードと発光部のカソードノードとの間に接続されたスイッチングトランジスタを有する構成とすることができる。このとき、スイッチングトランジスタについても、Pチャネル型のトランジスタから成る構成とすることができる。また、駆動部について、発光部の非発光期間にスイッチングトランジスタを導通状態にする構成とすることができる。
 あるいは又、上述した好ましい構成を含む本開示の表示装置、表示装置の駆動方法、及び、電子機器にあっては、駆動部は、スイッチングトランジスタを駆動する信号を、サンプリングトランジスタによる初期化電圧のサンプリングタイミングよりも前にアクティブ状態にする。そして、発光制御トランジスタを駆動する信号をアクティブ状態にした後に非アクティブ状態にする構成とすることができる。このとき、駆動部について、発光制御トランジスタを駆動する信号を非アクティブ状態にする前に、サンプリングトランジスタによる初期化電圧のサンプリングを完了する構成とすることができる。
 [1.2.構成例および動作例]
 続いて、本開示の実施の形態に係る表示装置の構成例を説明する。図1は、本開示の実施の形態に係る表示装置100の構成例を示す説明図である。以下、図1を用いて本開示の実施の形態に係る表示装置100の構成例を説明する。
 画素部110は、有機EL素子その他の自発光素子がそれぞれ設けられた画素がマトリクス状に配置された構成を有する。画素部110は、マトリックス状に配置した画素に対して、走査線がライン単位で水平方向に設けられ、また走査線と直交するように信号線が列毎に設けられる。
 水平セレクタ120は、所定のサンプリングパルスを順次転送し、このサンプリングパルスで画像データを順次ラッチすることにより、この画像データを各信号線に振り分ける。また水平セレクタ120は、各信号線に振り分けた画像データをそれぞれアナログディジタル変換処理し、これにより各信号線に接続された各画素の発光輝度を時分割により示す駆動信号を生成する。水平セレクタ120は、この駆動信号を対応する信号線に出力する。
 垂直スキャナ130は、この水平セレクタ120による信号線の駆動に応動して、各画素の駆動信号を生成して走査線SCNに出力する。これにより表示装置100は、垂直スキャナ130により画素部110に配置された各画素を順次駆動し、水平セレクタ120より設定される各信号線の信号レベルで各画素を発光させ、所望の画像を画素部110で表示する。
 図2は、本開示の実施の形態に係る表示装置100のより詳細な構成例を示す説明図である。以下、図2を用いて本開示の実施の形態に係る表示装置100の構成例を説明する。
 画素部110には、赤色を表示する画素111R、緑色を表示する画素111G、青色を表示する画素111Bがマトリクス状に配置されている。
 そして垂直スキャナ130は、オートゼロスキャナ131、駆動スキャナ132及び書き込みスキャナ133を有する。それぞれのスキャナから信号が画素部110にマトリクス状に配置された画素に供給されることで、それぞれの画素に設けられるTFTのオン、オフ動作が行われる。
 画素部110に設けられる各画素は様々な形態が考えられるが、以下の説明では、Pチャネル型のMOSトランジスタを5つ備える場合について示す。続いて、画素部110に設けられる各画素の詳細な回路構成例を説明するが、本実施形態に係る画素回路について詳細に説明する前に、比較例となる画素回路の構成例を説明する。
 図3は、比較例となる画素回路の構成例を示す説明図である。図3に示した画素回路は、Pチャネル型のトランジスタT1~T5と、有機EL素子ELと、容量素子Csと、を含んで構成される。また、画素回路に映像信号Vsigを供給する信号線には容量素子Csigと、トランスファーゲートTFが設けられている。また図3には、映像信号Vsigを供給する信号線に対して信号線寄生容量Cpが示されている。
 トランジスタT1は発光制御トランジスタとして機能し、ゲートが信号線DSに接続されており、ドレインが有機EL素子ELのアノードに接続されており、ソースがトランジスタT2のドレインに接続されている。トランジスタT2のゲートには、トランジスタT3を介して映像信号Vsigが供給され、ソースが電源電圧VCCPに接続されている。トランジスタT3はゲートが信号線WSに接続されている。トランジスタT4はゲートが信号線AZ1に接続されている。トランジスタT5はゲートが信号線AZ2に接続されている。
 また、図3には、容量素子Csigと、Pチャネル型のトランジスタT6、T7とにより構成され、トランスファーゲートTFの出力電圧をシフトさせるレベルシフト回路が示されている。
 図4は、図3に示した画素回路の駆動例を示す説明図である。図4に示した時刻t1において前フレームの発光期間が終了し、信号線DSがローからハイになる。これによりトランジスタT1がオフとなる。また時刻t1において信号線AZ1がハイからローになる。これによりトランジスタT4がオンになり、有機EL素子ELのアノードの電位がVssに設定される。
 その後、時刻t2になると消光期間が終了し、初期化期間が開始される。時刻t2になると信号線WSがハイからローになり、トランジスタT3がオンとなる。また時刻t2において信号線AZ2がハイからローになり、トランジスタT5がオンとなる。また信号線OFSがハイからローになり、トランジスタT6がオンとなる。従って、トランジスタT2のゲート電位がVofsに設定される。
 その後、時刻t3になると初期化期間が終了し、Vth補正期間が開始される。時刻t3になると信号線OFSがローからハイになり、トランジスタT6がオフとなる。すると、トランジスタT2のゲート電位がVofsから徐々に上昇する。トランジスタT2のゲート電位は、電源電圧VCCPとの電位差がトランジスタT2の閾値電圧Vthになるまで上昇する。
 その後、時刻t4になるとVth補正期間が終了し、信号書込み期間が開始される。時刻t4になると、信号線AZ2がローからハイになり、トランジスタT5がオフとなる。したがって、トランジスタT2のゲートとドレインとが短絡される。これによりトランジスタT2のゲート電位が映像信号Vsigの電位となる。
 その後、時刻t5になると信号書込み期間が終了し、信号線WSがローからハイになり、トランジスタT3がオフとなる。その後、信号線AZ1がローからハイになることでトランジスタT4がオフになる。そして、時刻t6になって信号線DSがハイからローになることでトランジスタT1がオンとなり、有機EL素子ELに映像信号Vsigに対応した電流が流れ、有機EL素子ELが電流量に応じて発光する。
 この画素回路では、信号線WSをローにしてトランジスタT3をオンにしたままVth補正動作が行われるが、Vth補正の電圧は、容量Csのみならず信号線寄生容量Cp及び容量Csigに書きこまれる。ここで容量Cpは信号線1本分の容量値を有し、非常に大きく、またこの容量を持つ信号線に書きこむ為に容量Csigの容量値も同様に大きい。よってトランジスタT2のゲート電位がVCCP-Vthに収束するまでに時間がかかり、駆動の高速化の障害となっている。
 そこで、画素回路の駆動を高速化させるために、信号線自体をVth補正に使用せず、補正用の容量線を別途設けて、その容量線を複数画素に分割することで容量を小さくし、補正スピードを上げる方法もある。図5は、比較例となる画素回路の構成例を示す説明図である。図5に示した画素回路は、Pチャネル型のトランジスタT1~T5、T8と、有機EL素子ELと、容量素子Cs、C1と、を含んで構成される。
 図5に示した画素回路は、図3に示した画素回路と比べて、Vth補正用の容量線が、映像信号Vsigを供給するための信号線と、トランジスタT3との間に設けられている。容量素子C1は、Vth補正用の容量線と、映像信号Vsigを供給するための信号線との間に設けられている。容量素子C1に蓄えられた電荷を用いてトランジスタT2の閾値電圧補正を行うことにより、容量Cp、Csigの容量を少なくすることができ、トランジスタT2のゲート電位がVCCP-Vthに収束するまでの時間の高速化を図っている。しかし、その一方で、図5に示した画素回路は、図3に示した画素回路と比べて、トランジスタの数が1つ増えている。トランジスタの数が増えることは回路面積の増大に繋がり、ディスプレイの微細化の妨げとなってしまう。
 そこで本件開示者は、上述した点に鑑み、5つのトランジスタからなる画素回路において、トランジスタの数をそこから増加させずに駆動を高速化させることが可能な技術について鋭意検討を行った。その結果、本件開示者は、以下で説明するように、5つのトランジスタからなる画素回路において、トランジスタの数をそこから増加させずに駆動を高速化させることが可能な技術を考案するに至った。
 (本開示の実施の形態に係る画素回路)
 図6は、本開示の実施の形態に係る画素回路の構成例を示す説明図である。図6に示したように、本開示の実施の形態に係る画素回路は、Pチャネル型のトランジスタT11~T15と、有機EL素子ELと、容量素子Cs1、Cs2と、を含んで構成される。また、画素回路に映像信号Vsigを供給する信号線にはトランスファーゲートTFが設けられている。
 トランジスタT11は発光制御トランジスタとして機能し、ゲートが信号線DSに接続されており、ドレインが有機EL素子ELのアノードに接続されており、ソースがトランジスタT12のドレインに接続されている。トランジスタT12は駆動トランジスタである。トランジスタT12のゲートには、トランジスタT13を介して映像信号Vsigが供給され、ソースが電源電圧VCCPに接続されている。トランジスタT13は書込みトランジスタである。トランジスタT13はゲートが信号線WSに接続されている。またトランジスタT13のソースと、映像信号Vsigを供給する信号線151との間には容量素子Cs2が設けられている。トランジスタT14、T15はリセットトランジスタである。トランジスタT14はゲートが信号線AZ1に接続されている。トランジスタT15はゲートが信号線AZ2に接続されている。
 そして本開示の実施の形態に係る画素回路は、信号線151とトランジスタT13との間に容量素子Cs2が設けられている。本開示の実施の形態に係る画素回路は、容量素子Cs2が設けられていることで、駆動トランジスタであるトランジスタT12の閾値電圧の補正を高速化させることができる。
 図7は、図6に示した画素回路の駆動例を示す説明図である。本実施形態に係る画素回路は、発光期間中に信号RSTを一度ローにして、トランジスタT7をオンさせて、信号線電圧をVrst=VCCPにリセットする。その後、発光期間中に、信号RSTを再度ハイにして、トランジスタT7をオフさせる。従って、映像信号Vsigの電圧はトランジスタT7をオンさせた後に、Vrst=VCCPとなる。なお、Vrstは必ずしも電源電圧VCCPと同電位である必要は無い。
 その後、時刻t1において前フレームの発光期間が終了し、信号線DSがローからハイになる。これによりトランジスタT11がオフとなる。また時刻t1において信号線AZ1がハイからローになる。これによりトランジスタT14がオンになり、有機EL素子ELのアノードの電位がVssに設定される。
 その後、時刻t2になると消光期間が終了し、初期化期間が開始される。時刻t2になると信号線WSがハイからローになり、トランジスタT13がオンとなる。また時刻t2において信号線DSがハイからローになり、トランジスタT11がオンとなる。また時刻t2において信号線AZ2がハイからローになり、トランジスタT15がオンとなる。これにより、トランジスタT12のゲート電圧がVCCPから低下し、Vth補正のための準備電圧がトランジスタT12のゲートに書き込まれる。
 ここで信号線AZ1、AZ2、DSのロー電圧をV_Low、トランジスタT14、T15、T11の閾値電圧をVth(AZ1)=Vth(AZ2)=Vth(DS)=Vthとすると、時刻t2の時点でトランジスタT12のゲートに書き込まれる電圧Vgは、Vss<|Vth|+V_lowの時、Vg=|Vth|+V_lowであり、Vss≧|Vth|+V_lowの時、Vg=Vssである。いずれの場合もトランジスタT12がターンオンする様な電圧設定とする必要がある。
 その後、時刻t3になると初期化期間が終了し、Vth補正期間が開始される。時刻t3になると信号線DSがローからハイになり、トランジスタT11がオフとなる。すると、トランジスタT12のゲート電位がVgから徐々に上昇する。トランジスタT12のゲート電位は、電源電圧VCCPとの電位差がトランジスタT12の閾値電圧Vthになるまで上昇する。このVth補正期間を短縮させることが出来るのが容量素子Cs2を設けた効果である。
 その後、時刻t4になるとVth補正期間が終了し、信号書込み期間が開始される。時刻t4になると、信号線AZ2がローからハイになり、トランジスタT15がオフとなる。したがって、トランジスタT12のゲートとドレインとが短絡される。この時点で、映像信号Vsigの電圧がVCCPからVCCP-Vdataに遷移する。すると、トランジスタT13がオンになっているので、トランジスタT12のゲート電圧は、VCCP-Vth-Vdata*Cs2/(Cs1+Cs2)となる。すなわち、トランジスタT12のゲート電圧は閾値電圧Vthを反映した電圧となり、トランジスタT12の閾値電圧Vthは発光時にキャンセルされる。
 その後、時刻t5になると信号書込み期間が終了し、信号線WSがローからハイになり、トランジスタT13がオフとなる。その後、信号線AZ1がローからハイになることでトランジスタT14がオフになる。そして、時刻t6になって信号線DSがハイからローになることでトランジスタT11がオンとなり、有機EL素子ELに映像信号Vsigに対応した電流が流れ、有機EL素子ELが電流量に応じて発光する。
 本開示の実施の形態に係る画素回路は、図6のような構成を有し、図7に示したように駆動することで、5つのトランジスタからなる画素回路において、トランジスタの数をそこから増加させずに駆動を高速化させることが可能となる。すなわち、上述した比較例では、駆動トランジスタの閾値電圧の補正の際に信号線に充電する必要があり、高速駆動化の妨げになっていた。これに対して、本開示の実施の形態に係る画素回路は、画素毎に適切に容量素子Cs2を備えることで、駆動トランジスタの閾値電圧の補正を高速に実行させることが可能となる。
 また、図6に示した画素回路は、図3に示した比較例と比べ、電源が1つ削減されている。すなわち、図6に示した本開示の実施の形態に係る画素回路は、Vth補正用の準備電圧を消光用リセット電源Vssと共有することで、回路の駆動に必要な電源の削減も可能となっている。
 <2.まとめ>
 以上説明したように本開示の実施の形態によれば、5つのトランジスタからなる画素回路において、トランジスタの数をそこから増加させずに駆動を高速化させることが可能な画素回路が提供される。
 そして、本開示の実施の形態に係る画素回路を備えた表示装置、及びそのような表示装置を備えた電子機器も同様に提供される。そのような電子機器には、テレビ、スマートフォン等の携帯電話、タブレット型携帯端末、パーソナルコンピュータ、携帯型ゲーム機、携帯型音楽再生装置、デジタルスチルカメラ、デジタルビデオカメラ、腕時計型携帯端末、ウェアラブルデバイスなどがある。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 発光素子と、
 前記発光素子へ電流を供給する駆動トランジスタと、
 前記駆動トランジスタのドレインノードと前記発光素子のアノードとの間の接続を制御する発光制御トランジスタと、
 前記発光素子のアノードの電位を所定の電位に設定する第1リセットトランジスタと、
 前記駆動トランジスタのドレインノードとゲートノードとの間の接続を制御する第2リセットトランジスタと、
 前記駆動トランジスタのゲートノードでの信号電圧の書き込みを制御する書込みトランジスタと、
 前記駆動トランジスタのゲートノードと電源線との間に設けられる第1容量素子と、
 前記信号電圧が印加される信号線と、前記書込みトランジスタのソースノードとの間に設けられる第2容量素子と、
を備える、画素回路。
(2)
 前記駆動トランジスタの閾値電圧の補正時に設定される準備電圧は、前記所定の電位が前記第1リセットトランジスタの閾値電圧にロー側の電位を加えた値未満であれば、前記第1リセットトランジスタの閾値電圧にロー側の電位を加えた値であり、前記所定の電位が前記第1リセットトランジスタの閾値電圧にロー側の電位を加えた値以上であれば、前記所定の電位と等しい、前記(1)記載の画素回路。
(3)
 前記(1)または(2)に記載の画素回路を備える、表示装置。
(4)
 前記(3)に記載の表示装置を備える、電子機器。
(5)
 発光素子と、
 前記発光素子へ電流を供給する駆動トランジスタと、
 前記駆動トランジスタのドレインノードと前記発光素子のアノードとの間の接続を制御する発光制御トランジスタと、
 前記発光素子のアノードの電位を所定の電位に設定する第1リセットトランジスタと、
 前記駆動トランジスタのドレインノードとゲートノードとの間の接続を制御する第2リセットトランジスタと、
 前記駆動トランジスタのゲートノードでの信号電圧の書き込みを制御する書込みトランジスタと、
 前記駆動トランジスタのゲートノードと電源線との間に設けられる第1容量素子と、
 前記信号電圧が印加される信号線と、前記書込みトランジスタのソースノードとの間に設けられる第2容量素子と、
を備える、画素回路において、
 第1期間の開始時に前記発光制御トランジスタをオフにし、前記第1リセットトランジスタをオンにすることで前記発光素子のアノードの電位を所定の電位に設定し、
 前記第1期間の後の第2期間の開始時に前記書込みトランジスタ及び前記発光制御トランジスタをオンにして、前記第2リセットトランジスタをオンにすることで前記駆動トランジスタのゲートノードの電位を準備電圧に設定し、
 前記第2期間の後の第3期間の開始時に前記発光制御トランジスタをオフにして、前記駆動トランジスタの閾値電圧を補正し、
 前記第3期間の後の第4期間の開始時に前記第2リセットトランジスタをオンにして、
 前記第4期間の後の第5期間の開始時に前記書込みトランジスタをオフにして、
 前記第5期間の間に前記第1リセットトランジスタをオフにして、
 前記第5期間の後の第6期間の開始時に前記発光制御トランジスタをオンにして前記発光素子に電流を供給する、
 画素回路の駆動方法。
(6)
 前記第2期間における前記準備電圧は、前記所定の電位が前記第1リセットトランジスタの閾値電圧にロー側の電位を加えた値未満であれば前記第1リセットトランジスタの閾値電圧にロー側の電位を加えた値であり、前記所定の電位が前記第1リセットトランジスタの閾値電圧にロー側の電位を加えた値以上であれば前記所定の電位と等しい、前記(5)に記載の画素回路の駆動方法。
100  :表示装置
110  :画素部
111B :画素
111G :画素
111R :画素
120  :水平セレクタ
130  :垂直スキャナ
131  :オートゼロスキャナ
132  :駆動スキャナ
133  :書き込みスキャナ
151  :信号線
Cs1  :容量素子
Cs2  :容量素子
T1   :トランジスタ
T11  :トランジスタ
T12  :トランジスタ
T13  :トランジスタ
T14  :トランジスタ
T15  :トランジスタ

Claims (6)

  1.  発光素子と、
     前記発光素子へ電流を供給する駆動トランジスタと、
     前記駆動トランジスタのドレインノードと前記発光素子のアノードとの間の接続を制御する発光制御トランジスタと、
     前記発光素子のアノードの電位を所定の電位に設定する第1リセットトランジスタと、
     前記駆動トランジスタのドレインノードとゲートノードとの間の接続を制御する第2リセットトランジスタと、
     前記駆動トランジスタのゲートノードでの信号電圧の書き込みを制御する書込みトランジスタと、
     前記駆動トランジスタのゲートノードと電源線との間に設けられる第1容量素子と、
     前記信号電圧が印加される信号線と、前記書込みトランジスタのソースノードとの間に設けられる第2容量素子と、
    を備える、画素回路。
  2.  前記駆動トランジスタの閾値電圧の補正時に設定される準備電圧は、前記所定の電位が前記第1リセットトランジスタの閾値電圧にロー側の電位を加えた値未満であれば、前記第1リセットトランジスタの閾値電圧にロー側の電位を加えた値であり、前記所定の電位が前記第1リセットトランジスタの閾値電圧にロー側の電位を加えた値以上であれば、前記所定の電位と等しい、請求項1に記載の画素回路。
  3.  請求項1に記載の画素回路を備える、表示装置。
  4.  請求項3に記載の表示装置を備える、電子機器。
  5.  発光素子と、
     前記発光素子へ電流を供給する駆動トランジスタと、
     前記駆動トランジスタのドレインノードと前記発光素子のアノードとの間の接続を制御する発光制御トランジスタと、
     前記発光素子のアノードの電位を所定の電位に設定する第1リセットトランジスタと、
     前記駆動トランジスタのドレインノードとゲートノードとの間の接続を制御する第2リセットトランジスタと、
     前記駆動トランジスタのゲートノードでの信号電圧の書き込みを制御する書込みトランジスタと、
     前記駆動トランジスタのゲートノードと電源線との間に設けられる第1容量素子と、
     前記信号電圧が印加される信号線と、前記書込みトランジスタのソースノードとの間に設けられる第2容量素子と、
    を備える、画素回路において、
     第1期間の開始時に前記発光制御トランジスタをオフにし、前記第1リセットトランジスタをオンにすることで前記発光素子のアノードの電位を所定の電位に設定し、
     前記第1期間の後の第2期間の開始時に前記書込みトランジスタ及び前記発光制御トランジスタをオンにして、前記第2リセットトランジスタをオンにすることで前記駆動トランジスタのゲートノードの電位を準備電圧に設定し、
     前記第2期間の後の第3期間の開始時に前記発光制御トランジスタをオフにして、前記駆動トランジスタの閾値電圧を補正し、
     前記第3期間の後の第4期間の開始時に前記第2リセットトランジスタをオンにして、
     前記第4期間の後の第5期間の開始時に前記書込みトランジスタをオフにして、
     前記第5期間の間に前記第1リセットトランジスタをオフにして、
     前記第5期間の後の第6期間の開始時に前記発光制御トランジスタをオンにして前記発光素子に電流を供給する、
     画素回路の駆動方法。
  6.  前記第2期間における前記準備電圧は、前記所定の電位が前記第1リセットトランジスタの閾値電圧にロー側の電位を加えた値未満であれば前記第1リセットトランジスタの閾値電圧にロー側の電位を加えた値であり、前記所定の電位が前記第1リセットトランジスタの閾値電圧にロー側の電位を加えた値以上であれば前記所定の電位と等しい、請求項5に記載の画素回路の駆動方法。
PCT/JP2019/002460 2018-02-14 2019-01-25 画素回路、表示装置、画素回路の駆動方法および電子機器 WO2019159651A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020500364A JP7237918B2 (ja) 2018-02-14 2019-01-25 画素回路、表示装置、画素回路の駆動方法および電子機器
US16/967,559 US11398186B2 (en) 2018-02-14 2019-01-25 Pixel circuit, display device, driving method of pixel circuit, and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018024112 2018-02-14
JP2018-024112 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019159651A1 true WO2019159651A1 (ja) 2019-08-22

Family

ID=67618970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002460 WO2019159651A1 (ja) 2018-02-14 2019-01-25 画素回路、表示装置、画素回路の駆動方法および電子機器

Country Status (3)

Country Link
US (1) US11398186B2 (ja)
JP (1) JP7237918B2 (ja)
WO (1) WO2019159651A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114424280A (zh) * 2021-07-30 2022-04-29 京东方科技集团股份有限公司 像素电路、驱动方法和显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115512631A (zh) * 2021-06-22 2022-12-23 荣耀终端有限公司 像素驱动电路及其驱动方法、显示面板及终端设备
CN113838424B (zh) * 2021-09-27 2023-04-18 武汉华星光电半导体显示技术有限公司 一种显示面板
CN117253451A (zh) * 2022-06-09 2023-12-19 京东方科技集团股份有限公司 像素驱动电路、显示面板及其制备方法、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170788A (ja) * 2007-01-12 2008-07-24 Hitachi Displays Ltd 画像表示装置
US20130300724A1 (en) * 2012-05-11 2013-11-14 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US20150356921A1 (en) * 2014-06-10 2015-12-10 Samsung Display Co., Ltd. Pixel and organic light emitting display device using the same
JP2016038425A (ja) * 2014-08-06 2016-03-22 セイコーエプソン株式会社 電気光学装置、電子機器、及び電気光学装置の駆動方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256888B2 (ja) * 2006-10-13 2009-04-22 株式会社 日立ディスプレイズ 表示装置
KR20100009219A (ko) * 2008-07-18 2010-01-27 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치
JP2010249955A (ja) 2009-04-13 2010-11-04 Global Oled Technology Llc 表示装置
KR101710656B1 (ko) * 2010-08-02 2017-02-28 삼성디스플레이 주식회사 화소 및 이를 이용한 유기전계발광 표시장치
KR101964768B1 (ko) 2012-09-10 2019-04-03 삼성디스플레이 주식회사 화소, 이를 포함하는 표시장치 및 그 구동 방법
KR102023183B1 (ko) * 2012-11-20 2019-09-20 삼성디스플레이 주식회사 화소, 이를 포함하는 표시장치 및 그 구동 방법
JP2015034861A (ja) 2013-08-08 2015-02-19 ソニー株式会社 表示装置、表示装置の駆動方法、及び、電子機器
KR102070583B1 (ko) * 2013-12-31 2020-03-02 엘지디스플레이 주식회사 유기발광 표시장치와, 그 구동방법
JP2017068033A (ja) * 2015-09-30 2017-04-06 ソニー株式会社 表示素子、表示素子の駆動方法、表示装置、及び、電子機器
JP6152902B2 (ja) 2016-01-27 2017-06-28 セイコーエプソン株式会社 電気光学装置、および電子機器
CN107274829B (zh) 2017-07-10 2020-04-14 上海天马有机发光显示技术有限公司 一种有机电致发光显示面板及显示设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170788A (ja) * 2007-01-12 2008-07-24 Hitachi Displays Ltd 画像表示装置
US20130300724A1 (en) * 2012-05-11 2013-11-14 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US20150356921A1 (en) * 2014-06-10 2015-12-10 Samsung Display Co., Ltd. Pixel and organic light emitting display device using the same
JP2016038425A (ja) * 2014-08-06 2016-03-22 セイコーエプソン株式会社 電気光学装置、電子機器、及び電気光学装置の駆動方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114424280A (zh) * 2021-07-30 2022-04-29 京东方科技集团股份有限公司 像素电路、驱动方法和显示装置

Also Published As

Publication number Publication date
JPWO2019159651A1 (ja) 2021-04-15
US11398186B2 (en) 2022-07-26
US20210233468A1 (en) 2021-07-29
JP7237918B2 (ja) 2023-03-13

Similar Documents

Publication Publication Date Title
CN107358915B (zh) 一种像素电路、其驱动方法、显示面板及显示装置
US20240119897A1 (en) Pixel Circuit and Driving Method Therefor and Display Panel
CN114093326B (zh) 一种像素电路及其驱动方法
US11232749B2 (en) Pixel circuit and driving method thereof, array substrate, and display device
CN111727470B (zh) 像素电路、显示装置、驱动像素电路的方法以及电子设备
JP7159182B2 (ja) 画素回路及びその駆動方法、表示パネル
WO2019159651A1 (ja) 画素回路、表示装置、画素回路の駆動方法および電子機器
US11289019B2 (en) Pixel circuit, display device, method for driving pixel circuit, and electronic apparatus
WO2020100616A1 (ja) 画素回路、表示装置、画素回路の駆動方法および電子機器
GB2620507A (en) Pixel circuit and driving method therefor and display panel
CN113066439B (zh) 一种像素电路、驱动方法、电致发光显示面板及显示装置
JP7011449B2 (ja) 画素回路、表示装置および電子機器
US11282442B2 (en) Pixel driving circuit and driving method thereof, and display panel
JP7513777B2 (ja) 表示装置
WO2022124165A1 (ja) 表示装置
CN114446241A (zh) 像素电路及其驱动方法、显示基板
JP2010026119A (ja) 表示装置およびその駆動方法ならびに電子機器
JP2009300853A (ja) 表示装置およびその駆動方法ならびに電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19755052

Country of ref document: EP

Kind code of ref document: A1