WO2019159345A1 - 半導体光集積デバイス - Google Patents

半導体光集積デバイス Download PDF

Info

Publication number
WO2019159345A1
WO2019159345A1 PCT/JP2018/005636 JP2018005636W WO2019159345A1 WO 2019159345 A1 WO2019159345 A1 WO 2019159345A1 JP 2018005636 W JP2018005636 W JP 2018005636W WO 2019159345 A1 WO2019159345 A1 WO 2019159345A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
light
optical
integrated device
semiconductor
Prior art date
Application number
PCT/JP2018/005636
Other languages
English (en)
French (fr)
Inventor
直幹 中村
石村 栄太郎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112018007107.3T priority Critical patent/DE112018007107B4/de
Priority to JP2018540165A priority patent/JP6523573B1/ja
Priority to PCT/JP2018/005636 priority patent/WO2019159345A1/ja
Priority to CN201880089522.XA priority patent/CN111801610B/zh
Priority to US16/959,356 priority patent/US11215774B2/en
Priority to TW108103866A priority patent/TWI732174B/zh
Publication of WO2019159345A1 publication Critical patent/WO2019159345A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12123Diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1014Tapered waveguide, e.g. spotsize converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2218Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties
    • H01S5/222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties having a refractive index lower than that of the cladding layers or outer guiding layers

Definitions

  • the present application relates to a semiconductor optical integrated device having a photodiode (PD) for monitoring the intensity of light propagating through an optical waveguide.
  • PD photodiode
  • Patent Document 1 a photodiode (hereinafter referred to as a monitor PD) for monitoring the intensity of light propagating through the optical waveguide is installed on the upper portion of the optical waveguide, and the monitor PD receives the evanescent light component of the light propagating through the optical waveguide.
  • a monitor PD a photodiode for monitoring the intensity of light propagating through the optical waveguide
  • Patent Document 2 a light receiving method using a diffraction grating
  • Patent Document 2 a diffraction grating having a second-order diffraction order is installed in the optical waveguide portion directly below the monitor PD installed on the optical waveguide.
  • the second-order diffraction grating generates diffracted light in the light traveling direction of the optical waveguide layer and in the perpendicular direction. Right-angled diffracted light enters the monitor PD, and the monitor PD receives this diffracted light.
  • the technology disclosed in the specification of the present application has been made to solve the above-described problems, and does not affect the light distribution of light propagating through the optical waveguide, and deteriorates the characteristics of the incident-side optical element. It is an object of the present invention to provide a semiconductor optical integrated device that can monitor the light intensity without causing it.
  • An example of a semiconductor optical integrated device disclosed in this specification is a semiconductor optical integrated device in which light is propagated and a first optical element, a monitoring optical waveguide, and a second optical element are formed on the same semiconductor substrate.
  • the monitoring optical waveguide is connected to the first optical element, and the second optical element is connected to the monitoring optical waveguide.
  • the monitoring optical waveguide includes a light scattering unit that scatters a part of light, which is a combination of optical waveguides having different mode field diameters, and a photodetector that receives the scattered light scattered by the light scattering unit is monitored. It is installed on the outer surface of the optical waveguide for use or on the back surface opposite to the light scattering portion of the semiconductor substrate.
  • An example of the semiconductor optical integrated device disclosed in the specification of the present application is that an optical detector that receives scattered light scattered by the light scattering portion of the monitoring optical waveguide that scatters a part of the light is arranged on the outer periphery of the monitoring optical waveguide. Or it is installed on the back side opposite to the light scattering part of the semiconductor substrate, so it does not affect the light distribution of the light propagating through the optical waveguide and monitors the light intensity without deteriorating the characteristics of the light element on the incident side it can.
  • FIG. 1 is a bird's-eye view showing a semiconductor optical integrated device according to the first embodiment.
  • 2A is a cross-sectional view of the optical element mesa in FIG. 1 along the Z direction
  • FIG. 2B is a cross-sectional view along AA in FIG. 2A.
  • FIG. 3A is a diagram for explaining a manufacturing process of the semiconductor optical integrated device of FIG.
  • FIG. 3B is a diagram for explaining a manufacturing process of the semiconductor optical integrated device of FIG.
  • FIG. 3E is a diagram illustrating a manufacturing process of the semiconductor optical integrated device of FIG. FIG.
  • 3F is a diagram for explaining a manufacturing process for the semiconductor optical integrated device in FIG. 1.
  • 3G is a diagram for explaining a manufacturing process of the semiconductor optical integrated device of FIG.
  • FIG. 3H is a diagram for explaining a manufacturing process for the semiconductor optical integrated device in FIG. 1.
  • FIG. 3I is a diagram for explaining a manufacturing process of the semiconductor optical integrated device of FIG. 4A is a diagram for explaining a manufacturing process of the semiconductor optical integrated device of FIG.
  • FIG. 4B is a diagram illustrating a manufacturing process of the semiconductor optical integrated device of FIG.
  • FIG. 4C is a diagram illustrating a manufacturing process of the semiconductor optical integrated device of FIG.
  • FIG. 4D is a diagram illustrating a manufacturing process of the semiconductor optical integrated device of FIG. FIG.
  • FIG. 4E is a diagram illustrating a manufacturing process of the semiconductor optical integrated device of FIG.
  • FIG. 4F is a diagram for explaining a manufacturing process for the semiconductor optical integrated device in FIG. 1.
  • 4G is a diagram for explaining a manufacturing process of the semiconductor optical integrated device of FIG.
  • FIG. 4H is a diagram for explaining a manufacturing process for the semiconductor optical integrated device in FIG. 1.
  • FIG. 4I is a diagram for explaining a manufacturing process of the semiconductor optical integrated device of FIG.
  • FIG. 5 is a diagram illustrating two optical waveguides and light distribution.
  • FIG. 6 is a diagram showing the ratio of scattered light by the connection portion of the optical waveguide of FIG.
  • FIG. 7 is a bird's-eye view showing the semiconductor optical integrated device according to the second embodiment.
  • FIG. 8A is a cross-sectional view of the optical element mesa of FIG. 7 along the Z direction
  • FIG. 8B is a cross-sectional view of AA in FIG. 8A
  • FIG. 9 is a diagram illustrating a scattered light generation pattern according to the third embodiment.
  • FIG. 10 is a diagram showing another scattered light generation pattern according to the third embodiment.
  • FIG. 11A is a diagram for explaining a first manufacturing method for forming the scattered light generation pattern of FIG. 10.
  • FIG. 11B is a diagram for explaining a first manufacturing method for forming the scattered light generation pattern of FIG. 10.
  • FIG. 11C is a diagram for explaining a first manufacturing method for forming the scattered light generation pattern of FIG. 10.
  • FIG. 11D is a diagram for explaining a first manufacturing method for forming the scattered light generation pattern of FIG. 10.
  • FIG. 11E is a diagram for explaining a first manufacturing method for forming the scattered light generation pattern of FIG. 10.
  • 12A is a diagram illustrating a second manufacturing method for forming the scattered light generation pattern of FIG.
  • FIG. 12B is a diagram for explaining a second manufacturing method for forming the scattered light generation pattern of FIG. 10.
  • FIG. 12C is a diagram illustrating a second manufacturing method for forming the scattered light generation pattern of FIG.
  • FIG. 12D is a diagram for explaining a second manufacturing method for forming the scattered light generation pattern of FIG. 10.
  • FIG. 13 is a diagram illustrating a scattered light generation pattern according to the fourth embodiment.
  • FIG. 13 is a diagram illustrating a scattered light generation pattern according to the fourth embodiment.
  • FIG. 14 is a bird's-eye view showing the semiconductor optical integrated device according to the fifth embodiment.
  • 15A is a cross-sectional view taken along the Z direction of the main part of the optical element mesa shown in FIG. 14, and FIG. 15B is a cross-sectional view taken along line AA in FIG. 15A.
  • FIG. 16A is a cross-sectional view along the Z direction of the main part of the monitoring optical waveguide according to the sixth embodiment, and FIG. 16B is a cross-sectional view taken along line AA in FIG. 16A.
  • FIG. 17A is a cross-sectional view taken along the Z direction of the main part of another monitoring optical waveguide according to the sixth embodiment, and FIG. 17B is a cross-sectional view taken along line AA in FIG. 17A.
  • FIG. 17A is a cross-sectional view taken along the Z direction of the main part of another monitoring optical waveguide according to the sixth embodiment
  • FIG. 17B is a cross-sectional view taken along line AA in FIG.
  • FIG. 18 is a bird's-eye view showing a semiconductor optical integrated device according to the seventh embodiment.
  • FIG. 19 is a bird's-eye view showing a semiconductor optical integrated device according to the eighth embodiment.
  • FIG. 20 is a bird's-eye view showing a semiconductor optical integrated device according to the ninth embodiment.
  • 21A is a cross-sectional view of the optical element mesa of FIG. 20 along the Z direction
  • FIG. 21B is a cross-sectional view along AA in FIG. 21A.
  • FIG. 22 is a bird's-eye view showing the semiconductor optical integrated device according to the tenth embodiment.
  • 23A is a cross-sectional view of the optical element mesa of FIG. 22 along the Z direction, and FIG.
  • FIG. 23B is a cross-sectional view taken along line AA in FIG. 23A.
  • FIG. 24A is a cross-sectional view along the Z direction of the main part of the monitoring optical waveguide according to the eleventh embodiment, and FIG. 24B is a cross-sectional view taken along line AA in FIG. 24A.
  • FIG. 25A is a cross-sectional view along the Z direction of the optical element mesa in the semiconductor optical integrated device according to the twelfth embodiment, and FIG. 25B is a cross-sectional view taken along line AA in FIG. 25A.
  • FIG. 26 is a sectional view of the optical element mesa in the semiconductor optical integrated device according to the thirteenth embodiment along the Z direction.
  • FIG. 1 is a bird's-eye view showing a semiconductor optical integrated device according to the first embodiment.
  • 2A is a cross-sectional view of the optical element mesa in FIG. 1 along the Z direction
  • FIG. 2B is a cross-sectional view along AA in FIG. 2A.
  • FIGS. 3A to 3I and FIGS. 4A to 4I are views for explaining a manufacturing process of the semiconductor optical integrated device of FIG.
  • FIG. 5 is a diagram illustrating the two optical waveguides and the light distribution
  • FIG. 6 is a diagram illustrating the ratio of scattered light by the connection portion of the optical waveguide in FIG.
  • the semiconductor optical integrated device 200 includes an InP substrate 1, an optical element part mesa 56, a mesa groove 54, a side wall part 57 separated from the optical element part mesa 56 by the mesa groove 54, and a monitor PD 65 installed in the optical element part mesa 56.
  • the optical element section mesa 56 formed on the InP substrate 1 includes a first optical element 61, a buried optical waveguide 62 that is a monitoring optical waveguide, and a second optical element 63.
  • the first optical element is described as a semiconductor laser
  • the second optical element is described as a high mesa optical waveguide.
  • the code of the high mesa optical waveguide is 63.
  • the optical element portion mesa 56 has a mesa shape with a mesa groove 54 formed by etching.
  • FIG. 1 shows an example in which the monitor PD 65 is installed on the outer periphery of the embedded optical waveguide 62, for example, on the embedded optical waveguide 62. However, the monitor PD 65 is installed on the side surface of the embedded optical waveguide 62 or on the back surface of the InP substrate 1. Also good. Note that the power supply electrode is omitted in FIG. 1 because the drawing is complicated, but actually there is a power supply electrode. In FIG. 2A, the electrode 6 of the first optical element 61 is shown. For the following description, the coordinates X, Y, and Z are determined as shown in the figure.
  • the direction perpendicular to the InP substrate 1 is the Y direction (Y-axis direction)
  • the longitudinal direction of the semiconductor optical integrated device 200 is perpendicular to the Y direction
  • the short side direction of the semiconductor optical integrated device 200 is the X direction (X axis direction).
  • the guided light propagates in the Z direction.
  • the first optical element 61 is a semiconductor laser, and an embedded optical waveguide 62 is connected thereto. Further, the embedded optical waveguide 62 is connected to a high mesa optical waveguide 63 as a second optical element.
  • the first optical element 61 and the embedded optical waveguide 62 are connected by a butt joint, and the embedded optical waveguide 62 and the high mesa optical waveguide 63 are connected by the mode conversion optical waveguide 17.
  • a scattered light generation pattern 7 that is a structure for obtaining scattered light is formed in the optical waveguide layer 5 inside the embedded optical waveguide 62.
  • the first optical element 61 includes an InP substrate 1, an InP clad layer 2 formed on the surface of the InP substrate 1, an active layer 3 formed on the surface of the InP clad layer 2, and an InP formed on the surface of the active layer 3.
  • the clad layer 4, the electrode 6 formed on the back surface of the InP substrate 1, and the electrode 6 formed on the surface of the InP clad layer 4 are provided.
  • the embedded optical waveguide 62 includes an InP substrate 1, an InP cladding layer 2 formed on the surface of the InP substrate 1, an optical waveguide layer 5 formed on the surface of the InP cladding layer 2, and an InP formed on the surface of the optical waveguide layer 5.
  • a cladding layer 4 is provided.
  • the high mesa optical waveguide 63 includes an InP substrate 1, an InP cladding layer 2 formed on the surface of the InP substrate 1, an optical waveguide layer 5 formed on the surface of the InP cladding layer 2, and an InP formed on the surface of the optical waveguide layer 5.
  • a cladding layer 4 is provided.
  • an InP clad layer 2 that is a first clad layer, an active layer 3, and an InP clad layer 4 that is a second clad layer are sequentially stacked on an InP substrate 1 that is a semiconductor substrate.
  • the laminated body was provided.
  • the embedded optical waveguide 62 is formed by sequentially laminating an InP clad layer 2 as a first clad layer, an optical waveguide layer 5 and an InP clad layer 4 as a second clad layer formed on an InP substrate 1 as a semiconductor substrate.
  • the laminated body is provided.
  • the laminated body of the embedded optical waveguides 62 is a pair of mesa end faces that face each other in the Y direction perpendicular to the InP substrate 1 and the X direction perpendicular to the Z direction, which is the light propagation direction, and the optical waveguide layer 5 is not exposed. Is an embedded structure.
  • an InP clad layer 2 which is a first clad layer
  • an optical waveguide layer 5 which is a second clad layer are sequentially laminated on an InP substrate 1 which is a semiconductor substrate.
  • the laminated body is provided.
  • the laminate of the high mesa optical waveguide 63 has a pair of mesa end faces that face each other in the Y direction perpendicular to the InP substrate 1 and the X direction perpendicular to the Z direction, which is the direction of light propagation, and the optical waveguide layer 5 is exposed.
  • the configuration of the first optical element 61, the embedded optical waveguide 62, and the second optical element 63 is the configuration of the embedded optical waveguide, the embedded optical waveguide, and the embedded optical waveguide, or the high mesa optical waveguide, the embedded optical waveguide, and the high mesa optical waveguide. Any configuration may be used as long as the embedded optical waveguide 62 is embedded.
  • FIGS. 3A to 3I and FIGS. 4A to 4I show cross sections of the optical element mesa 56 along the Z direction.
  • 3F, FIG. 3G, FIG. 3I, FIG. 4A to FIG. 4D, and FIG. 4F to FIG. 4I are views seen from the end face side of the high mesa optical waveguide 63, that is, the output side of the guided light.
  • 3H and 4E show a cross section similar to that of AA in FIG. 2A. As shown in FIG.
  • an InP clad layer 2, an active layer 3, and an InP clad layer 8 are sequentially stacked on the InP substrate 1 by using a crystal growth method such as MOCVD (metal organic chemical vapor deposition).
  • An insulating film 9 such as SiO 2 is formed on the surface of the InP clad layer 8 and patterned as shown in FIG. 3B.
  • the exposed InP cladding layer 8 and the active layer 3 are removed using the insulating film 9 as a mask.
  • the optical waveguide layer 5 and the InP clad layer 10 are sequentially grown using the MOCVD crystal growth technique using the insulating film 9 as a mask. Note that no crystal grows on the insulating film 9. After the crystal growth, the insulating film 9 is removed with hydrogen fluoride water or the like.
  • a butt joint method Such a method of connecting the active layer 3 and the optical waveguide layer 5 by crystal growth is called a butt joint method.
  • an insulating film 11 such as SiO 2 is formed again on the surfaces of the InP cladding layer 8 and the InP cladding layer 10 from which the insulating film 9 has been removed.
  • FIG. 3F is a view seen from the right side of FIG. 3E, that is, from the end face side of the high mesa optical waveguide 63.
  • the insulating film 11 forms a pattern as shown in FIG. 3H.
  • the insulating film 11 on which the pattern is formed is provided with a scattered light generation pattern forming portion 23 in order to form the scattered light generation pattern 7 of the optical waveguide layer 5 that generates scattered light.
  • the insulating film 11 on which the pattern is formed is provided with a mode conversion optical waveguide forming portion 24 in order to form the mode conversion optical waveguide 17 of the optical waveguide layer 5.
  • the InP cladding layers 8 and 10 are removed, and a ridge 12 is formed.
  • a current blocking layer 13 for current confinement in the active layer 3 is formed by crystal growth.
  • the insulating film 11 is removed with hydrogen fluoride water or the like.
  • the InP cladding layer 14 is formed on the surfaces of the InP cladding layers 8 and 10 and the current blocking layer 13 by crystal growth.
  • an insulating film 15 such as SiO 2 is formed on the surface of the InP cladding layer 14.
  • the insulating film 15 has a pattern having an insulating film opening 26 for forming a mesa groove 54.
  • FIG. 4F shows a cross section taken along line BB in FIG. 4E.
  • the InP clad layer 14 and the current blocking layer 13 are removed from the insulating film opening 26 by etching using the insulating film 15 as a mask.
  • 4G to 4I show the mesa groove 54 in which a part of the InP substrate 1 is cut. A part of the InP substrate 1 may be cut off at the bottom of the mesa groove 54. In FIG. 1, the mesa groove 54 in which the InP substrate 1 is not cut is shown.
  • FIG. 4G is a cross-sectional view taken along the line BB shown in FIG. 4E after the mesa groove 54 is formed.
  • the etching for forming the mesa groove 54 is performed so as to penetrate the current blocking layer 13. Further, the ridge 12 including the optical waveguide layer 5 and the active layer 3 shown in FIG. 3I is not etched. Such a structure is called a buried type optical waveguide.
  • FIG. 4H is a cross-sectional view of the CC shown in FIG. 4E after the mesa groove 54 is formed. As shown in FIG.
  • the InP clad layer 14 and the current blocking layer 13 are etched so that there is no current blocking layer 13 and only the optical waveguide layer 5 remains in the mesa serving as the high mesa optical waveguide 63.
  • Such a structure is called a high mesa optical waveguide.
  • the insulating film 15 is removed with hydrogen fluoride water or the like, and the monitor PD 65 is installed on the embedded optical waveguide 62, more specifically, on the InP cladding layer 14 of the embedded optical waveguide 62.
  • the InP clad layer 4 shown in FIGS. 1 and 2A is a stacked InP clad layer.
  • the first optical element 61 includes a lower InP clad layer 8 and an upper InP clad layer 14.
  • FIG. 5 shows a waveguide mode (light distribution) that can be guided by the first optical waveguide 71 and the second optical waveguide 72.
  • the light distribution of the light guided through the first optical waveguide 71 is a light distribution 73
  • the light distribution of the light guided through the second optical waveguide 72 is a light distribution 74.
  • the mode field diameter of the light distribution 73 is the mode field diameter w1
  • the mode field diameter of the light distribution 74 is the mode field diameter w2.
  • the mode field diameter is a diameter (width) of the light distribution that becomes 1 / e 2 intensity from the intensity peak of the light distribution in the waveguide mode.
  • the first optical waveguide 71 and the second optical waveguide 72 shown in FIG. 5 correspond to the active layer 3 or the optical waveguide layer 5 shown in FIG. 2A.
  • description will be made using the mode field diameter. If the mode field diameters of the respective optical waveguides are different, all the light propagating through the first optical waveguide 71 cannot be coupled to the second optical waveguide 72, and the waveguide mode of the second optical waveguide 72 is satisfied. Only the component is coupled to the second optical waveguide 72. Components that cannot be combined are scattered and emitted.
  • the mode field diameter of the first optical waveguide 71 is w1 and the mode field diameter of the second optical waveguide 72 is w2, the ratio w1 / w2 of the mode field diameters of the respective optical waveguides and the light propagated through the first optical waveguide 71 Among these, the ratio of the scattered light caused by scattering when entering the second optical waveguide 72 is shown in FIG.
  • the characteristic of the ratio of scattered light in FIG. 6 is obtained from the relational expression between the coupling efficiency ⁇ and the ratio w1 / w2 of the mode field diameter in Non-Patent Document 1.
  • the scattered light having an arbitrary intensity can be obtained by setting the ratio of the mode field diameter w1 and the mode field diameter w2 at the joint portion between the two optical waveguides.
  • a guided mode is a distribution of light in an optical waveguide through which light can propagate, and a mode called a fundamental mode is generally handled.
  • the derivation of the light distribution in the fundamental mode will be described.
  • 2A and 2B in the buried optical waveguide 62, the refractive indexes of the InP cladding layer 2 and the InP cladding layer 4 are set to nc1 and nc2 .
  • the refractive index of the optical waveguide layer 5 is n j and the layer thickness is d j .
  • the embedded optical waveguide 62 has a structure in which the optical waveguide layer 5 is sandwiched between the InP cladding layer 2 and the InP cladding layer 4.
  • the stacking direction from the InP cladding layer 2 to the InP cladding layer 4 is the Y direction as shown in FIG.
  • lowercase y is used in the mathematical formula.
  • the Y direction is appropriately expressed as the y direction.
  • the direction perpendicular to the Y direction that is, the short direction of the semiconductor optical integrated device 200 is the X direction.
  • the X direction is also expressed in the same manner as the Y direction.
  • the lowercase x is used, and the X direction is appropriately expressed as the x direction.
  • E (y) is an optical electric field distribution of guided light in the y direction that is the stacking direction of the layers.
  • the optical electric field distribution of the InP clad layer 2, the optical waveguide layer 5, and the InP clad layer 4 is shown below.
  • the optical electric field E c1 (y) of the InP clad layer 2 is expressed as shown in Expression (1).
  • the coefficient ⁇ C1 in Expression (1) is expressed as Expression (2).
  • ny represents the transmission refractive index
  • k 0 represents the wave number in vacuum.
  • D 1 is an arbitrary coefficient.
  • the optical electric field E j (y) in the optical waveguide layer 5 is expressed as in Expression (3).
  • the coefficient ⁇ j in equation (3) is expressed as in equation (4).
  • a j and B j are arbitrary coefficients.
  • the optical electric field E c2 (y) of the InP cladding layer 4 is expressed as shown in Expression (5).
  • the coefficient ⁇ C2 of Expression (5) is expressed as Expression (6).
  • ny represents the transmission refractive index
  • k 0 represents the wave number in vacuum.
  • D 2 is an arbitrary coefficient.
  • the mode field diameter diameter 1 / e 2 of the peak of the y direction of the optical electric field intensity E 2 (y) on the side of the InP substrate 1 is there.
  • the mode field diameter in the y direction in the InP cladding layer 2 can be obtained.
  • the mode field diameter in the y direction in the optical waveguide layer 5 can be obtained.
  • the optical electric field E c2 (y) of the InP cladding layer 4 the mode field diameter in the y direction in the InP cladding layer 4 can be obtained.
  • the electric field in the x direction is obtained by an equivalent refractive index method.
  • the structure of the embedded optical waveguide 62 in the x direction is sandwiched between the current blocking layer 13 on the positive side and the negative side (left side in FIG. 4I) in the x direction of the optical waveguide layer 5.
  • the refractive indexes of the current blocking layer 13 on the left side and right side in FIG. 4I are n b1 and n b2 , respectively.
  • the electric field distribution in the x direction is assumed to be E (x) with the refractive index n j and the width t j of the optical waveguide layer 5.
  • E b1 (x) and E b2 (x) of the optical electric field of each current blocking layer 13 can be expressed as shown in equations (7) and (9).
  • the current blocking layer 13 on the positive side in the x direction (left side in FIG. 4I) is referred to as the first current blocking layer 13
  • the current blocking layer 13 on the negative side in the x direction (right side in FIG. 4I) is the second current. It will be called a block layer 13.
  • E b1 (x) of the optical electric field of the first current blocking layer 13 can be expressed as in Expression (7).
  • the coefficient ⁇ b1 in Expression (7) is expressed as Expression (8).
  • E b2 (x) of the optical electric field of the second current blocking layer 13 can be expressed as in Expression (9).
  • the coefficient ⁇ b2 in Expression (9) is expressed as Expression (10).
  • n x is the transmission refractive index
  • k 0 represents the wave number in vacuum.
  • F 1 and F 2 are arbitrary coefficients.
  • the optical electric field E j (x) in the optical waveguide layer 5 can be expressed as in Expression (11).
  • the coefficient ⁇ j in equation (11) is expressed as in equation (12).
  • G j and H j are arbitrary coefficients.
  • a mode field diameter of 1 / e 2 and composed diameter x direction of the peak of the optical electric field intensity E 2 (x) at the substrate side In the optical electric field intensity E 2 of the optical field distribution E (x) (x), a mode field diameter of 1 / e 2 and composed diameter x direction of the peak of the optical electric field intensity E 2 (x) at the substrate side.
  • the mode field diameter in the x direction in the first current blocking layer 13 can be obtained from the optical electric field of the first current blocking layer 13 from E b1 (x).
  • the mode field diameter in the x direction in the second current blocking layer 13 can be obtained from the optical electric field of the second current blocking layer 13 from E b2 (x). From the optical electric field E j (x) in the optical waveguide layer 5, the mode field diameter in the x direction in the optical waveguide layer 5 can be obtained.
  • the refractive indexes n c1 , n c2 , n b1 , n b2 , n j of each layer of the embedded optical waveguide 62 are changed from the equations (1) to (12), or the optical waveguide
  • the thickness d j and the width t j of the layer 5 are changed.
  • the optical waveguide mode is set.
  • the shape (light distribution) changes. Therefore, the mode field diameter changes as the optical waveguide mode shape (light distribution) changes.
  • the scattered light generation pattern 7 which is a light scattering portion that generates scattered light has a structure in which optical waveguides having different mode field diameters are combined.
  • the scattered light generation pattern 7 that generates scattered light in Embodiment 1, by forming a constricted shape in a part of the optical waveguide layer 5, a refractive index change is given, and scattered light is generated.
  • the radiation angle of scattered light will be described.
  • the radiation direction of scattered light depends on the pattern that causes scattering.
  • the scattered light is scattered at an angle closer to a right angle with respect to the optical waveguide layer. This is because when the refractive index of the optical waveguide layer changes sharply, the light propagating through the optical waveguide layer cannot follow the change (because mode conversion corresponding to the waveguide mode of each optical waveguide layer cannot be performed).
  • Scattering occurs at a location where the refractive index of the layer has changed, for example, at a location where the width of the optical waveguide layer has changed.
  • the guided light propagating through the optical waveguide layer can follow the change (because mode conversion is performed according to the waveguide mode of each optical waveguide layer). ), Less scattered light component.
  • the scattered light is emitted ahead of the scattered light generation pattern 7 that generates the scattered light provided in the optical waveguide layer.
  • the arrangement position of the monitor PD 65 will be described. Since the scattered light is emitted in front of the scattered light generation pattern 7, the monitor PD 65 is disposed at the front position including the scattered light generation pattern 7 that generates the scattered light, and the scattered light intensity reaches the installation surface of the monitor PD 65. Install at the position where is the maximum. The position where the monitor PD 65 is installed varies depending on the shape of the optical waveguide of the scattered light generation pattern 7 that generates the scattered light provided in the optical waveguide layer 5. When the thickness of the InP cladding layer 4 above the buried optical waveguide 62 changes, the position of the monitor PD 65 also changes.
  • the monitor PD 65 Since the scattered light is emitted forward, when the thickness of the InP clad layer 4 is thin, the monitor PD 65 is installed on the upper part in the vicinity of the scattered light generation pattern 7. When the thickness of the InP clad layer 4 is thick, the scattered light reaches the upper part (surface) of the InP clad layer 4 far in the propagation direction of the scattered light. Therefore, the monitor PD 65 is installed far from the scattered light generation pattern 7.
  • the installation position and the light receiving area of the monitor PD 65 are positions that include the front of the scattered light generation pattern 7 that generates scattered light with respect to the waveguide direction, and center on the position where the scattered light intensity is the highest. It is desirable to install a monitor PD having a light receiving area that can include the entire light distribution of scattered light that reaches the monitor PD.
  • the light receiving area of the monitor PD 65 the light receiving area may be arbitrarily set as long as a necessary monitor current value is obtained and the monitor PD 65 is installed in a range where the necessary scattered light intensity can be obtained.
  • the distance in the Y direction from the optical waveguide layer 5 to the monitor PD 65 is thicker than the mode feel diameter of the guided light, and evanescent light enters the monitor PD 65.
  • the film thickness so as not to be applied.
  • the film thickness of the InP cladding layers 10 and 14 is set so that the film thickness is larger than the mode feel diameter of the guided light and evanescent light is not applied to the monitor PD65.
  • Scattered light generated by the scattered light generation pattern 7 that generates scattered light propagates through the InP cladding layer 4 above the optical waveguide layer 5 in the embedded optical waveguide 62 and enters the installed monitor PD 65.
  • the guided light that has passed through the scattered light generation pattern 7 that generates scattered light is coupled again to the optical waveguide layer 5 and propagates.
  • reflection occurs on the side surface of the mesa of the embedded optical waveguide 62, but the incident angle of the scattered light to the side surface of the mesa is random, and the input side (first optical element 61) from the side surface of the mesa. Scattered light returning to the side) can be ignored.
  • the semiconductor optical integrated device 200 according to the first embodiment can obtain a monitor current corresponding to the light intensity of the guided light when the monitor PD 65 receives the scattered light. Since the semiconductor optical integrated device 200 according to the first embodiment receives scattered light, the guided light is in direct contact with the light receiving portion (absorbing layer) of the monitor PD 65, unlike the case of receiving evanescent light described in Patent Document 1. Therefore, there is no influence on the guided light. Further, the semiconductor optical integrated device 200 of the first embodiment passes through the scattered light generation pattern 7 that generates scattered light because the distribution of the guided light is larger than the thickness in the Y direction and the width in the X direction of the optical waveguide layer 5. Even so, the symmetry of the light distribution is not greatly impaired.
  • the semiconductor optical integrated device 200 of the first embodiment since there is no return light to the active layer 3 side of the first optical element 61, abnormal oscillation of the semiconductor laser, that is, LD (Laser Diode) due to return light noise occurs. Absent.
  • the semiconductor optical integrated device 200 according to the first embodiment can monitor the light intensity without affecting the light distribution of the light propagating through the optical waveguide and without deteriorating the characteristics of the optical element on the incident side.
  • the PD is suitable as an integrated device provided in the middle of the optical waveguide.
  • the first optical element 61, the monitoring optical waveguide (embedded optical waveguide 62), and the second optical element 63 in which light propagates are the same semiconductor.
  • the monitoring optical waveguide (embedded optical waveguide 62) includes a light scattering portion (scattered light generation pattern 7) in which optical waveguides having different mode field diameters are combined to scatter part of light, and the light scattering portion (scattering).
  • the photodetector (monitor PD 65) that receives the scattered light scattered by the light generation pattern 7) is the outer periphery of the monitoring optical waveguide (embedded optical waveguide 62) or the light scattering portion (scattered light) of the semiconductor substrate (InP substrate 1). It is installed on the back surface opposite to the generation pattern 7) (feature 2).
  • the semiconductor optical integrated device 200 is scattered by the light scattering portion (scattered light generation pattern 7) of the monitoring optical waveguide (embedded optical waveguide 62) that scatters a part of the light due to the features 1 and 2.
  • the photodetector (monitor PD 65) that receives the scattered light is on the outer side of the monitoring optical waveguide (embedded optical waveguide 62) or on the opposite side of the light scattering portion (scattered light generation pattern 7) of the semiconductor substrate (InP substrate 1). Since it is installed on the back surface, the light intensity can be monitored without affecting the light distribution of the light propagating through the optical waveguide (embedded optical waveguide 62) and without deteriorating the characteristics of the optical element on the incident side.
  • FIG. FIG. 7 is a bird's-eye view showing the semiconductor optical integrated device according to the second embodiment.
  • 8A is a cross-sectional view of the optical element mesa of FIG. 7 along the Z direction
  • FIG. 8B is a cross-sectional view of AA in FIG. 8A.
  • the embedded optical waveguide 62 of the semiconductor optical integrated device 200 according to the first embodiment is replaced with a high mesa optical waveguide 64 which is a high mesa optical waveguide.
  • a high-mesa optical waveguide 64 that is a monitoring optical waveguide is formed on an InP substrate 1 that is a semiconductor substrate, an InP cladding layer 2 that is a first cladding layer, an optical waveguide layer 5, and an InP cladding that is a second cladding layer.
  • a layered body in which the layers 4 are sequentially stacked is provided.
  • the laminated body of the high mesa optical waveguide 64 has a pair of mesa end faces that face each other in the Y direction perpendicular to the InP substrate 1 and the X direction perpendicular to the Z direction, which is the direction of light propagation, and the optical waveguide layer 5 is exposed.
  • High mesa structure is provided.
  • the monitor PD 65 is installed on the outer periphery of the high mesa optical waveguide 64, for example, on the top surface of the high mesa optical waveguide 64.
  • the scattered light generation pattern 7 for generating scattered light is a portion where the width is changed in the high mesa optical waveguide 64.
  • the installation position and area of the monitor PD 65 are the same as those in the first embodiment.
  • the monitor PD 65 is installed so as to include the front of the scattered light generation pattern 7 that generates scattered light with respect to the waveguide direction, and the upper surface (surface) of the InP cladding layer 4 is centered on the position where the scattered light intensity is maximum. It is preferable to install it at a position where it can receive all of the scattered light that has reached ().
  • the position of the monitor PD 65 and the light receiving area can also be set according to the necessary monitor current amount.
  • the semiconductor optical integrated device 200 of the second embodiment has the same operations and effects as the semiconductor optical integrated device 200 of the first embodiment.
  • the semiconductor optical integrated device 200 according to the second embodiment can monitor the light intensity without affecting the light distribution of light propagating through the optical waveguide (high mesa optical waveguide 64) and without deteriorating the characteristics of the optical element on the incident side. .
  • the first optical element 61, the monitoring optical waveguide (high mesa optical waveguide 64), and the second optical element 63 in which light propagates are the same semiconductor.
  • the monitoring optical waveguide (high mesa optical waveguide 64) includes a light scattering portion (scattered light generation pattern 7) that scatters a part of light in which optical waveguides having different mode field diameters are combined.
  • the photodetector (monitor PD 65) that receives the scattered light scattered by the light generation pattern 7) is the outer periphery of the monitoring optical waveguide (high mesa optical waveguide 64) or the light scattering portion (scattered light) of the semiconductor substrate (InP substrate 1). It is installed on the back surface opposite to the generation pattern 7) (feature 2).
  • the monitoring optical waveguide (high mesa optical waveguide 64) includes a first cladding layer (InP cladding layer 2), an optical waveguide layer 5, and a second cladding layer (InP cladding layer) formed on the semiconductor substrate (InP substrate 1).
  • the semiconductor optical integrated device 200 of the second embodiment is scattered by the light scattering portion (scattered light generation pattern 7) of the monitoring optical waveguide (high mesa optical waveguide 64) that scatters a part of the light according to the features 1 to 3.
  • the photodetector (monitor PD 65) that receives the scattered light is on the opposite side of the outer periphery of the monitoring optical waveguide (high mesa optical waveguide 64) or the light scattering portion (scattered light generation pattern 7) of the semiconductor substrate (InP substrate 1). Since it is installed on the back surface, the light intensity can be monitored without affecting the light distribution of the light propagating through the optical waveguide (high mesa optical waveguide 64) and without deteriorating the characteristics of the optical element on the incident side.
  • FIG. 9 is a diagram showing a scattered light generation pattern according to the third embodiment
  • FIG. 10 is a diagram showing another scattered light generation pattern according to the third embodiment.
  • 11A to 11E are views for explaining a first manufacturing method for forming the scattered light generation pattern of FIG. 12A to 12D are views for explaining a second manufacturing method for forming the scattered light generation pattern of FIG.
  • the scattered light generation pattern of the semiconductor optical integrated device 200 of the first or second embodiment is changed to the scattered light generation pattern 7 shown in FIG. 9 or FIG. It is.
  • the scattered light generation pattern that generates scattered light may be any pattern that changes the refractive index of the optical waveguide.
  • FIG. 9 shows an example of the scattered light generation pattern 7.
  • FIG. 9 corresponds to the main part in the ZX direction cross section (see FIG. 2B) of the embedded optical waveguide 62 of the first embodiment.
  • the scattered light generation pattern 7 of Embodiment 1 is an example in which the width of the optical waveguide layer 5 in the X direction is narrow.
  • the scattered light generation pattern 7 of the third embodiment is an example in which the width of the optical waveguide layer 5 is increased, that is, an example in which the width of the optical waveguide layer 5 in the X direction is increased.
  • the scattered light generation pattern 7 shown in FIG. 3H can be realized by changing the shape of the insulating film 11 for forming the scattered light generation pattern 7 shown in FIG. 3H. Even if the shape like the scattered light generation pattern 7 of FIG. 9 is repeated, the same effect as the scattered light generation pattern 7 of FIG. 9, that is, scattered light can be generated.
  • FIG. 10 shows another example of the scattered light generation pattern 7.
  • FIG. 10 corresponds to the main part in the ZY-direction section (see FIG. 2A) of the embedded optical waveguide 62 of the first embodiment.
  • the scattered light generation pattern 7 of the first embodiment is an example in which the thickness of the optical waveguide layer 5 in the Y direction is constant.
  • the scattered light generation pattern 7 of Embodiment 3 is an example in which the thickness of the optical waveguide layer 5 is reduced, that is, the thickness of the optical waveguide layer 5 in the Y direction is reduced.
  • the scattered light generation pattern 7 shown in FIG. 10 has a constricted shape with the upper portion of the optical waveguide layer 5 (the monitor PD 65 side) narrowing toward the InP substrate 1 side. In addition, even if the shape like the scattered light generation pattern 7 in FIG. 10 is repeated, the same effect as the scattered light generation pattern 7 in FIG. 10, that is, scattered light can be generated.
  • the scattered light generation pattern 7 shown in FIG. 9 and the scattered light generation pattern 7 shown in FIG. 10 have been described using the example applied to the embedded optical waveguide 62 of the first embodiment.
  • the present invention is not limited to this, and the scattered light generation pattern 7 shown in FIG. 9 and the scattered light generation pattern 7 shown in FIG. 10 can be applied to the high mesa optical waveguide 64 of the second embodiment.
  • the manufacturing method of the semiconductor optical integrated device 200 having the scattered light generation pattern 7 of FIG. 9 of the third embodiment is the same as the manufacturing method described in the first embodiment. However, the shape of the insulating film 11 in FIG. 3H is changed to match the shape of the scattered light generation pattern 7 in FIG. A method of manufacturing the semiconductor optical integrated device 200 having the scattered light generation pattern 7 of FIG. 10 according to the third embodiment will be described.
  • the steps shown in FIGS. 11A to 11E are added between the step shown in FIG. 3D of the first embodiment and the step shown in FIG. 3E.
  • the steps shown in FIGS. 12A to 12D are added between the step shown in FIG. 4B and the step shown in FIG. 4C of the first embodiment.
  • FIGS. 11A to 11E show cross sections of the optical element mesa 56 along the Z direction.
  • 12A to 12D show cross sections of the optical element mesa 56 along the Z direction.
  • the insulating film 9 in FIG. 3D is removed using hydrogen fluoride water or the like.
  • an insulating film 16 such as SiO 2 is formed on the surfaces of the InP cladding layer 8 and the InP cladding layer 10 from which the insulating film 9 has been removed.
  • a photoresist is applied to the surface of the insulating film 16, and a part of the photoresist is patterned and opened. This uses a general semiconductor photolithography process.
  • the insulating film 16 is etched using the patterned photoresist as a mask to form an insulating film opening 36 in the insulating film 16 as shown in FIG. 11C.
  • the patterned insulating film 16 is used as a mask, and dry etching or wet etching is used to remove the InP cladding layer 10 and the optical waveguide layer 5 halfway by etching, so that the InP cladding layer opening 27 is removed. And the optical waveguide layer recess 28 is formed.
  • the InP cladding layer 10 uses an etching solution such as hydrochloric acid.
  • the optical waveguide layer 5 uses an etchant such as hydrogen bromide water or tartaric acid.
  • methane-based gas or chlorine-based gas is used.
  • the insulating film 16 is removed with hydrogen fluoride water or the like.
  • the subsequent steps are the same as those after the step shown in FIG. 3E.
  • the scattered light generation pattern forming unit 23 in FIG. 3H is not necessary, and the scattered light generation pattern forming unit 23 has a rectangular shape without a constricted shape.
  • the steps after the step shown in FIG. 11D and 11E show the optical waveguide layer recess 28 whose bottom surface has a horizontal plane perpendicular to the Y direction.
  • the optical waveguide layer 5 is formed at the boundary in the Z direction of the optical waveguide layer recess 28. Becomes thicker than the central portion, and a constricted shape is formed as shown in FIG.
  • FIGS. 12A to 12D The steps of FIGS. 12A to 12D in the second manufacturing method will be described. 4B and the InP clad from which the InP clad layer 8 disposed on the back side in the Z direction of the InP clad layer 10 is exposed, as shown in FIG. 12A.
  • An insulating film 16 such as SiO 2 is formed on the surface of the layer 8 and the InP cladding layer 10.
  • a photoresist is applied to the surface of the insulating film 16, and a part of the photoresist is patterned and opened. This uses a general semiconductor photolithography process. Using this patterned photoresist as a mask, the insulating film 16 is etched to form an insulating film opening 36 in the insulating film 16 as shown in FIG. 12B.
  • the patterned insulating film 16 is used as a mask to remove the InP cladding layer 10 and the optical waveguide layer 5 by etching using dry etching or wet etching, and the InP cladding layer opening 27 is removed. And the optical waveguide layer recess 28 is formed.
  • the InP cladding layer 10 uses an etching solution such as hydrochloric acid.
  • the optical waveguide layer 5 uses an etchant such as hydrogen bromide water or tartaric acid. In dry etching, methane-based gas or chlorine-based gas is used.
  • the insulating film 16 is removed with hydrogen fluoride water or the like.
  • the scattered light generation pattern forming unit 23 in FIG. 3H is not necessary, and the scattered light generation pattern forming unit 23 has a rectangular shape without a constricted shape. Further, in the case of having both the Y-direction shape of the scattered light generation pattern 7 in FIG. 10 and the X-direction shape of the scattered light generation pattern 7 in FIG. 2B, the scattered light generation pattern forming unit 23 in FIG. 3H is formed.
  • the steps may be the same as those shown in FIG. 3H. 12C and 12D show the optical waveguide layer recess 28 whose bottom surface has a horizontal plane perpendicular to the Y direction. However, when wet etching is used, the optical waveguide layer 5 is formed at the boundary of the optical waveguide layer recess 28 in the Z direction. Becomes thicker than the central portion, and a constricted shape is formed as shown in FIG.
  • the semiconductor optical integrated device 200 of the third embodiment Since the semiconductor optical integrated device 200 of the third embodiment has the scattered light generation pattern 7 shown in FIG. 9 or FIG. 10, the scattered light is generated by the scattered light generation pattern 7 as in the first or second embodiment.
  • the monitor PD 65 can receive the scattered light and obtain a monitor current according to the light intensity of the guided light.
  • the semiconductor optical integrated device 200 according to the third embodiment has the same operations and effects as those of the semiconductor optical integrated device 200 according to the first or second embodiment.
  • the semiconductor optical integrated device 200 according to the third embodiment does not affect the light distribution of light propagating through the optical waveguide (the embedded optical waveguide 62 and the high mesa optical waveguide 64), and does not deteriorate the characteristics of the optical element on the incident side. Light intensity can be monitored.
  • FIG. 13 is a diagram illustrating a scattered light generation pattern according to the fourth embodiment. Bending the optical waveguide layer 5 in the middle causes a loss of guided light due to the bending. That is, waveguide light loss occurs due to the bent portion where the optical waveguide layer 5 is bent in the middle. In the fourth embodiment, the monitor PD 65 receives scattered light generated by this bending loss.
  • FIG. 13 shows an example of the scattered light generation pattern 7.
  • FIG. 13 corresponds to the main part in the ZX direction cross section (see FIG. 2B) of the embedded optical waveguide 62 of the first embodiment.
  • the scattered light generation pattern 7 of Embodiment 1 is an example in which the width of the optical waveguide layer 5 in the X direction is narrow.
  • the scattered light generation pattern 7 of the fourth embodiment is an example in which the optical waveguide layer 5 meanders.
  • the scattered light generation pattern 7 in FIG. 13 can be realized by changing the shape of the insulating film for forming the scattered light generation pattern 7 as shown in FIG. 3H. In addition, even if the shape like the scattered light generation pattern 7 in FIG. 13 is repeated, the same effect as the scattered light generation pattern 7 in FIG. 13, that is, scattered light can be generated.
  • the scattered light generation pattern 7 shown in FIG. 13 can also be applied to the high mesa optical waveguide 64 of the second embodiment.
  • the scattered light generation pattern 7 obtains the scattered light as in the first or second embodiment.
  • the monitor PD 65 can receive the scattered light and obtain a monitor current corresponding to the light intensity of the guided light.
  • the semiconductor optical integrated device 200 according to the fourth embodiment has the same operations and effects as those of the semiconductor optical integrated device 200 according to the first or second embodiment.
  • the semiconductor optical integrated device 200 according to the fourth embodiment does not affect the light distribution of light propagating through the optical waveguide (the embedded optical waveguide 62 and the high mesa optical waveguide 64), and does not deteriorate the characteristics of the incident-side optical element. Light intensity can be monitored.
  • the semiconductor optical integrated device 200 includes the first optical element 61, the monitoring optical waveguide (the embedded optical waveguide 62, the high mesa optical waveguide 64), and the second optical element through which light propagates.
  • 63 is a semiconductor optical integrated device formed on the same semiconductor substrate (InP substrate 1), and the monitoring optical waveguide (embedded optical waveguide 62, high mesa optical waveguide 64) is connected to the first optical element 61;
  • the second optical element 63 is connected to a monitoring optical waveguide (embedded optical waveguide 62, high mesa optical waveguide 64) (feature 1).
  • the monitoring optical waveguide (embedded optical waveguide 62, high mesa optical waveguide 64) is a first cladding layer (InP cladding layer 2) formed on the semiconductor substrate InP substrate 1), and a light scattering portion that scatters a part of the light.
  • the photodetector (monitor PD 65) that receives the scattered light scattered by the light scattering portion (scattered light generation pattern 7) is a monitoring optical waveguide (embedded optical waveguide 62, high mesa optical waveguide). 64) or on the back surface opposite to the light scattering portion (scattered light generation pattern 7) of the semiconductor substrate (InP substrate 1) (feature 2).
  • the semiconductor optical integrated device 200 has a light scattering portion (scattered light generation pattern) of a monitoring optical waveguide (embedded optical waveguide 62, high mesa optical waveguide 64) that scatters a part of the light according to features 1 and 2.
  • a monitoring optical waveguide embedded optical waveguide 62, high mesa optical waveguide 64
  • the light detector (monitor PD 65) that receives the scattered light scattered by 7) is the outer periphery of the monitoring optical waveguide (embedded optical waveguide 62, high mesa optical waveguide 64) or the light scattering portion of the semiconductor substrate (InP substrate 1) ( Since it is installed on the back surface opposite to the scattered light generation pattern 7), the light distribution of the light propagating through the optical waveguide (the embedded optical waveguide 62 and the high mesa optical waveguide 64) is not affected, and the incident-side optical element is not affected. The light intensity can be monitored without deteriorating the characteristics.
  • FIG. 14 is a bird's-eye view showing the semiconductor optical integrated device according to the fifth embodiment.
  • 15A is a cross-sectional view taken along the Z direction of the main part of the optical element mesa shown in FIG. 14, and
  • FIG. 15B is a cross-sectional view taken along line AA in FIG. 15A.
  • the fifth embodiment is an example in which the mode conversion optical waveguide 17 is used for a pattern for obtaining scattered light.
  • the optical waveguide layer 5 of the first optical waveguide 76 and the optical waveguide layer 5 of the second optical waveguide 77 are modes. They are connected by a conversion optical waveguide 17.
  • the mode conversion optical waveguide 17 is provided to connect different optical waveguide modes, but scattered light is generated when the guided light undergoes mode conversion.
  • the monitor PD 65 is installed above the mode conversion optical waveguide 17.
  • FIG. 15 shows an example in which the mode conversion optical waveguide 17 is disposed between the broken line 29a and the broken line 29b.
  • FIG. 15 shows an example in which the current blocking layer 13 exists on the left side from the broken line 29c and the current blocking layer 13 does not exist on the right side from the broken line 29c. That is, FIG. 15 shows an example in which the first optical waveguide 76 is an embedded optical waveguide and the second optical waveguide 77 is a high mesa optical waveguide.
  • the monitor PD 65 is installed at the upper part of the mode conversion optical waveguide 17 and is located at a position where it can receive all of the scattered light reaching the upper surface (surface) of the InP cladding layer 4 with the scattered light intensity being maximized. It is good to install.
  • the position of the monitor PD 65 and the light receiving area can also be set according to the necessary monitor current amount.
  • the optical waveguide in which the monitor PD 65 is installed above the mode conversion optical waveguide 17 may be either a buried structure or a high mesa structure.
  • the first optical waveguide 76 and the second optical waveguide 77 may have a buried structure, and the first optical waveguide 76 and the second optical waveguide 77 may have a high mesa structure.
  • the second optical waveguide 77 may have a buried structure and the first optical waveguide 76 may have a high mesa structure, and may be installed above the mode conversion optical waveguide.
  • the mode conversion light is similar to the first or second embodiment. Scattered light can be obtained by the waveguide 17, and the monitor PD 65 can receive the scattered light and obtain a monitor current according to the light intensity of the guided light.
  • the semiconductor optical integrated device 200 according to the fifth embodiment has the same operations and effects as those of the semiconductor optical integrated device 200 according to the first or second embodiment.
  • the semiconductor optical integrated device 200 according to the fifth embodiment does not affect the light distribution of light propagating through the optical waveguide (the embedded optical waveguide 62 and the high mesa optical waveguide 64), and does not deteriorate the characteristics of the incident-side optical element. Light intensity can be monitored.
  • FIG. 16A is a cross-sectional view along the Z direction of the main part of the monitoring optical waveguide according to the sixth embodiment
  • FIG. 16B is a cross-sectional view taken along line AA in FIG. 16A
  • FIG. 17A is a cross-sectional view taken along the Z direction of the main part of another monitoring optical waveguide according to the sixth embodiment
  • FIG. 17B is a cross-sectional view taken along line AA in FIG. 17A.
  • the embedded optical waveguide 62 which is the monitoring optical waveguide shown in FIGS.
  • FIG. 16A and 16B includes a first optical waveguide 76 and a second optical waveguide 77, and the optical waveguide layer 18 of the first optical waveguide 76 and the second optical waveguide.
  • 77 optical waveguide layers 5 are connected by a butt joint, and have a butt joint portion 37.
  • the semiconductor optical integrated device 200 according to the sixth embodiment is obtained by applying the embedded optical waveguide 62 shown in FIGS. 16A and 16B to the semiconductor optical integrated device 200 according to the first embodiment.
  • FIG. 16A shows a Y-direction first light distribution 21 and a Y-direction second light distribution 22, which are light distributions in the Y direction in the first optical waveguide 76 and the second optical waveguide 77.
  • FIG. 16B shows an X-direction first light distribution 19 and an X-direction second light distribution 20, which are light distributions in the X direction in the first optical waveguide 76 and the second optical waveguide 77.
  • the mode field diameter in the X direction of the first optical waveguide 76 is w1x
  • the mode field diameter in the Y direction is w1y
  • the mode field diameter in the X direction of the second optical waveguide 77 is w2x
  • the mode field diameter in the Y direction is w2y.
  • the optical waveguide connected by the butt joint serving as the scattered light generation unit of the sixth embodiment is defined as follows.
  • the deviation between the center of the mode field of the first optical waveguide 76 and the center of the mode field of the second optical waveguide 77 is in a range (range 1) of ⁇ (w1x + w2x) / 2 to + (w1x + w2x) / 2 in the X direction, and the amount of deviation of the center in the Y direction (width direction) is ⁇ (w1y + w2y) / 2 to +
  • the optical waveguide has a range (range 2) of (w1y + w2y) / 2.
  • the shift amount is not in a range excluding the zero points in the ranges 1 and 2 (when the respective centers coincide). Don't be. If this mode is exceeded and the mode field diameters of both optical waveguides are shifted, or if the deviation is zero, the guided light coupled to the second optical waveguide 77 is guided by the first optical waveguide 76. Therefore, it is not practical as an optical semiconductor device because no scattered light is generated.
  • the calculation of these coupling efficiencies is described in the document “Kenji Kawano, Basics and Applications of Optical Coupling Systems for Optical Devices, Second Edition” on pages 29-45.
  • a high mesa optical waveguide 64 that is a monitoring optical waveguide shown in FIGS. 17A and 17B includes a first optical waveguide 76 and a second optical waveguide 77, and the optical waveguide layer 18 of the first optical waveguide 76 and the second optical waveguide.
  • 77 optical waveguide layers 5 are connected by a butt joint, and have a butt joint portion 37.
  • Another semiconductor optical integrated device 200 of the sixth embodiment is obtained by applying the high mesa optical waveguide 64 shown in FIGS. 17A and 17B to the semiconductor optical integrated device 200 of the second embodiment.
  • FIG. 17A shows the Y direction first light distribution 21 and the Y direction second light distribution 22, which are light distributions in the Y direction in the first optical waveguide 76 and the second optical waveguide 77.
  • FIGS. 17B shows an X-direction first light distribution 19 and an X-direction second light distribution 20, which are light distributions in the X direction in the first optical waveguide 76 and the second optical waveguide 77.
  • the high mesa optical waveguide 64 shown in FIGS. 17A and 17B can also generate scattered light in the same manner as the embedded optical waveguide 62 shown in FIGS. 16A and 16B.
  • the embedded optical waveguide 62 shown in FIGS. 16A and 16B is an optical waveguide connected by a butt joint portion 37 serving as a scattered light generating portion.
  • the high mesa optical waveguide 64 shown in FIGS. 17A and 17B is an optical waveguide connected by a butt joint portion 37 serving as a scattered light generating portion.
  • the monitor PD 65 is installed on the upper portion of the butt joint portion 37 and is centered on the position where the scattered light intensity from the butt joint portion 37 is maximized. It is good to install in the position which can receive all the lights of the scattered light which reached the upper surface (surface) of the layer 4.
  • FIG. The position of the monitor PD 65 and the light receiving area can also be set according to the necessary monitor current amount.
  • FIGS. 16A and 16B an example of the embedded optical waveguide 62 including the first optical waveguide 76 and the second optical waveguide 77 is shown.
  • the optical waveguide layer 18 of the first optical waveguide 76 may be the active layer 3 of the first optical element 61.
  • the first optical element 61 that is, the semiconductor laser also serves as an optical waveguide. Therefore, the butt joint portion 37 may be formed at the connection portion between the active layer 3 of the first optical element 61 and the optical waveguide layer 5 of the embedded optical waveguide 62.
  • 17A and 17B show an example of the high mesa optical waveguide 64 including the first optical waveguide 76 and the second optical waveguide 77.
  • the active layer 3 of the first optical element 61 and the optical waveguide layer of the high mesa optical waveguide 64 are shown.
  • the butt joint portion 37 may be formed at a connection portion with the butt 5.
  • the monitor PD 65 since the monitor PD 65 is installed on the upper part of the butt joint portion 37 where the scattered light is generated, the butt joint portion 37 is the same as in the first or second embodiment. Thus, scattered light can be obtained, and the monitor PD 65 can receive the scattered light and obtain a monitor current according to the light intensity of the guided light.
  • the semiconductor optical integrated device 200 of the sixth embodiment has the same operations and effects as the semiconductor optical integrated device 200 of the first or second embodiment.
  • the semiconductor optical integrated device 200 according to the sixth embodiment does not affect the light distribution of light propagating through the optical waveguide (the embedded optical waveguide 62 and the high mesa optical waveguide 64), and does not deteriorate the characteristics of the incident-side optical element. Light intensity can be monitored.
  • FIG. FIG. 18 is a bird's-eye view showing a semiconductor optical integrated device according to the seventh embodiment.
  • the monitor PD 65 installed on the top of the waveguide in the semiconductor optical integrated device 200 of the first embodiment is changed to a monitor PD 66 that is monolithically integrated by a crystal growth technique such as MOCVD. It is different in point that was made.
  • the monitor PD 66 monolithically integrated by a crystal growth technique such as MOCVD can also be applied to the second to sixth embodiments.
  • the semiconductor optical integrated device 200 according to the seventh embodiment has the same operations and effects as the semiconductor optical integrated device 200 according to the first to sixth embodiments.
  • the monitor PD 66 monolithically integrated does not affect the light distribution of the light propagating through the optical waveguide (the embedded optical waveguide 62 and the high mesa optical waveguide 64), and the light on the incident side. The light intensity can be monitored without deteriorating the element characteristics.
  • FIG. 19 is a bird's-eye view showing a semiconductor optical integrated device according to the eighth embodiment.
  • the monitor PD 65 installed on the top of the waveguide in the semiconductor optical integrated device 200 of the first embodiment is changed to a monitor PD element 67 pasted with an adhesive 68.
  • the adhesive 68 is an organic adhesive such as polyimide.
  • the example using the adhesive 68 has been shown, but other methods may be used.
  • the semiconductor optical integrated device 200 of the eighth embodiment has the same operations and effects as the semiconductor optical integrated device 200 of the first to sixth embodiments.
  • the attached monitor PD element 67 does not affect the light distribution of the light propagating through the optical waveguide (the embedded optical waveguide 62 and the high mesa optical waveguide 64), and the incident side The light intensity can be monitored without deteriorating the characteristics of the optical element.
  • FIG. 20 is a bird's-eye view showing a semiconductor optical integrated device according to the ninth embodiment.
  • 21A is a cross-sectional view of the optical element mesa of FIG. 20 along the Z direction
  • FIG. 21B is a cross-sectional view along AA in FIG. 21A.
  • the monitor PD 65 installed on the upper portion of the waveguide of the optical element mesa 56 in the semiconductor optical integrated device 200 according to the first embodiment includes the optical waveguide of the optical element mesa 56 ( The difference is that the optical waveguide 62 is attached to one side surface or both side surfaces of the embedded optical waveguide 62).
  • FIGS. 20 and 21B shows an example in which the monitor PD 65 is installed on both side surfaces of the optical waveguide of the optical element portion mesa 56.
  • a specific example of the monitor PD 65 shown in FIGS. 20 and 21B is the monitor PD element 67 attached with the adhesive 68 shown in the eighth embodiment.
  • the monitor PD 65 is installed in the waveguide direction from the scattered light generation pattern 7 that generates scattered light, and the scattered light that reaches the side surface of the mesa centering on the position where the scattered light intensity is maximized. It is preferable to install it at a position where all light can be received.
  • the position of the monitor PD 65 and the light receiving area can also be set according to the necessary monitor current amount.
  • the scattered light is isotropically scattered from the scattered light generation pattern 7 in the traveling direction of the optical waveguide. Therefore, even if the monitor PD 65 is installed on the side surface of the optical waveguide of the optical element portion mesa 56, the scattered light can be obtained by the scattered light generation pattern 7 and the scattered light is received by the monitor PD 65 as in the first embodiment. Thus, a monitor current corresponding to the light intensity of the guided light can be obtained.
  • the monitor PD 65 installed on the side surface of the optical waveguide of the optical element mesa 56 can be applied to the second to sixth embodiments.
  • the portions where the scattered light is generated are the scattered light generation pattern 7, the mode conversion optical waveguide 17, and the butt joint portion 37.
  • the monitor PD 65 is installed across the monitoring optical waveguide (the embedded optical waveguide 62 and the high mesa optical waveguide 64) and the second optical element 63.
  • the thickness of the adhesive 68 shown in the eighth embodiment it can be applied by adjusting the thickness of the adhesive 68 shown in the eighth embodiment.
  • the semiconductor optical integrated device 200 of the ninth embodiment has the same operations and effects as the semiconductor optical integrated device 200 of the first to sixth embodiments.
  • the light distribution of light propagating through the optical waveguide (the embedded optical waveguide 62 and the high mesa optical waveguide 64) is monitored by the monitor PD 65 installed on the side surface of the optical waveguide of the optical element section mesa 56.
  • the light intensity can be monitored without affecting the characteristics of the optical element on the incident side.
  • FIG. FIG. 22 is a bird's-eye view showing the semiconductor optical integrated device according to the tenth embodiment.
  • 23A is a cross-sectional view of the optical element mesa of FIG. 22 along the Z direction
  • FIG. 23B is a cross-sectional view taken along line AA in FIG. 23A.
  • the monitor PD 65 installed on the upper part of the waveguide of the optical element mesa 56 in the semiconductor optical integrated device 200 according to the first embodiment is bonded to the back surface of the InP substrate 1. It differs in that it was installed.
  • a specific example of the monitor PD 65 shown in FIGS. 22 and 23A is a monitor PD element 67 attached with the adhesive 68 shown in the eighth embodiment.
  • the monitor PD 65 is installed in the waveguide direction from the scattered light generation pattern 7 that generates scattered light, and the position where the intensity of the scattered light is maximized is the center of the InP substrate 1. It is good to install in the position which can receive all the lights of the scattered light which reached
  • the position of the monitor PD 65 and the light receiving area can also be set according to the necessary monitor current amount.
  • Scattered light scattered by the scattered light generation pattern 7 propagates through the InP substrate 1 and reaches the back surface of the InP substrate 1.
  • This scattered light can be received by the monitor PD 65 installed on the back surface by pasting. Therefore, even if the monitor PD 65 is installed on the back surface of the InP substrate 1, the scattered light can be obtained by the scattered light generation pattern 7 in the same manner as in the first embodiment.
  • a monitor current corresponding to the light intensity can be obtained.
  • the monitor PD 65 installed on the back surface of the InP substrate 1 can also be applied to the second to sixth embodiments.
  • the portions where the scattered light is generated are the scattered light generation pattern 7, the mode conversion optical waveguide 17, and the butt joint portion 37.
  • the semiconductor optical integrated device 200 of the tenth embodiment exhibits the same operations and effects as the semiconductor optical integrated device 200 of the first to sixth embodiments.
  • the monitor PD 65 installed on the back surface of the InP substrate 1 does not affect the light distribution of the light propagating through the optical waveguide (the embedded optical waveguide 62 and the high mesa optical waveguide 64). The light intensity can be monitored without deteriorating the characteristics of the incident side optical element.
  • FIG. 24A is a cross-sectional view along the Z direction of the main part of the monitoring optical waveguide according to the eleventh embodiment
  • FIG. 24B is a cross-sectional view taken along line AA in FIG. 24A.
  • the scattered light generation pattern of the semiconductor optical integrated device 200 according to the first embodiment is changed to the recess 32 shown in FIGS. 24A and 24B.
  • the recess 32 is formed simultaneously with the formation of the optical element portion mesa 56, more specifically, when the mesa groove 54 is formed.
  • the depth of the concave portion 32 in the X direction is adjusted so as to affect the distribution of light guided inside (the light distribution 31). Scattered light is generated by applying the tail of the guided light to the recess 32 processed in this way.
  • the monitor PD 65 receives the scattered light generated by the recess 32.
  • FIGS. 24A and 24B a triangular prism-shaped recess 32 is shown.
  • the triangular prism-shaped recess 32 has a triangular cross section in the ZY direction (cross section perpendicular to the X direction).
  • the monitor PD 65 shown in FIG. 24A is installed on the upper part of the concave connection line 38 that connects the concave parts 32 formed on both sides of the mesa side surface, and the upper surface of the InP clad layer 4 is centered on the position where the scattered light intensity is maximum. It is good to install in the position which can receive all the lights of the scattered light which reached (surface).
  • the position of the monitor PD 65 and the light receiving area can also be set according to the necessary monitor current amount.
  • 24A and 24B show an example in which the monitor PD 65 is installed on the upper part of the embedded optical waveguide 62 that is a monitoring optical waveguide.
  • a monitor PD 65 may be installed on the back surface of the InP substrate 1.
  • the monitor PD 65 is installed in the waveguide direction from the concave connection line 38, and the position where the scattered light intensity is maximized is the center.
  • the position of the monitor PD 65 and the light receiving area can also be set according to the necessary monitor current amount.
  • the semiconductor optical integrated device 200 of the eleventh embodiment Since the semiconductor optical integrated device 200 of the eleventh embodiment has the recess 32 where the scattered light shown in FIGS. 24A and 24B is generated, the scattered light can be obtained by the recess 32 as in the first embodiment.
  • the monitor PD 65 can receive the scattered light and obtain a monitor current according to the light intensity of the guided light.
  • the semiconductor optical integrated device 200 according to the eleventh embodiment has the same operations and effects as the semiconductor optical integrated device 200 according to the first embodiment.
  • the semiconductor optical integrated device 200 according to the eleventh embodiment can monitor the light intensity without affecting the light distribution of the light propagating through the optical waveguide (embedded optical waveguide 62) and without deteriorating the characteristics of the optical element on the incident side. .
  • the first optical element 61, the monitoring optical waveguide (embedded optical waveguide 62), and the second optical element 63 in which light propagates are the same semiconductor.
  • the monitoring optical waveguide includes a first cladding layer (InP cladding layer 2), an optical waveguide layer 5, and a second cladding layer (InP cladding layer) formed on the semiconductor substrate (InP substrate 1). 4) includes a laminated body sequentially laminated, the laminated body facing each other in the Y direction perpendicular to the semiconductor substrate (InP substrate 1) and the X direction perpendicular to the Z direction, which is a direction in which light propagates, and an optical waveguide This is a buried structure having a pair of mesa end faces where the layer 5 is not exposed (feature 2).
  • the monitoring optical waveguide (embedded optical waveguide 62) has a concave portion 32 where light is distributed on at least one mesa end surface in the X direction, and the concave portion 32 is a light scattering portion that scatters a part of the light.
  • the photodetector 65 that receives the scattered light scattered by the portion (recess 32) is opposite to the outer periphery of the monitoring optical waveguide (embedded optical waveguide 62) or the light scattering portion (recess 32) of the semiconductor substrate (InP substrate 1). It is installed on the back of the side (feature 3).
  • the semiconductor optical integrated device 200 is characterized in that the scattered light scattered by the light scattering portion (concave portion 32) of the monitoring optical waveguide (embedded optical waveguide 62) that scatters a part of the light according to features 1 to 3. Is installed on the outer periphery of the monitoring optical waveguide (embedded optical waveguide 62) or on the back surface opposite to the light scattering portion (concave portion 32) of the semiconductor substrate (InP substrate 1). Therefore, the light intensity can be monitored without affecting the light distribution of the light propagating through the optical waveguide (embedded optical waveguide 62) and without deteriorating the characteristics of the incident-side optical element.
  • FIG. 25A is a cross-sectional view along the Z direction of the optical element mesa in the semiconductor optical integrated device according to the twelfth embodiment
  • FIG. 25B is a cross-sectional view taken along line AA in FIG. 25A.
  • the uneven portion 33 is provided on the mesa side surface of the embedded optical waveguide 62 of the semiconductor optical integrated device 200 according to the first embodiment.
  • the concavo-convex portion 33 is sufficiently separated from the light distribution of the guided light so as not to affect the guided light. Since the scattered light is reflected and transmitted in various directions by the uneven portion 33 formed on the side surface of the mesa, it is prevented from returning to the scattered light input side. Therefore, the uneven portion 33 formed on the side surface of the mesa is provided to prevent the scattered light generated by the scattered light generation pattern 7 from returning to the LD, that is, the first optical element 61.
  • the scattered light generated by the scattered light generation pattern 7 is reflected and transmitted in various directions by the concave and convex portion 33. Can be suppressed.
  • 25A and 25B show an example of the scattered light generation pattern 7 of the first embodiment where the scattered light is generated.
  • the portions where the scattered light is generated are the scattered light generation pattern 7 of the third embodiment, the scattered light generation pattern 7 of the fourth embodiment, the mode conversion optical waveguide 17 of the fifth embodiment, and the butt joint of the sixth embodiment.
  • the part 37 may be used.
  • the monitor PD 65 may be installed on the back surface of the InP substrate 1 as shown in the tenth embodiment.
  • the semiconductor optical integrated device 200 according to the twelfth embodiment exhibits the same operations and effects as the semiconductor optical integrated device 200 according to the first embodiment.
  • the semiconductor optical integrated device 200 according to the twelfth embodiment can monitor the light intensity without affecting the light distribution of light propagating through the optical waveguide (embedded optical waveguide 62) and without deteriorating the characteristics of the optical element on the incident side.
  • the semiconductor optical integrated device 200 according to the twelfth embodiment has the concavo-convex portion 33 that reflects and transmits the scattered light generated in the scattered direction in various directions such as the scattered light generation pattern 7. , That is, the amount of light returning to the first optical element 61 can be suppressed.
  • FIG. 26 is a sectional view of the optical element mesa in the semiconductor optical integrated device according to the thirteenth embodiment along the Z direction.
  • the semiconductor optical integrated device 200 according to the thirteenth embodiment is such that an absorption layer 34 having a large absorption coefficient is provided below the optical waveguide layer 5 of the semiconductor optical integrated device 200 according to the first embodiment.
  • an absorption layer 34 that is an InGaAs layer having a large absorption coefficient is inserted below the optical waveguide layer 5.
  • FIG. 26 shows an example in which the absorption layer 34 is inserted below the active layer 3 of the first optical element 61.
  • FIG. 26 shows an example in which the absorption layer 34 is arranged on the surface of the InP cladding layer 4 in the waveguide direction (Z direction) from the position where the monitor PD 65 is installed.
  • These absorption layers 34 are realized by a crystal growth technique by MOCVD.
  • the absorption layer 34 may be made of a material other than InGaAs as long as it has an absorption coefficient with respect to the wavelength of the guided light.
  • the InGaAs layer absorbs light in the 1.3 ⁇ m band and 1.5 ⁇ m band, the scattered light generated in the scattered light generation pattern 7 that generates scattered light absorbs components that have not reached the monitor PD 65, and the input side Suppresses the return light.
  • the absorption layer 34 below the optical waveguide layer 5 absorbs scattered light propagating to the InP substrate 1 side, and the absorption layer 34 disposed on the surface of the InP cladding layer 4 propagates scattered light to the InP cladding layer 4 side. To absorb.
  • the semiconductor optical integrated device 200 of the thirteenth embodiment includes the absorption layer 34 at least below the optical waveguide layer 5, the scattered light component that does not enter the monitor PD 65 is removed, and the influence of the return light to the input side (return) Light quantity) can be suppressed.
  • the absorption layer 34 is provided on the lower surface of the optical waveguide layer 5 and on the surface of the InP cladding layer 4 in the waveguide direction (Z direction) relative to the monitor PD 65. As compared with the case where the absorption layer 34 is disposed only in the lower part of the light source, it is possible to remove more scattered light components that are not incident on the monitor PD 65 and to further suppress the influence of the return light to the input side.
  • the portion where the scattered light is generated is not limited to the scattered light generation pattern 7 of the first embodiment, but the scattered light generation pattern 7 of the third embodiment, the scattered light generation pattern 7 of the fourth embodiment, and the mode of the fifth embodiment.
  • the conversion optical waveguide 17 may be the butt joint portion 37 of the sixth embodiment.
  • the semiconductor optical integrated device 200 of the thirteenth embodiment has the same operations and effects as the semiconductor optical integrated device 200 of the first embodiment.
  • the semiconductor optical integrated device 200 according to the thirteenth embodiment can monitor the light intensity without affecting the light distribution of light propagating through the optical waveguide (embedded optical waveguide 62) and without deteriorating the characteristics of the incident-side optical element. . Further, since the semiconductor optical integrated device 200 of the thirteenth embodiment has the absorption layer 34 that absorbs the scattered light generated by the portion where the scattered light is generated, such as the scattered light generation pattern 7, the input side of the guided light, that is, the first The influence (return light quantity) of the return light on the one optical element 61 can be suppressed.
  • each embodiment can be freely combined, or each embodiment can be appropriately modified or omitted within a consistent range.
  • SYMBOLS 1 ... InP substrate (semiconductor substrate), 2 ... InP clad layer (first clad layer), 4 ... InP clad layer (second clad layer), 7 ... Scattered light generation pattern (light scattering part), 17 ... mode Conversion optical waveguide, 32 ... concave portion (light scattering portion), 33 ... concave and convex portion, 34 ... absorption layer, 37 ... butt joint portion, 61 ... first optical element, 62 ... buried optical waveguide (monitoring optical waveguide), 63 ... second optical element (high mesa optical waveguide), 64 ... high mesa optical waveguide (monitoring optical waveguide), 65 ... monitor PD, 66 ...
  • monitor PD 67 ... monitor PD element, 68 ... adhesive, 76 ... first light Waveguide, 77 ... second optical waveguide, 200 ... semiconductor optical integrated device, w1, w2, w1x, w2x, w1y, w2y ... mode field diameter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

光導波路を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる半導体光集積デバイスを提供することを目的とする。 半導体光集積デバイス(200)は、光が伝搬する、第一の光素子(61)、監視用光導波路(62)、第二の光素子(63)が同一の半導体基板(1)に形成された半導体光集積デバイスであって、監視用光導波路(62)は第一の光素子(61)に接続され、第二の光素子(63)は監視用光導波路(62)に接続されている。監視用光導波路(62)は、異なるモードフィールド径を有する光導波路が組み合わされた、光の一部を散乱させる光散乱部(7)を備え、光散乱部(7)により散乱された散乱光を受光する光検出器(65)が、監視用光導波路(62)の外周又は半導体基板(1)の光散乱部(7)と逆側の裏面に設置されている。

Description

半導体光集積デバイス
 本願は、光導波路を伝搬する光の強度をモニタするフォトダイオード(PD)を有する半導体光集積デバイスに関するものである。
 従来、光導波路の上部に光導波路を伝搬する光の強度をモニタするフォトダイオード(以降モニタPDという)を設置し、光導波路を伝播する光のエバネセント光成分をモニタPDに受光させる方式がある(特許文献1)。モニタPDで光導波路を伝播する光の一部を受光する方法として、回折格子を用いた受光方式もある(特許文献2)。特許文献2では、光導波路上に設置されたモニタPD直下の光導波路部に、回折次数2次の回折格子が設置されている。2次の回折格子は、光導波路層の光の進行方向および、直角方向に回折光が生じる。直角方向の回折光がモニタPDに入射し、この回折光をモニタPDが受光する。
特表2013-540351号公報(図2) 特開2000-114642号公報(図1)
 特許文献1の受光方式、すなわち光導波路を伝播する光のエバネセント光成分をモニタPDに受光させる方式では、光導波路層の上部のクラッド層の層厚が変化すると、モニタPDにかかるエバネセント光成分が増減するため、モニタPDにより生じるモニタ電流値が変化する問題がある。また、モニタPDの受光部は、吸収係数の大きい材料であるため、さらに屈折率も大きく、導波光の等価屈折率が大きく変化する。このため、モニタPDの受光部によって、光導波路を伝播する導波する光の分布が乱れやすい。したがって、出射光における遠視野像が乱れたり、モニタPDによる吸収損失以外の損失増加が懸念さる。よって、半導体光集積デバイスにおいて、特許文献1の方式を用いて光導波路途中にモニタPDを設置する構造を作製することは困難である。
 特許文献2のモニタPDで光導波路を伝播する光を受光する方法では、回折格子部分によって一部の光が入力方向に反射されるため、入射側に接続される光素子の特性が悪化するという問題がある。例えば、光素子が半導体レーザの場合、回折格子による戻り光によって、レーザ光にノイズが重畳されるなどによりレーザ特性が悪化するという問題がある。
 本願明細書に開示される技術は、上記のような問題点を解消するためになされたもので、光導波路を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる半導体光集積デバイスを提供することを目的とする。
 本願明細書に開示される一例の半導体光集積デバイスは、光が伝搬する、第一の光素子、監視用光導波路、第二の光素子が同一の半導体基板に形成された半導体光集積デバイスであって、監視用光導波路は第一の光素子に接続され、第二の光素子は監視用光導波路に接続されている。監視用光導波路は、異なるモードフィールド径を有する光導波路が組み合わされた、光の一部を散乱させる光散乱部を備え、光散乱部により散乱された散乱光を受光する光検出器が、監視用光導波路の外周又は半導体基板の光散乱部と逆側の裏面に設置されている。
 本願明細書に開示される一例の半導体光集積デバイスは、光の一部を散乱させる監視用光導波路の光散乱部により散乱された散乱光を受光する光検出器が、監視用光導波路の外周又は半導体基板の光散乱部と逆側の裏面に設置されているので、光導波路を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
図1は、実施の形態1による半導体光集積デバイスを示す鳥瞰図である。 図2Aは図1の光素子部メサのZ方向に沿った断面図であり、図2Bは図2AにおけるA-Aの断面図である。 図3Aは、図1の半導体光集積デバイスの製造工程を説明する図である。 図3Bは、図1の半導体光集積デバイスの製造工程を説明する図である。 図3Cは、図1の半導体光集積デバイスの製造工程を説明する図である。 図3Dは、図1の半導体光集積デバイスの製造工程を説明する図である。 図3Eは、図1の半導体光集積デバイスの製造工程を説明する図である。 図3Fは、図1の半導体光集積デバイスの製造工程を説明する図である。 図3Gは、図1の半導体光集積デバイスの製造工程を説明する図である。 図3Hは、図1の半導体光集積デバイスの製造工程を説明する図である。 図3Iは、図1の半導体光集積デバイスの製造工程を説明する図である。 図4Aは、図1の半導体光集積デバイスの製造工程を説明する図である。 図4Bは、図1の半導体光集積デバイスの製造工程を説明する図である。 図4Cは、図1の半導体光集積デバイスの製造工程を説明する図である。 図4Dは、図1の半導体光集積デバイスの製造工程を説明する図である。 図4Eは、図1の半導体光集積デバイスの製造工程を説明する図である。 図4Fは、図1の半導体光集積デバイスの製造工程を説明する図である。 図4Gは、図1の半導体光集積デバイスの製造工程を説明する図である。 図4Hは、図1の半導体光集積デバイスの製造工程を説明する図である。 図4Iは、図1の半導体光集積デバイスの製造工程を説明する図である。 図5は、2つの光導波路と光分布を説明する図である。 図6は、図5の光導波路の接続部による散乱光の割合を示す図である。 図7は、実施の形態2による半導体光集積デバイスを示す鳥瞰図である。 図8Aは図7の光素子部メサのZ方向に沿った断面図であり、図8Bは図8AにおけるA-Aの断面図である。 図9は、実施の形態3による散乱光発生パターンを示す図である。 図10は、実施の形態3による他の散乱光発生パターンを示す図である。 図11Aは、図10の散乱光発生パターンを形成する第一の製造方法を説明する図である。 図11Bは、図10の散乱光発生パターンを形成する第一の製造方法を説明する図である。 図11Cは、図10の散乱光発生パターンを形成する第一の製造方法を説明する図である。 図11Dは、図10の散乱光発生パターンを形成する第一の製造方法を説明する図である。 図11Eは、図10の散乱光発生パターンを形成する第一の製造方法を説明する図である。 図12Aは、図10の散乱光発生パターンを形成する第二の製造方法を説明する図である。 図12Bは、図10の散乱光発生パターンを形成する第二の製造方法を説明する図である。 図12Cは、図10の散乱光発生パターンを形成する第二の製造方法を説明する図である。 図12Dは、図10の散乱光発生パターンを形成する第二の製造方法を説明する図である。 図13は、実施の形態4による散乱光発生パターンを示す図である。 図14は、実施の形態5による半導体光集積デバイスを示す鳥瞰図である。 図15Aは図14の光素子部メサにおける要部のZ方向に沿った断面図であり、図15Bは図15AにおけるA-Aの断面図である。 図16Aは実施の形態6による監視用光導波路における要部のZ方向に沿った断面図であり、図16Bは図16AにおけるA-Aの断面図である。 図17Aは実施の形態6による他の監視用光導波路における要部のZ方向に沿った断面図であり、図17Bは図17AにおけるA-Aの断面図である。 図18は、実施の形態7による半導体光集積デバイスを示す鳥瞰図である。 図19は、実施の形態8による半導体光集積デバイスを示す鳥瞰図である。 図20は、実施の形態9による半導体光集積デバイスを示す鳥瞰図である。 図21Aは図20の光素子部メサのZ方向に沿った断面図であり、図21Bは図21AにおけるA-Aの断面図である。 図22は、実施の形態10による半導体光集積デバイスを示す鳥瞰図である。 図23Aは図22の光素子部メサのZ方向に沿った断面図であり、図23Bは図23AにおけるA-Aの断面図である。 図24Aは実施の形態11による監視用光導波路における要部のZ方向に沿った断面図であり、図24Bは図24AにおけるA-Aの断面図である。 図25Aは実施の形態12による半導体光集積デバイスにおける光素子部メサのZ方向に沿った断面図であり、図25Bは図25AにおけるA-Aの断面図である。 図26は、実施の形態13による半導体光集積デバイスにおける光素子部メサのZ方向に沿った断面図である。
実施の形態1.
 図1は、実施の形態1による半導体光集積デバイスを示す鳥瞰図である。図2Aは図1の光素子部メサのZ方向に沿った断面図であり、図2Bは図2AにおけるA-Aの断面図である。図3A~図3I、図4A~図4Iは、図1の半導体光集積デバイスの製造工程を説明する図である。図5は2つの光導波路と光分布を説明する図であり、図6は図5の光導波路の接続部による散乱光の割合を示す図である。半導体光集積デバイス200は、InP基板1、光素子部メサ56、メサ溝54、メサ溝54により光素子部メサ56と分離された側壁部57、光素子部メサ56に設置されたモニタPD65を備えている。InP基板1上に形成された光素子部メサ56は、第一の光素子61と、監視用光導波路である埋め込み光導波路62、第二の光素子63が形成される。ここでは、第一の光素子を半導体レーザとし、第二の光素子をハイメサ光導波路として説明する。ハイメサ光導波路の符号は、63を用いる。光素子部メサ56は、エッチングによりメサ溝54が形成され、メサ形状となっている。図1では、モニタPD65が、埋め込み光導波路62の外周、例えば埋め込み光導波路62の上に設置された例を示したが、埋め込み光導波路62の側面部、又はInP基板1の裏面に設置してもよい。なお、給電用電極に関しては、図1では図面が煩雑になるため省略しているが、実際には給電用電極が存在する。図2Aでは、第一の光素子61の電極6を示した。以降の説明のため、座標X、Y、Zを図の通り定めた。InP基板1に垂直な方向がY方向(Y軸方向)であり、Y方向に垂直で半導体光集積デバイス200の長手方向がZ方向(Z軸方向)であり、Y方向及びZ方向に垂直で半導体光集積デバイス200の短手方向がX方向(X軸方向)である。半導体光集積デバイス200において、導波光はZ方向に伝播する。
 第一の光素子61を半導体レーザとし、これに埋め込み光導波路62が接続されている。さらに埋め込み光導波路62は、第二の光素子としてのハイメサ光導波路63に接続されている。ここで、第一の光素子61と埋め込み光導波路62とはバットジョイントにより接続され、埋め込み光導波路62とハイメサ光導波路63とはモード変換光導波路17により接続されている。また、埋め込み光導波路62内部の光導波路層5には、散乱光を得るための構造である散乱光発生パターン7が形成される。第一の光素子61は、InP基板1、InP基板1の表面に形成されたInPクラッド層2、InPクラッド層2の表面に形成された活性層3、活性層3の表面に形成されたInPクラッド層4、InP基板1の裏面に形成された電極6、InPクラッド層4の表面に形成された電極6を備えている。埋め込み光導波路62は、InP基板1、InP基板1の表面に形成されたInPクラッド層2、InPクラッド層2の表面に形成された光導波路層5、光導波路層5の表面に形成されたInPクラッド層4を備えている。ハイメサ光導波路63は、InP基板1、InP基板1の表面に形成されたInPクラッド層2、InPクラッド層2の表面に形成された光導波路層5、光導波路層5の表面に形成されたInPクラッド層4を備えている。
 第一の光素子61は、半導体基板であるInP基板1に形成された、第一のクラッド層であるInPクラッド層2、活性層3、第二のクラッド層であるInPクラッド層4が順次積層された積層体を備えている。埋め込み光導波路62は、半導体基板であるInP基板1に形成された、第一のクラッド層であるInPクラッド層2、光導波路層5、第二のクラッド層であるInPクラッド層4が順次積層された積層体を備えている。埋め込み光導波路62の積層体は、InP基板1に垂直なY方向及び光が伝搬する方向であるZ方向に垂直なX方向に互いに対向すると共に光導波路層5が露出していないメサ端面の対を有する埋め込み構造である。ハイメサ光導波路63は、半導体基板であるInP基板1に形成された、第一のクラッド層であるInPクラッド層2、光導波路層5、第二のクラッド層であるInPクラッド層4が順次積層された積層体を備えている。ハイメサ光導波路63の積層体は、InP基板1に垂直なY方向及び光が伝搬する方向であるZ方向に垂直なX方向に互いに対向すると共に光導波路層5が露出したメサ端面の対を有するハイメサ構造である。なお、第一の光素子61、埋め込み光導波路62、第二の光素子63の構成は、埋め込み光導波路、埋め込み光導波路、埋め込み光導波路の構成または、ハイメサ光導波路、埋め込み光導波路、ハイメサ光導波路などでもよく、埋め込み光導波路62が埋め込み型であればどのような構成であっても構わない。
 実施の形態1の半導体光集積デバイス200の製造方法を、図3A~図3I、図4A~図4Iを用いて説明する。図3A~図3Eは、光素子部メサ56のZ方向に沿った断面を示している。図3F、図3G、図3I、図4A~図4D、図4F~図4Iは、ハイメサ光導波路63の端面側、すなわち導波光の出力側から見た図である。図3H、図4Eは、図2AにおけるA-Aの断面と同様の断面を示している。図3Aに示すように、InP基板1に、MOCVD(metal organic chemical vapor deposition)などの結晶成長法を用いて順次InPクラッド層2、活性層3、InPクラッド層8が積層される。InPクラッド層8の表面にSiOなどの絶縁膜9を成膜し、図3Bのようにパターニングする。図3Cのように、絶縁膜9をマスクにして、露出しているInPクラッド層8、活性層3を除去する。図3Dのように、絶縁膜9をマスクにし、MOCVDによる結晶成長技術を用い、光導波路層5とInPクラッド層10を順次結晶成長する。なお、絶縁膜9上には結晶は成長しない。結晶成長後、絶縁膜9をフッ化水素水などで除去する。このような、活性層3と光導波路層5を結晶成長により接続する方式はバットジョイント方式と呼ばれる。
 図3E、図3Fのように、絶縁膜9が除去されたInPクラッド層8及びInPクラッド層10の表面に、再びSiOなどの絶縁膜11を成膜する。図3Fは、図3Eの右側、すなわちハイメサ光導波路63の端面側から見た図である。絶縁膜11は、図3Hに示すようにパターンを形成する。パターンが形成された絶縁膜11は、散乱光を生じさせる光導波路層5の散乱光発生パターン7を形成するために、散乱光発生パターン形成部23が設けられる。また、パターンが形成された絶縁膜11は、光導波路層5のモード変換光導波路17を形成するために、モード変換光導波路形成部24が設けられる。その後、図3Iのように、パターニングされた絶縁膜11をマスクにして、InPクラッド層8、10、活性層3、光導波路層5、InPクラッド層2を除去し、リッジ12を形成する。
 図4Aのように、絶縁膜11をマスクにして、活性層3に電流狭窄を行うための電流ブロック層13を結晶成長により形成する。図4Bのように、絶縁膜11をフッ化水素水などにより除去する。図4Cのように、InPクラッド層14を、InPクラッド層8、10、電流ブロック層 13の表面に結晶成長により形成する。その後、図4Dのように、InPクラッド層14の表面にSiOなどの絶縁膜15を成膜する。絶縁膜15は、図4Eに示すようにメサ溝54を形成するための絶縁膜開口部26を有するパターンが形成される。また、パターンが形成された絶縁膜15は、光導波路層5のモード変換光導波路17を形成するために、モード変換光導波路形成部25が設けられる。図4Fは、図4EにおけるB-Bの断面を示している。ドライエッチング技術を用いて、絶縁膜15をマスクにして、絶縁膜開口部26からInPクラッド層14、電流ブロック層13をエッチングにより除去する。なお、図4G~図4Iでは、InP基板1の一部が削られたメサ溝54を示した。メサ溝54の底において、InP基板1の一部が削られても構わない。図1では、InP基板1が削られていないメサ溝54を示した。
 図4Gは図4Eに示したB-Bにおける、メサ溝54形成後の断面図である。メサ溝54を形成するエッチングは、電流ブロック層13を貫通するように行われる。また、図3Iに示した光導波路層5、活性層3を含むリッジ12はエッチングされない。このような構造を埋め込み型の光導波路という。
 図4Hは図4Eに示したC-Cにおける、メサ溝54形成後の断面図である。図4Hに示したように、ハイメサ光導波路63となるメサ内では電流ブロック層13はなく、光導波路層5のみが残るように、InPクラッド層14、電流ブロック層13がエッチングされる。このような構造をハイメサ光導波路という。
 図4Iに示すように、絶縁膜15をフッ化水素水などで除去し、埋め込み光導波路62の上部、より具体的には埋め込み光導波路62のInPクラッド層14にモニタPD65が設置される。なお、図1、図2Aに示したInPクラッド層4は、積層されたInPクラッド層であり、埋め込み光導波路62及びハイメサ光導波路63においては下層のInPクラッド層10及び上層のInPクラッド層14から構成されており、第一の光素子61においては下層のInPクラッド層8及び上層のInPクラッド層14から構成されている。
 散乱光を生じさせるための光導波路について説明する。図5に示した光導波路は、2つの光導波路、すなわち第一光導波路71と第二光導波路72が互いに接続されている。また、図5には、第一光導波路71と第二光導波路72が導波することができる導波モード(光分布)を示している。第一光導波路71を導波する光の光分布は光分布73であり、第二光導波路72を導波する光の光分布は光分布74である。光分布73のモードフィールド径はモードフィールド径w1であり、光分布74のモードフィールド径はモードフィールド径w2である。なお、モードフィールド径とは、導波モードの光分布の強度ピークから1/eの強度になる光分布の直径(幅)である。なお、図5に示した第一光導波路71、第二光導波路72は、図2Aに示した活性層3又は光導波路層5に相当する。以降では、モードフィールド径を用いて説明する。それぞれの光導波路のモードフィールド径が異なると、第一光導波路71を伝播してきた光は、全て第二光導波路72に結合することはできず、第二光導波路72の導波モードを満足する成分のみ第二光導波路72に結合する。結合できない成分は、散乱光となり放射される。これらの詳細な説明は、非特許文献1「河野健治著、光デバイスのための光結合系の基礎と応用 第二版」29ページ~36ページに記載されている。
 簡単のため、1次元(Z-Y面)で検討する。第一光導波路71のモードフィールド径をw1、第二光導波路72のモードフィールド径をw2とすると、それぞれの光導波路のモードフィールド径の比w1/w2と第一光導波路71を伝播してきた光のうち、第二光導波路72に入力する際に、散乱により生じる散乱光の割合を図6に示す。図6の散乱光の割合の特性は、非特許文献1の結合効率ηとモードフィールド径の比w1/w2との関係式から求めたものである。以上より、2つの光導波路の接合部分における、モードフィールド径w1とモードフィールド径w2の比の設定により、任意の強度の散乱光を得ることができる。
 導波モードとモードフィールド径について説明する。導波モードとは、光が伝播することができる光導波路における光の分布のことで、一般に基本モードと呼ばれるモードが取り扱われる。ここでは、基本モードにおける光分布の導出について説明する。図2A、図2Bにおいて、埋め込み光導波路62において、InPクラッド層2、InPクラッド層4の屈折率をnc1、nc2する。光導波路層5の屈折率をnとし、その層厚をdとする。埋め込み光導波路62は、光導波路層5がInPクラッド層2とInPクラッド層4で挟まれた構造である。InPクラッド層2からInPクラッド層4への積層方向は図2に示したようにY方向である。なお、数式において、小文字のyを用いる。なお、適宜、Y方向をy方向と表記する。また、図2Bに示したように、Y方向に垂直な方向、すなわち半導体光集積デバイス200の短手方向はX方向である。X方向についてもY方向と同様に表記する。数式において、小文字のxを用い、適宜、X方向をx方向と表記する。
 各層の積層方向であるy方向における、導波光の光電界分布をE(y)とする。InPクラッド層2、光導波路層5、InPクラッド層4の光電界分布を以下に示す。InPクラッド層2の光電界Ec1(y)は、式(1)のように表される。
Figure JPOXMLDOC01-appb-M000001
 式(1)の係数γC1は、式(2)のように表される。
Figure JPOXMLDOC01-appb-M000002
ここで、nは透過屈折率を、kは真空中の波数を表す。Dは任意の係数である。
 光導波路層5における光電界E(y)は、式(3)のように表される。
Figure JPOXMLDOC01-appb-M000003
 式(3)の係数γは、式(4)のように表される。
Figure JPOXMLDOC01-appb-M000004
ここで、A、Bは任意の係数である。
 InPクラッド層4の光電界Ec2(y)は、式(5)のように表される。
Figure JPOXMLDOC01-appb-M000005
 式(5)の係数γC2は、式(6)のように表される。
Figure JPOXMLDOC01-appb-M000006
ここで、nは透過屈折率を、kは真空中の波数を表す。Dは任意の係数である。
 光電界分布E(y)の光電界強度E(y)において、InP基板1の側で光電界強度E(y)のピークの1/eとなる直径がy方向のモードフィールド径である。InPクラッド層2の光電界Ec1 (y)から、InPクラッド層2におけるy方向のモードフィールド径を求めることができる。光導波路層5における光電界E(y)から、光導波路層5におけるy方向のモードフィールド径を求めることができる。InPクラッド層4の光電界Ec2(y)から、InPクラッド層4におけるy方向のモードフィールド径を求めることができる。
 次に、x方向の電界については、等価屈折率法により求める。埋め込み光導波路62のx方向の構造は図2B、図4Iのように、光導波路層5のx方向における正側、負側(図4Iにおいて左側右側)は電流ブロック層13で挟まれている。図4Iにおける左側右側の電流ブロック層13の屈折率をそれぞれnb1、nb2とする。光導波路層5の屈折率n、幅tとして、x方向の電界分布をE(x)とする。それぞれの電流ブロック層13の光電界をEb1(x)、をEb2(x)は、式(7)、式(9)のように表すことができる。適宜、x方向における正側(図4Iにおいて左側)の電流ブロック層13を第一の電流ブロック層13と呼び、x方向における負側(図4Iにおいて右側)の電流ブロック層13を第二の電流ブロック層13と呼ぶことにする。
 第一の電流ブロック層13の光電界をEb1(x)は、式(7)のように表すことができる。
Figure JPOXMLDOC01-appb-M000007
 式(7)の係数γb1は、式(8)のように表される。
Figure JPOXMLDOC01-appb-M000008
 第二の電流ブロック層13の光電界をEb2(x)は、式(9)のように表すことができる。
Figure JPOXMLDOC01-appb-M000009
 式(9)の係数γb2は、式(10)のように表される。
Figure JPOXMLDOC01-appb-M000010
ここで、nは透過屈折率を、kは真空中の波数を表す。F、Fは任意の係数である。
 光導波路層5における光電界E(x)は、式(11)のように表すことができる。
Figure JPOXMLDOC01-appb-M000011
 式(11)の係数ζは、式(12)のように表される。
Figure JPOXMLDOC01-appb-M000012
ここで、G、Hは任意の係数である。
 光電界分布E(x)の光電界強度E(x)において、基板側で光電界強度E(x)のピークの1/eとなる直径がx方向のモードフィールド径である。第一の電流ブロック層13の光電界をEb1(x)から、第一の電流ブロック層13におけるx方向のモードフィールド径を求めることができる。第二の電流ブロック層13の光電界をEb2(x)から、第二の電流ブロック層13におけるx方向のモードフィールド径を求めることができる。光導波路層5における光電界E(x)から、光導波路層5におけるx方向のモードフィールド径を求めることができる。
 モードフィールド径の設計には、式(1)~式(12)より、埋め込み光導波路62の各層の屈折率nc1、nc2、nb1、nb2、nを変化させる、または、光導波路層5の厚さd、幅tを変化させる。埋め込み光導波路62の各層の屈折率nc1、nc2、nb1、nb2、n、光導波路層5の厚さd、幅tを所望の値に設定することで、光導波路モード形状(光分布)が変化する。よって、光導波路モード形状(光分布)が変化することで、モードフィールド径が変化する。散乱光を生じさせる光散乱部である散乱光発生パターン7は、異なるモードフィールド径を有する光導波路が組み合わされた構造である。
 図2Bに示すように散乱光を生じさせる散乱光発生パターン7として、実施の形態1では光導波路層5の一部にくびれた形状を作製することで、屈折率変化を与え、散乱光を生じさせる。
 散乱光の放射角度について説明する。散乱光の放射方向については、散乱を生じさせるパターンに依存する。一般に、光導波路層の屈折率変化が急峻に変化するほど、散乱光は、光導波路層に対してより直角に近い角度で散乱される。これは、光導波路層の屈折率が急峻に変化すると、光導波路層を伝搬する光はその変化に追随できないため(各光導波路層の導波モードに対応したモード変換ができないため)、光導波路層の屈折率が変化した箇所、例えば光導波路層の幅が変化した箇所で散乱が生じる。一方、光導波路層の屈折率変化が緩やかな場合、光導波路層を伝搬する導波光はその変化に追随することができるため(各光導波路層の導波モードに応じたモード変換が行われるため)、散乱光成分が少ない。散乱光は、光導波路層に設けた散乱光を生じさせる散乱光発生パターン7より前方に放射される。
 モニタPD65の配置位置について説明する。散乱光は散乱光発生パターン7の前方に放射するため、モニタPD65の配置位置は散乱光を生じる散乱光発生パターン7を含んで前方に設置し、かつモニタPD65の設置面に到達する散乱光強度が最大となる位置に設置する。光導波路層5に設けた散乱光を生じさせる散乱光発生パターン7の光導波路形状によってモニタPD65を設置する位置が変わる。埋め込み光導波路62の上部のInPクラッド層4の厚が変化するとモニタPD65の位置も変化する。散乱光は前方に放射するため、InPクラッド層4の厚が薄い場合、散乱光発生パターン7の近傍の上部にモニタPD65を設置する。InPクラッド層4の厚が厚い場合、散乱光の伝搬方向の遠方でInPクラッド層4の上部(表面)に散乱光が到達するため、散乱光発生パターン7から遠方にモニタPD65を設置する。
 よって、モニタPD65の設置位置及び受光面積に関しては、散乱光を生じさせる散乱光発生パターン7より導波方向に対して前方を含むような位置であり、散乱光強度が最も大きくなる位置を中心として、モニタPDに到達した散乱光の光分布をすべて含むことができる受光面積を持ったモニタPDを設置することが望ましい。なお、モニタPD65の受光面積については、必要なモニタ電流値が得られれば、必要な散乱光強度が得られる範囲に設置すれば、受光面積は任意に設定してもよい。
 埋め込み光導波路62において、光導波路層5とモニタPD65までのY方向の距離、すなわちInPクラッド層4の厚さは、導波する光のモードフィール径より膜厚は厚く、エバネセント光がモニタPD65にかからないような膜厚を設定する。半導体光集積デバイス200の製造の際に、導波する光のモードフィール径より膜厚は厚く、エバネセント光がモニタPD65にかからないように、InPクラッド層10、14の膜厚を設定する。
 散乱光を生じさせる散乱光発生パターン7によって生じた散乱光は、埋め込み光導波路62における光導波路層5の上部のInPクラッド層4を伝播し、設置されたモニタPD65に入射する。散乱光を生じさせる散乱光発生パターン7を通過した導波光は光導波路層5に再び結合しを伝播する。散乱光を利用することによって、埋め込み光導波路62のメサの側面で反射が生じるが、メサの側面への散乱光の入射角度がランダムであり、メサの側面から入力側(第一の光素子61の側)へ戻る散乱光は無視できる。
 実施の形態1の半導体光集積デバイス200は、散乱光をモニタPD65が受光することで、導波光の光強度に応じたモニタ電流を得ることができる。実施の形態1の半導体光集積デバイス200は、散乱光を受光するため、特許文献1に記載のエバネセント光を受光する場合と異なり、モニタPD65の受光部(吸収層)に直接導波光が接することがないため、導波光への影響がない。また、実施の形態1の半導体光集積デバイス200は、導波光の分布が光導波路層5のY方向の厚さ、X方向の幅より大きいため、散乱光を生じさせる散乱光発生パターン7を通過しても、光分布の対称性が大きく損なわれることがない。実施の形態1の半導体光集積デバイス200は、第一の光素子61の活性層3の側への戻り光がないため、戻り光雑音による半導体レーザ、すなわちLD(Laser Diode)の異常発振は生じない。以上より、実施の形態1の半導体光集積デバイス200は、光導波路を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできるので、モニタPDが光導波路途中に設けられた集積デバイスとして好適である。
 以上のように、実施の形態1の半導体光集積デバイス200は、光が伝搬する、第一の光素子61、監視用光導波路(埋め込み光導波路62)、第二の光素子63が同一の半導体基板(InP基板1)に形成された半導体光集積デバイスであって、監視用光導波路(埋め込み光導波路62)は第一の光素子61に接続され、第二の光素子63は監視用光導波路(埋め込み光導波路62)に接続されている(特徴1)。監視用光導波路(埋め込み光導波路62)は、異なるモードフィールド径を有する光導波路が組み合わされた、光の一部を散乱させる光散乱部(散乱光発生パターン7)を備え、光散乱部(散乱光発生パターン7)により散乱された散乱光を受光する光検出器(モニタPD65)が、監視用光導波路(埋め込み光導波路62)の外周又は半導体基板(InP基板1)の光散乱部(散乱光発生パターン7)と逆側の裏面に設置されている(特徴2)。実施の形態1の半導体光集積デバイス200は、特徴1及び特徴2により、光の一部を散乱させる監視用光導波路(埋め込み光導波路62)の光散乱部(散乱光発生パターン7)により散乱された散乱光を受光する光検出器(モニタPD65)が、監視用光導波路(埋め込み光導波路62)の外周又は半導体基板(InP基板1)の光散乱部(散乱光発生パターン7)と逆側の裏面に設置されているので、光導波路(埋め込み光導波路62)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
実施の形態2.
 図7は、実施の形態2による半導体光集積デバイスを示す鳥瞰図である。図8Aは図7の光素子部メサのZ方向に沿った断面図であり、図8Bは図8AにおけるA-Aの断面図である。実施の形態2の半導体光集積デバイス200は、実施の形態1の半導体光集積デバイス200の埋め込み光導波路62をハイメサ構造の光導波路であるハイメサ光導波路64に置き換えたものである。監視用光導波路であるハイメサ光導波路64は、半導体基板であるInP基板1に形成された、第一のクラッド層であるInPクラッド層2、光導波路層5、第二のクラッド層であるInPクラッド層4が順次積層された積層体を備えている。ハイメサ光導波路64の積層体は、InP基板1に垂直なY方向及び光が伝搬する方向であるZ方向に垂直なX方向に互いに対向すると共に光導波路層5が露出したメサ端面の対を有するハイメサ構造である。モニタPD65は、ハイメサ光導波路64の外周、例えばハイメサ光導波路64の上(表面)に設置される。図8Bに示すように、散乱光を生じさせるための散乱光発生パターン7は、ハイメサ光導波路64において幅を変更した部分である。
 モニタPD65の設置位置及び面積は、実施の形態1と同様である。モニタPD65は、散乱光を生じさせる散乱光発生パターン7より導波方向に対して前方を含むように設置し、かつ散乱光強度が最大になる位置を中心にし、InPクラッド層4の上面(表面)に到達した散乱光の全光を受光できる位置に設置するのがよい。なお、必要なモニタ電流量によってモニタPD65の位置、受光面積を設定することもできる。
 実施の形態2の半導体光集積デバイス200は、実施の形態1の半導体光集積デバイス200と同様の作用及び効果を奏する。実施の形態2の半導体光集積デバイス200は、光導波路(ハイメサ光導波路64)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
 以上のように、実施の形態2の半導体光集積デバイス200は、光が伝搬する、第一の光素子61、監視用光導波路(ハイメサ光導波路64)、第二の光素子63が同一の半導体基板(InP基板1)に形成された半導体光集積デバイスであって、監視用光導波路(ハイメサ光導波路64)は第一の光素子61に接続され、第二の光素子63は監視用光導波路(ハイメサ光導波路64)に接続されている(特徴1)。監視用光導波路(ハイメサ光導波路64)は、異なるモードフィールド径を有する光導波路が組み合わされた、光の一部を散乱させる光散乱部(散乱光発生パターン7)を備え、光散乱部(散乱光発生パターン7)により散乱された散乱光を受光する光検出器(モニタPD65)が、監視用光導波路(ハイメサ光導波路64)の外周又は半導体基板(InP基板1)の光散乱部(散乱光発生パターン7)と逆側の裏面に設置されている(特徴2)。監視用光導波路(ハイメサ光導波路64)は、半導体基板(InP基板1)に形成された、第一のクラッド層(InPクラッド層2)、光導波路層5、第二のクラッド層(InPクラッド層4)が順次積層された積層体を備え、積層体は、半導体基板(InP基板1)に垂直なY方向及び光が伝搬する方向であるZ方向に垂直なX方向に互いに対向すると共に光導波路層5が露出したメサ端面の対を有するハイメサ構造である(特徴3)。実施の形態2の半導体光集積デバイス200は、特徴1~特徴3により、光の一部を散乱させる監視用光導波路(ハイメサ光導波路64)の光散乱部(散乱光発生パターン7)により散乱された散乱光を受光する光検出器(モニタPD65)が、監視用光導波路(ハイメサ光導波路64)の外周又は半導体基板(InP基板1)の光散乱部(散乱光発生パターン7)と逆側の裏面に設置されているので、光導波路(ハイメサ光導波路64)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
実施の形態3.
 実施の形態3では、実施の形態1及び2と異なる散乱光発生パターンを説明する。図9は実施の形態3による散乱光発生パターンを示す図であり、図10は実施の形態3による他の散乱光発生パターンを示す図である。図11A~図11Eは、図10の散乱光発生パターンを形成する第一の製造方法を説明する図である。図12A~図12Dは、図10の散乱光発生パターンを形成する第二の製造方法を説明する図である。実施の形態3の半導体光集積デバイス200は、実施の形態1又は実施の形態2の半導体光集積デバイス200の散乱光発生パターンを図9又は図10に示した散乱光発生パターン7に変更したものである。
 散乱光を発生させる散乱光発生パターンは、光導波路の屈折率が変化するものであればよい。図9に散乱光発生パターン7の一例を示す。図9は、実施の形態1の埋め込み光導波路62のZ-X方向断面(図2B参照)における要部に相当する。実施の形態1の散乱光発生パターン7は、光導波路層5のX方向の幅が狭くなっている例であった。実施の形態3の散乱光発生パターン7は、光導波路層5の幅を太くした例であり、すなわち光導波路層5のX方向の幅が広くなっている例である。図9の散乱光発生パターン7は、図3Hに示した散乱光発生パターン7を形成するための絶縁膜11の形状を変更することで実現することができる。なお、図9の散乱光発生パターン7のような形状が繰り返されるものであっても、図9の散乱光発生パターン7と同様の効果、すなわち散乱光を発生させることができる。
 図10に散乱光発生パターン7の他の例を示す。図10は、実施の形態1の埋め込み光導波路62のZ-Y方向断面(図2A参照)における要部に相当する。実施の形態1の散乱光発生パターン7は、光導波路層5のY方向の厚さが一定になっている例であった。実施の形態3の散乱光発生パターン7は、光導波路層5の膜厚を薄膜化した例であり、すなわち光導波路層5のY方向の厚さが薄くなっている例である。図10に示した散乱光発生パターン7は、光導波路層5の上部(モニタPD65の側)がInP基板1の側に狭くなり、くびれた形状を有している。なお、図10の散乱光発生パターン7のような形状が繰り返されるものであっても、図10の散乱光発生パターン7と同様の効果、すなわち散乱光を発生させることができる。
 図9に示した散乱光発生パターン7、図10に示した散乱光発生パターン7について、実施の形態1の埋め込み光導波路62に適用した例で説明した。しかし、これに限定されることはなく、図9に示した散乱光発生パターン7、図10に示した散乱光発生パターン7は、実施の形態2のハイメサ光導波路64にも適用できる。
 実施の形態3の図9の散乱光発生パターン7を有する半導体光集積デバイス200の製造方法は、実施の形態1で説明した製造方法と同様である。ただし、図3Hの絶縁膜11の形状を図9の散乱光発生パターン7の形状に合うように変更する。実施の形態3の図10の散乱光発生パターン7を有する半導体光集積デバイス200の製造方法を説明する。第一の製造方法は、実施の形態1の図3Dに示す工程と図3Eに示す工程の間に、図11A~図11Eに示す工程を追加したものである。第二の製造方法は、実施の形態1の図4Bに示す工程と図4Cに示す工程の間に、図12A~図12Dに示す工程を追加したものである。図11A~図11Eは、光素子部メサ56のZ方向に沿った断面を示している。図12A~図12Dは、光素子部メサ56のZ方向に沿った断面を示している。まず、第一の製造方法における図11A~図11Eの工程を説明する。
 図11Aに示すように、図3Dにおける絶縁膜9を、フッ化水素水などを用いて除去する。図11Bのように、絶縁膜9が除去されたInPクラッド層8及びInPクラッド層10の表面に、SiOなどの絶縁膜16を成膜する。絶縁膜16の表面にフォトレジストを塗布し、フォトレジストの一部をパターニングし、開口する。これは、一般的な半導体フォトリソグラフィ工程を用いる。このパターニングされたフォトレジストをマスクにして絶縁膜16をエッチングし、図11Cのように、絶縁膜16に絶縁膜開口部36を形成する。
 図11Dのように、パターニングされた絶縁膜16をマスクにして、ドライエッチングもしくはウェットエッチングを用いて、InPクラッド層10と光導波路層5の途中までエッチングにより除去して、InPクラッド層開口部27と光導波路層凹部28を形成する。ウェットエッチングでは、InPクラッド層10は塩酸などのエッチング液を使用する。光導波路層5は、臭化水素水または酒石酸等のエッチング液を用いる。ドライエッチングでは、メタン系ガスまたは、塩素系ガスなどを使用する。図11Eのように、フッ化水素水などにより絶縁膜16を除去する。この後の工程は図3Eに示す工程以降と同じとなる。なお、図3Hにおける散乱光発生パターン形成部23は不要であり、散乱光発生パターン形成部23の位置にはくびれた形状のない長方形形状にする。また、図10の散乱光発生パターン7のY方向形状と図2Bの散乱光発生パターン7のX方向形状を併せ持つようにする場合は、図3Eに示す工程以降と同じにすればよい。なお、図11D、図11Eにおいて、底面がY方向に垂直な水平面を有する光導波路層凹部28を示したが、ウェットエッチングを用いれば、光導波路層凹部28のZ方向境界部において光導波路層5の厚さが中央部より厚くなり、図10に示したようなくびれた形状が形成される。
 第二の製造方法における図12A~図12Dの工程を説明する。図4Bに示されたInPクラッド層10と、InPクラッド層10のZ方向奥側に配置されたInPクラッド層8が露出した状態から、図12Aのように、絶縁膜9が除去されたInPクラッド層8及びInPクラッド層10の表面に、SiOなどの絶縁膜16を成膜する。絶縁膜16の表面にフォトレジストを塗布し、フォトレジストの一部をパターニングし、開口する。これは、一般的な半導体フォトリソグラフィ工程を用いる。このパターニングされたフォトレジストをマスクにして絶縁膜16をエッチングし、図12Bのように、絶縁膜16に絶縁膜開口部36を形成する。
 図12Cのように、パターニングされた絶縁膜16をマスクにして、ドライエッチングもしくはウェットエッチングを用いて、InPクラッド層10と光導波路層5の途中までエッチングにより除去して、InPクラッド層開口部27と光導波路層凹部28を形成する。ウェットエッチングでは、InPクラッド層10は塩酸などのエッチング液を使用する。光導波路層5は、臭化水素水または酒石酸等のエッチング液を用いる。ドライエッチングでは、メタン系ガスまたは、塩素系ガスなどを使用する。図12Dのように、フッ化水素水などにより絶縁膜16を除去する。この後の工程は図4Cに示す工程以降と同じとなる。なお、図3Hにおける散乱光発生パターン形成部23は不要であり、散乱光発生パターン形成部23の位置にはくびれた形状のない長方形形状にする。また、図10の散乱光発生パターン7のY方向形状と図2Bの散乱光発生パターン7のX方向形状を併せ持つようにする場合は、図3Hにおける散乱光発生パターン形成部23が形成されるように図3Hに示す工程と同じにすればよい。なお、図12C、図12Dにおいて、底面がY方向に垂直な水平面を有する光導波路層凹部28を示したが、ウェットエッチングを用いれば、光導波路層凹部28のZ方向境界部において光導波路層5の厚さが中央部より厚くなり、図10に示したようなくびれた形状が形成される。
 実施の形態3の半導体光集積デバイス200は、図9又は図10に示した散乱光発生パターン7を有するので、実施の形態1又は実施の形態2と同様に、散乱光発生パターン7により散乱光を得ることができ、モニタPD65で散乱光を受光し、導波光の光強度に応じたモニタ電流を得ることができる。実施の形態3の半導体光集積デバイス200は、実施の形態1又は実施の形態2の半導体光集積デバイス200と同様の作用及び効果を奏する。実施の形態3の半導体光集積デバイス200は、光導波路(埋め込み光導波路62、ハイメサ光導波路64)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
実施の形態4.
 実施の形態4では、実施の形態1~実施の形態3と異なる散乱光発生パターンを説明する。図13は、実施の形態4による散乱光発生パターンを示す図である。光導波路層5を途中で曲げることで、曲げによる導波光の損失が生じる。すなわち光導波路層5が途中で曲げられた曲げ部により、導波光の損失が生じる。実施の形態4では、この曲げ損失により生じた散乱光をモニタPD65に受光させる。図13に散乱光発生パターン7の一例を示す。図13は、実施の形態1の埋め込み光導波路62のZ-X方向断面(図2B参照)における要部に相当する。実施の形態1の散乱光発生パターン7は、光導波路層5のX方向の幅が狭くなっている例であった。実施の形態4の散乱光発生パターン7は、光導波路層5が蛇行した例である。図13の散乱光発生パターン7は、図3Hのように散乱光発生パターン7を形成するための絶縁膜の形状を変更することで実現することができる。なお、図13の散乱光発生パターン7のような形状が繰り返されるものであっても、図13の散乱光発生パターン7と同様の効果、すなわち散乱光を発生させることができる。なお、図13に示した散乱光発生パターン7は、実施の形態2のハイメサ光導波路64にも適用できる。
 実施の形態4の半導体光集積デバイス200は、図13に示した散乱光発生パターン7を有するので、実施の形態1又は実施の形態2と同様に、散乱光発生パターン7により散乱光を得ることができ、モニタPD65で散乱光を受光し、導波光の光強度に応じたモニタ電流を得ることができる。実施の形態4の半導体光集積デバイス200は、実施の形態1又は実施の形態2の半導体光集積デバイス200と同様の作用及び効果を奏する。実施の形態4の半導体光集積デバイス200は、光導波路(埋め込み光導波路62、ハイメサ光導波路64)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
 以上のように、実施の形態4の半導体光集積デバイス200は、光が伝搬する、第一の光素子61、監視用光導波路(埋め込み光導波路62、ハイメサ光導波路64)、第二の光素子63が同一の半導体基板(InP基板1)に形成された半導体光集積デバイスであって、監視用光導波路(埋め込み光導波路62、ハイメサ光導波路64)は第一の光素子61に接続され、第二の光素子63は監視用光導波路(埋め込み光導波路62、ハイメサ光導波路64)に接続されている(特徴1)。監視用光導波路(埋め込み光導波路62、ハイメサ光導波路64)は、半導体基板InP基板1)に形成された、第一のクラッド層(InPクラッド層2)、光の一部を散乱させる光散乱部(散乱光発生パターン7)を有する光導波路層5、第二のクラッド層(InPクラッド層4)が順次積層された積層体を備え、光散乱部(散乱光発生パターン7)は光導波路層5に形成された曲げ部であり、光散乱部(散乱光発生パターン7)により散乱された散乱光を受光する光検出器(モニタPD65)が、監視用光導波路(埋め込み光導波路62、ハイメサ光導波路64)の外周又は半導体基板(InP基板1)の光散乱部(散乱光発生パターン7)と逆側の裏面に設置されている(特徴2)。実施の形態4の半導体光集積デバイス200は、特徴1及び特徴2により、光の一部を散乱させる監視用光導波路(埋め込み光導波路62、ハイメサ光導波路64)の光散乱部(散乱光発生パターン7)により散乱された散乱光を受光する光検出器(モニタPD65)が、監視用光導波路(埋め込み光導波路62、ハイメサ光導波路64)の外周又は半導体基板(InP基板1)の光散乱部(散乱光発生パターン7)と逆側の裏面に設置されているので、光導波路(埋め込み光導波路62、ハイメサ光導波路64)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
実施の形態5.
 実施の形態5では、散乱光を得るためのパターンとしてモード変換光導波路17を利用する例を説明する。図14は、実施の形態5による半導体光集積デバイスを示す鳥瞰図である。図15Aは図14の光素子部メサにおける要部のZ方向に沿った断面図であり、図15Bは図15AにおけるA-Aの断面図である。実施の形態5は、モード変換光導波路17が散乱光を得るためのパターンに利用される例である。図15に示した埋め込み光導波路62は、第一光導波路76と第二光導波路77を有し、第一光導波路76の光導波路層5と第二光導波路77の光導波路層5とがモード変換光導波路17により接続されている。モード変換光導波路17は、異なる光導波路モードを接続するために設けられるが、導波光がモード変換する際に散乱光が生じる。実施の形態5の半導体光集積デバイス200は、モード変換光導波路17の上側にモニタPD65を設置する。図15では、モード変換光導波路17が破線29aと破線29bとの間に配置された例を示した。また、図15では、破線29cから左側に電流ブロック層13が存在し、破線29cから右側に電流ブロック層13が存在しない例を示した。つまり、図15では、第一光導波路76が埋め込み構造の光導波路であり、第二光導波路77がハイメサ構造の光導波路である例を示した。
 モニタPD65は、モード変換光導波路17の上部に設置し、かつ散乱光強度が最大になる位置を中心にし、InPクラッド層4の上面(表面)に到達した散乱光の全光を受光できる位置に設置するのがよい。なお、必要なモニタ電流量によってモニタPD65の位置、受光面積を設定することもできる。モード変換光導波路17の上部にモニタPD65を設置する光導波路は、埋め込み構造とハイメサ構造のどちらでもよい。また、第一光導波路76及び第二光導波路77が埋め込み構造であってもよく、第一光導波路76及び第二光導波路77がハイメサ構造であってもよい。また、第二光導波路77を埋め込み構造、第一光導波路76をハイメサ構造として、そのモード変換光導波路の上部に設置してもよい。
 実施の形態5の半導体光集積デバイス200は、散乱光が発生するモード変換光導波路17の上部にモニタPD65が設置されているので、実施の形態1又は実施の形態2と同様に、モード変換光導波路17により散乱光を得ることができ、モニタPD65で散乱光を受光し、導波光の光強度に応じたモニタ電流を得ることができる。実施の形態5の半導体光集積デバイス200は、実施の形態1又は実施の形態2の半導体光集積デバイス200と同様の作用及び効果を奏する。実施の形態5の半導体光集積デバイス200は、光導波路(埋め込み光導波路62、ハイメサ光導波路64)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
実施の形態6.
 実施の形態6では、散乱光を得るための散乱光発生部としてバットジョイントにより接続された光導波路を利用する例を説明する。図16Aは実施の形態6による監視用光導波路における要部のZ方向に沿った断面図であり、図16Bは図16AにおけるA-Aの断面図である。図17Aは実施の形態6による他の監視用光導波路における要部のZ方向に沿った断面図であり、図17Bは図17AにおけるA-Aの断面図である。図16A、図16Bに示した監視用光導波路である埋め込み光導波路62は、第一光導波路76と第二光導波路77を有し、第一光導波路76の光導波路層18と第二光導波路77の光導波路層5とがバットジョイントにより接続されており、バットジョイント部37を有している。実施の形態6の半導体光集積デバイス200は、実施の形態1の半導体光集積デバイス200において図16A、図16Bに示した埋め込み光導波路62を適用したものである。図16Aには、第一光導波路76と第二光導波路77におけるY方向の光分布である、Y方向第一光分布21とY方向第二光分布22を示した。また、図16Bには、第一光導波路76と第二光導波路77におけるX方向の光分布である、X方向第一光分布19とX方向第二光分布20を示した。
 第一光導波路76のX方向のモードフィールド径をw1x、Y方向のモードフィールド径をw1yとし、第二光導波路77のX方向のモードフィールド径をw2x、Y方向のモードフィールド径をw2yとする。実施の形態6の散乱光発生部となるバットジョイントにより接続された光導波路は、次のように定義される。第一光導波路76のモードフィールド径と第二光導波路77のモードフィールド径が同じか又は異なる場合において、第一光導波路76のモードフィールドの中心と、第二光導波路のモードフィールドの中心のずれ量が、X方向で-(w1x+w2x)/2から+(w1x+w2x)/2の範囲(範囲1)であり、かつ、Y方向(幅方向)の中心のずれ量が-(w1y+w2y)/2から+(w1y+w2y)/2の範囲(範囲2)となっている光導波路である。なお、第一光導波路76と第二光導波路77のモードフィール径が同じ場合、ずれ量は範囲1、範囲2のゼロ点(それぞれの中心が一致している場合)を除いた範囲でなければならない。この範囲を超過して両者の光導波路のモードフィールド径にズレが生じた場合、もしくはずれ量がゼロの場合には、第二光導波路77に結合する導波光は第一光導波路76の導波光の10%となる、もしくは散乱光が生じないため、光半導体デバイスとして実用に耐えない。なお、これらの結合効率の計算は、文献「河野健治著、光デバイスのための光結合系の基礎と応用 第二版」29ページ~45ページに記載されている。
 図17A、図17Bに示した監視用光導波路であるハイメサ光導波路64は、第一光導波路76と第二光導波路77を有し、第一光導波路76の光導波路層18と第二光導波路77の光導波路層5とがバットジョイントにより接続されており、バットジョイント部37を有している。実施の形態6の他の半導体光集積デバイス200は、実施の形態2の半導体光集積デバイス200において図17A、図17Bに示したハイメサ光導波路64を適用したものである。図17Aには、第一光導波路76と第二光導波路77におけるY方向の光分布である、Y方向第一光分布21とY方向第二光分布22を示した。また、図17Bには、第一光導波路76と第二光導波路77におけるX方向の光分布である、X方向第一光分布19とX方向第二光分布20を示した。図17A、図17Bに示したハイメサ光導波路64も、図16A、図16Bに示した埋め込み光導波路62と同様に散乱光を発生させることができる。
 図16A、図16Bに示した埋め込み光導波路62は、散乱光発生部となるバットジョイント部37により接続された光導波路である。また、図17A、図17Bに示したハイメサ光導波路64は、散乱光発生部となるバットジョイント部37により接続された光導波路である。埋め込み光導波路62、ハイメサ光導波路64の何れの場合でも、モニタPD65は、バットジョイント部37の上部に設置し、かつバットジョイント部37からの散乱光強度が最大になる位置を中心にし、InPクラッド層4の上面(表面)に到達した散乱光の全光を受光できる位置に設置するのがよい。なお、必要なモニタ電流量によってモニタPD65の位置、受光面積を設定することもできる。
 なお、図16A、図16Bでは、第一光導波路76と第二光導波路77を備える埋め込み光導波路62の例を示した。しかし、第一光導波路76の光導波路層18は、第一の光素子61の活性層3であっても構わない。これは、第一の光素子61、すなわち半導体レーザは光導波路を兼ねているためである。したがって、第一の光素子61の活性層3と埋め込み光導波路62の光導波路層5との接続部でバットジョイント部37が形成されてもよい。図17A、図17Bでは、第一光導波路76と第二光導波路77を備えるハイメサ光導波路64の例を示したが、第一の光素子61の活性層3とハイメサ光導波路64の光導波路層5との接続部でバットジョイント部37が形成されてもよい。
 実施の形態6の半導体光集積デバイス200は、散乱光が発生するバットジョイント部37の上部にモニタPD65が設置されているので、実施の形態1又は実施の形態2と同様に、バットジョイント部37により散乱光を得ることができ、モニタPD65で散乱光を受光し、導波光の光強度に応じたモニタ電流を得ることができる。実施の形態6の半導体光集積デバイス200は、実施の形態1又は実施の形態2の半導体光集積デバイス200と同様の作用及び効果を奏する。実施の形態6の半導体光集積デバイス200は、光導波路(埋め込み光導波路62、ハイメサ光導波路64)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
実施の形態7.
 図18は、実施の形態7による半導体光集積デバイスを示す鳥瞰図である。図18に示した半導体光集積デバイス200は、実施の形態1の半導体光集積デバイス200における導波路の上部に設置されたモニタPD65を、MOCVDなどの結晶成長技術によってモノリシック集積されたモニタPD66に変更された点で異なる。MOCVDなどの結晶成長技術によってモノリシック集積されたモニタPD66は、実施の形態2~実施の形態6にも適用できる。
 実施の形態7の半導体光集積デバイス200は、実施の形態1~実施の形態6の半導体光集積デバイス200と同様の作用及び効果を奏する。実施の形態7の半導体光集積デバイス200は、モノリシック集積されたモニタPD66によって、光導波路(埋め込み光導波路62、ハイメサ光導波路64)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
実施の形態8.
 図19は、実施の形態8による半導体光集積デバイスを示す鳥瞰図である。図19に示した半導体光集積デバイス200は、実施の形態1の半導体光集積デバイス200における導波路の上部に設置されたモニタPD65を、接着剤68によって貼り付けられたモニタPD素子67に変更された点で異なる。接着剤68は、例えばポリイミドなどの有機接着剤である。モニタPD素子67を貼り付ける方法として、接着剤68を用いる例を示したが、その他の方法であってもよい。
 実施の形態8の半導体光集積デバイス200は、実施の形態1~実施の形態6の半導体光集積デバイス200と同様の作用及び効果を奏する。実施の形態8の半導体光集積デバイス200は、貼り付けられたモニタPD素子67によって、光導波路(埋め込み光導波路62、ハイメサ光導波路64)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
実施の形態9.
 図20は、実施の形態9による半導体光集積デバイスを示す鳥瞰図である。図21Aは図20の光素子部メサのZ方向に沿った断面図であり、図21Bは図21AにおけるA-Aの断面図である。実施の形態9の半導体光集積デバイス200は、実施の形態1の半導体光集積デバイス200における光素子部メサ56の導波路の上部に設置されたモニタPD65が、光素子部メサ56の光導波路(埋め込み光導波路62)における片側側面又は両側側面に貼り付けにより設置された点で異なる。図21Bでは、モニタPD65が光素子部メサ56の光導波路における両側側面に設置された例を示した。図20、図21Bに示したモニタPD65の具体例は、実施の形態8で示した接着剤68をよって貼り付けられたモニタPD素子67である。
 モニタPD65の設置位置は、図21Bのように、散乱光を生じさせる散乱光発生パターン7より導波方向に設置し、かつ散乱光強度が最大になる位置を中心にし、メサ側面に到達した散乱光の全光を受光できる位置に設置するのがよい。なお、必要なモニタ電流量によってモニタPD65の位置、受光面積を設定することもできる。
 散乱光を生じる光導波路において、散乱光は散乱光発生パターン7より光導波路進行方向に等方的に散乱する。よって、モニタPD65を光素子部メサ56の光導波路における側面に設置しても、実施の形態1と同様に、散乱光発生パターン7により散乱光を得ることができ、モニタPD65で散乱光を受光し、導波光の光強度に応じたモニタ電流を得ることができる。光素子部メサ56の光導波路における側面に設置されたモニタPD65は、実施の形態2~実施の形態6にも適用できる。散乱光が発生する部分は、散乱光発生パターン7、モード変換光導波路17、バットジョイント部37である。散乱光が発生する部分がモード変換光導波路17の場合は、モニタPD65は監視用光導波路(埋め込み光導波路62、ハイメサ光導波路64)と第二の光素子63とに跨って設置される。なお、実施の形態6の図17BのようにX方向にずれたバットジョイント部37の場合であっても、実施の形態8に示した接着剤68の厚さを調整することで適用可能である。
 実施の形態9の半導体光集積デバイス200は、実施の形態1~実施の形態6の半導体光集積デバイス200と同様の作用及び効果を奏する。実施の形態8の半導体光集積デバイス200は、光素子部メサ56の光導波路における側面に設置されたモニタPD65によって、光導波路(埋め込み光導波路62、ハイメサ光導波路64)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
実施の形態10.
 図22は、実施の形態10による半導体光集積デバイスを示す鳥瞰図である。図23Aは図22の光素子部メサのZ方向に沿った断面図であり、図23Bは図23AにおけるA-Aの断面図である。実施の形態10の半導体光集積デバイス200は、実施の形態1の半導体光集積デバイス200における光素子部メサ56の導波路の上部に設置されたモニタPD65が、InP基板1の裏面に貼り付けにより設置された点で異なる。図22、図23Aに示したモニタPD65の具体例は、実施の形態8で示した接着剤68をよって貼り付けられたモニタPD素子67である。
 モニタPD65の設置位置は、図23A、図23Bのように、散乱光を生じさせる散乱光発生パターン7より導波方向に設置し、かつ散乱光強度が最大になる位置を中心にし、InP基板1の裏面に到達した散乱光の全光を受光できる位置に設置するのがよい。なお、必要なモニタ電流量によってモニタPD65の位置、受光面積を設定することもできる。
 散乱光発生パターン7により散乱された散乱光は、InP基板1を伝播し、InP基板1の裏面に到達する。この散乱光は、裏面に貼り付けにより設置されたモニタPD65により受光することができる。よって、モニタPD65をInP基板1の裏面に設置しても、実施の形態1と同様に、散乱光発生パターン7により散乱光を得ることができ、モニタPD65で散乱光を受光し、導波光の光強度に応じたモニタ電流を得ることができる。InP基板1の裏面に設置されたモニタPD65は、実施の形態2~実施の形態6にも適用できる。散乱光が発生する部分は、散乱光発生パターン7、モード変換光導波路17、バットジョイント部37である。
 実施の形態10の半導体光集積デバイス200は、実施の形態1~実施の形態6の半導体光集積デバイス200と同様の作用及び効果を奏する。実施の形態10の半導体光集積デバイス200は、InP基板1の裏面に設置されたモニタPD65によって、光導波路(埋め込み光導波路62、ハイメサ光導波路64)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
実施の形態11.
 実施の形態11では、散乱光を発生させるメサ側面の形状を説明する。図24Aは実施の形態11による監視用光導波路における要部のZ方向に沿った断面図であり、図24Bは図24AにおけるA-Aの断面図である。実施の形態11の半導体光集積デバイス200は、実施の形態1の半導体光集積デバイス200の散乱光発生パターンを図24A、図24Bに示した凹部32に変更したものである。凹部32は、光素子部メサ56を形成する際に、より具体的にはメサ溝54を形成する際に同時に形成する。凹部32のX方向の深さは、内部を導波する光の分布(光分布31)にかかるように調整されている。このように加工された凹部32に導波光の裾がかかることで、散乱光が生じる。実施の形態11の半導体光集積デバイス200は、凹部32により生じた散乱光をモニタPD65で受光する。なお、図24A、図24Bでは、三角柱状の凹部32を示した。三角柱状の凹部32は、Z-Y方向の断面(X方向に垂直な断面)が三角形である。
 図24Aに示したモニタPD65は、メサ側面の両側に形成された凹部32を結ぶ凹部接続線38の上部に設置し、かつ散乱光強度が最大になる位置を中心にし、InPクラッド層4の上面(表面)に到達した散乱光の全光を受光できる位置に設置するのがよい。なお、必要なモニタ電流量によってモニタPD65の位置、受光面積を設定することもできる。なお、図24A、図24Bでは、モニタPD65が監視用光導波路である埋め込み光導波路62の上部に設置にした例を示したが、実施の形態9に示したメサ側面、実施の形態10に示したInP基板1の裏面にモニタPD65を設置してもよい。実施の形態9に示したメサ側面又はInP基板1の裏面にモニタPD65を設置する場合は、モニタPD65を凹部接続線38より導波方向に設置し、かつ散乱光強度が最大になる位置を中心にし、メサ側面又はInP基板1の裏面に到達した散乱光の全光を受光できる位置に設置するのがよい。なお、必要なモニタ電流量によってモニタPD65の位置、受光面積を設定することもできる。
 実施の形態11の半導体光集積デバイス200は、図24A、図24Bに示した散乱光が発生する凹部32を有するので、実施の形態1と同様に、凹部32により散乱光を得ることができ、モニタPD65で散乱光を受光し、導波光の光強度に応じたモニタ電流を得ることができる。実施の形態11の半導体光集積デバイス200は、実施の形態1の半導体光集積デバイス200と同様の作用及び効果を奏する。実施の形態11の半導体光集積デバイス200は、光導波路(埋め込み光導波路62)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
 以上のように、実施の形態11の半導体光集積デバイス200は、光が伝搬する、第一の光素子61、監視用光導波路(埋め込み光導波路62)、第二の光素子63が同一の半導体基板(InP基板1)に形成された半導体光集積デバイスであって、監視用光導波路(埋め込み光導波路62)は第一の光素子61に接続され、第二の光素子63は監視用光導波路(埋め込み光導波路62)に接続されている(特徴1)。監視用光導波路(埋め込み光導波路62)は、半導体基板(InP基板1)に形成された、第一のクラッド層(InPクラッド層2)、光導波路層5、第二のクラッド層(InPクラッド層4)が順次積層された積層体を備え、積層体は、半導体基板(InP基板1)に垂直なY方向及び光が伝搬する方向であるZ方向に垂直なX方向に互いに対向すると共に光導波路層5が露出していないメサ端面の対を有する埋め込み構造である(特徴2)。監視用光導波路(埋め込み光導波路62)は、少なくとも1つのX方向のメサ端面に光の分布がかかる凹部32を有し、凹部32は光の一部を散乱させる光散乱部であり、光散乱部(凹部32)により散乱された散乱光を受光する光検出器65が、監視用光導波路(埋め込み光導波路62)の外周又は半導体基板(InP基板1)の光散乱部(凹部32)と逆側の裏面に設置されている(特徴3)。実施の形態11の半導体光集積デバイス200は、特徴1~特徴3により、光の一部を散乱させる監視用光導波路(埋め込み光導波路62)の光散乱部(凹部32)により散乱された散乱光を受光する光検出器(モニタPD65)が、監視用光導波路(埋め込み光導波路62)の外周又は半導体基板(InP基板1)の光散乱部(凹部32)と逆側の裏面に設置されているので、光導波路(埋め込み光導波路62)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。
実施の形態12.
 実施の形態12では、散乱光が入力側に戻ることを避けるために、メサ側面に凹凸部33が設けられた例を説明する。図25Aは実施の形態12による半導体光集積デバイスにおける光素子部メサのZ方向に沿った断面図であり、図25Bは図25AにおけるA-Aの断面図である。実施の形態12の半導体光集積デバイス200は、実施の形態1の半導体光集積デバイス200の埋め込み光導波路62のメサ側面に凹凸部33が設けられたものである。
 凹凸部33は、導波光の光分布より十分に離れており、導波光に影響しないようにする。メサ側面に形成された凹凸部33で、散乱光はよりさまざまな方向に反射、透過するので、散乱光入力側に戻ることを防いでいる。したがって、メサ側面に形成された凹凸部33は、散乱光発生パターン7により生じた散乱光がLD、すなわち第一の光素子61に戻ることを防ぐために設けられている。
 実施の形態12の半導体光集積デバイス200は、散乱光発生パターン7により生じた散乱光が凹凸部33によりさまざまな方向に反射、透過するので、導波光の入力側、例えばLDへの戻り光量を抑制することができる。
 図25A、図25Bでは、散乱光が発生する部分が実施の形態1の散乱光発生パターン7の例を示した。しかし、散乱光が発生する部分は、実施の形態3の散乱光発生パターン7、実施の形態4の散乱光発生パターン7、実施の形態5のモード変換光導波路17、実施の形態6のバットジョイント部37でもよい。モニタPD65は、実施の形態10で示したように、InP基板1の裏面に設置してよい。
 実施の形態12の半導体光集積デバイス200は、実施の形態1の半導体光集積デバイス200と同様の作用及び効果を奏する。実施の形態12の半導体光集積デバイス200は、光導波路(埋め込み光導波路62)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。さらに、実施の形態12の半導体光集積デバイス200は、散乱光発生パターン7等の散乱光が発生する部分により生じた散乱光がさまざまな方向に反射、透過する凹凸部33を有するので、導波光の入力側、すなわち第一の光素子61への戻り光量を抑制することができる。
実施の形態13.
 実施の形態13では、散乱光が入力側に戻ることを抑制するために、光導波路層5の下部に吸収係数の大きい吸収層34が設けられた例を説明する。図26は、実施の形態13による半導体光集積デバイスにおける光素子部メサのZ方向に沿った断面図である。実施の形態13の半導体光集積デバイス200は、実施の形態1の半導体光集積デバイス200の光導波路層5の下部に吸収係数の大きい吸収層34が設けられたものである。散乱光発生パターン7(図2B参照)により生じた散乱光を抑制するため、光導波路層5の下部に吸収係数の大きいInGaAs層である吸収層34が挿入されている。図26では、吸収層34が第一の光素子61の活性層3の下部に挿入された例を示した。また、図26では、モニタPD65が設置された位置よりも導波方向(Z方向)のInPクラッド層4の表面にも吸収層34が配置された例を示した。これらの吸収層34は、MOCVDによる結晶成長技術により実現する。吸収層34は、導波光の波長に対して、吸収係数を持つ材料であればInGaAs以外の材料であってもよい。
 InGaAs層は、1.3μm帯、1.5μm帯の光を吸収するため、散乱光を生じる散乱光発生パターン7において生じた散乱光で、モニタPD65に到達しなかった成分を吸収し、入力側への戻り光を抑制する。光導波路層5の下部の吸収層34はInP基板1の側に伝搬した散乱光を吸収し、InPクラッド層4の表面に配置された吸収層34はInPクラッド層4の側に伝搬した散乱光を吸収する。実施の形態13の半導体光集積デバイス200は、吸収層34を少なくとも光導波路層5の下部に備えるので、モニタPD65に入射しない散乱光の成分を除去し、入力側への戻り光の影響(戻り光量)を抑制することができる。実施の形態13の半導体光集積デバイス200は、吸収層34を光導波路層5の下部及びモニタPD65よりも導波方向(Z方向)のInPクラッド層4の表面に備えることで、光導波路層5の下部のみ吸収層34が配置された場合よりも、モニタPD65に入射しない散乱光の成分を多く除去し、入力側への戻り光の影響を更に抑制することができる。
 散乱光が発生する部分は、実施の形態1の散乱光発生パターン7に限らず、実施の形態3の散乱光発生パターン7、実施の形態4の散乱光発生パターン7、実施の形態5のモード変換光導波路17、実施の形態6のバットジョイント部37でもよい。
 実施の形態13の半導体光集積デバイス200は、実施の形態1の半導体光集積デバイス200と同様の作用及び効果を奏する。実施の形態13の半導体光集積デバイス200は、光導波路(埋め込み光導波路62)を伝搬する光の光分布に影響を与えず、入射側の光素子の特性を悪化させずに光強度をモニタできる。さらに、実施の形態13の半導体光集積デバイス200は、散乱光発生パターン7等の散乱光が発生する部分により生じた散乱光を吸収する吸収層34を有するので、導波光の入力側、すなわち第一の光素子61への戻り光の影響(戻り光量)を抑制することができる。
 なお、矛盾のない範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 1…InP基板(半導体基板)、2…InPクラッド層(第一のクラッド層)、4…InPクラッド層(第二のクラッド層)、7…散乱光発生パターン(光散乱部)、17…モード変換光導波路、32…凹部(光散乱部)、33…凹凸部、34…吸収層、37…バットジョイント部、61…第一の光素子、62…埋め込み光導波路(監視用光導波路)、63…第二の光素子(ハイメサ光導波路)、64…ハイメサ光導波路(監視用光導波路)、65…モニタPD、66…モニタPD、67…モニタPD素子、68…接着剤、76…第一光導波路、77…第二光導波路、200…半導体光集積デバイス、w1、w2、w1x、w2x、w1y、w2y…モードフィールド径

Claims (17)

  1.  光が伝搬する、第一の光素子、監視用光導波路、第二の光素子が同一の半導体基板に形成された半導体光集積デバイスであって、
    前記監視用光導波路は前記第一の光素子に接続され、前記第二の光素子は前記監視用光導波路に接続されており、
    前記監視用光導波路は、異なるモードフィールド径を有する光導波路が組み合わされた、前記光の一部を散乱させる光散乱部を備え、
    前記光散乱部により散乱された散乱光を受光する光検出器が、前記監視用光導波路の外周又は前記半導体基板の前記光散乱部と逆側の裏面に設置されたことを特徴とする半導体光集積デバイス。
  2.  前記監視用光導波路は、前記半導体基板に形成された、第一のクラッド層、光導波路層、第二のクラッド層が順次積層された積層体を備え、
    前記光散乱部は、前記光導波路層の屈折率が部分的に変化することにより、モードフィールド径が変化していることを特徴とする請求項1記載の半導体光集積デバイス。
  3.  前記監視用光導波路は、モードフィールド径及び前記光の導波モードが異なる第一光導波路及び第二光導波路と、前記第一光導波路と前記第二光導波路との間は接続されており、前記光の導波モードを変換するモード変換光導波路と、を備え、
    前記モード変換光導波路が前記光散乱部であることを特徴とする請求項1記載の半導体光集積デバイス。
  4.  前記監視用光導波路は、モードフィールド径が異なる第一光導波路及び第二光導波路を備え、
    前記光散乱部は、前記第一光導波路と前記第二光導波路とがそれぞれのモードフィールド径の中心がずれた又は中心が一致したバッドジョイントにより接続されたバットジョイント部であることを特徴とする請求項1記載の半導体光集積デバイス。
  5.  前記監視用光導波路は、モードフィールド径が同一の第一光導波路及び第二光導波路を備え、
    前記光散乱部は、前記第一光導波路と前記第二光導波路とがそれぞれのモードフィールド径の中心がずれたバッドジョイントにより接続されたバットジョイント部であることを特徴とする請求項1記載の半導体光集積デバイス。
  6.  前記監視用光導波路は、前記半導体基板に形成された、第一のクラッド層、光導波路層、第二のクラッド層が順次積層された積層体を備え、
    前記積層体は、
    前記半導体基板に垂直なY方向及び前記光が伝搬する方向であるZ方向に垂直なX方向に互いに対向すると共に前記光導波路層が露出したメサ端面の対を有するハイメサ構造、
    又は、前記半導体基板に垂直なY方向及び前記光が伝搬する方向であるZ方向に垂直なX方向に互いに対向すると共に前記光導波路層が露出していないメサ端面の対を有する埋め込み構造であることを特徴とする請求項1から5のいずれか1項に記載の半導体光集積デバイス。
  7.  光が伝搬する、第一の光素子、監視用光導波路、第二の光素子が同一の半導体基板に形成された半導体光集積デバイスであって、
    前記監視用光導波路は前記第一の光素子に接続され、前記第二の光素子は前記監視用光導波路に接続されており、
    前記監視用光導波路は、前記半導体基板に形成された、第一のクラッド層、前記光の一部を散乱させる光散乱部を有する光導波路層、第二のクラッド層が順次積層された積層体を備え、
    前記光散乱部は、前記光導波路層に形成された曲げ部であり、
    前記光散乱部により散乱された散乱光を受光する光検出器が、前記監視用光導波路の外周又は前記半導体基板の前記光散乱部と逆側の裏面に設置されたことを特徴とする半導体光集積デバイス。
  8.  前記積層体は、
    前記半導体基板に垂直なY方向及び前記光が伝搬する方向であるZ方向に垂直なX方向に互いに対向すると共に前記光導波路層が露出したメサ端面の対を有するハイメサ構造、
    又は、前記半導体基板に垂直なY方向及び前記光が伝搬する方向であるZ方向に垂直なX方向に互いに対向すると共に前記光導波路層が露出していないメサ端面の対を有する埋め込み構造であることを特徴とする請求項7記載の半導体光集積デバイス。
  9.  光が伝搬する、第一の光素子、監視用光導波路、第二の光素子が同一の半導体基板に形成された半導体光集積デバイスであって、
    前記監視用光導波路は前記第一の光素子に接続され、前記第二の光素子は前記監視用光導波路に接続されており、
    前記監視用光導波路は、前記半導体基板に形成された、第一のクラッド層、光導波路層、第二のクラッド層が順次積層された積層体を備え、
    前記積層体は、前記半導体基板に垂直なY方向及び前記光が伝搬する方向であるZ方向に垂直なX方向に互いに対向すると共に前記光導波路層が露出していないメサ端面の対を有する埋め込み構造であり、
    前記監視用光導波路は、少なくとも1つのX方向の前記メサ端面に前記光の分布の裾がかかる凹部を有し、
    前記凹部は、前記光の一部を散乱させる光散乱部であり、
    前記光散乱部により散乱された散乱光を受光する光検出器が、前記監視用光導波路の外周又は前記半導体基板の前記光散乱部と逆側の裏面に設置されたことを特徴とする半導体光集積デバイス。
  10.  前記監視用光導波路は、前記埋め込み構造のX方向の前記メサ端面に、当該メサ端面に到達した前記散乱光が多方向に反射又は透過する凹凸部を有することを特徴とする請求項6、8、9のいずれか1項に記載の半導体光集積デバイス。
  11.  前記光検出器は、前記監視用光導波路における前記半導体基板と逆側の表面に、モノリシックに形成されていることを特徴とする請求項1から10のいずれか1項に記載の半導体光集積デバイス。
  12.  前記光検出器は、光検出器素子が前記監視用光導波路における前記半導体基板と逆側の表面に、接着材により接着されていることを特徴とする請求項1から10のいずれか1項に記載の半導体光集積デバイス。
  13.  前記光検出器は、前記ハイメサ構造又は前記埋め込み構造の少なくとも1つのX方向の前記メサ端面に接着材により接着されていることを特徴とする請求項6または8に記載の半導体光集積デバイス。
  14.  前記光検出器は、前記埋め込み構造の少なくとも1つのX方向の前記メサ端面に接着材により接着されていることを特徴とする請求項9または10に記載の半導体光集積デバイス。
  15.  前記光検出器は、前記光散乱部に対して前記光の伝搬する方向側であって、前記光散乱部により散乱された前記散乱光の光強度が最も高い位置に設置されたことを特徴とする請求項11から14のいずれか1項に記載の半導体光集積デバイス。
  16.  前記光検出器は、
    前記半導体基板の前記光散乱部と逆側の裏面に接着材により接着されており、
    前記光散乱部に対して前記光の伝搬する方向側であって、前記光散乱部により散乱された前記散乱光の光強度が最も高い位置に設置されたことを特徴とする請求項1から10のいずれか1項に記載の半導体光集積デバイス。
  17.  前記光検出器が、前記監視用光導波路の外周に配置されており、
    前記監視用光導波路は、
    前記光散乱部により散乱された前記散乱光を吸収する吸収層を、
    前記半導体基板側と、
    前記光検出器よりも前記光が伝搬する方向側であって前記半導体基板と逆側の表面とに有することを特徴とする請求項1から15のいずれか1項に記載の半導体光集積デバイス。
PCT/JP2018/005636 2018-02-19 2018-02-19 半導体光集積デバイス WO2019159345A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112018007107.3T DE112018007107B4 (de) 2018-02-19 2018-02-19 Optische integrierte Halbleitervorrichtung
JP2018540165A JP6523573B1 (ja) 2018-02-19 2018-02-19 半導体光集積デバイス
PCT/JP2018/005636 WO2019159345A1 (ja) 2018-02-19 2018-02-19 半導体光集積デバイス
CN201880089522.XA CN111801610B (zh) 2018-02-19 2018-02-19 半导体光集成器件
US16/959,356 US11215774B2 (en) 2018-02-19 2018-02-19 Semiconductor optical integrated device
TW108103866A TWI732174B (zh) 2018-02-19 2019-01-31 半導體光積體裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005636 WO2019159345A1 (ja) 2018-02-19 2018-02-19 半導体光集積デバイス

Publications (1)

Publication Number Publication Date
WO2019159345A1 true WO2019159345A1 (ja) 2019-08-22

Family

ID=66730547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005636 WO2019159345A1 (ja) 2018-02-19 2018-02-19 半導体光集積デバイス

Country Status (6)

Country Link
US (1) US11215774B2 (ja)
JP (1) JP6523573B1 (ja)
CN (1) CN111801610B (ja)
DE (1) DE112018007107B4 (ja)
TW (1) TWI732174B (ja)
WO (1) WO2019159345A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7482946B2 (ja) 2022-04-28 2024-05-14 ネクサス・フォトニクス・インコーポレイテッド 性能改善されたヘテロジニアスレーザおよび能動構成要素

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018007107B4 (de) * 2018-02-19 2023-09-28 Mitsubishi Electric Corporation Optische integrierte Halbleitervorrichtung
DE102022117503A1 (de) * 2022-07-13 2024-01-18 Ams-Osram International Gmbh Optoelektronisches halbleiterbauelement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107559A (ja) * 2000-09-27 2002-04-10 Kyocera Corp 光集積回路基板
US6453105B1 (en) * 2000-10-04 2002-09-17 Agere Systems Guardian Corp Optoelectronic device with power monitoring tap
JP2009014681A (ja) * 2007-07-09 2009-01-22 Panasonic Electric Works Co Ltd 光ファイバの活線検出装置及び光成端箱
JP2011165712A (ja) * 2010-02-04 2011-08-25 Furukawa Electric Co Ltd:The 半導体光増幅器モジュール
JP2015518280A (ja) * 2012-04-23 2015-06-25 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 端面放射型の半導体ボディを備えている半導体レーザ光源

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2982619B2 (ja) * 1994-06-29 1999-11-29 日本電気株式会社 半導体光導波路集積型受光素子
JP2000114642A (ja) * 1998-10-02 2000-04-21 Furukawa Electric Co Ltd:The 半導体受発光集積素子
EP1446687B1 (en) 2001-10-30 2012-05-09 Hoya Corporation Usa Optical junction apparatus and methods employing optical power transverse-transfer
US20090087137A1 (en) 2007-10-02 2009-04-02 My The Doan Planar lightwave circuits with air filled trenches
EP2439822A1 (en) * 2010-09-30 2012-04-11 Alcatel Lucent A monolithic integrated structure comprising a buried heterostructure semiconductor optical amplifier and a photodetector
JP2013058656A (ja) * 2011-09-09 2013-03-28 Mitsubishi Electric Corp 裏面入射型半導体受光素子
JP5413865B1 (ja) * 2012-12-27 2014-02-12 株式会社フジクラ 光導波路素子及び光変調器
JP2016106238A (ja) * 2013-03-25 2016-06-16 技術研究組合光電子融合基盤技術研究所 光結合構造及び光モジュール
US9239507B2 (en) * 2013-10-25 2016-01-19 Forelux Inc. Grating based optical coupler
CN106537201B (zh) * 2014-10-06 2019-09-27 古河电气工业株式会社 半导体光集成元件及其制造方法
WO2016129664A1 (ja) * 2015-02-12 2016-08-18 古河電気工業株式会社 半導体レーザ装置
WO2016194369A1 (ja) * 2015-06-02 2016-12-08 日本電信電話株式会社 半導体光変調素子
DE112018007107B4 (de) * 2018-02-19 2023-09-28 Mitsubishi Electric Corporation Optische integrierte Halbleitervorrichtung
US10698159B2 (en) * 2018-10-19 2020-06-30 Globalfoundries Inc. Multiple-layer arrangements including one or more dielectric layers over a waveguide
US10811549B2 (en) * 2019-01-29 2020-10-20 Hewlett Packard Enterprise Development Lp Quantum-dot-based avalanche photodiodes on silicon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107559A (ja) * 2000-09-27 2002-04-10 Kyocera Corp 光集積回路基板
US6453105B1 (en) * 2000-10-04 2002-09-17 Agere Systems Guardian Corp Optoelectronic device with power monitoring tap
JP2009014681A (ja) * 2007-07-09 2009-01-22 Panasonic Electric Works Co Ltd 光ファイバの活線検出装置及び光成端箱
JP2011165712A (ja) * 2010-02-04 2011-08-25 Furukawa Electric Co Ltd:The 半導体光増幅器モジュール
JP2015518280A (ja) * 2012-04-23 2015-06-25 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 端面放射型の半導体ボディを備えている半導体レーザ光源

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7482946B2 (ja) 2022-04-28 2024-05-14 ネクサス・フォトニクス・インコーポレイテッド 性能改善されたヘテロジニアスレーザおよび能動構成要素

Also Published As

Publication number Publication date
CN111801610B (zh) 2022-11-29
JPWO2019159345A1 (ja) 2020-02-27
TWI732174B (zh) 2021-07-01
US11215774B2 (en) 2022-01-04
CN111801610A (zh) 2020-10-20
US20210063659A1 (en) 2021-03-04
DE112018007107T5 (de) 2020-11-05
JP6523573B1 (ja) 2019-06-05
DE112018007107B4 (de) 2023-09-28
TW201940910A (zh) 2019-10-16

Similar Documents

Publication Publication Date Title
US9429706B2 (en) Optical waveguide coupler and method for manufacturing same
US10992104B2 (en) Dual layer grating coupler
WO2012046401A1 (ja) 光学変換素子及び光学変換素子の製造方法
WO2019159345A1 (ja) 半導体光集積デバイス
JP2008277445A (ja) 半導体レーザおよび光モジュール
US10606143B2 (en) Multimode interferometer, Mach-Zehnder modulation device
JP5461046B2 (ja) 光半導体装置
JP3244116B2 (ja) 半導体レーザー
JP6811448B2 (ja) グレーティングカプラ
JPH08234033A (ja) 集積型光制御素子およびその作製方法、並びにそれを備えた光集積回路素子および光集積回路装置
JPH1168241A (ja) 半導体レーザー
JP2013115161A (ja) 光半導体装置
JP6394832B1 (ja) 半導体レーザ装置
JP2009109704A (ja) 光導波路
JP3766637B2 (ja) 光結合素子及び光デバイス
JP2000323782A (ja) 半導体レーザー及び半導体光増幅器並びにそれらの製造方法
JPWO2008117527A1 (ja) 高輝度発光ダイオード
JPWO2005060058A1 (ja) 半導体レーザーおよびその製造方法
WO2024105764A1 (ja) 光デバイス
US9971225B2 (en) Spot size converter, semiconductor optical device
JP2007288167A (ja) 半導体レーザおよび半導体レーザモジュール
JPH04255270A (ja) 光集積化素子
JP6527415B2 (ja) 半導体レーザ素子
JP2015220358A (ja) 光素子
JP2012038908A (ja) 半導体光素子及び光集積装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018540165

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906531

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18906531

Country of ref document: EP

Kind code of ref document: A1