WO2019156196A1 - Lubricant supply structure and in-wheel motor drive device - Google Patents

Lubricant supply structure and in-wheel motor drive device Download PDF

Info

Publication number
WO2019156196A1
WO2019156196A1 PCT/JP2019/004538 JP2019004538W WO2019156196A1 WO 2019156196 A1 WO2019156196 A1 WO 2019156196A1 JP 2019004538 W JP2019004538 W JP 2019004538W WO 2019156196 A1 WO2019156196 A1 WO 2019156196A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
lubricating oil
receiving chamber
supply structure
casing
Prior art date
Application number
PCT/JP2019/004538
Other languages
French (fr)
Japanese (ja)
Inventor
華夏 李
鈴木 稔
四郎 田村
佐藤 勝則
早織 杉浦
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019020232A external-priority patent/JP2019140906A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201980012074.8A priority Critical patent/CN111699618A/en
Publication of WO2019156196A1 publication Critical patent/WO2019156196A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a lubricating oil supply structure in an in-wheel motor drive device, and more particularly to a lubricating oil supply structure including an oil pump.
  • An in-wheel motor provided with a motor part having a motor rotation shaft for driving a wheel, a wheel hub bearing part, and a reduction part for reducing the rotation of the motor rotation shaft and transmitting it to the wheel hub bearing part.
  • lubricating oil is used for cooling the heat generating element (stator) in the motor section and for lubricating the rotating elements (gears and bearings) constituting the speed reducing mechanism in the speed reducing section. .
  • Patent Document 1 an oil pump is provided at one end of a rotating shaft that is rotated by the output torque of a motor, and lubricating oil pumped by the oil pump passes through the oil passage to the motor.
  • An in-wheel motor drive device configured to be supplied to the outer periphery of the stator core and reach the coil end is disclosed.
  • Patent Document 2 discloses that an oil supply device of an in-wheel motor drive device includes an outer periphery of a stator core and a coil of a motor from an oil supply path connected to a discharge port of an oil pump. It is disclosed that lubricating oil is guided to a motor bearing.
  • JP 2005-73364 A Patent No. 3968333
  • the motor unit is driven by the current flowing through the stator coil, while copper loss caused by coil resistance also causes the motor unit to generate heat.
  • copper loss due to a large current becomes the main cause of heat generation, and therefore it is required to cool the coil when cooling the motor unit.
  • the lubricating oil supply structure disclosed in Patent Document 1 is configured so that the lubricating oil supplied from the oil passage to the outer periphery of the stator core reaches the coil end via the outer periphery of the stator core, so that the coil is cooled. It becomes possible to do.
  • the rotation speed of the oil pump is proportional to the rotation speed of the motor rotation shaft. Therefore, the discharge flow rate from the oil pump is also proportional to the rotation speed of the motor rotation shaft.
  • the oil pump can also discharge the lubricating oil only with a small flow rate, so that a small amount of lubricating oil is supplied to the outer periphery of the stator core from the opening through the oil passage.
  • a small amount of lubricating oil flows preferentially by gravity in the outer circumferential direction of the stator core, and since it reaches the coil end at the axial end of the stator after that, the cooling of the coil becomes insufficient. There is concern.
  • Patent Document 2 discloses a configuration in which lubricating oil is directly supplied to the coil end of the stator, but from the downward opening provided in the oil supply passage extending in the axial direction above the stator in the radial direction. The lubricating oil is allowed to flow out. In this case, since the lubricating oil is discharged in the form of a beam from the opening provided in the oil supply path, the lubricating oil rebounds and the coil cannot be cooled effectively.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a lubricating oil supply structure capable of efficiently cooling a motor unit.
  • a lubrication oil supply structure is a lubrication oil supply structure in an in-wheel motor drive device including a motor unit including a stator.
  • the lubrication oil supply structure accommodates the motor unit and surrounds the outline of the in-wheel motor drive device.
  • a casing to be formed, an oil tank provided in a lower part of the casing and storing lubricating oil, and an oil pump for pumping the lubricating oil from the oil tank are provided.
  • this lubricating oil supply structure is arranged along the axial direction of the motor unit at a position above the stator, and has an oil passage having at least one oil hole for discharging the lubricating oil pumped up by the oil pump in the radial direction.
  • a lubricating oil guide for guiding the lubricating oil discharged from the oil hole to the coil end of the stator.
  • the lubricant guide portion includes an oil receiving chamber that receives the lubricant discharged from the oil hole.
  • the oil receiving chamber is disposed so as to face the oil hole and surround the outer periphery of the oil passage, and the cross-sectional area of the oil receiving chamber is larger than the passage area of the oil passage.
  • the oil hole includes a first hole and a second hole that are disposed within the axial width of the core portion of the stator and have different axial positions.
  • the oil receiving chamber is preferably partitioned into a first oil receiving chamber that receives the lubricating oil discharged from the first hole and a second oil receiving chamber that receives the lubricating oil discharged from the second hole.
  • At least one of the first oil receiving chamber and the second oil receiving chamber is inclined along the axial direction so that the lower end height becomes lower as the distance from the convex portion decreases.
  • the oil receiving chamber is formed in a part of the casing.
  • the lubricating oil guide portion further includes an oil pouring path that communicates with the oil receiving chamber and extends in the axial direction, and has a spout for lubricating oil formed at the tip of the coil end.
  • the lubricating oil guide portion further includes a splash preventing member that is disposed facing the pouring spout of the oil pouring passage in the axial direction and prevents the lubricating oil flowing out from the pouring spout.
  • the oil passage is constituted by one or a plurality of tubular members attached and fixed to the casing.
  • the scattering prevention member may include a plate member formed integrally with the tubular member.
  • the casing may have a wall portion facing the oil pouring path in the axial direction
  • the scattering prevention member may include a convex portion formed on the wall portion of the casing.
  • the lubricating oil guide further includes a distribution member for distributing the lubricating oil flowing out from the spout of the oil pouring path to a plurality of coil ends.
  • the lubricant guide portion may further include a distribution member for distributing the lubricant oil to the plurality of coil ends, and a scattering prevention member that is provided integrally with the distribution member and prevents the lubricant from scattering. Good.
  • the oil passage is constituted by a tubular member in which a large-diameter fitting portion is formed at one end.
  • the casing includes a wall portion having a connection portion that faces the scattering prevention member provided integrally with the distribution member in the axial direction and receives the fitting portion of the tubular member.
  • the distance between the scattering prevention member and the connection portion is equal to or larger than the axial dimension of the fitting portion of the tubular member.
  • the in-wheel motor drive device further includes a speed reducing portion that decelerates rotation of the motor rotation shaft of the motor portion, and the casing has a partition portion that partitions the motor portion and the speed reducing portion in the axial direction.
  • the oil passage is constituted by one tubular member that penetrates the partition wall.
  • the lubricating oil discharged in the radial direction from the oil hole is guided to the coil end of the stator by the lubricating oil guide portion, so that the motor portion can be efficiently cooled.
  • FIG. 5 is a longitudinal sectional view showing an in-wheel motor drive device according to Embodiments 1 to 4 of the present invention cut along a predetermined plane and developed.
  • FIG. 5 is a cross-sectional view showing the internal structure of the speed reduction portion of the in-wheel motor drive device according to Embodiments 1 to 4 of the present invention.
  • It is sectional drawing which shows typically the principal part of the supply structure of the lubricating oil which concerns on Embodiment 1 of this invention. It is a figure which shows typically the oil channel
  • Embodiment 1 of this invention it is sectional drawing which shows typically the other structural example of an oil path. It is a figure which shows typically the oil channel
  • Embodiment 2 of this invention it is a front view of the guidance member which integrally contains a distribution member and a scattering prevention member. It is a top view of the guidance member in Embodiment 2 of the present invention. It is a perspective view of the guidance member in Embodiment 2 of the present invention. It is sectional drawing which shows the attachment state of the guide member in Embodiment 2 of this invention. In Embodiment 2 of this invention, it is sectional drawing which shows typically the other structural example of an oil path.
  • Embodiment 5 of this invention It is a figure which shows typically the internal structure of the deceleration part of the in-wheel motor drive device which concerns on Embodiment 5 of this invention. It is sectional drawing which shows typically the principal part of the supply structure of the lubricating oil which concerns on Embodiment 5 of this invention. In Embodiment 5 of this invention, it is a figure which shows typically the example of an internal structure by the side of the deceleration chamber of a casing. In Embodiment 5 of this invention, it is the perspective view which looked at the longitudinal cross-section of the upper part of the motor casing in which the oil pipe was penetrated from the deceleration chamber side. It is a figure which shows typically the lubricating oil guide part in Embodiment 5 of this invention.
  • Embodiment 5 of this invention it is the figure which looked at the motor chamber from the inboard side in the state which removed the motor casing cover.
  • Embodiment 5 of this invention it is a figure which shows typically the internal structural example by the side of the motor chamber of a casing.
  • It is a perspective view which shows typically the structural example of the motor casing cover in Embodiment 5 of this invention.
  • It is a longitudinal cross-sectional view which shows typically the sensor chamber provided in the motor casing cover in Embodiment 5 of this invention.
  • Example of basic configuration of in-wheel drive device a basic configuration example of an in-wheel motor drive device 1 that employs a lubricating oil supply structure according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
  • the in-wheel motor drive device 1 is mounted on a passenger car such as an electric vehicle and a hybrid vehicle.
  • FIG. 1 is a longitudinal sectional view showing an in-wheel motor drive device 1 according to an embodiment of the present invention cut along a predetermined plane and developed.
  • FIG. 2 is a cross-sectional view showing the internal structure of the speed reduction unit 31 of the in-wheel motor drive device 1, and schematically shows a state viewed from the outside in the vehicle width direction.
  • the predetermined plane shown in FIG. 1 is a developed plane obtained by connecting the plane including the axis M and the axis N shown in FIG. 2 and the plane including the axis N and the axis O in this order.
  • the left side of the drawing represents the vehicle width direction outside (outboard side)
  • the right side of the drawing represents the vehicle width direction inside (inboard side).
  • each gear inside the speed reduction unit 31 is represented by a tip circle, and individual teeth are omitted.
  • the in-wheel motor drive device 1 includes a wheel hub bearing unit 11 provided at the center of the wheel W, a motor unit 21 that drives the wheel, and a deceleration that decelerates the rotation of the motor unit 21 and transmits it to the wheel hub bearing unit 11. Part 31.
  • the motor part 21 and the speed reduction part 31 are arranged offset from the axis O of the wheel hub bearing part 11.
  • the axis O extends in the vehicle width direction and coincides with the axle. In the present embodiment, it is assumed that one side in the axis O direction is the outboard side and the other side in the axis O direction is the inboard side.
  • the in-wheel motor drive device 1 is a vehicle motor drive device that drives wheels of an electric vehicle.
  • the in-wheel motor drive device 1 is connected to a vehicle body (not shown).
  • the in-wheel motor drive device 1 can drive an electric vehicle at a speed of 0 to 180 km / h.
  • the wheel hub bearing portion 11 is a rotating inner ring / fixed outer ring, and includes an inner ring 12 as a rotating wheel (hub wheel) coupled to the wheel wheel W, and an outer ring as a fixed ring disposed coaxially on the outer diameter side of the inner ring 12. 13 and a plurality of rolling elements 14 arranged in an annular space between the inner ring 12 and the outer ring 13.
  • the center of rotation of the inner ring 12 coincides with an axis O passing through the center of the wheel hub bearing portion 11.
  • the outer ring 13 penetrates the front portion 39f of the main body casing 39 and is connected and fixed to the front portion 39f.
  • the front portion 39 f is a casing wall portion that covers one end of the speed reduction portion 31 in the axis O direction of the main body casing 39.
  • a plurality of outer ring protrusions protruding in the outer diameter direction are provided on the outer peripheral surface of the outer ring 13 at different positions in the circumferential direction, and one side of the axis O direction with respect to the through hole provided in each outer ring protrusion
  • the bolt is passed through.
  • the shaft portion of each bolt is screwed into a female screw hole formed in the front portion 39 f of the main body casing 39.
  • the carrier member 61 is connected and fixed to the outer ring 13.
  • the carrier member 61 is located on the other side of the outer ring protruding portion 13g in the axis O direction, and a bolt 62 is passed from one side of the axis O direction to the through hole of the outer ring protruding portion 13g and the female screw hole of the carrier member 61.
  • the carrier member 61 is fixed to the main body casing 39 by a bolt 63 passed from the other side in the axis O direction.
  • the inner ring 12 is a cylindrical body longer than the outer ring 13 and is passed through the center hole of the outer ring 13.
  • a coupling portion 12f is formed at one end of the inner ring 12 protruding from the outer ring 13 to the outside (outboard side) in the axis O direction.
  • the coupling portion 12f is a flange and constitutes a coupling portion for coupling coaxially with the brake rotor BD and the wheel.
  • the inner ring 12 is coupled to the wheel W at the coupling portion 12f and rotates integrally with the wheel.
  • a plurality of rows of rolling elements 14 are arranged.
  • the outer peripheral surface of the central portion of the inner ring 12 in the direction of the axis O constitutes the inner raceway surface of the plurality of rolling elements 14 arranged in the first row.
  • An inner race 12r is fitted to the outer periphery of the other end of the inner ring 12 in the axis O direction.
  • the outer peripheral surface of the inner race 12r constitutes the inner race of the plurality of rolling elements 14 arranged in the second row.
  • the inner peripheral surface at one end of the outer ring 13 in the direction of the axis O constitutes the outer raceway surface of the rolling elements 14 in the first row.
  • An inner peripheral surface of the other end portion of the outer ring 13 in the axis O direction forms an outer raceway surface of the rolling elements 14 in the second row.
  • a sealing material 16 is further interposed in the annular space between the inner ring 12 and the outer ring 13. The sealing material 16 seals both ends of the annular space to prevent intrusion of dust and foreign matter.
  • the output shaft 38 of the speed reduction part 31 is inserted into the center hole at the other end in the axis O direction of the inner ring 12 and is spline-fitted.
  • the motor unit 21 has a motor rotating shaft 22, a rotor 23, and a stator 24, and is sequentially arranged from the axis M of the motor unit 21 to the outer diameter side in this order.
  • the motor unit 21 is an inner rotor / outer stator type radial gap motor, but may be of other types.
  • the motor unit 21 may be an axial gap motor.
  • the motor unit 21 is accommodated in a motor casing 29.
  • the motor casing 29 surrounds the outer periphery of the stator 24.
  • One end of the motor casing 29 in the direction of the axis M is coupled to the back surface portion 39 b of the main body casing 39.
  • the other end of the motor casing 29 in the axis M direction is sealed with a plate-like motor casing cover 29v.
  • the back surface portion 39 b is a casing wall portion that covers the other end of the main body casing 39 in the direction of the axis M (axis O direction) of the speed reduction portion 31.
  • the main body casing 39, the motor casing 29, and the motor casing cover (rear cover) 29 v constitute the casing 10 that forms the outline of the in-wheel motor driving device 1.
  • the stator 24 includes a cylindrical core portion (hereinafter referred to as “stator core”) 25 and a coil 26 wound around the stator core 25.
  • the stator core 25 is formed by laminating ring-shaped steel plates in the axis M direction.
  • Both end portions of the motor rotating shaft 22 are rotatably supported by the back portion 39b of the main body casing 39 and the motor casing cover 29v via rolling bearings 27 and 28.
  • An axis M serving as the rotation center of the motor rotation shaft 22 and the rotor 23 extends in parallel with the axis O of the wheel hub bearing portion 11. That is, the motor unit 21 is disposed offset from the axis O of the wheel hub bearing unit 11.
  • the axis M of the motor unit 21 is offset from the axis O in the vehicle front-rear direction, and specifically, is disposed in front of the vehicle relative to the axis O.
  • the speed reduction unit 31 includes an input shaft 32 that is coaxially coupled to the motor rotation shaft 22 of the motor unit 21, an input gear 33 that is provided coaxially on the outer peripheral surface of the input shaft 32, a plurality of intermediate gears 34 and 36, An intermediate shaft 35 coupled to the center of the gears 34, 36, an output shaft 38 coupled coaxially to the inner ring 12 of the wheel hub bearing portion 11, and an output gear 37 provided coaxially on the outer peripheral surface of the output shaft 38.
  • the plurality of gears and the rotation shaft of the speed reduction unit 31 are accommodated in the main body casing 39.
  • the main body casing 39 is also referred to as a speed reduction part casing because it forms an outline of the speed reduction part 31.
  • the input gear 33 is a helical gear with external teeth.
  • the input shaft 32 has a hollow structure, and one end in the axial direction of the motor rotation shaft 22 is inserted into the hollow portion 32 h of the input shaft 32. Thereby, the motor rotating shaft 22 is spline-fitted (or serrated fitted) to the input shaft 32 so as not to be relatively rotatable.
  • the input shaft 32 is rotatably supported by the front portion 39f and the back portion 39b of the main body casing 39 via rolling bearings 32a and 32b on both ends of the input gear 33.
  • the axis N that is the center of rotation of the intermediate shaft 35 of the speed reduction part 31 extends parallel to the axis O. Both ends of the intermediate shaft 35 are rotatably supported by the front portion 39f and the back portion 39b of the main body casing 39 via bearings 35a and 35b.
  • a first intermediate gear 34 and a second intermediate gear 36 are provided coaxially with the axis N of the intermediate shaft 35 at the center of the intermediate shaft 35.
  • the first intermediate gear 34 and the second intermediate gear 36 are external helical gears, and the diameter of the first intermediate gear 34 is larger than the diameter of the second intermediate gear 36.
  • the large-diameter first intermediate gear 34 is disposed on the other side in the axis N direction with respect to the second intermediate gear 36, and meshes with the small-diameter input gear 33.
  • the small-diameter second intermediate gear 36 is disposed on one side in the axis N direction relative to the first intermediate gear 34 and meshes with the large-diameter output gear 37.
  • the output gear 37 is a helical gear with external teeth, and is provided coaxially at the center of the output shaft 38.
  • the output shaft 38 extends along the axis O.
  • One end of the output shaft 38 in the direction of the axis O is inserted into the center hole of the inner ring 12 and is fitted so as not to be relatively rotatable.
  • Such fitting is spline fitting or serration fitting.
  • a central portion (one end side) of the output shaft 38 in the axis O direction is rotatably supported by the front portion 39f of the main body casing 39 via the rolling bearing 38a.
  • the other end portion (the other end side) in the axis O direction of the output shaft 38 is rotatably supported by the back surface portion 39b of the main body casing 39 via the rolling bearing 38b.
  • the reduction gear 31 is configured to engage the input shaft 32 by meshing the small-diameter drive gear and the large-diameter driven gear, that is, meshing the input gear 33 and the first intermediate gear 34, and meshing the second intermediate gear 36 and the output gear 37.
  • the rotation is decelerated and transmitted to the output shaft 38.
  • the rotating elements from the input shaft 32 to the output shaft 38 of the speed reduction unit 31 constitute a drive transmission path for transmitting the rotation of the motor unit 21 to the inner ring 12.
  • the input shaft 32, the intermediate shaft 35, and the output shaft 38 are supported at both ends by the rolling bearing described above. These rolling bearings 32a, 35a, 38a, 32b, 35b, and 38b are radial bearings.
  • the main body casing 39 includes a cylindrical part, and a plate-like front part 39f and a rear part 39b covering both ends of the cylindrical part.
  • the cylindrical portion covers the internal parts of the speed reducing portion 31 so as to surround the axes O, N, and M extending in parallel with each other.
  • the plate-shaped front portion 39f covers the internal parts of the speed reduction portion 31 from one side in the axial direction.
  • the plate-like back surface portion 39b covers the internal parts of the speed reducing portion 31 from the other side in the axial direction.
  • the back surface portion 39 b of the main body casing 39 is a partition wall that is coupled to the motor casing 29 and partitions the internal space of the speed reduction portion 31 and the internal space of the motor portion 21.
  • the motor casing 29 is supported by the main body casing 39 and protrudes from the main body casing 39 to the other side in the axial direction.
  • the rotor 23 of the motor unit 21 rotates and outputs rotation from the motor rotation shaft 22 to the speed reduction unit 31.
  • the deceleration unit 31 decelerates the rotation input from the motor unit 21 to the input shaft 32 and outputs the rotation from the output shaft 38 to the wheel hub bearing unit 11.
  • the inner ring 12 of the wheel hub bearing portion 11 rotates at the same rotational speed as the output shaft 38 and drives a wheel (not shown) attached and fixed to the inner ring 12.
  • an oil tank 40 is provided at the lower part of the main body casing 39.
  • the oil tank 40 is disposed at a lower position than the motor unit 21. Lubricating oil is stored in the oil tank 40 occupying the lower part of the internal space of the main casing 39.
  • Lubricating oil is used to lubricate the rotating elements of the motor unit 21 and the speed reducing unit 31 and to cool the stator 24 that is a heat generating element of the motor unit 21.
  • the lubricating oil supply structure in the in-wheel motor drive device 1 will be described in detail.
  • the reduction part 31 of the in-wheel motor drive device 1 showed the example which is a 3 axis
  • a reduction part has other kinds of gear reductions, such as a 4 axis
  • a speed reducer without a gear may be used.
  • the lubricating oil supply structure in the in-wheel motor drive device 1 includes a casing 10 that encloses lubricating oil, an oil tank 40 that is provided in a lower portion of the casing 10 and stores lubricating oil, and an oil An oil pump 43 for pumping lubricating oil from the tank 40 and an oil passage 50 arranged along the axis M direction at a position above the stator 24 are provided as preconditions.
  • a direction along the axis M direction of the motor unit 21 is simply referred to as an axial direction.
  • the oil pump 43 sucks lubricating oil from the oil tank 40 through the suction oil passage 41 and discharges the sucked lubricating oil to the discharge oil passage 45.
  • the oil pump 43 is driven in conjunction with the rotation of the motor rotating shaft 22.
  • the oil pump 43 is coupled to the output shaft 38 coaxially and is driven by the output shaft 38, for example. In this case, the oil pump 43 is driven at the same rotational speed as the wheels.
  • the oil pump 43 is, for example, a trochoid pump having an outer rotor and an inner rotor.
  • the other end portion 38f in the axis O direction of the output shaft 38 extends through the back surface portion 39b of the main body casing 39, and the oil pump 43 is connected to the output shaft 38 protruding from the back surface portion 39b. It couple
  • the suction oil passage 41 is led from the oil tank 40 to the pump chamber 46 through the back surface portion 39b of the main body casing 39 (that is, the partition wall portion between the main body casing 39 and the motor casing 29).
  • the pump chamber 46 is provided, for example, in an extended portion of the motor casing 29 that extends to the vehicle rear side from the position of the outer peripheral surface of the motor unit 21 (stator 24).
  • the oil tank 40 may be provided in the lower part of the motor casing 29.
  • the discharge oil passage 45 includes a rising oil passage 45a formed in the wall thickness of the motor casing cover 29v.
  • the rising oil passage 45a extends in the vertical direction, and is connected to one end of the oil passage 50 at the upper end.
  • oil holes a plurality of holes (hereinafter referred to as "oil holes") 59 are provided at intervals from each other along the axial direction. That is, the oil passage 50 is provided with a plurality of holes 59 so as to be orthogonal to the axial direction. Thereby, the lubricating oil flowing through the oil passage 50 is discharged from the oil hole 59 in the radial direction.
  • the lubricating oil discharged from the oil hole 59 of the oil passage 50 is not supplied to the coil 26 of the stator 24 as it is, but is supplied to the coil 26 (coil end) via the lubricating oil guide portion 7.
  • the lubricating oil supply structure according to the present embodiment includes the lubricating oil guide portion 7 that guides the lubricating oil discharged from the oil hole 59 to the coil end of the stator 24.
  • FIG. 3 is a cross-sectional view schematically showing a main part of the lubricating oil supply structure according to the present embodiment.
  • 4 and 5 are diagrams schematically showing the oil passage 50 and the lubricating oil guide portion 7 in the present embodiment.
  • FIG. 4 shows the entire stator 24, and FIG. The parts are shown.
  • the oil passage 50 is composed of two (a plurality of) tubular members (hereinafter referred to as “oil pipes”) 51 and 52.
  • the oil pipes 51 and 52 are connected in series, and the oil pipe 51 is disposed on the upstream side of the oil pipe 52.
  • the oil pipes 51 and 52 are formed in a cylindrical shape, and the diameters (inner diameter and outer diameter) of the oil pipes 51 and 52 are equal to each other.
  • One end of the oil pipe 51 is connected to the upper end of the rising oil passage 45 a, and the other end of the oil pipe 51 is connected to one end of the oil pipe 52.
  • the other end of the oil pipe 52 is closed, but the oil pipe 52 includes an oil pipe (an oil pipe 57 indicated by an imaginary line in FIG. 2) disposed in the main body casing 39, and a main body casing. 39 may be connected at the back portion 39b. That is, an oil passage (an oil passage constituted by the oil pipe 57) disposed in the main body casing 39 may be provided on the downstream side of the oil passage 50 disposed in the motor casing 29. Alternatively, the oil pipe 52 may extend through the back surface portion 39b of the main body casing 39, and may be disposed across the motor chamber and the deceleration chamber.
  • the oil pipes 51 and 52 are attached and fixed to the upper part of the motor casing 29.
  • the upper end wall of the motor casing 29 is bulged inward in the radial direction, and the oil passage 50 is disposed so as to penetrate this bulged portion (hereinafter referred to as “thick portion”) 29t in the axial direction.
  • Thick portion shows a transverse section of the thick portion 29t of the motor casing 29
  • FIG. 5 shows a longitudinal section of the thick portion 29t of the motor casing 29.
  • FIG. 5 shows a state in which the oil passage 50 is looked up from below.
  • the thick portion 29t is disposed within the axial width of the stator core 25 (within the range from one axial end to the other end) with respect to the axial position.
  • the lower end of the thick portion 29t may be in contact with the outer peripheral surface of the stator core 25.
  • the thick part 29t has a through hole 29h extending in the axial direction.
  • Part of the oil pipe 51 passes through the opening on the other axial side (inboard side) of the through hole 29h, and part of the oil pipe 52 passes through the opening on one side (outboard side) in the axial direction of the through hole 29h.
  • the diameter of the through hole 29h is larger than the outer diameter of the oil pipes 51 and 52.
  • the oil pipe 51 has a flange portion 51a protruding upward, and this flange portion 51a is bolted to the other end surface in the axial direction of the thick portion 29t.
  • the flange portion 51a has a through hole facing a female screw hole provided on the other end surface in the axial direction of the thick portion 29t. From the other side in the axial direction, the through hole of the flange portion 51a and the female screw of the thick portion 29t are provided. Bolts 63 are passed through the holes.
  • the oil pipe 52 has a flange portion 52a protruding upward, and this flange portion 52a is bolted to one end surface in the axial direction of the thick portion 29t. Thereby, rotation of the oil pipes 51 and 52 is prevented.
  • One end of the oil pipe 51 is connected to the upper end of the rising oil passage 45a, and the other end of the oil pipe 51 is disposed in the thick portion 29t.
  • One end of the oil pipe 52 is disposed in the thick part 29t so as to be adjacent to the other end of the oil pipe 51, and the other end of the oil pipe 52 is disposed so as to protrude outward from the thick part 29t.
  • the axial direction position of the other end of the oil pipe 52 is a position on the outer side (one axial direction side) of the coil end 26e positioned on one axial direction side of the stator core 25.
  • fitting portions 53 and 54 having a diameter larger than that of the main body portion (center portion) are provided.
  • a fitting portion 55 having a larger diameter than the main body portion (center portion) is also provided at one end of the oil pipe 52.
  • the fitting portion 53 on one end side of the oil pipe 51 is fitted into an opening (upper end portion of the rising oil passage 45a) provided on the inner end face of the motor casing cover 29v.
  • the fitting part 54 on the other end side of the oil pipe 51 and the fitting part 55 on one end of the oil pipe 52 are fitted into the through hole 29 h of the thick part 29 t of the motor casing 29.
  • an O-ring 56 is provided on the outer peripheral surface of each fitting portion, and leakage of lubricating oil in each fitting portion is prevented.
  • the other end of the oil pipe 51 and one end of the oil pipe 52 may be arranged slightly apart.
  • At least one oil hole 59 is provided in the main body portion of each oil pipe 51, 52. That is, the oil passage 50 includes at least two oil holes (first hole, second hole) 59 having different axial positions. More specifically, at least one oil hole 59 is orthogonal to the oil passage 50 on both the one side and the other side in the axial direction with the axially central plane of the stator 24 (shown in phantom lines in FIG. 3) as a boundary. Is provided.
  • the oil holes 59 of the oil pipes 51 and 52 are provided in the axial width of the stator core 25. That is, the axial position of the oil hole 59 is between one end and the other end of the stator core 25 in the axial direction.
  • the oil hole 59 is provided in a lower region of each of the oil pipes 51 and 52 and flows out (discharges) a part of the lubricating oil flowing through the oil passage 50 downward.
  • the lubricating oil discharged from the oil hole 59 is guided to the coil end 26e through the lubricating oil guide portion 7.
  • the coil end 26e corresponds to a bent portion of the coil 26 formed on the outer sides of both axial end surfaces of the stator core 25. As shown in FIG. 4, a plurality of coil ends 26e are arranged radially on each of one side and the other side of the stator core 25 in the axial direction.
  • the lubricating oil guide portion 7 includes an oil receiving chamber 71 that receives the lubricating oil discharged from the oil hole 59 and an oil pouring path 72 that communicates with the oil receiving chamber 71 and extends along the axial direction. .
  • the oil receiving chamber 71 is disposed so as to face the oil hole 59 of the oil passage 50 and surround (a part of) the outer periphery of the oil passage 50.
  • the oil receiving chamber 71 is a space for temporarily storing lubricating oil discharged from the oil hole 59 in the radial direction.
  • the oil receiving chamber 71 extends along the axial direction and has, for example, a circular cross section (ring-shaped cross section).
  • the axis of the oil receiving chamber 71 coincides with the axis of the oil passage 50.
  • the oil receiving chamber 71 is formed such that its cross-sectional area is larger than the passage area of the oil passage 50.
  • the oil receiving chamber 71 is formed in a part of the motor casing 29, that is, in the thick portion 29t. That is, the oil receiving chamber 71 is formed by an annular space between the inner peripheral surface of the through hole 29h of the thick portion 29t and the outer peripheral surfaces of the oil pipes 51 and 52.
  • the thick portion 29t constitutes the outer peripheral portion of the oil receiving chamber 71.
  • the oil receiving chamber 71 is divided into two oil receiving chambers 71a and 71b in the axial direction.
  • the oil receiving chamber 71 a is formed on the other axial side (inboard side) of the fitting portion 54 of the oil pipe 51 and faces the oil hole 59 of the oil pipe 51.
  • the oil receiving chamber 71 b is formed on one axial side (outboard side) of the fitting portion 55 of the oil pipe 52 and faces the oil hole 59 of the oil pipe 52.
  • the lubricating oil discharged from the oil hole 59 of the oil pipe 51 is received in the oil receiving chamber 71a, and the fitting portion 54 of the oil pipe 51 prevents the flow to the other oil receiving chamber 71b. Since the cross-sectional shape of the oil receiving chamber 71a is circular, the lubricating oil flows in the circumferential direction (around the oil pipe 51) in the oil receiving chamber 71a. The lubricating oil received by the oil receiving chamber 71a flows out from the opening at the other end in the axial direction.
  • Lubricating oil discharged from the oil hole 59 of the oil pipe 52 is received in the oil receiving chamber 71b, and the fitting portion 55 of the oil pipe 52 prevents the flow to the other oil receiving chamber 71a. Since the cross-sectional shape of the oil receiving chamber 71b is also circular, the lubricating oil flows in the circumferential direction (around the oil pipe 52) also in the oil receiving chamber 71b. The lubricating oil received by the oil receiving chamber 71b flows out from the opening at one end in the axial direction.
  • the open end side of the oil receiving chambers 71a and 71b is referred to as the downstream side, and the fitting portions 54 and 55 side is referred to as the upstream side.
  • the axial position of the oil hole 59 is preferably an upstream position. That is, it is desirable that the two oil holes 59 are disposed closer to the axial center surface of the stator core 25.
  • the lubricating oil discharged from the oil hole 59 of the oil passage 50 is more than when it flows in the oil passage 50.
  • the oil flows out from the open ends of the oil receiving chambers 71a and 71b at a slow flow rate.
  • the oil receiving chamber 71 when it is not necessary to distinguish the two oil receiving chambers 71a and 71b, they are simply referred to as the oil receiving chamber 71.
  • the oil pouring path 72 communicates with the downstream end of the oil receiving chamber 71 and extends along the axial direction. Specifically, a pair of oil pouring paths 72 are provided so as to communicate with the open ends of the oil receiving chambers 71a and 71b. A spout 72a for pouring lubricating oil into the coil end 26e is formed at the tip of each oil pouring path 72.
  • the cross-sectional shape of the oil pouring path 72 is, for example, a semicircular shape.
  • the oil pouring path 72 is formed by an arc-shaped member 72m connected to the axial end of the thick portion 29t of the motor casing 29.
  • the arc-shaped member 72m may be a part of the thick portion 29t. That is, the oil pouring path 72 may also be formed in a part of the motor casing 29.
  • the semicircular radius of the oil pouring channel 72 is larger than the circular radius of the oil receiving chamber 71.
  • the semicircular center point of the oil pouring channel 72 coincides with the center (axial center) of the oil passage 50 and the oil receiving chamber 71.
  • a step in the vertical direction is formed between the inner peripheral surface of the oil receiving chamber 71 and the inner peripheral surface of the oil pouring path 72, so that the lubricating oil received by the oil receiving chamber 71 is at the open end (downstream).
  • the oil flows down from the side end portion to the oil pouring path 72. Therefore, the flow in the circumferential direction generated in the oil receiving chamber 71 in the oil pouring path 72 can be restricted, and the flow direction of the lubricating oil can be converged in the axial direction.
  • the axial position of the spout 72a of the oil pouring path 72 is near the boundary position between the stator core 25 and the coil end 26e. Therefore, the lubricating oil whose flow direction is converged in the axial direction in the oil pouring path 72 flows out from the pouring spout 72a as it is, and flows down to the coil end 26e below (typically, the coil end 26e located at the uppermost position). . That is, the lubricating oil flowing out from the spout 72a does not spread in the outer peripheral direction of the stator core 25 but is directly supplied to the coil end 26e.
  • the spout 72a is formed at a position that does not overlap the coil end 26e but overlaps the end of the stator core 25 when viewed in the radial direction.
  • the lubricating oil discharged in the radial direction from the oil hole 59 of the oil passage 50 has a lower flow velocity in the oil receiving chambers 71a and 71b, and then is more axial than the oil receiving chambers 71a and 71b. It rectifies
  • the lubricating oil is poured into the coil end 26e located at the uppermost position, whereby the lubricating oil is transmitted to other portions of the coil 26, and the lubricating oil is also transmitted to the lower coil 26. Falls down. Thereby, since the lubricating oil can be supplied to a portion of the coil 26 of the stator 24 that is not immersed in the lubricating oil, the coil 26 can be efficiently cooled.
  • the lubricating oil guide part 7 in this Embodiment contains the scattering prevention member 73 arrange
  • the scattering prevention member 73 is constituted by a plate-like member extending in the radial direction, for example.
  • the scattering prevention member 73 located on the inboard side is integrally formed with the oil pipe 51 so as to extend downward from the oil pipe 51, and the scattering prevention member 73 located on the outboard side extends downward from the oil pipe 52.
  • the oil pipe 52 is formed integrally. This facilitates positioning of the anti-scattering member 73 and suppresses an increase in the number of parts.
  • the scattering prevention member 73 is disposed within the axial width of each coil end 26e. Specifically, it is desirable that the scattering prevention member 73 overlaps the axially outer end portion of each coil end 26e when viewed in the radial direction. This prevents the lubricating oil flowing out from the spout 72a of the oil pouring path 72 from scattering over the coil end 26e. Further, it is desirable that the lower end position of the scattering prevention member 73 is above the upper end of the coil end 26e and below the upper end of the stator core 25.
  • the flow velocity and flow direction of the lubricating oil supplied to the coil end 26e of the stator 24 can be controlled. Therefore, the lubricating oil can be effectively supplied to the coil end 26e regardless of the rotational speed of the motor rotating shaft 22, that is, the discharge amount of the lubricating oil by the oil pump 43.
  • the lubricating oil is discharged from the oil hole 59 in the form of a beam, so a structure is adopted in which the lubricating oil is supplied directly from the oil hole 59 to the coil end 26e. Then, since the lubricating oil rebounds, the lubricating oil cannot be uniformly applied to the coil end 26e to be supplied.
  • the lubricating oil is discharged in the form of a beam from the oil hole 59, the lubricating oil is once received in the oil receiving chamber 71, and the lubricating oil is axially received in the oil pouring path 72. Since the rectification is performed, the lubricating oil can be supplied to the coil end 26e without waste. As a result, the coil 26 can be effectively cooled.
  • the oil passage 50 includes two oil pipes 51 and 52 .
  • the oil passage 50 is configured by a single oil pipe 58.
  • the fitting part 54 fitted to the thick part 29t is provided at the axial center position of the stator 24, and oil holes 59 are provided on both sides of the fitting part 54.
  • the oil pipe 58 is bolted to the other end face in the axial direction of the thick part 29t by a flange part 58a.
  • the lubricating oil supply structure according to the present embodiment is different from the first embodiment in that a lubricating oil guide portion 7A is provided instead of the above-described lubricating oil guide portion 7.
  • the lubricating oil supply structure includes an oil receiving chamber and a pouring channel.
  • the oil receiving chamber 71 ⁇ / b> A includes a fitting portion of the oil pipe 51. 54 and the fitting portion 55 of the oil pipe 52 are formed to have a larger diameter. That is, the through-hole 29h of the thick portion 29t is formed so that the central portion in the axial direction has a small diameter and both end portions in the axial direction have a large diameter.
  • This increases the cross-sectional area of the oil receiving chamber 71A and increases the amount of lubricating oil received, so that the flow velocity of the lubricating oil in the oil receiving chamber 71A can be sufficiently reduced.
  • Lubricating oil guide 7A does not include the scattering prevention member 73 described in the first embodiment, but includes a guide member 8 instead.
  • the guide member 8 includes a distribution member 81 for distributing the lubricating oil flowing out from the spout 72a (see FIG. 5 and the like) of the oil pouring path 72 to the plurality of coil ends 26e, and for preventing scattering of the lubricating oil.
  • the scattering prevention member 82 is integrally included.
  • FIG. 8 is a front view of the guide member 8 when viewed from the outside in the axial direction of the stator 24.
  • FIG. 9 is a top view of the guide member 8 as viewed from the IX direction of FIG.
  • FIG. 10 is a perspective view of the guide member 8.
  • FIG. 11 is a cross-sectional view showing the attachment state of the guide member 8.
  • the distribution member 81 includes a flange member 83 having a substantially U-shaped cross section and a plurality of holes 86 provided in the bottom surface 85 of the flange member 83.
  • the flange member 83 is formed in a substantially arc shape when viewed from the front.
  • the radius of the arc shape of the flange member 83 is substantially equal to the radius of the stator 24.
  • the central angle ⁇ of the arc shape of the flange member 83 is, for example, 60 ° or more and desirably 90 ° or less.
  • the flange member 83 is disposed so as to overlap, for example, the three coil ends 26e when viewed from the radially outer side (viewed from above).
  • holes 86 are provided at positions overlapping the coil ends 26e. It is desirable that a plurality of (for example, two) holes 86 are provided for one coil end 26e.
  • the bottom surface 85 of the eaves member 83 may not be an arc surface. As shown in the drawing, the center portion of the bottom surface 85 of the flange member 83 may be formed by a horizontal surface, and both end portions thereof may be formed by inclined surfaces.
  • One of the pair of rising portions 87 of the flange member 83 (hereinafter, referred to as the back side rising portion 87) abuts on the arc-shaped edge of the axial end surface of the stator core 25.
  • a central portion of the other rising portion 87 (hereinafter, referred to as a front side rising portion 87) of the flange member 83 is integrally formed with the scattering prevention member 82.
  • the leading end surface of the oil pouring path 72 and the rising portion 87 on the back side of the distribution member 81 are in contact with each other. That is, in the present embodiment, the spout 72a of the oil pouring path 72 is disposed on the boundary line between the stator core 25 and the coil end 26e.
  • the upper end position of the rising portion 87 on the back side is slightly above the stator core 25 and is within the thickness range of the member 72m that forms the oil pouring path 72. Therefore, the lubricating oil flowing out from the spout 72 a of the oil pouring path 72 can be surely poured into the distribution member 81.
  • the scattering prevention member 82 is a plate-like member extending in the radial direction (vertical direction) in the attached state.
  • the scattering prevention member 82 is formed flush with the rising portion 87 on the front side of the distribution member 81.
  • An arc-shaped notch 88 for receiving the oil pipe 51 or 52 is formed at the upper end of the scattering prevention member 82.
  • the guide member 8 further includes a plurality (three) of leg portions 84 connected to the lower end of the distribution member 81.
  • the leg portion 84 is a plate-like member formed flush with the rising portion 87 on the back side of the distribution member 81.
  • Each leg 84 is inserted into a slot 26s (FIG. 7) formed so as to penetrate in the radial direction between the axial end surface of the stator 24 and the coil end 26e.
  • the legs 84 are co-assembled when wound around the stator core 25.
  • the guide member 8 Since the guide member 8 is attached simply by inserting the plurality of legs 84 into the plurality of slots 26s formed on the axial end surface of the stator 24, the distribution member 81 and the scattering prevention member 82 can be easily installed. Can do.
  • the lubricating oil from the spout 72 a of the oil pouring path 72 flows down to the center of the eaves member 83 of the distribution member 81.
  • the lubricating oil that has flowed down to the central portion is divided into both the one side and the other side in the circumferential direction along the arc shape of the flange member 83. Since holes 86 are provided in the bottom surface 85 of each of the central portion and both end portions of the flange member 83, the lubricant oil flows down from the holes 86 in the process in which the lubricant oil flows over the flange member 83. As a result, the lubricating oil can be directly supplied to the plurality of coil ends 26e positioned relatively above.
  • the lubricating oil supply structure includes the distribution member 81, the coil 26 can be cooled more efficiently than in the first embodiment.
  • the scattering prevention member 82 is provided integrally with the distribution member 81, the lubricating oil that has hit the scattering prevention member 82 surely flows down to the distribution member 81. Therefore, an increase in the number of parts can be suppressed, and the lubricating oil can be led to the coil 26 without waste.
  • the oil passage 50 may be constituted by a single oil pipe 58 as shown in FIG.
  • FIG. 13 is a cross-sectional view schematically showing a main part of the lubricating oil supply structure according to Embodiment 3 of the present invention.
  • FIG. 14 is a diagram schematically showing the lubricant guide portion 7B in the third embodiment of the present invention.
  • the basic configuration of the lubricant guide 7B is substantially the same as that of the lubricant guide 7 of the first embodiment. Therefore, only differences from the first embodiment will be described below.
  • the lubricating oil supply structure according to the present embodiment includes one oil pipe 91 as the oil passage 50 in the motor chamber, similar to the oil pipe 58 of FIG. 6 shown in the first embodiment.
  • a plate-like scattering prevention member 73A is provided at the end portion on the outboard side of the oil pipe 91, but a plate-like scattering prevention member is not provided at the end portion on the inboard side of the oil pipe 91.
  • the inner end surface of the motor casing cover 29v as the rear cover has a scattering prevention shape.
  • the convex portion 93 provided on the inner end surface of the motor casing cover 29v functions as a scattering prevention member on the inboard side.
  • the convex portion 93 is formed at a position facing the pouring spout 72a of the oil pouring path 72 located on the inboard side in the axial direction.
  • the convex portion 93 is located below the connecting portion 92 of the motor casing cover 29v and is provided continuously therewith.
  • the connecting portion 92 is a portion having an opening for receiving the fitting portion 53 of the oil pipe 91.
  • the tip end position of the convex portion 93 is a position overlapping the end portion of the coil end 26e on the inboard side. With respect to the vertical position (radial position), a gap is provided between the convex portion 93 and the coil end 26e on the inboard side.
  • the scattering prevention member 73A integrally formed with the oil pipe 91 is provided only at the end portion on the outboard side of the oil pipe 91, so that the oil pipe 91 is thickened from the outboard side.
  • the scattering prevention member does not get in the way when inserted through the through hole 29h of the meat portion 29t. Therefore, even if the oil passage 50 is not composed of the two oil pipes 51 and 52 as shown in FIG. 3, the oil passage 50 can be realized by the single oil pipe 91 without impairing the scattering prevention function. it can.
  • the oil pipe 91 is fixed by the bolt 63 to the one axial end surface (outboard side end surface) of the thick portion 29t by the flange portion 91a.
  • the oil pipe 91 can be inserted into the thick part 29t from the outboard side through, for example, an opening (not shown) provided in the back surface portion 39b of the main body casing 39.
  • the oil pipe 91 is not provided with a large-diameter fitting portion (fitting portion 54 in FIG. 6) that fits into the through hole 29 h of the thick portion 29 t of the motor casing 29.
  • a partition portion 74 formed by processing the thick portion 29t is provided at the axial center position of the thick portion 29t.
  • the partition part 74 is comprised by the circular-arc-shaped or annular
  • the oil receiving chamber 71B is partitioned into two oil receiving chambers 71c and 71d in the axial direction via the partition portion 74. That is, in the present embodiment, the partition portion 74 suppresses the outflow of the lubricating oil from one oil receiving chamber to the other oil receiving chamber.
  • the position of the axial center of the partition portion 74 is offset vertically upward from the position of the axial center of the oil receiving chamber 71B.
  • the height of the part located in the downward side of the oil pipe 91 among the whole partition part 74 surrounding the outer periphery of the oil pipe 91 can be made high, the flow of the lubricating oil between the two oil receiving chambers 71c and 71d is effective. Can be prevented.
  • the diameter of the inner peripheral surface of the partition portion 74 is equal to or larger than the outer diameter of the fitting portion 53 of the oil pipe 91.
  • the oil receiving chambers 71 c and 71 d are formed in a tapered shape so that the cross-sectional area gradually increases toward the oil pouring path 72. In this case, there is no step in the vertical direction between the inner peripheral surfaces of the oil receiving chambers 71c and 71d and the inner peripheral surface of the oil pouring path 72, and these may be provided continuously.
  • the lateral width (length dimension along the vehicle longitudinal direction) of the plate-like scattering prevention member 73 ⁇ / b> A provided in the oil pipe 91 is larger than the lateral width (diameter) of the oil pouring path 72. .
  • both ends in the width direction of the scattering prevention member 73A may be bent inward. Thereby, it is possible to prevent the lubricating oil that has flowed out of the oil pouring path 72 from splashing further from the end in the width direction of the scattering preventing member 73A, and flowing out of the lubricating oil outside the coil end 26e.
  • the rigidity of the scattering prevention member 73A can be improved, the thickness of the scattering prevention member 73A can be reduced, and the weight can be reduced.
  • FIG. 15 is a cross-sectional view schematically showing a main part of the lubricating oil supply structure according to Embodiment 4 of the present invention.
  • FIG. 16 is a diagram schematically showing a lubricant guide portion 7C in the fourth embodiment of the present invention.
  • the basic configuration of the lubricant guide 7C is substantially the same as the lubricant guide 7A of the second embodiment. Therefore, only differences from the second embodiment will be described below.
  • the lubricating oil supply structure according to the present embodiment includes one oil pipe 91A as the oil passage 50 in the motor chamber, similarly to the oil pipe 58 of FIG. 12 shown in the second embodiment.
  • the oil pipe 91A has substantially the same configuration as the oil pipe 91 of the third embodiment.
  • the lubricating oil guide 7C includes a guide member 8A located on the outboard side and a guide member 8B located on the inboard side.
  • the guidance member 8A on the outboard side has only the distribution member 81 shown in the second embodiment, and does not have the scattering prevention member 82 (see FIG. 11 and the like) shown in the second embodiment.
  • the guide member 8B on the inboard side includes the distribution member 81 and the scattering prevention member 82A formed integrally therewith, like the guide member 8 of the second embodiment.
  • the guide member 8A on the outboard side does not include the scattering prevention member, but instead, the oil pipe 91A is provided only on the outboard side in the same manner as the oil pipe 91 shown in the third embodiment. It has integrally the shape scattering prevention member 73B. Thereby, also in the present embodiment, the scattering prevention member 73B is provided only at the end portion on the outboard side of the oil pipe 91A, so that the oil pipe 91A is inserted from the outboard side into the through hole 29h of the thick portion 29t. When doing so, the anti-scattering member does not get in the way.
  • the oil passage 50 can be realized by the single oil pipe 91A.
  • the scattering prevention member 73B is arranged directly above the rising portion 87 on the front side of the distribution member 81 that constitutes the guide member 8A, and therefore has a shorter vertical length than the scattering prevention member 73A of the third embodiment.
  • the scattering prevention member 82A of the guide member 8B is integrally formed with the rising portion 87 on the front side of the distribution member 81 as in the second embodiment.
  • the fitting part 53 located at the inboard side end of the oil pipe 91A is larger than the outer diameter of the oil pipe 91A main body. This is because it is necessary to form an annular groove on the outer peripheral surface of the fitting portion 53 into which the O-ring 56 as a seal member is fitted.
  • the distance L2 between the scattering prevention member 82A and the connection portion 92 of the motor casing cover 29v is set to be not less than the axial dimension L1 of the fitting portion 53 of the oil pipe 91A.
  • the scattering prevention member 82A in the attached state, can be arranged so that the upper end portion of the scattering prevention member 82A overlaps the fitting portion 53 of the oil pipe 91A when viewed in the axial direction. it can. Thereby, it becomes possible to suppress the leakage of the lubricating oil from the gap between the scattering prevention member 82A and the oil pipe 91A as much as possible.
  • the oil passage 50 has only the oil hole 59 provided at a position overlapping with the stator core 25.
  • the oil passage 50 also has an oil hole at a position not overlapping with the stator core 25. Also good.
  • oil receiving chamber 71 is formed in the motor casing 29, it may be constituted by another member that can be attached to the motor casing 29.
  • the oil pouring path 72 is formed by the arc-shaped member 72m, similarly to the oil receiving chamber 71, it may be formed by a cylindrical member.
  • the cross-sectional shape of the oil receiving chamber 71 is circular (perfect circle), it is not limited.
  • the oil receiving chamber 71 may be disposed so as to surround the outer periphery of the oil passage 50, and the cross-sectional shape of the oil receiving chamber 71 may be another shape such as an ellipse or a polygon.
  • the cross-sectional shape of the oil pouring path 72 is a semicircular shape, it is not limited. It is sufficient that the lubricating oil can flow along the axial direction (in a direction parallel to the oil passage 50) at a position below the oil pouring path 72 and the oil receiving chamber 71.
  • the cross-sectional shape of the oil pouring path 72 is, for example, V Other shapes such as a letter shape or a U shape may be used.
  • the oil pouring path 72 may not be provided.
  • a lubricating oil pouring path to the coil end 26 e is formed at the downstream end of the oil receiving chamber 71.
  • FIG. 17 is a cross-sectional view schematically showing a lubricating oil supply structure according to Embodiment 5 of the present invention.
  • the in-wheel motor drive device 1A is passed through the axis O, the axis M, and the oil passage 50 by a predetermined amount. It is the longitudinal cross-sectional view cut
  • FIG. 18 schematically shows a state in which the internal structure of the speed reduction unit 31 of the in-wheel motor drive device 1A is viewed from the outboard side.
  • the in-wheel motor drive device 1A disposed in the inner space of the wheel wheel W is connected to a vehicle body (not shown) via the suspension device 100 as shown in FIG.
  • the suspension device 100 is, for example, a strut suspension device, and includes a lower arm 101 extending in the vehicle width direction and a damper 102 disposed above the lower arm 101 and extending in the vertical direction.
  • the main part of the lubricating oil supply structure according to the present embodiment is shown in FIG.
  • the lubricating oil supply structure according to the present embodiment includes a lubricating oil guide portion 7 ⁇ / b> D that guides the lubricating oil discharged from the oil hole 59 of the oil passage 50 to the coil end 26 e of the stator 24.
  • the oil passage 50 is constituted by a single oil pipe 91B disposed so as to penetrate the thick portion 29t of the motor casing 29 and the back portion 39b of the main body casing 39 in the axial direction.
  • the back surface portion 39b of the main body casing 39 functions as a partition wall that partitions the motor chamber S1 (motor unit 21) in the motor casing 29 and the deceleration chamber S2 (deceleration unit 31) in the main body casing 39 in the axial direction. Therefore, in the following description, the back portion 39b of the main body casing 39 is referred to as a partition wall 39b of the casing 10.
  • the lubricating oil is supplied to both the motor chamber S1 and the speed reduction chamber S2 by one oil pipe 91B. Can do.
  • FIG. 20 is a diagram showing an example of the internal structure of the casing 10 on the deceleration chamber S2 side, and FIG. 20 schematically shows an end face on the outboard side of the partition wall 39b.
  • 20A is a front view
  • FIG. 20B is a perspective view.
  • FIG. 20 shows a state where the flat wall portion constituting the front portion 39f of the main body casing 39 is removed.
  • FIG. 21 is a perspective view of a vertical cross-sectional structure of the upper part of the motor casing 29 (including the motor casing cover 29v) through which the oil pipe 91B is inserted, as viewed from the speed reduction chamber S2.
  • the oil pipe 91B is supported by the casing 10 at both ends.
  • One end (inboard side end portion) of the oil pipe 91B is fitted to the connection portion 92 of the motor casing cover 29v in the fitting portion 53, as in the above embodiments.
  • the other end (outboard side end) of the oil pipe 91B is bolted to the partition wall 39b of the casing 10.
  • the partition wall 39b of the casing 10 is provided with an opening 39h through which the oil pipe 91B is inserted.
  • a mounting bracket (bracket) 91t is connected to the outer peripheral surface of the oil pipe 91B located on the deceleration chamber S2 side in the installed state by welding or the like.
  • the mounting bracket 91t includes a plate-like portion extending in the radial direction orthogonal to the oil pipe 91B, and has a through-hole (not shown) penetrating in the plate thickness direction in the plate-like portion.
  • a female screw hole 39i is provided in the vicinity of the opening 39h on the end surface on the outboard side of the partition wall 39b.
  • the other end side (outboard side end portion) of the oil pipe 91B is inserted into the through hole of the mounting bracket 91t through the shaft portion of the bolt 64 from the outboard side and screwed into the female screw hole 39i. Fixed to the outboard side end face.
  • the oil pipe 91B in the present embodiment, after the assembly of the motor unit 21 is completed at the time of manufacturing the in-wheel motor drive device 1A (as shown in FIGS. 18 and 20, the main body casing 39).
  • the oil pipe 91B can be easily attached from the speed reduction chamber S2 side (in the state where the flat wall portion constituting the front portion 39f is removed). Specifically, the oil pipe 91B is attached to the casing 10 in the following procedure.
  • the oil pipe 91 ⁇ / b> B is inserted into the opening 39 h of the partition wall 39 b of the casing 10 from the outboard side so that the fitting portion 53 is at the head.
  • the fitting part 53 passes through the through hole 29h of the thick part 29t and reaches the motor casing cover 29v, the fitting part 53 is fitted into the connection part 92 of the motor casing cover 29v.
  • the inboard side end portion of the oil pipe 91 ⁇ / b> B is fixed by fitting the O-ring 56 provided on the outer periphery of the fitting portion 53 and the connection portion 92.
  • the mounting bracket 91t connected to the oil pipe 91B is fixed to the end face on the outboard side of the partition wall 39b with the bolt 64.
  • the end portion on the outboard side of the oil pipe 91B is bolted to the partition wall 39b.
  • the lubricating oil can be sent not only to the motor chamber S1 but also to the deceleration chamber S2 with one oil pipe 91B, so the number of parts can be reduced. In addition, the manufacturing cost can be reduced. Further, as shown in FIG. 21, both end portions in the axial direction of the oil pipe 91B are supported by the casing 10 by the O-ring 56 and the bolt 64, so that the oil pipe 91B can be made difficult to tilt.
  • FIG. 22 is a diagram schematically showing the lubricating oil guide portion 7D, and is a view of the upper cross section structure of the motor casing 29 (thick portion 29t) and the oil pipe 91B as viewed obliquely from above.
  • FIG. 23 is a diagram schematically showing the lubricating oil guide portion 7D, and is a diagram showing the cross-sectional structure of the upper portion (thick portion 29t) of the motor casing 29 as viewed from obliquely above with the oil pipe 91B removed. is there.
  • FIG. 24 is a view of the motor chamber S1 as seen from the inboard side with the motor casing cover 29v removed.
  • FIG. 25 is a diagram showing an example of the internal structure of the casing 10 on the motor chamber S1 side.
  • FIG. 25 schematically shows the inboard-side end surfaces of the partition wall portion 39b and the thick portion 29t.
  • FIG. 25A is a front view
  • FIG. 25B is a perspective view.
  • the lubricating oil guide 7D includes an oil receiving chamber 71C that receives lubricating oil discharged from the oil hole 59 of the oil pipe 91B located above the stator core 25.
  • the oil receiving chamber 71C is divided into two oil receiving chambers 71e and 71f in the thick portion 29t at the top of the motor casing 29 with the partition portion 74A as a boundary.
  • the partition portion 74A is configured by an arc-shaped or annular convex portion protruding from the inner peripheral surface of the through hole 29h of the thick portion 29t.
  • the convex portion as the partitioning portion 74A only needs to be disposed at least below the axial center height of the oil pipe 91B.
  • the inner diameter dimension (minimum dimension) of the partition portion 74A is larger than the outer diameter dimension of the fitting portion 53 of the oil pipe 91B.
  • At least one oil hole 59 is provided on the outboard side and the inboard side from the axial position of the partition portion 74A within the axial width of the stator core 25.
  • the lubricating oil is discharged from the oil hole 59 to the respective oil receiving chambers 71e and 71f.
  • the partition portion 74A is provided between the oil receiving chambers 71e and 71f, it is possible to prevent the lubricating oil received in each oil receiving chamber 71e and 71f from entering the other oil receiving chamber. Accordingly, it is possible to prevent a large amount of lubricating oil from flowing only on one side of the coil ends 26e disposed on both sides in the axial direction of the stator 24 (a supply amount of the lubricating oil is not uniform).
  • the lubricating oil guide 7D communicates with the oil receiving chamber 71e on the outboard side and extends along the axial direction 72A, and with the oil receiving chamber 71f on the inboard side and extends along the axial direction. And a pouring channel 72B.
  • the shape of oil pouring paths 72A and 72B in the present embodiment is not a semicircular shape, but may be a valley shape having a substantially flat bottom surface 72f as shown in FIG. Thereby, in the oil pouring paths 72A and 72B, the flow direction of the lubricating oil can be converged in the axial direction more effectively.
  • the axial position of the partition portion 74 ⁇ / b> A is shifted to the outboard side from the center position LA of the stator 24.
  • the axial length of at least one of the oil receiving chamber 71e and the oil pouring path 72A on the outboard side is shorter than the axial length of the oil receiving chamber 71f and the oil pouring path 72B on the inboard side.
  • the axial lengths of both the oil receiving chamber 71e on the outboard side and the oil pouring path 72A are shorter than the axial lengths of the oil receiving chamber 71f and the oil pouring path 72B on the inboard side.
  • the oil receiving chamber 71f on the inboard side gradually increases in cross-sectional area toward the oil pouring path 72B (as it goes to the inboard side), as in the third embodiment.
  • it is formed in a tapered shape. That is, the oil receiving chamber 71f on the inboard side is inclined along the axial direction (relative to the axis M) so that the lower end height of the inboard oil receiving chamber 71f becomes lower as the distance from the partition portion 74A increases.
  • the oil receiving chamber 71e on the outboard side may also be inclined along the axial direction (relative to the axis M) so that the lower end height of the oil receiving chamber 71e becomes lower as the distance from the partition portion 74A increases.
  • the oil receiving chamber 71f on the inboard side has a larger gradient (inclination angle) than the oil receiving chamber 71e on the outboard side.
  • the oil pouring path 72B on the inboard side has a larger gradient (inclination angle) than the oil pouring path 72A on the outboard side.
  • the oil receiving chamber 71f or the oil pouring path 72B on the inboard side is inclined so that the lubricating oil can easily flow outward in the axial direction.
  • the gradient of at least one of the oil receiving chamber 71e on the outboard side and the oil pouring path 72A may be a so-called draft angle.
  • the inclined surface that is inclined along the axial direction is not limited to a smooth inclined surface (tapered surface). May be formed by a wavy surface configured to allow the lubricating oil to flow toward the surface or a surface having a plurality of steps.
  • the inclination angle of the oil receiving chamber 71f (71e) and the inclination angle of the oil pouring path 72B (72A) may be determined in consideration of the camber angle when the in-wheel motor drive device 1A is attached to the vehicle body.
  • the oil pouring path 72A is faced.
  • An oil hole 59 may be disposed at the position. That is, the oil pouring path 72A may also have a function of receiving oil discharged from the oil hole 59 of the oil pipe 91B.
  • the lubricant guide 7D includes a pair of distribution members 81A and 81A for distributing the lubricant flowing out from the oil pouring paths 72A and 72B to the plurality of coil ends 26e.
  • the lubricating oil guide 7D also prevents scattering of the lubricating oil flowing out from the oil pouring path 72A on the outboard side and preventing scattering of lubricating oil flowing out from the oil pouring path 72B on the inboard side.
  • an anti-scattering member 73D is an anti-scattering member 73D.
  • the distribution member 81A includes a flange member 83A and a plurality of holes 86 provided in the bottom surface 85 of the flange member 83A.
  • the flange member 83 ⁇ / b> A does not have a rising portion that contacts the arcuate edge 25 a of the axial end surface of the stator core 25, and the bottom surface 85 of the flange member 83 ⁇ / b> A is an axial end surface of the stator core 25. It is in contact with the edge portion 25a.
  • the plurality of leg portions 84 integrally connected to the flange member 83A are inserted into the plurality of slots 26s formed on the axial end surface of the stator 24, respectively. Attached by.
  • the arcuate scissors 83A as viewed in the axial direction is on or near a virtual line LB connecting the axis C of the oil pipe 91B (oil passage 50) and the axis M of the motor rotating shaft 22.
  • a partition wall 89 may be provided at the center of the flange member 83A.
  • the partition wall 89 is erected on the bottom surface 85 of the flange member 83A so as to close a space between the edge 25e of the axial end surface of the stator core 25 and the rising portion 87 of the flange member 83A.
  • the partition wall 89 causes the vehicle to Lubricating oil can be distributed in the front-rear direction.
  • the lubricating oil can be appropriately distributed to the plurality of coil ends 26e.
  • the anti-scattering member 73C on the outboard side is composed of a plate-like member connected to the oil pipe 91B by welding or the like, similar to the anti-scattering member 73B of the fourth embodiment.
  • the scattering prevention member 73C is located above the distribution member 81A, and is disposed so as to face the axial end (pour spout) of the oil pouring path 72A in the axial direction.
  • the scattering prevention member 73C may be disposed closer to the stator core 25 (inboard side) than the rising portion 87 of the distribution member 81A.
  • the scattering prevention member 73C has a shape and a size that can pass through the opening 39h provided in the partition wall 39b while being fixed to the oil pipe 91B. Further, the anti-scattering member 73C may be integrally formed with the mounting bracket 91t described above.
  • the inboard-side scattering prevention member 73D is configured by a convex portion 93 provided on the motor casing cover 29v, as in the third embodiment. That is, the anti-scattering member 73D is provided on the inner end surface of the motor casing cover 29v so as to continue below the connection portion 92.
  • the lubricant can be supplied from above to the coil ends 26e on both sides in the axial direction with a simple structure. Can be cooled.
  • the lubricating oil supplied to the coil end 26e also contributes to the lubrication of the rolling bearings 27 and 28 that rotatably support the motor rotating shaft 22.
  • a resolver (rotation sensor) 68 for detecting the rotation of the motor rotation shaft 22 is provided at the inboard side end of the motor rotation shaft 22, the inboard-side rolling bearing 28 is provided.
  • the motor casing cover 29v may be configured such that the supplied lubricating oil is guided to the sensor chamber S3.
  • the sensor chamber S3 is a space in which the resolver 68 is accommodated.
  • FIG. 26 is a perspective view of the motor casing cover 29v as viewed from the outboard side (from the motor chamber S1 side)
  • FIG. 27 is a front view of the motor casing cover 29v as viewed from the inboard side
  • FIG. 28 is a longitudinal sectional view schematically showing the sensor chamber S3 provided in the motor casing cover 29v.
  • the motor casing cover 29v has a cylindrical portion 66 into which the rolling bearing 28 and the resolver 68 are fitted coaxially. In the cylindrical portion 66, the resolver 68 is disposed on the inboard side with respect to the rolling bearing 28.
  • the motor casing cover 29v is provided with a communication hole 69 for drawing a signal line (not shown) of the resolver 68 from the sensor chamber S3 to the motor chamber S1.
  • the communication hole 69 is located below the axis M.
  • a discharge passage 67 is provided that penetrates from the motor chamber S1 to the sensor chamber S3 in the axial direction. Accordingly, the lubricating oil that has lubricated the rolling bearing 28 is discharged to the sensor chamber S3 through the discharge path 67. The lubricating oil discharged to the sensor chamber S3 flows again through the communication hole 69 to the motor chamber S1. In this way, the lubricating oil that lubricates the rolling bearing 28 bypasses the sensor chamber S3 and returns from the communication hole 69 to the motor chamber S1, so that the lubricating oil can hardly be applied to the rotor 23. Therefore, the rotational resistance of the rotor 23 can be reduced.
  • the lubricating oil used for cooling the stator 24 passes from the motor chamber S1 through the opening 39j (FIGS. 18 and 19) provided in the partition wall portion 39b. It returns to the oil tank 40 provided in S2.
  • the opening 39j of the partition wall 39b is located below the axis M and functions as an oil return path.
  • the opening 39j as an oil return path is provided at a position overlapping the stator 24 in the axial direction. That is, it is desirable that the opening 39j is located inside the outer circumference circle (indicated by a broken line in FIG. 18) of the stator core 25. In this case, as shown in FIG. 18, when the partition wall 39b is viewed from the inboard side, the lower end of the stator 24 (the coil end 26e and the edge 25e of the axial end surface of the stator core 25) is exposed from the opening 39j.
  • the lubricating oil easily returns to the oil tank 40, so that the lubricating oil can be circulated efficiently even if the amount of the lubricating oil enclosed in the casing 10 is reduced. Further, by reducing the amount of lubricating oil, it is possible to reduce the weight of the in-wheel motor drive device 1A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

This lubricant supply structure comprises: an oil path (50) that is disposed along the axial direction of a motor above a stator (24), and that has at least one oil hole (59) through which lubricant pumped up by an oil pump is discharged in the radial direction; and a lubricant guide part (7) that guides the lubricant discharged from the oil hole (59) to a coil end (26e) of the stator. The lubricant guide part (7) includes an oil reception chamber (71) that receives the lubricant discharged from the oil hole (59).

Description

潤滑油の供給構造、および、インホイールモータ駆動装置Lubricating oil supply structure and in-wheel motor drive device
 本発明は、インホイールモータ駆動装置における潤滑油の供給構造に関し、特に、オイルポンプを備えた潤滑油の供給構造に関する。 The present invention relates to a lubricating oil supply structure in an in-wheel motor drive device, and more particularly to a lubricating oil supply structure including an oil pump.
 車輪を駆動するモータ回転軸を有するモータ部と、車輪ハブ軸受部と、複数の歯車を有しモータ回転軸の回転を減速して車輪ハブ軸受部に伝達する減速部とを備えたインホイールモータ駆動装置が存在する。このようなインホイールモータ駆動装置において、モータ部における発熱要素(ステータ)の冷却、および、減速部における減速機構を構成する回転要素(歯車および軸受)の潤滑のために、潤滑油が利用される。 An in-wheel motor provided with a motor part having a motor rotation shaft for driving a wheel, a wheel hub bearing part, and a reduction part for reducing the rotation of the motor rotation shaft and transmitting it to the wheel hub bearing part. There is a drive. In such an in-wheel motor drive device, lubricating oil is used for cooling the heat generating element (stator) in the motor section and for lubricating the rotating elements (gears and bearings) constituting the speed reducing mechanism in the speed reducing section. .
 たとえば特開2005-73364号公報(特許文献1)には、モータの出力トルクにより回転する回転軸の一方端にオイルポンプを設け、オイルポンプにより圧送される潤滑油が、オイル通路を介してモータのステータコアの外周に供給されて、コイルエンドに到達するように構成されたインホイールモータ駆動装置が開示されている。 For example, in Japanese Patent Application Laid-Open No. 2005-73364 (Patent Document 1), an oil pump is provided at one end of a rotating shaft that is rotated by the output torque of a motor, and lubricating oil pumped by the oil pump passes through the oil passage to the motor. An in-wheel motor drive device configured to be supplied to the outer periphery of the stator core and reach the coil end is disclosed.
 また、特開2015-107709号公報(特許文献2)には、インホイールモータ駆動装置のオイル供給装置が、オイルポンプの吐出口に連結されたオイル供給路から、モータのステータコアおよびコイルの外周とモータベアリングとに、潤滑油を導くことが開示されている。 Japanese Patent Laying-Open No. 2015-107709 (Patent Document 2) discloses that an oil supply device of an in-wheel motor drive device includes an outer periphery of a stator core and a coil of a motor from an oil supply path connected to a discharge port of an oil pump. It is disclosed that lubricating oil is guided to a motor bearing.
特開2005-73364号公報(特許第3968333号)JP 2005-73364 A (Patent No. 3968333) 特開2015-107709号公報JP2015-107709A
 モータ部はステータのコイルに流される電流によって駆動される一方、コイル抵抗により発生する銅損が、モータ部の発熱の原因にもなる。特に高いトルクを発生させる時、大電流による銅損が発熱の主因になるため、モータ部を冷却するとき、コイルを冷却することが求められる。 The motor unit is driven by the current flowing through the stator coil, while copper loss caused by coil resistance also causes the motor unit to generate heat. In particular, when generating a high torque, copper loss due to a large current becomes the main cause of heat generation, and therefore it is required to cool the coil when cooling the motor unit.
 特許文献1に開示された潤滑油の供給構造は、オイル通路からステータコアの外周に供給された潤滑油が、ステータコアの外周を介してコイルエンドに到達するように構成されているため、コイルを冷却することが可能になる。しかしながら、オイル通路に潤滑油を送り込むオイルポンプは、モータ回転軸の回転に連動して駆動されるため、オイルポンプの回転数はモータ回転軸の回転数に比例する。そのため、オイルポンプからの吐出流量も、モータ回転軸の回転数に比例する。 The lubricating oil supply structure disclosed in Patent Document 1 is configured so that the lubricating oil supplied from the oil passage to the outer periphery of the stator core reaches the coil end via the outer periphery of the stator core, so that the coil is cooled. It becomes possible to do. However, since the oil pump that feeds lubricating oil into the oil passage is driven in conjunction with the rotation of the motor rotation shaft, the rotation speed of the oil pump is proportional to the rotation speed of the motor rotation shaft. Therefore, the discharge flow rate from the oil pump is also proportional to the rotation speed of the motor rotation shaft.
 したがって、モータ回転軸が低い回転数で回転する時、オイルポンプも少ない流量でしか潤滑油を吐出できないため、オイル通路を経て開口部からステータコアの外周に供給される潤滑油も少量となる。少量の潤滑油が重力によって優先的に流れるのは、ステータコアの外周方向であり、ステータの軸方向端部にあるコイルエンドに到達するのは、その後となるため、コイルの冷却が不十分となることが懸念される。 Therefore, when the motor rotating shaft rotates at a low rotation speed, the oil pump can also discharge the lubricating oil only with a small flow rate, so that a small amount of lubricating oil is supplied to the outer periphery of the stator core from the opening through the oil passage. A small amount of lubricating oil flows preferentially by gravity in the outer circumferential direction of the stator core, and since it reaches the coil end at the axial end of the stator after that, the cooling of the coil becomes insufficient. There is concern.
 逆に、モータ回転軸が高い回転数で回転する時には、オイルポンプから大量の潤滑油が吐出されるため、低流量時と比べてオイル通路を通過する潤滑油の流速が大幅に増加する。そうすると、オイル通路の開口部から流出する潤滑油は、ステータコアの外周面に直撃し、飛散する。潤滑油が飛散すると、コイルに接触する潤滑油の量が不十分になるため、この場合においても、モータ部の冷却不足が懸念される。 Conversely, when the motor rotation shaft rotates at a high rotational speed, a large amount of lubricating oil is discharged from the oil pump, so that the flow velocity of the lubricating oil passing through the oil passage is significantly increased compared to when the flow rate is low. Then, the lubricating oil that flows out from the opening of the oil passage hits the outer peripheral surface of the stator core and scatters. When the lubricating oil is scattered, the amount of the lubricating oil that contacts the coil becomes insufficient. Even in this case, there is a concern about insufficient cooling of the motor unit.
 また、特許文献2には、ステータのコイルエンドにも直接潤滑油を供給する構成が開示されているものの、ステータの上方において軸方向に延びるオイル供給路に設けられた下向きの開口部から径方向に潤滑油を流出させる構成である。この場合、潤滑油は、オイル供給路に設けられた開口部からビーム状に吐出されるため、潤滑油の撥ね返りが起き、コイルを効果的に冷却できない。 Further, Patent Document 2 discloses a configuration in which lubricating oil is directly supplied to the coil end of the stator, but from the downward opening provided in the oil supply passage extending in the axial direction above the stator in the radial direction. The lubricating oil is allowed to flow out. In this case, since the lubricating oil is discharged in the form of a beam from the opening provided in the oil supply path, the lubricating oil rebounds and the coil cannot be cooled effectively.
 本発明は、上記のような課題を解決するためになされたものであって、その目的は、モータ部の冷却を効率的に行うことのできる潤滑油の供給構造を提供することである。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a lubricating oil supply structure capable of efficiently cooling a motor unit.
 この発明のある局面に従う潤滑油の供給構造は、ステータを含むモータ部を備えたインホイールモータ駆動装置における潤滑油の供給構造であって、モータ部を収容し、インホイールモータ駆動装置の外郭を形成するケーシングと、ケーシングの下部に設けられ、潤滑油を貯留するオイルタンクと、オイルタンクから潤滑油を汲み上げるオイルポンプとを備える。また、この潤滑油の供給構造は、ステータよりも上方位置においてモータ部の軸線方向に沿って配置され、オイルポンプにより汲み上げられた潤滑油を径方向に吐出する少なくとも1つのオイル孔を有するオイル通路と、オイル孔から吐出した潤滑油をステータのコイルエンドに導く潤滑油案内部とを備える。潤滑油案内部は、オイル孔から吐出した潤滑油を受けるオイル受け室を含む。 A lubrication oil supply structure according to an aspect of the present invention is a lubrication oil supply structure in an in-wheel motor drive device including a motor unit including a stator. The lubrication oil supply structure accommodates the motor unit and surrounds the outline of the in-wheel motor drive device. A casing to be formed, an oil tank provided in a lower part of the casing and storing lubricating oil, and an oil pump for pumping the lubricating oil from the oil tank are provided. Further, this lubricating oil supply structure is arranged along the axial direction of the motor unit at a position above the stator, and has an oil passage having at least one oil hole for discharging the lubricating oil pumped up by the oil pump in the radial direction. And a lubricating oil guide for guiding the lubricating oil discharged from the oil hole to the coil end of the stator. The lubricant guide portion includes an oil receiving chamber that receives the lubricant discharged from the oil hole.
 好ましくは、オイル受け室は、オイル孔と対面し、オイル通路の外周を取り囲むように配置されており、オイル受け室の断面積はオイル通路の通路面積よりも大きい。 Preferably, the oil receiving chamber is disposed so as to face the oil hole and surround the outer periphery of the oil passage, and the cross-sectional area of the oil receiving chamber is larger than the passage area of the oil passage.
 好ましくは、オイル孔は、ステータのコア部の軸線方向幅内に配置され、かつ、軸線方向位置が異なる第1孔および第2孔を含む。この場合、オイル受け室は、第1孔から吐出した潤滑油を受ける第1オイル受け室と、第2孔から吐出した潤滑油を受ける第2オイル受け室とに区画されていることが望ましい。 Preferably, the oil hole includes a first hole and a second hole that are disposed within the axial width of the core portion of the stator and have different axial positions. In this case, the oil receiving chamber is preferably partitioned into a first oil receiving chamber that receives the lubricating oil discharged from the first hole and a second oil receiving chamber that receives the lubricating oil discharged from the second hole.
 また、オイル通路は、ケーシングの上部を軸方向に貫通する貫通孔に挿通された管状部材によって構成されていることが望ましい。この場合、第1オイル受け室と第2オイル受け室とは、貫通孔の内周面から突出するように設けられた仕切り部によって仕切られていてもよい。 Further, it is desirable that the oil passage is constituted by a tubular member inserted through a through hole penetrating the upper portion of the casing in the axial direction. In this case, the first oil receiving chamber and the second oil receiving chamber may be partitioned by a partition portion provided so as to protrude from the inner peripheral surface of the through hole.
 また、第1オイル受け室および第2オイル受け室の少なくとも一方は、その下端高さが凸部から遠ざかるにつれて下方となるよう、軸線方向に沿って傾斜していることも望ましい。 Also, it is desirable that at least one of the first oil receiving chamber and the second oil receiving chamber is inclined along the axial direction so that the lower end height becomes lower as the distance from the convex portion decreases.
 好ましくは、オイル受け室は、ケーシングの一部に形成されている。 Preferably, the oil receiving chamber is formed in a part of the casing.
 好ましくは、潤滑油案内部は、オイル受け室と連通して軸線方向に沿って延び、コイルエンドへの潤滑油の注ぎ口が先端に形成されたオイル注ぎ路をさらに含む。 Preferably, the lubricating oil guide portion further includes an oil pouring path that communicates with the oil receiving chamber and extends in the axial direction, and has a spout for lubricating oil formed at the tip of the coil end.
 潤滑油案内部は、オイル注ぎ路の注ぎ口と軸線方向に対面して配置され、注ぎ口から流出する潤滑油の飛散を防止するための飛散防止部材をさらに含むことが望ましい。 It is desirable that the lubricating oil guide portion further includes a splash preventing member that is disposed facing the pouring spout of the oil pouring passage in the axial direction and prevents the lubricating oil flowing out from the pouring spout.
 好ましくは、オイル通路は、ケーシングに取り付け固定された1つまたは複数の管状部材によって構成されている。この場合、飛散防止部材は管状部材と一体的に形成された板状部材を含んでもよい。 Preferably, the oil passage is constituted by one or a plurality of tubular members attached and fixed to the casing. In this case, the scattering prevention member may include a plate member formed integrally with the tubular member.
 また、ケーシングは、オイル注ぎ路と軸線方向に対面する壁部を有しており、飛散防止部材は、ケーシングの壁部に形成された凸部を含んでいてもよい。 Further, the casing may have a wall portion facing the oil pouring path in the axial direction, and the scattering prevention member may include a convex portion formed on the wall portion of the casing.
 潤滑油案内部は、オイル注ぎ路の注ぎ口から流出する潤滑油を、複数のコイルエンドに分配するための分配部材をさらに含むことも望ましい。 It is desirable that the lubricating oil guide further includes a distribution member for distributing the lubricating oil flowing out from the spout of the oil pouring path to a plurality of coil ends.
 あるいは、潤滑油案内部は、複数のコイルエンドに潤滑油を分配するための分配部材と、分配部材と一体的に設けられ、潤滑油の飛散を防止するための飛散防止部材とをさらに含んでもよい。 Alternatively, the lubricant guide portion may further include a distribution member for distributing the lubricant oil to the plurality of coil ends, and a scattering prevention member that is provided integrally with the distribution member and prevents the lubricant from scattering. Good.
 好ましくは、オイル通路の少なくとも一部は、一端に大径の嵌合部が形成された管状部材によって構成されている。また、ケーシングは、分配部材と一体的に設けられた飛散防止部材と軸線方向に対面し、管状部材の嵌合部を受入れる接続部を有する壁部を含む。この場合、飛散防止部材と接続部との間の間隔は、管状部材の嵌合部の軸線方向寸法以上であることが望ましい。 Preferably, at least a part of the oil passage is constituted by a tubular member in which a large-diameter fitting portion is formed at one end. Further, the casing includes a wall portion having a connection portion that faces the scattering prevention member provided integrally with the distribution member in the axial direction and receives the fitting portion of the tubular member. In this case, it is desirable that the distance between the scattering prevention member and the connection portion is equal to or larger than the axial dimension of the fitting portion of the tubular member.
 好ましくは、インホイールモータ駆動装置は、モータ部のモータ回転軸の回転を減速する減速部をさらに含み、ケーシングは、モータ部と減速部とを軸線方向に仕切る隔壁部を有している。この場合、オイル通路は、隔壁部を貫通する1本の管状部材によって構成されていることが、より望ましい。 Preferably, the in-wheel motor drive device further includes a speed reducing portion that decelerates rotation of the motor rotation shaft of the motor portion, and the casing has a partition portion that partitions the motor portion and the speed reducing portion in the axial direction. In this case, it is more desirable that the oil passage is constituted by one tubular member that penetrates the partition wall.
 本発明によれば、潤滑油案内部によって、オイル孔から径方向に吐出した潤滑油がステータのコイルエンドに導かれるため、モータ部の冷却を効率的に行うことができる。 According to the present invention, the lubricating oil discharged in the radial direction from the oil hole is guided to the coil end of the stator by the lubricating oil guide portion, so that the motor portion can be efficiently cooled.
本発明の実施形態1~4に係るインホイールモータ駆動装置を所定の平面で切断し、展開して示す縦断面図である。FIG. 5 is a longitudinal sectional view showing an in-wheel motor drive device according to Embodiments 1 to 4 of the present invention cut along a predetermined plane and developed. 本発明の実施形態1~4に係るインホイールモータ駆動装置の減速部の内部構造を示す横断面図である。FIG. 5 is a cross-sectional view showing the internal structure of the speed reduction portion of the in-wheel motor drive device according to Embodiments 1 to 4 of the present invention. 本発明の実施の形態1に係る潤滑油の供給構造の要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the supply structure of the lubricating oil which concerns on Embodiment 1 of this invention. 本発明の実施の形態1におけるオイル通路および潤滑油案内部を模式的に示す図である。It is a figure which shows typically the oil channel | path and lubricating oil guide part in Embodiment 1 of this invention. 本発明の実施の形態1におけるオイル通路および潤滑油案内部を模式的に示す図である。It is a figure which shows typically the oil channel | path and lubricating oil guide part in Embodiment 1 of this invention. 本発明の実施の形態1において、オイル通路の他の構成例を模式的に示す断面図である。In Embodiment 1 of this invention, it is sectional drawing which shows typically the other structural example of an oil path. 本発明の実施の形態2におけるオイル通路および潤滑油案内部を模式的に示す図である。It is a figure which shows typically the oil channel | path and lubricating oil guide part in Embodiment 2 of this invention. 本発明の実施の形態2において、分配部材と飛散防止部材とを一体的に含む誘導部材の正面図である。In Embodiment 2 of this invention, it is a front view of the guidance member which integrally contains a distribution member and a scattering prevention member. 本発明の実施の形態2における誘導部材の上面図である。It is a top view of the guidance member in Embodiment 2 of the present invention. 本発明の実施の形態2における誘導部材の斜視図である。It is a perspective view of the guidance member in Embodiment 2 of the present invention. 本発明の実施の形態2における誘導部材の取り付け状態を示す断面図である。It is sectional drawing which shows the attachment state of the guide member in Embodiment 2 of this invention. 本発明の実施の形態2において、オイル通路の他の構成例を模式的に示す断面図である。In Embodiment 2 of this invention, it is sectional drawing which shows typically the other structural example of an oil path. 本発明の実施の形態3に係る潤滑油の供給構造の要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the supply structure of the lubricating oil which concerns on Embodiment 3 of this invention. 本発明の実施の形態3における潤滑油案内部を模式的に示す図である。It is a figure which shows typically the lubricating oil guide part in Embodiment 3 of this invention. 本発明の実施の形態4に係る潤滑油の供給構造の要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the supply structure of the lubricating oil which concerns on Embodiment 4 of this invention. 本発明の実施の形態4における潤滑油案内部を模式的に示す図である。It is a figure which shows typically the lubricating oil guide part in Embodiment 4 of this invention. 本発明の実施の形態5に係る潤滑油の供給構造を模式的に示す断面図であり、インホイールモータ駆動装置を所定の平面で切断し、展開して示す縦断面図である。It is sectional drawing which shows typically the supply structure of the lubricating oil which concerns on Embodiment 5 of this invention, and is a longitudinal cross-sectional view which cut | disconnects and expand | deploys an in-wheel motor drive device by a predetermined plane. 本発明の実施の形態5に係るインホイールモータ駆動装置の減速部の内部構造を模式的に示す図である。It is a figure which shows typically the internal structure of the deceleration part of the in-wheel motor drive device which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る潤滑油の供給構造の要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the supply structure of the lubricating oil which concerns on Embodiment 5 of this invention. 本発明の実施の形態5において、ケーシングの減速室側の内部構造例を模式的に示す図である。In Embodiment 5 of this invention, it is a figure which shows typically the example of an internal structure by the side of the deceleration chamber of a casing. 本発明の実施の形態5において、オイル管が挿通されたモータケーシングの上部の縦断面構造を減速室側から見た斜視図である。In Embodiment 5 of this invention, it is the perspective view which looked at the longitudinal cross-section of the upper part of the motor casing in which the oil pipe was penetrated from the deceleration chamber side. 本発明の実施の形態5における潤滑油案内部を模式的に示す図である。It is a figure which shows typically the lubricating oil guide part in Embodiment 5 of this invention. 本発明の実施の形態5における潤滑油案内部を模式的に示す図である。It is a figure which shows typically the lubricating oil guide part in Embodiment 5 of this invention. 本発明の実施の形態5において、モータケーシングカバーを取り外した状態で、インボード側からモータ室を見た図である。In Embodiment 5 of this invention, it is the figure which looked at the motor chamber from the inboard side in the state which removed the motor casing cover. 本発明の実施の形態5において、ケーシングのモータ室側の内部構造例を模式的に示す図である。In Embodiment 5 of this invention, it is a figure which shows typically the internal structural example by the side of the motor chamber of a casing. 本発明の実施の形態5におけるモータケーシングカバーの構造例を模式的に示す斜視図である。It is a perspective view which shows typically the structural example of the motor casing cover in Embodiment 5 of this invention. 本発明の実施の形態5におけるモータケーシングカバーの構造例を模式的に示す正面図である。It is a front view which shows typically the structural example of the motor casing cover in Embodiment 5 of this invention. 本発明の実施の形態5においてモータケーシングカバーに設けられたセンサ室を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the sensor chamber provided in the motor casing cover in Embodiment 5 of this invention. 図17に示すインホイールモータ駆動装置およびその周辺構造を車両後方からみた状態を模式的に表す図である。It is a figure which represents typically the state which looked at the in-wheel motor drive device shown in FIG. 17, and its peripheral structure from the vehicle rear.
 本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 <インホイール駆動装置の基本構成例について>
 はじめに、図1および図2を参照して、本発明の実施の形態に係る潤滑油の供給構造を採用するインホイールモータ駆動装置1の基本構成例について説明する。インホイールモータ駆動装置1は、電気自動車およびハイブリッド車両などの乗用自動車に搭載される。
<Example of basic configuration of in-wheel drive device>
First, a basic configuration example of an in-wheel motor drive device 1 that employs a lubricating oil supply structure according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. The in-wheel motor drive device 1 is mounted on a passenger car such as an electric vehicle and a hybrid vehicle.
 図1は、本発明の実施形態に係るインホイールモータ駆動装置1を所定の平面で切断し、展開して示す縦断面図である。図2は、インホイールモータ駆動装置1の減速部31の内部構造を示す横断面図であり、車幅方向外側からみた状態を模式的に表す。なお、図1で表される所定の平面は、図2に示す軸線Mおよび軸線Nを含む平面と、軸線Nおよび軸線Oを含む平面とを、この順序で接続した展開平面である。図1中、紙面左側は車幅方向外側(アウトボード側)を表し、紙面右側は車幅方向内側(インボード側)を表す。図2中、減速部31の内部の各歯車は歯先円で表され、個々の歯を図略する。 FIG. 1 is a longitudinal sectional view showing an in-wheel motor drive device 1 according to an embodiment of the present invention cut along a predetermined plane and developed. FIG. 2 is a cross-sectional view showing the internal structure of the speed reduction unit 31 of the in-wheel motor drive device 1, and schematically shows a state viewed from the outside in the vehicle width direction. The predetermined plane shown in FIG. 1 is a developed plane obtained by connecting the plane including the axis M and the axis N shown in FIG. 2 and the plane including the axis N and the axis O in this order. In FIG. 1, the left side of the drawing represents the vehicle width direction outside (outboard side), and the right side of the drawing represents the vehicle width direction inside (inboard side). In FIG. 2, each gear inside the speed reduction unit 31 is represented by a tip circle, and individual teeth are omitted.
 インホイールモータ駆動装置1は、車輪ホイールWの中心に設けられる車輪ハブ軸受部11と、車輪を駆動するモータ部21と、モータ部21の回転を減速して車輪ハブ軸受部11に伝達する減速部31とを備える。 The in-wheel motor drive device 1 includes a wheel hub bearing unit 11 provided at the center of the wheel W, a motor unit 21 that drives the wheel, and a deceleration that decelerates the rotation of the motor unit 21 and transmits it to the wheel hub bearing unit 11. Part 31.
 モータ部21および減速部31は、車輪ハブ軸受部11の軸線Oからオフセットして配置される。軸線Oは車幅方向に延び、車軸に一致する。本実施の形態においては、軸線O方向一方側がアウトボード側であり、軸線O方向他方側がインボード側であるものとする。 The motor part 21 and the speed reduction part 31 are arranged offset from the axis O of the wheel hub bearing part 11. The axis O extends in the vehicle width direction and coincides with the axle. In the present embodiment, it is assumed that one side in the axis O direction is the outboard side and the other side in the axis O direction is the inboard side.
 軸線O方向位置に関し、車輪ハブ軸受部11はインホイールモータ駆動装置1の軸線方向一方に配置され、モータ部21はインホイールモータ駆動装置1の軸線方向他方に配置され、減速部31はモータ部21よりも軸線方向一方に配置され、減速部31の軸線方向位置が車輪ハブ軸受部11の軸線方向位置と重なる。 Regarding the position in the axis O direction, the wheel hub bearing portion 11 is disposed on one side in the axial direction of the in-wheel motor drive device 1, the motor portion 21 is disposed on the other side in the axial direction of the in-wheel motor drive device 1, and the speed reduction portion 31 is disposed on the motor portion. The axial position of the speed reduction part 31 overlaps with the axial direction position of the wheel hub bearing part 11.
 インホイールモータ駆動装置1は、電動車両の車輪を駆動する車両用モータ駆動装置である。インホイールモータ駆動装置1は、図示しない車体に連結される。インホイールモータ駆動装置1は、電動車両を時速0~180km/hで走行させることができる。 The in-wheel motor drive device 1 is a vehicle motor drive device that drives wheels of an electric vehicle. The in-wheel motor drive device 1 is connected to a vehicle body (not shown). The in-wheel motor drive device 1 can drive an electric vehicle at a speed of 0 to 180 km / h.
 車輪ハブ軸受部11は、回転内輪・固定外輪とされ、車輪ホイールWと結合する回転輪(ハブ輪)としての内輪12と、内輪12の外径側に同軸に配置される固定輪としての外輪13と、内輪12と外輪13との間の環状空間に配置される複数の転動体14を有する。内輪12の回転中心は、車輪ハブ軸受部11の中心を通る軸線Oに一致する。 The wheel hub bearing portion 11 is a rotating inner ring / fixed outer ring, and includes an inner ring 12 as a rotating wheel (hub wheel) coupled to the wheel wheel W, and an outer ring as a fixed ring disposed coaxially on the outer diameter side of the inner ring 12. 13 and a plurality of rolling elements 14 arranged in an annular space between the inner ring 12 and the outer ring 13. The center of rotation of the inner ring 12 coincides with an axis O passing through the center of the wheel hub bearing portion 11.
 外輪13は、本体ケーシング39の正面部分39fを貫通するとともに、この正面部分39fに連結固定される。正面部分39fは、本体ケーシング39のうち減速部31の軸線O方向一方端を覆うケーシング壁部である。たとえば、外輪13の外周面には周方向で異なる位置に、外径方向に突出する複数の外輪突出部が立設され、各外輪突出部に設けられた貫通孔に対し、軸線O方向一方側からボルトが通される。各ボルトの軸部は、本体ケーシング39の正面部分39fに穿設される雌ねじ孔と螺合する。 The outer ring 13 penetrates the front portion 39f of the main body casing 39 and is connected and fixed to the front portion 39f. The front portion 39 f is a casing wall portion that covers one end of the speed reduction portion 31 in the axis O direction of the main body casing 39. For example, a plurality of outer ring protrusions protruding in the outer diameter direction are provided on the outer peripheral surface of the outer ring 13 at different positions in the circumferential direction, and one side of the axis O direction with respect to the through hole provided in each outer ring protrusion The bolt is passed through. The shaft portion of each bolt is screwed into a female screw hole formed in the front portion 39 f of the main body casing 39.
 外輪13には、キャリア部材61が連結固定される。外輪13の外周面には、周方向で異なる位置に、外径方向に突出する複数の外輪突出部13gが設けられている。キャリア部材61は、外輪突出部13gの軸線O方向他方側に位置し、軸線O方向一方側から、外輪突出部13gの貫通孔およびキャリア部材61の雌ねじ孔にボルト62が通される。キャリア部材61は、本体ケーシング39に対し、軸線O方向他方側から通されたボルト63によって固定されている。 The carrier member 61 is connected and fixed to the outer ring 13. On the outer peripheral surface of the outer ring 13, a plurality of outer ring protruding portions 13g protruding in the outer diameter direction are provided at different positions in the circumferential direction. The carrier member 61 is located on the other side of the outer ring protruding portion 13g in the axis O direction, and a bolt 62 is passed from one side of the axis O direction to the through hole of the outer ring protruding portion 13g and the female screw hole of the carrier member 61. The carrier member 61 is fixed to the main body casing 39 by a bolt 63 passed from the other side in the axis O direction.
 内輪12は、外輪13よりも長い筒状体であり、外輪13の中心孔に通される。外輪13から外部(アウトボード側)へ突出する内輪12の軸線O方向一方端部には、結合部12fが形成される。結合部12fはフランジであり、ブレーキロータBDおよび車輪と同軸に結合するための結合部を構成する。内輪12は、結合部12fで車輪ホイールWと結合し、車輪と一体回転する。 The inner ring 12 is a cylindrical body longer than the outer ring 13 and is passed through the center hole of the outer ring 13. A coupling portion 12f is formed at one end of the inner ring 12 protruding from the outer ring 13 to the outside (outboard side) in the axis O direction. The coupling portion 12f is a flange and constitutes a coupling portion for coupling coaxially with the brake rotor BD and the wheel. The inner ring 12 is coupled to the wheel W at the coupling portion 12f and rotates integrally with the wheel.
 内輪12および外輪13間の環状空間には、複数列の転動体14が配置される。内輪12の軸線O方向中央部の外周面は、第1列に配置される複数の転動体14の内側軌道面を構成する。内輪12の軸線O方向他方端部外周には内側軌道輪12rが嵌合する。内側軌道輪12rの外周面は、第2列に配置される複数の転動体14の内側軌道面を構成する。外輪13の軸線O方向一方端部の内周面は、第1列の転動体14の外側軌道面を構成する。外輪13の軸線O方向他方端部の内周面は、第2列の転動体14の外側軌道面を構成する。内輪12および外輪13間の環状空間には、シール材16がさらに介在する。シール材16は環状空間の両端を封止して、塵埃および異物の侵入を阻止する。内輪12の軸線O方向他方端の中心孔には減速部31の出力軸38が差し込まれてスプライン嵌合する。 In the annular space between the inner ring 12 and the outer ring 13, a plurality of rows of rolling elements 14 are arranged. The outer peripheral surface of the central portion of the inner ring 12 in the direction of the axis O constitutes the inner raceway surface of the plurality of rolling elements 14 arranged in the first row. An inner race 12r is fitted to the outer periphery of the other end of the inner ring 12 in the axis O direction. The outer peripheral surface of the inner race 12r constitutes the inner race of the plurality of rolling elements 14 arranged in the second row. The inner peripheral surface at one end of the outer ring 13 in the direction of the axis O constitutes the outer raceway surface of the rolling elements 14 in the first row. An inner peripheral surface of the other end portion of the outer ring 13 in the axis O direction forms an outer raceway surface of the rolling elements 14 in the second row. A sealing material 16 is further interposed in the annular space between the inner ring 12 and the outer ring 13. The sealing material 16 seals both ends of the annular space to prevent intrusion of dust and foreign matter. The output shaft 38 of the speed reduction part 31 is inserted into the center hole at the other end in the axis O direction of the inner ring 12 and is spline-fitted.
 モータ部21は、モータ回転軸22、ロータ23、およびステータ24を有し、この順序でモータ部21の軸線Mから外径側へ順次配置される。モータ部21は、インナロータ、アウタステータ形式のラジアルギャップモータであるが、他の形式であってもよい。例えば図示しなかったがモータ部21はアキシャルギャップモータであってもよい。 The motor unit 21 has a motor rotating shaft 22, a rotor 23, and a stator 24, and is sequentially arranged from the axis M of the motor unit 21 to the outer diameter side in this order. The motor unit 21 is an inner rotor / outer stator type radial gap motor, but may be of other types. For example, although not shown, the motor unit 21 may be an axial gap motor.
 モータ部21はモータケーシング29に収容されている。モータケーシング29はステータ24の外周を包囲する。モータケーシング29の軸線M方向一方端は本体ケーシング39の背面部分39bと結合する。モータケーシング29の軸線M方向他方端は、板状のモータケーシングカバー29vで封止される。背面部分39bは、本体ケーシング39のうち減速部31の軸線M方向(軸線O方向)他方端を覆うケーシング壁部である。 The motor unit 21 is accommodated in a motor casing 29. The motor casing 29 surrounds the outer periphery of the stator 24. One end of the motor casing 29 in the direction of the axis M is coupled to the back surface portion 39 b of the main body casing 39. The other end of the motor casing 29 in the axis M direction is sealed with a plate-like motor casing cover 29v. The back surface portion 39 b is a casing wall portion that covers the other end of the main body casing 39 in the direction of the axis M (axis O direction) of the speed reduction portion 31.
 本体ケーシング39、モータケーシング29、およびモータケーシングカバー(リヤカバー)29vは、インホイールモータ駆動装置1の外郭をなすケーシング10を構成する。 The main body casing 39, the motor casing 29, and the motor casing cover (rear cover) 29 v constitute the casing 10 that forms the outline of the in-wheel motor driving device 1.
 ステータ24は円筒形状のコア部(以下「ステータコア」という)25と、該ステータコア25に巻回されたコイル26を含む。ステータコア25はリング状の鋼板を軸線M方向に積層してなる。 The stator 24 includes a cylindrical core portion (hereinafter referred to as “stator core”) 25 and a coil 26 wound around the stator core 25. The stator core 25 is formed by laminating ring-shaped steel plates in the axis M direction.
 モータ回転軸22の両端部は、転がり軸受27,28を介して、本体ケーシング39の背面部分39bと、モータケーシングカバー29vに回転自在に支持される。モータ回転軸22およびロータ23の回転中心になる軸線Mは、車輪ハブ軸受部11の軸線Oと平行に延びる。つまりモータ部21は、車輪ハブ軸受部11の軸線Oから離れるようオフセットして配置される。例えば図2に示すようにモータ部21の軸線Mは、軸線Oから車両前後方向にオフセットして、具体的には軸線Oよりも車両前方に配置される。 Both end portions of the motor rotating shaft 22 are rotatably supported by the back portion 39b of the main body casing 39 and the motor casing cover 29v via rolling bearings 27 and 28. An axis M serving as the rotation center of the motor rotation shaft 22 and the rotor 23 extends in parallel with the axis O of the wheel hub bearing portion 11. That is, the motor unit 21 is disposed offset from the axis O of the wheel hub bearing unit 11. For example, as shown in FIG. 2, the axis M of the motor unit 21 is offset from the axis O in the vehicle front-rear direction, and specifically, is disposed in front of the vehicle relative to the axis O.
 減速部31は、モータ部21のモータ回転軸22と同軸に結合する入力軸32と、入力軸32の外周面に同軸に設けられる入力歯車33と、複数の中間歯車34,36と、これら中間歯車34,36の中心と結合する中間軸35と、車輪ハブ軸受部11の内輪12と同軸に結合する出力軸38と、出力軸38の外周面に同軸に設けられる出力歯車37とを有する。減速部31のこれら複数の歯車および回転軸は、本体ケーシング39に収容される。本体ケーシング39は減速部31の外郭をなすことから減速部ケーシングともいう。 The speed reduction unit 31 includes an input shaft 32 that is coaxially coupled to the motor rotation shaft 22 of the motor unit 21, an input gear 33 that is provided coaxially on the outer peripheral surface of the input shaft 32, a plurality of intermediate gears 34 and 36, An intermediate shaft 35 coupled to the center of the gears 34, 36, an output shaft 38 coupled coaxially to the inner ring 12 of the wheel hub bearing portion 11, and an output gear 37 provided coaxially on the outer peripheral surface of the output shaft 38. The plurality of gears and the rotation shaft of the speed reduction unit 31 are accommodated in the main body casing 39. The main body casing 39 is also referred to as a speed reduction part casing because it forms an outline of the speed reduction part 31.
 入力歯車33は外歯のはすば歯車である。入力軸32は中空構造であり、入力軸32の中空部32hにモータ回転軸22の軸線方向一方端部が差し込まれる。これにより、モータ回転軸22は、入力軸32に相対回転不可能にスプライン嵌合(またはセレーション嵌合)する。入力軸32は入力歯車33の両端側で、転がり軸受32a,32bを介して、本体ケーシング39の正面部分39fおよび背面部分39bに回転自在に支持される。 The input gear 33 is a helical gear with external teeth. The input shaft 32 has a hollow structure, and one end in the axial direction of the motor rotation shaft 22 is inserted into the hollow portion 32 h of the input shaft 32. Thereby, the motor rotating shaft 22 is spline-fitted (or serrated fitted) to the input shaft 32 so as not to be relatively rotatable. The input shaft 32 is rotatably supported by the front portion 39f and the back portion 39b of the main body casing 39 via rolling bearings 32a and 32b on both ends of the input gear 33.
 減速部31の中間軸35の回転中心になる軸線Nは軸線Oと平行に延びる。中間軸35の両端は、軸受35a,35bを介して、本体ケーシング39の正面部分39fおよび背面部分39bに回転自在に支持される。中間軸35の中央部には、第1中間歯車34および第2中間歯車36が、中間軸35の軸線Nと同軸に設けられる。第1中間歯車34および第2中間歯車36は、外歯のはすば歯車であり、第1中間歯車34の径が第2中間歯車36の径よりも大きい。大径の第1中間歯車34は、第2中間歯車36よりも軸線N方向他方側に配置されて、小径の入力歯車33と噛合する。小径の第2中間歯車36は、第1中間歯車34よりも軸線N方向一方側に配置されて、大径の出力歯車37と噛合する。 The axis N that is the center of rotation of the intermediate shaft 35 of the speed reduction part 31 extends parallel to the axis O. Both ends of the intermediate shaft 35 are rotatably supported by the front portion 39f and the back portion 39b of the main body casing 39 via bearings 35a and 35b. A first intermediate gear 34 and a second intermediate gear 36 are provided coaxially with the axis N of the intermediate shaft 35 at the center of the intermediate shaft 35. The first intermediate gear 34 and the second intermediate gear 36 are external helical gears, and the diameter of the first intermediate gear 34 is larger than the diameter of the second intermediate gear 36. The large-diameter first intermediate gear 34 is disposed on the other side in the axis N direction with respect to the second intermediate gear 36, and meshes with the small-diameter input gear 33. The small-diameter second intermediate gear 36 is disposed on one side in the axis N direction relative to the first intermediate gear 34 and meshes with the large-diameter output gear 37.
 中間軸35の軸線Nは、図1に示すように、軸線Oおよび軸線Mよりも上方に配置される。また中間軸35の軸線Nは、軸線Oよりも車両前方、軸線Mよりも車両後方に配置される。減速部31は、車両前後方向に間隔を空けて配置されて互いに平行に延びる軸線O,N,Mを有する3軸の平行軸歯車減速機である。 The axis N of the intermediate shaft 35 is disposed above the axis O and the axis M as shown in FIG. In addition, the axis N of the intermediate shaft 35 is arranged in front of the vehicle with respect to the axis O and behind the vehicle with respect to the axis M. The speed reduction unit 31 is a three-axis parallel shaft gear reducer having axes O, N, and M that are arranged at intervals in the vehicle front-rear direction and extend parallel to each other.
 出力歯車37は外歯のはすば歯車であり、出力軸38の中央部に同軸に設けられる。出力軸38は軸線Oに沿って延びる。出力軸38の軸線O方向一方端部は、内輪12の中心孔に差し込まれて相対回転不可能に嵌合する。かかる嵌合は、スプライン嵌合あるいはセレーション嵌合である。出力軸38の軸線O方向中央部(一方端側)は、転がり軸受38aを介して、本体ケーシング39の正面部分39fに回転自在に支持される。出力軸38の軸線O方向他方端部(他方端側)は、転がり軸受38bを介して、本体ケーシング39の背面部分39bに回転自在に支持される。 The output gear 37 is a helical gear with external teeth, and is provided coaxially at the center of the output shaft 38. The output shaft 38 extends along the axis O. One end of the output shaft 38 in the direction of the axis O is inserted into the center hole of the inner ring 12 and is fitted so as not to be relatively rotatable. Such fitting is spline fitting or serration fitting. A central portion (one end side) of the output shaft 38 in the axis O direction is rotatably supported by the front portion 39f of the main body casing 39 via the rolling bearing 38a. The other end portion (the other end side) in the axis O direction of the output shaft 38 is rotatably supported by the back surface portion 39b of the main body casing 39 via the rolling bearing 38b.
 減速部31は、小径の駆動歯車と大径の従動歯車の噛合、即ち入力歯車33と第1中間歯車34の噛合、および、第2中間歯車36と出力歯車37の噛合により、入力軸32の回転を減速して出力軸38に伝達する。減速部31の入力軸32から出力軸38までの回転要素は、モータ部21の回転を内輪12に伝達する駆動伝達経路を構成する。入力軸32と、中間軸35と、出力軸38は、上述した転がり軸受によって両持ち支持される。これらの転がり軸受32a,35a,38a,32b,35b,38bはラジアル軸受である。 The reduction gear 31 is configured to engage the input shaft 32 by meshing the small-diameter drive gear and the large-diameter driven gear, that is, meshing the input gear 33 and the first intermediate gear 34, and meshing the second intermediate gear 36 and the output gear 37. The rotation is decelerated and transmitted to the output shaft 38. The rotating elements from the input shaft 32 to the output shaft 38 of the speed reduction unit 31 constitute a drive transmission path for transmitting the rotation of the motor unit 21 to the inner ring 12. The input shaft 32, the intermediate shaft 35, and the output shaft 38 are supported at both ends by the rolling bearing described above. These rolling bearings 32a, 35a, 38a, 32b, 35b, and 38b are radial bearings.
 本体ケーシング39は、筒状部分と、当該筒状部分の両端を覆う板状の正面部分39fおよび背面部分39bを含む。筒状部分は、互いに平行に延びる軸線O、N、Mを取り囲むように減速部31の内部部品を覆う。板状の正面部分39fは、減速部31の内部部品を軸線方向一方側から覆う。板状の背面部分39bは、減速部31の内部部品を軸線方向他方側から覆う。 The main body casing 39 includes a cylindrical part, and a plate-like front part 39f and a rear part 39b covering both ends of the cylindrical part. The cylindrical portion covers the internal parts of the speed reducing portion 31 so as to surround the axes O, N, and M extending in parallel with each other. The plate-shaped front portion 39f covers the internal parts of the speed reduction portion 31 from one side in the axial direction. The plate-like back surface portion 39b covers the internal parts of the speed reducing portion 31 from the other side in the axial direction.
 本体ケーシング39の背面部分39bは、モータケーシング29と結合し、減速部31の内部空間およびモータ部21の内部空間を仕切る隔壁でもある。モータケーシング29は本体ケーシング39に支持されて、本体ケーシング39から軸線方向他方側へ突出する。 The back surface portion 39 b of the main body casing 39 is a partition wall that is coupled to the motor casing 29 and partitions the internal space of the speed reduction portion 31 and the internal space of the motor portion 21. The motor casing 29 is supported by the main body casing 39 and protrudes from the main body casing 39 to the other side in the axial direction.
 インホイールモータ駆動装置1の外部からモータ部21のステータ24に電力が供給されると、モータ部21のロータ23が回転し、モータ回転軸22から減速部31に回転を出力する。減速部31はモータ部21から入力軸32に入力された回転を減速し、出力軸38から車輪ハブ軸受部11へ出力する。車輪ハブ軸受部11の内輪12は、出力軸38と同じ回転数で回転し、内輪12に取付固定される図示しない車輪を駆動する。 When electric power is supplied to the stator 24 of the motor unit 21 from the outside of the in-wheel motor drive device 1, the rotor 23 of the motor unit 21 rotates and outputs rotation from the motor rotation shaft 22 to the speed reduction unit 31. The deceleration unit 31 decelerates the rotation input from the motor unit 21 to the input shaft 32 and outputs the rotation from the output shaft 38 to the wheel hub bearing unit 11. The inner ring 12 of the wheel hub bearing portion 11 rotates at the same rotational speed as the output shaft 38 and drives a wheel (not shown) attached and fixed to the inner ring 12.
 図2に示されるように、本体ケーシング39の下部には、オイルタンク40が設けられている。オイルタンク40はモータ部21よりも低位置に配置される。本体ケーシング39の内部空間の下部を占めるオイルタンク40には、潤滑油が貯留される。 As shown in FIG. 2, an oil tank 40 is provided at the lower part of the main body casing 39. The oil tank 40 is disposed at a lower position than the motor unit 21. Lubricating oil is stored in the oil tank 40 occupying the lower part of the internal space of the main casing 39.
 潤滑油は、モータ部21および減速部31の回転要素を潤滑するとともに、モータ部21の発熱要素であるステータ24を冷却するために用いられる。以下に、インホイールモータ駆動装置1における潤滑油の供給構造について詳細に説明する。 Lubricating oil is used to lubricate the rotating elements of the motor unit 21 and the speed reducing unit 31 and to cool the stator 24 that is a heat generating element of the motor unit 21. Hereinafter, the lubricating oil supply structure in the in-wheel motor drive device 1 will be described in detail.
 なお、インホイールモータ駆動装置1の減速部31が3軸の平行軸式歯車減速機である例を示したが、減速部はたとえば4軸の平行軸式歯車減速機など、他種の歯車減速機であってもよいし、歯車を有さない減速機であってもよい。 In addition, although the reduction part 31 of the in-wheel motor drive device 1 showed the example which is a 3 axis | shaft parallel axis | shaft type gear reducer, a reduction part has other kinds of gear reductions, such as a 4 axis | shaft parallel axis | shaft type gear reducer, for example. A speed reducer without a gear may be used.
 <潤滑油の供給構造について>
 (実施の形態1)
 図1を参照して、本発明の実施の形態1に係る潤滑油の供給構造の概要について説明する。図1に示されるように、インホイールモータ駆動装置1における潤滑油の供給構造は、潤滑油を封入するケーシング10と、ケーシング10の下部に設けられ、潤滑油を貯留するオイルタンク40と、オイルタンク40から潤滑油を汲み上げるオイルポンプ43と、ステータ24よりも上方位置において軸線M方向に沿って配置されたオイル通路50とを、前提の構成として備えている。なお、以下の説明において、モータ部21の軸線M方向に沿う方向を、単に軸方向という。
<Lubricating oil supply structure>
(Embodiment 1)
With reference to FIG. 1, the outline | summary of the supply structure of the lubricating oil which concerns on Embodiment 1 of this invention is demonstrated. As shown in FIG. 1, the lubricating oil supply structure in the in-wheel motor drive device 1 includes a casing 10 that encloses lubricating oil, an oil tank 40 that is provided in a lower portion of the casing 10 and stores lubricating oil, and an oil An oil pump 43 for pumping lubricating oil from the tank 40 and an oil passage 50 arranged along the axis M direction at a position above the stator 24 are provided as preconditions. In the following description, a direction along the axis M direction of the motor unit 21 is simply referred to as an axial direction.
 オイルポンプ43は、吸入油路41を介してオイルタンク40から潤滑油を吸入し、吸入した潤滑油を吐出油路45に吐出する。オイルポンプ43は、モータ回転軸22の回転に連動して駆動する。オイルポンプ43は、たとえば、出力軸38と同軸に結合され、出力軸38に駆動される。この場合、オイルポンプ43は車輪と同じ回転数で駆動される。オイルポンプ43は、たとえば、アウタロータおよびインナロータを有するトロコイドポンプである。 The oil pump 43 sucks lubricating oil from the oil tank 40 through the suction oil passage 41 and discharges the sucked lubricating oil to the discharge oil passage 45. The oil pump 43 is driven in conjunction with the rotation of the motor rotating shaft 22. The oil pump 43 is coupled to the output shaft 38 coaxially and is driven by the output shaft 38, for example. In this case, the oil pump 43 is driven at the same rotational speed as the wheels. The oil pump 43 is, for example, a trochoid pump having an outer rotor and an inner rotor.
 本実施の形態では、出力軸38の軸線O方向他方端部38fが、本体ケーシング39の背面部分39bを貫通して延びており、オイルポンプ43は、この背面部分39bから突出する出力軸38の軸線O方向他方端部38fと結合する。そのため、オイルポンプ43は、減速部31よりも車幅方向内側に位置するポンプ室46に収容される。 In the present embodiment, the other end portion 38f in the axis O direction of the output shaft 38 extends through the back surface portion 39b of the main body casing 39, and the oil pump 43 is connected to the output shaft 38 protruding from the back surface portion 39b. It couple | bonds with the axis line O direction other end part 38f. Therefore, the oil pump 43 is accommodated in the pump chamber 46 located on the inner side in the vehicle width direction than the speed reduction portion 31.
 吸入油路41は、オイルタンク40から、本体ケーシング39の背面部分39b(すなわち、本体ケーシング39とモータケーシング29との間の隔壁部)を貫通して、ポンプ室46に導かれている。ポンプ室46は、たとえば、モータケーシング29のうち、モータ部21(ステータ24)の外周面の位置よりも車両後方側に拡張した拡張部分に設けられる。なお、オイルタンク40は、モータケーシング29の下部に設けられていてもよい。 The suction oil passage 41 is led from the oil tank 40 to the pump chamber 46 through the back surface portion 39b of the main body casing 39 (that is, the partition wall portion between the main body casing 39 and the motor casing 29). The pump chamber 46 is provided, for example, in an extended portion of the motor casing 29 that extends to the vehicle rear side from the position of the outer peripheral surface of the motor unit 21 (stator 24). The oil tank 40 may be provided in the lower part of the motor casing 29.
 吐出油路45は、モータケーシングカバー29vの壁厚内に形成された昇り油路45aを含む。昇り油路45aは、上下方向に延び、上端においてオイル通路50の一端に接続されている。 The discharge oil passage 45 includes a rising oil passage 45a formed in the wall thickness of the motor casing cover 29v. The rising oil passage 45a extends in the vertical direction, and is connected to one end of the oil passage 50 at the upper end.
 オイル通路50には、軸方向に沿って複数の孔(以下「オイル孔」という)59が互いに間隔をあけて設けられている。つまり、オイル通路50には、軸方向に直交するように複数の孔59が設けられている。これにより、オイル通路50を流れる潤滑油は、オイル孔59から径方向に吐出される。 In the oil passage 50, a plurality of holes (hereinafter referred to as "oil holes") 59 are provided at intervals from each other along the axial direction. That is, the oil passage 50 is provided with a plurality of holes 59 so as to be orthogonal to the axial direction. Thereby, the lubricating oil flowing through the oil passage 50 is discharged from the oil hole 59 in the radial direction.
 本実施の形態では、オイル通路50のオイル孔59から吐出される潤滑油を、そのままステータ24のコイル26に供給するのではなく、潤滑油案内部7を介してコイル26(コイルエンド)に供給する。すなわち、本実施の形態に係る潤滑油の供給構造は、オイル孔59から吐出した潤滑油をステータ24のコイルエンドに導く潤滑油案内部7を備えている。 In the present embodiment, the lubricating oil discharged from the oil hole 59 of the oil passage 50 is not supplied to the coil 26 of the stator 24 as it is, but is supplied to the coil 26 (coil end) via the lubricating oil guide portion 7. To do. That is, the lubricating oil supply structure according to the present embodiment includes the lubricating oil guide portion 7 that guides the lubricating oil discharged from the oil hole 59 to the coil end of the stator 24.
 図3~図5を参照して、オイル通路50および潤滑油案内部7の構成例について詳細に説明する。図3は、本実施の形態に係る潤滑油の供給構造の要部を模式的に示す断面図である。図4および図5は、本実施の形態におけるオイル通路50および潤滑油案内部7を模式的に示す図であり、図4にはステータ24の全体が示され、図5にはステータ24の一部が示されている。 Referring to FIGS. 3 to 5, configuration examples of the oil passage 50 and the lubricant guide 7 will be described in detail. FIG. 3 is a cross-sectional view schematically showing a main part of the lubricating oil supply structure according to the present embodiment. 4 and 5 are diagrams schematically showing the oil passage 50 and the lubricating oil guide portion 7 in the present embodiment. FIG. 4 shows the entire stator 24, and FIG. The parts are shown.
 図3~図5を参照して、オイル通路50の構成例について説明する。本実施の形態において、オイル通路50は、2本(複数本)の管状部材(以下「オイル管」という)51,52により構成されている。オイル管51,52は直列的に接続されており、オイル管51はオイル管52の上流側に配置されている。オイル管51,52は円筒状に形成されており、オイル管51,52の直径(内径および外径)は互いに等しい。 A configuration example of the oil passage 50 will be described with reference to FIGS. In the present embodiment, the oil passage 50 is composed of two (a plurality of) tubular members (hereinafter referred to as “oil pipes”) 51 and 52. The oil pipes 51 and 52 are connected in series, and the oil pipe 51 is disposed on the upstream side of the oil pipe 52. The oil pipes 51 and 52 are formed in a cylindrical shape, and the diameters (inner diameter and outer diameter) of the oil pipes 51 and 52 are equal to each other.
 オイル管51の一端は、昇り油路45aの上端と連結し、オイル管51の他端はオイル管52の一端と連結する。本実施の形態では、オイル管52の他端は閉鎖されているが、オイル管52は、本体ケーシング39内に配置されたオイル管(図2において想像線で示すオイル管57)と、本体ケーシング39の背面部分39bにおいて連結していてもよい。つまり、モータケーシング29内に配置されるオイル通路50の下流側に、本体ケーシング39内に配置されるオイル通路(オイル管57により構成されるオイル通路)が設けられていてもよい。あるいは、オイル管52が、本体ケーシング39の背面部分39bを貫通して延び、モータ室と減速室とに跨って配置されていてもよい。 One end of the oil pipe 51 is connected to the upper end of the rising oil passage 45 a, and the other end of the oil pipe 51 is connected to one end of the oil pipe 52. In the present embodiment, the other end of the oil pipe 52 is closed, but the oil pipe 52 includes an oil pipe (an oil pipe 57 indicated by an imaginary line in FIG. 2) disposed in the main body casing 39, and a main body casing. 39 may be connected at the back portion 39b. That is, an oil passage (an oil passage constituted by the oil pipe 57) disposed in the main body casing 39 may be provided on the downstream side of the oil passage 50 disposed in the motor casing 29. Alternatively, the oil pipe 52 may extend through the back surface portion 39b of the main body casing 39, and may be disposed across the motor chamber and the deceleration chamber.
 図3に示されるように、オイル管51,52は、モータケーシング29の上部に取り付け固定されている。本実施の形態では、モータケーシング29の上端壁が径方向内側に向かって***しており、この***部分(以下「厚肉部」という)29tを軸方向に貫通するようにオイル通路50が配置されている。なお、図4には、モータケーシング29の厚肉部29tの横断面が示され、図5には、モータケーシング29の厚肉部29tの縦断面が示されている。図5は、オイル通路50を下方から見上げた状態を示す。 As shown in FIG. 3, the oil pipes 51 and 52 are attached and fixed to the upper part of the motor casing 29. In the present embodiment, the upper end wall of the motor casing 29 is bulged inward in the radial direction, and the oil passage 50 is disposed so as to penetrate this bulged portion (hereinafter referred to as “thick portion”) 29t in the axial direction. Has been. 4 shows a transverse section of the thick portion 29t of the motor casing 29, and FIG. 5 shows a longitudinal section of the thick portion 29t of the motor casing 29. FIG. 5 shows a state in which the oil passage 50 is looked up from below.
 厚肉部29tは、軸方向位置に関し、ステータコア25の軸方向幅内(軸方向一端から他端までの範囲内)に配置されている。厚肉部29tの下端は、ステータコア25の外周面と当接していてよい。 The thick portion 29t is disposed within the axial width of the stator core 25 (within the range from one axial end to the other end) with respect to the axial position. The lower end of the thick portion 29t may be in contact with the outer peripheral surface of the stator core 25.
 具体的には、厚肉部29tは、軸方向に延びる貫通孔29hを有している。貫通孔29hの軸方向他方側(インボード側)の開口からオイル管51の一部が通され、貫通孔29hの軸方向一方側(アウトボード側)の開口からオイル管52の一部が通されている。貫通孔29hの直径は、オイル管51,52の外径寸法よりも大きい。 Specifically, the thick part 29t has a through hole 29h extending in the axial direction. Part of the oil pipe 51 passes through the opening on the other axial side (inboard side) of the through hole 29h, and part of the oil pipe 52 passes through the opening on one side (outboard side) in the axial direction of the through hole 29h. Has been. The diameter of the through hole 29h is larger than the outer diameter of the oil pipes 51 and 52.
 オイル管51は、上方に向かって突出するフランジ部51aを有しており、このフランジ部51aが、厚肉部29tの軸方向他方端面にボルト固定されている。フランジ部51aは、厚肉部29tの軸方向他方端面に設けられた雌ねじ孔と対面する貫通孔を有しており、軸方向他方側から、フランジ部51aの貫通孔および厚肉部29tの雌ねじ孔にボルト63が通される。オイル管52も同様に、上方に向かって突出するフランジ部52aを有しており、このフランジ部52aが、厚肉部29tの軸方向一方端面にボルト固定されている。これにより、オイル管51,52の回転が防止される。 The oil pipe 51 has a flange portion 51a protruding upward, and this flange portion 51a is bolted to the other end surface in the axial direction of the thick portion 29t. The flange portion 51a has a through hole facing a female screw hole provided on the other end surface in the axial direction of the thick portion 29t. From the other side in the axial direction, the through hole of the flange portion 51a and the female screw of the thick portion 29t are provided. Bolts 63 are passed through the holes. Similarly, the oil pipe 52 has a flange portion 52a protruding upward, and this flange portion 52a is bolted to one end surface in the axial direction of the thick portion 29t. Thereby, rotation of the oil pipes 51 and 52 is prevented.
 オイル管51の一端は、昇り油路45aの上端に連結され、オイル管51の他端が、厚肉部29t内に配置されている。オイル管52の一端は、オイル管51の他端と隣接するように厚肉部29t内に配置され、オイル管52の他端は、厚肉部29tから外側に突出するように配置されている。オイル管52の他端の軸方向位置は、ステータコア25の軸方向一方側に位置するコイルエンド26eよりも外側(軸方向一方側)の位置である。 One end of the oil pipe 51 is connected to the upper end of the rising oil passage 45a, and the other end of the oil pipe 51 is disposed in the thick portion 29t. One end of the oil pipe 52 is disposed in the thick part 29t so as to be adjacent to the other end of the oil pipe 51, and the other end of the oil pipe 52 is disposed so as to protrude outward from the thick part 29t. . The axial direction position of the other end of the oil pipe 52 is a position on the outer side (one axial direction side) of the coil end 26e positioned on one axial direction side of the stator core 25.
 オイル管51の一端および他端には、本体部分(中央部)よりも大径である嵌合部53,54がそれぞれ設けられている。オイル管52の一端にも、本体部分(中央部)よりも大径である嵌合部55が設けられている。オイル管51の一端側の嵌合部53は、モータケーシングカバー29vの内側端面に設けられた開口部(昇り油路45aの上端部)に嵌合する。オイル管51の他端側の嵌合部54およびオイル管52の一端の嵌合部55は、モータケーシング29の厚肉部29tの貫通孔29hに嵌合する。各嵌合部の外周面には、たとえばOリング56が設けられており、各嵌合部における潤滑油の漏出が防止される。このような場合、図示されるように、オイル管51の他端とオイル管52の一端とが若干離れて配置されていてもよい。 At one end and the other end of the oil pipe 51, fitting portions 53 and 54 having a diameter larger than that of the main body portion (center portion) are provided. A fitting portion 55 having a larger diameter than the main body portion (center portion) is also provided at one end of the oil pipe 52. The fitting portion 53 on one end side of the oil pipe 51 is fitted into an opening (upper end portion of the rising oil passage 45a) provided on the inner end face of the motor casing cover 29v. The fitting part 54 on the other end side of the oil pipe 51 and the fitting part 55 on one end of the oil pipe 52 are fitted into the through hole 29 h of the thick part 29 t of the motor casing 29. For example, an O-ring 56 is provided on the outer peripheral surface of each fitting portion, and leakage of lubricating oil in each fitting portion is prevented. In such a case, as shown in the figure, the other end of the oil pipe 51 and one end of the oil pipe 52 may be arranged slightly apart.
 各々のオイル管51,52の本体部分には、少なくとも1つのオイル孔59が設けられている。すなわち、オイル通路50には、軸方向位置が互いに異なる少なくとも2つのオイル孔(第1孔、第2孔)59を含む。より具体的には、ステータ24の軸方向中央面(図3において想像線で示す)を境として軸方向一方側および他方側の双方に、少なくとも1つのオイル孔59がオイル通路50に直交するように設けられている。 At least one oil hole 59 is provided in the main body portion of each oil pipe 51, 52. That is, the oil passage 50 includes at least two oil holes (first hole, second hole) 59 having different axial positions. More specifically, at least one oil hole 59 is orthogonal to the oil passage 50 on both the one side and the other side in the axial direction with the axially central plane of the stator 24 (shown in phantom lines in FIG. 3) as a boundary. Is provided.
 図3および図5に示されるように、各オイル管51,52のオイル孔59は、ステータコア25の軸方向幅内に設けられている。つまり、オイル孔59の軸方向位置が、ステータコア25の軸方向一方端と他方端との間である。 3 and 5, the oil holes 59 of the oil pipes 51 and 52 are provided in the axial width of the stator core 25. That is, the axial position of the oil hole 59 is between one end and the other end of the stator core 25 in the axial direction.
 オイル孔59は、各オイル管51,52の下部領域に設けられており、オイル通路50を流れる潤滑油の一部を下方に流出(吐出)する。オイル孔59から吐出された潤滑油は、潤滑油案内部7を介してコイルエンド26eに導かれる。なお、コイルエンド26eは、ステータコア25の軸方向両端面の外側に形成されたコイル26の屈曲部に相当する。図4に示されるように、ステータコア25の軸方向一方側および他方側の各々において、複数のコイルエンド26eが放射状に配置されている。 The oil hole 59 is provided in a lower region of each of the oil pipes 51 and 52 and flows out (discharges) a part of the lubricating oil flowing through the oil passage 50 downward. The lubricating oil discharged from the oil hole 59 is guided to the coil end 26e through the lubricating oil guide portion 7. The coil end 26e corresponds to a bent portion of the coil 26 formed on the outer sides of both axial end surfaces of the stator core 25. As shown in FIG. 4, a plurality of coil ends 26e are arranged radially on each of one side and the other side of the stator core 25 in the axial direction.
 本実施の形態において、潤滑油案内部7は、オイル孔59から吐出した潤滑油を受けるオイル受け室71と、オイル受け室71と連通して軸方向に沿って延びるオイル注ぎ路72とを含む。 In the present embodiment, the lubricating oil guide portion 7 includes an oil receiving chamber 71 that receives the lubricating oil discharged from the oil hole 59 and an oil pouring path 72 that communicates with the oil receiving chamber 71 and extends along the axial direction. .
 オイル受け室71は、オイル通路50のオイル孔59と対面し、オイル通路50の(一部分の)外周を取り囲むように配置されている。オイル受け室71はオイル孔59から径方向に吐出される潤滑油を一旦貯め込むための空間である。オイル受け室71は、軸方向に沿って延び、たとえば円形断面(リング状断面)を有している。典型的には、オイル受け室71の軸心は、オイル通路50の軸心と一致する。オイル受け室71は、その断面積が、オイル通路50の通路面積よりも大きくなるように形成されている。 The oil receiving chamber 71 is disposed so as to face the oil hole 59 of the oil passage 50 and surround (a part of) the outer periphery of the oil passage 50. The oil receiving chamber 71 is a space for temporarily storing lubricating oil discharged from the oil hole 59 in the radial direction. The oil receiving chamber 71 extends along the axial direction and has, for example, a circular cross section (ring-shaped cross section). Typically, the axis of the oil receiving chamber 71 coincides with the axis of the oil passage 50. The oil receiving chamber 71 is formed such that its cross-sectional area is larger than the passage area of the oil passage 50.
 本実施の形態において、オイル受け室71は、モータケーシング29の一部、すなわち厚肉部29tに形成されている。つまり、オイル受け室71は、厚肉部29tの貫通孔29hの内周面と、オイル管51,52の外周面との間の環状空間により形成される。このように、厚肉部29tは、オイル受け室71の外周部を構成する。 In the present embodiment, the oil receiving chamber 71 is formed in a part of the motor casing 29, that is, in the thick portion 29t. That is, the oil receiving chamber 71 is formed by an annular space between the inner peripheral surface of the through hole 29h of the thick portion 29t and the outer peripheral surfaces of the oil pipes 51 and 52. Thus, the thick portion 29t constitutes the outer peripheral portion of the oil receiving chamber 71.
 本実施の形態では、上述のように、オイル管51の下流側端部(他端)およびオイル管52の上流側端部(一端)の外周面に、厚肉部29tの内周面と密着する嵌合部54,55がそれぞれ設けられている。そのため、オイル受け室71は、図3に示されるように、軸方向において2つのオイル受け室71a,71bに区画されている。オイル受け室71aは、オイル管51の嵌合部54よりも軸方向他方側(インボード側)に形成され、オイル管51のオイル孔59に対面する。オイル受け室71bは、オイル管52の嵌合部55よりも軸方向一方側(アウトボード側)に形成され、オイル管52のオイル孔59に対面する。 In the present embodiment, as described above, the outer peripheral surface of the downstream end portion (the other end) of the oil pipe 51 and the upstream end portion (one end) of the oil pipe 52 are in close contact with the inner peripheral surface of the thick portion 29t. Fitting portions 54 and 55 are provided. Therefore, as shown in FIG. 3, the oil receiving chamber 71 is divided into two oil receiving chambers 71a and 71b in the axial direction. The oil receiving chamber 71 a is formed on the other axial side (inboard side) of the fitting portion 54 of the oil pipe 51 and faces the oil hole 59 of the oil pipe 51. The oil receiving chamber 71 b is formed on one axial side (outboard side) of the fitting portion 55 of the oil pipe 52 and faces the oil hole 59 of the oil pipe 52.
 これにより、オイル管51のオイル孔59から吐出した潤滑油は、オイル受け室71aにおいて受け止められ、オイル管51の嵌合部54によって、他方のオイル受け室71bへの流動が阻止される。オイル受け室71aの断面形状は円形であるため、オイル受け室71aにおいて潤滑油は(オイル管51の回りを)円周方向に流動する。オイル受け室71aが受けた潤滑油は、軸方向他方端の開口から流出する。 Thereby, the lubricating oil discharged from the oil hole 59 of the oil pipe 51 is received in the oil receiving chamber 71a, and the fitting portion 54 of the oil pipe 51 prevents the flow to the other oil receiving chamber 71b. Since the cross-sectional shape of the oil receiving chamber 71a is circular, the lubricating oil flows in the circumferential direction (around the oil pipe 51) in the oil receiving chamber 71a. The lubricating oil received by the oil receiving chamber 71a flows out from the opening at the other end in the axial direction.
 オイル管52のオイル孔59から吐出した潤滑油は、オイル受け室71bにおいて受け止められ、オイル管52の嵌合部55によって、他方のオイル受け室71aへの流動が阻止される。オイル受け室71bの断面形状も円形であるため、オイル受け室71bにおいても潤滑油は(オイル管52の回りを)円周方向に流動する。オイル受け室71bが受けた潤滑油は、軸方向一方端の開口から流出する。 Lubricating oil discharged from the oil hole 59 of the oil pipe 52 is received in the oil receiving chamber 71b, and the fitting portion 55 of the oil pipe 52 prevents the flow to the other oil receiving chamber 71a. Since the cross-sectional shape of the oil receiving chamber 71b is also circular, the lubricating oil flows in the circumferential direction (around the oil pipe 52) also in the oil receiving chamber 71b. The lubricating oil received by the oil receiving chamber 71b flows out from the opening at one end in the axial direction.
 本実施の形態では、オイル受け室71a,71bの開口端側を下流側、嵌合部54,55側を上流側という。各オイル受け室71a,71bにおいて、オイル孔59の軸方向位置は上流寄りの位置であることが望ましい。すなわち、2つのオイル孔59は、ステータコア25の軸方向中央面寄りに配置されていることが望ましい。 In the present embodiment, the open end side of the oil receiving chambers 71a and 71b is referred to as the downstream side, and the fitting portions 54 and 55 side is referred to as the upstream side. In each of the oil receiving chambers 71a and 71b, the axial position of the oil hole 59 is preferably an upstream position. That is, it is desirable that the two oil holes 59 are disposed closer to the axial center surface of the stator core 25.
 上述のように、オイル受け室71a,71bの断面積はオイル通路50の通路面積よりも大きいため、オイル通路50のオイル孔59から吐出された潤滑油は、オイル通路50内で流動したときよりも遅い流速で、オイル受け室71a,71bの開口端から流出する。以下の説明において、2つのオイル受け室71a,71bを区別する必要がない場合には、単にオイル受け室71という。 As described above, since the cross-sectional areas of the oil receiving chambers 71 a and 71 b are larger than the passage area of the oil passage 50, the lubricating oil discharged from the oil hole 59 of the oil passage 50 is more than when it flows in the oil passage 50. The oil flows out from the open ends of the oil receiving chambers 71a and 71b at a slow flow rate. In the following description, when it is not necessary to distinguish the two oil receiving chambers 71a and 71b, they are simply referred to as the oil receiving chamber 71.
 オイル注ぎ路72は、オイル受け室71の下流側端部と連通して軸方向に沿って延びている。具体的には、オイル受け室71a,71bそれぞれの開口端と連通するように、一対のオイル注ぎ路72が設けられている。各オイル注ぎ路72の先端に、コイルエンド26eに潤滑油を注ぐ注ぎ口72aが形成されている。 The oil pouring path 72 communicates with the downstream end of the oil receiving chamber 71 and extends along the axial direction. Specifically, a pair of oil pouring paths 72 are provided so as to communicate with the open ends of the oil receiving chambers 71a and 71b. A spout 72a for pouring lubricating oil into the coil end 26e is formed at the tip of each oil pouring path 72.
 オイル注ぎ路72の断面形状は、たとえば半円形状である。この場合、オイル注ぎ路72は、モータケーシング29の厚肉部29tの軸方向端部に連結された円弧状の部材72mによって形成される。なお、この円弧状の部材72mは厚肉部29tの一部であってもよい。つまり、オイル注ぎ路72も、モータケーシング29の一部に形成されていてもよい。 The cross-sectional shape of the oil pouring path 72 is, for example, a semicircular shape. In this case, the oil pouring path 72 is formed by an arc-shaped member 72m connected to the axial end of the thick portion 29t of the motor casing 29. The arc-shaped member 72m may be a part of the thick portion 29t. That is, the oil pouring path 72 may also be formed in a part of the motor casing 29.
 オイル注ぎ路72の半円形状の半径は、オイル受け室71の円形状の半径よりも大きい。典型的には、オイル注ぎ路72の半円形状の中心点は、オイル通路50およびオイル受け室71の中心(軸心)と一致する。これにより、オイル受け室71の内周面とオイル注ぎ路72の内周面との間に、上下方向の段差が形成されるため、オイル受け室71が受けた潤滑油が、開口端(下流側端部)からオイル注ぎ路72に流下する。したがって、オイル注ぎ路72において、オイル受け室71で生じた円周方向の流れを制限し、潤滑油の流動方向を軸方向に収束させることができる。 The semicircular radius of the oil pouring channel 72 is larger than the circular radius of the oil receiving chamber 71. Typically, the semicircular center point of the oil pouring channel 72 coincides with the center (axial center) of the oil passage 50 and the oil receiving chamber 71. As a result, a step in the vertical direction is formed between the inner peripheral surface of the oil receiving chamber 71 and the inner peripheral surface of the oil pouring path 72, so that the lubricating oil received by the oil receiving chamber 71 is at the open end (downstream). The oil flows down from the side end portion to the oil pouring path 72. Therefore, the flow in the circumferential direction generated in the oil receiving chamber 71 in the oil pouring path 72 can be restricted, and the flow direction of the lubricating oil can be converged in the axial direction.
 オイル注ぎ路72の注ぎ口72aの軸方向位置は、ステータコア25とコイルエンド26eとの境界位置付近である。そのため、オイル注ぎ路72において流動方向が軸方向に収束された潤滑油がそのまま、注ぎ口72aから流出し、下方にあるコイルエンド26e(典型的には最も上方に位置するコイルエンド26e)に流れ落ちる。つまり、注ぎ口72aから流出する潤滑油はステータコア25の外周方向に広がらず、直接、コイルエンド26eに供給される。なお、本実施の形態では、注ぎ口72aは、径方向に見てコイルエンド26eには重ならず、ステータコア25の端部と重なる位置に形成されている。 The axial position of the spout 72a of the oil pouring path 72 is near the boundary position between the stator core 25 and the coil end 26e. Therefore, the lubricating oil whose flow direction is converged in the axial direction in the oil pouring path 72 flows out from the pouring spout 72a as it is, and flows down to the coil end 26e below (typically, the coil end 26e located at the uppermost position). . That is, the lubricating oil flowing out from the spout 72a does not spread in the outer peripheral direction of the stator core 25 but is directly supplied to the coil end 26e. In the present embodiment, the spout 72a is formed at a position that does not overlap the coil end 26e but overlaps the end of the stator core 25 when viewed in the radial direction.
 すなわち、本実施の形態によれば、オイル通路50のオイル孔59から径方向に吐出した潤滑油は、オイル受け室71a,71bにおいて流速が弱められた後、オイル受け室71a,71bよりも軸方向外側に配置されたオイル注ぎ路72において整流される。そして、オイル注ぎ路72の最も軸方向外側に位置する注ぎ口72aから、ステータコア25の両側のコイルエンド26eに、潤滑油を注ぐように供給することができる。ステータコア25の両側それぞれにおいて、最も上方に位置するコイルエンド26eに潤滑油が注がれることにより、コイル26の他の部分にも潤滑油が伝わり、また、その下方側のコイル26にも潤滑油が流れ落ちる。これにより、ステータ24のコイル26のうち潤滑油に浸かっていない部分に潤滑油を供給できるため、コイル26を効率的に冷却することができる。 In other words, according to the present embodiment, the lubricating oil discharged in the radial direction from the oil hole 59 of the oil passage 50 has a lower flow velocity in the oil receiving chambers 71a and 71b, and then is more axial than the oil receiving chambers 71a and 71b. It rectifies | straightens in the oil pouring path 72 arrange | positioned in the direction outer side. Then, the lubricating oil can be supplied from the spout 72 a located on the outermost axial direction of the oil pouring path 72 to the coil ends 26 e on both sides of the stator core 25. In each of the both sides of the stator core 25, the lubricating oil is poured into the coil end 26e located at the uppermost position, whereby the lubricating oil is transmitted to other portions of the coil 26, and the lubricating oil is also transmitted to the lower coil 26. Falls down. Thereby, since the lubricating oil can be supplied to a portion of the coil 26 of the stator 24 that is not immersed in the lubricating oil, the coil 26 can be efficiently cooled.
 ここで、モータ回転軸22が高速で回転し、オイルポンプ43から大流量の潤滑油が吐出される場合、オイル受け室71において潤滑油の流速が弱められたとしても、注ぎ口72aから勢い良く潤滑油が流出すると、潤滑油はコイルエンド26eに流れ落ちずに飛び越してしまうおそれがある。そのため、本実施の形態における潤滑油案内部7は、オイル注ぎ路72の注ぎ口72aと軸方向に対面して配置される飛散防止部材73を含む。 Here, when the motor rotating shaft 22 rotates at a high speed and a large amount of lubricating oil is discharged from the oil pump 43, even if the flow rate of the lubricating oil is weakened in the oil receiving chamber 71, the spout 72a vigorously increases. When the lubricating oil flows out, the lubricating oil may jump to the coil end 26e without flowing down. Therefore, the lubricating oil guide part 7 in this Embodiment contains the scattering prevention member 73 arrange | positioned facing the pouring spout 72a of the oil pouring path 72 and an axial direction.
 飛散防止部材73は、たとえば、径方向に延在する板状部材により構成される。インボード側に位置する飛散防止部材73は、オイル管51から下方に延びるようにオイル管51と一体的に形成され、アウトボード側に位置する飛散防止部材73は、オイル管52から下方に延びるようにオイル管52と一体的に形成さていることが望ましい。これにより、飛散防止部材73の位置決めが容易になるとともに、部品点数の増加を抑えることができる。 The scattering prevention member 73 is constituted by a plate-like member extending in the radial direction, for example. The scattering prevention member 73 located on the inboard side is integrally formed with the oil pipe 51 so as to extend downward from the oil pipe 51, and the scattering prevention member 73 located on the outboard side extends downward from the oil pipe 52. Thus, it is desirable that the oil pipe 52 is formed integrally. This facilitates positioning of the anti-scattering member 73 and suppresses an increase in the number of parts.
 軸方向位置に関し、飛散防止部材73は、各コイルエンド26eの軸方向幅内に配置されていることが望ましい。具体的には、飛散防止部材73は、径方向に見て、各コイルエンド26eの軸方向外側端部と重なっていることが望ましい。これにより、オイル注ぎ路72の注ぎ口72aから流出する潤滑油が、コイルエンド26eを越えて飛散することが防止される。また、飛散防止部材73の下端位置は、コイルエンド26eの上端よりも上方かつステータコア25の上端よりも下方であることが望ましい。 Regarding the axial position, it is desirable that the scattering prevention member 73 is disposed within the axial width of each coil end 26e. Specifically, it is desirable that the scattering prevention member 73 overlaps the axially outer end portion of each coil end 26e when viewed in the radial direction. This prevents the lubricating oil flowing out from the spout 72a of the oil pouring path 72 from scattering over the coil end 26e. Further, it is desirable that the lower end position of the scattering prevention member 73 is above the upper end of the coil end 26e and below the upper end of the stator core 25.
 このような飛散防止部材73がオイル管51,52それぞれに設けられるため、注ぎ口72aから勢い良く流出する潤滑油は、飛散防止部材73によってコイルエンド26eの軸方向幅内に拘束される。したがって、注ぎ口72aから流出する潤滑油の大部分をコイルエンド26eに供給することができる。 Since such a scattering prevention member 73 is provided in each of the oil pipes 51 and 52, the lubricating oil flowing out from the spout 72a is restrained within the axial width of the coil end 26e by the scattering prevention member 73. Therefore, most of the lubricating oil flowing out from the spout 72a can be supplied to the coil end 26e.
 以上説明したように、本実施の形態に係る潤滑油の供給構造によれば、ステータ24のコイルエンド26eに供給する潤滑油の流速および流動方向をコントロールすることができる。したがって、モータ回転軸22の回転速度、すなわちオイルポンプ43による潤滑油の吐出量に関わらず、効果的にコイルエンド26eに潤滑油を供給することができる。 As described above, according to the lubricating oil supply structure according to the present embodiment, the flow velocity and flow direction of the lubricating oil supplied to the coil end 26e of the stator 24 can be controlled. Therefore, the lubricating oil can be effectively supplied to the coil end 26e regardless of the rotational speed of the motor rotating shaft 22, that is, the discharge amount of the lubricating oil by the oil pump 43.
 より具体的には、オイル孔59の径が比較的小さい場合に、オイル孔59から潤滑油がビーム状に吐出するため、オイル孔59から直接、コイルエンド26eに潤滑油を供給する構造を採用すると、潤滑油の撥ね返りが起きるため、供給対象のコイルエンド26eに万遍なく潤滑油を与えることができない。これに対し、本実施の形態では、オイル孔59からビーム状に潤滑油が吐出されたとしても、オイル受け室71において潤滑油が一旦受け止められて、オイル注ぎ路72において潤滑油が軸方向に整流されるため、潤滑油を無駄なくコイルエンド26eに供給することができる。その結果、コイル26の冷却を効果的に行うことができる。 More specifically, when the diameter of the oil hole 59 is relatively small, the lubricating oil is discharged from the oil hole 59 in the form of a beam, so a structure is adopted in which the lubricating oil is supplied directly from the oil hole 59 to the coil end 26e. Then, since the lubricating oil rebounds, the lubricating oil cannot be uniformly applied to the coil end 26e to be supplied. On the other hand, in the present embodiment, even if the lubricating oil is discharged in the form of a beam from the oil hole 59, the lubricating oil is once received in the oil receiving chamber 71, and the lubricating oil is axially received in the oil pouring path 72. Since the rectification is performed, the lubricating oil can be supplied to the coil end 26e without waste. As a result, the coil 26 can be effectively cooled.
 一方で、オイル孔59の径を大きくすることも考えられるが、その場合、オイル通路50から減速部31にも潤滑油を供給する形態(具体的には、図2において想像線で示す減速部31側のオイル管57がオイル管52と連通する形態)を採用するインホイールモータ駆動装置に、本実施の形態に係る潤滑油の供給構造を適用できなくなるため、汎用性の観点から望ましくない。 On the other hand, it is conceivable to increase the diameter of the oil hole 59. In that case, a mode in which lubricating oil is supplied from the oil passage 50 to the speed reduction part 31 (specifically, the speed reduction part indicated by an imaginary line in FIG. 2). Since the lubricating oil supply structure according to the present embodiment cannot be applied to the in-wheel motor drive device employing the configuration in which the oil pipe 57 on the 31st side communicates with the oil pipe 52), this is not desirable from the viewpoint of versatility.
 なお、本実施の形態では、オイル通路50が2本のオイル管51,52を含む例を示したが、図6に示すように、オイル通路50は1本のオイル管58によって構成されていてもよい。この場合、厚肉部29tと嵌合する嵌合部54が、ステータ24の軸方向中央位置に設けられ、この嵌合部54の両側にオイル孔59が設けられる。また、このオイル管58は、フランジ部58aにより厚肉部29tの軸方向他方端面にボルト固定される。 In the present embodiment, an example in which the oil passage 50 includes two oil pipes 51 and 52 has been shown. However, as shown in FIG. 6, the oil passage 50 is configured by a single oil pipe 58. Also good. In this case, the fitting part 54 fitted to the thick part 29t is provided at the axial center position of the stator 24, and oil holes 59 are provided on both sides of the fitting part 54. The oil pipe 58 is bolted to the other end face in the axial direction of the thick part 29t by a flange part 58a.
 (実施の形態2)
 図7を参照して、本発明の実施の形態2に係る潤滑油の供給構造の概要について説明する。本実施の形態に係る潤滑油の供給構造は、上記した潤滑油案内部7に代えて潤滑油案内部7Aを備えている点において、実施の形態1と異なる。
(Embodiment 2)
With reference to FIG. 7, the outline of the lubricating oil supply structure according to the second embodiment of the present invention will be described. The lubricating oil supply structure according to the present embodiment is different from the first embodiment in that a lubricating oil guide portion 7A is provided instead of the above-described lubricating oil guide portion 7.
 本実施の形態においても、潤滑油の供給構造は、オイル受け室および注ぎ路を備えているが、図7および図11に示されるように、オイル受け室71Aは、オイル管51の嵌合部54およびオイル管52の嵌合部55よりも大径に形成されている。つまり、厚肉部29tの貫通孔29hは、軸方向中央部分が小径となり軸方向両端部分が大径となるように形成されている。 Also in the present embodiment, the lubricating oil supply structure includes an oil receiving chamber and a pouring channel. However, as shown in FIGS. 7 and 11, the oil receiving chamber 71 </ b> A includes a fitting portion of the oil pipe 51. 54 and the fitting portion 55 of the oil pipe 52 are formed to have a larger diameter. That is, the through-hole 29h of the thick portion 29t is formed so that the central portion in the axial direction has a small diameter and both end portions in the axial direction have a large diameter.
 これにより、オイル受け室71Aの断面積が大きくなり、潤滑油の受入れ量が増えるため、オイル受け室71Aにおいて潤滑油の流速を十分に低下させることが可能となる。 This increases the cross-sectional area of the oil receiving chamber 71A and increases the amount of lubricating oil received, so that the flow velocity of the lubricating oil in the oil receiving chamber 71A can be sufficiently reduced.
 潤滑油案内部7Aは、実施の形態1で説明した飛散防止部材73を含まず、代わりに、誘導部材8を含んでいる。誘導部材8は、オイル注ぎ路72の注ぎ口72a(図5等参照)から流出する潤滑油を、複数のコイルエンド26eに分配するための分配部材81と、潤滑油の飛散を防止するための飛散防止部材82とを、一体的に含んでいる。 Lubricating oil guide 7A does not include the scattering prevention member 73 described in the first embodiment, but includes a guide member 8 instead. The guide member 8 includes a distribution member 81 for distributing the lubricating oil flowing out from the spout 72a (see FIG. 5 and the like) of the oil pouring path 72 to the plurality of coil ends 26e, and for preventing scattering of the lubricating oil. The scattering prevention member 82 is integrally included.
 誘導部材8については、図8~図11をさらに参照して説明する。図8は、ステータ24の軸方向外側から見た場合の誘導部材8の正面図である。図9は、図8のIX方向から見た図であり、誘導部材8の上面図である。図10は、誘導部材8の斜視図である。図11は、誘導部材8の取り付け状態を示す断面図である。 The guide member 8 will be described with further reference to FIGS. FIG. 8 is a front view of the guide member 8 when viewed from the outside in the axial direction of the stator 24. FIG. 9 is a top view of the guide member 8 as viewed from the IX direction of FIG. FIG. 10 is a perspective view of the guide member 8. FIG. 11 is a cross-sectional view showing the attachment state of the guide member 8.
 分配部材81は、略U字状断面を有する樋部材83と、樋部材83の底面85に設けられた複数の孔86とにより構成されている。図8に示されるように、樋部材83は、正面から見て略円弧状に形成されている。樋部材83の円弧形状の半径はステータ24の半径と略等しい。樋部材83の円弧形状の中心角θは、たとえば60°以上であり、90°以下であることが望ましい。 The distribution member 81 includes a flange member 83 having a substantially U-shaped cross section and a plurality of holes 86 provided in the bottom surface 85 of the flange member 83. As shown in FIG. 8, the flange member 83 is formed in a substantially arc shape when viewed from the front. The radius of the arc shape of the flange member 83 is substantially equal to the radius of the stator 24. The central angle θ of the arc shape of the flange member 83 is, for example, 60 ° or more and desirably 90 ° or less.
 本実施の形態では、樋部材83は、径方向外側から見て(上方から見て)たとえば3つのコイルエンド26eと重なるように配置される。この場合、図9において想像線で示すように、各コイルエンド26eと重なる位置に孔86が設けられている。孔86は、1つのコイルエンド26eに対して複数個(たとえば2個)設けられていることが望ましい。 In the present embodiment, the flange member 83 is disposed so as to overlap, for example, the three coil ends 26e when viewed from the radially outer side (viewed from above). In this case, as shown by an imaginary line in FIG. 9, holes 86 are provided at positions overlapping the coil ends 26e. It is desirable that a plurality of (for example, two) holes 86 are provided for one coil end 26e.
 樋部材83の底面85は、円弧面でなくてもよい。図示されるように、樋部材83の底面85のうちの中央部が水平面によって形成され、その両端部が傾斜面によって形成されてもよい。 The bottom surface 85 of the eaves member 83 may not be an arc surface. As shown in the drawing, the center portion of the bottom surface 85 of the flange member 83 may be formed by a horizontal surface, and both end portions thereof may be formed by inclined surfaces.
 樋部材83の一対の立上り部87のうちの一方(以下、裏側の立上り部87という)がステータコア25の軸方向端面の円弧状の縁部に当接する。樋部材83の他方の立上り部87(以下、表側の立上り部87という)の中央部分は、飛散防止部材82と一体形成されている。 One of the pair of rising portions 87 of the flange member 83 (hereinafter, referred to as the back side rising portion 87) abuts on the arc-shaped edge of the axial end surface of the stator core 25. A central portion of the other rising portion 87 (hereinafter, referred to as a front side rising portion 87) of the flange member 83 is integrally formed with the scattering prevention member 82.
 本実施の形態では、図11に示されるように、オイル注ぎ路72の先端面と分配部材81の裏側の立上り部87とが接する。つまり、本実施の形態では、オイル注ぎ路72の注ぎ口72aが、ステータコア25とコイルエンド26eとの境界線上に配置されている。 In the present embodiment, as shown in FIG. 11, the leading end surface of the oil pouring path 72 and the rising portion 87 on the back side of the distribution member 81 are in contact with each other. That is, in the present embodiment, the spout 72a of the oil pouring path 72 is disposed on the boundary line between the stator core 25 and the coil end 26e.
 裏側の立上り部87の上端位置は、ステータコア25よりも若干上方であり、オイル注ぎ路72を形成する部材72mの厚み範囲内の位置である。そのため、オイル注ぎ路72の注ぎ口72aから流出する潤滑油を、確実に、分配部材81に流し入れることができる。 The upper end position of the rising portion 87 on the back side is slightly above the stator core 25 and is within the thickness range of the member 72m that forms the oil pouring path 72. Therefore, the lubricating oil flowing out from the spout 72 a of the oil pouring path 72 can be surely poured into the distribution member 81.
 飛散防止部材82は、取り付け状態において径方向(上下方向)に延在する板状部材である。飛散防止部材82は、分配部材81の表側の立上り部87と面一状に形成されている。飛散防止部材82の上端部には、オイル管51または52を受入れる円弧状の切欠き部88が形成されている。 The scattering prevention member 82 is a plate-like member extending in the radial direction (vertical direction) in the attached state. The scattering prevention member 82 is formed flush with the rising portion 87 on the front side of the distribution member 81. An arc-shaped notch 88 for receiving the oil pipe 51 or 52 is formed at the upper end of the scattering prevention member 82.
 図8および図10に示されているように、誘導部材8は、分配部材81の下端に連結された複数(3個)の脚部84をさらに含んでいる。脚部84は、分配部材81の裏側の立上り部87と面一状に形成された板状部材である。各脚部84は、ステータ24の軸方向端面とコイルエンド26eとの間に径方向に貫通するように形成されるスロット26s(図7)に、差し込まれた状態となるように、コイル26をステータコア25に巻き付けるときに脚部84を共組みする。 8 and 10, the guide member 8 further includes a plurality (three) of leg portions 84 connected to the lower end of the distribution member 81. The leg portion 84 is a plate-like member formed flush with the rising portion 87 on the back side of the distribution member 81. Each leg 84 is inserted into a slot 26s (FIG. 7) formed so as to penetrate in the radial direction between the axial end surface of the stator 24 and the coil end 26e. The legs 84 are co-assembled when wound around the stator core 25.
 誘導部材8は、ステータ24の軸方向端面に形成される複数のスロット26sに複数の脚部84をそれぞれ挿通するだけで取り付けられるため、分配部材81および飛散防止部材82の設置を容易に行うことができる。 Since the guide member 8 is attached simply by inserting the plurality of legs 84 into the plurality of slots 26s formed on the axial end surface of the stator 24, the distribution member 81 and the scattering prevention member 82 can be easily installed. Can do.
 このような誘導部材8が取り付けられることにより、オイル注ぎ路72の注ぎ口72aからの潤滑油は分配部材81の樋部材83の中央部に流れ落ちる。中央部に流れ落ちた潤滑油は、樋部材83の円弧形状に沿って、円周方向一方側および他方側の双方に分流する。樋部材83の中央部および両端部それぞれの底面85には孔86が設けられているため、潤滑油が樋部材83上を流れる過程において、孔86から潤滑油が流下する。これにより、比較的上方に位置する複数のコイルエンド26eに直接潤滑油を供給することができる。 By attaching such a guide member 8, the lubricating oil from the spout 72 a of the oil pouring path 72 flows down to the center of the eaves member 83 of the distribution member 81. The lubricating oil that has flowed down to the central portion is divided into both the one side and the other side in the circumferential direction along the arc shape of the flange member 83. Since holes 86 are provided in the bottom surface 85 of each of the central portion and both end portions of the flange member 83, the lubricant oil flows down from the holes 86 in the process in which the lubricant oil flows over the flange member 83. As a result, the lubricating oil can be directly supplied to the plurality of coil ends 26e positioned relatively above.
 このように、本実施の形態によれば、潤滑油の供給構造が分配部材81を含むため、実施の形態1よりもさらに効率的にコイル26を冷却することが可能となる。また、飛散防止部材82が分配部材81と一体的に設けられているため、飛散防止部材82に当たった潤滑油は確実に分配部材81に流れ落ちる。したがって、部品点数の増加を抑制できるとともに、潤滑油を無駄なくコイル26へと導くことができる。 Thus, according to the present embodiment, since the lubricating oil supply structure includes the distribution member 81, the coil 26 can be cooled more efficiently than in the first embodiment. In addition, since the scattering prevention member 82 is provided integrally with the distribution member 81, the lubricating oil that has hit the scattering prevention member 82 surely flows down to the distribution member 81. Therefore, an increase in the number of parts can be suppressed, and the lubricating oil can be led to the coil 26 without waste.
 なお、本実施の形態においても、図12に示すように、オイル通路50は1本のオイル管58によって構成されていてもよい。 In the present embodiment also, the oil passage 50 may be constituted by a single oil pipe 58 as shown in FIG.
 (実施の形態3)
 図13および図14を参照して、本発明の実施の形態3に係る潤滑油の供給構造について説明する。図13は、本発明の実施の形態3に係る潤滑油の供給構造の要部を模式的に示す断面図である。図14は、本発明の実施の形態3における潤滑油案内部7Bを模式的に示す図である。
(Embodiment 3)
With reference to FIG. 13 and FIG. 14, a lubricating oil supply structure according to Embodiment 3 of the present invention will be described. FIG. 13 is a cross-sectional view schematically showing a main part of the lubricating oil supply structure according to Embodiment 3 of the present invention. FIG. 14 is a diagram schematically showing the lubricant guide portion 7B in the third embodiment of the present invention.
 潤滑油案内部7Bの基本構成は、実施の形態1の潤滑油案内部7と略同じである。したがって、実施の形態1との相違点のみ以下に説明する。 The basic configuration of the lubricant guide 7B is substantially the same as that of the lubricant guide 7 of the first embodiment. Therefore, only differences from the first embodiment will be described below.
 本実施の形態に係る潤滑油の供給構造は、実施の形態1で示した図6のオイル管58と同様に、モータ室内のオイル通路50として1本のオイル管91を備えている。オイル管91のアウトボード側端部には板状の飛散防止部材73Aが設けられているが、オイル管91のインボード側端部には板状の飛散防止部材が設けられていない。 The lubricating oil supply structure according to the present embodiment includes one oil pipe 91 as the oil passage 50 in the motor chamber, similar to the oil pipe 58 of FIG. 6 shown in the first embodiment. A plate-like scattering prevention member 73A is provided at the end portion on the outboard side of the oil pipe 91, but a plate-like scattering prevention member is not provided at the end portion on the inboard side of the oil pipe 91.
 本実施の形態では、リヤカバーとしてのモータケーシングカバー29vの内側端面が、飛散防止形状を有している。具体的には、モータケーシングカバー29vの内側端面に設けられた凸部93が、インボード側の飛散防止部材として機能する。凸部93は、インボード側に位置するオイル注ぎ路72の注ぎ口72aと軸線方向に対面する位置に形成されている。 In the present embodiment, the inner end surface of the motor casing cover 29v as the rear cover has a scattering prevention shape. Specifically, the convex portion 93 provided on the inner end surface of the motor casing cover 29v functions as a scattering prevention member on the inboard side. The convex portion 93 is formed at a position facing the pouring spout 72a of the oil pouring path 72 located on the inboard side in the axial direction.
 凸部93は、モータケーシングカバー29vの接続部92の下方に位置し、これに連続して設けられている。接続部92は、オイル管91の嵌合部53を受入れる開口部を有する部分である。軸方向位置に関し、凸部93の先端位置は、インボード側のコイルエンド26eの端部と重なる位置であることが望ましい。上下方向位置(径方向位置)に関し、凸部93とインボード側のコイルエンド26eとの間には、隙間が設けられている。 The convex portion 93 is located below the connecting portion 92 of the motor casing cover 29v and is provided continuously therewith. The connecting portion 92 is a portion having an opening for receiving the fitting portion 53 of the oil pipe 91. Regarding the axial position, it is desirable that the tip end position of the convex portion 93 is a position overlapping the end portion of the coil end 26e on the inboard side. With respect to the vertical position (radial position), a gap is provided between the convex portion 93 and the coil end 26e on the inboard side.
 このように、本実施の形態では、オイル管91と一体形成された飛散防止部材73Aが、オイル管91のアウトボード側端部にのみ設けられているため、オイル管91をアウトボード側から厚肉部29tの貫通孔29hに挿通する際に飛散防止部材が邪魔になることがない。したがって、図3に示されるようにオイル通路50を2本のオイル管51,52で構成しなくても、飛散防止機能を損なうことなくオイル通路50を1本のオイル管91で実現することができる。 As described above, in this embodiment, the scattering prevention member 73A integrally formed with the oil pipe 91 is provided only at the end portion on the outboard side of the oil pipe 91, so that the oil pipe 91 is thickened from the outboard side. The scattering prevention member does not get in the way when inserted through the through hole 29h of the meat portion 29t. Therefore, even if the oil passage 50 is not composed of the two oil pipes 51 and 52 as shown in FIG. 3, the oil passage 50 can be realized by the single oil pipe 91 without impairing the scattering prevention function. it can.
 この場合、オイル管91は、フランジ部91aにより厚肉部29tの軸方向一方端面(アウトボード側端面)に、ボルト63によって固定される。なお、オイル管91は、たとえば、本体ケーシング39の背面部分39bに設けられた開口部(図示せず)を通して、アウトボード側から厚肉部29tに挿入することが可能である。 In this case, the oil pipe 91 is fixed by the bolt 63 to the one axial end surface (outboard side end surface) of the thick portion 29t by the flange portion 91a. The oil pipe 91 can be inserted into the thick part 29t from the outboard side through, for example, an opening (not shown) provided in the back surface portion 39b of the main body casing 39.
 ここで、オイル管91の中央部には、モータケーシング29の厚肉部29tの貫通孔29hに嵌合する大径の嵌合部(図6の嵌合部54)が設けられていない。その代わりに、厚肉部29tの軸方向中央位置に、厚肉部29tを加工して形成された仕切り部74が設けられている。仕切り部74は、たとえば、厚肉部29tの貫通孔29hの内周面に形成された円弧状または円環状の凸部によって構成されている。 Here, the oil pipe 91 is not provided with a large-diameter fitting portion (fitting portion 54 in FIG. 6) that fits into the through hole 29 h of the thick portion 29 t of the motor casing 29. Instead, a partition portion 74 formed by processing the thick portion 29t is provided at the axial center position of the thick portion 29t. The partition part 74 is comprised by the circular-arc-shaped or annular | circular shaped convex part formed in the internal peripheral surface of the through-hole 29h of the thick part 29t, for example.
 これにより、オイル受け室71Bは、仕切り部74を介して、軸方向において2つのオイル受け室71c,71dに区画される。つまり、本実施の形態では、仕切り部74によって、一方のオイル受け室から他方のオイル受け室への潤滑油の流出が抑制される。 Thereby, the oil receiving chamber 71B is partitioned into two oil receiving chambers 71c and 71d in the axial direction via the partition portion 74. That is, in the present embodiment, the partition portion 74 suppresses the outflow of the lubricating oil from one oil receiving chamber to the other oil receiving chamber.
 この場合、後述の図16に示されるように、仕切り部74の軸心の位置は、オイル受け室71Bの軸心の位置よりも鉛直上方にオフセットしていることが望ましい。これにより、オイル管91の外周を取り囲む仕切り部74全体のうちオイル管91の下方側に位置する部分の高さを高くできるため、2つのオイル受け室71c,71d間の潤滑油の流動を効果的に防止することができる。なお、仕切り部74の内周面の直径は、オイル管91の嵌合部53の外径寸法以上である。 In this case, as shown in FIG. 16 described later, it is desirable that the position of the axial center of the partition portion 74 is offset vertically upward from the position of the axial center of the oil receiving chamber 71B. Thereby, since the height of the part located in the downward side of the oil pipe 91 among the whole partition part 74 surrounding the outer periphery of the oil pipe 91 can be made high, the flow of the lubricating oil between the two oil receiving chambers 71c and 71d is effective. Can be prevented. Note that the diameter of the inner peripheral surface of the partition portion 74 is equal to or larger than the outer diameter of the fitting portion 53 of the oil pipe 91.
 図13および図14に示されるように、オイル受け室71c,71dは、オイル注ぎ路72に向かって徐々に断面積が大きくなるようにテーパ状に形成されている。この場合、オイル受け室71c,71dの内周面とオイル注ぎ路72の内周面との間には、上下方向の段差がなく、これらが連続的に設けられていてもよい。 13 and 14, the oil receiving chambers 71 c and 71 d are formed in a tapered shape so that the cross-sectional area gradually increases toward the oil pouring path 72. In this case, there is no step in the vertical direction between the inner peripheral surfaces of the oil receiving chambers 71c and 71d and the inner peripheral surface of the oil pouring path 72, and these may be provided continuously.
 オイル受け室71c,71dの円筒面がこのようにテーパ状に形成される場合、各オイル受け室が受けた潤滑油は自然とオイル注ぎ路72側へ導かれるため、2つのオイル受け室71c,71d間の潤滑油の流動をさらに効果的に防止することができる。 When the cylindrical surfaces of the oil receiving chambers 71c and 71d are formed in such a tapered shape, since the lubricating oil received by each oil receiving chamber is naturally guided to the oil pouring path 72 side, the two oil receiving chambers 71c and 71c, The flow of the lubricating oil between 71d can be more effectively prevented.
 なお、図14に示されるように、オイル管91に設けられた板状の飛散防止部材73Aの横幅(車両前後方向に沿う長さ寸法)は、オイル注ぎ路72の横幅(直径)よりも大きい。この場合、飛散防止部材73Aの横幅方向両端部は、内側に曲げられていてもよい。これにより、オイル注ぎ路72から勢いよく流出した潤滑油が、飛散防止部材73Aの横幅方向端部からさらに飛散して、コイルエンド26eよりも外側に潤滑油が流出することを防止することができる。また、飛散防止部材73Aの剛性を向上できるので、飛散防止部材73Aの板厚を薄くでき、軽量化を図ることができる。 As shown in FIG. 14, the lateral width (length dimension along the vehicle longitudinal direction) of the plate-like scattering prevention member 73 </ b> A provided in the oil pipe 91 is larger than the lateral width (diameter) of the oil pouring path 72. . In this case, both ends in the width direction of the scattering prevention member 73A may be bent inward. Thereby, it is possible to prevent the lubricating oil that has flowed out of the oil pouring path 72 from splashing further from the end in the width direction of the scattering preventing member 73A, and flowing out of the lubricating oil outside the coil end 26e. . Further, since the rigidity of the scattering prevention member 73A can be improved, the thickness of the scattering prevention member 73A can be reduced, and the weight can be reduced.
 (実施の形態4)
 図15および図16を参照して、本発明の実施の形態4に係る潤滑油の供給構造について説明する。図15は、本発明の実施の形態4に係る潤滑油の供給構造の要部を模式的に示す断面図である。図16は、本発明の実施の形態4における潤滑油案内部7Cを模式的に示す図である。
(Embodiment 4)
With reference to FIG. 15 and FIG. 16, a lubricating oil supply structure according to Embodiment 4 of the present invention will be described. FIG. 15 is a cross-sectional view schematically showing a main part of the lubricating oil supply structure according to Embodiment 4 of the present invention. FIG. 16 is a diagram schematically showing a lubricant guide portion 7C in the fourth embodiment of the present invention.
 潤滑油案内部7Cの基本構成は、実施の形態2の潤滑油案内部7Aと略同じである。したがって、実施の形態2との相違点のみ以下に説明する。 The basic configuration of the lubricant guide 7C is substantially the same as the lubricant guide 7A of the second embodiment. Therefore, only differences from the second embodiment will be described below.
 本実施の形態に係る潤滑油の供給構造は、実施の形態2で示した図12のオイル管58と同様に、モータ室内のオイル通路50として1本のオイル管91Aを備えている。このオイル管91Aは、実施の形態3のオイル管91と略同じ構成である。 The lubricating oil supply structure according to the present embodiment includes one oil pipe 91A as the oil passage 50 in the motor chamber, similarly to the oil pipe 58 of FIG. 12 shown in the second embodiment. The oil pipe 91A has substantially the same configuration as the oil pipe 91 of the third embodiment.
 潤滑油案内部7Cは、アウトボード側に位置する誘導部材8Aと、インボード側に位置する誘導部材8Bとを含んでいる。アウトボード側の誘導部材8Aは、実施の形態2で示した分配部材81のみを有し、実施の形態2で示した飛散防止部材82(図11等参照)を有さない。これに対し、インボード側の誘導部材8Bは、実施の形態2の誘導部材8と同様に、分配部材81と、これと一体的に形成された飛散防止部材82Aとを有している。 The lubricating oil guide 7C includes a guide member 8A located on the outboard side and a guide member 8B located on the inboard side. The guidance member 8A on the outboard side has only the distribution member 81 shown in the second embodiment, and does not have the scattering prevention member 82 (see FIG. 11 and the like) shown in the second embodiment. On the other hand, the guide member 8B on the inboard side includes the distribution member 81 and the scattering prevention member 82A formed integrally therewith, like the guide member 8 of the second embodiment.
 このように、アウトボード側の誘導部材8Aは飛散防止部材を含まないが、その代わりに、オイル管91Aが、上記実施の形態3で示したオイル管91と同様に、アウトボード側にのみ板状の飛散防止部材73Bを一体的に有している。これにより、本実施の形態においても、飛散防止部材73Bがオイル管91Aのアウトボード側端部にのみ設けられているため、オイル管91Aをアウトボード側から厚肉部29tの貫通孔29hに挿通する際に飛散防止部材が邪魔になることがない。 As described above, the guide member 8A on the outboard side does not include the scattering prevention member, but instead, the oil pipe 91A is provided only on the outboard side in the same manner as the oil pipe 91 shown in the third embodiment. It has integrally the shape scattering prevention member 73B. Thereby, also in the present embodiment, the scattering prevention member 73B is provided only at the end portion on the outboard side of the oil pipe 91A, so that the oil pipe 91A is inserted from the outboard side into the through hole 29h of the thick portion 29t. When doing so, the anti-scattering member does not get in the way.
 つまり、本実施の形態においても、オイル通路50を1本のオイル管91Aによって実現することができる。なお、飛散防止部材73Bは、誘導部材8Aを構成する分配部材81の表側の立上り部87の直上に配置されているため、実施の形態3の飛散防止部材73Aよりも上下長さが短い。 That is, also in the present embodiment, the oil passage 50 can be realized by the single oil pipe 91A. The scattering prevention member 73B is arranged directly above the rising portion 87 on the front side of the distribution member 81 that constitutes the guide member 8A, and therefore has a shorter vertical length than the scattering prevention member 73A of the third embodiment.
 誘導部材8Bの飛散防止部材82Aは、実施の形態2と同様に、分配部材81の表側の立上り部87と一体形成されている。飛散防止部材82Aの機能を高めるためには、オイル管91Aとの隙間を極力小さくすることが望ましい。しかしながら、オイル管91Aのインボード側端部に位置する嵌合部53は、オイル管91A本体の外径寸法よりも大きい。嵌合部53の外周面には、シール部材としてのOリング56を嵌め入れる円環状の溝を形成する必要があるためである。 The scattering prevention member 82A of the guide member 8B is integrally formed with the rising portion 87 on the front side of the distribution member 81 as in the second embodiment. In order to enhance the function of the scattering prevention member 82A, it is desirable to make the gap with the oil pipe 91A as small as possible. However, the fitting part 53 located at the inboard side end of the oil pipe 91A is larger than the outer diameter of the oil pipe 91A main body. This is because it is necessary to form an annular groove on the outer peripheral surface of the fitting portion 53 into which the O-ring 56 as a seal member is fitted.
 そのため、飛散防止部材82Aとオイル管91Aとの隙間が小さい場合、オイル管91Aをアウトボード側から厚肉部29tの貫通孔29hに挿通してケーシング10に組み付ける際に、嵌合部53が飛散防止部材82Aに干渉するおそれがある。 Therefore, when the gap between the scattering prevention member 82A and the oil pipe 91A is small, when the oil pipe 91A is inserted from the outboard side into the through hole 29h of the thick portion 29t and assembled to the casing 10, the fitting portion 53 is scattered. There is a possibility of interfering with the prevention member 82A.
 そこで、本実施の形態では、飛散防止部材82Aとモータケーシングカバー29vの接続部92との間の間隔L2を、オイル管91Aの嵌合部53の軸方向寸法L1以上としている。これにより、飛散防止部材82Aとオイル管91Aの外周面との間の隙間を小さくしたとしても、オイル管91Aを組み付ける際に、間隔L2で示される空間で、オイル管91Aの嵌合部53を上下に動かしながら、モータケーシングカバー29vの接続部92に嵌め込むことができる。 Therefore, in the present embodiment, the distance L2 between the scattering prevention member 82A and the connection portion 92 of the motor casing cover 29v is set to be not less than the axial dimension L1 of the fitting portion 53 of the oil pipe 91A. Thus, even when the gap between the scattering prevention member 82A and the outer peripheral surface of the oil pipe 91A is reduced, when the oil pipe 91A is assembled, the fitting portion 53 of the oil pipe 91A is formed in the space indicated by the interval L2. It can be fitted into the connecting portion 92 of the motor casing cover 29v while moving up and down.
 したがって、本実施の形態によれば、取り付け状態において、軸方向に見て、飛散防止部材82Aの上端部がオイル管91Aの嵌合部53と重なるように、飛散防止部材82Aを配置することができる。これにより、飛散防止部材82Aとオイル管91Aとの隙間からの潤滑油の漏れを極力抑えることが可能となる。 Therefore, according to the present embodiment, in the attached state, the scattering prevention member 82A can be arranged so that the upper end portion of the scattering prevention member 82A overlaps the fitting portion 53 of the oil pipe 91A when viewed in the axial direction. it can. Thereby, it becomes possible to suppress the leakage of the lubricating oil from the gap between the scattering prevention member 82A and the oil pipe 91A as much as possible.
 (変形例)
 上記実施の形態1~4では、オイル通路50は、ステータコア25と重なる位置に設けられたオイル孔59のみを有することとしたが、ステータコア25と重ならない位置にも、オイル孔を有していてもよい。
(Modification)
In the first to fourth embodiments, the oil passage 50 has only the oil hole 59 provided at a position overlapping with the stator core 25. However, the oil passage 50 also has an oil hole at a position not overlapping with the stator core 25. Also good.
 また、オイル受け室71は、モータケーシング29に形成されていることとしたが、モータケーシング29に取り付け可能な別部材により構成されてもよい。 Further, although the oil receiving chamber 71 is formed in the motor casing 29, it may be constituted by another member that can be attached to the motor casing 29.
 また、オイル注ぎ路72は、円弧状の部材72mによって形成されることとしたが、オイル受け室71と同様に、円筒状の部材によって形成されてもよい。 Further, although the oil pouring path 72 is formed by the arc-shaped member 72m, similarly to the oil receiving chamber 71, it may be formed by a cylindrical member.
 また、オイル受け室71の断面形状は円(正円)形であることとしたが、限定的ではない。オイル受け室71はオイル通路50の外周を取り囲むように配置されていればよく、オイル受け室71の断面形状はたとえば楕円形や多角形など他の形状であってもよい。 Further, although the cross-sectional shape of the oil receiving chamber 71 is circular (perfect circle), it is not limited. The oil receiving chamber 71 may be disposed so as to surround the outer periphery of the oil passage 50, and the cross-sectional shape of the oil receiving chamber 71 may be another shape such as an ellipse or a polygon.
 また、オイル注ぎ路72の断面形状は半円形であることとしたが、限定的ではない。オイル注ぎ路72、オイル受け室71よりも下方位置において、軸方向に沿って(オイル通路50と平行な方向に)潤滑油を流動させることができればよく、オイル注ぎ路72の断面形状はたとえばV字形状やU字形状など他の形状であってもよい。 Further, although the cross-sectional shape of the oil pouring path 72 is a semicircular shape, it is not limited. It is sufficient that the lubricating oil can flow along the axial direction (in a direction parallel to the oil passage 50) at a position below the oil pouring path 72 and the oil receiving chamber 71. The cross-sectional shape of the oil pouring path 72 is, for example, V Other shapes such as a letter shape or a U shape may be used.
 また、オイル受け室71の軸方向長さを比較的長くとれる場合などにおいては、オイル注ぎ路72を設けなくてもよい。この場合、オイル受け室71の下流側端部に、コイルエンド26eへの潤滑油の注ぎ路が形成される。 Further, when the axial length of the oil receiving chamber 71 can be made relatively long, the oil pouring path 72 may not be provided. In this case, a lubricating oil pouring path to the coil end 26 e is formed at the downstream end of the oil receiving chamber 71.
 (実施の形態5)
 本発明の実施の形態5に係る潤滑油の供給構造について説明する。図17は、本発明の実施の形態5に係る潤滑油の供給構造を模式的に示す断面図であり、インホイールモータ駆動装置1Aを、軸線O、軸線M、およびオイル通路50を通る所定の平面で切断し、展開して示す縦断面図である。
(Embodiment 5)
A lubricating oil supply structure according to Embodiment 5 of the present invention will be described. FIG. 17 is a cross-sectional view schematically showing a lubricating oil supply structure according to Embodiment 5 of the present invention. The in-wheel motor drive device 1A is passed through the axis O, the axis M, and the oil passage 50 by a predetermined amount. It is the longitudinal cross-sectional view cut | disconnected by the plane and expand | deployed.
 インホイールモータ駆動装置1Aの基本構成は、図1および図2に示したインホイールモータ駆動装置1と同様であり、車輪ハブ軸受部11と、モータ部21と、減速部31と、モータケーシング29および本体ケーシング39を含むケーシング10とを備えている。図18には、インホイールモータ駆動装置1Aの減速部31の内部構造をアウトボード側からみた状態が模式的に示されている。 The basic configuration of the in-wheel motor drive device 1A is the same as that of the in-wheel motor drive device 1 shown in FIGS. 1 and 2, and the wheel hub bearing portion 11, the motor portion 21, the speed reduction portion 31, and the motor casing 29. And a casing 10 including a main body casing 39. FIG. 18 schematically shows a state in which the internal structure of the speed reduction unit 31 of the in-wheel motor drive device 1A is viewed from the outboard side.
 なお、車輪ホイールWの内空領域に配置されるインホイールモータ駆動装置1Aは、図29に示されるように、サスペンション装置100を介して車体(図示せず)に連結されている。サスペンション装置100は、たとえばストラット式サスペンション装置であり、車幅方向に延びるロアアーム101と、ロアアーム101よりも上方に配置されて上下方向に延びるダンパー102とを含む。 Note that the in-wheel motor drive device 1A disposed in the inner space of the wheel wheel W is connected to a vehicle body (not shown) via the suspension device 100 as shown in FIG. The suspension device 100 is, for example, a strut suspension device, and includes a lower arm 101 extending in the vehicle width direction and a damper 102 disposed above the lower arm 101 and extending in the vertical direction.
 本実施の形態に係る潤滑油の供給構造の要部が、図19に示されている。本実施の形態に係る潤滑油の供給構造は、オイル通路50のオイル孔59から吐出した潤滑油をステータ24のコイルエンド26eに導く潤滑油案内部7Dを備えている。 The main part of the lubricating oil supply structure according to the present embodiment is shown in FIG. The lubricating oil supply structure according to the present embodiment includes a lubricating oil guide portion 7 </ b> D that guides the lubricating oil discharged from the oil hole 59 of the oil passage 50 to the coil end 26 e of the stator 24.
 本実施の形態において、オイル通路50は、モータケーシング29の厚肉部29tおよび本体ケーシング39の背面部分39bを軸方向に貫通するように配置された一本のオイル管91Bによって構成されている。なお、本体ケーシング39の背面部分39bは、モータケーシング29内のモータ室S1(モータ部21)と本体ケーシング39内の減速室S2(減速部31)とを軸方向に仕切る隔壁として機能していることから、以下の説明において、本体ケーシング39の背面部分39bを、ケーシング10の隔壁部39bという。 In the present embodiment, the oil passage 50 is constituted by a single oil pipe 91B disposed so as to penetrate the thick portion 29t of the motor casing 29 and the back portion 39b of the main body casing 39 in the axial direction. The back surface portion 39b of the main body casing 39 functions as a partition wall that partitions the motor chamber S1 (motor unit 21) in the motor casing 29 and the deceleration chamber S2 (deceleration unit 31) in the main body casing 39 in the axial direction. Therefore, in the following description, the back portion 39b of the main body casing 39 is referred to as a partition wall 39b of the casing 10.
 減速室S2側に位置するオイル管91Bのアウトボード側端部にもオイル孔59を設けることで、一本のオイル管91Bによって、モータ室S1および減速室S2の双方に潤滑油を供給することができる。 By providing the oil hole 59 at the outboard side end portion of the oil pipe 91B located on the speed reduction chamber S2 side, the lubricating oil is supplied to both the motor chamber S1 and the speed reduction chamber S2 by one oil pipe 91B. Can do.
 ここでまず、図20および図21をさらに参照して、オイル管91Bの支持構造について説明する。図20は、ケーシング10の減速室S2側の内部構造例を示す図であり、図20には、隔壁部39bのアウトボード側端面が模式的に表されている。図20(A)は正面図であり、図20(B)は斜視図である。なお、図20には、本体ケーシング39の正面部分39fを構成する平板状壁部を取り外した状態が示されている。図21は、オイル管91Bが挿通されたモータケーシング29(モータケーシングカバー29vを含む)の上部の縦断面構造を、減速室S2側から見た斜視図である。 Here, first, the support structure of the oil pipe 91B will be described with further reference to FIGS. FIG. 20 is a diagram showing an example of the internal structure of the casing 10 on the deceleration chamber S2 side, and FIG. 20 schematically shows an end face on the outboard side of the partition wall 39b. 20A is a front view, and FIG. 20B is a perspective view. FIG. 20 shows a state where the flat wall portion constituting the front portion 39f of the main body casing 39 is removed. FIG. 21 is a perspective view of a vertical cross-sectional structure of the upper part of the motor casing 29 (including the motor casing cover 29v) through which the oil pipe 91B is inserted, as viewed from the speed reduction chamber S2.
 オイル管91Bは、その両端がケーシング10に支持されている。オイル管91Bの一端(インボード側端部)は、上記各実施の形態と同様に、嵌合部53においてモータケーシングカバー29vの接続部92に嵌合する。オイル管91Bの他端(アウトボード側端部)は、ケーシング10の隔壁部39bにボルト固定される。 The oil pipe 91B is supported by the casing 10 at both ends. One end (inboard side end portion) of the oil pipe 91B is fitted to the connection portion 92 of the motor casing cover 29v in the fitting portion 53, as in the above embodiments. The other end (outboard side end) of the oil pipe 91B is bolted to the partition wall 39b of the casing 10.
 図18および図20に示されるように、ケーシング10の隔壁部39bには、オイル管91Bが挿通される開口部39hが設けられている。設置状態において減速室S2側に位置するオイル管91Bの外周面には、溶接等によって取付金具(ブラケット)91tが連結されている。取付金具91tは、オイル管91Bに直交して径方向に延びる板状部を含み、当該板状部に板厚方向に貫通する貫通孔(図示せず)を有している。隔壁部39bのアウトボード側端面には、開口部39hの近傍に雌ねじ孔39iが設けられている。オイル管91Bの他端側(アウトボード側端部)は、取付金具91tの貫通孔にボルト64の軸部がアウトボード側から通されて雌ねじ孔39iと螺合することにより、隔壁部39bのアウトボード側端面に確りと固定される。 18 and 20, the partition wall 39b of the casing 10 is provided with an opening 39h through which the oil pipe 91B is inserted. A mounting bracket (bracket) 91t is connected to the outer peripheral surface of the oil pipe 91B located on the deceleration chamber S2 side in the installed state by welding or the like. The mounting bracket 91t includes a plate-like portion extending in the radial direction orthogonal to the oil pipe 91B, and has a through-hole (not shown) penetrating in the plate thickness direction in the plate-like portion. A female screw hole 39i is provided in the vicinity of the opening 39h on the end surface on the outboard side of the partition wall 39b. The other end side (outboard side end portion) of the oil pipe 91B is inserted into the through hole of the mounting bracket 91t through the shaft portion of the bolt 64 from the outboard side and screwed into the female screw hole 39i. Fixed to the outboard side end face.
 本実施の形態におけるオイル管91Bの支持構造によれば、インホイールモータ駆動装置1Aの製造時に、モータ部21の組み付けが完了した後に、(図18および図20に示されるように、本体ケーシング39の正面部分39fを構成する平板状壁部が外された状態において)1本のオイル管91Bを減速室S2側から容易に取り付けることができる。具体的には、次のような手順でオイル管91Bがケーシング10に取り付けられる。 According to the support structure of the oil pipe 91B in the present embodiment, after the assembly of the motor unit 21 is completed at the time of manufacturing the in-wheel motor drive device 1A (as shown in FIGS. 18 and 20, the main body casing 39). The oil pipe 91B can be easily attached from the speed reduction chamber S2 side (in the state where the flat wall portion constituting the front portion 39f is removed). Specifically, the oil pipe 91B is attached to the casing 10 in the following procedure.
 まず、ケーシング10の隔壁部39bの開口部39hに、嵌合部53が先頭となるようにアウトボード側からオイル管91Bを挿入する。次に、嵌合部53が、厚肉部29tの貫通孔29hを通過してモータケーシングカバー29vにまで達すると、嵌合部53をモータケーシングカバー29vの接続部92に嵌め入れる。これにより、オイル管91Bのインボード側端部が、嵌合部53の外周に設けられたOリング56と接続部92との嵌め合いによって固定される。その後、減速室S2において、オイル管91Bに連結された取付金具91tを、隔壁部39bのアウトボード側端面にボルト64で固定する。これにより、オイル管91Bのアウトボード側端部が、隔壁部39bにボルト固定される。 First, the oil pipe 91 </ b> B is inserted into the opening 39 h of the partition wall 39 b of the casing 10 from the outboard side so that the fitting portion 53 is at the head. Next, when the fitting part 53 passes through the through hole 29h of the thick part 29t and reaches the motor casing cover 29v, the fitting part 53 is fitted into the connection part 92 of the motor casing cover 29v. Thereby, the inboard side end portion of the oil pipe 91 </ b> B is fixed by fitting the O-ring 56 provided on the outer periphery of the fitting portion 53 and the connection portion 92. Thereafter, in the deceleration chamber S2, the mounting bracket 91t connected to the oil pipe 91B is fixed to the end face on the outboard side of the partition wall 39b with the bolt 64. As a result, the end portion on the outboard side of the oil pipe 91B is bolted to the partition wall 39b.
 このように、本実施の形態によれば、1本のオイル管91Bでモータ室S1だけでなく、減速室S2にも潤滑油を送ることができるため、部品点数を減らすことができる。また、製造コストを低減することができる。また、図21に示されるように、オイル管91Bの軸方向両端部が、Oリング56とボルト64とによりケーシング10に支持されるため、オイル管91Bを傾き難くすることができる。 Thus, according to the present embodiment, the lubricating oil can be sent not only to the motor chamber S1 but also to the deceleration chamber S2 with one oil pipe 91B, so the number of parts can be reduced. In addition, the manufacturing cost can be reduced. Further, as shown in FIG. 21, both end portions in the axial direction of the oil pipe 91B are supported by the casing 10 by the O-ring 56 and the bolt 64, so that the oil pipe 91B can be made difficult to tilt.
 次に、図22~図25を参照して、潤滑油案内部7Dについて説明する。図22は、潤滑油案内部7Dを模式的に示す図であり、モータケーシング29の上部(厚肉部29t)およびオイル管91Bの縦断面構造を斜め上方から見た図である。図23は、潤滑油案内部7Dを模式的に示す図であり、オイル管91Bを取り除いた状態で、モータケーシング29の上部(厚肉部29t)の横断面構造を斜め上方から見た図である。図24は、モータケーシングカバー29vを取り外した状態で、インボード側からモータ室S1を見た図である。図25は、ケーシング10のモータ室S1側の内部構造例を示す図であり、図25には、隔壁部39bおよび厚肉部29tのインボード側端面が模式的に表されている。図25(A)は正面図であり、図25(B)は斜視図である。 Next, the lubricating oil guide portion 7D will be described with reference to FIGS. FIG. 22 is a diagram schematically showing the lubricating oil guide portion 7D, and is a view of the upper cross section structure of the motor casing 29 (thick portion 29t) and the oil pipe 91B as viewed obliquely from above. FIG. 23 is a diagram schematically showing the lubricating oil guide portion 7D, and is a diagram showing the cross-sectional structure of the upper portion (thick portion 29t) of the motor casing 29 as viewed from obliquely above with the oil pipe 91B removed. is there. FIG. 24 is a view of the motor chamber S1 as seen from the inboard side with the motor casing cover 29v removed. FIG. 25 is a diagram showing an example of the internal structure of the casing 10 on the motor chamber S1 side. FIG. 25 schematically shows the inboard-side end surfaces of the partition wall portion 39b and the thick portion 29t. FIG. 25A is a front view, and FIG. 25B is a perspective view.
 潤滑油案内部7Dは、ステータコア25の上方に位置するオイル管91Bのオイル孔59から吐出した潤滑油を受けるオイル受け室71Cを含んでいる。 The lubricating oil guide 7D includes an oil receiving chamber 71C that receives lubricating oil discharged from the oil hole 59 of the oil pipe 91B located above the stator core 25.
 オイル受け室71Cは、実施の形態3と同様に、モータケーシング29上部の厚肉部29tにおいて、仕切り部74Aを境として、2つのオイル受け室71e,71fに区画されている。仕切り部74Aは、厚肉部29tの貫通孔29hの内周面から突出する円弧状または円環状の凸部によって構成されている。仕切り部74Aとしての凸部は、少なくともオイル管91Bの軸心高さよりも下方に配置されていればよい。なお、オイル管91Bが上述のように減速室S2側から取り付けられる場合、仕切り部74Aの内径寸法(最小寸法)は、オイル管91Bの嵌合部53の外径寸法よりも大きい。 Similarly to the third embodiment, the oil receiving chamber 71C is divided into two oil receiving chambers 71e and 71f in the thick portion 29t at the top of the motor casing 29 with the partition portion 74A as a boundary. The partition portion 74A is configured by an arc-shaped or annular convex portion protruding from the inner peripheral surface of the through hole 29h of the thick portion 29t. The convex portion as the partitioning portion 74A only needs to be disposed at least below the axial center height of the oil pipe 91B. When the oil pipe 91B is attached from the deceleration chamber S2 side as described above, the inner diameter dimension (minimum dimension) of the partition portion 74A is larger than the outer diameter dimension of the fitting portion 53 of the oil pipe 91B.
 本実施の形態においても、ステータコア25の軸方向幅内において、仕切り部74Aの軸方向位置よりもアウトボード側およびインボード側に、少なくとも1つずつオイル孔59が設けられている。これにより、オイル孔59から各オイル受け室71e,71fへと潤滑油が吐出される。また、オイル受け室71e,71f間には仕切り部74Aが設けられているため、各オイル受け室71e,71fで受けた潤滑油が他方のオイル受け室へと浸入することを防止できる。これにより、ステータ24の軸方向両側に配置されたコイルエンド26eのうちの一方側にのみ潤滑油が多く流れる(潤滑油の供給量が不均一となる)ことを防止できる。 Also in the present embodiment, at least one oil hole 59 is provided on the outboard side and the inboard side from the axial position of the partition portion 74A within the axial width of the stator core 25. Thereby, the lubricating oil is discharged from the oil hole 59 to the respective oil receiving chambers 71e and 71f. Further, since the partition portion 74A is provided between the oil receiving chambers 71e and 71f, it is possible to prevent the lubricating oil received in each oil receiving chamber 71e and 71f from entering the other oil receiving chamber. Accordingly, it is possible to prevent a large amount of lubricating oil from flowing only on one side of the coil ends 26e disposed on both sides in the axial direction of the stator 24 (a supply amount of the lubricating oil is not uniform).
 潤滑油案内部7Dは、アウトボード側のオイル受け室71eと連通して軸方向に沿って延びるオイル注ぎ路72Aと、インボード側のオイル受け室71fと連通して軸方向に沿って延びるオイル注ぎ路72Bとをさらに含む。本実施の形態におけるオイル注ぎ路72A,72Bの形状は、半円形状ではなく、図23に示されるように、略平坦な底面72fを有する谷形状であってもよい。これにより、オイル注ぎ路72A,72Bにおいて、より効果的に、潤滑油の流動方向を軸方向に収束させることができる。 The lubricating oil guide 7D communicates with the oil receiving chamber 71e on the outboard side and extends along the axial direction 72A, and with the oil receiving chamber 71f on the inboard side and extends along the axial direction. And a pouring channel 72B. The shape of oil pouring paths 72A and 72B in the present embodiment is not a semicircular shape, but may be a valley shape having a substantially flat bottom surface 72f as shown in FIG. Thereby, in the oil pouring paths 72A and 72B, the flow direction of the lubricating oil can be converged in the axial direction more effectively.
 図19に示されるように、本実施の形態では、仕切り部74Aの軸方向位置が、ステータ24の中央位置LAよりもアウトボード側にずれている。この場合、アウトボード側のオイル受け室71eおよびオイル注ぎ路72Aの少なくとも一方の軸方向長さは、インボード側のオイル受け室71fおよびオイル注ぎ路72Bの軸方向長さよりも短い。本実施の形態では、アウトボード側のオイル受け室71eおよびオイル注ぎ路72Aの双方の軸方向長さが、インボード側のオイル受け室71fおよびオイル注ぎ路72Bの軸方向長さよりも短い。 As shown in FIG. 19, in the present embodiment, the axial position of the partition portion 74 </ b> A is shifted to the outboard side from the center position LA of the stator 24. In this case, the axial length of at least one of the oil receiving chamber 71e and the oil pouring path 72A on the outboard side is shorter than the axial length of the oil receiving chamber 71f and the oil pouring path 72B on the inboard side. In the present embodiment, the axial lengths of both the oil receiving chamber 71e on the outboard side and the oil pouring path 72A are shorter than the axial lengths of the oil receiving chamber 71f and the oil pouring path 72B on the inboard side.
 また、図19に示されるように、インボード側のオイル受け室71fは、実施の形態3と同様に、オイル注ぎ路72Bに向かって(インボード側へいくにつれて)徐々に断面積が大きくなるようにテーパ状に形成されている。つまり、インボード側のオイル受け室71fは、その下端高さが仕切り部74Aから遠ざかるにつれて下方となるよう、軸方向に沿って(軸線Mに対して)傾斜している。アウトボード側のオイル受け室71eも、その下端高さが仕切り部74Aから遠ざかるにつれて下方となるよう、軸方向に沿って(軸線Mに対して)傾斜していてもよい。本実施の形態では、インボード側のオイル受け室71fの方が、アウトボード側のオイル受け室71eよりも勾配(傾斜角度)が大きい。オイル注ぎ路72A,72Bについても同様に、インボード側のオイル注ぎ路72Bの方が、アウトボード側のオイル注ぎ路72Aよりも勾配(傾斜角度)が大きい。 As shown in FIG. 19, the oil receiving chamber 71f on the inboard side gradually increases in cross-sectional area toward the oil pouring path 72B (as it goes to the inboard side), as in the third embodiment. Thus, it is formed in a tapered shape. That is, the oil receiving chamber 71f on the inboard side is inclined along the axial direction (relative to the axis M) so that the lower end height of the inboard oil receiving chamber 71f becomes lower as the distance from the partition portion 74A increases. The oil receiving chamber 71e on the outboard side may also be inclined along the axial direction (relative to the axis M) so that the lower end height of the oil receiving chamber 71e becomes lower as the distance from the partition portion 74A increases. In the present embodiment, the oil receiving chamber 71f on the inboard side has a larger gradient (inclination angle) than the oil receiving chamber 71e on the outboard side. Similarly, regarding the oil pouring paths 72A and 72B, the oil pouring path 72B on the inboard side has a larger gradient (inclination angle) than the oil pouring path 72A on the outboard side.
 このように、インボード側のオイル受け室71fまたはオイル注ぎ路72Bは、軸方向外側へ潤滑油が流れやすくなるよう勾配がつけられている。アウトボード側のオイル受け室71eおよびオイル注ぎ路72Aの少なくとも一方の勾配は、いわゆる抜き勾配程度であってもよい。なお、オイル受け室71f(71e)およびオイル注ぎ路72B(72A)の双方において、軸方向に沿って傾斜する傾斜面は、滑らかな傾斜面(テーパ面)に限定されず、たとえば、軸方向外側に向かって潤滑油が流れるように構成された波状の面や複数の段差を有する面によって形成されていてもよい。オイル受け室71f(71e)の傾斜角度およびオイル注ぎ路72B(72A)の傾斜角度は、インホイールモータ駆動装置1Aを車体に取り付けた場合のキャンバー角を考慮して定めてもよい。 As described above, the oil receiving chamber 71f or the oil pouring path 72B on the inboard side is inclined so that the lubricating oil can easily flow outward in the axial direction. The gradient of at least one of the oil receiving chamber 71e on the outboard side and the oil pouring path 72A may be a so-called draft angle. In both the oil receiving chamber 71f (71e) and the oil pouring path 72B (72A), the inclined surface that is inclined along the axial direction is not limited to a smooth inclined surface (tapered surface). May be formed by a wavy surface configured to allow the lubricating oil to flow toward the surface or a surface having a plurality of steps. The inclination angle of the oil receiving chamber 71f (71e) and the inclination angle of the oil pouring path 72B (72A) may be determined in consideration of the camber angle when the in-wheel motor drive device 1A is attached to the vehicle body.
 なお、本実施の形態のように、たとえば、アウトボード側のオイル受け室71eの軸方向長さがインボード側のオイル受け室71fの軸方向長さよりも短い場合、オイル注ぎ路72Aに対面する位置にオイル孔59が配置されていてもよい。つまり、オイル注ぎ路72Aにも、オイル管91Bのオイル孔59から吐出されたオイルを受ける機能を持たせてもよい。 As in the present embodiment, for example, when the axial length of the oil receiving chamber 71e on the outboard side is shorter than the axial length of the oil receiving chamber 71f on the inboard side, the oil pouring path 72A is faced. An oil hole 59 may be disposed at the position. That is, the oil pouring path 72A may also have a function of receiving oil discharged from the oil hole 59 of the oil pipe 91B.
 図19を参照して、潤滑油案内部7Dは、オイル注ぎ路72A,72Bから流出する潤滑油を、複数のコイルエンド26eに分配するための一対の分配部材81A,81Aを含んでいる。また、潤滑油案内部7Dは、アウトボード側のオイル注ぎ路72Aから流出する潤滑油の飛散を防止する飛散防止部材73Cと、インボード側のオイル注ぎ路72Bから流出する潤滑油の飛散を防止する飛散防止部材73Dとをさらに含んでいる。 Referring to FIG. 19, the lubricant guide 7D includes a pair of distribution members 81A and 81A for distributing the lubricant flowing out from the oil pouring paths 72A and 72B to the plurality of coil ends 26e. The lubricating oil guide 7D also prevents scattering of the lubricating oil flowing out from the oil pouring path 72A on the outboard side and preventing scattering of lubricating oil flowing out from the oil pouring path 72B on the inboard side. And an anti-scattering member 73D.
 分配部材81Aは、樋部材83Aと、樋部材83Aの底面85に設けられた複数の孔86とにより構成されている。樋部材83Aは、上述の樋部材83とは異なり、ステータコア25の軸方向端面の円弧状の縁部25aに接する立上り部を有さず、樋部材83Aの底面85がステータコア25の軸方向端面の縁部25aに突き当たった状態で接している。 The distribution member 81A includes a flange member 83A and a plurality of holes 86 provided in the bottom surface 85 of the flange member 83A. Unlike the above-described flange member 83, the flange member 83 </ b> A does not have a rising portion that contacts the arcuate edge 25 a of the axial end surface of the stator core 25, and the bottom surface 85 of the flange member 83 </ b> A is an axial end surface of the stator core 25. It is in contact with the edge portion 25a.
 分配部材81Aは、実施の形態2と同様に、樋部材83Aと一体的に連結された複数の脚部84が、ステータ24の軸方向端面に形成される複数のスロット26sにそれぞれ挿通されることによって取り付けられる。 In the distribution member 81A, as in the second embodiment, the plurality of leg portions 84 integrally connected to the flange member 83A are inserted into the plurality of slots 26s formed on the axial end surface of the stator 24, respectively. Attached by.
 図24に示されるように、軸方向に見て円弧状の樋部材83Aは、オイル管91B(オイル通路50)の軸線Cとモータ回転軸22の軸線Mとを結ぶ仮想線LB上またはその付近に、その中央部が位置するように配置されることが望ましい。 As shown in FIG. 24, the arcuate scissors 83A as viewed in the axial direction is on or near a virtual line LB connecting the axis C of the oil pipe 91B (oil passage 50) and the axis M of the motor rotating shaft 22. In addition, it is desirable that the central portion be positioned.
 図22および図23に示されるように、樋部材83Aの中央部には、仕切壁89が設けられていてもよい。仕切壁89は、ステータコア25の軸方向端面の縁部25eと樋部材83Aの立上り部87との間の空間を塞ぐように、樋部材83Aの底面85上に立設される。これにより、オイル管91Bの軸線Cが軸線Mよりも車両前方側(または後方側)にずれて配置され、樋部材83Aの中央部が上端に位置しない場合であっても、仕切壁89によって車両前後方向に潤滑油を分配できる。すなわち、軸方向にみて、潤滑油の分配が車両前方側(または後方側)に偏ることを防止または抑制できる。したがって、複数のコイルエンド26eに潤滑油を適切に分配することができる。 As shown in FIGS. 22 and 23, a partition wall 89 may be provided at the center of the flange member 83A. The partition wall 89 is erected on the bottom surface 85 of the flange member 83A so as to close a space between the edge 25e of the axial end surface of the stator core 25 and the rising portion 87 of the flange member 83A. Thus, even when the axis C of the oil pipe 91B is shifted from the axis M to the vehicle front side (or rear side) and the central portion of the flange member 83A is not positioned at the upper end, the partition wall 89 causes the vehicle to Lubricating oil can be distributed in the front-rear direction. That is, it is possible to prevent or suppress the distribution of the lubricating oil from being biased toward the front side (or the rear side) of the vehicle as viewed in the axial direction. Accordingly, the lubricating oil can be appropriately distributed to the plurality of coil ends 26e.
 アウトボード側の飛散防止部材73Cは、実施の形態4の飛散防止部材73Bと同様に、オイル管91Bに溶接等により接続された板状部材により構成されている。飛散防止部材73Cは、分配部材81Aの上方に位置し、オイル注ぎ路72Aの軸方向端部(注ぎ口)と軸方向に対面して配置されている。飛散防止部材73Cは、分配部材81Aの立上り部87よりもステータコア25側(インボード側)に配置されていてもよい。なお、飛散防止部材73Cは、オイル管91Bに固定された状態で、隔壁部39bに設けられた開口部39hを通過できる形状および大きさとなっている。また、飛散防止部材73Cは、上述の取付金具91tと一体形成されていてもよい。 The anti-scattering member 73C on the outboard side is composed of a plate-like member connected to the oil pipe 91B by welding or the like, similar to the anti-scattering member 73B of the fourth embodiment. The scattering prevention member 73C is located above the distribution member 81A, and is disposed so as to face the axial end (pour spout) of the oil pouring path 72A in the axial direction. The scattering prevention member 73C may be disposed closer to the stator core 25 (inboard side) than the rising portion 87 of the distribution member 81A. The scattering prevention member 73C has a shape and a size that can pass through the opening 39h provided in the partition wall 39b while being fixed to the oil pipe 91B. Further, the anti-scattering member 73C may be integrally formed with the mounting bracket 91t described above.
 インボード側の飛散防止部材73Dは、実施の形態3と同様に、モータケーシングカバー29vに設けられた凸部93により構成されている。すなわち、飛散防止部材73Dは、モータケーシングカバー29vの内側端面に、接続部92の下方に連続するように設けられている。 The inboard-side scattering prevention member 73D is configured by a convex portion 93 provided on the motor casing cover 29v, as in the third embodiment. That is, the anti-scattering member 73D is provided on the inner end surface of the motor casing cover 29v so as to continue below the connection portion 92.
 以上説明したように、潤滑油案内部7Dを備えたインホイールモータ駆動装置1Aによれば、簡易な構造で、軸方向両側のコイルエンド26eに上方から潤滑油を供給できるため、ステータ24を効率的に冷却することができる。 As described above, according to the in-wheel motor drive device 1A including the lubricant guide portion 7D, the lubricant can be supplied from above to the coil ends 26e on both sides in the axial direction with a simple structure. Can be cooled.
 コイルエンド26eに供給された潤滑油は、モータ回転軸22を回転支持する転がり軸受27,28の潤滑にも寄与する。図17に示されるように、モータ回転軸22のインボード側端部に、モータ回転軸22の回転を検出するレゾルバ(回転センサ)68が設けられている場合、インボード側の転がり軸受28に供給された潤滑油が、センサ室S3に導かれるようにモータケーシングカバー29vを構成してもよい。センサ室S3は、レゾルバ68が収容される空間である。 The lubricating oil supplied to the coil end 26e also contributes to the lubrication of the rolling bearings 27 and 28 that rotatably support the motor rotating shaft 22. As shown in FIG. 17, when a resolver (rotation sensor) 68 for detecting the rotation of the motor rotation shaft 22 is provided at the inboard side end of the motor rotation shaft 22, the inboard-side rolling bearing 28 is provided. The motor casing cover 29v may be configured such that the supplied lubricating oil is guided to the sensor chamber S3. The sensor chamber S3 is a space in which the resolver 68 is accommodated.
 モータケーシングカバー29vの構造例を、図26~図28に示す。図26は、モータケーシングカバー29vをアウトボード側から(モータ室S1側から)見た斜視図であり、図27は、モータケーシングカバー29vをインボード側から見た正面図である。図28は、モータケーシングカバー29vに設けられたセンサ室S3を模式的に示す縦断面図である。 Examples of the structure of the motor casing cover 29v are shown in FIGS. FIG. 26 is a perspective view of the motor casing cover 29v as viewed from the outboard side (from the motor chamber S1 side), and FIG. 27 is a front view of the motor casing cover 29v as viewed from the inboard side. FIG. 28 is a longitudinal sectional view schematically showing the sensor chamber S3 provided in the motor casing cover 29v.
 モータケーシングカバー29vは、転がり軸受28およびレゾルバ68が同軸で嵌め入れられる筒状部66を有している。筒状部66において、レゾルバ68は転がり軸受28よりもインボード側に配置されている。また、モータケーシングカバー29vには、レゾルバ68の信号線(図示せず)を、センサ室S3からモータ室S1へ引き込むための連通穴69が設けられている。連通穴69は、軸線Mよりも下方に位置している。 The motor casing cover 29v has a cylindrical portion 66 into which the rolling bearing 28 and the resolver 68 are fitted coaxially. In the cylindrical portion 66, the resolver 68 is disposed on the inboard side with respect to the rolling bearing 28. The motor casing cover 29v is provided with a communication hole 69 for drawing a signal line (not shown) of the resolver 68 from the sensor chamber S3 to the motor chamber S1. The communication hole 69 is located below the axis M.
 筒状部66の下端部には、モータ室S1からセンサ室S3へと軸方向に貫通する排出路67が設けられている。これにより、転がり軸受28を潤滑した潤滑油が、排出路67を通ってセンサ室S3へと排出される。センサ室S3へと排出された潤滑油は、連通穴69を通って再びモータ室S1へ流れる。このように、転がり軸受28を潤滑した潤滑油が、センサ室S3を迂回して、連通穴69からモータ室S1に戻る構成とすることで、潤滑油をロータ23に掛かり難くすることができる。したがって、ロータ23の回転抵抗を減らすことができる。 At the lower end of the cylindrical portion 66, a discharge passage 67 is provided that penetrates from the motor chamber S1 to the sensor chamber S3 in the axial direction. Accordingly, the lubricating oil that has lubricated the rolling bearing 28 is discharged to the sensor chamber S3 through the discharge path 67. The lubricating oil discharged to the sensor chamber S3 flows again through the communication hole 69 to the motor chamber S1. In this way, the lubricating oil that lubricates the rolling bearing 28 bypasses the sensor chamber S3 and returns from the communication hole 69 to the motor chamber S1, so that the lubricating oil can hardly be applied to the rotor 23. Therefore, the rotational resistance of the rotor 23 can be reduced.
 図26に示されるように、レゾルバ68の信号線を固定するための配線固定部材94が設けられる場合、センサ室S3から連通穴69を通過する潤滑油は、配線固定部材94とモータケーシングカバー29vのアウトボード側端面との間の隙間を流下し、配線固定部材94とモータケーシングカバー29vの筒状部の下端部(内周面)との間の隙間を通ってアウトボード側へと流れる。 As shown in FIG. 26, when the wiring fixing member 94 for fixing the signal line of the resolver 68 is provided, the lubricating oil passing through the communication hole 69 from the sensor chamber S3 is removed from the wiring fixing member 94 and the motor casing cover 29v. And flows to the outboard side through the gap between the wiring fixing member 94 and the lower end (inner peripheral surface) of the cylindrical portion of the motor casing cover 29v.
 なお、ステータ24の冷却(および転がり軸受27,28の潤滑)に供された潤滑油は、隔壁部39bに設けられた開口39j(図18および図19)を介して、モータ室S1から減速室S2に設けられたオイルタンク40に戻る。隔壁部39bの開口39jは、軸線Mよりも下方に位置し、オイル戻り路として機能している。 Note that the lubricating oil used for cooling the stator 24 (and lubricating the rolling bearings 27 and 28) passes from the motor chamber S1 through the opening 39j (FIGS. 18 and 19) provided in the partition wall portion 39b. It returns to the oil tank 40 provided in S2. The opening 39j of the partition wall 39b is located below the axis M and functions as an oil return path.
 本実施の形態において、オイル戻り路としての開口39jは、軸方向にみてステータ24と重なる位置に設けられている。つまり、開口39jは、ステータコア25の外周円(図18において破線で示す)の内側に位置していることが望ましい。この場合、図18に示されるように、隔壁部39bをインボード側からみた場合、開口39jからステータ24の下端部(コイルエンド26eおよびステータコア25の軸方向端面の縁部25e)が露出する。 In the present embodiment, the opening 39j as an oil return path is provided at a position overlapping the stator 24 in the axial direction. That is, it is desirable that the opening 39j is located inside the outer circumference circle (indicated by a broken line in FIG. 18) of the stator core 25. In this case, as shown in FIG. 18, when the partition wall 39b is viewed from the inboard side, the lower end of the stator 24 (the coil end 26e and the edge 25e of the axial end surface of the stator core 25) is exposed from the opening 39j.
 開口39jがこのような位置に設けられる場合、潤滑油がオイルタンク40へ戻りやすくなるため、ケーシング10内に封入する潤滑油量を少なくしても潤滑油を効率良く循環させることができる。また、潤滑油量を少なくすることで、インホイールモータ駆動装置1Aの軽量化を図ることができる。 When the opening 39j is provided at such a position, the lubricating oil easily returns to the oil tank 40, so that the lubricating oil can be circulated efficiently even if the amount of the lubricating oil enclosed in the casing 10 is reduced. Further, by reducing the amount of lubricating oil, it is possible to reduce the weight of the in-wheel motor drive device 1A.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,1A インホイールモータ駆動装置、7,7A,7B,7C,7D 潤滑油案内部、8,8A,8B 誘導部材、10 ケーシング、11 車輪ハブ軸受部、21 モータ部、22 モータ回転軸、23 ロータ、24 ステータ、25 ステータコア、26 コイル、26e コイルエンド、29 モータケーシング、29v モータケーシングカバー、31 減速部、39 本体ケーシング、40 オイルタンク、41 吸入油路、43 オイルポンプ、45 吐出油路、50 オイル通路、51,52,57,58,91,91A,91B オイル管、59 オイル孔、71,71A,71B,71C,71a,71b,71c,71d,71e,71f オイル受け室、72,72A,72B オイル注ぎ路、72a 注ぎ口、73,73A,73B,73C,73D,82,82A 飛散防止部材、81,81A 分配部材、92 接続部、93 凸部。 1, 1A in-wheel motor drive, 7, 7A, 7B, 7C, 7D lubricating oil guide, 8, 8A, 8B induction member, 10 casing, 11 wheel hub bearing, 21 motor, 22 motor rotation shaft, 23 Rotor, 24 stator, 25 stator core, 26 coil, 26e coil end, 29 motor casing, 29v motor casing cover, 31 speed reducer, 39 body casing, 40 oil tank, 41 intake oil passage, 43 oil pump, 45 discharge oil passage, 50 oil passage, 51, 52, 57, 58, 91, 91A, 91B oil pipe, 59 oil hole, 71, 71A, 71B, 71C, 71a, 71b, 71c, 71d, 71e, 71f oil receiving chamber, 72, 72A , 72B oil pouring path, 72a spout 73,73A, 73B, 73C, 73D, 82,82A-splash prevention member, 81,81A distribution member 92 connecting portion, 93 protrusion.

Claims (15)

  1.  ステータを含むモータ部を備えたインホイールモータ駆動装置における潤滑油の供給構造であって、
     前記モータ部を収容し、前記インホイールモータ駆動装置の外郭を形成するケーシングと、
     前記ケーシングの下部に設けられ、潤滑油を貯留するオイルタンクと、
     前記オイルタンクから潤滑油を汲み上げるオイルポンプと、
     前記ステータよりも上方位置において前記モータ部の軸線方向に沿って配置され、前記オイルポンプにより汲み上げられた潤滑油を径方向に吐出する少なくとも1つのオイル孔を有するオイル通路と、
     前記オイル孔から吐出した潤滑油を受けるオイル受け室を含み、前記オイル受け室が受けた潤滑油を前記ステータのコイルエンドに導く潤滑油案内部とを備える、潤滑油の供給構造。
    A lubricating oil supply structure in an in-wheel motor drive device including a motor unit including a stator,
    A casing that houses the motor portion and forms an outer shell of the in-wheel motor drive device;
    An oil tank provided in a lower portion of the casing and storing lubricating oil;
    An oil pump that pumps lubricating oil from the oil tank;
    An oil passage disposed along the axial direction of the motor unit at a position above the stator, and having at least one oil hole for discharging the lubricating oil pumped up by the oil pump in a radial direction;
    A lubricating oil supply structure including an oil receiving chamber that receives lubricating oil discharged from the oil hole, and a lubricating oil guide that guides the lubricating oil received by the oil receiving chamber to a coil end of the stator.
  2.  前記オイル受け室は、前記オイル孔と対面し、前記オイル通路の外周を取り囲むように配置されており、
     前記オイル受け室の断面積は前記オイル通路の通路面積よりも大きい、請求項1に記載の潤滑油の供給構造。
    The oil receiving chamber is disposed so as to face the oil hole and surround the outer periphery of the oil passage,
    The lubricating oil supply structure according to claim 1, wherein a cross-sectional area of the oil receiving chamber is larger than a passage area of the oil passage.
  3.  前記オイル孔は、前記ステータのコア部の軸線方向幅内に配置され、かつ、軸線方向位置が異なる第1孔および第2孔を含み、
     前記オイル受け室は、前記第1孔から吐出した潤滑油を受ける第1オイル受け室と、前記第2孔から吐出した潤滑油を受ける第2オイル受け室とに区画されている、請求項1または2に記載の潤滑油の供給構造。
    The oil hole includes a first hole and a second hole that are disposed within an axial width of the core portion of the stator and have different axial positions.
    The oil receiving chamber is partitioned into a first oil receiving chamber that receives the lubricating oil discharged from the first hole and a second oil receiving chamber that receives the lubricating oil discharged from the second hole. Or the lubricating oil supply structure of 2.
  4.  前記オイル通路は、前記ケーシングの上部を軸方向に貫通する貫通孔に挿通された管状部材によって構成されており、
     前記第1オイル受け室と前記第2オイル受け室とは、前記貫通孔の内周面から突出するように設けられた仕切り部によって仕切られている、請求項3に記載の潤滑油の供給構造。
    The oil passage is constituted by a tubular member inserted through a through hole penetrating the upper portion of the casing in the axial direction,
    The lubricating oil supply structure according to claim 3, wherein the first oil receiving chamber and the second oil receiving chamber are partitioned by a partition portion provided so as to protrude from an inner peripheral surface of the through hole. .
  5.  前記第1オイル受け室および前記第2オイル受け室の少なくとも一方は、その下端高さが前記凸部から遠ざかるにつれて下方となるよう、軸線方向に沿って傾斜している、請求項4に記載の潤滑油の供給構造。 5. The at least one of the first oil receiving chamber and the second oil receiving chamber is inclined along the axial direction so that a lower end height thereof becomes lower as the distance from the convex portion decreases. Lubricating oil supply structure.
  6.  前記オイル受け室は、前記ケーシングの一部に形成されている、請求項1~3のいずれかに記載の潤滑油の供給構造。 The lubricating oil supply structure according to any one of claims 1 to 3, wherein the oil receiving chamber is formed in a part of the casing.
  7.  前記潤滑油案内部は、前記オイル受け室と連通して軸線方向に沿って延び、前記コイルエンドへの潤滑油の注ぎ口が先端に形成されたオイル注ぎ路をさらに含む、請求項1~3のいずれかに記載の潤滑油の供給構造。 The lubricating oil guide portion further includes an oil pouring path that communicates with the oil receiving chamber and extends along an axial direction, and has a lubricating oil spout to the coil end formed at a tip. The lubricating oil supply structure according to any one of the above.
  8.  前記潤滑油案内部は、前記オイル注ぎ路の注ぎ口と軸線方向に対面して配置され、前記注ぎ口から流出する潤滑油の飛散を防止するための飛散防止部材をさらに含む、請求項7に記載の潤滑油の供給構造。 The said lubricating oil guide part is further arrange | positioned facing the pouring spout of the said oil pouring path in an axial direction, and further contains the scattering prevention member for preventing scattering of the lubricating oil which flows out out of the said pouring spout. The lubricating oil supply structure described.
  9.  前記オイル通路は、前記ケーシングに取り付け固定された1つまたは複数の管状部材によって構成されており、
     前記飛散防止部材は、前記管状部材と一体的に形成された板状部材を含む、請求項8に記載の潤滑油の供給構造。
    The oil passage is constituted by one or a plurality of tubular members fixed to the casing.
    The lubricating oil supply structure according to claim 8, wherein the scattering prevention member includes a plate-like member formed integrally with the tubular member.
  10.  前記ケーシングは、前記オイル注ぎ路と軸線方向に対面する壁部を有しており、
     前記飛散防止部材は、前記ケーシングの前記壁部に形成された凸部を含む、請求項8または9に記載の潤滑油の供給構造。
    The casing has a wall portion facing the oil pouring channel in the axial direction,
    The lubricating oil supply structure according to claim 8, wherein the scattering prevention member includes a convex portion formed on the wall portion of the casing.
  11.  前記潤滑油案内部は、前記オイル注ぎ路の注ぎ口から流出する潤滑油を、前記複数のコイルエンドに分配するための分配部材をさらに含む、請求項8~10のいずれかに記載の潤滑油の供給構造。 The lubricating oil according to any one of claims 8 to 10, wherein the lubricating oil guide portion further includes a distributing member for distributing lubricating oil flowing out from a spout of the oil pouring path to the plurality of coil ends. Supply structure.
  12.  前記潤滑油案内部は、前記複数のコイルエンドに潤滑油を分配するための分配部材と、前記分配部材と一体的に設けられ、潤滑油の飛散を防止するための飛散防止部材とをさらに含む、請求項1~3のいずれかに記載の潤滑油の供給構造。 The lubricant guide portion further includes a distribution member for distributing the lubricant oil to the plurality of coil ends, and a splash prevention member provided integrally with the distribution member and preventing the splash of the lubricant. The lubricating oil supply structure according to any one of claims 1 to 3.
  13.  前記オイル通路の少なくとも一部は、一端に大径の嵌合部が形成された管状部材によって構成されており、
     前記ケーシングは、前記分配部材と一体的に設けられた前記飛散防止部材と軸線方向に対面し、前記管状部材の嵌合部を受入れる接続部を有する壁部を含み、
     前記飛散防止部材と前記接続部との間の間隔は、前記管状部材の前記嵌合部の軸線方向寸法以上である、請求項12に記載の潤滑油の供給構造。
    At least a part of the oil passage is constituted by a tubular member in which a large-diameter fitting portion is formed at one end,
    The casing includes a wall portion having a connection portion that faces the scattering prevention member provided integrally with the distribution member in an axial direction and receives a fitting portion of the tubular member,
    The lubricating oil supply structure according to claim 12, wherein an interval between the scattering prevention member and the connection portion is not less than an axial dimension of the fitting portion of the tubular member.
  14.  前記インホイールモータ駆動装置は、前記モータ部のモータ回転軸の回転を減速する減速部をさらに含み、
     前記ケーシングは、前記モータ部と前記減速部とを軸線方向に仕切る隔壁部を有しており、
     前記オイル通路は、前記隔壁部を貫通する1本の管状部材によって構成されている、請求項1~3のいずれかに記載の潤滑油の供給構造。
    The in-wheel motor drive device further includes a speed reduction unit that decelerates rotation of a motor rotation shaft of the motor unit,
    The casing has a partition part that partitions the motor part and the speed reduction part in an axial direction,
    The lubricating oil supply structure according to any one of claims 1 to 3, wherein the oil passage is constituted by a single tubular member penetrating the partition wall.
  15.  請求項1~14のいずれかに記載の潤滑油の供給構造を備えた、インホイールモータ駆動装置。 An in-wheel motor drive device comprising the lubricating oil supply structure according to any one of claims 1 to 14.
PCT/JP2019/004538 2018-02-08 2019-02-08 Lubricant supply structure and in-wheel motor drive device WO2019156196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980012074.8A CN111699618A (en) 2018-02-08 2019-02-08 Lubricating oil supply structure and in-wheel motor drive device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-020690 2018-02-08
JP2018020690 2018-02-08
JP2019-020232 2019-02-07
JP2019020232A JP2019140906A (en) 2018-02-08 2019-02-07 Lubrication oil supply structure and in-wheel motor drive device

Publications (1)

Publication Number Publication Date
WO2019156196A1 true WO2019156196A1 (en) 2019-08-15

Family

ID=67549445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004538 WO2019156196A1 (en) 2018-02-08 2019-02-08 Lubricant supply structure and in-wheel motor drive device

Country Status (1)

Country Link
WO (1) WO2019156196A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552891A (en) * 2020-11-19 2022-05-27 日本电产株式会社 Rotating electric machine and drive device
US11742720B2 (en) * 2019-08-30 2023-08-29 Hyundai Motor Company Motor provided with cooling system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013090454A (en) * 2011-10-18 2013-05-13 Toyota Motor Corp Cooling device for vehicle use rotary electric machine
JP2014135817A (en) * 2013-01-09 2014-07-24 Toyota Industries Corp Rotary electric machine
JP2016208722A (en) * 2015-04-24 2016-12-08 日産自動車株式会社 Driving unit
JP2017192224A (en) * 2016-04-14 2017-10-19 Ntn株式会社 Vehicular driving device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013090454A (en) * 2011-10-18 2013-05-13 Toyota Motor Corp Cooling device for vehicle use rotary electric machine
JP2014135817A (en) * 2013-01-09 2014-07-24 Toyota Industries Corp Rotary electric machine
JP2016208722A (en) * 2015-04-24 2016-12-08 日産自動車株式会社 Driving unit
JP2017192224A (en) * 2016-04-14 2017-10-19 Ntn株式会社 Vehicular driving device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11742720B2 (en) * 2019-08-30 2023-08-29 Hyundai Motor Company Motor provided with cooling system
CN114552891A (en) * 2020-11-19 2022-05-27 日本电产株式会社 Rotating electric machine and drive device
CN114552891B (en) * 2020-11-19 2024-04-16 日本电产株式会社 Rotating electrical machine and driving device

Similar Documents

Publication Publication Date Title
WO2018016267A1 (en) Lubricating oil supply structure
US11149838B2 (en) Lubricating device for components within casing structure of vehicular power transmitting system
US10871091B2 (en) Power system
WO2015186467A1 (en) In-wheel motor drive device
JP2008184111A (en) Wheel drive device
WO2019156196A1 (en) Lubricant supply structure and in-wheel motor drive device
US20180066746A1 (en) Lubricating apparatus for differential unit of vehicle
WO2020110878A1 (en) In-wheel motor drive device
JP2019140906A (en) Lubrication oil supply structure and in-wheel motor drive device
JP2018034713A (en) In-wheel motor drive device
JP2020143689A (en) Motor driving device for vehicle
JP2019131175A (en) In-wheel motor drive device
JP6799448B2 (en) In-wheel motor drive
US11486489B2 (en) Drive train unit and drive train for a motor vehicle
JP4755617B2 (en) In-wheel motor
WO2019146793A1 (en) In-wheel motor drive device
JP6562050B2 (en) Power transmission device for vehicle
JP2017159883A (en) In-wheel motor driving device
WO2019177104A1 (en) Vehicle drive device
JP2012163120A (en) Power transmission device
JP4725110B2 (en) Power transmission device for vehicle
JP7149163B2 (en) In-wheel motor drive
JP7278697B2 (en) power transmission device
JP7347160B2 (en) vehicle transfer
JP4812312B2 (en) Driving force transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750571

Country of ref document: EP

Kind code of ref document: A1