WO2019148539A1 - 一种光纤温度传感器 - Google Patents

一种光纤温度传感器 Download PDF

Info

Publication number
WO2019148539A1
WO2019148539A1 PCT/CN2018/076219 CN2018076219W WO2019148539A1 WO 2019148539 A1 WO2019148539 A1 WO 2019148539A1 CN 2018076219 W CN2018076219 W CN 2018076219W WO 2019148539 A1 WO2019148539 A1 WO 2019148539A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
mode
optical fiber
temperature
optical fibre
Prior art date
Application number
PCT/CN2018/076219
Other languages
English (en)
French (fr)
Inventor
鲁平
倪文军
刘德明
傅鑫
廖浩
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US16/323,649 priority Critical patent/US11112316B2/en
Publication of WO2019148539A1 publication Critical patent/WO2019148539A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0896Optical arrangements using a light source, e.g. for illuminating a surface

Definitions

  • the present invention relates to the field of optical fiber temperature measurement technology, and more particularly to an optical fiber temperature sensor.
  • the fiber optic temperature sensor mainly detects the change of the ambient temperature. Compared with the ordinary electric sensor, the fiber sensor has no electromagnetic interference, strong corrosion resistance, easy manufacture, low cost, fast response and high detection sensitivity.
  • the on-line interference structure based on air-core fiber misalignment achieves a sensor size of 125 ⁇ m and a large dynamic range temperature measurement of 200°C to 900°C, but its temperature sensitivity is only 41.9pm/°C;
  • the method of using special optical fiber microstructure devices can generally achieve the purpose of miniaturization, and realize temperature measurement in a large dynamic range, but the measurement sensitivity is relatively low, which limits the high-resolution fiber temperature measurement.
  • thermo sensitive materials are coated on the fiber sensing structure and the power intensity demodulation measurement method is adopted: temperature sensor sensitivity of graphene-coated micro/nano fiber based on intensity demodulation Up to 0.1052dB/°C, the temperature sensor sensitivity based on polymer coated fiber microcavity is 0.13dB/°C; the coating of two different materials can achieve a minimum detectable resolution of less than 0.01°C; therefore, using heat sensitive materials
  • the method of coating the optical fiber sensing structure achieves the effect of temperature sensitization and achieves the purpose of high-resolution optical fiber temperature measurement. However, this method limits the temperature measurement of a large dynamic range.
  • the existing fiber optic temperature sensor can not achieve the goal of simultaneous measurement of high resolution and large dynamic range temperature while satisfying the miniaturization of the sensing structure.
  • the object of the present invention is to solve the technical problem that the existing optical fiber temperature sensor can achieve the goal of simultaneous measurement of high resolution and large dynamic range temperature while satisfying the miniaturization size of the sensing structure.
  • the present invention provides a fiber optic temperature sensor comprising: a broadband light source, a first fiber jumper, a first single mode fiber, a single hole dual core eccentric fiber, a second single mode fiber, a second fiber jumper, and a spectrometer;
  • Two ends of the first optical fiber jumper are respectively connected to an output end of the broadband light source and one end of the first single mode optical fiber, the broadband light source is used to provide wide spectrum light, and the first optical fiber jumper is used to be wide
  • the spectral light is introduced into the first single-mode fiber; the other end of the first single-mode fiber is connected to one end of the single-hole double-core eccentric fiber, and the connection point is used as a first fusion point; the other end of the single-hole double-core eccentric fiber is One end of the second single-mode fiber is connected, and the connection point is used as a second fusion point.
  • the first fusion point, the single-hole double-core eccentric fiber and the second fusion point are sequentially connected to form an online Mach Zede interference structure and the width is Spectral light produces an anti-resonance effect, wherein the effect of the online Mach Zede interference structure and the anti-resonance effect on the broad-spectrum light is related to the ambient temperature at which the fiber optic temperature sensor is located; the other end of the second single-mode fiber and the One end of the second fiber jumper is connected; the other end of the second fiber jumper is connected to the spectrometer, and the second fiber jumper is used to superimpose the structure by the online Mach Zede interference structure and the anti-resonance effect Introducing spectrometer signal, the spectrometer such that the ambient temperature of the optical fiber temperature sensor is located is determined according to the optical signal.
  • the spectrometer performs fast Fourier filtering on the optical signal, and filters a comb spectrum formed by interference between a high-order cladding mode and a core mode in the superposition spectrum, because of the thermo-optic coefficient of the high-order cladding mode.
  • the high-order comb spectrum filtered by the fast Fourier filtering method can obtain higher temperature sensitivity;
  • the spectrometer performs Gaussian fitting on the optical signal due to the anti-resonance effect.
  • the temperature sensitivity depends on the thermo-optic coefficient of the single-hole double-core eccentric fiber cladding. Since the thermal coefficient of the fiber cladding is very low, the temperature sensitivity obtained by the anti-resonance effect is low;
  • the spectrometer performs fast Fourier filtering and Gaussian fitting on the optical signals respectively to determine a minimum point wavelength and a resonant wavelength in the comb spectrum, the spectrometer according to the minimum point in the comb spectrum
  • the relationship between the wavelength and the resonant wavelength of the optical signal and the temperature determines the temperature of the environment in which the optical fiber temperature sensor is located, wherein the sensitivity of the minimum wavelength point wavelength in the comb spectrum varies with the ambient temperature.
  • Temperature sensitivity, the sensitivity of the resonant wavelength of the optical signal varies with the ambient temperature is the second temperature sensitivity, the first temperature sensitivity is greater than the second temperature sensitivity and the two are different orders of magnitude, so the fiber optic temperature sensor is suitable for high resolution Rate and large dynamic range temperature measurements.
  • the two ends of the single-hole dual-core eccentric fiber are respectively fused with the cladding at the other end of the first single-mode fiber and one end of the second single-mode fiber, and the first fusion point is And the second fusion splice point is a collapsed fusion joint.
  • the air hole of the single-hole double-core eccentric fiber is located at a center position thereof, and the diameter of the air hole is 20 ⁇ m to 50 ⁇ m.
  • the two cores of the single-hole double-core eccentric fiber are respectively suspended in the inner wall of the cladding and the insertion cladding, and the two cores are distributed on both sides of the air hole.
  • the core and cladding diameter of the single-hole dual-core eccentric fiber are the same as those of a conventional single-mode fiber.
  • the single-hole double-core eccentric fiber has a length of 0.8 mm to 1.2 mm.
  • the optical fiber temperature sensor of the integrated optical fiber Machsider interference structure and the anti-resonance effect provided by the present invention the comb-like spectrum and the resonant wavelength formed by different mechanisms have different sensitivity to temperature, thereby realizing high resolution and large dynamics. The range is measured simultaneously.
  • the single-hole double-core eccentric optical fiber provided by the present invention can realize the miniaturized size of the optical fiber temperature sensor because the on-line Mahszeer interference structure and the anti-resonance effect can be formed in a short fiber length range.
  • the optical fiber temperature sensor for simultaneous measurement of micro-size high resolution and large dynamic range provided by the present invention has a single on-line structure measurement, compared with a conventional fiber interferometer which requires a coupler and needs to be coated with sensitization.
  • the optical fiber microstructure has the advantages of simple structure, low price and easy manufacture.
  • FIG. 1 is a schematic structural view of a fiber optic temperature sensor for simultaneous measurement of a micro-size high resolution and a large dynamic range according to Embodiment 1 of the present invention
  • FIG. 2(a) is a Gaussian fitting of a partial superposition spectrum in a spectrometer in Embodiment 1 of the present invention
  • FIG. 2(b) is a redshifting process of a Gaussian fitting resonance wavelength under different temperature conditions after Gaussian fitting
  • 2(c) is a linear fit to the Gaussian fitting resonant wavelength drift process
  • FIG. 3(a) is a fast Fourier filtering of the entire superimposed spectrum in the spectrometer in Embodiment 1 of the present invention
  • FIG. 3(b) is a Gaussian fitting comb spectrum packet under different temperature conditions after fast Fourier filtering. The redshift process of the network
  • Figure 3(c) is a linear fit to the minimum of the Gaussian fit comb spectral envelope
  • 1 is a broadband source
  • 2 is a first fiber patch cord
  • 3 is a first single mode fiber
  • 4 is a first splice point.
  • 5 is a single-hole double-core eccentric fiber
  • 6 is a second fusion point
  • 7 is a second single-mode fiber
  • 8 is a second fiber jumper
  • 9 is a spectrometer.
  • the invention provides a fiber optic temperature sensor capable of realizing high-resolution and large dynamic range simultaneous measurement of a micro-sized integrated optical fiber on-line Mach Zede interference structure and anti-resonance effect, and the purpose thereof is to form an online by single-mode fiber and single-hole double-core eccentric fiber.
  • Mach Zede interferes with the structure and forms an anti-resonance effect
  • the formation of the online Mach Zede interference structure and the anti-resonance effect are integrated on the single-hole double-core eccentric fiber
  • the superimposed spectra formed by the online Mach Zede interference structure and the anti-resonance effect respectively Fast Fourier filtering and Gaussian fitting are performed, and the spectrum processed by the above two methods is further subjected to wavelength demodulation to realize a fiber temperature sensor for simultaneous measurement of high resolution and large dynamic range.
  • the present invention provides a fiber optic temperature sensor capable of realizing high-resolution and large dynamic range simultaneous measurement of a micro-sized integrated optical fiber on-line Mach Zede interference structure and anti-resonance effect, including a broadband light source and a first optical fiber jumper.
  • the two ends of the first optical fiber jumper are respectively connected to the output end of the broadband light source and the first end of the first single mode fiber; the second end of the first single mode fiber is connected to the first end of the single hole double core eccentric fiber; the single hole double core eccentricity The second end of the optical fiber is connected to the first end of the second single mode fiber; the second end of the second single mode fiber is connected to the first end of the second fiber jumper; the second end of the second fiber jumper is connected to the input end of the spectrometer Connected; the two connection points of the single-hole double-core eccentric fiber and the first single-mode fiber and the second single-mode fiber are the first fusion point and the second fusion point, respectively.
  • the first fusion contact, the single-hole double-core eccentric fiber and the second fusion-bonding point form an online Mach Zede structure in sequence;
  • the broadband source, the spectrometer and the online Mach Zede structure constitute a Mach Zede interferometer; wherein, the anti-resonance effect and the online
  • the Mach Zede structure is integrated on a single-hole double-core eccentric fiber.
  • the first single mode fiber and the second single mode fiber and the single hole double core eccentric fiber adopt a cladding alignment welding mode; the purpose of using the cladding alignment welding method is to make the air hole of the single hole double core eccentric fiber at the first fusion point And the second fusion joint is collapsed, thereby exciting a partial cladding mode and forming an anti-resonance effect in the single-hole double-core eccentric fiber; so that the transmission of the cladding mode and the core mode exists in the single-hole double-core eccentric fiber, and transmits to the first
  • the coupling between the cladding mode and the core mode can be realized at the two fusion joints, so that the core mode and the cladding mode transmitted in the single-hole double-core eccentric fiber will interfere at the second fusion joint and overlap with the anti-resonance effect. Transfer together to the second single mode fiber.
  • the different loss peaks of the single-hole double-core eccentric fiber are the result of the anti-resonance effect caused by the air hole, the fiber cladding and the outside air in the single-hole double-core eccentric fiber, and the principle of the anti-resonance effect and the high-definition method
  • the principle of the Ripper interferometer is similar, so that the four dominant loss peaks can be displayed in the same window of the spectrometer; the resulting four loss peaks are superimposed on the comb spectrum generated by the online Mach Zede structure, thus showing on the spectrometer A transmission spectrum formed by superposition of four loss peaks and a comb spectrum.
  • the single-mode fiber After the single-mode fiber is fused with the single-hole double-core eccentric fiber, a part of the light field enters the air hole of the single-hole double-core eccentric fiber, which is the core mode; because the mode field of the single-mode fiber and the single-hole double-core eccentric fiber do not match, another part of the light field is made.
  • the cladding mode of the single-hole double-core eccentric fiber is excited to enter the cladding of the single-hole double-core eccentric fiber, which is the cladding mode; the core mode and the cladding mode are transmitted to the second fusion point to form the online Mach Zede interference.
  • the single-hole double-core eccentric fiber is a structure in which two layers of air sandwich the cladding, that is, an air-clad-air three-layer structure, when light is transmitted to the interface between the air and the cladding, a part of the light is transmitted into the air, and the other part is transmitted. Reflected back into the cladding; the light reflected back into the cladding and the light transmitted into the air form an anti-resonant effect.
  • the fast Fourier filtering method is used to filter the comb spectrum formed by the interference between the high-order cladding mode and the core mode in the superposition spectrum, because the thermo-optic coefficient of the high-order cladding mode is higher than other low-order cladding modes. That is, the high-order cladding mode is more sensitive to the outside temperature. Therefore, the high-order comb spectrum filtered by the fast Fourier filtering method can obtain higher temperature sensitivity, and since the sensitivity is proportional to the resolution, it can High-resolution temperature sensing for high-precision temperature measurements.
  • the temperature sensitivity of the anti-resonance effect depends on the thermo-optic coefficient of the single-hole double-core eccentric fiber cladding, due to the cladding of the fiber.
  • the thermo-optic coefficient is very low, so the anti-resonance effect results in lower temperature sensitivity, resulting in lower temperature resolution, making it suitable for temperature measurement over large dynamic ranges.
  • the spectral data under different temperature conditions are respectively subjected to fast Fourier filtering and Gaussian fitting, and then the processed spectral data is processed.
  • the wavelength demodulation method is adopted to obtain the temperature sensitivity of the two methods respectively; since the anti-resonance effect and the sensitivity of the comb spectrum to the temperature have a large difference, the data can be processed by the above two methods to obtain an order of magnitude difference.
  • the single-hole double-core eccentric fiber has an air hole diameter of 20 ⁇ m to 50 ⁇ m, and is located at a center position of the optical fiber, and has an air hole diameter of 20 ⁇ m to 50 ⁇ m, so that the single-hole double-core eccentric fiber and the single-mode fiber can be collapsed after being collapsed.
  • Part of the light leaks into the cladding of the single-hole double-core eccentric fiber, thereby exciting the cladding mode of the single-hole double-core eccentric fiber, and the cladding mode transmitted in the final cladding interferes with the core mode transmitted in the air hole.
  • the two cores of the single-hole double-core eccentric fiber are respectively suspended in the inner wall of the cladding and the insertion cladding, and the two cores are distributed on both sides of the air hole, so that the single-hole double-core eccentric fiber and the single-mode fiber are welded and collapsed,
  • the light transmitted in the core of the mode fiber can be leaked into the cladding or can be coupled into the double core for transmission, so that more different modes can be excited to form the online Mach Zede interference, and finally obtained by the fast Fourier filtering method.
  • High-resolution fiber temperature measurement is achieved in the most temperature-sensitive mode.
  • the single-hole double-core eccentric fiber has a length of 0.8 mm to 1.2 mm, and the length can control the four resonance wavelengths generated by the anti-resonance effect in the single-hole double-core eccentric fiber within a window range of 1510 nm to 1610 nm, and Effectively reducing the loss during optical transmission; in addition, the length can also control the free spectral range of the comb-like spectrum formed by the online Mach Zeide interference, so that there is more sampling data when using the fast Fourier filtering method. The filtered temperature spectrum is obtained more accurately.
  • the spectrum obtained by the fiber optic temperature sensor adopts fast Fourier filtering and Gaussian fitting to respectively extract the resonant wavelength formed by the comb spectrum and the anti-resonance effect generated by the online Machzed interference structure, and the comb spectrum and the resonant wavelength are both
  • the wavelength demodulation method is used to obtain different temperature sensitivities of two different mechanisms.
  • the invention provides a fiber optic temperature sensor for simultaneous measurement of micro-size high resolution and large dynamic range, comprising a broadband light source, a first fiber jumper, a first single mode fiber, a first fusion splice, a single-hole double-core eccentric fiber, and a second splice , a second single mode fiber, a second fiber jumper, and a spectrometer;
  • the two ends of the first optical fiber jumper are respectively connected to the output end of the broadband light source and the first end of the first single mode fiber; the second end of the first single mode fiber is connected to the first end of the single hole double core eccentric fiber; The second end of the hole double-core eccentric fiber is connected to the first end of the second single-mode fiber; the second end of the second single-mode fiber is connected to the first end of the second fiber jumper; the second end of the second fiber jumper is connected to the spectrometer The inputs are connected.
  • the present invention will be further described below in conjunction with the fiber optic temperature sensor of the micro-scale high resolution and large dynamic range provided in the first embodiment; the fiber optic temperature sensor structure of the micro-scale high-resolution and large dynamic range simultaneous measurement of the embodiment 1 of the present invention As shown in FIG.
  • the broadband light source 1 is connected to the first port of the first fiber jumper 2; the second port of the first fiber jumper 2 is connected to the first port of the first single mode fiber 3;
  • the second end of the single-mode optical fiber 3 is connected to the first end of the single-hole double-core eccentric fiber 5; the second end of the single-hole double-core eccentric fiber 5 is connected to the first end of the second single-mode optical fiber 7; the second end of the second single-mode optical fiber 7
  • the first end of the second fiber jumper 8 is connected; the second end of the second fiber jumper 8 is connected to the spectrometer 9.
  • the single-hole double-core eccentric fiber 5 has an air hole diameter of 40 ⁇ m, a fiber cladding diameter of 125 ⁇ m, and a diameter of both cores of 9.1 ⁇ m; the second end of the first single-mode fiber 3 and the single-hole double-core eccentricity
  • the first end of the optical fiber 5 and the second end of the single-hole dual-core eccentric fiber 5 and the first end of the second single-mode optical fiber 7 are connected by a cladding aligning manner, and the broadband light source 1 and the first optical fiber jumper 2 are connected.
  • the second end of the jumper 8 is interfaced with the spectrometer through a flange using an FC/APC fiber optic connector.
  • the light emitted by the broadband light source 1 is transmitted to the first fusion splice point 4 via the first optical fiber jumper 2 and the first single mode optical fiber 3; because the first single mode optical fiber 3 and the single hole double core eccentric optical fiber 5 are covered by a cladding alignment.
  • a mode field mismatch occurs at the first fusion splice point 4, causing a portion of the core mode transmitted in the first single mode fiber 3 to leak into the cladding and the double core of the single-hole double-core eccentric fiber 5, thereby stimulating
  • the cladding mode in the single-hole double-core eccentric fiber 5, the core mode of the remaining part of the first single-mode fiber 3 is coupled to the air hole of the single-hole double-core eccentric fiber 5 to continue forward transmission, and coupled to the single-hole double-core eccentric fiber 5 air hole
  • Part of the light will be reflected back and forth in a three-layer structure consisting of air holes, cladding and outside air to form an anti-resonance effect; when the light reflected back and forth satisfies the resonance condition, some wavelengths of light will leak into the outside air.
  • FIG. 2(a) is a partial spectrum in the range of 1555 nm to 1590 nm in the integrated spectrum, and then Gaussian fitting is performed on the spectrum in the range, and the coupled resonant wavelength is the resonant wavelength of the anti-resonance effect;
  • Figure 2(b) shows the phenomenon that the resonant wavelength obtained by Gaussian fitting increases with the temperature and the resonant wavelength drifts toward the long wavelength with different ambient temperature conditions;
  • Figure 2(c) shows Figure 2 (b) After reading the resonant wavelength value (ie, the trough value) of each curve corresponding to different temperatures, the temperature is taken as the abscissa and the corresponding resonant wavelength value is linearly fitted to the ordinate, and the linear fitting is obtained.
  • the slope of the fitted straight line is the temperature sensitivity, that is, the temperature sensitivity from which the anti-resonance effect can be obtained from Fig. 2(c) is 42.18 pm/°C.
  • FIG. 3(a) the left ordinate value is the integrated spectrum, and the right ordinate value is the comb spectrum after the integrated spectrum is subjected to fast Fourier filtering;
  • FIG. 3(b) is the temperature under different conditions, FIG. (a) The Gaussian fitting is performed on the minimum point in the range of 1540 nm to 1590 nm. As the temperature increases gradually, the Gaussian fitting curve of the minimum value drifts toward the long wavelength;
  • FIG. 3(c) is attached In Figure 3(b), the minimum values of the Gaussian fitting curves corresponding to different temperatures are read, and the different temperatures are used as the abscissa, and the corresponding minimum values are linearly fitted to the ordinate to obtain the fast Fourier.
  • the filtered temperature sensitivity was 2.057 nm/°C.
  • the effective refractive index of the three-layer structure transmission medium of the single-hole double-core eccentric fiber 5 in the optical fiber temperature sensor is slightly changed, and the resonant wavelength can be obtained by Gaussian fitting the spectrum on the spectrometer 9.
  • the drift phenomenon occurs, and the temperature sensitivity obtained by the Gaussian fitting method can be obtained by wavelength demodulation, and the temperature sensitivity obtained as shown in FIG. 2(c) is 42.18 pm/° C. With a resolution of 20 pm (AQ6370c), the temperature resolution is 0.474 °C. Due to the low resolution, the temperature sensitivity obtained by the Gaussian-fitting resonant wavelength method is suitable for temperature measurement in a large dynamic temperature range.
  • the effective refractive index difference between the core mode and the cladding mode transmitted in the single-hole double-core eccentric fiber 5 also changes slightly, so that the comb spectrum formed by the online Mach Zede interference also has a drift phenomenon.
  • the temperature sensitivity obtained by the fast-Fourier filtering of the optical fiber temperature sensor can be obtained.
  • the temperature sensitivity obtained as shown in Fig. 3(c) is 2.057nm/°C, and the temperature resolution obtained by the same reason is 0.00972°C. Due to the high resolution, the temperature sensitivity obtained by the fast Fourier filtering method is suitable. High precision temperature measurement.
  • the temperature sensitivity difference obtained by the above two methods is two orders of magnitude, the temperature sensitivity obtained by the Gaussian fitting method can be used to realize the temperature measurement of the large dynamic range, and the temperature sensitivity obtained by the fast Fourier filtering method can achieve high resolution. Temperature measurement. Further, the actual length of the selected single-hole double-core eccentric fiber 5 is 950 ⁇ m, so that the miniaturization of the size of the optical fiber temperature sensor can be simultaneously achieved.
  • the fiber optic temperature sensor for simultaneous measurement of micro-scale high resolution and large dynamic range provided by the present invention can be realized by Gaussian fitting and fast Fourier filtering methods, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种光纤温度传感器,包括:宽带光源(1)、第一光纤跳线(2)、第一单模光纤(3)、单孔双芯偏心光纤(5)、第二单模光纤(7)、第二光纤跳线(8)以及光谱仪(9);第一光纤跳线(2)的两端分别连接宽带光源(1)的输出端和第一单模光纤(3)的一端,宽带光源(1)用于提供宽谱光,第一光纤跳线(2)用于将宽谱光引入第一单模光纤(3);第一单模光纤(3)的另一端与单孔双芯偏心光纤(5)的一端连接,其连接点作为第一熔接点(4);单孔双芯偏心光纤(5)的另一端与第二单模光纤(7)的一端连接,其连接点作为第二熔接点(6),第一熔接点(4)、单孔双芯偏心光纤(5)和第二熔接点(6)依次连接形成了在线马赫泽德干涉结构并对宽谱光产生反谐振效应;第二单模光纤(7)的另一端与第二光纤跳线(8)的一端连接;第二光纤跳线(8)的另一端连接光谱仪(9),光谱仪(9)根据光信号确定光纤温度传感器所在环境的温度。实现了高分辨率和大动态范围的温度测量。

Description

一种光纤温度传感器 [技术领域]
本发明涉及光纤温度测量技术领域,更具体地,涉及一种光纤温度传感器。
[背景技术]
准确的温度测量在航空航天、高功率稳定性激光器和高精度数控机床等工程应用***中是十分重要的。光纤温度传感器主要是探测外界环境温度的变化,与普通的电传感器相比,光纤传感器无电磁干扰,耐腐蚀性强,易制造,低成本,响应快和高探测灵敏度。
为了满足工程应用领域对温度大动态范围高分辨率测量的需求,国内外研究人员对光纤温度测量进行了大量的研究。在大动态范围光纤测温方面,提出了基于特种光纤微结构器件的温度测量:基于悬浮芯光纤的在线干涉结构实现了20℃~1100℃的大动态范围温度测量,但其温度灵敏度仅有11pm/℃,且传感器尺寸为2.4cm;基于空芯光纤错位的在线干涉结构实现了125μm的传感器尺寸和200℃~900℃的大动态范围温度测量,但其温度灵敏度仅有41.9pm/℃;因此,采用特种光纤微结构器件的方法一般可达到微型化尺寸的目的,且实现大动态范围的温度测量,但测量灵敏度均比较低,限制了高分辨率的光纤温度测量。在高分辨率光纤温度测量方面,提出了多种热敏材料涂覆在光纤传感结构上并采用功率强度解调的测量方法:基于强度解调的石墨烯涂覆微纳光纤的温度传感器灵敏度可达0.1052dB/℃,基于聚合物涂覆光纤微腔的温度传感器灵敏度为0.13dB/℃;两种不同材料的涂覆均可实现最小可探测分辨率小于0.01℃;因此,采用热敏材料涂覆光纤传感结构的方法达到了温度增敏的效果,实现了高分辨率光纤测温目的,然而,该方法限制了大动态范围的温度测量。综上所述,目前已有的光纤温度传感器在满足传感结构微型化尺寸的同时,并不能实现 高分辨率和大动态范围温度同时测量的目标。
[发明内容]
针对现有技术的缺陷,本发明的目的在于解决目前已有的光纤温度传感器在满足传感结构微型化尺寸的同时,并不能实现高分辨率和大动态范围温度同时测量的目标的技术问题。
为实现上述目的,本发明提供一种光纤温度传感器,包括:宽带光源、第一光纤跳线、第一单模光纤、单孔双芯偏心光纤、第二单模光纤、第二光纤跳线以及光谱仪;
所述第一光纤跳线的两端分别连接所述宽带光源的输出端和所述第一单模光纤的一端,所述宽带光源用于提供宽谱光,第一光纤跳线用于将宽谱光引入第一单模光纤;所述第一单模光纤的另一端与所述单孔双芯偏心光纤的一端连接,其连接点作为第一熔接点;所述单孔双芯偏心光纤的另一端与所述第二单模光纤的一端连接,其连接点作为第二熔接点,所述第一熔接点、单孔双芯偏心光纤和第二熔接点依次连接形成了在线马赫泽德干涉结构并对所述宽谱光产生反谐振效应,其中,在线马赫泽德干涉结构和反谐振效应对所述宽谱光的影响与光纤温度传感器所在环境温度相关;所述第二单模光纤的另一端与所述第二光纤跳线的一端连接;所述第二光纤跳线的另一端连接光谱仪,所述第二光纤跳线用于将通过在线马赫泽德干涉结构和反谐振效应叠加形成的光信号导入光谱仪,使得所述光谱仪根据所述光信号确定所述光纤温度传感器所在环境的温度。
可选地,所述光谱仪对所述光信号进行快速傅里叶滤波,将叠加光谱中高阶包层模与纤芯模干涉形成的梳状光谱滤出,由于高阶包层模的热光系数要高于低阶包层模,故快速傅里叶滤波方法滤出的高阶梳状光谱可以获得较高的温度灵敏度;所述光谱仪对所述光信号进行高斯拟合,由于反谐振效应的温度灵敏度取决于单孔双芯偏心光纤包层的热光系数,由于光纤包层的热光系数很低,故反谐振效应获得的温度灵敏度较低;
所述光谱仪对所述光信号分别进行快速傅里叶滤波和高斯拟合,分别确定梳状光谱中的极小值点波长和谐振波长,所述光谱仪根据所述梳状光谱中极小值点波长和所述光信号的谐振波长与温度的变化关系确定所述光纤温度传感器所在环境的温度,其中,所述梳状光谱中的极小值点波长随所在环境温度的变化的灵敏度为第一温度灵敏度,所述光信号的谐振波长随所在环境温度的变化的灵敏度为第二温度灵敏度,第一温度灵敏度大于第二温度灵敏度且二者为不同数量级,故所述光纤温度传感器适用于高分辨率和大动态范围温度测量。
可选地,所述单孔双芯偏心光纤的两端分别与所述第一单模光纤的另一端和所述第二单模光纤的一端均采用包层对准熔接,且所述第一熔接点和所述第二熔接点均为塌陷的熔接点。
可选地,所述单孔双芯偏心光纤的空气孔位于其中心位置,且空气孔的直径为20μm~50μm。
可选地,所述单孔双芯偏心光纤的双芯所处位置分别为悬挂在包层内壁和***包层中,且双芯分布在空气孔两侧。
可选地,所述单孔双芯偏心光纤的纤芯和包层直径与普通单模光纤的相同。
可选地,所述单孔双芯偏心光纤的长度为0.8mm~1.2mm。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
(1)本发明提供的集成光纤在线马赫泽德干涉结构和反谐振效应的光纤温度传感器,由于不同机理形成的梳状光谱和谐振波长对温度的灵敏度不同,从而可实现高分辨率和大动态范围同时测量。
(2)本发明提供的单孔双芯偏心光纤,由于可在较短的光纤长度范围内形成在线马赫泽德干涉结构和反谐振效应,从而可实现微型化尺寸的光纤温度传感器。
(3)本发明提供的微尺寸高分辨率和大动态范围同时测量的光纤温度传感器,由于采用单一在线的结构测量,相比传统的需要耦合器构成的光纤干涉仪和需要涂覆增敏的光纤微结构,所述光纤温度传感器具有结构简单、价格低廉、易于制作的优势。
[附图说明]
图1是本发明实施例1的微尺寸高分辨率和大动态范围同时测量的光纤温度传感器结构示意图;
图2(a)是本发明实施例1中对光谱仪中的部分叠加光谱进行高斯拟合;图2(b)是经过高斯拟合后不同温度条件下高斯拟合谐振波长的红移过程;图2(c)是对高斯拟合谐振波长漂移过程的线性拟合;
图3(a)是本发明实施例1中对光谱仪中的整个叠加光谱进行快速傅里叶滤波;图3(b)是经过快速傅里叶滤波后不同温度条件下高斯拟合梳状谱包络的红移过程;图3(c)是对高斯拟合梳状谱包络最小值的线性拟合;
在所有附图中,相同的附图标记用来表示相同的器件或结构,其中:1为宽带光源,2为第一光纤跳线,3为第一单模光纤,4为第一熔接点,5为单孔双芯偏心光纤,6为第二熔接点,7为第二单模光纤,8为第二光纤跳线,9为光谱仪。
[具体实施方式]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供了一种微尺寸集成光纤在线马赫泽德干涉结构和反谐振效应可实现高分辨率和大动态范围同时测量的光纤温度传感器,其目的在于 通过单模光纤和单孔双芯偏心光纤构成在线马赫泽德干涉结构和形成反谐振效应,且在线马赫泽德干涉结构和反谐振效应的形成均集成在单孔双芯偏心光纤上;通过对在线马赫泽德干涉结构和反谐振效应形成的叠加光谱分别进行快速傅里叶滤波和高斯拟合,将经过上述两种方法处理后的光谱再进行波长解调,以实现高分辨率和大动态范围同时测量的光纤温度传感器。
为实现上述目的,本发明提供了一种微尺寸集成光纤在线马赫泽德干涉结构和反谐振效应可实现高分辨率和大动态范围同时测量的光纤温度传感器,包括宽带光源、第一光纤跳线、第一单模光纤、第一熔接点、单孔双芯偏心光纤、第二熔接点、第二单模光纤、第二光纤跳线和光谱仪;
其中,第一光纤跳线的两端分别连接宽带光源的输出端和第一单模光纤的第一端;第一单模光纤的第二端连接单孔双芯偏心光纤的第一端;单孔双芯偏心光纤的第二端连接第二单模光纤的第一端;第二单模光纤的第二端连接第二光纤跳线的第一端;第二光纤跳线的第二端与光谱仪的输入端相连;单孔双芯偏心光纤与第一单模光纤和第二单模光纤的两个连接点分别为第一熔接点和第二熔接点。
其中,第一熔接点、单孔双芯偏心光纤和第二熔接点依顺序构成了在线马赫泽德结构;宽带光源、光谱仪与在线马赫泽德结构构成马赫泽德干涉仪;其中,反谐振效应与在线马赫泽德结构均集成在单孔双芯偏心光纤上,通过对在线马赫泽德干涉和反谐振效应的集成光谱进行快速傅里叶滤波和高斯拟合,再采用波长解调的方法即可实现对温度的大动态范围和高分辨率同时测量。
第一单模光纤和第二单模光纤与单孔双芯偏心光纤均采用包层对准熔接模式;采用这种包层对准熔接方式的目的在于使得单孔双芯偏心光纤的空气孔在第一熔接点和第二熔接点处均产生塌陷,从而激发单孔双芯偏心光纤中的部分包层模式和形成反谐振效应;使得单孔双芯偏心光纤中同时 存在着包层模和纤芯模的传输,传输至第二熔接点处可实现包层模和纤芯模的相互耦合,因而在单孔双芯偏心光纤中传输的纤芯模和包层模会在第二熔接点处产生干涉,且与反谐振效应叠加在一起传输至第二单模光纤。
单孔双芯偏心光纤的不同损耗峰是由于所述单孔双芯偏心光纤中的空气孔、光纤包层和外界空气构成双空气层结构形成反谐振效应的结果,反谐振效应的原理与高精细的法布里珀罗干涉仪的原理类似,使得光谱仪的同一窗口内可显示四个占主导地位的损耗峰;产生的四个损耗峰叠加在线马赫泽德结构产生的梳状光谱,从而在光谱仪上显示出四个损耗峰与梳状光谱叠加形成的透射光谱。
单模光纤与单孔双芯偏心光纤熔接后,一部分光场进入单孔双芯偏心光纤的空气孔中,即为纤芯模式;由于单模光纤与单孔双芯偏心光纤的模场不匹配,使得另一部分光场激发单孔双芯偏心光纤的包层模进而进入单孔双芯偏心光纤的包层中传输,即为包层模式;纤芯模式与包层模式传输至第二个熔接点处即形成在线马赫泽德干涉。
由于单孔双芯偏心光纤是两层空气夹着包层的结构,即空气-包层-空气的三层结构,当光传输至空气与包层界面时,会有一部分光透射进入空气中,另一部分反射回包层中;反射回包层中的光与透射进入空气中的光即形成了反谐振效应。
快速傅里叶滤波方法是用于将叠加光谱中高阶包层模与纤芯模干涉形成的梳状光谱滤出,由于高阶包层模的热光系数要高于其他的低阶包层模,即高阶包层模对外界的温度更为灵敏,因此,快速傅里叶滤波方法滤出的高阶梳状光谱可以获得较高的温度灵敏度,由于灵敏度与分辨率成正比关系,因而可以实现高分辨率的温度传感,适用于高精度的温度测量。
由于反谐振效应主要的光场部分是经过单孔双芯偏心光纤的包层后透射进入空气中,因此,反谐振效应的温度灵敏度取决于单孔双芯偏心光纤包层的热光系数,由于光纤包层的热光系数很低,因此,反谐振效应获得 的温度灵敏度较低,导致温度的分辨率较低,因而适用于大动态范围的温度测量。
当外界温度发生变化时,光谱仪上叠加形成的透射光谱的位置将会整体发生变化;将不同温度条件下的光谱数据分别进行快速傅里叶滤波和高斯拟合,再将经过处理后的光谱数据采用波长解调的方法以分别获取两种方法的温度灵敏度;由于反谐振效应和梳状光谱对温度的敏感性有较大差距,因此,通过上述两种方法处理数据后可获得具有数量级差异的两个灵敏度值,可分别用于高分辨率和大动态范围的光纤温度测量。
优选地,所述单孔双芯偏心光纤的空气孔直径为20μm~50μm,且位于该光纤的中心位置处,取20μm~50μm的空气孔直径,使得单孔双芯偏心光纤与单模光纤熔接塌陷后能有部分光泄漏到单孔双芯偏心光纤的包层中,从而激发单孔双芯偏心光纤的包层模,最后包层中传输的包层模与空气孔中传输的纤芯模产生干涉。
优选地,单孔双芯偏心光纤的双芯所处位置分别为悬挂在包层内壁和***包层中,且双芯分布与空气孔两侧,使得单孔双芯偏心光纤与单模光纤熔接塌陷后,单模光纤纤芯中传输的光既能泄漏到包层中传输,也能耦合到双芯中传输,从而能激发更多不同的模式形成在线马赫泽德干涉,最终通过快速傅里叶滤波方法获取对温度最敏感的模式,即可实现高分辨率的光纤温度测量。
优选地,单孔双芯偏心光纤的长度为0.8mm~1.2mm,该长度可将单孔双芯偏心光纤中反谐振效应产生的较为明显的四个谐振波长控制在1510nm~1610nm的窗口范围内,同时还可有效地减小光传输过程中的损耗;此外,该长度还可控制在线马赫泽德干涉形成的梳状光谱的自由光谱范围,使得采用快速傅里叶滤波方法时有更多的采样数据,能更准确地获取滤波后的温度光谱。
优选地,光纤温度传感器所得光谱采用快速傅里叶滤波和高斯拟合分 别提取出在线马赫泽德干涉结构产生的梳状谱和反谐振效应形成的谐振波长,通过对梳状谱和谐振波长均采用波长解调的方法获取两种不同机理的不同温度灵敏度。
本发明提供的微尺寸高分辨率和大动态范围同时测量的光纤温度传感器,包括宽带光源、第一光纤跳线、第一单模光纤、第一熔接点、单孔双芯偏心光纤、第二熔接点、第二单模光纤、第二光纤跳线和光谱仪;
其中,第一光纤跳线的两端分别与宽带光源的输出端和第一单模光纤的第一端相连接;第一单模光纤的第二端连接单孔双芯偏心光纤的第一端;单孔双芯偏心光纤的第二端连接第二单模光纤的第一端;第二单模光纤的第二端连接第二光纤跳线的第一端;第二光纤跳线的第二端与光谱仪的输入端相连。
以下结合实施例1提供的微尺寸高分辨率和大动态范围同时测量的光纤温度传感器,进一步阐述本发明;本发明实施例1的微尺寸高分辨率和大动态范围同时测量的光纤温度传感器结构如图1所示,包括宽带光源1、第一光纤跳线2、第一单模光纤3、第一熔接点4、单孔双芯偏心光纤5、第二熔接点6、第二单模光纤7、第二光纤跳线8和光谱仪9;宽带光源1连接第一光纤跳线2的第一端口;第一光纤跳线2的第二端口与第一单模光纤3的第一端口相连;第一单模光纤3的第二端口连接单孔双芯偏心光纤5的第一端;单孔双芯偏心光纤5的第二端连接第二单模光纤7的第一端;第二单模光纤7的第二端连接第二光纤跳线8的第一端;第二光纤跳线8的第二端与光谱仪9连接。
具体地,实施例1中,单孔双芯偏心光纤5的空气孔直径为40μm,光纤包层直径为125μm,双芯的直径均为9.1μm;第一单模光纤3的第二端与单孔双芯偏心光纤5的第一端以及单孔双芯偏心光纤5的第二端与第二单模光纤7的第一端均采用包层对准熔接的方式连接,宽带光源1与第一光纤跳线2的第一端、第一光纤跳线2的第二端与第一单模光纤3的第一端, 第二单模光纤7的第二端与第二光纤跳线8的第一端以及第二光纤跳线8的第二端与光谱仪之间利用FC/APC光纤接头通过法兰盘对接。
下面结合实施例1对上述微尺寸高分辨率和大动态范围同时测量的光纤温度传感器的工作原理进行阐述。
宽带光源1发出的光经由第一光纤跳线2和第一单模光纤3传输至第一熔接点4;由于第一单模光纤3与单孔双芯偏心光纤5采用包层对准的塌陷熔接方式,在第一熔接点4处会出现模场不匹配的现象,导致在第一单模光纤3中传输的部分纤芯模泄漏到单孔双芯偏心光纤5的包层和双芯中,从而激发了单孔双芯偏心光纤5中的包层模,第一单模光纤3中剩余部分的纤芯模则耦合到单孔双芯偏心光纤5的空气孔中继续向前传输,耦合到单孔双芯偏心光纤5空气孔中的部分光线会在由空气孔、包层和外界空气构成的三层结构中来回反射,形成反谐振效应;当来回反射的光线满足谐振条件时,会有部分波长的光泄漏到外界空气中,从而形成谐振波长;当耦合至单孔双芯偏心光纤5的纤芯模和激发的包层模传输第二塌陷熔接点6时,纤芯模和包层模形成在线马赫泽德干涉,并与单孔双芯偏心光纤5产生的反谐振效应叠加在一起传输至第二单模光纤7中,光信号经由第二光纤跳线8,最后进入光谱仪9,在光谱仪9上可以观察到单孔双芯偏心光纤5中反谐振效应的谐振波长和在线马赫泽德干涉结构叠加形成的光谱。
附图2(a)是取集成光谱中的1555nm~1590nm波段范围内的部分光谱,然后对该段范围内的光谱进行高斯拟合,拟合出来的谐振波长即为反谐振效应的谐振波长;附图2(b)即为不同外界环境温度条件下,高斯拟合得到的谐振波长随着温度的逐渐增加,谐振波长向长波长方向漂移的现象;附图2(c)是将附图2(b)中不同温度对应的各条曲线的谐振波长值(即波谷值)读取后,以不同温度为横坐标,对应的谐振波长值为纵坐标进行线性拟合,线性拟合后所得到的拟合直线的斜率即为温度灵敏度,即从图2(c)中可以得到反谐振效应的温度灵敏度为42.18pm/℃。
附图3(a)中左边纵坐标值为集成光谱,右边纵坐标值是集成光谱经过快速傅里叶滤波后的梳状光谱;附图3(b)是不同温度条件下,对附图3(a)中1540nm~1590nm波段范围内的极小值点进行高斯拟合,随着温度的逐渐增加,极小值点高斯拟合曲线向长波长方向漂移;附图3(c)是将附图3(b)中不同温度对应的各条高斯拟合曲线的极小值点读取后,以不同温度为横坐标,对应的极小值为纵坐标进行线性拟合,得到快速傅里叶滤波的温度灵敏度为2.057nm/℃。
当外界温度变化时,所述光纤温度传感器中的单孔双芯偏心光纤5反谐振效应三层结构传输介质的有效折射率产生微弱变化,通过对光谱仪9上的光谱进行高斯拟合,可以得到谐振波长会产生漂移现象,通过波长解调的方式,可得所述光纤温度传感器通过高斯拟合方法获取的温度灵敏度,如图2(c)所示获取的温度灵敏度为42.18pm/℃,实验中采用分辨率为20pm的光谱仪(AQ6370c),因而可获得的温度分辨率为0.474℃,由于分辨率的值较低,使得高斯拟合谐振波长方法得到的温度灵敏度适用于大动态温度范围的温度测量。同样,当外界温度变化时,单孔双芯偏心光纤5中传输的纤芯模和包层模的有效折射率差也产生微弱变化,从而使得在线马赫泽德干涉形成的梳状光谱也或产生漂移现象。
对光谱仪9上叠加的光谱进行快速傅里叶滤波处理后,提取出不同温度条件下梳状谱包络最小值的漂移量,可得所述光纤温度传感器通过快速傅里叶滤波获取的温度灵敏度,如图3(c)所示获取的温度灵敏度为2.057nm/℃,同理可获得的温度分辨率为0.00972℃,由于该分辨率很高,使得快速傅里叶滤波方法得到的温度灵敏度适合高精度的温度测量。由于上述两种方法获取的温度灵敏度差别为两个数量级,从而可通过高斯拟合方法获取的温度灵敏度实现大动态范围的温度测量,通过快速傅里叶滤波方法获取的温度灵敏度实现高分辨率的温度测量。此外,所选取的单孔双芯偏心光纤5的实际长度为950μm,因而可同时实现所述光纤温度传感器尺寸 的微型化。
综上所述,本发明提供的微尺寸高分辨率和大动态范围同时测量的光纤温度传感器可分别通过高斯拟合和快速傅里叶滤波方法实现。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种光纤温度传感器,其特征在于,包括:宽带光源、第一光纤跳线、第一单模光纤、单孔双芯偏心光纤、第二单模光纤、第二光纤跳线以及光谱仪;
    所述第一光纤跳线的两端分别连接所述宽带光源的输出端和所述第一单模光纤的一端,所述宽带光源用于提供宽谱光,第一光纤跳线用于将宽谱光引入第一单模光纤;
    所述第一单模光纤的另一端与所述单孔双芯偏心光纤的一端连接,其连接点作为第一熔接点;
    所述单孔双芯偏心光纤的另一端与所述第二单模光纤的一端连接,其连接点作为第二熔接点,所述第一熔接点、单孔双芯偏心光纤和第二熔接点依次连接形成了在线马赫泽德干涉结构并对所述宽谱光产生反谐振效应,其中,在线马赫泽德干涉结构和反谐振效应对所述宽谱光的影响与光纤温度传感器所在环境温度相关;
    所述第二单模光纤的另一端与所述第二光纤跳线的一端连接;
    所述第二光纤跳线的另一端连接光谱仪,所述第二光纤跳线用于将通过在线马赫泽德干涉结构和反谐振效应叠加形成的光信号导入光谱仪,使得所述光谱仪根据所述光信号确定所述光纤温度传感器所在环境的温度。
  2. 根据权利要求1所述的光纤温度传感器,其特征在于,所述光谱仪对所述光信号进行快速傅里叶滤波,将叠加光谱中高阶包层模与纤芯模干涉形成的梳状光谱滤出,由于高阶包层模的热光系数要高于低阶包层模,故快速傅里叶滤波方法滤出的高阶梳状光谱可以获得较高的温度灵敏度;
    所述光谱仪对所述光信号进行高斯拟合,由于反谐振效应的温度灵敏度取决于单孔双芯偏心光纤包层的热光系数,由于光纤包层的热光系数很低,故反谐振效应获得的温度灵敏度较低;
    所述光谱仪对所述光信号分别进行快速傅里叶滤波和高斯拟合,分别确定梳状光谱中的极小值点波长和谐振波长,所述光谱仪根据所述梳状光谱中极小值点波长和所述光信号的谐振波长与温度的变化关系确定所述光纤温度传感器所在环境的温度,其中,所述梳状光谱中的极小值点波长随所在环境温度的变化的灵敏度为第一温度灵敏度,所述光信号的谐振波长随所在环境温度的变化的灵敏度为第二温度灵敏度,第一温度灵敏度大于第二温度灵敏度且二者为不同数量级,故所述光纤温度传感器适用于高分辨率和大动态范围温度测量。
  3. 根据权利要求1或2所述的光纤温度传感器,其特征在于,所述单孔双芯偏心光纤的两端分别与所述第一单模光纤的另一端和所述第二单模光纤的一端均采用包层对准熔接,且所述第一熔接点和所述第二熔接点均为塌陷的熔接点。
  4. 根据权利要求1或2所述的光纤温度传感器,其特征在于,所述单孔双芯偏心光纤的空气孔位于其中心位置,且空气孔的直径为20μm~50μm。
  5. 根据权利要求1或2所述的光纤温度传感器,其特征在于,所述单孔双芯偏心光纤的双芯所处位置分别为悬挂在包层内壁和***包层中,且双芯分布在空气孔两侧。
  6. 根据权利要求1或2所述的光纤温度传感器,其特征在于,所述单孔双芯偏心光纤的纤芯和包层直径与普通单模光纤的相同。
  7. 根据权利要求1或2所述的光纤温度传感器,其特征在于,所述单孔双芯偏心光纤的长度为0.8mm~1.2mm。
PCT/CN2018/076219 2018-01-30 2018-02-11 一种光纤温度传感器 WO2019148539A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/323,649 US11112316B2 (en) 2018-01-30 2018-02-11 Optical fiber temperature sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810085724.9 2018-01-30
CN201810085724.9A CN108332876B (zh) 2018-01-30 2018-01-30 一种光纤温度传感器

Publications (1)

Publication Number Publication Date
WO2019148539A1 true WO2019148539A1 (zh) 2019-08-08

Family

ID=62926099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076219 WO2019148539A1 (zh) 2018-01-30 2018-02-11 一种光纤温度传感器

Country Status (3)

Country Link
US (1) US11112316B2 (zh)
CN (1) CN108332876B (zh)
WO (1) WO2019148539A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895157A (zh) * 2019-12-18 2020-03-20 厦门大学 基于双模光纤可同时测量液体压强和温度的传感器及方法
CN112697339A (zh) * 2020-11-26 2021-04-23 桂林电子科技大学 一种高强度耐高温快响应光纤气压传感探头
CN113067572A (zh) * 2021-03-19 2021-07-02 东北大学 一种温控开关效应的联结型液芯反谐振光纤及其应用
CN113218532A (zh) * 2021-06-29 2021-08-06 哈尔滨理工大学 一种基于光纤双腔二倍游标效应增敏的温度传感器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580035B (zh) * 2018-12-05 2020-08-18 天津大学 高条纹可见度的蓝宝石光纤高温传感器及其温度测量方法
CN110470240B (zh) * 2019-08-16 2021-05-25 天津大学 一种光纤曲率测量传感器及其测量***
CN110987230B (zh) * 2019-12-20 2021-10-15 华中科技大学 一种双参量光纤传感模块及***
CN112284565B (zh) * 2020-09-21 2023-04-18 华南师范大学 一种***振光纤温度探测器
CN112683847A (zh) * 2020-12-22 2021-04-20 哈尔滨隽骁科技有限公司 基于错位熔接级联双腔的液体折射率传感器及传感方法
CN113916838B (zh) * 2021-12-14 2022-03-01 山东省科学院海洋仪器仪表研究所 一种基于双共振效应的海水温盐传感器、测量***及方法
CN117293424B (zh) * 2023-11-24 2024-04-19 宁德时代新能源科技股份有限公司 电池管理方法、设备、存储介质、用电装置、电池及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118075A1 (en) * 1999-12-14 2003-06-26 Gustav Schweiger Optical temperature sensor
US20050129088A1 (en) * 2003-12-11 2005-06-16 Rajendran Veera P. Methods and apparatus for temperature measurement and control in electromagnetic coils
CN103175628A (zh) * 2013-02-26 2013-06-26 华中科技大学 一种光纤型温度传感器
CN106644154A (zh) * 2016-09-12 2017-05-10 武汉工程大学 一种基于毛细管结构的光纤高温传感器及制备方法
CN106959172A (zh) * 2017-03-23 2017-07-18 重庆大学 高灵敏度紧凑m‑z干涉温度传感器及其制作方法
CN107014518A (zh) * 2017-03-30 2017-08-04 华中科技大学 一种光纤温度传感装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298794A (en) * 1979-08-30 1981-11-03 United Technologies Corporation Fiber optic hot spot detector
US7005669B1 (en) * 2001-08-02 2006-02-28 Ultradots, Inc. Quantum dots, nanocomposite materials with quantum dots, devices with quantum dots, and related fabrication methods
US7425093B2 (en) * 2003-07-16 2008-09-16 Cabot Corporation Thermography test method and apparatus for bonding evaluation in sputtering targets
US7480425B2 (en) * 2004-06-09 2009-01-20 Oewaves, Inc. Integrated opto-electronic oscillators
US7433054B1 (en) * 2006-05-18 2008-10-07 Lockheed Martin Corporation Tunable Michelson and Mach-Zehnder interferometers modified with Gires-Tournois interferometers
US8277119B2 (en) * 2006-12-19 2012-10-02 Vibrosystm, Inc. Fiber optic temperature sensor
CN102261965B (zh) * 2011-04-28 2013-01-30 浙江师范大学 基于双芯光纤的温度传感方法及装置
DE102012106806B4 (de) * 2012-07-26 2022-07-28 J-Fiber Gmbh Sensorfaser zur Temperatur-, Dehnungs- und/oder Torsionsdetektion in Form eines Mehrkern-Lichtwellenleiters mit einer Fiber-Bragg-Gitterstruktur
CN103852191B (zh) * 2013-12-30 2016-08-17 哈尔滨工程大学 一种折射率不敏感的光纤温度传感器
CN103940530B (zh) * 2014-03-21 2016-05-04 哈尔滨工程大学 一种基于空心环形波导光纤的温度传感器
US11022752B2 (en) * 2015-11-09 2021-06-01 Xu Yuan Biotechnology Company Optical fibers having metallic micro/nano-structure on end-facet, and fabrication method, and application method thereof
CN105954235B (zh) * 2016-04-26 2018-12-07 哈尔滨工程大学 一种孔助双芯光纤干涉型折射率传感器
CN106197742A (zh) * 2016-08-26 2016-12-07 北京信息科技大学 一种利用纤芯失配干涉结构测量温度的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118075A1 (en) * 1999-12-14 2003-06-26 Gustav Schweiger Optical temperature sensor
US20050129088A1 (en) * 2003-12-11 2005-06-16 Rajendran Veera P. Methods and apparatus for temperature measurement and control in electromagnetic coils
CN103175628A (zh) * 2013-02-26 2013-06-26 华中科技大学 一种光纤型温度传感器
CN106644154A (zh) * 2016-09-12 2017-05-10 武汉工程大学 一种基于毛细管结构的光纤高温传感器及制备方法
CN106959172A (zh) * 2017-03-23 2017-07-18 重庆大学 高灵敏度紧凑m‑z干涉温度传感器及其制作方法
CN107014518A (zh) * 2017-03-30 2017-08-04 华中科技大学 一种光纤温度传感装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895157A (zh) * 2019-12-18 2020-03-20 厦门大学 基于双模光纤可同时测量液体压强和温度的传感器及方法
CN112697339A (zh) * 2020-11-26 2021-04-23 桂林电子科技大学 一种高强度耐高温快响应光纤气压传感探头
CN113067572A (zh) * 2021-03-19 2021-07-02 东北大学 一种温控开关效应的联结型液芯反谐振光纤及其应用
CN113067572B (zh) * 2021-03-19 2024-04-16 东北大学 一种温控开关效应的联结型液芯反谐振光纤及其应用
CN113218532A (zh) * 2021-06-29 2021-08-06 哈尔滨理工大学 一种基于光纤双腔二倍游标效应增敏的温度传感器

Also Published As

Publication number Publication date
US11112316B2 (en) 2021-09-07
US20200292397A1 (en) 2020-09-17
CN108332876A (zh) 2018-07-27
CN108332876B (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2019148539A1 (zh) 一种光纤温度传感器
Zhang et al. Bending sensor with parallel fiber Michelson interferometers based on Vernier-like effect
Lin et al. Cascaded fiber Mach–Zehnder interferometers for sensitivity-enhanced gas pressure measurement
CN211824859U (zh) 基于错位熔接和游标效应的光纤气压传感器
CN105698858B (zh) 一种可判别弯曲方向的曲率和温度同时测量的光纤传感器
WO2022160822A1 (zh) 一种基于悬浮光纤错位熔接的高灵敏度高温传感器
CN105928469B (zh) 一种高灵敏可判别弯曲方向的无温度交叉灵敏的光纤曲率传感器
CN113074830B (zh) 光纤温度传感器及传感头结构
CN210221338U (zh) 一种基于并联游标效应的光纤高温传感器
WO2022156298A1 (zh) 一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器
CN110595515B (zh) 一种基于保偏光纤及fp腔的双参量光纤传感器
CN112414581B (zh) 一种基于多芯光纤的温度传感器
CN102944328B (zh) 折射率不敏感的温度传感器的制备方法及测量装置
CN106768474A (zh) 基于单Sagnac干涉环产生游标放大效应的方法及装置
CN112666503A (zh) 一种并行双m-z光纤磁传感装置及其制作方法
Zhu et al. Double FP interference optical fiber high temperature gas pressure sensor based on suspended core fiber
Wu et al. Characteristics of a new multi-channel sensing device based on C-type photonic crystal fibers
Liu et al. Simultaneous measurement of temperature and strain based on SCF-based MZI cascaded with FBG
Shu et al. Simultaneous measurement three parameters of temperature, strain, and curvature by thin-core fiber based-Mach-Zehnder interferometer
CN109580037A (zh) 基于光子晶体光纤fp结构的温度传感器及其制作方法
Yuan et al. A ring core fiber sensor based on Mach–Zehnder interferometer for transversal force sensing with solvable temperature cross sensitivity
CN104729494A (zh) 一种谐振式空芯光子晶体光纤陀螺及应用
Yang et al. All-pass and add-drop microsphere resonator in a suspended dual-core hollow fiber
Duan et al. Optical fiber dual-parameter sensors based on different kinds of interferometers for measuring refractive index and temperature: a review
Peng et al. Symmetry evaluation for an interferometric fiber optic gyro coil utilizing a bidirectional distributed polarization measurement system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904190

Country of ref document: EP

Kind code of ref document: A1