WO2019144927A1 - 天线和移动终端 - Google Patents

天线和移动终端 Download PDF

Info

Publication number
WO2019144927A1
WO2019144927A1 PCT/CN2019/073167 CN2019073167W WO2019144927A1 WO 2019144927 A1 WO2019144927 A1 WO 2019144927A1 CN 2019073167 W CN2019073167 W CN 2019073167W WO 2019144927 A1 WO2019144927 A1 WO 2019144927A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiator
matching network
antenna switch
frequency
Prior art date
Application number
PCT/CN2019/073167
Other languages
English (en)
French (fr)
Inventor
陶延辉
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2019144927A1 publication Critical patent/WO2019144927A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the high-screen ratio of mobile terminals means that the antenna clearance will be further reduced (the clearance can be understood as the distance between the antenna radiating the inner wall and the X/Y direction of the metal supporting the wrapped screen, and the headroom is proportional to the antenna performance and signal strength).
  • the current demand for mobile terminals to support multi-band inter-band CA is also growing.
  • the present disclosure provides an antenna and a mobile terminal to solve the problem that it is difficult for a mobile terminal in the related art to implement a multi-band CA combination.
  • an embodiment of the present disclosure provides an antenna, which is applied to a mobile terminal, including: a feed, a combiner, an antenna radiator, a first antenna switch, a first matching network, a second matching network, and a third matching network. ;
  • the input end of the combiner is connected to the feed source, the first output end of the combiner is connected to the first end of the first matching network, and the second output end of the combiner is connected to the first end of the second matching network;
  • the second end of the first matching network is connected to the first radiator, and the second end of the second matching network is connected to the second radiator, and the first matching network and the second matching network are used for antenna impedance matching;
  • the first end of the first antenna switch is connected to the first radiator, the second end of the first antenna switch is connected to the first end of the third matching network, and the connection point of the first antenna switch and the first radiator is located at the first Matching the connection point between the network and the first radiator and the fracture;
  • the second end of the third matching network is grounded, and the third matching network is used to adjust the resonant frequency of the antenna.
  • an embodiment of the present disclosure provides a mobile terminal, including the antenna described above.
  • the first antenna switch is turned on, and the RF energy fed by the feed flows through the second matching network and a part of the second radiator, and the first radiator is excited by the slot coupling to be located at the first antenna switch.
  • the portion between the slit and the slit produces a parasitic resonant mode, and the first radiating body is coupled to excite an additional parasitic resonant mode, which can effectively expand the bandwidth of the medium and high frequency, thereby achieving multiple CAs while enabling
  • the bandwidth of each mode can be well balanced, and the multi-band CA combination can be realized; and the antenna does not need to occupy a large space, and can be applied to a mobile terminal with a high screen ratio.
  • FIG. 1 is a schematic structural diagram of an antenna according to an embodiment of the present disclosure
  • FIG. 2 is a second schematic structural diagram of an antenna according to an embodiment of the present disclosure.
  • FIG. 3 is a third schematic structural diagram of an antenna according to an embodiment of the present disclosure.
  • FIG. 4 is a fourth schematic structural diagram of an antenna according to an embodiment of the present disclosure.
  • FIG. 5 is a fifth schematic structural diagram of an antenna according to an embodiment of the present disclosure.
  • 6a is a schematic diagram showing a standing wave ratio of an "intermediate frequency + intermediate frequency" double-band CA resonant mode according to an embodiment of the present disclosure
  • 6b is a schematic diagram showing a standing wave ratio of an "intermediate frequency + high frequency" dual-band CA resonant mode according to an embodiment of the present disclosure
  • 6c is a schematic diagram showing a standing wave ratio of a "low frequency + intermediate frequency / high frequency" double-band CA resonance mode according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing efficiency curves of respective frequency points of a "B1+B3+B5" three-band CA resonance mode according to an embodiment of the present disclosure.
  • FIG. 1 it is a schematic structural diagram of an antenna provided by an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides an antenna, which is applied to a mobile terminal, including: a feed 110, a combiner 120, an antenna radiator, a first antenna switch K1, a first matching network M1, a second matching network M2, and a third matching. Network M3.
  • the first antenna switch K1 is turned on, the RF energy fed by the feed 110 flows through the second matching network M2, and the second radiator 132 is located at the connection point F2 of the second matching network M2 and the second radiator 132.
  • the second end G3 of the third matching network M3 serves as a direct ground end of the first antenna switch K1.
  • the second end G3 of the third matching network M3 When the first antenna switch K1 is closed, the second end G3 of the third matching network M3, the first antenna switch K1 and the first radiation
  • the connecting arm B of the body 131 and the radiating arm between the three points of the slit S, that is, the portion of the first radiator 131 located between the first antenna switch K1 and the slit S, are connected to the ground through the corresponding third matching network M3.
  • the RF energy fed by the feed source 110 passes through the combiner 120 and flows through the second radiator 132 at a portion between the connection point F2 of the second matching network M2 and the second radiator 132 and the slit S, at the breakage At S, the first radiator 131 is excited by the coupling of the slit S to be located between the first antenna switch K1 and the slit S, and a parasitic resonance mode f3 is generated at the intermediate frequency; the parasitic resonance mode f3 can pass through the first antenna switch K1 and its connected third matching network M3 implement switching tuning between the medium and high frequency bands.
  • the antenna does not need to occupy a large space, and the second radiator 132 reconstructs a part of the radiating arm of the first radiator 131 through the first antenna switch K1, and generates an additional parasitic resonance at the middle and high frequencies.
  • the modality increases the bandwidth of the medium-high frequency antenna by nearly double, and can realize the medium-high frequency dual-carrier inter-band CA while improving the antenna bandwidth performance, and then the combiner 120 can make the antenna cover the "low frequency + intermediate frequency” and " Low frequency + high frequency”, “intermediate frequency + intermediate frequency”, “intermediate frequency + high frequency”, “low frequency + intermediate frequency + intermediate frequency” and “low frequency + intermediate frequency + high frequency” and other combinations of inter-band CA.
  • the length of the first radiator 131 is greater than the length of the second radiator 132.
  • the length of the first radiator 131 may be 50-65 mm, and the distance between the connection point F1 of the first matching network M1 and the first radiator 131 to the ground G1 of the first radiator 131 may be 3-25 mm.
  • the first inductor may have a value of 10 nh to 39 nh, and the first capacitor may have a value of 0.3 pf to 3 pf.
  • the first inductor has a typical value of 27 nh, and the first capacitor has a typical value of 1.5 pf.
  • the first matching network M1 can include the suppression circuit, high-frequency suppression can be implemented at the antenna feeding, so that the design requirement of isolation between multiple antennas can be more satisfactorily satisfied.
  • the first matching network M1 may further include a series of parallel capacitors, inductors, or a combination of capacitors and inductors, thereby assisting in optimizing the low frequency bandwidth on the basis of achieving high frequency suppression.
  • the antenna may further include: a second antenna switch K2 and a fourth matching network M4.
  • the first end of the second antenna switch K2 is connected to the first radiator 131, the second end of the second antenna switch K2 is connected to the first end of the fourth matching network M4, and the second antenna switch K2 and the first radiator 131
  • the connection point A is located between the connection point F1 of the first matching network M1 and the first radiator 131 and the connection point B of the first antenna switch K1 and the first radiator 131; the second end of the fourth matching network M4 is grounded
  • the fourth matching network M4 is used to adjust the resonant frequency of the antenna.
  • the first radiator 131 when the first antenna switch K1 and the second antenna switch K2 are simultaneously disconnected, the first radiator 131 resonates to generate an original low frequency mode f1, and can pass through the first antenna switch K1 and the second antenna switch.
  • K2 combines with the corresponding matching network (the third matching network M3 and the fourth matching network M4) to achieve switching of each low frequency mode covering the low frequency separately or in combination; the second radiator 132 generates a resonant mode in the intermediate frequency or high frequency portion F2.
  • the length of the connection point A of the second antenna switch K2 and the first radiator 131 to the connection point F1 of the first matching network M1 and the first radiator 131 can be adjusted according to the layout, and is generally recommended to be 2 to 15 mm, typically Can be 5mm.
  • the first radiator 131 when the first antenna switch K1 is turned off, the first radiator 131 resonates to generate an original low frequency mode f1, and can be adjusted by the first antenna switch K1 in combination with the corresponding third matching network M3.
  • the switching of the low frequency mode is performed; the second radiator 132 generates a resonant mode f2 at the intermediate frequency or the high frequency portion, and the resonant mode f2 can realize the medium and high frequency by the third antenna switch K3 combined with the corresponding fifth matching network M5.
  • the distance from the connection point C of the third antenna switch K3 to the second radiator 132 to the slit S may be generally 0 to 10 mm, and the typical value may be 3 mm.
  • the third matching network M3 may include a Band Pass Filter (BPF) for filtering out a predetermined intermediate frequency range, thereby being able to ensure that the antenna can be at a low frequency while present in a low frequency.
  • BPF Band Pass Filter
  • An intermediate frequency resonant mode is implemented on the radiating arm (ie, the first radiator).
  • the band pass filter may include: a second capacitor and a second inductor; and the second capacitor and the second inductor are connected in series.
  • the bandpass filter resonates at a desired intermediate frequency range, and can generally be 1710 to 2170 MHz.
  • the value of the second capacitor may be 0.5 pf to 1.5 pf
  • the value of the second inductor may be 4.7 nh to 18 nh.
  • the second inductor may have a typical value of 8.2 nh
  • the second capacitor may have a typical value of 1 pf.
  • the slit S may be disposed at a position where the bottom of the mobile terminal is difficult to grasp, so as to facilitate the improvement of the antenna performance.
  • Embodiments of the present disclosure are preferably applicable to a mobile terminal having a metal casing.
  • FIG. 4 a fourth schematic structural diagram of an antenna according to an embodiment of the present disclosure is shown.
  • the first radiator The 131 resonance generates an original low frequency mode f1, and can switch between the respective low frequency modes covering the low frequency by the first antenna switch K1 and the second antenna switch K2 in combination with the corresponding matching network, respectively or in combination;
  • the second radiator 132 is The intermediate frequency or high frequency portion generates a resonant mode f2, which can be switched between the middle and high frequency by the third antenna switch K3 in combination with the corresponding fifth matching network M5; in the first antenna switch K1 When closed, the second end G3 of the third matching network M3, the connection point B of the first antenna switch K1 and the first radiator 131, and the radiation arm between the three points of the slit S, that is, the first radiator 131 are located at the A portion between the antenna switch K1 and the slit S is connected to the ground through the corresponding third
  • the portion generates a parasitic resonant mode f3 at the intermediate frequency; the parasitic resonant mode f3 can achieve switching tuning between the middle and high frequency bands through the first antenna switch K1 and its connected third matching network M3.
  • the antenna can implement the following combination requirements of multiple multi-band CAs.
  • the embodiment of the present disclosure can implement the inter-band CA of "intermediate frequency + intermediate frequency” and "intermediate frequency + high frequency”, and the specific implementation manner is as follows: the intermediate frequency resonant mode f2 generated by the radiating arm of the second radiator 132, the second radiator A portion of the radiation arm of the first radiator 131 is multiplexed by reconstruction, that is, the first radiator 131 is located between the first antenna switch K1 and the slit S, and the coupling parasitic generates an intermediate frequency parasitic resonance mode f3, which constitutes the entire
  • the double intermediate frequency resonant mode of the two radiators 132 can realize the "intermediate frequency + intermediate frequency” double-band CA at the same time, and the standing wave ratio of the "intermediate frequency + intermediate frequency” double-band CA resonant mode of the first implementation mode 1 As shown in FIG.
  • the second radiator 132 reconfigures a part of the radiating arm of the first radiator 131 by reconstruction, that is, the first
  • the radiator 131 is located between the first antenna switch K1 and the slit S, and the coupling parasitic generates the intermediate frequency parasitic resonance mode f3, which constitutes the intermediate frequency resonance mode and the high frequency resonance mode of the entire second radiator 132, which can be realized.
  • Simultaneously coexisting "intermediate frequency + high frequency" double Between CA, the CA to achieve a standing wave resonant mode between a mode of "high frequency + IF" dual band than shown in schematic in FIG. 6b.
  • the other CA combination between the intermediate frequency and the high frequency can achieve tuning by adjusting the first antenna switch K1 and the third antenna switch K3 in combination with the respective connected matching networks (the third matching network M3 and the fifth matching network M5).
  • the embodiment of the present disclosure can implement a “low frequency + intermediate frequency” and a “low frequency + high frequency” dual band CA, and the specific implementation manner is as follows: the radiation arm of the first radiator 131 generates a low frequency resonance mode f1, wherein the first antenna can pass through The switch K1 or the second antenna switch K2 or the combination of the first antenna switch K1 and the second antenna switch K2 and combined with the corresponding matching network (the third matching network M3 or the fourth matching network M4 or the third matching network M3 and the fourth matching The network M4 cooperates to obtain the desired low frequency resonant mode f1; the intermediate frequency of the second radiator 132 resonates through the third antenna switch K3 and its connected fifth matching network M5 to excite the required intermediate frequency or high frequency resonant mode State f2.
  • the low frequency resonant mode, the intermediate frequency/high frequency resonant mode can realize the dual-band CA combination of "low frequency + intermediate frequency” or "low frequency + high frequency” which can coexist at the same time through the combiner 120.
  • a schematic diagram of the standing wave ratio of the "low frequency + intermediate frequency / high frequency" double-band CA resonant mode is shown in Figure 6c.
  • the embodiment of the present disclosure can implement a "low frequency + intermediate frequency + intermediate frequency / high frequency" three-band CA, and the specific implementation manner is as follows: the radiation arm of the first radiator 131 generates a low frequency resonance mode f1, wherein the first antenna switch K1 can be passed Or the second antenna switch K2 or the combination of the first antenna switch K1 and the second antenna switch K2 and combined with the corresponding matching network (the third matching network M3 or the fourth matching network M4 or the third matching network M3 and the fourth matching network M4) Cooperating to obtain the desired low frequency resonant mode f1; the radiating arm of the second radiator 132 generates an intermediate frequency or high frequency resonant mode f2, which can pass through the third antenna switch K3 and its connected fifth matching network M5 The required intermediate frequency or high frequency resonant mode f2 is excited.
  • the first antenna switch K1 can be turned on, and the third matching network M3 can be switched and configured to filter out the bandpass filter of the predetermined intermediate frequency range.
  • the bandpass filter resonates at the desired intermediate frequency range of 1710 to 2170 MHz, so that an intermediate frequency parasitic resonant mode f3 can be simultaneously extracted on the radiating arm of the first radiator 131 while the low frequency resonant mode f1 is present.
  • the band pass filter includes: a second capacitor and a second inductor; and the second capacitor and the second inductor are connected in series.
  • the value of the second capacitor may be 0.5 pf to 1.5 pf, and the typical value may be 1 pf; the value of the second inductor may be 4.7 nh to 18 nh, and the typical value may be 8.2 nh.
  • the intermediate frequency/high frequency excited by the first radiator 131 and generated by the combiner and the second radiator 132 can form “low frequency + intermediate frequency + intermediate frequency” or “low frequency + intermediate frequency + high”.
  • the three-band CA resonant mode of the frequency band exists simultaneously, and the standing wave ratio of the "low frequency + intermediate frequency + intermediate frequency / high frequency" three-band CA resonance mode of the third implementation mode is shown in Fig. 6d.
  • the low-frequency branch (the partial radiating arm of the first radiator 131) is used, and at the same time, cooperate
  • the related antenna switch and its connected matching network filtering manner may also adopt the following implementation manner: through the first antenna switch K1 or the second antenna
  • the switch K2 or the combination of the first antenna switch K1 and the second antenna switch K2 is combined with the corresponding matching network (the third matching network M3 or the fourth matching network M4 or the third matching network M3 cooperates with the fourth matching network M4)
  • the first radiator 131 is resonated at B5.
  • the first radiator 131 can be resonated at B5 by opening the first antenna switch K1 and the second antenna switch K2; meanwhile, the third antenna switch K3 is turned off.
  • the second radiator 132 can only generate a resonant mode covering one frequency band, but in practical applications, the frequencies of B1 (1.92-2.17 GHz) and B3 (1.71-1.88 GHz) are relatively close, The resonant bandwidth generated by the second radiator 132 when the third antenna switch is turned off becomes shallower and wider, and the efficiency of the intermediate frequency B1 to B3 can still reach 16% to 27%.
  • "B1+B3+B5" three The efficiency curve of each frequency point of the inter-band CA resonant mode is shown in Fig. 7. At this time, the basic design requirements of the three-band CA can be satisfied.
  • the third matching network M3 can eliminate the band pass filter for filtering out the predetermined intermediate frequency range, thereby further improving the performance of the low frequency.
  • FIG. 5 is a schematic structural diagram of an antenna provided by an embodiment of the present disclosure, in a preferred implementation of the present disclosure.
  • the third capacitor C1 is provided at the slit S.
  • the antenna of the plastic model is generally in the form of an FPC (Flexible Printed Circuit) or an LDS (Laser Direct Structuring)
  • the thickness of the antenna radiating arm is usually only about 0.2 mm, so that the two antennas are When the end of the unit (the strongest point of the electric field) is close, the capacitive coupling amount is small, and the coupling parasitic effect tends to be poor.
  • the radiating arm of the parasitic multiplexing first radiator 131 can generate a medium-high frequency resonant mode, the bandwidth is often compared. difference.
  • the surface of the antenna in the form of FPC or LDS can be mounted with capacitors, inductors, etc. through SMT (Surface Mount Technology)
  • a third capacitor can be placed at the end of the two antenna elements, that is, SMT at the slit S. C1 can increase the coupling between antennas to achieve the predetermined performance requirements of the antenna.
  • the mobile terminal may be a mobile phone, a tablet computer, a laptop computer, a personal digital assistant (PDA), or a wearable device (Wearable Device).
  • PDA personal digital assistant
  • WPA wearable Device
  • the mobile terminal with the above antenna can overcome the problem that the mobile terminal in the related art is difficult to implement the "double intermediate frequency” or "low frequency + double intermediate frequency” multi-band CA combination, thereby ensuring the use of the mobile terminal. Reliability and stability.
  • the terms “installation”, “connected”, “connected”, “fixed”, “set”, etc. are to be understood broadly, and may be fixed connections, for example, or It is detachable, or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two elements or the interaction of two elements.
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
  • relational terms such as first and second, etc. are used merely to distinguish one entity or operation from another entity or operation, without necessarily requiring or implying between these entities or operations. There are any such actual relationships or sequences.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开提供一种天线和移动终端,其中,天线包括:馈源、合路器、天线辐射体、第一天线开关、第一匹配网络、第二匹配网络以及第三匹配网络;天线辐射体上设置有一断缝,天线辐射体通过断缝形成第一辐射体和第二辐射体;合路器的输入端与馈源连接,合路器的第一输出端与第一匹配网络的第一端连接,合路器的第二输出端与第二匹配网络的第一端连接;第一匹配网络的第二端与第一辐射体连接,第二匹配网络的第二端与第二辐射体连接;第一天线开关的第一端与第一辐射体连接,第一天线开关的第二端与第三匹配网络的第一端连接;第三匹配网络的第二端接地。

Description

天线和移动终端
相关申请的交叉引用
本申请主张在2018年1月29日在中国提交的中国专利申请号No.201810085533.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及电子技术领域,尤其涉及一种天线和移动终端。
背景技术
随着全面屏手机等高屏占比的移动终端的上市,消费者对高屏占比移动终端的外观需求愈来愈强烈。高屏占比的移动终端意味着天线净空将会进一步缩小(净空可以理解为天线辐射体内壁到支撑包裹屏幕的金属物X/Y向的距离,净空大小与天线性能及信号强度成正比)。另外,目前运营商对于移动终端支持多频段带间CA的需求亦逐渐强烈。例如***的B39(1.88-1.92GHz)+B41(2.55-2.65GHz)的中高频带间载波聚合(Carrier Aggregation,CA),以及中国电信提出的B1(1.92~2.17GHz)+B3(1.71~1.88GHz)+B5(0.824~0.894GHz)的“低频+双中频”3带间CA组合。
多带间CA意味着移动终端的天线要能同时覆盖多个频段同时工作,而在高屏占比移动终端上,则要求天线能够在更加有限的空间内实现覆盖更宽的带宽,而目前,相关技术中的金属类手机等移动终端上难以在有限的空间内实现如“双中频”或“低频+双中频”等多带间CA覆盖。
综上,相关技术中的移动终端存在难以实现“双中频”或“低频+双中频”的多带间CA组合的问题。
发明内容
本公开提供一种天线和移动终端,以解决相关技术中的移动终端难以实现多带间CA组合的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供一种天线,应用于移动终端,包括:馈源、合路器、天线辐射体、第一天线开关、第一匹配网络、第二匹配网络以及第三匹配网络;
天线辐射体上设置有一断缝,天线辐射体通过断缝形成第一辐射体和第二辐射体;
合路器的输入端与馈源连接,合路器的第一输出端与第一匹配网络的第一端连接,合路器的第二输出端与第二匹配网络的第一端连接;
第一匹配网络的第二端与第一辐射体连接,第二匹配网络的第二端与第二辐射体连接,第一匹配网络和第二匹配网络用于实现天线阻抗匹配;
第一天线开关的第一端与第一辐射体连接,第一天线开关的第二端与第三匹配网络的第一端连接,第一天线开关与第一辐射体的连接点,位于第一匹配网络与第一辐射体的连接点和断缝之间;
第三匹配网络的第二端接地,第三匹配网络用于调节天线的谐振频率。
第二方面,本公开实施例提供一种移动终端,包括上述的天线。
在本公开实施例中,通过第一天线开关导通,利用馈源馈入的射频能量流经第二匹配网络和一部分第二辐射体,经断缝耦合激励第一辐射***于第一天线开关和断缝之间的部分,产生一个寄生谐振模态,第一辐射体耦合激励出一个额外的寄生谐振模态,能够有效的拓展中高频的频宽,从而在实现多CA的同时并能够更好地兼顾各个模态的带宽,能够实现多带间CA组合;并且,该天线无需占用很大的空间,能够适用于高屏占比的移动终端。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例提供的天线的结构示意图之一;
图2表示本公开实施例提供的天线的结构示意图之二;
图3表示本公开实施例提供的天线的结构示意图之三;
图4表示本公开实施例提供的天线的结构示意图之四;
图5表示本公开实施例提供的天线的结构示意图之五;
图6a表示本公开实施例提供的“中频+中频”双带间CA谐振模态的驻波比示意图;
图6b表示本公开实施例提供的“中频+高频”双带间CA谐振模态的驻波比示意图;
图6c表示本公开实施例提供的“低频+中频/高频”双带间CA谐振模态的驻波比示意图;
图6d表示本公开实施例提供的“低频+中频+中频/高频”三带间CA谐振模态的驻波比示意图;
图7表示本公开实施例提供的“B1+B3+B5”三带间CA谐振模态的各频点的效率曲线示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
请参见图1,其示出的是本公开实施例提供的天线的结构示意图之一。本公开实施例提供一种天线,应用于移动终端,包括:馈源110、合路器120、天线辐射体、第一天线开关K1、第一匹配网络M1、第二匹配网络M2以及第三匹配网络M3。
本公开实施例中,天线辐射体上设置有一断缝S,天线辐射体通过断缝S形成第一辐射体131和第二辐射体132;合路器120的输入端与馈源110连接,合路器120的第一输出端与第一匹配网络M1的第一端连接,合路器120的第二输出端与第二匹配网络M2的第一端连接;第一匹配网络M1的第二端与第一辐射体131连接,第二匹配网络M2的第二端与第二辐射体132连接,第一匹配网络M1和第二匹配网络M2用于实现天线阻抗匹配;第一天 线开关K1的第一端与第一辐射体131连接,第一天线开关K1的第二端与第三匹配网络M3的第一端连接,第一天线开关K1与第一辐射体131的连接点B,位于第一匹配网络M1与第一辐射体131的连接点F1和断缝S之间;第三匹配网络M3的第二端G3接地,第三匹配网络M3用于调节天线的谐振频率。
其中,通过第一天线开关K1导通,馈源110馈入的射频能量流经第二匹配网络M2,以及第二辐射体132位于第二匹配网络M2与第二辐射体132的连接点F2和断缝S之间的部分,并经断缝S耦合激励第一辐射体131位于第一天线开关K1和断缝S之间的部分,产生一个寄生谐振模态。
在本公开实施例中,合路器120的第一输出端通过第一馈线L1与第一匹配网络M1的第一端连接,合路器120的第二输出端通过第二馈线L2与第二匹配网络M2的第一端连接,天线辐射体的两端分别接地,其中,在该天线辐射体上设置断缝S,以使该天线辐射体形成为第一辐射体131和第二辐射体132,也就是说,该第一辐射体131的第一接地端G1和第二辐射体132的接地端G2相远离。本公开实施例中,断缝S为第一辐射体131与第二辐射体132之间的公共断口缝隙,为高电场区,第一辐射体131的接地端G1和第二辐射体132的第二接地端G2,为低电场区;其中,第一辐射体131谐振在低频,在第一天线开关K1断开时,第一辐射体131谐振产生一个原始低频模态f1,并可以通过第一天线开关K1结合相应的第三匹配网络M3调谐实现预设低频模态的切换;第二辐射体132谐振在中高频,第二辐射体132在中频或高频部分产生一个谐振模态f2。第三匹配网络M3的第二端G3作为第一天线开关K1的直接接地端,在第一天线开关K1闭合时,第三匹配网络M3的第二端G3、第一天线开关K1与第一辐射体131的连接点B以及断缝S三点之间的辐射臂,即第一辐射体131位于第一天线开关K1和断缝S之间的部分,通过对应第三匹配网络M3接通到地,馈源110馈入的射频能量通过合路器120并流经第二辐射体132位于第二匹配网络M2与第二辐射体132的连接点F2和断缝S之间的部分,在断缝S处通过断缝S的耦合激励第一辐射体131位于第一天线开关K1和断缝S之间的部分,在中频产生一个寄生谐振模态f3;寄生谐振模态f3可以通过第一天线开关K1及其连接的第三 匹配网络M3实现中高频段之间的切换调谐。
在本公开实施例中,天线无需占用很大的空间,第二辐射体132通过第一天线开关K1重构复用第一辐射体131的部分辐射臂,在中高频产生了一个额外的寄生谐振模态,使得中高频的天线带宽增加了近一倍,并能够在提升天线带宽性能的同时实现中高频双载波带间CA,然后通过合路器120使得天线可以覆盖“低频+中频”、“低频+高频”、“中频+中频”、“中频+高频”、“低频+中频+中频”以及“低频+中频+高频”等多种带间CA的组合需求。
优选的,在本公开实施例中,为确保天线性能,便于快速有效地将天线调节到所需的中低高频谐振模态,第一辐射体131的长度大于第二辐射体132的长度。进一步的,第一辐射体131的长度可以为50~65mm,第一匹配网络M1与第一辐射体131的连接点F1至第一辐射体131的接地端G1之间的距离可以为3~25mm,这里,可以结合布局和馈电处的匹配对长度取值进行调整;第一天线开关K1与第一辐射体131的连接点B至断缝S之间的长度可以为5~15mm,第二辐射体132的长度可以为18~32mm,第二匹配网络M2与第二辐射体132的连接点F2至第二辐射体132的接地端G2之间的距离可以为2~20mm。进一步的,第一辐射体131的长度的典型值可以为58mm,第一天线开关K1与第一辐射体131的连接点B至断缝S之间的长度的典型值可以为10mm,第二辐射体132的长度的典型值可以为25mm,第二匹配网络M2与第二辐射体132的连接点F2至第二辐射体132的接地端G2之间的距离的典型值可以为6mm。
其中,为能够更好地实现本公开实施例中的多频段带间CA,应考虑高低频天线单元间隔离度问题的影响,为此,本公开一个优选的实施例中,第一匹配网络M1可以包括用于抑制中频和高频激励的抑制电路。利用该抑制电路,使得第一匹配网络M1能够将所有高频频点先匹配推到第一象限的高阻区,达到抑制第一辐射体131上产生高频激励的目的,同时能够避免第一匹配网络M1对低频的影响。
具体的,在本公开实施例中,该抑制电路可以包括第一电容和第一电感,第一电容和第一电感串联。这样,利用抑制电路串联的第一电容和第一电感,对于高频等效于一个大电感,从而能够将所有高频频点先匹配推到第一象限 的高阻区,达到抑制第一辐射体131上产生高频激励的目的,而对于低频则等效于一个电容,能够避免对低频产生影响。
在优选的实施例中,第一电感的取值可以为10nh~39nh,第一电容的取值可以为0.3pf~3pf。这样,对于低频则等效于一个达到50ohm附近的电容,因而抑制电路串联的第一电容和第一电感对低频的影响基本可以忽略,进而能够使高低频的隔离度所有状态基本均可以控制在-15db以下,能够满足移动终端多天线间隔离度的设计需求。其中,本公开实施例中,第一电感的典型值为27nh,第一电容的典型值为1.5pf。
另外,本公开实施例中,由于第一匹配网络M1可以包括有该抑制电路,能够在天线馈电处实现高频抑制,从而能够更为良好地满足多天线间隔离度的设计需求。
另外,本公开实施例中,第一匹配网络M1中,还可以包括一些串、并联的电容、电感或者电容与电感的组合电路,从而在实现高频抑制的基础上能够辅助优化低频带宽。
其中,请参见图2,其示出的是本公开实施例提供的天线的结构示意图之二,在本公开一个优选实施例中,天线还可以包括:第二天线开关K2和第四匹配网络M4;第二天线开关K2的第一端与第一辐射体131连接,第二天线开关K2的第二端与第四匹配网络M4的第一端连接,第二天线开关K2与第一辐射体131的连接点A,位于第一匹配网络M1与第一辐射体131的连接点F1和第一天线开关K1与第一辐射体131的连接点B之间;第四匹配网络M4的第二端接地,第四匹配网络M4用于调节天线的谐振频率。
本公开实施例中,在第一天线开关K1和第二天线开关K2同时断开时,第一辐射体131谐振产生一个原始低频模态f1,并可以通过第一天线开关K1、第二天线开关K2结合相应的匹配网络(第三匹配网络M3和第四匹配网络M4)单独或联合调谐实现覆盖低频的各个低频模态的切换;第二辐射体132在中频或高频部分产生一个谐振模态f2。
这里,该第二天线开关K2与第一辐射体131的连接点A至第一匹配网络M1与第一辐射体131的连接点F1的长度可根据布局调整,一般推荐为2~15mm,典型值可以为5mm。
其中,请参见图3,示出的是本公开实施例提供的天线的结构示意图之三,在本公开一个优选的实施例中,天线还包括:第三天线开关K3和第五匹配网络M5;第三天线开关K3的第一端与第二辐射体132连接,第三天线开关K3的第二端与第五匹配网络M5的第一端连接,第三天线开关K3与第二辐射体132的连接点C,位于第二匹配网络M2与第二辐射体132的连接点F2和断缝S之间;第五匹配网络M5的第二端接地,第五匹配网络M5用于调节天线的谐振频率。
本公开实施例中,在第一天线开关K1断开时,第一辐射体131谐振产生一个原始低频模态f1,并可以通过第一天线开关K1结合相应的第三匹配网络M3调谐实现覆盖预设低频模态的切换;第二辐射体132在中频或高频部分产生一个谐振模态f2,此谐振模态f2可以通过第三天线开关K3结合相应第五匹配网络M5实现中、高频之间的各个模态切换。
这里,第三天线开关K3与第二辐射体132的连接点C至断缝S的距离一般可以为0~10mm,其典型值可以为3mm。
另外,在本公开一个优选实施例中,第三匹配网络M3可以包括用于滤出预定中频范围的带通滤波器(Band Pass Filter,BPF),从而能够确保天线在低频存在的同时能够在低频的辐射臂(即第一辐射体)上实现一个中频谐振模态。
具体的,该带通滤波器可以包括:第二电容和第二电感;第二电容和第二电感串联。本实施例中,该带通滤波器谐振在所需的中频范围,一般可以为1710~2170MHz。优选的,本实施例中,该第二电容的取值可以为0.5pf~1.5pf,第二电感的取值可以为4.7nh~18nh。进一步的,本公开实施例中,第二电感的典型值可以为8.2nh,第二电容的典型值可以为1pf。
另外,本公开实施例中,若该天线为用于移动终端的下主天线时,该断缝S可设置于移动终端底部人手很难握到的地方,以利于天线性能的提升。
本公开实施例优选适用于具备金属壳体的移动终端。
下面通过一个更为具体的实施例,对本公开进行详细说明。
请参见图4,其示出的是本公开实施例提供的天线的结构示意图之四,本公开实施例中,在第一天线开关K1和第二天线开关K2同时断开时,第一 辐射体131谐振产生一个原始低频模态f1,并可以通过第一天线开关K1、第二天线开关K2结合相应的匹配网络单独或联合调谐实现覆盖低频的各个低频模态的切换;第二辐射体132在中频或高频部分产生一个谐振模态f2,此谐振模态f2可以通过第三天线开关K3结合相应第五匹配网络M5实现中、高频之间的各个模态切换;在第一天线开关K1闭合时,第三匹配网络M3的第二端G3、第一天线开关K1与第一辐射体131的连接点B以及断缝S三点之间的辐射臂,即第一辐射体131的位于第一天线开关K1和断缝S之间的部分,通过对应第三匹配网络M3接通到地,馈源110馈入的射频能量通过合路器120并流经第二辐射体132位于第二匹配网络M2与第二辐射体132的连接点F2和断缝S之间的部分第二辐射体132,在断缝S处通过断缝S的耦合激励第一辐射体131位于第一天线开关K1和断缝S之间的部分,在中频产生一个寄生谐振模态f3;寄生谐振模态f3可以通过第一天线开关K1及其连接的第三匹配网络M3实现中高频段之间的切换调谐。
具体的,本公开实施例中,该天线能够实现以下多种多带间CA的组合需求。
实现方式一:
本公开实施例能够实现“中频+中频”及“中频+高频”的双带间CA,其具体实现方式如下:第二辐射体132的辐射臂产生的中频谐振模态f2,第二辐射体132通过重构复用第一辐射体131的部分辐射臂,即第一辐射体131位于第一天线开关K1和断缝S之间的部分,耦合寄生产生中频寄生谐振模态f3,构成整个第二辐射体132的双中频谐振模态,即可实现同时共存的“中频+中频”的双带间CA,该实现方式一的“中频+中频”双带间CA谐振模态的驻波比示意图如图6a所示;或者,同理第二辐射体132的辐射臂产生的高频谐振模态f2,第二辐射体132通过重构复用第一辐射体131的部分辐射臂,即第一辐射体131位于第一天线开关K1和断缝S之间的部分,耦合寄生产生中频寄生谐振模态f3,构成整个第二辐射体132的中频谐振模态和高频谐振模态,即可实现同时共存的“中频+高频”的双带间CA,该实现方式一的“中频+高频”双带间CA谐振模态的驻波比示意图如图6b所示。这里,中频及高频之间的其他CA组合通过调整第一天线开关K1和第三天线开关K3 结合各自连接的匹配网络(第三匹配网络M3和第五匹配网络M5)即可实现调谐。
实现方式二:
本公开实施例能够实现“低频+中频”及“低频+高频”双带间CA,其具体实现方式如下:第一辐射体131的辐射臂产生低频谐振模态f1,其中可以通过第一天线开关K1或者第二天线开关K2或者第一天线开关K1与第二天线开关K2的组合并结合相应的匹配网络(第三匹配网络M3或者第四匹配网络M4或者第三匹配网络M3与第四匹配网络M4相配合)来获得期望的低频谐振模态f1;第二辐射体132谐振的中频通过第三天线开关K3及其连接的第五匹配网络M5即可激励出需要的中频或高频谐振模态f2。这里,低频谐振模态、中频/高频谐振模态通过合路器120即可实现能同时共存的“低频+中频”或“低频+高频”的双带间CA组合,该实现方式二的“低频+中频/高频”双带间CA谐振模态的驻波比示意图如图6c所示。
实现方式三:
本公开实施例能够实现“低频+中频+中频/高频”三带间CA,其具体实现方式如下:第一辐射体131的辐射臂产生低频谐振模态f1,其中可以通过第一天线开关K1或者第二天线开关K2或者第一天线开关K1与第二天线开关K2的组合并结合相应的匹配网络(第三匹配网络M3或者第四匹配网络M4或者第三匹配网络M3与第四匹配网络M4相配合)来获得期望的低频谐振模态f1;第二辐射体132的辐射臂产生中频或高频谐振模态f2,其可以通过第三天线开关K3及其连接的第五匹配网络M5即可激励出需要的中频或高频谐振模态f2。并且,在第一辐射体131激励出低频谐振模态的同时,可以通过导通第一天线开关K1,同时将第三匹配网络M3切换配置用于滤出预定中频范围的带通滤波器,该带通滤波器谐振在所需的1710~2170MHz的中频范围,这样,即可在低频谐振模态f1存在的同时在第一辐射体131的辐射臂上同时抽取出一个中频寄生谐振模态f3。其中,该带通滤波器包括:第二电容和第二电感;第二电容和第二电感串联。第二电容的取值可以为0.5pf~1.5pf,典型值可以为1pf;第二电感的取值可以为4.7nh~18nh,典型值可以为8.2nh。该实现方式三中,第一辐射体131激励产生的低频、中频通过合路器与第二 辐射体132激励的中频/高频能够形成了“低频+中频+中频”或“低频+中频+高频”的三带间CA谐振模态,而且是同时存在的,该实现方式三的“低频+中频+中频/高频”三带间CA谐振模态的驻波比示意图如图6d所示。
其中,在实际应用中,为实现“B1+B3+B5”的三带间CA,在设计时,除了采用实现方式三中复用低频分支(第一辐射体131的部分辐射臂),同时配合相关天线开关及其连接的匹配网络滤波的方式来激励产生“低频+中频+高频”的三带间CA组合方式之外,还可以采用如下实现方式:通过第一天线开关K1或者第二天线开关K2或者第一天线开关K1与第二天线开关K2的组合并结合相应的匹配网络(第三匹配网络M3或者第四匹配网络M4或者第三匹配网络M3与第四匹配网络M4相配合)以将第一辐射体131谐振在B5,例如,可以通过断开第一天线开关K1与第二天线开关K2的方式将第一辐射体131谐振在B5;同时,断开第三天线开关K3。通过该实现方式,在理论上第二辐射体132只能产生覆盖一个频段的谐振模态,但实际应用中,因B1(1.92-2.17GHz)、B3(1.71-1.88GHz)频率比较接近,第二辐射体132在第三天线开关断开时产生的谐振带宽会变浅、变宽,中频B1~B3的效率仍可以达到16%~27%,该实现方式中“B1+B3+B5”三带间CA谐振模态的各频点的效率曲线示意图如图7所示,此时可以满足三带间CA的基本设计需求。利用该种实现方式,第三匹配网络M3可以省去用于滤出预定中频范围的带通滤波器,从而能够进一步提升低频的性能。
另外,为使本公开实施例提供的天线能够适用于普通塑料机型的天线,请参见图5,其示出的是本公开实施例提供的天线的结构示意图之五,在本公开一个优选实施例中,断缝S处设置有第三电容C1。这里,由于塑料机型的天线一般为FPC(Flexible Printed Circuit,柔性电路板)或LDS(Laser Direct Structuring,激光直接成型)的形式,通常天线辐射臂的厚度只有0.2mm左右,因此,这样两天线单元末端(电场最强点)靠近时电容耦合量很小,耦合寄生效果往往较差,若寄生复用第一辐射体131的辐射臂可以产生一个中高频的谐振模态,其带宽也往往较差。而考虑到FPC或LDS形式的天线表面可以通过SMT(Surface Mount Technology,表面贴装技术)贴装电容、电感等器件,因此可以在两天线单元的末端,即断缝S处SMT设置一个第三电容 C1来增加天线间耦合量即可使天线达到预定性能要求。
本公开实施例提供的天线,通过第一天线开关导通,利用馈源馈入的射频能量流经第二匹配网络和一部分第二辐射体,经断缝耦合激励第一辐射***于第一天线开关和断缝之间的部分,产生一个寄生谐振模态,第一辐射体耦合激励出一个额外的寄生谐振模态,能够有效的拓展中高频的频宽,从而在实现多CA的同时并能够更好地兼顾各个模态的带宽,能够实现“双中频”或“低频+双中频”的多带间CA组合;并且,该天线无需占用很大的空间,能够适用于高屏占比的移动终端。
本公开实施例还提供一种移动终端,可以包括上述的天线。
其中,天线的结构原理在上述实施例中已进行详细说明,因此,本实施例中对于具体的移动终端的结构不再赘述。
另外,该移动终端可以为手机、平板电脑、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)或可穿戴式设备(Wearable Device)等。
本公开实施例中,带有上述天线的移动终端能够克服相关技术中的移动终端难以实现“双中频”或“低频+双中频”的多带间CA组合的问题,因此能够保证移动终端的使用可靠性和稳定性。
应理解,说明书的描述中,提到的参考术语“一实施例”、“一个实施例”或“一些实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例或示例中。因此,在整个说明书各处出现的“在一实施例中”、“在一个实施例中”或“在一些实施例中”未必一定指相同的实施例。此外,在本公开的一个附图或一种实施例中描述的元素、结构或特征可以与一个或多个其它附图或实施例中示出的元素、结构或特征以任意适合的方式相结合。
另外,在本文中的一个或多个实施例中,诸如“包括”或“包含”用于说明存在列举的特征或组件,但不排除存在一个或多个其它列举的特征或者一个或多个其它组件。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可 以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
此外,在发明实施例中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (10)

  1. 一种天线,应用于移动终端,所述天线包括:馈源、合路器、天线辐射体、第一天线开关、第一匹配网络、第二匹配网络以及第三匹配网络;
    所述天线辐射体上设置有一断缝,所述天线辐射体通过所述断缝形成第一辐射体和第二辐射体;
    所述合路器的输入端与所述馈源连接,所述合路器的第一输出端与所述第一匹配网络的第一端连接,所述合路器的第二输出端与所述第二匹配网络的第一端连接;
    所述第一匹配网络的第二端与所述第一辐射体连接,所述第二匹配网络的第二端与所述第二辐射体连接,所述第一匹配网络和第二匹配网络用于实现天线阻抗匹配;
    所述第一天线开关的第一端与所述第一辐射体连接,所述第一天线开关的第二端与所述第三匹配网络的第一端连接,所述第一天线开关与所述第一辐射体的连接点,位于所述第一匹配网络与所述第一辐射体的连接点和所述断缝之间;
    所述第三匹配网络的第二端接地,所述第三匹配网络用于调节天线的谐振频率。
  2. 根据权利要求1所述的天线,其中,所述第一匹配网络包括用于抑制中频和高频激励的抑制电路。
  3. 根据权利要求2所述的天线,其中,所述抑制电路包括第一电容和第一电感,所述第一电容和所述第一电感串联。
  4. 根据权利要求1所述的天线,还包括:第二天线开关和第四匹配网络;
    所述第二天线开关的第一端与所述第一辐射体连接,所述第二天线开关的第二端与所述第四匹配网络的第一端连接,所述第二天线开关与所述第一辐射体的连接点,位于所述第一匹配网络与所述第一辐射体的连接点和所述第一天线开关与所述第一辐射体的连接点之间;
    所述第四匹配网络的第二端接地,所述第四匹配网络用于调节天线的谐振频率。
  5. 根据权利要求1所述的天线,还包括:第三天线开关和第五匹配网络;
    所述第三天线开关的第一端与所述第二辐射体连接,所述第三天线开关的第二端与所述第五匹配网络的第一端连接,所述第三天线开关与所述第二辐射体的连接点,位于所述第二匹配网络与所述第二辐射体的连接点和所述断缝之间;
    所述第五匹配网络的第二端接地,所述第五匹配网络用于调节天线的谐振频率。
  6. 根据权利要求1所述的天线,其中,所述第三匹配网络包括用于滤出预定中频范围的带通滤波器。
  7. 根据权利要求6所述的天线,其中,所述带通滤波器包括:第二电容和第二电感;所述第二电容和第二电感串联。
  8. 根据权利要求1所述的天线,其中,所述第一辐射体的长度大于所述第二辐射体的长度。
  9. 根据权利要求1所述的天线,其中,所述断缝处设置有第三电容。
  10. 一种移动终端,包括如权利要求1至9任一项所述的天线。
PCT/CN2019/073167 2018-01-29 2019-01-25 天线和移动终端 WO2019144927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810085533.2A CN108346863B (zh) 2018-01-29 2018-01-29 一种天线和移动终端
CN201810085533.2 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019144927A1 true WO2019144927A1 (zh) 2019-08-01

Family

ID=62961704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073167 WO2019144927A1 (zh) 2018-01-29 2019-01-25 天线和移动终端

Country Status (2)

Country Link
CN (1) CN108346863B (zh)
WO (1) WO2019144927A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4262015A4 (en) * 2020-12-28 2024-07-03 Guangdong Oppo Mobile Telecommunications Corp Ltd ANTENNA APPARATUS AND ELECTRONIC DEVICE

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346863B (zh) * 2018-01-29 2021-02-09 维沃移动通信有限公司 一种天线和移动终端
CN110797661B (zh) * 2018-08-01 2022-01-14 青岛海信移动通信技术股份有限公司 终端天线及终端
CN109149114B (zh) * 2018-08-15 2020-08-07 厦门美图移动科技有限公司 一种天线及移动终端
CN109193116A (zh) * 2018-08-31 2019-01-11 Oppo广东移动通信有限公司 电子设备及电子设备的控制方法
CN109346833B (zh) * 2018-10-12 2020-09-22 Oppo广东移动通信有限公司 具有wifi mimo天线的终端设备
CN109546311A (zh) 2018-12-12 2019-03-29 维沃移动通信有限公司 一种天线结构及通信终端
CN109659693B (zh) 2018-12-12 2021-08-24 维沃移动通信有限公司 一种天线结构及通信终端
CN109687110A (zh) * 2018-12-28 2019-04-26 维沃移动通信有限公司 一种天线结构及通信终端
CN111628298B (zh) * 2019-02-27 2022-03-11 华为技术有限公司 共体天线及电子设备
CN114824836A (zh) 2019-02-27 2022-07-29 华为技术有限公司 共体天线及电子设备
CN110544820B (zh) * 2019-08-21 2021-01-26 青岛海信移动通信技术股份有限公司 手机天线及手机
CN112448725B (zh) * 2019-08-28 2022-05-24 华为技术有限公司 天线、电子设备及天线控制方法
CN112086752A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN214378835U (zh) * 2020-12-04 2021-10-08 瑞声科技(新加坡)有限公司 天线模组及移动终端
CN112736461B (zh) * 2020-12-28 2023-06-09 Oppo广东移动通信有限公司 天线装置及电子设备
CN116073130A (zh) * 2020-12-29 2023-05-05 Oppo广东移动通信有限公司 天线组件及电子设备
CN112751174B (zh) * 2020-12-29 2024-01-02 Oppo广东移动通信有限公司 天线组件和电子设备
CN112768959B (zh) * 2020-12-29 2024-01-02 Oppo广东移动通信有限公司 天线组件和电子设备
CN112928456B (zh) * 2021-03-30 2023-05-26 Oppo广东移动通信有限公司 天线组件及电子设备
CN113922048B (zh) * 2021-05-28 2022-09-30 荣耀终端有限公司 一种终端天线及终端电子设备
CN115548649A (zh) * 2021-06-30 2022-12-30 Oppo广东移动通信有限公司 天线模组及电子设备
CN114336010A (zh) * 2021-12-27 2022-04-12 Oppo广东移动通信有限公司 天线组件及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571516A (zh) * 2016-10-27 2017-04-19 瑞声科技(南京)有限公司 天线***
CN107317095A (zh) * 2017-06-30 2017-11-03 维沃移动通信有限公司 一种天线***及移动终端
CN108346863A (zh) * 2018-01-29 2018-07-31 维沃移动通信有限公司 一种天线和移动终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120071A (ja) * 2009-12-04 2011-06-16 Panasonic Corp 携帯無線機
EP3229314B1 (en) * 2015-01-04 2019-08-14 Huawei Technologies Co. Ltd. Handheld device
CN106340725A (zh) * 2015-07-08 2017-01-18 三星电机株式会社 具有利用外廓导体的多频带天线的电子设备
KR102306080B1 (ko) * 2015-08-13 2021-09-30 삼성전자주식회사 안테나 장치 및 안테나 장치를 포함하는 전자 장치
CN105762515B (zh) * 2016-04-27 2018-05-29 广东欧珀移动通信有限公司 天线装置和移动终端
CN206163707U (zh) * 2016-10-18 2017-05-10 上海德门电子科技有限公司 一种基于金属壳体结构的nfc和射频二合一天线及通讯设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571516A (zh) * 2016-10-27 2017-04-19 瑞声科技(南京)有限公司 天线***
CN107317095A (zh) * 2017-06-30 2017-11-03 维沃移动通信有限公司 一种天线***及移动终端
CN108346863A (zh) * 2018-01-29 2018-07-31 维沃移动通信有限公司 一种天线和移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4262015A4 (en) * 2020-12-28 2024-07-03 Guangdong Oppo Mobile Telecommunications Corp Ltd ANTENNA APPARATUS AND ELECTRONIC DEVICE

Also Published As

Publication number Publication date
CN108346863B (zh) 2021-02-09
CN108346863A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2019144927A1 (zh) 天线和移动终端
US10819031B2 (en) Printed circuit board antenna and terminal
TWI630759B (zh) 天線結構及應用該天線結構的無線通訊裝置
US9972890B2 (en) Multiple coupled resonance circuits
JP4060746B2 (ja) 可変同調型アンテナおよびそれを用いた携帯無線機
TWI481119B (zh) 寬頻天線
TWI488356B (zh) 通訊電子裝置及其天線結構
KR20110093599A (ko) 캐패시터를 이용한 그라운드 방사체
TWI539676B (zh) 通訊裝置
CN112751174B (zh) 天线组件和电子设备
CA2898060C (en) Mobile wireless communications device with improved broadband antenna impedance matching
CN112768959B (zh) 天线组件和电子设备
CN114552181A (zh) 天线组件及电子设备
TWI539678B (zh) 通訊裝置
WO2023093592A1 (zh) 天线模组及电子设备
EP2234207A1 (en) Antenna device and portable radio communication device comprising such an antenna device
EP3258539B1 (en) Multi-frequency antenna and terminal device
EP2819242B1 (en) Antenna with a combined bandpass/bandstop filter network
JP5758282B2 (ja) 電子機器
JP2012235402A (ja) インピーダンス整合回路、アンテナ装置および通信端末装置
TWI581508B (zh) Lte天線結構
JP6651010B2 (ja) アンテナ装置および無線機
TWI717847B (zh) 通訊裝置
CN118054194A (zh) 电子设备
WO2015085492A1 (zh) 一种天线、天线装置、终端以及调整天线工作频段的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19744272

Country of ref document: EP

Kind code of ref document: A1