WO2019143023A1 - 계통 전압 안정화 시스템 - Google Patents

계통 전압 안정화 시스템 Download PDF

Info

Publication number
WO2019143023A1
WO2019143023A1 PCT/KR2018/015697 KR2018015697W WO2019143023A1 WO 2019143023 A1 WO2019143023 A1 WO 2019143023A1 KR 2018015697 W KR2018015697 W KR 2018015697W WO 2019143023 A1 WO2019143023 A1 WO 2019143023A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
pms
voltage value
voltage
ess
Prior art date
Application number
PCT/KR2018/015697
Other languages
English (en)
French (fr)
Inventor
박민준
Original Assignee
엘에스산전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스산전 주식회사 filed Critical 엘에스산전 주식회사
Priority to US16/771,973 priority Critical patent/US11258257B2/en
Publication of WO2019143023A1 publication Critical patent/WO2019143023A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a system voltage stabilization system, and more particularly, to a system voltage stabilization system for stabilizing a voltage of a system by controlling a magnitude of reactive power supplied to the system.
  • the energy source of renewable energy has a characteristic that the output changes with time, and accordingly, the amount of power generation by renewable energy generation can be changed rapidly with time.
  • the amount of solar radiation and the amount of wind (wind speed) change with time, and accordingly, the amount of power generated by each of them also varies instantaneously.
  • the above-described fluctuation of the power generation affects the frequency and the voltage of the system, and the quality of the power decreases as the frequency and the variation of the voltage of the system become larger.
  • the present invention provides a grid voltage stabilization system capable of ensuring system stability by controlling the magnitude of reactive power supplied from the ESS (Energy Storage System) to the grid to maintain the voltage value of the grid within a certain range from the grid reference voltage .
  • ESS Electronicgy Storage System
  • the generation of the command value is stopped and the connection with the system is interrupted, whereby the system voltage stabilization capable of protecting the system when the output of the renewable energy source is excessively varied System.
  • a grid voltage stabilization system comprising: a generator for generating electric power by using a renewable energy source and supplying the generated electric power to a grid; An ESS (Energy Storage System) that stores power generated by the battery in the battery or supplies power stored in the battery to the system in the form of active power and reactive power; and a voltage value of the system And a PMS (Power Management System) for controlling the magnitude of the reactive power supplied to the system such that the voltage value of the system is within the reference range by changing the command value according to the command value.
  • ESS Electronicgy Storage System
  • PMS Power Management System
  • the magnitude of the reactive power is gradually controlled according to the difference between the voltage value of the system and the reference voltage of the system, so that the voltage value of the system follows the reference voltage quickly.
  • FIG. 1 illustrates a system voltage stabilization system in accordance with an embodiment of the present invention.
  • Fig. 2 shows a control flow of the system voltage stabilization system shown in Fig. 1.
  • FIG. 3 is a graph showing an example of a system voltage value varying with time
  • FIG. 4 is a view showing a state in which a reactive power command value is generated in accordance with a valid electric power command value
  • 5 is a graph showing the range of reactive power that can be output according to the effective power command value.
  • FIG. 6 is a graph showing another example of a grid voltage value varying with time
  • FIG. 7 is a graph showing a command vector for stabilizing the grid voltage value shown in FIG. 6;
  • FIG. 1 the configuration and operation of the system voltage stabilization system will be described in detail with reference to FIGS. 1 to 7.
  • FIG. 1 is a diagrammatic representation of the system voltage stabilization system
  • FIG. 1 is a diagram illustrating a system voltage stabilization system according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating a control flow of the system voltage stabilization system shown in FIG. 1.
  • FIG. 3 is a graph showing an example of a system voltage value varying with time
  • FIG. 4 is a diagram showing a generation of a reactive power command value according to an active power command value
  • FIG. 5 is a graph showing an example of a reactive power command value
  • FIG. 4 is a graph showing a range of reactive power that can be output according to FIG.
  • FIG. 6 is a graph showing another example of the system voltage value varying with time
  • FIG. 7 is a graph showing a command vector for stabilizing the system voltage value shown in FIG.
  • a system voltage stabilization system 100 includes a power generation unit 110, an energy storage system 120, a power management system 130, (140).
  • the grid voltage stabilization system 100 shown in FIG. 1 is according to one embodiment, and its components are not limited to the embodiment shown in FIG. 1, and some components may be added, changed or deleted as needed .
  • the power generation apparatus 110 can generate power using a renewable energy source and supply the generated power to the system 200 (1).
  • the power generation apparatus 110 may be a grid connected power generation apparatus.
  • Renewable energy sources can include energy sources whose output is not constant depending on time, such as sunlight, wind, and geothermal. Accordingly, the amount of power generated by the power generation apparatus 110 can vary with time.
  • the ESS 120 may store the power generated by the power generation apparatus 110 in the battery 140 or supply the power stored in the battery 140 to the system 200 in the form of active power and reactive power, have.
  • the command value includes a charge command and a discharge command
  • each of the charge command and the discharge command may include an effective power command value P * and a reactive power command value Q * .
  • the command value may be generated by the PMS 130 to be described later and provided to the ESS 120.
  • the ESS 120 may receive the electric power generated by the power generation apparatus 110 (2) according to the charge command, and may store the supplied electric power in the battery 140. Also, the ESS 120 can supply the power stored in the battery 140 to the system 200 according to the discharge command (3 & cir &).
  • the ESS 120 When the ESS 120 supplies the power stored in the battery 140 to the system 200, the ESS 120 calculates the effective power according to the effective power command value P * and the reactive power command value Q * Reactive power can be supplied to the system (200).
  • the ESS 120 converts the electrical characteristics of the power generated by the power generation apparatus 110 according to the command value, And a PCS (Power Conditioning System) for converting the electrical characteristics of the battery.
  • PCS Power Conditioning System
  • the electrical characteristics may include the type of power (AC or DC), the magnitude of the power, the frequency of the power, and the like.
  • the PCS can convert the electrical characteristics of the power generated in the power generation apparatus 110 to match the electrical characteristics of the power stored in the battery 140. For example, since the DC power is stored in the battery 140, the PCS can convert the power generated by the power generation apparatus 110 to DC power through the DC / DC converter or the AC / DC converter.
  • the PCS can convert the electrical characteristics of the DC power stored in the battery 140 to match the electrical characteristics of the power required by the system 200.
  • the PCS may include a DC / AC converter and, if the magnitude of the voltage required by the system 200 is greater than the magnitude of the voltage stored in the battery 140, the PCS may further include a transformer, have.
  • the PMS 130 provides a discharge command to the ESS 120 when the power consumed in the load 300 connected to the system 200 is greater than the power generated in the power generation apparatus 110, And may provide a charge command to the ESS 120 if the power is less than the power generated by the power generation apparatus 110.
  • the PMS 130 may monitor the power produced by the power generation unit 110 and the power consumed by the load 300.
  • the PMS 130 can monitor the amount of power (power generation amount) produced by the power generation apparatus 110 by measuring the power of the output terminal of the power generation apparatus 110, The power consumption (power consumption) consumed in the load 300 can be monitored.
  • the PMS 130 may provide a charge command to the ESS 120 when the power production is greater than the power consumption, i. E., When the power is overproduced. Accordingly, the ESS 120 can convert the electrical characteristics of the overproduced power and store it in the battery 140.
  • the PMS 130 may provide a discharge command to the ESS 120 when the amount of power production is less than the power consumption. Accordingly, the ESS 120 can convert the electrical characteristics of the electric power corresponding to the shortage of the electric power stored in the battery 140, and supply the electric characteristic to the load 300.
  • the PMS 130 provides a charge command to the ESS 120 when the frequency of the system 200 exceeds the reference frequency range and provides a charge command to the ESS 120 when the frequency of the system 200 is less than the reference frequency range. Can be provided.
  • the frequency of the system 200 may change with time in proportion to the power generation amount. More specifically, when the power generation amount is greater than the power consumption when the reference frequency of the system 200 is 60 [Hz], the frequency of the system 200 may increase by more than 60 [Hz] , The frequency of the system 200 can be reduced to less than 60 [Hz].
  • the reference frequency range can be set as a ratio with respect to the reference frequency. For example, when the reference frequency is 60 [Hz], the reference frequency range can be set to about 5% based on the reference frequency. In other words, the reference frequency range can be set from 57 [Hz] to 63 [Hz].
  • the PMS 130 can monitor the frequency of the system 200 by measuring the power at the system end and provide a charge command to the ESS 120 when the frequency of the system 200 exceeds the reference frequency range. Accordingly, the ESS 120 may convert the electrical characteristics of the power generated by the power generation apparatus 110 and store the converted electrical characteristics in the battery 140.
  • the PMS 130 may provide a discharge command to the ESS 120. Accordingly, the ESS 120 can convert the electrical characteristics of the electric power stored in the battery 140 and supply it to the system 200.
  • the PMS 130 changes the command value according to the voltage value Vg of the system 200, It is possible to control the magnitude of the reactive power supplied to the system 200 so that the voltage value Vg is within the reference range.
  • the reference range may be set as a ratio with respect to the reference voltage.
  • the reference voltage (the reference voltage measured at the system stage) of the system 200 is 22.9 [kV]
  • the reference range can be set to about 3% based on the reference voltage.
  • the reference range can be set from 22,213 [V] to 23,587 [V].
  • the PMS 130 can monitor the power of the system 200 by measuring the voltage of the system stage.
  • the voltage of the monitored system 200 can be represented as shown in FIG.
  • the voltage value Vg of the system 200 may be outside the reference range in the period (a) and (b).
  • the PMS 130 controls the magnitude of the reactive power by changing the command value provided to the ESS 120 during the periods (a) and (b) so that the voltage value Vg of the system 200 is within the reference range can do.
  • the voltage value Vg of the system 200 may vary depending on the magnitude of the reactive power supplied to the system 200. More specifically, the voltage value Vg of the system 200 may increase together with the magnitude of the reactive power supplied to the system 200, and may decrease together as the magnitude of the reactive power decreases.
  • the PMS 130 sends a command to cause the ESS 120 to generate a reactive power in the ground lagging or leading to increase or decrease the magnitude of the reactive power currently being supplied to the system 200 Value to the ESS 120.
  • < RTI ID 0.0 >
  • the ESS 120 can supply the ground 200 or the reactive power of the ground level to the system 200 by adjusting the phases of the current and the voltage in accordance with the reactive power command value Q * . More specifically, the ESS 120 can supply the reactive power (positive reactive power) of the ground level to the system 200 by controlling the phase of the current to be lower than the phase of the voltage, It is possible to supply reactive power (negative reactive power) for the forward phase to the system 200 by performing control so as to be ahead.
  • the method of controlling the magnitude and phase of the current and the voltage using the command value for the current and the voltage can be performed by various methods used in the related art, and therefore, a detailed description thereof will be omitted here.
  • the maximum command value S * for the apparent power that the ESS 120 can output may be 250 [kVA] in the steady state.
  • the active power command value P * can have a positive value and a negative value, respectively, in accordance with the charge command and the discharge command, and the maximum command value S * for the apparent power is 250 [kVA]
  • the power command value (P * ) may have a value from -250 [kV] to 250 [kV] depending on the power factor.
  • the maximum value Q limit that the reactive power command value Q * can have can be expressed by the following equation (1).
  • the reactive power command value Q * may have a value from -Q limit [VAR] to + Q limit [VAR] depending on the power factor, as the reactive power includes the true phase and the ground phase.
  • the PMS 130 can increase the magnitude of the reactive power of the forward phase component supplied to the system 200 by changing the command value when the voltage value Vg of the system 200 exceeds the reference range. Also, if the voltage value Vg of the system 200 is less than the reference range, the PMS 130 can increase the magnitude of the reactive power of the ground level supplied to the system 200 by changing the command value.
  • the voltage value Vg of the system 200 may be less than the reference range in the section (a).
  • the PMS 130 can increase the magnitude of the reactive power of the ground level supplied to the system 200 by changing the command value.
  • the PMS 130 moves the vector of power within the hatched region of FIG. 5 in the + Q limit direction,
  • the size can be increased.
  • the PMS 130 may change the vector a of the power such that the reactive power command value Q * has a maximum value Q limit to the ground.
  • the voltage value Vg of the system 200 may exceed the reference range in the period (b).
  • the PMS 130 can increase the magnitude of the reactive power of the forward phase supplied to the system 200 by changing the command value.
  • the PMS 130 moves the vector of power within the hatched region of FIG. 5 in the -Q limit direction,
  • the magnitude of the power can be increased.
  • the PMS 130 may change the vector b of power so that the reactive power command value Q * has a maximum value (-Q limit ) in the upper phase.
  • the PMS 130 can gradually control the magnitude of the reactive power supplied to the system 200 according to the difference between the voltage value Vg of the system 200 and the reference range.
  • the voltage value of the system 200 may exceed the reference range in the period (c) and (d). However, the difference between the voltage value Vg of the system 200 and the reference range may be larger in the period (d) than in the period (c).
  • the PMS 130 may control the magnitude of the reactive power supplied to the system 200 in proportion to the difference of the reference range. More specifically, 7, the active power command value for the active power to be supplied to the grid 200 in the ESS (120) (P *) may be -P 0. Since the effective power command value (-P 0 ) is negative, the ESS 120 can receive the active power corresponding to P 0 from the system 200.
  • the reactive power command value Q * may have a value ranging from -Q limit [VAR] to + Q limit [VAR] defined by Equation (1).
  • the PMS 130 may increase the magnitude of the reactive power of the forward phase by changing the command value, as described above.
  • the PMS 130 controls the power vector so that the reactive power command value Q * becomes Q 1 in the forward direction in a section (c) where the difference from the reference range is relatively small can do.
  • the PMS 130 further controls the power vector so that the reactive power command value Q * becomes Q 2 in the forward direction in the section (d) where the difference from the reference range is relatively large, as shown in FIG. can do.
  • the PMS 130 calculates a change amount of the reactive power command value Q * according to the difference between the voltage value Vg of the system 200 and the reference range, and outputs the lookup table (LUT) The magnitude of the reactive power can be controlled.
  • the range of the difference between the voltage value Vg of the system 200 and the reference range and the variation amount of the reactive power command value Q * for each range can be preset in the look-up table.
  • the lookup table may have a difference of 5% to 6%
  • the change amount of the reactive power command value Q * can be stored in advance.
  • the PMS 130 checks the difference value between the voltage value of the system 200 and the reference voltage and refers to the lookup table to control the magnitude of the reactive power by the variation amount of the reactive power command value Q * .
  • the magnitude of the reactive power is gradually controlled according to the difference between the voltage value of the system 200 and the reference voltage value of the system 200, so that the voltage value of the system 200 rapidly increases To follow.
  • the PMS 130 receives the voltage value Vg of the system 200 at regular intervals and outputs the reactive power Vg supplied to the system 200 until the voltage value Vg of the received system 200 falls within the reference range Can be controlled.
  • the voltage value Vg of the system 200 can be measured by a voltage sensor (not shown) provided at the system stage.
  • the PMS 130 can receive the voltage value Vg of the measured system 200 from the voltage sensor according to the period set by the user.
  • the PMS 130 may control the magnitude of the reactive power described above based on the voltage value Vg of the system 200.
  • the control period of the PMS 130 may be controlled by the voltage value Vg May be equal to or longer than the period of receiving.
  • the PMS 130 receives the voltage value Vg of the system 200 at least once after controlling the reactive power so that the voltage value Vg of the system 200 changing according to the reactive power control is set to Can be monitored.
  • the PMS 130 monitors the voltage value Vg of the system 200 after increasing the magnitude of the reactive power of the ground level and confirms whether the voltage value Vg of the system 200 increases .
  • the PMS 130 also monitors the voltage value Vg of the system 200 after increasing the magnitude of the reactive power of the upper phase so as to check whether the voltage value Vg of the system 200 decreases have.
  • the PMS 130 may feedback control the magnitude of the reactive power based on the voltage value Vg of the monitored system 200 and may control the magnitude of the reactive power It is possible to perform a control operation of a reactive power.
  • the present invention controls the magnitude of the reactive power supplied from the ESS 120 to the system 200 to maintain the voltage value of the system 200 within a certain range from the reference voltage of the system 200, Stability can be ensured.
  • the PMS 130 can stop the generation of the command value when the voltage value Vg of the system 200 is out of the control limit range.
  • the control limit range is a range that is wider than the above-described reference range, and the control of the voltage of the system 200 by the command value change of the PMS 130 can not be controlled.
  • the output of the renewable energy source can be changed rapidly with time, and the effect of the output of the renewable energy source on the system 200 can be large as the maximum power generation amount by the renewable energy source is increased.
  • the ESS 120 supplies the reactive power to the system 200 using the power stored in the battery 140, and the capacity of the battery 140 is not sufficient to control the unstable output of the renewable energy source
  • the voltage of the system 200 may not be stabilized even if the reactive power is supplied to the system 200.
  • the PMS 130 stops generation of the command value and stops the power generation device 110 and the ESS 120 And the system 200 can be cut off.
  • the control limit range can be set to any range according to the setting of the user. For example, when the reference range is set to about 3% based on the reference voltage of the system 200, the control limit range may be set to about 6% based on the reference voltage of the system 200.
  • the PMS 130 can perform the operation of controlling the magnitude of the reactive power when the voltage value Vg of the system 200 is 3% to 6% different from the reference voltage, If the voltage value Vg of the system 200 differs from the reference voltage by 6% or more, the generation of the command value can be stopped and the connection with the system 200 can be cut off.
  • the generation of the command value is stopped and the connection with the system 200 is interrupted, so that when the output of the renewable energy source is excessively fluctuated The system 200 can be protected.
  • the PMS 130 can identify the active power magnitude and the maximum magnitude of the controllable reactive power (
  • the PMS 130 refers to a look-up table (LUT) stored in the internal memory, and calculates a maximum voltage change amount of the controllable system 200 according to the maximum magnitude of the identified reactive power (
  • the PMS 130 can identify the range of the voltage value Vg of the system 200 that changes when the reactive power is maximally controlled.
  • the PMS 130 can stop the generation of the command value if the identified maximum voltage change amount? Vg is larger than the difference value between the voltage value Vg of the current system 200 and the reference range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

본 발명의 일 실시예에 따른 계통 전압 안정화 시스템은 신재생에너지원을 이용하여 전력을 생산하고, 상기 생산된 전력을 계통에 공급하는 발전장치, 지령값에 따라 상기 발전장치에서 생산된 전력을 배터리에 저장하거나 상기 배터리에 저장된 전력을 유효전력 및 무효전력의 형태로 계통에 공급하는 ESS(Energy Storage System) 및 상기 계통의 전압값이 기준 범위 밖이면, 상기 계통의 전압값에 따라 상기 지령값을 변경하여 상기 계통의 전압값이 상기 기준 범위 이내가 되도록 상기 계통에 공급되는 무효전력의 크기를 제어하는 PMS(Power Management System)을 포함하는 것을 특징으로 한다.

Description

계통 전압 안정화 시스템
본 발명은 계통 전압 안정화 시스템에 관한 것으로, 보다 상세하게는 계통에 공급되는 무효전력의 크기를 제어함으로써 계통의 전압을 안정화시키는 계통 전압 안정화 시스템에 관한 것이다.
최근 주요 에너지원인 화석연료의 사용은 기후변화 등의 부작용이 초래되면서 그 사용에 대한 제약이 심화되고 있고 최근에는 석탄 및 석유의 고갈에 따라 신재생에너지가 각광 받고 있다. 이에 따라 친환경적인 전력 생산이 가능하고, 생산된 전력을 안정적이고 효율적으로 공급할 수 있는 신재생에너지 발전의 중요성이 대두되고 있는 실정이다.
일반적으로 신재생에너지의 에너지원은 시간에 따라 출력이 변하는 특징을 갖고, 이에 따라, 신재생에너지 발전에 의한 발전량은 시간에 따라 급격하게 변할 수 있다.
예를 들어, 태양광 발전 또는 풍력 발전의 경우 시간에 따라 일사량 및 풍량(풍속)이 변하게 되고, 이에 따라, 각각에 의해 발전되는 발전량 또한 시시각각 변하게 된다.
계통 연계형(grid connected) 신재생에너지 발전 시스템에서, 전술한 발전량의 변동은 계통의 주파수 및 전압에 영향을 주고, 계통의 주파수 및 전압의 변동량이 커질수록 전력의 품질은 저하된다.
한편, 최근 구축되고 있는 대규모의 풍력 발전설비가 계통에 연계되면, 계통 안정성에 심각한 문제가 발생할 수 있다. 예를 들어, 풍력 발전의 최대 출력 감소량이 계통의 운영 예비 전력량을 초과하게 되면 계통이 붕괴되는 심각한 문제를 초래할 수 있다.
이에 따라, 계통 안정성을 확보하기 위하여 계통의 전압을 안정화 하는 방법이 요구되고 있는 실정이다.
본 발명은 ESS(Energy Storage System)에서 계통으로 공급되는 무효전력의 크기를 제어하여 계통의 전압값을 계통의 기준 전압으로부터 일정 범위 이내로 유지함으로써, 계통 안정성을 확보할 수 있는 계통 전압 안정화 시스템을 제공하는 것을 목적으로 한다.
또한, 본 발명은 계통의 전압값과 계통의 기준 전압의 차이값에 따라 무효전력의 크기를 점진적으로 제어함으로써, 계통의 전압값이 빠르게 기준 전압을 추종하도록 하는 계통 전압 안정화 시스템을 제공하는 것을 목적으로 한다.
또한, 본 발명은 계통의 전압값이 제어한계범위 밖이면 지령값의 생성을 중단하고 계통과의 연결을 차단함으로써, 신재생에너지원의 출력이 과도하게 변동될 때 계통을 보호할 수 있는 계통 전압 안정화 시스템을 제공하는 것을 목적으로 한다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
이러한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 계통 전압 안정화 시스템은 신재생에너지원을 이용하여 전력을 생산하고, 상기 생산된 전력을 계통에 공급하는 발전장치, 지령값에 따라 상기 발전장치에서 생산된 전력을 배터리에 저장하거나 상기 배터리에 저장된 전력을 유효전력 및 무효전력의 형태로 계통에 공급하는 ESS(Energy Storage System) 및 상기 계통의 전압값이 기준 범위 밖이면, 상기 계통의 전압값에 따라 상기 지령값을 변경하여 상기 계통의 전압값이 상기 기준 범위 이내가 되도록 상기 계통에 공급되는 무효전력의 크기를 제어하는 PMS(Power Management System)을 포함하는 것을 특징으로 한다.
전술한 바와 같은 본 발명에 의하면 ESS에서 계통으로 공급되는 무효전력의 크기를 제어하여 계통의 전압값을 계통의 기준 전압으로부터 일정 범위 이내로 유지함으로써, 계통 안정성을 확보할 수 있는 효과가 있다.
또한, 본 발명에 의하면 계통의 전압값과 계통의 기준 전압의 차이값에 따라 무효전력의 크기를 점진적으로 제어함으로써, 계통의 전압값이 빠르게 기준 전압을 추종하도록 하는 효과가 있다.
또한, 본 발명에 의하면 계통의 전압값이 제어한계범위 밖이면 지령값의 생성을 중단하고 계통과의 연결을 차단함으로써, 신재생에너지원의 출력이 과도하게 변동될 때 계통을 보호할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 계통 전압 안정화 시스템을 도시한 도면.
도 2는 도 1에 도시된 계통 전압 안정화 시스템의 제어 흐름을 도시한 도면.
도 3은 시간에 따라 변화하는 계통 전압값의 일 예를 도시한 그래프.
도 4는 유효전력 지령값에 따라 무효전력 지령값을 생성하는 모습을 도시한 도면.
도 5는 유효전력 지령값에 따라 출력 가능한 무효전력의 범위를 도시한 그래프.
도 6은 시간에 따라 변화하는 계통 전압값의 다른 예를 도시한 그래프.
도 7은 도 6에 도시된 계통 전압값을 안정화시키기 위한 지령 벡터를 도시한 그래프.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
이하에서는, 도 1 내지 도 7을 참조하여 계통 전압 안정화 시스템의 구성 및 동작 과정을 구체적으로 설명하도록 한다.
도 1은 본 발명의 일 실시예에 따른 계통 전압 안정화 시스템을 도시한 도면이고, 도 2는 도 1에 도시된 계통 전압 안정화 시스템의 제어 흐름을 도시한 도면이다.
도 3은 시간에 따라 변화하는 계통 전압값의 일 예를 도시한 그래프이고, 도 4는 유효전력 지령값에 따라 무효전력 지령값을 생성하는 모습을 도시한 도면이며, 도 5는 유효전력 지령값에 따라 출력 가능한 무효전력의 범위를 도시한 그래프이다.
도 6은 시간에 따라 변화하는 계통 전압값의 다른 예를 도시한 그래프이고, 도 7은 도 6에 도시된 계통 전압값을 안정화시키기 위한 지령 벡터를 도시한 그래프이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 계통 전압 안정화 시스템(100)은 발전장치(110), ESS(Energy Storage System, 120), PMS(Power Management System, 130) 및 배터리(140)를 포함할 수 있다. 도 1에 도시된 계통 전압 안정화 시스템(100)은 일 실시예에 따른 것이고, 그 구성요소들이 도 1에 도시된 실시예에 한정되는 것은 아니며, 필요에 따라 일부 구성요소가 부가, 변경 또는 삭제될 수 있다.
발전장치(110)는 신재생에너지원을 이용하여 전력을 생산하고, 생산된 전력을 계통(200)에 공급할 수 있다(①). 다시 말해, 본 발명에서 발전장치(110)는 계통 연계형(grid connected) 발전장치일 수 있다.
신재생에너지원은 태양광, 풍력, 지열 등 시간에 따라 출력이 일정하지 않은 에너지원을 포함할 수 있다. 이에 따라, 발전장치(110)에 의해 발전되는 발전량은 시간에 따라 변할 수 있다.
ESS(120)는 지령값에 따라 발전장치(110)에서 생산된 전력을 배터리(140)에 저장하거나, 배터리(140)에 저장된 전력을 유효전력 및 무효전력의 형태로 계통(200)에 공급할 수 있다.
여기서, 지령값은 충전지령 및 방전지령을 포함하고, 충전지령 및 방전지령 각각은 유효전력 지령값(P*) 및 무효전력 지령값(Q*)을 포함할 수 있다. 지령값은 후술하는 PMS(130)에 의해 생성되어 ESS(120)에 제공될 수 있다.
보다 구체적으로, ESS(120)는 충전지령에 따라 발전장치(110)에서 생산된 전력을 제공받고(②), 제공받은 전력을 배터리(140)에 저장할 수 있다. 또한, ESS(120)는 방전지령에 따라 배터리(140)에 저장된 전력을 계통(200)에 공급할 수 있다(③).
ESS(120)가 배터리(140)에 저장된 전력을 계통(200)에 공급할 때, ESS(120)는 유효전력 지령값(P*)에 따른 유효전력과, 무효전력 지령값(Q*)에 따른 무효전력을 계통(200)에 공급할 수 있다.
한편, 본 발명에서 계통(200)은 3상 교류전력을 이용하므로, ESS(120)는 지령값에 따라 발전장치(110)에서 생산된 전력의 전기적 특성을 변환하거나, 배터리(140)에 저장된 전력의 전기적 특성을 변환하는 PCS(Power Conditioning System)를 포함할 수 있다.
여기서, 전기적 특성은 전력의 종류(교류 또는 직류), 전력의 크기, 전력의 주파수 등을 포함할 수 있다.
이에 따라, PCS는 발전장치(110)에서 발전된 전력의 전기적 특성을 배터리(140)에 저장되는 전력의 전기적 특성에 맞게 변환할 수 있다. 예컨대, 배터리(140)에는 직류전력이 저장되므로, PCS는 DC/DC 컨버터 또는 AC/DC 컨버터를 통해 발전장치(110)에서 생산된 전력을 직류전력으로 변환할 수 있다.
한편, PCS는 배터리(140)에 저장된 직류전력의 전기적 특성을 계통(200)이 요구하는 전력의 전기적 특성에 맞게 변환할 수 있다. 이를 위해, PCS는 DC/AC 컨버터를 포함할 수 있고, 계통(200)이 요구하는 전압의 크기가 배터리(140)에 저장된 전압의 크기보다 큰 경우, PCS는 변압기, 수배전반 등을 더 포함할 수 있다.
PMS(130)는 계통(200)과 연결된 부하(300)에서 소모되는 전력이 발전장치(110)에서 생산되는 전력보다 큰 경우 ESS(120)에 방전지령을 제공하고, 부하(300)에서 소모되는 전력이 발전장치(110)에서 생산되는 전력보다 적은 경우 ESS(120)에 충전지령을 제공할 수 있다.
이를 위해, PMS(130)는 발전장치(110)에서 생산되는 전력 및 부하(300)에서 소모되는 전력을 모니터링할 수 있다. 보다 구체적으로, PMS(130)는 발전장치(110)의 출력단의 전력을 측정함으로써 발전장치(110)에서 생산되는 전력량(전력 생산량)을 모니터링할 수 있고, 부하(300)로 전력이 공급되는 공급단의 전력을 측정함으로써 부하(300)에서 소모되는 전력량(전력 소모량)을 모니터링할 수 있다.
PMS(130)는 전력 생산량이 전력 소모량보다 많은 경우, 다시 말해, 전력이 과잉 생산되는 경우 ESS(120)에 충전지령을 제공할 수 있다. 이에 따라, ESS(120)는 과잉 생산된 전력의 전기적 특성을 변환하여 배터리(140)에 저장할 수 있다.
반면, PMS(130)는 전력 생산량이 전력 소모량보다 적은 경우 ESS(120)에 방전지령을 제공할 수 있다. 이에 따라, ESS(120)는 배터리(140)에 저장된 전력 중 부족분에 대응하는 전력의 전기적 특성을 변환하여 부하(300)에 공급할 수 있다.
또한, PMS(130)는 계통(200)의 주파수가 기준 주파수 범위를 초과하면 ESS(120)에 충전지령을 제공하고, 계통(200)의 주파수가 기준 주파수 범위 미만이면 ESS(120)에 방전지령을 제공할 수 있다.
발전장치(110)의 발전량이 일정하지 않은 경우, 계통(200)의 주파수는 발전량에 비례하여 시간에 따라 변할 수 있다. 보다 구체적으로, 계통(200)의 기준 주파수가 60[Hz]일 때, 전력 생산량이 전력 소모량보다 크면 계통(200)의 주파수는 60[Hz]를 초과하여 증가할 수 있고, 전력 소모량이 전력 생산량보다 크면 계통(200)의 주파수는 60[Hz] 미만으로 감소할 수 있다.
한편, 기준 주파수 범위는 기준 주파수에 대한 비율로 설정될 수 있다. 예를 들어, 기준 주파수가 60[Hz]인 경우 기준 주파수 범위는 기준 주파수를 기준으로 5% 내외로 설정될 수 있다. 다시 말해, 기준 주파수 범위는 57[Hz] ~ 63[Hz]로 설정될 수 있다.
PMS(130)는 계통단의 전력을 측정함으로써 계통(200)의 주파수를 모니터링할 수 있고, 계통(200)의 주파수가 기준 주파수 범위를 초과하면 ESS(120)에 충전지령을 제공할 수 있다. 이에 따라, ESS(120)는 발전장치(110)에서 생산된 전력의 전기적 특성을 변환하여 배터리(140)에 저장할 수 있다.
반면, 모니터링된 계통(200)의 주파수가 기준 주파수 범위 미만이면 PMS(130)는 ESS(120)에 방전지령을 제공할 수 있다. 이에 따라, ESS(120)는 배터리(140)에 저장된 전력의 전기적 특성을 변환하여 계통(200)에 공급할 수 있다.
다시 도 2를 참조하면, PMS(130)는 계통(200)의 전압값(Vg)이 기준 범위 밖이면, 계통(200)의 전압값(Vg)에 따라 지령값을 변경하여 계통(200)의 전압값(Vg)이 기준 범위 이내가 되도록 계통(200)에 공급되는 무효전력의 크기를 제어할 수 있다.
여기서 기준 범위는 기준 전압에 대한 비율로 설정될 수 있다. 예를 들어, 계통(200)의 기준 전압(계통단에서 측정되는 기준 전압)이 22.9[kV]인 경우, 기준 범위는 기준 전압을 기준으로 3% 내외로 설정될 수 있다. 다시 말해, 기준 범위는 22,213[V] ~ 23,587[V]로 설정될 수 있다.
PMS(130)는 계통단의 전압을 측정함으로써 계통(200)의 전원을 모니터링할 수 있다. 모니터링된 계통(200)의 전압은 도 3에 도시된 바와 같이 나타낼 수 있다.
도 3을 참조하면, 계통(200)의 전압값(Vg)은 (a) 및 (b) 구간에서 기준 범위 밖일 수 있다. PMS(130)는 (a) 및 (b) 구간에서 ESS(120)에 제공되는 지령값을 변경하여 무효전력의 크기를 제어함으로써, 계통(200)의 전압값(Vg)이 기준 범위 이내가 되도록 할 수 있다.
계통(200)의 전압값(Vg)은 계통(200)에 공급되는 무효전력의 크기에 따라 변할 수 있다. 보다 구체적으로, 계통(200)의 전압값(Vg)은 계통(200)에 공급되는 무효전력의 크기가 증가하면 함께 증가할 수 있고, 무효전력의 크기가 감소하면 함께 감소할 수 있다.
PMS(130)는 현재 계통(200)에 공급되고 있는 무효전력의 크기를 증가시키거나 감소시키기 위하여, ESS(120)가 지상분(lagging) 또는 진상분(leading)의 무효전력을 생성하도록 하는 지령값을 ESS(120)에 제공할 수 있다.
ESS(120)는 무효전력 지령값(Q*)에 따라 전류와 전압의 위상을 조절함으로써, 지상분 또는 진상분의 무효전력을 계통(200)에 공급할 수 있다. 보다 구체적으로, ESS(120)는 전류의 위상을 전압의 위상보다 뒤지게 제어함으로써 지상분의 무효전력(양의 무효전력)을 계통(200)에 공급할 수 있고, 전류의 위상을 전압의 위상보다 앞서도록 제어함으로써 진상분의 무효전력(음의 무효전력)을 계통(200)에 공급할 수 있다.
전류 및 전압에 대한 지령값을 이용하여 전류와 전압의 크기 및 위상을 제어하는 방법은, 당해 기술분야에서 이용되는 다양한 방법에 의해 수행될 수 있으므로, 여기서는 자세한 설명을 생략하도록 한다.
도 4 및 도 5를 참조하면, 예를 들어 ESS(120)가 출력할 수 있는 피상전력에 대한 최대 지령값(S*)은 정상상태에서 250[kVA]일 수 있다.
한편, 유효전력 지령값(P*)은 충전지령 및 방전지령에 따라 각각 양의 값 및 음의 값을 가질 수 있고, 피상전력에 대한 최대 지령값(S*)이 250[kVA]이므로, 유효전력 지령값(P*)은 역률에 따라 -250[kV]에서 250[kV]까지의 값을 가질 수 있다.
유효전력 지령값(P*)이 결정되면, 무효전력 지령값(Q*)이 가질 수 있는 최대값(Qlimit)은 아래의 [수학식 1]과 같이 표현될 수 있다.
Figure PCTKR2018015697-appb-M000001
전술한 바와 같이, 무효전력은 진상분 및 지상분을 포함하므로, 무효전력 지령값(Q*)은 역률에 따라 -Qlimit[VAR]에서 +Qlimit[VAR]까지의 값을 가질 수 있다.
예를 들어, 도 5에 도시된 바와 같이 유효전력 지령값(P*)이 P0인 경우, ESS(120)에서 공급되는 전력의 벡터는 유효전력 지령값이(P*)이 P0인 상태에서 빗금 친 영역을 따라 이동할 수 있다.
PMS(130)는 계통(200)의 전압값(Vg)이 기준 범위를 초과하면 지령값을 변경하여 계통(200)에 공급되는 진상분의 무효전력의 크기를 증가시킬 수 있다. 또한, PMS(130)는 계통(200)의 전압값(Vg)이 기준 범위 미만이면 지령값을 변경하여 계통(200)에 공급되는 지상분의 무효전력의 크기를 증가시킬 수 있다.
다시 도 3을 참조하면, 계통(200)의 전압값(Vg)은 (a) 구간에서 기준 범위 미만일 수 있다. 이 때, PMS(130)는 지령값을 변경하여 계통(200)에 공급되는 지상분의 무효전력의 크기를 증가시킬 수 있다.
다시 말해, 계통(200)의 전압값(Vg)이 기준 범위 미만일 때, PMS(130)는 도 5의 빗금 친 영역 내에서 전력의 벡터를 +Qlimit 방향으로 이동시킴으로써, 지상분의 무효전력의 크기를 증가시킬 수 있다. 예를 들어, PMS(130)는 무효전력 지령값(Q*)이 지상으로 최대값(Qlimit )을 갖도록 전력의 벡터(a)를 변경할 수 있다.
한편, 도 3에서 계통(200)의 전압값(Vg)은 (b) 구간에서 기준 범위를 초과할 수 있다. 이 때, PMS(130)는 지령값을 변경하여 계통(200)에 공급되는 진상분의 무효전력의 크기를 증가시킬 수 있다.
다시 말해, 계통(200)의 전압값(Vg)이 기준 범위를 초과할 때, PMS(130)는 도 5의 빗금 친 영역 내에서 전력의 벡터를 -Qlimit 방향으로 이동시킴으로써, 진상분의 무효전력의 크기를 증가시킬 수 있다. 예를 들어, PMS(130)는 무효전력 지령값(Q*)이 진상으로 최대값(-Qlimit)을 갖도록 전력의 벡터(b)를 변경할 수 있다.
PMS(130)는 계통(200)의 전압값(Vg)과 기준 범위의 차이값에 따라 계통(200)에 공급되는 무효전력의 크기를 점진적으로 제어할 수 있다.
도 6을 참조하면, 계통(200)의 전압값은 (c) 및 (d) 구간에서 기준 범위를 초과할 수 있다. 다만, 계통(200)의 전압값(Vg)과 기준 범위의 차이값은 (c) 구간에서보다 (d) 구간에서 더 클 수 있다.
PMS(130)는 기준 범위의 차이값에 비례하여 계통(200)에 공급되는 무효전력의 크기를 제어할 수 있다. 보다 구체적으로, 도 7을 참조하면, ESS(120)에서 계통(200)에 공급되는 유효전력에 대한 유효전력 지령값(P*)은 -P0일 수 있다. 유효전력 지령값(-P0)이 음수이므로, ESS(120)는 P0에 대응하는 유효전력을 계통(200)으로부터 공급받을 수 있다.
이 때, 무효전력 지령값(Q*)은 [수학식 1]에서 정의되는 -Qlimit[VAR]에서 +Qlimit[VAR]까지의 값을 가질 수 있다.
도 6의 (c) 및 (d) 구간에서 PMS(130)는 전술한 바와 같이, 지령값을 변경하여 진상분의 무효전력의 크기를 증가시킬 수 있다.
이 때, PMS(130)는 도 7에 도시된 바와 같이 기준 범위와의 차이값이 상대적으로 작은 (c) 구간에서는 무효전력 지령값(Q*)이 진상 방향으로 Q1이 되도록 전력 벡터를 제어할 수 있다.
또한, PMS(130)는 도 7에 도시된 바와 같이 기준 범위와의 차이값이 상대적으로 큰 (d) 구간에서는 무효전력 지령값(Q*)이 진상 방향으로 Q2가 되도록 전력 벡터를 더 제어할 수 있다.
전술한 바와 달리, PMS(130)는 계통(200)의 전압값(Vg)과 기준 범위의 차이값에 따른 무효전력 지령값(Q*)의 변화량이 미리 저장된 룩업 테이블(Look Up Table; LUT)을 참조하여 무효전력의 크기를 제어할 수도 있다.
이 경우, 룩업 테이블에는 계통(200)의 전압값(Vg)과 기준 범위의 차이값의 범위와 각 범위에 대한 무효전력 지령값(Q*)의 변화량이 미리 설정될 수 있다. 예를 들어, 룩업 테이블에는 계통(200)의 전압값(Vg)이 기준 전압로부터 3% ~ 4%의 차이가 있는 경우, 4% ~ 5%의 차이가 있는 경우, 5% ~ 6%의 차이가 있는 경우에 대한 무효전력 지령값(Q*)의 변화량이 미리 저장될 수 있다.
PMS(130)는 계통(200)의 전압값과 기준 전압의 차이값을 확인하고, 룩업 테이블을 참조하여 해당 차이값에 대한 무효전력 지령값(Q*)의 변화량만큼 무효전력의 크기를 제어할 수 있다.
상술한 바와 같이, 본 발명은 계통(200)의 전압값과 계통(200)의 기준 전압의 차이값에 따라 무효전력의 크기를 점진적으로 제어함으로써, 계통(200)의 전압값이 빠르게 기준 전압을 추종하도록 할 수 있다.
PMS(130)는 계통(200)의 전압값(Vg)을 일정 주기로 수신하고, 수신된 계통(200)의 전압값(Vg)이 기준 범위 이내가 될 때까지 계통(200)에 공급되는 무효전력의 크기를 제어할 수 있다.
보다 구체적으로, 계통(200)의 전압값(Vg)은 계통단에 구비된 전압 센서(미도시)에 의해 측정될 수 있다. PMS(130)는 전압 센서로부터, 측정된 계통(200)의 전압값(Vg)을 사용자에 의해 설정된 주기에 따라 수신할 수 있다.
PMS(130)는 계통(200)의 전압값(Vg)에 기초하여 전술한 무효전력의 크기를 제어할 수 있는데, 이 때, PMS(130)의 제어 주기는 계통(200)의 전압값(Vg)을 수신하는 주기보다 같거나 길 수 있다. 이에 따라, PMS(130)는 무효전력을 제어한 후 계통(200)의 전압값(Vg)을 적어도 한 번 이상 수신함으로써, 무효전력 제어에 따라 변화하는 계통(200)의 전압값(Vg)을 모니터링할 수 있다.
다시 말해, PMS(130)는 지상분의 무효전력의 크기를 증가시킨 후, 계통(200)의 전압값(Vg)을 모니터링하여, 계통(200)의 전압값(Vg)이 증가하는지 여부를 확인할 수 있다. 또한, PMS(130)는 진상분의 무효전력의 크기를 증가시킨 후, 계통(200)의 전압값(Vg)을 모니터링하여, 계통(200)의 전압값(Vg)이 감소하는지 여부를 확인할 수 있다.
PMS(130)는 모니터링되는 계통(200)의 전압값(Vg)에 기초하여 무효전력의 크기를 피드백 제어할 수 있고, 계통(200)의 전압값(Vg)이 기준 범위 내로 변경될 때까지 전술한 무효전력의 제어 동작을 수행할 수 있다.
상술한 바와 같이, 본 발명은 ESS(120)에서 계통(200)으로 공급되는 무효전력의 크기를 제어하여 계통(200)의 전압값을 계통(200)의 기준 전압으로부터 일정 범위 이내로 유지함으로써, 계통 안정성을 확보할 수 있다.
PMS(130)는 계통(200)의 전압값(Vg)이 제어한계범위 밖이면 지령값의 생성을 중단할 수 있다. 여기서 제어한계범위는 전술한 기준 범위보다 넓은 범위로서, PMS(130)의 지령값 변경에 의한 계통(200) 전압의 제어가 불가능한 범위일 수 있다.
신재생에너지원의 출력은 시간에 따라 급변할 수 있고, 신재생에너지원에 의한 최대 발전량이 증가할수록 신재생에너지원의 출력이 계통(200)에 미치는 영향은 클 수 있다.
한편, ESS(120)는 배터리(140)에 저장된 전력을 이용하여 계통(200)에 무효전력을 공급하는데, 배터리(140)의 용량이 신재생에너지원의 불안정한 출력을 제어할 수 있을 정도로 충분하지 않은 경우, 계통(200)에 무효전력이 공급된다고 하더라도 계통(200)의 전압이 안정화되지 않을 수 있다.
이에 따라, PMS(130)는 계통(200)의 전압값(Vg)이 제어한계범위 밖이면 지령값의 생성을 중단하고, 계통(200) 보호를 위해 전술한 발전장치(110) 및 ESS(120)와 계통(200)간의 연결을 차단할 수 있다.
제어한계범위는 사용자의 설정에 따라 임의의 범위로 설정될 수 있다. 예를 들어, 기준 범위가 계통(200)의 기준 전압을 기준으로 3% 내외로 설정된 경우, 제어한계범위는 계통(200)의 기준 전압을 기준으로 6% 내외로 설정될 수 있다.
이에 따라, PMS(130)는 계통(200)의 전압값(Vg)이 기준 전압로부터 3% ~ 6%의 차이가 있는 경우 무효전력의 크기를 제어하는 동작을 수행할 수 있고, PMS(130)는 계통(200)의 전압값(Vg)이 기준 전압로부터 6% 이상 차이가 있는 경우 지령값의 생성을 중단하고 계통(200)과의 연결을 차단할 수 있다.
상술한 바와 같이, 본 발명은 계통(200)의 전압값이 제어한계범위 밖이면 지령값의 생성을 중단하고 계통(200)과의 연결을 차단함으로써, 신재생에너지원의 출력이 과도하게 변동될 때 계통(200)을 보호할 수 있다.
제어한계범위가 설정되지 않은 경우에는, PMS(130)는 유효전력 크기와 전술한 [수학식 1]에 기초하여 제어 가능한 무효전력의 최대 크기(|Qlimit|)를 식별할 수 있다.
이어서, PMS(130)는 내무 메모리에 저장된 룩업테이블(Look-Up Table; LUT)을 참조하여, 식별된 무효전력의 최대 크기(|Qlimit|)에 따라 제어 가능한 계통(200)의 최대 전압 변화량(△Vg)을 식별할 수 있다. 다시 말해, PMS(130)는 유효전력의 크기가 특정된 경우, 무효전력을 최대로 제어했을 때 변화되는 계통(200)의 전압값(Vg)의 범위를 식별할 수 있다.
PMS(130)는 식별된 최대 전압 변화량(△Vg)이 현재 계통(200)의 전압값(Vg)과 기준 범위의 차이값보다 크면 지령값의 생성을 중단할 수 있다.
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.

Claims (9)

  1. 신재생에너지원을 이용하여 전력을 생산하고, 상기 생산된 전력을 계통에 공급하는 발전장치;
    지령값에 따라 상기 발전장치에서 생산된 전력을 배터리에 저장하거나 상기 배터리에 저장된 전력을 유효전력 및 무효전력의 형태로 계통에 공급하는 ESS(Energy Storage System); 및
    상기 계통의 전압값이 기준 범위 밖이면, 상기 계통의 전압값에 따라 상기 지령값을 변경하여 상기 계통의 전압값이 상기 기준 범위 이내가 되도록 상기 계통에 공급되는 무효전력의 크기를 제어하는 PMS(Power Management System)을 포함하는
    계통 전압 안정화 시스템.
  2. 제1항에 있어서,
    상기 PMS는
    상기 계통의 전압값이 상기 기준 범위를 초과하면 상기 지령값을 변경하여 상기 계통에 공급되는 진상분의 무효전력의 크기를 증가시키는 계통 전압 안정화 시스템.
  3. 제1항에 있어서,
    상기 PMS는
    상기 계통의 전압값이 상기 기준 범위 미만이면 상기 지령값을 변경하여 상기 계통에 공급되는 지상분의 무효전력의 크기를 증가시키는 계통 전압 안정화 시스템.
  4. 제1항에 있어서,
    상기 PMS는
    상기 계통의 전압값과 상기 기준 범위의 차이값에 따라 상기 계통에 공급되는 무효전력의 크기를 점진적으로 제어하는 계통 전압 안정화 시스템.
  5. 제1항에 있어서,
    상기 PMS는
    상기 계통의 전압값을 일정 주기로 수신하고, 상기 수신된 계통의 전압값이 상기 기준 범위 이내가 될 때까지 상기 계통에 공급되는 무효전력의 크기를 제어하는 계통 전압 안정화 시스템.
  6. 제1항에 있어서,
    상기 PMS는
    상기 계통의 전압값이 제어한계범위 밖이면 상기 지령값의 생성을 중단하는 계통 전압 안정화 시스템.
  7. 제1항에 있어서,
    상기 ESS는
    상기 지령값에 따라 상기 발전장치에서 생산된 전력의 전기적 특성을 변환하거나, 상기 배터리에 저장된 전력의 전기적 특성을 변환하는 PCS(Power Conditioning System)를 포함하는 계통 전압 안정화 시스템.
  8. 제1항에 있어서,
    상기 PMS는
    상기 계통과 연결된 부하에서 소모되는 전력이 상기 발전장치에서 생산되는 전력보다 큰 경우 상기 ESS에 방전지령을 제공하고, 상기 부하에서 소모되는 전력이 상기 발전장치에서 생산되는 전력보다 적은 경우 상기 ESS에 충전지령을 제공하는 계통 전압 안정화 시스템.
  9. 제1항에 있어서,
    상기 PMS는
    상기 계통의 주파수가 기준 주파수 범위를 초과하면 상기 ESS에 충전지령을 제공하고, 상기 계통의 주파수가 상기 기준 주파수 범위 미만이면 상기 ESS에 방전지령을 제공하는 계통 전압 안정화 시스템.
PCT/KR2018/015697 2018-01-22 2018-12-11 계통 전압 안정화 시스템 WO2019143023A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/771,973 US11258257B2 (en) 2018-01-22 2018-12-11 Grid voltage stabilization system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0007537 2018-01-22
KR1020180007537A KR20190089289A (ko) 2018-01-22 2018-01-22 계통 전압 안정화 시스템

Publications (1)

Publication Number Publication Date
WO2019143023A1 true WO2019143023A1 (ko) 2019-07-25

Family

ID=67301183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015697 WO2019143023A1 (ko) 2018-01-22 2018-12-11 계통 전압 안정화 시스템

Country Status (3)

Country Link
US (1) US11258257B2 (ko)
KR (1) KR20190089289A (ko)
WO (1) WO2019143023A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102234527B1 (ko) * 2019-08-26 2021-03-31 인제대학교 산학협력단 발전 연계형 ESS의 주파수 추종 제어를 이용하는 SoC 관리 장치 및 방법
KR102232931B1 (ko) * 2020-05-29 2021-03-26 이온어스(주) 분산전원이 연결된 계통의 전압 안정화를 위한 ess 그룹의 충방전 관리 방법, 장치 및 시스템
KR102432714B1 (ko) * 2020-09-28 2022-08-16 한국서부발전 주식회사 500mw 발전기 운영예비력 확보를 위한 ess 연계 운영 시스템의 운전 방법
CN114050581A (zh) * 2021-11-15 2022-02-15 许继集团有限公司 一种电站多无功源分级动态协调控制方法及装置
KR102530308B1 (ko) 2023-01-19 2023-05-09 주식회사 세광기업 볼 조인트의 케이스 자동가공장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016261A (ja) * 2010-05-31 2012-01-19 Sanyo Electric Co Ltd 系統連系システム、及び分配器
KR20130120640A (ko) * 2012-04-26 2013-11-05 한국에너지기술연구원 복합발전 시스템에서 전압 제어 장치 및 방법
KR101413537B1 (ko) * 2012-12-10 2014-08-07 한국전기연구원 풍력 발전 출력 보상 방법 및 시스템
US20160268802A1 (en) * 2015-03-10 2016-09-15 Lsis Co., Ltd. Energy storage device controlling method and power management system
JP2016185018A (ja) * 2015-03-26 2016-10-20 田淵電機株式会社 系統電圧抑制制御装置及び系統電圧抑制制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225198B1 (ko) 2011-06-03 2013-01-22 (주)인텍에프에이 계통 연계형 전력 변환 시스템
US8810202B2 (en) * 2011-07-15 2014-08-19 Nec Corporation Battery system and its control method
JP5893544B2 (ja) * 2011-10-31 2016-03-23 パナソニック株式会社 電圧制御装置、電圧制御方法、電力調整装置、及び電圧制御プログラム
US9583945B2 (en) * 2014-06-09 2017-02-28 Panasonic Intellectual Property Management Co., Ltd. Frequency control method and frequency control apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016261A (ja) * 2010-05-31 2012-01-19 Sanyo Electric Co Ltd 系統連系システム、及び分配器
KR20130120640A (ko) * 2012-04-26 2013-11-05 한국에너지기술연구원 복합발전 시스템에서 전압 제어 장치 및 방법
KR101413537B1 (ko) * 2012-12-10 2014-08-07 한국전기연구원 풍력 발전 출력 보상 방법 및 시스템
US20160268802A1 (en) * 2015-03-10 2016-09-15 Lsis Co., Ltd. Energy storage device controlling method and power management system
JP2016185018A (ja) * 2015-03-26 2016-10-20 田淵電機株式会社 系統電圧抑制制御装置及び系統電圧抑制制御方法

Also Published As

Publication number Publication date
KR20190089289A (ko) 2019-07-31
US11258257B2 (en) 2022-02-22
US20210143643A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
WO2019143023A1 (ko) 계통 전압 안정화 시스템
WO2012043919A1 (en) Power conversion system for energy storage system and controlling method of the same
WO2012033254A1 (en) Energy storage system and controlling method of the same
WO2018056504A1 (ko) 독립형 마이크로그리드의 주파수 제어방법 및 이를 제어하는 에너지 저장장치용 전력변환장치
WO2016080599A1 (ko) 슈퍼 커패시터를 이용한 전력 품질 보상 장치 및 그 동작 방법
CN115208305B (zh) 一种稳定型光伏发电智能供电***
WO2018212404A1 (ko) 하이브리드 에너지 저장 시스템
WO2019059491A1 (ko) Ess 출력 제어 방법
WO2017116087A2 (ko) 배터리 관리 장치 및 배터리 에너지 저장 시스템
WO2020040350A1 (ko) 신재생 에너지 하이브리드 발전 시스템 및 이를 위한 발전 방법
WO2019107802A1 (ko) 에너지 저장 시스템
CN105244900B (zh) 一种基于移频控制的微电网离网能量平衡控制方法
KR20150106694A (ko) 에너지 저장 시스템과 그의 구동방법
WO2018216899A1 (ko) 군용 마이크로그리드 시스템
WO2018230831A1 (ko) 에너지 저장 시스템
WO2015102398A1 (ko) 풍력 발전기용 에너지 저장 시스템 및 방법
WO2022196846A1 (ko) 에너지저장시스템 계층형 관리시스템
EP4362265A2 (en) Grid-connected photovoltaic inverter and grid-connected control method
WO2018135716A1 (ko) 에너지 저장 장치 및 이를 포함하는 에너지 저장 시스템
JP2008067484A (ja) 蓄電池設備と自家発電設備を組み合せた自家発電システムおよび該システムにおける自家発電設備の出力制御方法
Wen et al. Control and protection of dc microgird with battery energy storage system
WO2012067368A2 (ko) 충전장치를 채용하고 무효전력 제어기능을 갖는 다중기능 전력변환 장치 및 방법
WO2021182836A1 (ko) Frt를 위한 전류 출력 제어 장치 및 그 장치의 제어 방법
RU95434U1 (ru) Многофункциональный энергетический комплекс (мэк)
WO2022211146A1 (ko) 슈퍼커패시터 급속 충전 제어장치 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900741

Country of ref document: EP

Kind code of ref document: A1