WO2019142573A1 - 電気集塵装置 - Google Patents

電気集塵装置 Download PDF

Info

Publication number
WO2019142573A1
WO2019142573A1 PCT/JP2018/046415 JP2018046415W WO2019142573A1 WO 2019142573 A1 WO2019142573 A1 WO 2019142573A1 JP 2018046415 W JP2018046415 W JP 2018046415W WO 2019142573 A1 WO2019142573 A1 WO 2019142573A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust collection
dust
electrode
pipe
flat plate
Prior art date
Application number
PCT/JP2018/046415
Other languages
English (en)
French (fr)
Inventor
一隆 富松
加藤 雅也
上田 泰稔
Original Assignee
三菱日立パワーシステムズ環境ソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ環境ソリューション株式会社 filed Critical 三菱日立パワーシステムズ環境ソリューション株式会社
Publication of WO2019142573A1 publication Critical patent/WO2019142573A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular

Definitions

  • the present invention relates to an electrostatic precipitator.
  • a high DC voltage is applied between the dust collection electrode and the discharge electrode to perform stable corona discharge on the discharge electrode, thereby charging dust in the gas flow.
  • charged dust is collected at the dust collection electrode by the action of the Coulomb force acting on the dust under an electric field between the discharge electrode and the dust collection electrode.
  • the electrostatic precipitator of patent documents 1 and 2 is provided with a plurality of penetration holes for letting dust pass, and is provided with a dust collection pole which had a closed space for collecting dust inside.
  • trapped dust is less likely to be scattered again by confining the dust in the closed space via the through holes.
  • the electrostatic precipitator of Patent Document 3 includes a dust collection electrode including an earth electrode having an aperture ratio of 65% to 85%, and a dust collection filter layer for collecting gas.
  • a dust collection electrode including an earth electrode having an aperture ratio of 65% to 85%
  • a dust collection filter layer for collecting gas.
  • Patent No. 5761461 gazette Patent No. 5705461 gazette Patent No. 4823691
  • the dust collection efficiency ⁇ in the electrostatic precipitator can be calculated by the well-known German equation (equation (1)) below.
  • w a dust collection index (moving speed of particulate matter)
  • f a dust collection area per unit gas amount.
  • 1-exp (-w ⁇ f) (1)
  • the moving speed w of the dust is determined to be determined by the relationship between the Coulomb force and the viscous drag of the gas.
  • dust is said to move from the discharge electrode in the electric field, and the ion wind is not directly considered in the influence on performance.
  • the dust concentration which is the premise of its performance design, has the precondition that it is always uniform in the dust collection space between the discharge electrode and the dust collection electrode, and the ion wind causes gas turbulence, It is considered as one of the factors that make the dust concentration uniform.
  • the ion wind generates negative ions by corona discharge at the discharge electrode when a negative voltage is applied between the electrodes, and as a result, it is generated by positive ions in the case of a positive voltage.
  • a negative voltage is described in order to consider the industrial electrostatic precipitator as a base, but the same is true even if it is positive.
  • the ion wind generated by the discharge electrode flows across the gas flow toward the dust collection electrode.
  • the ion wind that has reached the collecting electrode is reversed at the collecting electrode to change the flow direction. This causes a helical turbulence between the electrodes.
  • the flow from the discharge electrode to the dust collection electrode has an effect of carrying dust to the vicinity of the dust collection electrode.
  • the dust carried to the vicinity of the dust collection electrode is finally collected by the Coulomb force.
  • the rewinding of the ion wind reversed by the dust collection electrode moves dust in a direction away from the dust collection electrode that is the collecting body, and thus has an effect of inhibiting the dust collection.
  • dust contained in the gas has a predetermined particle size distribution
  • relatively small particle size dust is largely affected by the unwinding of the ion wind as described above, and the collection efficiency does not increase. There is a fear.
  • Patent Document 3 describes an electrostatic precipitator in consideration of the effect of ion wind.
  • the structure is such that the ion wind is sent to the filter layer behind the dust collection electrode having the opening, and the structure is complicated in order to collect dust in a region not affected by the main gas. In some cases, it was difficult to separate and collect dust attached to the filter layer in the dry state.
  • This indication is made in view of such a situation, and it aims at providing an electric dust collector which can raise dust collection efficiency also to dust which has particle size distribution.
  • An electrostatic precipitator is disposed in parallel to a first dust collection electrode which is provided along a gas flow direction and has no opening, and the first dust collection electrode.
  • a first dust collection unit having a first discharge electrode, a second dust collection electrode disposed on the downstream side of the gas flow direction of the first dust collection unit, and an opening, and the second dust collection electrode
  • a second dust collection unit having a second discharge electrode arranged in parallel to each other.
  • the first dust collection unit By arranging the first dust collection unit having a plate-shaped first dust collection electrode without an opening on the upstream side of the gas flow, dust having a relatively large particle size among dust contained in the gas can be obtained. Collect. In addition, since the first dust collection electrode has no opening, the dust collection area can be increased and a large amount of dust can be collected as compared with the case where the opening is not provided.
  • the 2nd dust collection part which has the 2nd dust collection pole which has an opening in the downstream of the gas flow direction of the 1st dust collection part was arranged.
  • the first dust collection unit suitable for collecting relatively large dust among the dust having particle size distribution and the second dust collection unit suitable for collecting relatively small dust By combining them, even dust having a predetermined particle size distribution can be effectively collected.
  • the second dust collection electrode include columnar bodies such as cylinders arranged at predetermined intervals, flat plates or folded plates having a plurality of openings, and metal mesh.
  • the aperture ratio of the second dust collection electrode is 10% or more and 70% or less.
  • the second dust collection electrode is a plurality of columnar bodies disposed at predetermined intervals in the gas flow direction, and a cross section of the columnar bodies
  • the equivalent diameter of is 30 mm or more and 80 mm or less.
  • the equivalent diameter of the cross section of the cast body was 30 mm or more.
  • the equivalent diameter of the cross section of the columnar body was 80 mm or less.
  • equivalent diameter is meant a circular diameter equivalent to the cross section of a given shape.
  • the cross-section is circular, this corresponds to its diameter.
  • the pipe-shaped member made into circular cross section for example is mentioned.
  • the cross-sectional shape in addition to the circular shape, an oval, an oval, a polygon or the like is used.
  • not only hollow but also solid may be used as a dust collection electrode.
  • a second dust collection part having a first dust collection part having a plate-like first dust collection electrode not having an opening, and a second dust collection electrode provided on the downstream side of the first dust collection part and having an opening
  • the dust collection efficiency can be enhanced also for dust having a particle size distribution by combining the
  • the electrostatic precipitator 1 is used, for example, in a thermal power plant using coal as a fuel, and recovers dust (particulate matter) in combustion exhaust gas led from a boiler.
  • FIG. 1 shows a longitudinal sectional view of the electrostatic precipitator according to the present embodiment as viewed from above.
  • the gas flow G is a horizontal flow, and flows from the left side to the right side of the drawing.
  • the electrostatic precipitator 1 includes, in the casing 2, a flat plate dust collection part (first dust collection part) A, an upstream pipe dust collection part (second dust collection part) B, and a gas flow G along the downstream side. And a side pipe dust collection unit (second dust collection unit) C.
  • the casing 2 includes a gas inlet 2a, a main body 2b, and a gas outlet 2c.
  • the gas flowing in from the gas inlet 2a is guided to the main body 2b and collected by the dust collecting units A, B, and C, and then discharged from the gas outlet 2c to the outside.
  • the flat plate collecting portion A includes a plurality of flat plate collecting electrodes 4A provided so as to extend in the gas flow G direction, and a discharge electrode 5A provided so as to be separated in parallel with the flat plate collecting electrodes 4A. Have.
  • the flat plate collecting electrode 4A and the discharge electrode 5A are separated from each other and electrically insulated.
  • the discharge electrode 5A is also insulated from the casing 2.
  • the flat plate collecting electrode 4A is grounded, and a power supply 6A having a negative polarity is connected to the discharge electrode 5A.
  • Each flat plate collecting electrode 4A is a metal flat plate having no opening.
  • the discharge electrode 5A has a mounting base 7A and a plurality of corona discharge parts 8A.
  • the mounting base 7A is a rod-like or plate-like member made of a conductive material.
  • the mounting base 7A is disposed parallel to the facing flat plate collecting electrode 4A.
  • the corona discharge portion 8A generates a corona discharge by applying a voltage to the discharge electrode 5A.
  • the corona discharge portion 8A is a protrusion fixed to the mounting base 7A so as to protrude toward the flat plate collecting electrode 4A facing the corona discharge portion 8A.
  • a plurality of corona discharge portions 8A are disposed in the direction orthogonal to the paper surface, that is, in the height direction.
  • the upstream-side pipe dust collection unit B includes a pipe dust collection electrode 4B and a discharge electrode 5B fixed to the mounting base 7B.
  • the pipe dust collection electrode 4B is a discrete dust collection electrode in which a plurality of pipe members 4Ba are arranged in the flow direction of the gas flow G with a predetermined interval. Therefore, the pipe dust collection electrode 4B is provided to have an opening.
  • Each pipe member 4Ba is made of rigid metal.
  • Each pipe member 4Ba is arranged in the vertical direction (vertical direction in the drawing) so that the axis is orthogonal to the gas flow G.
  • the pipe members 4Ba arranged in the gas flow G direction are fixed to each other using a common frame.
  • the discharge electrode 5B has a configuration similar to that of the discharge electrode 5A of the flat plate dust collection part A, and has a plurality of corona discharge parts 8B. Each corona discharge portion 8B is disposed in the center of the adjacent pipe member 4Ba in the gas flow G direction.
  • the pipe collecting electrode 4B and the discharging electrode 5B are separated from each other and electrically insulated.
  • the discharge electrode 5B is also insulated from the casing 2.
  • the pipe dust collecting electrode 4B is grounded, and a power supply 6B having a negative polarity is connected to the discharge electrode 5B.
  • the power supply 6B can set a voltage different from that of the power supply 6A of the flat plate dust collection part A.
  • the downstream side pipe dust collection unit C includes a pipe dust collection electrode 4C and a discharge electrode 5C fixed to the mounting base 7C.
  • the pipe dust collection electrode 4C has the same configuration as the pipe dust collection electrode 4B of the upstream side pipe dust collection unit B.
  • the discharge electrode 5 ⁇ / b> C has a configuration similar to that of the discharge electrode 5 ⁇ / b> B of the upstream-side pipe dust collection unit B.
  • the distance between the pipe members 4Ca and the distance between the corona discharge parts 8C may be different from the distance between the pipe members 4Ba of the upstream side pipe dust collection part B and the corona discharge parts 8B.
  • a voltage different from the power supply 6A of the flat plate dust collection part A and the power supply 6B of the upstream side pipe dust collection part B can be set as the power supply 6C.
  • FIG. 2 shows the positional relationship between the pipe members 4Ba and 4Ca of the pipe dust collection electrodes 4B and 4C of the upstream side pipe dust collection part B and the downstream side pipe dust collection part C and the corona discharge parts 8B and 8C.
  • the center-to-center pitch Pc of the pipe members 4Ba and 4Ca and the center-to-center pitch Pd of the corona discharge portions 8B and 8C are equal to each other.
  • corona discharge parts 8B and 8C so as to be opposed between the adjacent pipe members 4Ba and 4Ca.
  • the corona discharge portion 8B of the cross section of the pipe members 4Ba, 4Ca, in which the electric lines of force are equally distributed to the pipe members 4Ba, 4Ca , 8C can reach the electric force line to the depth side.
  • the symbol D shown in FIG. 2 is the distance in the orthogonal direction (vertical direction in the figure) between the pipe members 4Ba and 4Ca and the corona discharge parts 8B and 8C, and is, for example, 125 mm to 250 mm.
  • d is the equivalent diameter of the pipe members 4Ba and 4Ca.
  • equivalent diameter is meant the diameter of a circle (having the same area) equivalent to the cross section of a given shape. Therefore, when the cross section of pipe member 4Ba, 4Ca is circular like this embodiment, it corresponds to the diameter.
  • the aperture ratio ⁇ is set to 10% or more and 70% or less. The ground will be described later with reference to FIG.
  • the equivalent diameter d of the pipe members 4Ba and 4Ca is 30 mm or more and 80 mm or less.
  • the reason why the equivalent diameter d of the cross section of the pipe dust collecting electrode 4B, 4C is 30 mm or more is as follows.
  • the equivalent diameter d is reduced, the concentration of the electric field is increased and the dust collection property is enhanced.
  • the equivalent diameter d becomes too small, as shown in FIG. 4, the peak value of the electric field strength becomes large and the spark electric field strength if the current density (for example, 0.3 mA / m 2 ) necessary for dust collection is maintained. Spark discharge occurs over 10kV / cm of Therefore, the lower limit of the equivalent diameter d is 30 mm.
  • the reason for setting the equivalent diameter d of the cross sections of the pipe members 4Ba and 4Ca to 80 mm or less is as follows. If the equivalent diameter d is too large, the increase of the electric field intensity in the vicinity of the pipe members 4Ba and 4Ca (to be described later with reference to FIG. 6) is almost eliminated, and the average electric field intensity of the flat plate collecting electrode 4A without holes (2 kV It becomes about / cm). In addition, if the equivalent diameter d is large, the gas flow is affected and a vortex is generated. Therefore, the upper limit of the equivalent diameter d is 80 mm. For example, the average electric field strength when the equivalent diameter d is 30 mm calculated under the same conditions as described above is 5.7 kV / cm.
  • the vertical axis in FIG. 5 is the average electric field strength, which is the electric field strength averaged over the surface area of the pipe dust collecting electrodes 4B and 4C. This average electric field strength is different from the peak electric field strength on the vertical axis of FIG.
  • the peak electric field strength is the electric field strength at the position of the highest electric field strength among the surfaces of the pipe dust collecting electrodes 4B and 4C.
  • the horizontal axis indicates the position, and it is assumed that the corona discharge parts 8B and 8C are located at the position corresponding to the y axis.
  • the vertical axis is the electric field strength. The electric field strength is highest at the positions of the corona discharge parts 8B and 8C, and after increasing the local value between the pipe members 4Ba and 4Ca, increases while going to the pipe members 4Ba and 4Ca again.
  • a region Z2 closer to the corona discharge portions 8B and 8C than the region Z1 is a dominant region of the ion wind.
  • the dust P in the gas is led to the pipe members 4Ba and 4Ca mainly along with the ion wind.
  • FIG. 7 shows the electric field strength in the case of using the flat plate collecting electrode 4A without the holes (openings).
  • the absolute value of the electric field intensity in the vicinity of the flat plate dust collection electrode 4A is smaller than that of the pipe members 4Ba and 4Ca shown in FIG. Therefore, it is understood that the dust collection performance is inferior to the pipe dust collection electrodes 4B and 4C.
  • the flat dust collection electrode 4A sufficient collection performance is exhibited with respect to relatively large dust less affected by the ion wind.
  • FIG. 8 shows the dust collection area ratio to the opening ratio ⁇ .
  • the dust collection area ratio is the dust collection area when exhibiting the same dust collection performance when the dust collection performance at an aperture ratio of 0% (in the case of no gap) is 1 as in the flat plate dust collection electrode 4A. It is shown. Therefore, the smaller the dust collection area ratio, the higher the collection efficiency.
  • the aperture ratio ⁇ is preferably 10% to 70% (application range).
  • the electrostatic precipitator 1 is provided with a striking device for peeling off the particulate matter adhering to the dust collection electrodes 4A, 4B, 4C.
  • the beating apparatus has a hammer, and the hammer strikes on the dust collection electrodes 4A, 4B, 4C to separate and remove dust attached to the surface by vibration. Note that the method of removing dust from the dust collection electrodes 4A, 4B, 4C is not limited to beating using a beating apparatus.
  • dust is removed from the dust collection electrodes 4A, 4B, 4C by a method of blowing a gas to dust collected on the collection electrodes 4A, 4B, 4C, or a method of irradiating sound waves using a sonic horn You may
  • the particulate matter may be removed from the dust collection electrodes 4A, 4B, 4C by cleaning with a cleaning liquid performed by a wet type electrostatic precipitator.
  • the operation of the electrostatic precipitator 1 of the present embodiment will be described.
  • the electrostatic precipitator 1 by applying a voltage to the discharge electrodes 5A, 5B, 5C, corona discharge occurs at the tip of the corona discharge parts 8A, 8B, 8C.
  • the dust contained in the gas stream G is charged by corona discharge.
  • the charged dust moves to the vicinity of the collecting electrode by the ion wind flowing toward the collecting electrode, and is then attracted and collected near the flat collecting electrode 4A by the Coulomb force .
  • dusts having a particle size distribution dusts having relatively large particle sizes are preferentially collected. This is because dust with a larger particle size has a larger surface area and larger air resistance in proportion to the particle size than dust with a smaller particle size, while the amount of charge increases in proportion to the square of the particle size, resulting in coulombs This is because the movement speed increases as the effect of force increases. Since dust with a large particle size is not easily affected by the ion wind, there is little influence by the unwinding of the ion wind even at a dust collection electrode without an opening.
  • FIG. 9 shows the dust collection efficiency (EP efficiency) by the electrostatic precipitator 1.
  • the horizontal axis indicates the position in the gas flow G direction. Therefore, the flat plate dust collection part A is positioned upstream, and the pipe dust collection parts B and C are positioned downstream thereof.
  • the EP efficiency of the flat-plate dust collection part A shows a good collection efficiency because it collects a large amount of relatively large dust on the upstream side of the gas flow G, but as the downstream side of the gas flow G is relatively small dust
  • the collection efficiency becomes relatively flat because the The EP efficiency of the pipe dust collecting parts B and C is not as good as that of the flat sheet dust collecting part A because a relatively large amount of dust is present on the upstream side.
  • the following effects are achieved.
  • the flat plate dust collection part A having the flat plate dust collection electrode 4A in the form of a plate having no opening on the upstream side of the gas flow G, relatively large dust contained in the gas is collected Do. Further, since the flat plate dust collection electrode 4A does not have an opening, the dust collection area becomes large and a large amount of dust can be collected.
  • pipe dust collection parts B and C having pipe collection electrodes 4B and 4C having openings are disposed.
  • the ion wind By passing a part of the ion wind generated between the discharge electrodes 5B and 5C through the openings of the pipe dust collection electrodes 4B and 4C, the ion wind is inverted and separated at the pipe dust collection electrodes 4B and 4C. Suppress the flow (rewind). Thereby, even relatively small dust can be guided to the vicinity of the pipe dust collection electrodes 4B and 4C by the ion wind, and can be collected by the Coulomb force in the vicinity of the pipe dust collection electrodes 4B and 4C. Therefore, relatively small dust which could not be collected by the flat plate dust collection part A can be collected by the pipe dust collection parts B and C on the downstream side.
  • the flat plate dust collection part A suitable for collecting relatively large dust among the dust having particle size distribution and the pipe dust collection parts B and C suitable for collecting relatively small dust By combining these, even dust having a predetermined particle size distribution can be effectively collected.
  • the opening ratio ⁇ of the pipe dust collection electrodes 4B and 4C is set to 10% or more and 70% or less. Thereby, an effective dust collection area can be ensured and dust collection performance can be improved.
  • the equivalent diameter d of the cross section of the pipe dust collecting electrode 4B, 4C is set to 30 mm or more and 80 mm or less. Thereby, the dust collection performance of the dust collection electrode 4 can be improved.
  • one flat plate dust collecting part A is disposed on the upstream side, and two pipe dust collecting parts B and C are disposed on the downstream side thereof.
  • the flat plate dust collecting part is disposed on the upstream side.
  • the number of each dust collection parts is not limited to this embodiment. Therefore, the number of flat plate dust collecting parts A may be two or more, and the number of pipe dust collecting parts may be one or three or more.
  • the pipe dust collection electrodes 4B and 4C have been described as circular pipes, but the cross-sectional shape of the pipe dust collection electrodes 4B and 4C may be oval, oval, polygon or the like in addition to circular. You may use. Also, the dust collection electrode may be a solid instead of a hollow such as a pipe.
  • a flat dust collecting electrode 4D having an opening as shown in FIG. 10 may be used instead of the pipe dust collecting electrodes 4B and 4C of the present embodiment.
  • a dust collecting electrode 4E having a folded plate-shaped opening instead of the pipe dust collecting electrodes 4B and 4C of the present embodiment, a flat dust collecting electrode 4D having an opening as shown in FIG. 10 may be used.
  • a dust collection electrode 4E having a folded plate-shaped opening instead of the pipe dust collecting electrodes 4B and 4C of the present embodiment, a flat dust collecting electrode 4D having an opening as shown in FIG. 10 may be used.
  • FIG. 11 it may be a dust collection electrode 4E having a folded plate-shaped opening.
  • a mesh belt 4F having an opening may be used instead of the pipe dust collection electrode 4B, 4C.
  • the mesh belt is a flexible belt in which fine metal wires are knitted in a plane.
  • the mesh belt is endlessly wound around a plurality of rotating members (rotation drive rollers), and the mesh belt is appropriately moved between the gas flow path and the outside thereof. Dust attached to the mesh belt is removed by the brush outside the gas flow path.
  • a movable dust collection type of dust collection pole may have a predetermined opening, and is not limited to the mesh belt.
  • the electrostatic precipitator 1 of the present embodiment is not limited to a new one, and when the existing electrostatic precipitator has a plurality of flat plate dust collecting portions, the flat plate collection on the downstream side Instead of the dust portion, a pipe dust collection portion may be installed. By doing this, the electrostatic precipitator 1 of the present embodiment can be introduced at a lower cost than newly installed.

Landscapes

  • Electrostatic Separation (AREA)

Abstract

粒径分布を有するダストに対しても集塵効率を高めることのできる電気集塵装置を提供する。電気集塵装置(1)は、ガス流れGの方向に沿って設けられ、開口を有しない板状とされた平板集塵極(4A)と、平板集塵極(4A)に対して並列に配置された放電極(5A)とを有する平板集塵部(A)と、平板集塵部(4)のガス流れGの方向の下流側に配置され、開口を有するパイプ集塵極(4B,4C)と、パイプ集塵極(4B,4C)に対して並列に配置された放電極(5B,5C)とを有するパイプ集塵部(B,C)とを備えている。

Description

電気集塵装置
 本発明は、電気集塵装置に関するものである。
 従来の電気集塵装置として、ガス流れに沿って平行に配列された開口を有しない平板状の集塵極と、その中央に配列された鋭利な形状を有する放電極とを備えたものが知られている。
 電気集塵装置では、集塵極と放電極との間に直流高電圧を印加し、放電極に安定したコロナ放電を行うことで、ガス流れ中のダストを帯電させる。従来の集じん理論では、帯電したダストは放電極と集塵極との間の電界下でダストに作用するクーロン力の働きにより集塵極に捕集されると説明されている。
 ところで、特許文献1,2の電気集塵装置は、ダストを通過させるための複数の貫通孔を備え、内部にダストを捕集するための閉空間を有した集塵極を備えている。特許文献1,2では、貫通孔を介して閉空間にダストを閉じ込めることで捕集ダストが再飛散しにくくさせている。
 特許文献3の電気集塵装置は、65%から85%の開口率を有するアース電極と、ガスを捕集する集塵フィルタ層と、を含む集塵極を備えている。このような集塵極を備えることにより、特許文献3では、ガス流れと直交する断面内においてイオン風を発生させ、放電極と集塵極との間を循環するらせん状のガス流れを生成させ、ダストを効率よく捕集するようにしている。特許文献3では、イオン風を積極的に利用するが、ダストを主として集じんフィルタ層に捕集させることを目的としている。
特許第5761461号公報 特許第5705461号公報 特許第4823691号公報
 電気集塵装置における集塵効率ηは、よく知られた下記のドイチェの式(式(1))により算出することができる。wは、集塵性指数(粒子状物質の移動速度)、fは、単位ガス量当たりの集塵面積である。
  η=1-exp(-w×f)・・・(1)
 上記式(1)において、ダスト(粒子状物質)の移動速度wは、クーロン力による力と、気体の粘性抵抗の関係で決まるとされている。ドイチェの式(上記式(1))では、ダストが放電極から電界中を移動するとされおり、イオン風は性能への影響においては直接考慮されていない。しかしながら、その性能設計の前提であるダスト濃度は、常に放電極と集塵極との間の集じん空間内では一様であるという前提条件があり、イオン風はガスの乱れを生じさせて、ダスト濃度を一様とさせる要因の一つとして考えられている。
 イオン風は、電極間に負の電圧を印加した際に、放電極でコロナ放電によりマイナスイオンが発生し、その結果、生じるものであり、正の電圧の場合にはプラスのイオンにより生じる。以下、産業用の電気集塵装置をベースに考えるため、負の電圧を印加するケースについて記載するが、正であっても同様である。
 放電極で生じたイオン風は、集塵極に向けて、ガス流れを横切るよう流れる。集塵極に達したイオン風は、集塵極で反転して流れ方向を変える。これにより、電極間にらせん状の乱流が生じる。
 乱流のうち、放電極から集塵極へと向かう流れは、ダストを集塵極近傍まで運ぶ作用がある。集塵極近傍まで運ばれたダストは、最終的にはクーロン力により捕集される。
 しかしながら、集塵極で反転したイオン風の巻き戻しは、収集体である集塵極から離れる方向へとダストを移動させるため、集塵を阻害するような作用もある。
 特に、ガス中に含まれるダストは、所定の粒径分布を有しているため、比較的小さい粒径のダストは上述のようなイオン風の巻き戻しによる影響が大きく、捕集効率が上がらないおそれがある。
 なお、特許文献3には、イオン風の効果も考慮した電気集塵装置を記載している。しかしながら、このケースでは、開口部を有する集塵極の背後にあるフィルタ層にイオン風を送り込む構造であり、主ガスの影響を受けない領域で集塵することを目的としていて、構造も複雑であること、及び、乾式ではフィルタ層に付着したダストの剥離回収が困難であった。
 本開示は、このような事情に鑑みてなされたものであって、粒径分布を有するダストに対しても集塵効率を高めることのできる電気集塵装置を提供することを目的とする。
 本開示の一態様に係る電気集塵装置は、ガス流れ方向に沿って設けられ、開口を有しない板状とされた第1集塵極と、該第1集塵極に対して並列に配置された第1放電極とを有する第1集塵部と、該第1集塵部のガス流れ方向の下流側に配置され、開口を有する第2集塵極と、該第2集塵極に対して並列に配置された第2放電極とを有する第2集塵部と、を備えている。
 ガス流れの上流側に、開口を有しない板状とされた第1集塵極を有する第1集塵部を配置することによって、ガス中に含まれるダストのうち比較的粒径の大きなものを捕集する。また、第1集塵極は開口を有しないので、開口を設けない場合に比べて集塵面積が大きくなり多くのダストを捕集できる。
 第1集塵部のガス流れ方向の下流側に、開口を有する第2集塵極を有する第2集塵部を配置した。第2集塵極の開口を介して、第2放電極との間で生じるイオン風の一部を通過させることで、第2集塵極でイオン風が反転して離反する流れ(巻き戻し)を抑制する。これにより、イオン風によって比較的小さなダストでも第2集塵極の近傍まで導くことができ、第2集塵極の近傍ではクーロン力によって捕集することができる。よって、第1集塵部で捕集できなかった比較的小さなダストを下流側の第2集塵部で捕集することができる。
 このように、粒径分布を有するダストのうち比較的大きなダストを捕集することに適した第1集塵部と、比較的小さなダストを捕集することに適した第2集塵部とを組み合わせることで、所定の粒径分布を有するダストであっても効果的に捕集することができる。
 第2集塵極としては、例えば、所定間隔をおいて配列された円筒等の柱状体や、複数の開口を形成した平板ないし折板、金属メッシュなどが挙げられる。
 さらに、本開示の一態様に係る電気集塵装置は、前記第2集塵極の開口率が、10%以上70%以下とされている。
 開口率が10%未満となるとイオン風の離反抑制効果が低くなる。開口率が70%を超えると有効な集塵面積が少なくなり集塵性を低下させる。
 開口率αは、等価直径をd、集塵極の中心間ピッチをPcとすると、以下のように表される。
   α=1-((d×3.14÷2)÷Pc)×100 [%]
 さらに、本開示の一態様に係る電気集塵装置では、前記第2集塵極は、前記ガス流れ方向に所定の間隔をあけて配置された複数の柱状体とされ、前記柱状体の横断面の等価直径は、30mm以上80mm以下とされている。
 柱状の第2集塵極を所定の間隔をあけて配置することで、放電部から集塵極へ向けて流れるイオン風の一部が集塵極の裏側へ抜けることを許容する。これにより、イオン風が集塵極で反転されて離反する流れ(巻き戻し)を抑制できる。
 注状体の横断面の等価直径を30mm以上とした。等価直径を小さくすると電界集中が大きくなり集塵性は高まる。しかし、等価直径が小さくなりすぎると、集塵に必要な電流を確保したままでは電界強度のピーク値が大きくなり火花放電が生じる。このため、等価直径としての下限は30mmである。
 柱状体の横断面の等価直径を80mm以下とした。等価直径が大きくなりすぎると、集塵極近傍における電界強度の持ち上がりが殆どなくなり、平板電極の平均電界強度程度になってしまう。また、等価直径が大きいとガス流れに対して渦を発生させてしまう。このため、等価直径としての上限は80mmである。
 等価直径とは、所定形状の横断面と等価な円形の直径を意味する。したがって、横断面が円形の場合は、その直径に相当する。
 柱状体としては、例えば円形断面とされたパイプ形状の部材が挙げられる。ただし、横断面形状としては、円形以外には、長円形、楕円形、多角形などが用いられる。また、集塵極としては中空だけでなく中実としても良い。
 開口を有しない板状とされた第1集塵極を有する第1集塵部と、第1集塵部の下流側に設けられ、開口を有する第2集塵極を有する第2集塵部とを組み合わせることで、粒径分布を有するダストに対しても集塵効率を高めることができる。
本開示の一実施形態に係る電気集塵装置を示した縦断面図である。 パイプ部材とコロナ放電部との位置関係を示した横断面図である。 コロナ放電部とパイプ部材との間の電気力線を示した横断面図である。 パイプ部材の等価直径の下限を30mmとした根拠を示すグラフである。 パイプ部材の等価直径の上限を80mmとした根拠を示すグラフである。 パイプ集塵極の電界強度の持ち上がりを示したグラフである。 平板集塵極の電界強度の持ち上がりを示したグラフである。 集塵面積比を開口率に対して示したグラフである。 EP効率を示したグラフである。 集塵極の第1変形例を示した縦断面図である。 集塵極の第2変形例を示した縦断面図である。 集塵極の第3変形例を示した正面図である。
 以下に、本開示に係る電気集塵装置の一実施形態について、図面を参照して説明する。
 電気集塵装置1は、例えば石炭等を燃料とする火力発電プラントに用いられ、ボイラから導かれた燃焼排ガス中のダスト(粒子状物質)を回収する。
 図1には、本実施形態に係る電気集塵装置を上方から見た縦断面図が示されている。図1において、ガス流れGは、水平流であり、紙面左側から右側に向けて流れる。
 電気集塵装置1は、ケーシング2内に、ガス流れGに沿って、平板集塵部(第1集塵部)Aと、上流側パイプ集塵部(第2集塵部)Bと、下流側パイプ集塵部(第2集塵部)Cとを備えている。
 ケーシング2は、ガス入口部2aと本体部2bとガス出口部2cとを備えている。ガス入口部2aから流入したガスは、本体部2bへと導かれて各集塵部A,B,Cで集塵された後に、ガス出口部2cから外部へと排出される。
 平板集塵部Aは、ガス流れG方向に延在するように設けられた複数の平板集塵極4Aと、平板集塵極4Aに対して平行に離間して設けられた放電極5Aとを備えている。
 平板集塵極4Aと放電極5Aとは、互いに離隔され、電気的に絶縁されている。放電極5Aはケーシング2とも絶縁されている。平板集塵極4Aは接地され、放電極5Aには負の極性を有する電源6Aが接続されている。
 各平板集塵極4Aは、開口を有しない金属製の平板とされている。
 放電極5Aは、取付基材7Aと、複数のコロナ放電部8Aとを有している。取付基材7Aは、導電性を有する材質からなる棒状または板状の部材である。取付基材7Aは、対面する平板集塵極4Aに対して平行に配置されている。
 コロナ放電部8Aは、放電極5Aに電圧が印加されることによって、コロナ放電を発生させるものである。コロナ放電部8Aは、対面する平板集塵極4Aに向かって突出するように取付基材7Aに固定された突起とされ、先端が先細のトゲ状となっている。コロナ放電部8Aは、紙面に直交する方向すなわち高さ方向に複数配置されている。
 上流側パイプ集塵部Bは、パイプ集塵極4Bと、取付基材7Bに固定された放電極5Bとを備えている。
 パイプ集塵極4Bは、複数のパイプ部材4Baが所定間隔を有してガス流れGの流通方向に並べられた離散式集塵極とされている。したがって、パイプ集塵極4Bは、開口を有するように設けられている。各パイプ部材4Baは、剛性を有する金属製とされている。各パイプ部材4Baは、軸線がガス流れGに対して直交するように上下方向(紙面垂直方向)に向けて配置されている。ガス流れG方向に並んだ各パイプ部材4Ba同士は、共通の枠体を用いてそれぞれを固定されている。
 放電極5Bは、平板集塵部Aの放電極5Aと同様の構成とされており、複数のコロナ放電部8Bを有している。各コロナ放電部8Bは、ガス流れG方向において、隣り合うパイプ部材4Baの中央に位置するように配置されている。
 パイプ集塵極4Bと放電極5Bとは、互いに離隔され、電気的に絶縁されている。放電極5Bはケーシング2とも絶縁されている。パイプ集塵極4Bは接地され、放電極5Bには負の極性を有する電源6Bが接続されている。電源6Bは、平板集塵部Aの電源6Aとは異なる電圧が設定できるようになっている。
 下流側パイプ集塵部Cは、パイプ集塵極4Cと、取付基材7Cに固定された放電極5Cとを備えている。パイプ集塵極4Cは、上流側パイプ集塵部Bのパイプ集塵極4Bと同様の構成とされている。放電極5Cは、上流側パイプ集塵部Bの放電極5Bと同様の構成とされている。ただし、各パイプ部材4Caの間隔や、各コロナ放電部8Cの間隔は、上流側パイプ集塵部Bのパイプ部材4Baやコロナ放電部8Bの間隔と異なるものとしても良い。また、電源6Cは、平板集塵部Aの電源6Aや上流側パイプ集塵部Bの電源6Bとは異なる電圧が設定できるようになっている。
 図2には、上流側パイプ集塵部B及び下流側パイプ集塵部Cのパイプ集塵極4B,4Cのパイプ部材4Ba,4Caとコロナ放電部8B,8Cとの位置関係が示されている。パイプ部材4Ba,4Caの中心間ピッチPcとコロナ放電部8B,8Cの中心間ピッチPdとを等しくすることが好ましい。そして、隣り合うパイプ部材4Ba,4Ca間に対向するようにコロナ放電部8B,8Cを配置することが好ましい。このように配置することで、図3に示すように、電気力線が各パイプ部材4Ba,4Caに均等に分配され、かつ、パイプ部材4Ba,4Caの円形とされた横断面のコロナ放電部8B,8Cから見て奥行き側まで電気力線を到達させることができる。なお、図2に示した符号Dは、パイプ部材4Ba,4Caとコロナ放電部8B,8Cとの直交方向(同図において上下方向)における距離であり、例えば125mm~250mmとされている。
 このようにパイプ部材4Ba,4Caの奥行きまで電気力線が到達することを考慮して、コロナ放電部8B,8C側からパイプ集塵極4B,4Cを正面視したときの開口率αは以下のように表される。
   α=1-((d×3.14÷2)÷Pc)×100 [%]
 ここで、dはパイプ部材4Ba,4Caの等価直径である。等価直径とは、所定形状の横断面と等価な(同一面積を有する)円形の直径を意味する。したがって、本実施形態のようにパイプ部材4Ba,4Caの横断面が円形の場合は、その直径に相当する。
 開口率αは、10%以上70%以下とされている。その根拠については、後に図8を用いて説明する。
 パイプ部材4Ba,4Caの等価直径dは、30mm以上80mm以下とされている。
 パイプ集塵極4B,4Cの横断面の等価直径dを30mm以上とした理由は以下の通りである。等価直径dを小さくすると電界集中が大きくなり集塵性は高まる。しかし、等価直径dが小さくなりすぎると、図4に示すように、集塵に必要な電流密度(例えば0.3mA/m)を確保したままでは電界強度のピーク値が大きくなり火花電界強度の10kV/cmを超えて火花放電が生じる。このため、等価直径dとしての下限は30mmである。
 パイプ部材4Ba,4Caの横断面の等価直径dを80mm以下とした理由は以下の通りである。等価直径dが大きくなりすぎると、パイプ部材4Ba,4Caの近傍における電界強度の持ち上がり(後に図6を用いて説明する。)が殆どなくなり、穴のない平板集塵極4Aの平均電界強度(2kV/cm)程度になってしまう。また、等価直径dが大きいとガス流れに対して影響を及ぼし渦を発生させてしまう。このため、等価直径dとしての上限は80mmである。例えば、上記と同じ条件で算出される等価直径dが30mmのときの平均電界強度は5.7kV/cmである。
 なお、図5の縦軸は平均電界強度とされており、パイプ集塵極4B,4Cの表面積で平均化した電界強度である。この平均電界強度は、図4の縦軸のピーク電界強度とは異なる。ピーク電界強度は、パイプ集塵極4B,4Cの表面のうち最も電界強度が高い位置における電界強度である。
 次に、図6を用いて、パイプ集塵極4B,4Cのパイプ部材4Ba,4Caの近傍の電界強度の持ち上がりについて説明する。同図に示すように、横軸が位置を示しており、y軸に相当する位置にコロナ放電部8B,8Cが位置しているものとする。縦軸は電界強度である。電界強度は、コロナ放電部8B,8Cの位置で最も高くなり、パイプ部材4Ba,4Caとの間で極小値をとった後に、再びパイプ部材4Ba,4Caに向かいながら増大する。パイプ部材4Ba,4Caの近傍では、電界強度の増加率(傾き)が大きい領域Z1が存在する。これは、パイプ部材4Ba,4Caの近傍はダストやマイナスイオンが有する空間電荷の影響で電界強度が高くなるからである。この領域Z1における電界強度の増大を“電界強度の持ち上がり”という。領域Z1ではクーロン力が支配的となる領域となり、パイプ部材4Ba,4CaにおけるダストPの集塵が効果的に行われる。
 領域Z1よりもコロナ放電部8B,8C側の領域Z2は、イオン風の支配領域とされる。領域Z2では、ガス中のダストPは主としてイオン風に伴ってパイプ部材4Ba,4Caへと導かれる。
 図7には、穴(開口)なしの平板集塵極4Aを用いた場合の電界強度が示されている。同図から分かるように、平板集塵極4A近傍における電界強度の絶対値は、図6に示したパイプ部材4Ba,4Caよりも小さく、電界強度の持ち上がりも小さい。したがって、パイプ集塵極4B,Cよりも集塵性能が劣ることが分かる。ただし、イオン風の影響が少ない比較的大きなダストに対しては、平板集塵極4Aであっても十分な捕集性能を発揮する。
 図8には、開口率αに対する集塵面積比が示されている。集塵面積比は、平板集塵極4Aのように開口率0%(隙間がない場合)のときの集塵性能を1とした場合に、同じ集塵性能を発揮する場合の集塵面積を示すものである。したがって、集塵面積比は、小さいほど捕集効率が高いことを示す。
 図8に示されているように、開口率αが10%以上70%以下の場合に集塵面積比が0.8以下となる。したがって、開口率αは10%以上70%以下(適用範囲)が好ましい。
 電気集塵装置1には、図示しないが、集塵極4A,4B,4Cに付着した粒子状物質を剥離するための槌打装置が設けられている。槌打装置はハンマを有しており、ハンマが集塵極4A,4B,4Cを槌打することで、表面に付着したダストを振動によって剥離除去する。
 なお、ダストの集塵極4A,4B,4Cからの除去方法は、槌打装置を用いた槌打に限定されない。例えば、集塵極4A,4B,4Cに捕集されたダストに対しガスを吹き付ける方法、又は、ソニック・ホーンを用いて音波を照射する方法によって、ダストを集塵極4A,4B,4Cから除去してもよい。また、湿式の電気集塵装置で行われている洗浄液による洗浄によって、集塵極4A,4B,4Cから粒子状物質を除去してもよい。
 次に、本実施形態の電気集塵装置1の動作を説明する。
 電気集塵装置1では、放電極5A,5B,5Cに電圧を印加することで、コロナ放電部8A,8B,8Cの先端でコロナ放電が発生する。ガス流れGに含まれるダストは、コロナ放電により帯電される。
 平板集塵部Aでは、帯電されたダストは集じん極に向かって流れるイオン風により集じん極の近傍まで移動し、その後、平板集塵極4A近傍でクーロン力によって引き寄せられて捕集される。捕集されるダストは、粒径分布を有するダストのうち比較的粒径の大きなダストが優先的に捕集される。これは、粒径が大きなダストの方が粒径の小さなダストに比べて表面積が大きく粒径に比例して空気抵抗が大きくなる一方、粒径の2乗に比例して帯電量が多くなりクーロン力の効果が大きくなるため、結果として移動速度が増加するためである。粒径の大きいダストはイオン風の影響を受けにくいため、開口部を持たない集じん極でもイオン風の巻き戻しによる影響が少ない。
 一方、パイプ集塵部B,Cでは、上流側で粒径の粗いダストが除去されるために比較的粒径の小さなダストが優先的に捕集される。パイプ集塵極4B,4Cに向かって流れるイオン風は、ダストをパイプ集塵極4B,4Cの近傍まで移動させるように作用する。その後ダストは、パイプ集じん極近傍でクーロン力によって引き寄せられて捕集されるが、粒子径が小さいダストの場合、イオン風の影響を受けやすいため、開口部を持つパイプ集じん部にすることでイオン風の巻き戻しによる影響が少なくなり、開口部がない場合に比べて捕集効率が向上する。さらに、パイプ集塵極4B,4Cの近傍の領域Z1(図6参照)では、電界強度の持ち上がりが大きいので効果的にダストを集塵する。
 図9には、電気集塵装置1によるダストの捕集効率(EP効率)が示されている。同図において、横軸は、ガス流れG方向の位置を示す。したがって、上流側に平板集塵部Aが位置し、その下流側にパイプ集塵部B,Cが位置している。
 平板集塵部AのEP効率は、ガス流れGの上流側では多くの比較的大きなダストを捕集するので良好な捕集効率を示すが、ガス流れGの下流側に行くに従い比較的小さなダストが相対的に多くなるので捕集効率が頭打ちになる。
 パイプ集塵部B、CのEP効率は、上流側では比較的大きなダストが多く存在するので、平板集塵部Aほど良好ではない。しかし、ガス流れGの下流側に行くに従い比較的小さなダストが相対的に多くなるので、平板集塵部Aよりも良好なEP効率を示す。
 したがって、電気集塵装置1の全体的なEP効率は、一点鎖線で示すように、ガス流れGの上流側および下流側で良好な値を示す。
 本実施形態によれば、以下の作用効果を奏する。
 ガス流れGの上流側に、開口を有しない板状とされた平板集塵極4Aを有する平板集塵部Aを配置することによって、ガス中に含まれるダストのうち比較的大きなものを捕集する。また、平板集塵極4Aは開口を有しないので集塵面積が大きくなり多くのダストを捕集できる。
 平板集塵部Aのガス流れG方向の下流側に、開口を有するパイプ集塵極4B,4Cを有するパイプ集塵部B,Cを配置した。パイプ集塵極4B,4Cの開口を介して、放電極5B,5Cとの間で生じるイオン風の一部を通過させることで、パイプ集塵極4B,4Cでイオン風が反転して離反する流れ(巻き戻し)を抑制する。これにより、イオン風によって比較的小さなダストでもパイプ集塵極4B,4Cの近傍まで導くことができ、パイプ集塵極4B,4Cの近傍ではクーロン力によって捕集することができる。よって、平板集塵部Aで捕集できなかった比較的小さなダストを下流側のパイプ集塵部B,Cで捕集することができる。
 このように、粒径分布を有するダストのうち比較的大きなダストを捕集することに適した平板集塵部Aと、比較的小さなダストを捕集することに適したパイプ集塵部B,Cとを組み合わせることで、所定の粒径分布を有するダストであっても効果的に捕集することができる。
 パイプ集塵極4B,4Cの開口率αを10%以上70%以下とした。これにより、有効な集塵面積を確保して集塵性能を向上させることができる。
 パイプ集塵極4B,4Cの横断面の等価直径dを30mm以上80mm以下とした。これにより、集塵極4の集塵性能を向上させることができる。
 なお、本実施形態では、1つの平板集塵部Aを上流側に配置し、その下流側に2つのパイプ集塵部B,Cを配置することとしたが、上流側に平板集塵部が配置され、その下流側にパイプ集塵部が配置されていれば良く、それぞれの集塵部の数は本実施形態に限定されるものではない。したがって、平板集塵部Aが2つ以上でも良く、パイプ集塵部が1つでも3つ以上でも良い。
 また、本実施形態では、パイプ集塵極4B,4Cとして円形パイプとして説明したが、パイプ集塵極4B,4Cの横断面形状としては、円形以外に、長円形、楕円形、多角形などを用いても良い。また、集塵極としてはパイプのような中空に代えて中実としても良い。
 また、本実施形態のパイプ集塵極4B,4Cに代えて、図10に示すような開口を有する平板状の集塵極4Dとしても良い。あるいは、図11に示すように、折板形状とした開口を有する集塵極4Eとしても良い。
 また、パイプ集塵極4B,4Cに代えて、図12に示すように、開口を有するメッシュベルト4Fを用いても良い。メッシュベルトは、金属細線を面状に編み込んだ可撓性を有するものである。メッシュベルトを無端状にして複数の回転部材(回転駆動ローラ)に巻回し、メッシュベルトをガス流路とその外側との間で適宜移動させるように構成する。メッシュベルトに付着したダストは、ガス流路の外側にてブラシによって除去される。このような移動集じん極方式の集じん極は、所定の開口があいていれば良く、メッシュベルトに限定されない。
 また、本実施形態の電気集塵装置1は、新設のものに限定されるものではなく、既設の電気集塵装置が複数の平板集塵部を有している場合に、下流側の平板集塵部に代えてパイプ集塵部を設置するようにしても良い。このようにすることで、新設よりも安価に本実施形態の電気集塵装置1を導入することができる。
1 電気集塵装置
2 ケーシング
4A 平板集塵極
4B,4C パイプ集塵極
4Ba,4Ca パイプ部材
5A,5B,5C 放電極
6A,6B,6C 電源
7A,7B,7C 取付基材
8A,8B,8C コロナ放電部
A 平板集塵部(第1集塵部)
B 上流側パイプ集塵部(第2集塵部)
C 下流側パイプ集塵部(第2集塵部)
α 開口率
d 等価直径

Claims (3)

  1.  ガス流れ方向に沿って設けられ、開口を有しない板状とされた第1集塵極と、該第1集塵極に対して並列に配置された第1放電極とを有する第1集塵部と、
     該第1集塵部のガス流れ方向の下流側に配置され、開口を有する第2集塵極と、該第2集塵極に対して並列に配置された第2放電極とを有する第2集塵部と、
    を備えている電気集塵装置。
  2.  前記第2集塵極の開口率が、10%以上70%以下とされている請求項1に記載の電気集塵装置。
  3.  前記第2集塵極は、前記ガス流れ方向に所定の間隔をあけて配置された複数の柱状体とされ、
     前記柱状体の横断面の等価直径は、30mm以上80mm以下とされている請求項1又は2に記載の電気集塵装置。
PCT/JP2018/046415 2018-01-18 2018-12-17 電気集塵装置 WO2019142573A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-006530 2018-01-18
JP2018006530A JP7139120B2 (ja) 2018-01-18 2018-01-18 電気集塵装置

Publications (1)

Publication Number Publication Date
WO2019142573A1 true WO2019142573A1 (ja) 2019-07-25

Family

ID=67302143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046415 WO2019142573A1 (ja) 2018-01-18 2018-12-17 電気集塵装置

Country Status (3)

Country Link
JP (1) JP7139120B2 (ja)
TW (1) TWI693970B (ja)
WO (1) WO2019142573A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7358216B2 (ja) * 2019-11-29 2023-10-10 三菱重工パワー環境ソリューション株式会社 電気集塵装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155641A (ja) * 1993-12-06 1995-06-20 Sumitomo Heavy Ind Ltd 電気集塵機
JP2000140690A (ja) * 1998-11-06 2000-05-23 Mitsubishi Heavy Ind Ltd 乾式除塵装置
CN102172564A (zh) * 2010-12-24 2011-09-07 刘燕芳 回转体电极及基于该回转体电极的异相分离装置
JP2016073954A (ja) * 2014-10-08 2016-05-12 三菱日立パワーシステムズ環境ソリューション株式会社 電気集じん装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155641A (ja) * 1993-12-06 1995-06-20 Sumitomo Heavy Ind Ltd 電気集塵機
JP2000140690A (ja) * 1998-11-06 2000-05-23 Mitsubishi Heavy Ind Ltd 乾式除塵装置
CN102172564A (zh) * 2010-12-24 2011-09-07 刘燕芳 回转体电极及基于该回转体电极的异相分离装置
JP2016073954A (ja) * 2014-10-08 2016-05-12 三菱日立パワーシステムズ環境ソリューション株式会社 電気集じん装置

Also Published As

Publication number Publication date
JP2019122937A (ja) 2019-07-25
TWI693970B (zh) 2020-05-21
JP7139120B2 (ja) 2022-09-20
TW201932192A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
US3958962A (en) Electrostatic precipitator
US4056372A (en) Electrostatic precipitator
JP4856139B2 (ja) 電気集塵装置
JP2002500562A (ja) 空気清浄機
AU2012336492B2 (en) Apparatus with conductive strip for dust removal
JP6333697B2 (ja) 電気集じん装置
WO2019142573A1 (ja) 電気集塵装置
JP6752736B2 (ja) 電気集塵装置
JP2016049466A (ja) 湿式電気集塵装置
JP2008503343A (ja) トンネルファン用静電式フィルタ
WO2020026370A1 (ja) 電気集塵装置
US11484890B2 (en) Electrostatic precipitator
JP6953605B2 (ja) 電気集塵装置
JP7358216B2 (ja) 電気集塵装置
CN217178625U (zh) 收集装置及油烟净化设备
KR102533511B1 (ko) 전기집진장치용 빗살형 이오나이저
RU2303487C1 (ru) Способ очистки газов и электрофильтр для его реализации
WO2020217566A1 (ja) 電気集塵装置
NL2008621C2 (en) Apparatus with conductive strip for dust removal.
KR20230173018A (ko) 전기 집진 장치
CN113899002A (zh) 收集装置及油烟净化设备
TW202007448A (zh) 電氣集塵裝置
JP2005185911A (ja) 電気集じん機の電極構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900849

Country of ref document: EP

Kind code of ref document: A1