WO2019136932A1 - 石墨烯超级电容器及其制备方法 - Google Patents

石墨烯超级电容器及其制备方法 Download PDF

Info

Publication number
WO2019136932A1
WO2019136932A1 PCT/CN2018/092001 CN2018092001W WO2019136932A1 WO 2019136932 A1 WO2019136932 A1 WO 2019136932A1 CN 2018092001 W CN2018092001 W CN 2018092001W WO 2019136932 A1 WO2019136932 A1 WO 2019136932A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
capacitor
positive electrode
negative electrode
inner tab
Prior art date
Application number
PCT/CN2018/092001
Other languages
English (en)
French (fr)
Inventor
郎佳星
郝立星
Original Assignee
纳智源科技(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳智源科技(唐山)有限责任公司 filed Critical 纳智源科技(唐山)有限责任公司
Publication of WO2019136932A1 publication Critical patent/WO2019136932A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/72Current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present disclosure relates to the field of preparation of electronic components, and in particular to a graphene supercapacitor and a method of fabricating the same.
  • a supercapacitor is a new type of energy storage device between a physical capacitor and a secondary battery. This device is unique in its energy storage and release process, not only as a high pulse rate charge and discharge process, but also has the advantages of high energy and high specific power, that is, the charge and discharge time is only tens of seconds, its power density and Compared with batteries, it is 10-100 times higher; energy density is 100 times that of physical capacitors.
  • the active material of the capacitor is generally a powder material
  • the electrode is prepared by slurrying a powder material, a conductive agent, a binder, and the like onto a conductive substrate.
  • electrode methods of a specific shape prepared by a combination of a reticle and a spray technique, but are still essentially a process of the slurry.
  • graphene is a carbon molecule in which carbon atoms are arranged in a hexagonal shape and connected to each other, the structure is very stable, and has high conductivity, high toughness, high strength, large specific surface area, and the like.
  • Supercapacitors using graphene as an electrode material exhibit excellent performance and are more suitable for energy storage.
  • the series/parallel mode can be roughly divided into external unit series/parallel and internal unit series/parallel.
  • the external series operation is relatively simple, and only the positive and negative poles of the molding monomer need to be connected in series/parallel connection, and the internal series connection is formed directly on the internal structure before packaging in the process of capacitor fabrication. Connected and then externally packaged at one time.
  • internal serial/parallel requires only one package, saving some packaging materials and tabs.
  • the present disclosure provides a graphene supercapacitor and a method of fabricating the same.
  • a graphene supercapacitor comprising:
  • capacitor body comprising a plurality of single capacitors and inner tabs
  • the adjacent single capacitors of the plurality of single capacitors are connected in series through the inner poles, and the single capacitor includes a graphene positive electrode, a graphene negative electrode and an electrolyte, a graphene positive electrode of the single capacitor and the first adjacent single
  • the graphene cathode of the bulk capacitor is integrally connected through the inner tab, and the graphene cathode of the single capacitor and the graphene cathode of the second adjacent monomer capacitor are integrally connected through the inner tab;
  • Two outer tabs Two outer tabs, two outer tabs respectively connected to the head end single capacitor and the tail end unit capacitor;
  • the outer package and the outer package are used to package the capacitor body.
  • the electrolyte is a colloidal electrolyte.
  • the electrolyte includes PVA/sulfuric acid, PVA/hydrochloric acid or PVA/phosphoric acid.
  • the graphene positive electrode, the graphene negative electrode, and the inner tab are formed by laser irradiation of the surface of the same polymer film substrate.
  • the polymer film substrate is a polyimide film or a polyetherimide film.
  • the graphene positive electrode and the graphene negative electrode may be in the form of an interdigitated shape, a parallel strip shape, a spiral shape, or a combination thereof.
  • the distance between the graphene positive electrode and the graphene negative electrode is 0.1-0.5 mm.
  • the distance between the graphene positive electrode and the graphene negative electrode is 0.2 mm.
  • a graphene supercapacitor comprising:
  • the capacitor body comprises a plurality of single capacitors and inner tabs, wherein adjacent ones of the plurality of single capacitors are connected in parallel via inner tabs, and the single capacitor comprises a graphene cathode, a graphene cathode and The electrolyte, the graphene positive electrode of the monomer capacitor and the graphene positive electrode of the adjacent monomer capacitor are integrally connected through the inner tab, and the graphene cathode of the single capacitor and the graphene cathode of the adjacent monomer capacitor are integrally connected through the inner tab. ;
  • Two outer tabs Two outer tabs, two outer tabs respectively connected to the head end single capacitor and the tail end unit capacitor;
  • the outer package and the outer package are used to package the capacitor body.
  • the graphene positive electrode, the graphene negative electrode, and the inner tab are formed by laser irradiation of the surface of the same polymer film substrate.
  • the polymer film substrate is a polyimide film or a polyetherimide film.
  • the graphene positive electrode and the graphene negative electrode may be in the form of an interdigitated shape, a parallel strip shape, a spiral shape, or a combination thereof.
  • a graphene supercapacitor including a capacitor body, the capacitor body being a combination of a first capacitor body and a second capacitor body;
  • the first capacitor body comprises a plurality of single capacitors and inner tabs; adjacent ones of the plurality of single capacitors are connected in series through the inner tabs, and the single capacitor comprises a graphene cathode, a graphene cathode and an electrolysis
  • the liquid crystal, the graphene positive electrode of the monomer capacitor and the graphene negative electrode of the first adjacent monomer capacitor are integrally connected through the inner tab, and the graphene cathode of the single capacitor and the graphene cathode of the second adjacent monomer capacitor pass through the inner pole One ear connection;
  • the second capacitor body includes a plurality of single capacitors and inner tabs; wherein adjacent ones of the plurality of single capacitors are connected in parallel through the inner tabs, and the single capacitor includes a graphene positive electrode and a graphene negative electrode. And the electrolyte, the graphene positive electrode of the monomer capacitor and the graphene positive electrode of the adjacent monomer capacitor are integrally connected through the inner tab, and the graphene cathode of the single capacitor and the graphene cathode of the adjacent monomer capacitor are integrated through the inner tab. connection.
  • a method of fabricating a graphene supercapacitor comprising:
  • the patterned graphene positive electrode, the graphene negative electrode and the inner tab including the single-capacitance graphene positive electrode and the first adjacent single-capacitor graphene negative electrode in step (2) are integrated through the inner tab.
  • the graphene cathode of the connection, the single capacitor, and the graphene cathode of the second adjacent monomer capacitor are integrally connected through the inner tab.
  • the patterned graphene positive electrode, the graphene negative electrode and the inner tab including the graphene positive electrode of the single capacitor and the graphene positive electrode of the adjacent single capacitor are integrally connected through the inner tab
  • the graphene negative electrode of the single capacitor and the graphene negative electrode of the adjacent monomer capacitor are integrally connected through the inner tab.
  • the polymer film substrate is a polyimide film or a polyetherimide film.
  • the CO 2 infrared laser has a power of 2-10 mW and a laser sweep speed of 1-5 mm/s.
  • the CO 2 infrared laser has a power of 3 mW and a laser sweep speed of 2 mm/s.
  • the present disclosure utilizes a laser irradiation method to prepare graphene, and introduces an internal series/parallel structure to achieve capacity adjustment of the capacitor module. Compared with the prior art, the present disclosure has the following beneficial effects:
  • the electrode preparation and capacitor packaging process is greatly simplified compared to the coating and mask process, and is easy to produce.
  • Figure 1 shows a schematic structural view of a graphene supercapacitor
  • FIG. 2 is a schematic structural view of an internal series of graphene supercapacitors provided by an embodiment of the present disclosure after removing an outer package;
  • 11 is an outer tab
  • 12 is an electrolyte
  • 13 is a graphene electrode
  • 14 is an inner tab
  • FIG. 3 is a photograph showing a structure of an internal series of graphene supercapacitors after removal of an outer package according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an internal parallel graphene supercapacitor provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic structural view of an internal parallel graphene supercapacitor provided by an embodiment of the present disclosure after removing an outer package;
  • 21 is an outer tab
  • 22 is an electrolyte
  • 23 is a graphene electrode
  • 24 is an inner tab
  • FIG. 6 is a schematic structural diagram of an internal series-parallel graphene supercapacitor provided by an embodiment of the present disclosure
  • FIG. 7 is a flow chart showing a method for preparing a graphene supercapacitor provided by an embodiment of the present disclosure
  • FIG. 8 is a flow chart showing a method for preparing an internal series of graphene supercapacitors provided by an embodiment of the present disclosure
  • FIG. 9 is a flow chart showing a method for preparing an internal parallel graphene supercapacitor provided by an embodiment of the present disclosure.
  • FIG. 10 is a flow chart showing a method of preparing an internal series-parallel combination graphene supercapacitor provided by an embodiment of the present disclosure
  • FIG. 11 shows charge and discharge data of an internal series of graphene supercapacitors provided by an embodiment of the present disclosure
  • Figure 12 shows charge and discharge data for a graphene supercapacitor that is not internally connected in series.
  • a graphene supercapacitor as shown in FIG. 1, comprising:
  • the capacitor body includes a plurality of single capacitors 102 and inner tabs 103;
  • the adjacent single-capacitor 102 of the plurality of single-capacitor capacitors are connected in series through the inner tab 103.
  • the single-capacitor 102 includes a graphene positive electrode, a graphene negative electrode and an electrolyte, and a graphene positive electrode and a single capacitor 102.
  • the graphene cathode of an adjacent unit capacitor 102 is integrally connected through the inner tab 103, and the graphene cathode of the unit capacitor 102 and the graphene cathode of the second adjacent unit capacitor 102 are integrally connected through the inner tab 103;
  • the outer package 105 the outer package 105 is used to package the capacitor body.
  • the electrolyte is a colloidal electrolyte.
  • the electrolytic solution is preferably one or more of PVA/sulfuric acid, PVA/hydrochloric acid or PVA/phosphoric acid.
  • the use of the colloidal electrolyte ensures that the electrolyte is bonded and fixed to the graphene electrode region to prevent the electrolyte from flowing to the inner tab position, and on the other hand, an additional separator is omitted, which simplifies the preparation process.
  • a person skilled in the art can also use other kinds of electrolytes through reasonable attempts, which is not specifically limited in the present disclosure.
  • the graphene positive electrode, the graphene negative electrode, and the inner tab 103 of the unitary capacitor 102 are formed by laser irradiation of the surface of the same polymer film substrate.
  • the graphene supercapacitors of the present disclosure do not require an additional inner tab connection process.
  • the polymer film substrate is a polyimide film or a polyetherimide film.
  • porous graphene is formed on the surface of the polymer film substrate.
  • the carbon atoms of the porous graphene constitute a micro- or nano-scale pentagonal-hexagonal polycrystalline lattice, and the crystal lattices are connected to each other, and have a large specific surface area, good electrical conductivity, and electrochemical stability. Therefore, the porous graphene formed on the surface of the polymer film substrate can be used as both a capacitor electrode material and an inner electrode ear, which greatly improves the electrochemical performance of the capacitor.
  • the graphene positive electrode and the graphene negative electrode exhibit any one of an interdigitated shape, a parallel strip shape, a spiral shape, or a combination thereof.
  • the graphene positive electrode and the graphene negative electrode have an interdigitated shape.
  • the use of an interdigitated graphene electrode increases the effective side area of the electrode, thereby increasing the capacitance of the graphene supercapacitor.
  • the distance between the graphene positive electrode and the graphene negative electrode in the monomer capacitance is 0.1 to 0.5 mm, and preferably, the distance between the graphene positive electrode and the graphene negative electrode is 0.2 mm. If the pitch is too small, a short circuit between the graphene electrodes is likely to occur, and if the pitch is too large, the migration of ions between the electrodes is disadvantageous, and the charge and discharge time of the graphene supercapacitor is increased.
  • the number of the single-capacitances 102 is ⁇ 2, which can be adjusted according to actual needs, and is not specifically limited herein.
  • FIG. 2 is a schematic view showing the structure of an internally-connected outer packaged graphene supercapacitor provided by an embodiment of the present disclosure.
  • the electrode shape of the graphene is an interdigitated shape, and those skilled in the art can understand that the graphene supercapacitor
  • the graphene electrode can also have other shapes.
  • 11 is an outer tab
  • 12 is an electrolyte
  • 13 is a graphene electrode
  • 14 is an inner tab
  • the capacitor includes 4 single capacitors and 3 inner tabs 14, wherein 4 are single capacitors
  • the adjacent adjacent monomer capacitors are connected in series by the inner tabs 14 , wherein the single capacitor includes a graphene electrode 13 and an electrolyte 12; the capacitor body is connected end to end with an outer tab 11 .
  • the graphene electrode is prepared without a slurry material such as an additional conductive agent or a binder, the process is simple, and the capacitor body does not need an additional separator and inner tab, the graphene electrode material and the inner The integrated connection of the tabs greatly saves material.
  • the actual in-line parallel removal of the graphene supercapacitor is shown in Figure 3.
  • a graphene supercapacitor as shown in FIG. 4, comprising:
  • the capacitor body includes a plurality of single capacitors 202 and inner tabs 203;
  • the adjacent single capacitors 202 of the plurality of single capacitors 202 are connected in parallel through the inner tabs 203.
  • the single capacitors 202 include a graphene positive electrode, a graphene negative electrode and an electrolyte, and the graphene positive electrode of the single capacitor 202.
  • the graphene positive electrode of the adjacent monomer capacitor is integrally connected through the inner tab 203, and the graphene cathode of the unit capacitor 202 and the graphene cathode of the adjacent unit capacitor 202 are integrally connected through the inner tab 203;
  • Two outer tabs 204 and two outer tabs 204 are respectively connected to the head end unit capacitor 202 and the tail end unit capacitor 202;
  • the outer package 205 is used to package the capacitor body 201.
  • the graphene positive electrode, the graphene negative electrode, and the inner tab 203 in the unitary capacitor 202 are formed by laser irradiation of the surface of the same polymer film substrate.
  • the graphene supercapacitors of the present disclosure do not require an additional inner tab connection process.
  • the polymer film substrate is a polyimide film or a polyetherimide film.
  • porous graphene is formed on the surface of the polymer film substrate.
  • the carbon atoms of the porous graphene constitute a micro- or nano-scale pentagonal-hexagonal polycrystalline lattice, and the crystal lattices are connected to each other, and have a large specific surface area, good electrical conductivity, and electrochemical stability. Therefore, the porous graphene formed on the surface of the polymer film substrate can be used as both a capacitor electrode material and an inner electrode ear, which greatly improves the electrochemical performance of the capacitor.
  • the graphene positive electrode and the graphene negative electrode of the monomer capacitor 202 exhibit any one of an interdigitated shape, a parallel strip shape, a spiral shape, or a combination thereof.
  • the graphene positive electrode and the graphene negative electrode have an interdigitated shape.
  • the use of an interdigitated graphene electrode increases the effective side area of the electrode, thereby increasing the capacitance of the graphene supercapacitor.
  • FIG. 5 is a schematic structural view of an internal parallel removed graphene supercapacitor provided by an embodiment of the present disclosure.
  • the graphene electrode has an interdigitated shape, and those skilled in the art can understand that the graphene supercapacitor graphite
  • the olefin electrode can also have other shapes.
  • 21 is an outer tab
  • 22 is an electrolyte
  • 23 is a graphene electrode
  • 24 is an inner tab
  • the capacitor body includes two single capacitors and two inner tabs 24, wherein two monomers
  • the adjacent single capacitors in the capacitor are connected in parallel through the inner tabs 24, wherein the single capacitor includes a graphene electrode 23 and an electrolyte 22; the capacitor body is connected end to end with an outer tab 21, respectively.
  • the graphene electrode is prepared without using a slurry material such as an additional conductive agent or a binder, the process is simple, and the capacitor body does not need an additional separator and inner tab, the graphene electrode material and the inner The integrated connection of the tabs greatly saves material.
  • a graphene supercapacitor comprising a capacitor body, the capacitor body being a combination of a first capacitor body 301 and a second capacitor body 401.
  • the first capacitor body 301 includes a plurality of single capacitors 302 and inner tabs 303, wherein adjacent ones of the plurality of single capacitors are connected in series by inner tabs 303, and the single capacitor 302 includes The graphene positive electrode, the graphene negative electrode and the electrolyte, the graphene positive electrode of the single capacitor 302 and the graphene negative electrode of the first adjacent single cell capacitor 302 are integrally connected through the inner tab 303, and the graphene negative electrode of the single capacitor 302 and the first The graphene cathodes of the two adjacent unit capacitors 302 are integrally connected through the inner tabs 303; the second capacitor body 401 includes a plurality of unit capacitors 402 and inner tabs 403, wherein adjacent monomer capacitors of the plurality of unit capacitors 402 is connected in parallel by inner tabs 403.
  • the single capacitor 402 includes a graphene cathode, a graphene cathode and an electrolyte.
  • the graphene cathode of the unit capacitor 402 and the graphene cathode of the adjacent unit capacitor 402 pass through the inner tab.
  • the 403 is integrally connected, and the graphene negative electrode of the single capacitor 402 and the graphene negative electrode of the adjacent single capacitor 402 are integrally connected through the inner tab 403.
  • the number of the first capacitor body and the second capacitor body, the number of the single capacitors, and the connection relationship of the single capacitors are not particularly limited, and those skilled in the art can adjust them according to actual needs.
  • the graphene positive electrode, the graphene negative electrode, and the inner tab are formed by laser irradiation of the surface of the same polymer film substrate.
  • the graphene positive electrode and the graphene negative electrode exhibit any one of an interdigitated shape, a parallel strip shape, a spiral shape, or a combination thereof.
  • a method for preparing a graphene supercapacitor comprising:
  • Step S110 fixing the polymer film substrate on the substrate
  • Step S120 irradiating the polymer film substrate with a CO 2 infrared laser to obtain a patterned graphene positive electrode, a graphene negative electrode and an inner tab;
  • Step S130 cutting out the graphene positive electrode, the graphene negative electrode and the inner tab
  • Step S140 coating the electrolyte to form a plurality of single capacitors, wherein adjacent ones of the plurality of single capacitors are connected by inner tabs;
  • Step S150 After installing the outer tab, perform one-time packaging to obtain a graphene super capacitor.
  • the method for preparing a graphene supercapacitor prepares a graphene positive electrode, a graphene negative electrode and an inner tab by irradiating a polymer film substrate with a CO 2 infrared laser.
  • the graphene electrode and the inner tab having a predetermined shape can be designed by predetermined parameters (such as the connection of the graphene electrode and the inner tab, the distance between the positive and negative electrodes of the graphene, etc.) before the laser irradiation.
  • the shape of the graphene electrode includes, but is not limited to, any of an interdigitated shape, a parallel strip shape, a spiral shape, and a combination thereof.
  • Step S210 fixing the polymer film substrate on the substrate
  • the polymeric film substrate includes, but is not limited to, a polyimide film and a polyetherimide film.
  • the substrate is not particularly limited, and those skilled in the art can adjust it according to actual needs. More preferably, the substrate is a glass or acrylic sheet.
  • the method further includes the steps of cleaning the substrate, that is, placing the substrate into a container containing alcohol, and then placing the container in an ultrasonic cleaner for ultrasonic cleaning, and then repeating the above steps with water instead of alcohol to remove the surface of the substrate. dust.
  • the polymer film substrate is fixed to the substrate by a known method, and the fixing method is not further limited.
  • Step S220 irradiating the polymer film substrate with a CO 2 infrared laser to obtain a patterned graphene positive electrode, a graphene negative electrode and an inner tab;
  • the purpose of this step is to: laser-illuminate the surface of the polymer film substrate to a predetermined size of the graphene electrode and the inner tab; on the other hand, the surface of the insulating polymer film substrate is irradiated with laser to form a conductive Porous graphene electrode and inner tab.
  • the power of the CO 2 infrared laser is 2-10 mW
  • the laser sweep speed is 1-5 mm/s. If the laser power and the scanning speed are less than the range, the graphene material cannot be formed, and if the laser power and the scanning speed exceed the range Then, the graphene peels off from the surface of the polymer film substrate, and the structure is defective, and it cannot be used as an electrode.
  • the power control of the CO 2 infrared laser is 2-10 mW to ensure that the polymer film substrate is partially irradiated with laser light into graphene, that is, the portion close to the CO 2 infrared laser is irradiated into graphene, and the polymerization is close to the substrate.
  • the film substrate is not irradiated with graphene, and its composition is still an insulating polymer.
  • the power of the CO 2 infrared laser is 3 mW, and the laser sweep speed is 2 mm/s.
  • the graphene structure obtained at this time is the most complete, and the supercapacitor prepared by using the graphene as the electrode has the best electrical performance.
  • the distance between the graphene positive electrode and the graphene negative electrode in the monomer capacitance is 0.1 to 0.5 mm, preferably 0.2 mm.
  • the size of the pitch can be achieved by adjusting the size of the laser aperture in advance. If the pitch is too small, a short circuit between the graphene electrodes is likely to occur, and if the pitch is too large, the migration of ions between the electrodes is disadvantageous, and the charge and discharge time of the graphene supercapacitor is increased.
  • Step S230 cutting out the graphene cathode, the graphene cathode and the inner tab
  • the polymer film substrate is integrally cut along the outer contour of the patterned graphene positive electrode, the graphene negative electrode and the inner tab obtained by irradiation with a CO 2 infrared laser;
  • Step S240 coating the electrolyte to form a plurality of single capacitors, wherein adjacent ones of the plurality of single capacitors are connected by inner tabs;
  • the electrolyte is a colloidal electrolyte, preferably one or more of PVA/sulfuric acid, PVA/hydrochloric acid or PVA/phosphoric acid.
  • the use of the colloidal electrolyte ensures that the electrolyte is bonded and fixed to the graphene electrode region to prevent the electrolyte from flowing to the inner tab position, and on the other hand, an additional separator is omitted, which simplifies the preparation process.
  • Step S250 After installing the outer tab, perform one-time packaging to obtain a graphene super capacitor.
  • FIG. 8 illustrates a method for fabricating an internal series of graphene supercapacitors provided by an embodiment of the present disclosure.
  • the following is an example of an interdigitated graphene electrode, which is understood by those skilled in the art to be a graphene electrode. It can also be other shapes. Specifically, the following steps are included:
  • Step S310 fixing the polymer film substrate on the substrate
  • the polymer film substrate is a polyimide film or a polyetherimide film.
  • the substrate is not particularly limited, and those skilled in the art can adjust it according to actual needs. More preferably, the substrate is a glass or acrylic sheet.
  • the method further includes the steps of cleaning the substrate, that is, placing the substrate into a container containing alcohol, and then placing the container in an ultrasonic cleaner for ultrasonic cleaning, and then repeating the above steps with water instead of alcohol to remove the surface of the substrate. dust.
  • the polymer film substrate is fixed to the substrate by a known method, and the fixing method is not further limited.
  • Step S320 irradiating the polymer film substrate with a CO 2 infrared laser to obtain a tandem interdigitated graphene positive electrode, a graphene negative electrode and an inner tab;
  • the graphene positive electrode, the graphene negative electrode, and the inner tab are formed by laser irradiation on the surface of the same polymer film substrate.
  • the graphene positive electrode of the single capacitor is integrally connected with the graphene negative electrode and the inner tab of the first adjacent single capacitor; the graphene negative electrode of the single capacitor and the graphene positive and inner pole of the second adjacent single capacitor The ears are connected in one piece.
  • the power of the CO 2 infrared laser is 3 mW, and the laser sweep speed is 2 mm/s.
  • the distance between the graphene positive electrode and the graphene negative electrode was 0.2 mm.
  • Step S330 cutting the interdigitated graphene cathode, the graphene cathode and the inner tab;
  • the use of an interdigitated graphene electrode can increase the effective area of one side of the electrode, thereby increasing the capacitance of the graphene supercapacitor.
  • the polymer film substrate is integrally cut along the outer contour of the interdigitated graphene positive electrode, the graphene negative electrode and the inner tab obtained by irradiation with a CO 2 infrared laser;
  • Step S340 coating the electrolyte to form a plurality of single capacitors, wherein adjacent ones of the plurality of single capacitors are connected in series through the inner tab;
  • the electrolyte is a colloidal electrolyte, preferably one or more of PVA/sulfuric acid, PVA/hydrochloric acid or PVA/phosphoric acid.
  • the use of the colloidal electrolyte ensures that the electrolyte is bonded and fixed to the graphene electrode region to prevent the electrolyte from flowing to the inner tab position, and on the other hand, an additional separator is omitted, which simplifies the preparation process.
  • Step S350 After installing the outer tab, perform one-time packaging to obtain an internal series of graphene supercapacitors.
  • the packaging method and the encapsulating material used in the present disclosure are all well-known in the art, and may be an encapsulating material such as an aluminum plastic film or a PPE plastic.
  • the disclosure is not limited thereto.
  • FIG. 9 illustrates a method for fabricating an internal parallel graphene supercapacitor provided by an embodiment of the present disclosure.
  • the following is an example of an interdigitated graphene electrode. Those skilled in the art should understand that a graphene electrode is used. It can also be other shapes. Specifically, the following steps are included:
  • Step S410 fixing the polymer film substrate on the substrate
  • the polymer film substrate is a polyimide film or a polyetherimide film.
  • the substrate is not particularly limited, and those skilled in the art can adjust it according to actual needs. More preferably, the substrate is a glass or acrylic sheet.
  • the method further includes the steps of cleaning the substrate, that is, placing the substrate into a container containing alcohol, and then placing the container in an ultrasonic cleaner for ultrasonic cleaning, and then repeating the above steps with water instead of alcohol to remove the surface of the substrate. dust.
  • Step S420 irradiating the polymer film substrate with a CO 2 infrared laser to obtain a parallel interdigitated graphene positive electrode, a graphene negative electrode and an inner tab;
  • the graphene positive electrode, the graphene negative electrode, and the inner tab are formed by laser irradiation of the surface of the same polymer film substrate.
  • the graphene positive electrode and the adjacent single-capacitor graphene positive electrode and the inner tab are integrally connected in a single capacitor; the graphene negative electrode of the single capacitor and the graphene negative electrode and the inner tab in the adjacent single capacitor are integrally connected of.
  • the power of the CO 2 infrared laser is 3 mW, and the laser sweep speed is 2 mm/s.
  • the distance between the graphene positive electrode and the graphene negative electrode was 0.2 mm.
  • Step S430 cutting the interdigitated graphene cathode, the graphene cathode and the inner tab;
  • the polymer film substrate is integrally cut along the outer contour of the interdigitated graphene positive electrode, the graphene negative electrode and the inner tab obtained by irradiation with a CO 2 infrared laser;
  • Step S440 coating the electrolyte to form a plurality of single capacitors, wherein adjacent ones of the plurality of single capacitors are connected in parallel through the inner tabs;
  • the electrolyte is a colloidal electrolyte, preferably one or more of PVA/sulfuric acid, PVA/hydrochloric acid or PVA/phosphoric acid.
  • the use of the colloidal electrolyte ensures that the electrolyte is bonded and fixed to the graphene electrode region to prevent the electrolyte from flowing to the inner tab position, and on the other hand, the additional separator is omitted, which simplifies the preparation process.
  • Step S450 After installing the outer tab, perform one-time packaging to obtain an internal parallel graphene supercapacitor.
  • the packaging method and the encapsulating material used in the present disclosure are all well-known in the art, and may be an encapsulating material such as an aluminum plastic film or a PPE plastic.
  • the disclosure is not limited thereto.
  • FIG. 10 illustrates a method for fabricating an internal series-parallel combination of graphene supercapacitors according to an embodiment of the present disclosure.
  • the following is an example of an interdigitated graphene electrode, as will be understood by those skilled in the art.
  • the graphene electrode can also be in other shapes. Specifically, the following steps are included:
  • Step S510 fixing the polymer film substrate on the substrate
  • the polymer film substrate is a polyimide film or a polyetherimide film.
  • the substrate is not particularly limited, and those skilled in the art can adjust it according to actual needs. More preferably, the substrate is a glass or acrylic sheet.
  • the method further includes the steps of cleaning the substrate, that is, placing the substrate into a container containing alcohol, and then placing the container in an ultrasonic cleaner for ultrasonic cleaning, and then repeating the above steps with water instead of alcohol to remove the surface of the substrate. dust.
  • the polymer film substrate is fixed to the substrate by a known method, and the fixing method is not further limited.
  • Step S520 irradiating the polymer film substrate with a CO 2 infrared laser to obtain an interdigitated graphene positive electrode, a graphene negative electrode and an inner tab of the first capacitor body and the second capacitor body;
  • the interdigitated graphene positive electrode, the graphene negative electrode and the inner tab of the first capacitor body and the second capacitor body are formed by laser irradiation of the surface of the same polymer film substrate.
  • the graphene anode in the single capacitor body and the graphene cathode and the inner tab of the first adjacent monomer capacitor are integrally connected; the graphene cathode of the single capacitor and the graphite of the second adjacent monomer capacitor
  • the olefin positive electrode and the inner tab are integrally connected.
  • the single-capacitor graphene positive electrode in the second capacitor body and the graphene positive electrode and the inner tab of the adjacent single-capacitor are integrally connected; the graphene negative electrode of the single capacitor and the graphene negative electrode and the inner pole of the adjacent single-capacitor The ears are connected in one piece.
  • the power of the CO 2 infrared laser is 3 mW, and the laser sweep speed is 2 mm/s.
  • the distance between the graphene positive electrode and the graphene negative electrode was 0.2 mm.
  • Step S530 cutting the interdigitated graphene cathode, the graphene cathode and the inner tab;
  • the polymer film substrate is integrally cut along the outer contour of the interdigitated graphene positive electrode, the graphene negative electrode and the inner tab obtained by irradiation with a CO 2 infrared laser;
  • Step S540 coating the electrolyte to form a plurality of single capacitors, wherein adjacent ones of the plurality of single capacitors are connected in series or in parallel through the inner tabs;
  • the electrolyte is a colloidal electrolyte, preferably one or more of PVA/sulfuric acid, PVA/hydrochloric acid or PVA/phosphoric acid.
  • the use of the colloidal electrolyte ensures that the electrolyte is bonded and fixed to the graphene electrode region to prevent the electrolyte from flowing to the inner tab position, and on the other hand, an additional separator is omitted, which simplifies the preparation process.
  • Step S550 After installing the outer tab, perform one-time packaging to obtain an internal series-parallel graphene supercapacitor.
  • the packaging method and the encapsulating material used in the present disclosure are all well-known in the art, and may be an encapsulating material such as an aluminum plastic film or a PPE plastic.
  • the disclosure is not limited thereto.
  • the preparation method of the graphene supercapacitor provided by the embodiment can effectively improve the production efficiency of the graphene supercapacitor, and can complete the required graphene electrode and the inner tab at one time, and the production process is larger than the coating and the mask process. Simplified and easy to produce.
  • the graphene supercapacitor in the present disclosure can be widely used in various fields as a microelectronic device storage element, a miniature electronic circuit voltage regulator element (such as logistics data tracking, etc.).
  • the graphene supercapacitor of the internal series and/or parallel structure of the present disclosure greatly simplifies the preparation process compared to the graphene supercapacitor of the external series/parallel structure in the prior art, and requires only one package, saving part of the package material. And the inner ear connection process; and the internal capacitance of the graphene supercapacitor having the same internal side of the same single-sided effective area is improved by 20 ⁇ 30 times.
  • a graphene supercapacitor without internal series connection is prepared, the material, the preparation process and the parameters thereof are the same as the internal series of graphene supercapacitors prepared by the method of the above embodiment, the only difference is that the capacitor body is a single body. Capacitance, while the capacitor body in the embodiment of the present disclosure is four internal capacitors connected in series.
  • the effective area of the electrodes of the two supercapacitors is 30 mm 2
  • the gap between the positive and negative electrodes of the graphene is 0.2 mm
  • the polymer film substrates used are all polyimide films
  • the power of the laser is 3mW
  • the laser sweep speed is 2mm / s.
  • FIG. 11 shows charge and discharge data of an internal series-connected graphene supercapacitor provided by an embodiment of the present disclosure, in which a charge and discharge current is 1 mA, a charge and discharge cycle is 262 s, and a charge voltage is 2.3 V.
  • capacitance capacity charge and discharge current ⁇ charge and discharge cycle / 2 ⁇ charge voltage
  • Fig. 12 shows charge and discharge data of a graphene supercapacitor which is not internally connected, in which a charge and discharge current is 0.2 mA, a charge and discharge cycle is about 55 s, and a charge voltage is 2.3 V.
  • capacitance capacity charge and discharge current ⁇ charge and discharge cycle / 2 ⁇ charge voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种石墨烯超级电容器及其制备方法。石墨烯超级电容器包括电容器本体(101),电容器本体(101)包括多个单体电容(102)及内极耳(103),其中,多个单体电容(102)中相邻单体电容(102)之间通过内极耳(103)串联或并联连接;两个外极耳(104);以及外包装(105)。石墨烯超级电容器的制备方法包括:(1)将聚合物薄膜衬底固定在基材上(S110);(2)采用CO 2红外激光器照射聚合物薄膜衬底,得到图形化的石墨烯正极、石墨烯负极和内极耳(S120);(3)裁切出石墨烯正极、石墨烯负极和内极耳(S130);(4)涂覆电解液形成多个单体电容,其中多个单体电容中相邻单体电容之间通过内极耳连接(S140);(5)安装外极耳后进行一次性封装,获得石墨烯超级电容器(S150)。

Description

石墨烯超级电容器及其制备方法
相关申请的交叉参考
本申请要求于2018年1月12日提交中国专利局、申请号为201810029819.9、名称为“一种石墨烯超级电容器及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电子元件的制备领域,特别涉及一种石墨烯超级电容器及其制备方法。
背景技术
超级电容器是一种介于物理电容器与二次电池之间的一种新型储能装置。这种装置在其能量储蓄和释放过程中具有独特性,不仅体现为高脉冲速率充放电过程,同时还具有高能量及高比功率的优点,即充放电时间仅数十秒,其功率密度与蓄电池相比,高出10-100倍;能量密度则是物理电容器的100倍之多。
电容器的活性材料一般为粉体材料,电极通过将粉体材料、导电剂和粘结剂等配成浆料后涂覆在导电基底上来制备。也有利用掩模版以及喷涂技术相结合制备的特定形状的电极方法,但本质上仍然属于浆料的工艺。
近期出现了利用激光照射来制备石墨烯电极的新方法。由于石墨烯是一种由碳原子按照六边形进行排布并相互连接而成的碳分子,其结构非常稳定,且具有高导电性、高韧度、高强度、超大比表面积等特点,使得以石墨烯作为电极材料的超级电容器表现出优异的性能,更适合能量的储存。
为了调节电容器模组的容量及耐压,一般通过电容器的串联/并联来实现。而串联/并联方式又大体可以分为外部单体串联/并联以及内部单体串联/并联两种。外部串联操作起来比较简单,只需要将成型单体的正负极进行相应的串/并连接即可,而内部串联则是在电容器制作的过程中在封装前在 内部结构上直接形成串/并连接,之后一次性进行外封装。相对而言,内部串/并联只需一次封装,节省了部分封装材料及极耳。
然而,目前采用激光照射制备内部串/并联的石墨烯超级电容器却鲜有报道。
发明内容
为了解决上述技术问题,本公开提供了一种石墨烯超级电容器及其制备方法。
根据本公开的一个方面,提供了一种石墨烯超级电容器,包括:
电容器本体,电容器本体包括多个单体电容及内极耳;
其中,多个单体电容中相邻单体电容之间通过内极耳串联连接,单体电容包括石墨烯正极、石墨烯负极和电解液,单体电容的石墨烯正极和第一相邻单体电容的石墨烯负极通过内极耳一体连接,单体电容的石墨烯负极和第二相邻单体电容的石墨烯正极通过内极耳一体连接;
两个外极耳,两个外极耳分别与首端单体电容和尾端单体电容相连;以及
外包装,外包装用于对电容器本体进行封装。
可选地,电解液为胶体电解液。
可选地,电解液包括PVA/硫酸、PVA/盐酸或PVA/磷酸。
可选地,石墨烯正极、石墨烯负极及内极耳是通过激光照射同一聚合物薄膜衬底的表面形成的。
可选地,聚合物薄膜衬底为聚酰亚胺薄膜或聚醚酰亚胺薄膜。
可选地,石墨烯正极和石墨烯负极呈现叉指状、平行条状、螺旋状或其组合形状中的任一种。
可选地,石墨烯正极和石墨烯负极之间的距离为0.1-0.5mm。
可选地,石墨烯正极和石墨烯负极之间的距离为0.2mm。
根据本公开的另一个方面,提供了一种石墨烯超级电容器,包括:
电容器本体,电容器本体包括多个单体电容及内极耳,其中,多个单体 电容中相邻单体电容之间通过内极耳并联连接,单体电容包括石墨烯正极、石墨烯负极和电解液,单体电容的石墨烯正极和相邻单体电容的石墨烯正极通过内极耳一体连接,单体电容的石墨烯负极和相邻单体电容的石墨烯负极通过内极耳一体连接;
两个外极耳,两个外极耳分别与首端单体电容和尾端单体电容相连;以及
外包装,外包装用于对电容器本体进行封装。
可选地,石墨烯正极、石墨烯负极及内极耳是通过激光照射同一聚合物薄膜衬底的表面形成的。
可选地,聚合物薄膜衬底为聚酰亚胺薄膜或聚醚酰亚胺薄膜。
可选地,石墨烯正极和石墨烯负极呈现叉指状、平行条状、螺旋状或其组合形状中的任一种。
根据本公开的另一方面,提供了一种石墨烯超级电容器,包括电容器本体,电容器本体为第一电容器本体和第二电容器本体的组合;
其中,第一电容器本体包括多个单体电容及内极耳;多个单体电容中相邻单体电容之间通过内极耳串联连接,单体电容包括石墨烯正极、石墨烯负极和电解液,单体电容的石墨烯正极和第一相邻单体电容的石墨烯负极通过内极耳一体连接,单体电容的石墨烯负极和第二相邻单体电容的石墨烯正极通过内极耳一体连接;
其中,第二电容器本体包括多个单体电容及内极耳;其中,多个单体电容中相邻单体电容之间通过内极耳并联连接,单体电容包括石墨烯正极、石墨烯负极和电解液,单体电容的石墨烯正极和相邻单体电容的石墨烯正极通过内极耳一体连接,单体电容的石墨烯负极和相邻单体电容的石墨烯负极通过内极耳一体连接。
根据本公开的另一方面,提供了一种石墨烯超级电容器的制备方法,包括:
(1)将聚合物薄膜衬底固定在基材上;
(2)采用CO 2红外激光器照射聚合物薄膜衬底,得到图形化的石墨烯正极、石墨烯负极和内极耳;
(3)裁切出石墨烯正极、石墨烯负极和内极耳;
(4)涂覆电解液形成多个单体电容,其中多个单体电容中相邻单体电容之间通过内极耳连接;
(5)安装外极耳后进行一次性封装,获得石墨烯超级电容器。
可选地,其中,步骤(2)中图形化的石墨烯正极、石墨烯负极和内极耳包括单体电容的石墨烯正极和第一相邻单体电容的石墨烯负极通过内极耳一体连接,单体电容的石墨烯负极和第二相邻单体电容的石墨烯正极通过内极耳一体连接。
可选地,其中,步骤(2)中图形化的石墨烯正极、石墨烯负极和内极耳包括单体电容的石墨烯正极和相邻单体电容的石墨烯正极通过内极耳一体连接,单体电容的石墨烯负极和相邻单体电容的石墨烯负极通过内极耳一体连接。
可选地,聚合物薄膜衬底为聚酰亚胺薄膜或聚醚酰亚胺薄膜。
可选地,CO 2红外激光器的功率为2-10mW,激光器扫速为1-5mm/s。
可选地,CO 2红外激光器的功率为3mW,激光器扫速为2mm/s。
本公开利用激光照射法制备石墨烯,引入内部串/并联的结构来实现电容器模块的容量调节。与现有技术相比,本公开具有如下有益效果:
1.无需额外导电剂、粘合剂等浆料原料来制备石墨烯电极;
2.无需额外的隔膜及内极耳,石墨烯电极与内极耳同时一体形成;
3.电极制备及电容器封装工艺较涂覆以及掩模板工艺大幅度简化,易于生产。
附图说明
图1示出了石墨烯超级电容器的结构示意图;
图2示出了本公开实施例提供的内部串联的石墨烯超级电容器去除外包装后的结构示意图;
其中,11为外极耳,12为电解液,13为石墨烯电极,14为内极耳;
图3示出了本公开实施例提供的内部串联的石墨烯超级电容器去除外包装后的结构实物照片;
图4示出了本公开实施例提供的内部并联的石墨烯超级电容器的结构示意图;
图5示出了本公开实施例提供的内部并联的石墨烯超级电容器去除外包装后的结构示意图;
其中,21为外极耳,22为电解液,23为石墨烯电极,24为内极耳;
图6示出了本公开实施例提供的内部串联-并联的石墨烯超级电容器的结构示意图;
图7示出了本公开实施例提供的石墨烯超级电容器的制备方法流程图;
图8示出了本公开实施例提供的内部串联的石墨烯超级电容器的制备方法流程图;
图9示出了本公开实施例提供的内部并联的石墨烯超级电容器的制备方法流程图;
图10示出了本公开实施例提供的内部串联-并联组合的石墨烯超级电容器的制备方法流程图;
图11示出了本公开实施例提供的内部串联的石墨烯超级电容器的充放电数据;以及
图12示出了未内部串联的石墨烯超级电容器的充放电数据。
具体实施方式
为充分了解本公开之目的、特征及功效,借由下述具体实施方式,对本公开做详细说明,但本公开并不仅仅限于此。
根据本公开的一方面,提供了一种石墨烯超级电容器,如图1所示,包括:
电容器本体101,电容器本体包括多个单体电容102及内极耳103;
其中,多个单体电容中相邻单体电容102之间通过内极耳103串联连接,单体电容102包括石墨烯正极、石墨烯负极和电解液,单体电容102的石墨烯正极和第一相邻单体电容102的石墨烯负极通过内极耳103一体连接,单体电容102的石墨烯负极和第二相邻单体电容102的石墨烯正极通过内极耳103一体连接;
两个外极耳104,两个外极耳104分别与首端单体电容102和尾端单体电容102相连;以及
外包装105,外包装105用于对电容器本体进行封装。
进一步地,电解液为胶体电解液。电解液优选为PVA/硫酸、PVA/盐酸或PVA/磷酸中的一种或多种。采用该胶体电解液一方面可以保证电解液粘结固定于石墨烯电极区域,防止电解液流动到内极耳位置,另一方面省去了额外隔膜,简化制备工艺。本领域技术人员也可以通过合理的尝试采用其他种类的电解液,本公开对此不作具体限定。
其中,单体电容102的石墨烯正极、石墨烯负极及内极耳103是通过激光照射同一聚合物薄膜衬底的表面形成的。本公开的石墨烯超级电容器,无需额外的内极耳连接工艺。
较为优选地,聚合物薄膜衬底为聚酰亚胺薄膜或聚醚酰亚胺薄膜。经CO 2红外激光器的照射,聚合物薄膜衬底表面形成多孔的石墨烯。其中,多孔石墨烯的碳原子构成微米级或纳米级的五边形-七边形多晶晶格,晶格之间相互连接,具有超大比表面积、较好的导电性以及电化学稳定性等特点,因此聚合物薄膜衬底表面形成的多孔石墨烯既可以作为电容器电极材料,也可以作为内极耳使用,极大地提高了电容器的电化学性能。
进一步地,石墨烯正极和石墨烯负极呈现叉指状、平行条状、螺旋状或其组合形状中的任一种。
较为优选地,石墨烯正极和石墨烯负极的形状为叉指状。采用叉指状的石墨烯电极可以增加电极的单侧有效面积,从而增加石墨烯超级电容器的电容量。
进一步地,单体电容中石墨烯正极和石墨烯负极之间的距离为0.1-0.5mm,优选地,石墨烯正极和石墨烯负极之间的距离为0.2mm。若间距过小,容易引起石墨烯电极间的短路,间距过大,则不利于离子在电极之间的迁移,增大石墨烯超级电容器的充放电时间。
进一步地,单体电容102的数量≥2,具体可根据实际需要进行调整,在此不做具体限定。
图2示出了本公开实施例提供的一个内部串联的去除外包装的石墨烯超 级电容器的结构示意图,石墨烯的电极形状为叉指状,本领域技术人员能够理解的是,石墨烯超级电容器的石墨烯电极也可以为其它的形状。其中,11为外极耳,12为电解液,13为石墨烯电极,14为内极耳;其中,该电容器包括4个单体电容及3个内极耳14,其中,4个单体电容中相邻单体电容之间通过内极耳14串联连接,其中,单体电容包括石墨烯电极13和电解液12;电容器本体首尾两端,分别与一个外极耳11连接。
本公开提供的内部串联的石墨烯超级电容器,石墨烯电极无需额外导电剂、粘合剂等浆料原料制备,工艺简单,且电容器本体无需额外的隔膜及内极耳,石墨烯电极材料与内极耳一体连接,极大地节省了材料。内部串联的除去外包装的石墨烯超级电容器的实物如图3所示。
根据本公开的另一方面,提供了一种石墨烯超级电容器,如图4所示,包括:
电容器本体201,电容器本体包括多个单体电容202及内极耳203;
其中,多个单体电容202中相邻单体电容202之间通过内极耳203并联连接,单体电容202包括石墨烯正极、石墨烯负极和电解液,单体电容202的石墨烯正极和相邻单体电容的石墨烯正极通过内极耳203一体连接,单体电容202的石墨烯负极和相邻单体电容202的石墨烯负极通过内极耳203一体连接;
两个外极耳204,两个外极耳204分别与首端单体电容202和尾端单体电容202相连;以及
外包装205,外包装205用于对电容器本体201进行封装。
进一步地,单体电容202中石墨烯正极、石墨烯负极及内极耳203是通过激光照射同一聚合物薄膜衬底的表面形成的。本公开的石墨烯超级电容器,无需额外的内极耳连接工艺。
较为优选地,聚合物薄膜衬底为聚酰亚胺薄膜或聚醚酰亚胺薄膜。经CO 2红外激光器的照射,聚合物薄膜衬底表面形成多孔的石墨烯。其中,多孔石墨烯的碳原子构成微米级或纳米级的五边形-七边形多晶晶格,晶格之间相互连接,具有超大比表面积、较好的导电性以及电化学稳定性等特点,因此聚合物薄膜衬底表面形成的多孔石墨烯既可以作为电容器电极材料,也可以 作为内极耳使用,极大地提高了电容器的电化学性能。
进一步地,单体电容202的石墨烯正极和石墨烯负极呈现叉指状、平行条状、螺旋状或其组合形状中的任一种。
较为优选地,石墨烯正极和石墨烯负极的形状为叉指状。采用叉指状的石墨烯电极可以增加电极的单侧有效面积,从而增加石墨烯超级电容器的电容量。
图5示出了本公开实施例提供的内部并联的除去外包装的石墨烯超级电容器的结构示意图,石墨烯电极形状为叉指状,本领域技术人员能够理解的是,石墨烯超级电容器的石墨烯电极也可以为其它的形状。其中,21为外极耳,22为电解液,23为石墨烯电极,24为内极耳;其中,该电容器本体包括2个单体电容及2个内极耳24,其中,2个单体电容中相邻单体电容之间通过内极耳24并联连接,其中,单体电容包括石墨烯电极23和电解液22;电容器本体首尾两端,分别与一个外极耳21连接。
本公开提供的内部并联的石墨烯超级电容器,石墨烯电极无需额外导电剂、粘合剂等浆料原料制备,工艺简单,且电容器本体无需额外的隔膜及内极耳,石墨烯电极材料与内极耳一体连接,极大地节省了材料。
根据本公开的另一方面,提供了一种石墨烯超级电容器,如图6所示,包括电容器本体,电容器本体为第一电容器本体301和第二电容器本体401的组合。
进一步地,第一电容器本体301包括多个单体电容302及内极耳303,其中,多个单体电容中相邻单体电容302之间通过内极耳303串联连接,单体电容302包括石墨烯正极、石墨烯负极和电解液,单体电容302的石墨烯正极和第一相邻单体电容302的石墨烯负极通过内极耳303一体连接,单体电容302的石墨烯负极和第二相邻单体电容302的石墨烯正极通过内极耳303一体连接;第二电容器本体401包括多个单体电容402及内极耳403,其中,多个单体电容中相邻单体电容402之间通过内极耳403并联连接,单体电容402包括石墨烯正极、石墨烯负极和电解液,单体电容402的石墨烯正极和相邻单体电容402的石墨烯正极通过内极耳403一体连接,单体电容402的石墨烯负极和相邻单体电容402的石墨烯负极通过内极耳403一体连 接。
其中,本公开对第一电容器本体和第二电容器本体的个数、单体电容的个数及单体电容的连接关系没有特别限定,本领域的技术人员可根据实际需要对其进行调整。
进一步地,石墨烯正极、石墨烯负极及内极耳是通过激光照射同一聚合物薄膜衬底的表面形成的。
进一步地,石墨烯正极和石墨烯负极呈现叉指状、平行条状、螺旋状或其组合形状中的任一种。
根据本公开的又一方面,提供了一种石墨烯超级电容器的制备方法,如图7所示,包括:
步骤S110:将聚合物薄膜衬底固定在基材上;
步骤S120:采用CO 2红外激光器照射聚合物薄膜衬底,得到图形化的石墨烯正极、石墨烯负极和内极耳;
步骤S130:裁切出石墨烯正极、石墨烯负极和内极耳;
步骤S140:涂覆电解液形成多个单体电容,其中多个单体电容中相邻单体电容之间通过内极耳连接;
步骤S150:安装外极耳后进行一次性封装,获得石墨烯超级电容器。
本公开提供的石墨烯超级电容器的制备方法,采用CO 2红外激光器照射聚合物薄膜衬底的方式,制备石墨烯正极、石墨烯负极及内极耳。在激光照射前可通过预定参数(如石墨烯电极及内极耳一体连接情况、石墨烯正负极之间距离等)来设计具有预定形状的石墨烯电极及内极耳。其中,石墨烯电极的形状包括但不限于叉指状、平行条状、螺旋状及其组合形状中的任一种。
本公开实施例提供的一种石墨烯超级电容器的制备方法,包括如下步骤:
步骤S210:将聚合物薄膜衬底固定在基材上;
较为优选的,聚合物薄膜衬底包括但不限于聚酰亚胺薄膜和聚醚酰亚胺薄膜。
对基材的选择没有特别限定,本领域的技术人员可根据实际需要对其进行调整。较为优选地,基材为玻璃或亚克力板。
进一步地,还包括清理基材步骤,即:将基材放入盛有酒精的容器内,再把容器放入超声波清洗机进行超声波清洗,然后用水代替酒精重复上述步骤,以便清除基材表面的灰尘。
将聚合物薄膜衬底采用公知的方法固定在基材上,在此不对固定方法做进一步限定。
步骤S220:采用CO 2红外激光器照射聚合物薄膜衬底,得到图形化的石墨烯正极、石墨烯负极和内极耳;
本步骤的作用在于:一方面,将聚合物薄膜衬底表面激光照射成预设尺寸的石墨烯电极及内极耳;另一方面,使绝缘的聚合物薄膜衬底表面经激光照射形成导电的多孔石墨烯电极及内极耳。
进一步地,CO 2红外激光器的功率为2-10mW,激光器扫速为1-5mm/s,若激光器功率及扫描速度小于此范围,则无法形成石墨烯材料,若激光器功率及扫描速度超出此范围,则石墨烯会从聚合物薄膜衬底表面剥落,结构缺损,无法作为电极使用。
此外,CO 2红外激光器的功率控制在2-10mW可以保证聚合物薄膜衬底部分地被激光照射成石墨烯,即:靠近CO 2红外激光器的部分被照射成石墨烯,而靠近基材的聚合物薄膜衬底未被照射成石墨烯,其成分仍为绝缘的聚合物。
优选地,CO 2红外激光器的功率为3mW,激光器扫速为2mm/s,此时得到的石墨烯结构最完整,利用此石墨烯做电极制备出的超级电容器电性能最佳。
进一步地,单体电容中的石墨烯正极和石墨烯负极之间的距离为0.1-0.5mm,优选为0.2mm。间距的大小可通过预先调节激光孔径的大小来实现。若间距过小,容易引起石墨烯电极间的短路,间距过大,则不利于离子在电极之间的迁移,增大石墨烯超级电容器的充放电时间。
步骤S230:裁切出石墨烯正极、石墨烯负极和内极耳;
具体地,将聚合物薄膜衬底沿着经CO 2红外激光器照射得到的图形化的石墨烯正极、石墨烯负极和内极耳的外轮廓整体裁切;
步骤S240:涂覆电解液形成多个单体电容,其中多个单体电容中相邻单 体电容之间通过内极耳连接;
进一步地,电解液为胶体电解液,优选为PVA/硫酸、PVA/盐酸或PVA/磷酸中的一种或多种。采用该胶体电解液一方面可以保证电解液粘结固定于石墨烯电极区域,防止电解液流动到内极耳位置,另一方面省去了额外隔膜,简化制备工艺。
步骤S250:安装外极耳后进行一次性封装,获得石墨烯超级电容器。
图8示出了本公开实施例提供的一种内部串联的石墨烯超级电容器的制备方法,下面以叉指状石墨烯电极为例进行说明,本领域的技术人员应理解的是,石墨烯电极还可以为其它形状。具体包括如下步骤:
步骤S310:将聚合物薄膜衬底固定在基材上;
较为优选地,聚合物薄膜衬底为聚酰亚胺薄膜或聚醚酰亚胺薄膜。
对基材的选择没有特别限定,本领域的技术人员可根据实际需要对其进行调整。较为优选地,基材为玻璃或亚克力板。
进一步地,还包括清理基材步骤,即:将基材放入盛有酒精的容器内,再把容器放入超声波清洗机进行超声波清洗,然后用水代替酒精重复上述步骤,以便清除基材表面的灰尘。
将聚合物薄膜衬底采用公知的方法固定在基材上,在此不对固定方法做进一步限定。
步骤S320:采用CO 2红外激光器照射聚合物薄膜衬底,得到串联的叉指状石墨烯正极、石墨烯负极和内极耳;
石墨烯正极、石墨烯负极及内极耳通过激光照射同一聚合物薄膜衬底的表面形成。单体电容的石墨烯正极和第一相邻单体电容的石墨烯负极及内极耳是一体连接的;单体电容的石墨烯负极和第二相邻单体电容的石墨烯正极及内极耳是一体连接的。
进一步地,CO 2红外激光器的功率为3mW,激光器扫速为2mm/s。
进一步地,石墨烯正极和石墨烯负极之间的距离为0.2mm。
步骤S330:裁切出叉指状的石墨烯正极、石墨烯负极和内极耳;
其中,采用叉指状的石墨烯电极可以增加电极的单侧有效面积,从而增加石墨烯超级电容器的电容量。
具体地,将聚合物薄膜衬底沿着经CO 2红外激光器照射得到的叉指状的石墨烯正极、石墨烯负极和内极耳的外轮廓整体裁切;
步骤S340:涂覆电解液形成多个单体电容,其中多个单体电容中相邻单体电容之间通过内极耳串联连接;
进一步地,电解液为胶体电解液,优选为PVA/硫酸、PVA/盐酸或PVA/磷酸中的一种或多种。采用该胶体电解液一方面可以保证电解液粘结固定于石墨烯电极区域,防止电解液流动到内极耳位置,另一方面省去了额外隔膜,简化制备工艺。
步骤S350:安装外极耳后进行一次性封装,获得内部串联的石墨烯超级电容器。
其中,本公开采用的封装方法及封装材料均是本领域公知的,可以为铝塑膜、PPE塑胶等封装材料,在此,本公开不做过多限定。
图9示出了本公开实施例提供的一种内部并联的石墨烯超级电容器的制备方法,下面以叉指状石墨烯电极为例进行说明,本领域的技术人员应理解的是,石墨烯电极还可以为其它形状。具体包括如下步骤:
步骤S410:将聚合物薄膜衬底固定在基材上;
较为优选地,聚合物薄膜衬底为聚酰亚胺薄膜或聚醚酰亚胺薄膜。
对基材的选择没有特别限定,本领域的技术人员可根据实际需要对其进行调整。较为优选地,基材为玻璃或亚克力板。
进一步地,还包括清理基材步骤,即:将基材放入盛有酒精的容器内,再把容器放入超声波清洗机进行超声波清洗,然后用水代替酒精重复上述步骤,以便清除基材表面的灰尘。
将聚合物薄膜衬底采用公知的方法固定在基材上,在此不对固定方法做进一步限定。步骤S420:采用CO 2红外激光器照射聚合物薄膜衬底,得到并联的叉指状石墨烯正极、石墨烯负极和内极耳;
石墨烯正极、石墨烯负极及内极耳是通过激光照射同一聚合物薄膜衬底的表面形成的。单体电容中石墨烯正极和相邻单体电容的石墨烯正极及内极耳是一体连接的;单体电容的石墨烯负极和相邻单体电容中石墨烯负极及内极耳是一体连接的。
进一步地,CO 2红外激光器的功率为3mW,激光器扫速为2mm/s。
进一步地,石墨烯正极和石墨烯负极之间的距离为0.2mm。
步骤S430:裁切出叉指状的石墨烯正极、石墨烯负极和内极耳;
采用叉指状的石墨烯电极可以增加电极的单侧有效面积,从而增加石墨烯超级电容器的电容量。
具体地,将聚合物薄膜衬底沿着经CO 2红外激光器照射得到的叉指状的石墨烯正极、石墨烯负极和内极耳的外轮廓整体裁切;
步骤S440:涂覆电解液形成多个单体电容,其中多个单体电容中相邻单体电容之间通过内极耳并联连接;
进一步地,电解液为胶体电解液,优选为PVA/硫酸、PVA/盐酸或PVA/磷酸中的一种或多种。采用该胶体电解液一方面可以保证电解液粘结固定于石墨烯电极区域,防止电解液流动到内极耳位置,另一方面省去了额外隔膜,简化了制备工艺。
步骤S450:安装外极耳后进行一次性封装,获得内部并联的石墨烯超级电容器。
其中,本公开采用的封装方法及封装材料均是本领域公知的,可以为铝塑膜、PPE塑胶等封装材料,在此,本公开不做过多限定。
图10示出了本公开实施例提供的一种内部串联-并联组合的石墨烯超级电容器的制备方法,下面以叉指状石墨烯电极为例进行说明,本领域的技术人员应理解的是,石墨烯电极还可以为其它形状。具体包括如下步骤:
步骤S510:将聚合物薄膜衬底固定在基材上;
较为优选地,聚合物薄膜衬底为聚酰亚胺薄膜或聚醚酰亚胺薄膜。
对基材的选择没有特别限定,本领域的技术人员可根据实际需要对其进行调整。较为优选地,基材为玻璃或亚克力板。
进一步地,还包括清理基材步骤,即:将基材放入盛有酒精的容器内,再把容器放入超声波清洗机进行超声波清洗,然后用水代替酒精重复上述步骤,以便清除基材表面的灰尘。
将聚合物薄膜衬底采用公知的方法固定在基材上,在此不对固定方法做进一步限定。
步骤S520:采用CO 2红外激光器照射聚合物薄膜衬底,得到第一电容器本体和第二电容器本体的叉指状石墨烯正极、石墨烯负极和内极耳;
第一电容器本体和第二电容器本体的叉指状石墨烯正极、石墨烯负极及内极耳是通过激光照射同一聚合物薄膜衬底的表面形成的。第一电容器本体中单体电容中石墨烯正极和第一相邻单体电容的石墨烯负极及内极耳是一体连接的;单体电容的石墨烯负极和第二相邻单体电容的石墨烯正极及内极耳是一体连接的。第二电容器本体中单体电容石墨烯正极和相邻单体电容的石墨烯正极及内极耳是一体连接的;单体电容的石墨烯负极和相邻单体电容中石墨烯负极及内极耳是一体连接的。
进一步地,CO 2红外激光器的功率为3mW,激光器扫速为2mm/s。
进一步地,石墨烯正极和石墨烯负极之间的距离为0.2mm。
步骤S530:裁切出叉指状的石墨烯正极、石墨烯负极和内极耳;
具体地,将聚合物薄膜衬底沿着经CO 2红外激光器照射得到的叉指状的石墨烯正极、石墨烯负极和内极耳的外轮廓整体裁切;
步骤S540:涂覆电解液形成多个单体电容,其中多个单体电容中相邻单体电容之间通过内极耳串联或并联连接;
进一步地,电解液为胶体电解液,优选为PVA/硫酸、PVA/盐酸或PVA/磷酸中的一种或多种。采用该胶体电解液一方面可以保证电解液粘结固定于石墨烯电极区域,防止电解液流动到内极耳位置,另一方面省去了额外隔膜,简化制备工艺。
步骤S550:安装外极耳后进行一次性封装,获得内部串联-并联的石墨烯超级电容器。
其中,本公开采用的封装方法及封装材料均是本领域公知的,可以为铝塑膜、PPE塑胶等封装材料,在此,本公开不做过多限定。
本实施例提供的石墨烯超级电容器的制备方法,能够有效提高石墨烯超级电容器的生产效率,一次性即可完成所需石墨烯电极及内极耳,其生产工艺较涂覆以及掩模板工艺大幅度简化,易于生产。
另外,本公开中的石墨烯超级电容器能够作为微型电子器件存储元件,微型电子电路稳压元件(如物流数据跟踪等),广泛应用于各个领域。
性能测试
本公开的内部串联和/或并联结构的石墨烯超级电容器相对于现有技术中外部串联/并联结构的石墨烯超级电容器相比极大地简化了制备工艺,只需一次封装,节省了部分封装材料及内极耳连接工艺;而且内部经过多个单体电容串联后,其电容量相比于同种方法制备的单侧有效面积相同的未内部串联结构的石墨烯超级电容器的电容量提高20~30倍。
下面通过实验证实通过本实施例提供的内部串联的石墨烯超级电容器的性能的确优于未内部串联的石墨烯超级电容器:
制备一个未内部串联的石墨烯超级电容器,其材质,制备工艺及其参数均与本公开采用上述实施例方法制备的的内部串联的石墨烯超级电容器相同,唯一不同的就是电容器本体为一个单体电容,而本公开实施例中电容器本体为4个内部串联的单体电容。
其中,两种超级电容器的电极单侧有效面积均为30mm 2,石墨烯正负电极之间的间隙均为0.2mm,使用的聚合物薄膜衬底均为聚酰亚胺薄膜,激光的功率为3mW,激光器扫速为2mm/s。然后对装配好的内部串联的石墨烯超级电容器和未内部串联的石墨烯超级电容器进行充放电测试。
图11示出了本公开实施例提供的内部串联的石墨烯超级电容器的充放电数据,其中,充放电电流1mA,充放电周期为262s,充电电压为2.3V。
根据公式:电容容量=充放电电流×充放电周期/2×充电电压,可得内部串联石墨烯超级电容器的电容为c=1×262/2×2.3=56.96mF。
图12示出了未内部串联的石墨烯超级电容器的充放电数据,其中,充放电电流0.2mA,充放电周期大概55s,充电电压2.3V。
根据公式:电容容量=充放电电流×充放电周期/2×充电电压,可得未内部串联石墨烯超级电容器的电容为c=0.2×55/2×2.3=2.39mF。
通过计算可知,内部串联的石墨烯超级电容器的电容容量是未内部串联的石墨烯超级电容器的电容容量的24倍。通过采用内部串联结构,极大地提高了石墨烯超级电容器的电容,效果十分显著。
本领域技术人员可以理解实现上述实施例方法中的全部或者部分步骤可以通过程序来指令相关硬件完成。
还可以理解的是,附图或实施例中所示的装置结构仅仅是示意性的,表示逻辑结构。其中,作为分离部件显示的模块可能是或者可能不是物理上分开的。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (19)

  1. 一种石墨烯超级电容器,其特征在于,包括:
    电容器本体,所述电容器本体包括多个单体电容及内极耳;
    其中,所述多个单体电容中相邻单体电容之间通过内极耳串联连接,所述单体电容包括石墨烯正极、石墨烯负极和电解液,所述单体电容的石墨烯正极和第一相邻单体电容的石墨烯负极通过内极耳一体连接,所述单体电容的石墨烯负极和第二相邻单体电容的石墨烯正极通过内极耳一体连接;
    两个外极耳,所述两个外极耳分别与首端单体电容和尾端单体电容相连;以及
    外包装,所述外包装用于对所述电容器本体进行封装。
  2. 根据权利要求1所述的石墨烯超级电容器,其特征在于,电解液为胶体电解液。
  3. 根据权利要求2所述的石墨烯超级电容器,其特征在于,所述电解液包括PVA/硫酸、PVA/盐酸或PVA/磷酸。
  4. 根据权利要求1-3任一项所述的石墨烯超级电容器,其特征在于,所述石墨烯正极、石墨烯负极及内极耳是通过激光照射同一聚合物薄膜衬底的表面形成的。
  5. 根据权利要求4所述的石墨烯超级电容器,其特征在于,所述聚合物薄膜衬底为聚酰亚胺薄膜或聚醚酰亚胺薄膜。
  6. 根据权利要求1-5任一项所述的石墨烯超级电容器,其特征在于,所述石墨烯正极和石墨烯负极呈现叉指状、平行条状、螺旋状或其组合形状中的任一种。
  7. 根据权利要求1-6任一项所述的石墨烯超级电容器,其特征在于,所述石墨烯正极和石墨烯负极之间的距离为0.1-0.5mm。
  8. 根据权利要求7所述的石墨烯超级电容器,其特征在于,所述石墨烯正极和石墨烯负极之间的距离为0.2mm。
  9. 一种石墨烯超级电容器,其特征在于,包括:
    电容器本体,所述电容器本体包括多个单体电容及内极耳;
    其中,所述多个单体电容中相邻单体电容之间通过内极耳并联连接,所述单体电容包括石墨烯正极、石墨烯负极和电解液,所述单体电容的石墨烯正极和相邻单体电容的石墨烯正极通过内极耳一体连接,所述单体电容的石墨烯负极和相邻单体电容的石墨烯负极通过内极耳一体连接;
    两个外极耳,所述两个外极耳分别与首端单体电容和尾端单体电容相连;以及
    外包装,所述外包装用于对所述电容器本体进行封装。
  10. 根据权利要求9所述的石墨烯超级电容器,其特征在于,所述石墨烯正极、石墨烯负极及内极耳是通过激光照射同一聚合物薄膜衬底的表面形成的。
  11. 根据权利要求10所述的石墨烯超级电容器,其特征在于,所述聚合物薄膜衬底为聚酰亚胺薄膜或聚醚酰亚胺薄膜。
  12. 根据权利要求9-11任一项所述的石墨烯超级电容器,其特征在于,所述石墨烯正极和石墨烯负极呈现叉指状、平行条状、螺旋状或其组合形状中的任一种。
  13. 一种石墨烯超级电容器,包括电容器本体,其特征在于,所述电容器本体为权利要求1-8任一项所述石墨烯超级电容器的电容器本体和权利要求9-12任一项所述石墨烯超级电容器的电容器本体的组合。
  14. 一种如权利要求1-13任一项所述的石墨烯超级电容器的制备方法,其特征在于,包括:
    (1)将聚合物薄膜衬底固定在基材上;
    (2)采用CO 2红外激光器照射聚合物薄膜衬底,得到图形化的石墨烯正极、石墨烯负极和内极耳;
    (3)裁切出石墨烯正极、石墨烯负极和内极耳;
    (4)涂覆电解液形成多个单体电容,其中所述多个单体电容中相邻单体电容之间通过内极耳连接;
    (5)安装外极耳后进行一次性封装,获得石墨烯超级电容器。
  15. 根据权利要求14所述的制备方法,其特征在于,其中,步骤(2)中所述图形化的石墨烯正极、石墨烯负极和内极耳包括单体电容的石墨烯正 极和第一相邻单体电容的石墨烯负极通过内极耳一体连接,单体电容的石墨烯负极和第二相邻单体电容的石墨烯正极通过内极耳一体连接。
  16. 根据权利要求14所述的制备方法,其特征在于,其中,步骤(2)中所述图形化的石墨烯正极、石墨烯负极和内极耳包括单体电容的石墨烯正极和相邻单体电容的石墨烯正极通过内极耳一体连接,单体电容的石墨烯负极和相邻单体电容的石墨烯负极通过内极耳一体连接。
  17. 根据权利要求13-16所述的制备方法,其特征在于,所述聚合物薄膜衬底为聚酰亚胺薄膜或聚醚酰亚胺薄膜。
  18. 根据权利要求13-17任一项所述的制备方法,其特征在于,所述CO 2红外激光器的功率为2-10mW,激光器扫速为1-5mm/s。
  19. 根据权利要求18所述的制备方法,其特征在于,所述CO 2红外激光器的功率为3mW,激光器扫速为2mm/s。
PCT/CN2018/092001 2018-01-12 2018-06-20 石墨烯超级电容器及其制备方法 WO2019136932A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810029819.9A CN108695074B (zh) 2018-01-12 2018-01-12 一种石墨烯超级电容器及其制备方法
CN201810029819.9 2018-01-12

Publications (1)

Publication Number Publication Date
WO2019136932A1 true WO2019136932A1 (zh) 2019-07-18

Family

ID=63844203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092001 WO2019136932A1 (zh) 2018-01-12 2018-06-20 石墨烯超级电容器及其制备方法

Country Status (2)

Country Link
CN (1) CN108695074B (zh)
WO (1) WO2019136932A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114974936A (zh) * 2022-06-24 2022-08-30 安徽格兰科新材料技术有限公司 高赝电容负载量的石墨烯超级电容器复合电极的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109440145B (zh) * 2018-12-30 2020-02-14 苏州碳素集电新材料有限公司 一种石墨烯/铜复合导电材料及其制备方法
CN111211002A (zh) * 2019-09-16 2020-05-29 中国科学院大连化学物理研究所 一种在聚合物基底上制备集成化平面型超级电容器的方法
CN112097967A (zh) * 2020-09-15 2020-12-18 闽江学院 基于自供能的柔性可延展力学传感***及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014190772A1 (zh) * 2013-05-30 2014-12-04 纳米新能源(唐山)有限责任公司 石墨烯、石墨烯电极、石墨烯超级电容器及其制备方法
CN105914045A (zh) * 2016-04-08 2016-08-31 纳智源科技(唐山)有限责任公司 超级电容器
CN106847536A (zh) * 2017-01-05 2017-06-13 戴雪青 一种石墨烯超级电容器的制备方法
CN107206741A (zh) * 2014-11-26 2017-09-26 威廉马歇莱思大学 用于电子装置的激光诱导的石墨烯混合材料
CN107293409A (zh) * 2017-08-21 2017-10-24 洛阳师范学院 一种耐水洗全固态微型超级电容器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014190772A1 (zh) * 2013-05-30 2014-12-04 纳米新能源(唐山)有限责任公司 石墨烯、石墨烯电极、石墨烯超级电容器及其制备方法
CN107206741A (zh) * 2014-11-26 2017-09-26 威廉马歇莱思大学 用于电子装置的激光诱导的石墨烯混合材料
CN105914045A (zh) * 2016-04-08 2016-08-31 纳智源科技(唐山)有限责任公司 超级电容器
CN106847536A (zh) * 2017-01-05 2017-06-13 戴雪青 一种石墨烯超级电容器的制备方法
CN107293409A (zh) * 2017-08-21 2017-10-24 洛阳师范学院 一种耐水洗全固态微型超级电容器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114974936A (zh) * 2022-06-24 2022-08-30 安徽格兰科新材料技术有限公司 高赝电容负载量的石墨烯超级电容器复合电极的制备方法
CN114974936B (zh) * 2022-06-24 2023-09-08 安徽格兰科新材料技术有限公司 高赝电容负载量的石墨烯超级电容器复合电极的制备方法

Also Published As

Publication number Publication date
CN108695074A (zh) 2018-10-23
CN108695074B (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2019136932A1 (zh) 石墨烯超级电容器及其制备方法
JP5619784B2 (ja) 多孔質電極を有するエネルギー蓄積デバイス
US20060216603A1 (en) Lithium-ion rechargeable battery based on nanostructures
JPH05211059A (ja) セラミック膜を用いた電池
KR102168331B1 (ko) 미세 패턴을 갖는 리튬 금속층 및 그 보호층으로 이루어진 이차전지용 음극 및 이의 제조방법
CN103579707B (zh) 自充电锂离子电池
JP2007299698A (ja) リチウムイオン蓄電素子の製造方法
KR20130026791A (ko) 금속 집전체, 이의 제조방법, 및 이를 구비한 전기 화학 커패시터
TWI287240B (en) Separator sheet and method for manufacturing electric double layer capacitor using the same
US20160020484A1 (en) Thin film battery structure and manufacturing method thereof
CN112054212B (zh) 一种锂离子电池集流体用的多孔铝箔及其制备方法和应用
CN112713010A (zh) 激光打印牺牲图案制备柔性平面微型储能器件的方法及柔性平面微型储能器件
US9196897B2 (en) Secondary battery porous electrode
CN103855421A (zh) 自充电薄膜锂离子电池
CN113130911A (zh) 一种集流体、极片以及锂电池
JP4407020B2 (ja) セパレータ付き電池用電極の製造方法
CN207966756U (zh) 一种石墨烯超级电容器
JP2007095772A (ja) 電気二重層キャパシタ
CN215266370U (zh) 一种集流体、极片以及锂电池
US20130058010A1 (en) Metal current collector, method for preparing the same, and electrochemical capacitors with same
JP2009176511A (ja) リチウムイオン二次電池の充放電方法
CN103875050A (zh) 能量存储装置、无机凝胶电解质及其制备方法
TW201924119A (zh) 鉛酸電池之網狀電極以及網狀電極與網狀陶瓷材料之製備方法
CN114360927B (zh) 一种氢氧化镍电极材料的制备方法
CN217468535U (zh) 一种宽温聚合物锂离子电池结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900139

Country of ref document: EP

Kind code of ref document: A1