WO2019134261A1 - 色轮组件、光源装置及投影*** - Google Patents

色轮组件、光源装置及投影*** Download PDF

Info

Publication number
WO2019134261A1
WO2019134261A1 PCT/CN2018/080869 CN2018080869W WO2019134261A1 WO 2019134261 A1 WO2019134261 A1 WO 2019134261A1 CN 2018080869 W CN2018080869 W CN 2018080869W WO 2019134261 A1 WO2019134261 A1 WO 2019134261A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
excitation light
region
excitation
Prior art date
Application number
PCT/CN2018/080869
Other languages
English (en)
French (fr)
Inventor
郭祖强
杜鹏
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019134261A1 publication Critical patent/WO2019134261A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to a color wheel assembly, a light source device, and a projection system.
  • spatial light modulators are widely used in the field of projection display.
  • Space light modulators generally include LCD, LCOS, DMD, etc.
  • the monolithic spatial light modulator projection system realizes color projection display based on the base light of timing switching. Simple structure, low cost, etc., widely used in the low-end market. Since the laser-excited phosphor is subjected to a wide spectral bandwidth of the laser, a filter is usually added to the light source to intercept the desired wavelength band, such as intercepting green or red light from the yellow light.
  • the phosphor spectrum is generally filtered by a two-color wheel or a monochrome wheel structure.
  • the two-color wheel structure refers to the two-color wheel system of the fluorescent wheel + filter wheel.
  • the fluorescent wheel and the filter wheel need to be synchronously controlled, which increases the complexity of the light source.
  • the color wheel in the monochrome wheel structure includes an inner ring as a fluorescent region and an outer ring as a filter region. In this structure, it is not necessary to consider the synchronization problem between the fluorescent region and the filter region, but the width of the fluorescent region and the width of the filter region are in color. The superposition of the radial direction of the wheel results in a large outer diameter of the color wheel, making it difficult to achieve miniaturization of the light source.
  • the present invention provides a color wheel assembly comprising: a carrier; a wavelength conversion element fixed around a peripheral wall of the carrier for receiving excitation light of a light source and generating a laser beam; and a filter element fixed to the carrier An end face extends circumferentially around the carrier for receiving and filtering the laser light.
  • the present invention also provides a light source device comprising an excitation light source for generating excitation light and the above color wheel assembly, wherein the wavelength conversion element is disposed in a transmission path of the excitation light and is irradiated by the excitation light source The timing output is affected by the laser and excitation light.
  • the present invention also provides a projection system including the above light source device.
  • the color wheel assembly provided by the invention provides the filter element on the end surface of the carrier and surrounds the wavelength conversion element on the peripheral wall of the carrier, so that the radial dimension of the color wheel assembly is greatly reduced, and the miniaturization is realized.
  • the filter element and the wavelength conversion element are driven along with the driving of the carrier, regardless of the synchronous control problem of the filter wheel and the fluorescent wheel, and the driving control of the color wheel assembly is simpler.
  • FIG. 1 is a schematic structural view of a light source device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic structural view of the color wheel assembly shown in FIG. 1.
  • FIG 3 is a schematic structural view of a light source device according to a second embodiment of the present invention.
  • FIG. 4 is a schematic structural view of the color wheel assembly shown in FIG.
  • FIG. 5 is a schematic structural diagram of a light source device according to a third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an excitation light source, a breaking timing of a compensation light source, and a distribution of segmented regions of a wavelength conversion element according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a light source device according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a light source device according to a fifth embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a light source device 100 according to a first embodiment of the present invention.
  • the light source device 100 is applied to a projection device.
  • the light source device 100 includes an excitation light source 120, an adjustment device, a color wheel assembly 160, and a first light homogenizing device 180.
  • the excitation light source 120 is for generating excitation light of at least one color.
  • the color wheel assembly 160 is configured to perform wavelength conversion on the excitation light and to sequentially emit laser light and excitation light.
  • the adjusting device is configured to guide the received laser light and the excitation light incident along the overlapping optical path, and adjust the received laser light to a first divergence angle to be emitted from the color wheel assembly 160, and the excitation light is A divergence angle matching second divergence angle emerges from the color wheel assembly 160.
  • the overlapping optical path means that the transmission optical path of the laser light and the transmission optical path of the excitation light are at least partially overlapped.
  • the first light homogenizing device 180 homogenizes the laser light and the excitation light that are emitted at mutually matching divergence angles.
  • the excitation light source 120 includes an illuminant 121 for generating the excitation light and a second shimming device 122 for multiplexing the excitation light.
  • the excitation light source 120 may be a blue light source that emits blue excitation light. It can be understood that the excitation light source 120 is not limited to a blue light source, and the excitation light source 120 may also be a purple light source, a red light source, or a green light source.
  • the illuminator 121 is a blue laser for emitting blue laser light as the excitation light. It can be understood that the illuminant 121 can include one, two or more blue lasers, and the number of lasers can be selected according to actual needs.
  • the second light homogenizing device 122 is located on the outgoing light path of the illuminant 121 for aligning the excitation light.
  • the second light homogenizing device 122 is a light homogenizing rod. It can be understood that in other embodiments, the second light homogenizing device 122 may include a fly-eye lens, a light beam, a diffuser or a scattering. Wheels, etc., are not limited to this.
  • FIG. 2 is a schematic structural view of the color wheel assembly 160 shown in FIG.
  • the color wheel assembly 160 includes a carrier 161, a first driver 163, a wavelength conversion component 165, and a filter component 167.
  • the first driving member 163 is connected to the carrier 161 for driving the carrier 161 to rotate about a predetermined rotating shaft.
  • the wavelength conversion element 165 is configured to receive the excitation light emitted by the excitation light source 120 and generate a laser beam that is fixed around the peripheral wall of the carrier 161 to form a drum-type wavelength conversion structure.
  • the filter element 167 is fixed to an end surface of the carrier 161 and extends around the circumference of the carrier 161 for receiving and filtering the laser light.
  • the carrier 161 is substantially hollow cylindrical.
  • the carrier 161 includes an end surface and a peripheral wall formed by extending around the end surface.
  • the end surface is surrounded by the peripheral wall to form a receiving cavity 162 for receiving the first light homogenizing device 180.
  • the end surface of the carrier 161 is made of a transparent material, so that the received laser light and the excitation light can be incident on the first light homogenizing device 180 through the carrier 161.
  • the first driving member 163 is fixed to an end surface of the carrier 161.
  • the first driving member 163 may be other driving devices such as a motor.
  • the wavelength conversion element 165 is disposed in the transmission path of the excitation light, and sequentially outputs the received laser light and the excitation light under the illumination of the excitation light source 120.
  • the wavelength conversion element 165 includes a transition region 164 and a non-conversion region 166 that are circumferentially disposed.
  • the conversion region 164 and the non-conversion region 166 are alternately located on the optical path of the excitation light under the driving of the driving device, so that the color wheel assembly 160 emits laser light with wavelength conversion and excitation without wavelength conversion. Light.
  • the conversion zone 164 and the non-conversion zone 166 are respectively distributed in a square curved surface, and the outer surfaces of the conversion zone 164 and the non-conversion zone 166 are parallel to the central axis of the color wheel assembly 160.
  • the wavelength conversion element 165 is a reflective wavelength conversion element.
  • the reflective wavelength conversion element means that the direction of propagation of the outgoing light of the wavelength conversion element 165 is opposite to the direction of propagation of the incident light.
  • the conversion region 164 is provided with a wavelength converting material to generate a laser light in the form of Lambertian light of at least one color under excitation of the excitation light.
  • the conversion area 164 is divided into a red area (R), a green area (G), and a yellow area (Y).
  • the red region is provided with a red phosphor to generate a red laser under the excitation of the excitation light;
  • the green region is provided with a green phosphor to generate a green laser under the excitation of the excitation light;
  • the yellow area is provided with a yellow phosphor to generate a yellow laser light under excitation of the excitation light.
  • the conversion region 164 can also set phosphors of other colors than red, green, and yellow to generate laser light of other colors.
  • the non-conversion zone 166 is provided with a mirror or a small angle diffuser, such as a Gaussian reflector, for reflecting the excitation light.
  • the non-conversion region 166 is set to a blue region (B-mirror) for reflecting blue excitation light.
  • the red laser, the green laser, the yellow laser, and the blue excitation light are homogenized in the first light homogenizing device 180 to form white light.
  • the filter element 167 is generally annular in shape and includes a filter region 168 and a non-filter region 169.
  • the filter region 168 and the non-filter region 169 are respectively disposed in a fan shape. It can be understood that, in other embodiments, when the first driving member 163 is fixed on the carrier 161 and other portions of the filter element 167 are not disposed, the filter element 167 can be designed as a circle. In the form of a disk, the filter zone 168 and the non-filter zone 169 are respectively disposed in a fan shape.
  • the filter region 168 corresponds to the conversion region 164 for filtering the laser light to improve the color purity of the primary color of the light source.
  • the non-filtering region 169 corresponds to the non-conversion region 166 for scattering the excitation light to expand the divergence angle of the excitation light, and the excitation light emitted by the non-filter region 169 is distributed.
  • the filter region 168 is provided with a filter material to filter the laser light in the form of Lambertian light having at least one color.
  • the filter region 168 is divided into a red region (R), a green region (G), and a yellow region (Y), and the red region, the green region, and the yellow region of the filter region 168 are respectively The red area, the green area, and the yellow area of the conversion area 164 are in one-to-one correspondence.
  • the red region is provided with a red filter for filtering the red laser light; the green region is provided with a green filter for filtering the green laser light; and the yellow region is provided with a yellow filter for The yellow is filtered by the laser.
  • the conversion region 164 can also set filters of other colors than red, green, and yellow to filter laser light of other colors.
  • the non-filtering region 169 is provided with a diffusion sheet or a single compound eye for expanding the divergence angle of the excitation light emitted by the non-conversion region 166.
  • the non-filtering region 169 is set to a blue region (B-diffuser) for expanding the divergence angle of the blue excitation light.
  • the primary color lights of the respective colors emitted by the conversion region 164 and the excitation light emitted from the non-conversion region 166 are incident on the filter element 167 in a time-dependent manner.
  • the light region 168 and the non-filter region 169 are such that each of the primary colors of light combines white light in time.
  • each segment region (for example, R, G, B, and Y regions) of the filter element 167 corresponds to an angle of the axis of the color wheel assembly 160 and a corresponding region of the wavelength conversion element 165 (color phase)
  • the corresponding regions) are equal and coincident with respect to the axes of the color wheel assemblies 160 such that when the color wheel assembly 160 is rotated, the laser or excitation light emitted by each of the segmented regions of the wavelength conversion element 165 can be incident upon A corresponding region in the filter element 167.
  • the adjusting device includes a collecting lens 141, a beam splitting light element 142, a first relay lens 143, a first reflecting element 144, a second reflecting element 145, a third reflecting element 146, and a second relay lens 149.
  • the main optical axis of the excitation light source 120 is parallel to, but not coincident with, the main optical axis of the collecting lens 141 to distinguish the incident optical path and the outgoing optical path of the excitation light on the non-converting region 166.
  • the excitation light emitted from the excitation light source 120 is concentrated by the collecting lens 141, it is obliquely incident at a predetermined angle and condensed on the surface of the wavelength conversion element 165, and is reflected by the non-conversion area 166 to be emitted.
  • the incident optical path of the excitation light incident on the non-conversion region 166 does not overlap with the outgoing optical path of the excitation light reflected by the non-conversion region 166, and is symmetrically disposed along the main optical axis of the collecting lens 141.
  • the optical splitting unit 142 may employ an optical structure of wavelength splitting, that is, combining light according to different wavelength ranges of incident light.
  • the beam splitting light element 142 is configured to transmit the laser light by transmitting the excitation light.
  • the excitation light and the excitation light have the same wavelength range.
  • the light combining and combining light element 142 includes a first surface and a second surface disposed opposite to each other, and the excitation light emitted by the excitation light source 120 is incident on the light separating and combining light element 142 by the first surface and is transmitted through the The second surface is emitted to the collection lens 141.
  • the excitation light emitted by the wavelength conversion element 165 and the laser light are collimated by the collecting lens 141 and then incident on the second surface of the light combining and combining light element 142, wherein the laser light is reflected by the second surface of the light combining and combining light element 142.
  • the excitation light is sequentially transmitted through the second surface of the light combining and combining light element 142 and the first surface to the first reflective element 144.
  • the first reflective element 144 is configured to reflect excitation light emitted by the first surface of the beam splitting light element 142.
  • the excitation light reflected by the first reflective element 144 is sequentially transmitted through the first surface and the second surface of the spectral light combining element 142.
  • the laser light and the excitation light emitted from the light combining and combining light element 142 are combined in one path on the second surface of the light combining and combining light element 142.
  • the optical expansion amount of the excitation light is smaller than the optical expansion amount of the laser light, and the angular distribution of the laser light and the excitation light does not match.
  • the first reflective element 144 is a planar mirror. It can be understood that the first reflective element 144 can also be a convex mirror.
  • the received laser light and the excitation light emitted by the light combining and combining light element 142 are sequentially incident on the second relay lens 149 through the first relay lens 143, the second reflective element 145, and the third reflective element 146, respectively. After being concentrated by the second relay lens 149, it is incident on the filter element 167 and coupled into the first light homogenizing device 180.
  • the first relay lens 143 is for guiding light incident from the first side thereof to the second side thereof
  • the second relay lens 149 is for guiding the incident light from the first side thereof to the second side thereof The side is concentrated and emerged.
  • the excitation light passes through the non-filtering region 169, the excitation light is scattered such that the divergence angle of the excitation light is expanded, and the excitation light is incident on the first light at a second divergence angle matching the first divergence angle of the laser light.
  • the light homogenizing device 180 that is, the excitation light and the laser light having a matching angular distribution at the entrance face of the first light homogenizing device 180, the excitation light and the laser light are reflected multiple times inside the first light homogenizing device 180
  • the excitation light emitted by the first light homogenizing device 180 is more uniformly mixed with the laser light, and the uniformity of the light source is improved.
  • the color wheel assembly 160 of the present embodiment extends the width of the filter element 167 in the radial direction of the color wheel assembly 160 by arranging the filter element 167 on the end surface of the carrier 161, and surrounds the wavelength conversion element 165 on the carrier.
  • the peripheral wall of the member 161 extends the width of the wavelength converting member 165 in the axial direction of the color wheel assembly 160 such that the overall width of the color wheel assembly 160 is only contributed by the width of the filter member 167, thereby causing the diameter of the color wheel assembly 160. The size is greatly reduced, and miniaturization is achieved.
  • the filter element 167 and the wavelength conversion element 165 are driven along with the driving of the carrier 161, and the color wheel assembly 160 is made unnecessary to consider the synchronization control problem of the filter wheel and the fluorescent wheel.
  • the drive control is much simpler.
  • the color purity of the primary color of the light source is improved; the excitation light has no loss in the light source device 100, the angular distribution is continuous, and the angular distribution is after the scattering through the non-filtering region 169.
  • the angular distribution of the laser is matched to achieve better uniformity.
  • FIG. 3 is a schematic structural view of a light source device 200 according to a second embodiment of the present invention
  • FIG. 4 is a schematic structural view of the color wheel assembly 260 of FIG.
  • the light source device 200 of the present embodiment is different from the light source device 100 of the first embodiment in the positional relationship between the collecting lens and the excitation light source and the structure of the conversion region of the wavelength conversion element.
  • the excitation light source 220 is disposed coaxially with the collection lens 241; an outer surface of the non-conversion zone 266 is disposed obliquely with respect to a central axis of the color wheel assembly 260.
  • the excitation light emitted from the excitation light source 220 is incident on the non-conversion region 266 along the main optical axis of the collection lens 241, and is obliquely reflected back to the collection lens 241 at a predetermined angle to cause excitation on the non-conversion region 266.
  • the incident light path of the light does not overlap with the exit light path.
  • the incident optical path and the outgoing optical path are symmetrically disposed along a normal line of the inclined surface of the non-converting region 264.
  • the light source device 200 of the present embodiment has the excitation light source 220 and the collecting lens 241 disposed coaxially, so that the excitation light is incident to the wavelength conversion along the main optical axis of the collecting lens 241, in addition to the efficiency in the first embodiment.
  • the on-axis ray (zero field of view) imaging aberration is smaller than the aberration of the off-axis ray (large field of view). Therefore, the excitation light is incident along the main optical axis of the collecting lens 241, and a light spot with good imaging quality and uniform illumination can be formed on the outer surface of the wavelength conversion element 265, thereby improving the wavelength conversion material on the conversion region 264 (for example, , phosphor) excitation efficiency.
  • FIG. 5 is a schematic structural diagram of a light source device 300 according to a third embodiment of the present invention.
  • the light source device 300 of the present embodiment is different from the light source device of the second embodiment in that a compensation light source 330 for emitting compensation light having a spectral range different from that of the excitation light and a light combining member 345 for guiding the compensation light are added.
  • the second reflective element is omitted.
  • the compensation light source 330 may be a red or green light source, and emit red or green compensation light. It can be understood that the compensation light source 330 is not limited to a red or green light source, and may also be a purple light source or the like.
  • the compensation light source 330 includes an illuminant 331, a scattering element 332, a first lens 333, and a second lens 334.
  • the illuminant 331 is used to emit red or green compensation light, wherein the red compensation light and the green compensation light can be combined in parallel by the dichroic color. It will be appreciated that the illuminant 331 may comprise one, two or more red or green lasers.
  • the compensation light converges on the surface of the scattering element 332 via the first lens 333 and then diverge, and the diverged compensation light is concentrated on the light combining element 345 via the second lens 334.
  • the scattering element 332 is for homogenizing, decohering, and expanding the divergence angle of the compensation light.
  • the scattering element 332 includes a scattering wheel 335 and a second driving member 336.
  • the second driving member 336 is coupled to the scattering wheel 335 for driving the scattering wheel 335 to rotate about a predetermined rotation axis.
  • the scattering wheel 335 is rotated by the second driving member 336, which can eliminate the speckle phenomenon of the compensation light.
  • the light combining element 345 is disposed in the position of the second reflective element instead of the second reflective element.
  • the light combining element 345 includes a transmissive area and a reflective area.
  • the transmissive area is for transmitting the compensation light
  • the reflective area is for reflecting the laser light and excitation light.
  • the transmission region is provided with an anti-reflection film for a red or green light band
  • the reflection region is provided with a full-wave reflection film. Compensating light converges on the transmissive area, and after being transmitted through the transmissive area, is combined with the laser light and sequentially passes through the third reflective element 346 and the second relay lens to be opposite to the first divergence angle A matching divergence angle exits the filter element.
  • the excitation light emitted by the wavelength conversion element and the received laser light, and the compensation light are combined at the light combining element 345. Since the compensation light converges on the transmission region, that is, the spot on which the compensation light is irradiated on the transmission region is small, the transmission region can transmit the compensation light using a small area, thereby reducing the incidence caused by the incident transmission region. Laser loss. The loss of the angular distribution of the laser in the transmissive region is compensated by the compensation light such that the angular distribution of the laser is still continuous, so that the laser and the excitation light can still be uniformly mixed in the first homogenizing device.
  • FIG. 6 is a schematic diagram of the excitation light source, the breaking timing of the compensation light source, and the distribution of the segmentation regions of the wavelength conversion element according to an embodiment of the present invention.
  • the conversion region of the wavelength conversion element is provided with a first wavelength conversion layer, and the first wavelength conversion layer emits a first received laser light under illumination of the excitation light.
  • the first wavelength conversion layer refers to a wavelength conversion layer capable of converting excitation light into a laser-receiving layer overlapping the spectrum of the compensation light.
  • the first wavelength conversion layer may be a segmented region of a red region (R), a green region (G), and/or a yellow region (Y), and the first laser beam may be a red laser beam. , green laser and/or yellow laser.
  • the excitation light source When the light source is driven, the excitation light source is always in an on state, and the compensation light source is turned on when the segmentation region of the conversion region provided with the first wavelength conversion layer is located in the transmission path of the excitation light source, and other segmentation regions in the conversion region And the non-conversion area is closed.
  • the excitation light source emits blue excitation light
  • the compensation light source is a red laser light source
  • the compensation light source is turned on.
  • the compensation light source When the excitation light source is irradiated to the green region (G) or the non-conversion region (B-mirror) of the conversion region, the compensation light source is turned off.
  • the compensation light source is a green laser light source
  • the compensation light source when the excitation light source is irradiated to the green region (G) or the yellow region (Y) of the conversion region, the compensation light source is turned on; when the excitation light source is irradiated to the conversion
  • the compensation light source is turned off when the red area (R) or the non-conversion area (B-mirror) of the area.
  • the light source device 300 of the present embodiment increases the brightness of the light source and the color purity of the primary color (red or green) by adding the compensation light source 330.
  • FIG. 7 is a schematic structural diagram of a light source device 400 according to a fourth embodiment of the present invention.
  • the light source device 400 of the present embodiment is different from the light source device of the second embodiment in that a compensation light source 430 for emitting compensation light having a spectral range different from that of the excitation light and a light combining for guiding the compensation light are added.
  • Element 444 omits the first reflective element.
  • the structure of the compensation light source 430 is the same as that of the compensation light source 330 in the third embodiment, and details are not described herein again.
  • the light combining element 444 replaces the first reflective element and is disposed at a position of the first reflective element.
  • the compensation light emitted from the compensation light source 430 is transmitted through the light combining element 444 and then concentrated on the light combining and combining light element 442, and the compensation light transmitted through the light combining and combining light element 442 passes through the first relay lens in sequence.
  • the second reflective element, the third reflective element, and the second relay lens are then emitted to the filter element at a divergence angle that matches the first divergence angle.
  • the excitation light emitted by the wavelength conversion element and the received laser light, and the compensation light are combined at the splitting and combining element 442.
  • the light combining element 444 is configured to transmit the compensation light and reflect the excitation light
  • the light combining and combining light element 442 includes a transmission area for transmitting the compensation light and a reflection laser beam and a transmission excitation.
  • the light combining area of light is provided with a full-band anti-reflection film, and the light-combining area is provided with a blue anti-yellow dichroic film.
  • FIG. 8 is a schematic structural diagram of a light source device 500 according to a fifth embodiment of the present invention.
  • the light source device 500 of the present embodiment is different from the light source device of the second embodiment in that a compensation light source 530 for emitting compensation light having a spectral range different from that of the excitation light and a light combining light for guiding the compensation light are added.
  • Element 546 omits the third reflective element.
  • the light combining element 546 replaces the third reflective element and is disposed at a position of the third reflective element.
  • the compensation light emitted by the compensation light source 530 is concentrated by the light combining element 546 to the second relay lens, and is emitted to the filter element at a divergence angle matching the first divergence angle.
  • the excitation light emitted by the wavelength conversion element and the received laser light, and the compensation light are combined at the light combining element 546.
  • the light combining element 546 includes a transmission area for transmitting the compensation light and a reflection laser beam and excitation light.
  • the transmissive area is provided with an anti-reflection film for a red or green light band
  • the reflective area is provided with a full-wave reflection film.
  • the scattering wheel 535 and the carrier of the color wheel assembly 560 are respectively coupled to the second driving member 563, and the second driving member 563 can simultaneously drive the scattering wheel 535 and the carrier to rotate about a predetermined rotating shaft.
  • the color wheel assembly 560 can be omitted.
  • the drive unit (first drive member) simplifies the structure.
  • the compensation light source 530 is disposed adjacent to the filter element, and the compensation light emitted by the compensation light source 530 only needs to pass through the light combining element 546 and the second relay lens, and then can be emitted to the filter element, so the compensation in this embodiment The number of optical devices through which light passes is small, thereby improving the utilization of compensation light.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Projection Apparatus (AREA)

Abstract

一种色轮组件,包括:承载件161;波长转换元件165,环绕承载件161的周壁固定,用于接收激发光源120的激发光并产生受激光;以及滤光元件167,固定于承载件161的一端面且环绕承载件161的周向延伸,用于接收并过滤所受激光。一种光源装置,其包括:激发光源120,用于产生激发光;以及色轮组件160,其中波长转换元件165设置于激发光的传输路径中,并在激发光源120的照射下时序输出受激光和激发光。一种投影***,包括光源装置100。

Description

色轮组件、光源装置及投影*** 技术领域
本发明涉及光学技术领域,尤其涉及一种色轮组件、光源装置及投影***。
背景技术
目前,空间光调制器在投影显示领域获得广泛应用,空间光调制器一般包括LCD、LCOS、DMD等,单片式空间光调制器投影***基于时序切换的基色光来实现彩色投影显示,以其结构简单,成本较低等特点,在中低端市场广泛应用。由于激光激发荧光粉的受激光光谱带宽较宽,因此在光源中通常加入滤光片去截取需要的波段,如从黄光荧光中截取绿光或红光。
在实际光源中,一般采用双色轮或单色轮结构对荧光粉光谱进行滤光。双色轮结构指的是荧光轮+滤光轮的双色轮***,然而需对荧光轮和滤光轮进行同步控制,增加了光源的复杂度。单色轮结构中色轮包括作为荧光区的内圈以及作为滤光区的外圈,该种结构中无需考虑荧光区与滤光区的同步问题,然而荧光区宽度和滤光区宽度在色轮的半径方向上叠加,导致色轮外径大,使得光源难以实现小型化。
发明内容
鉴于上述状况,有必要提供一种小型化的色轮组件的光源装置与投影***。
本发明提供一种色轮组件,包括:承载件;波长转换元件,环绕所述承载件的周壁固定,用于接收光源的激发光并产生受激光;以及滤光元件,固定于所述承载件的一端面且环绕所述承载件的周向延伸,用于接收并过滤所述受激光。
本发明还提供一种光源装置,包括用于产生激发光的激发光源以及上述色轮组件,其中所述波长转换元件设置于所述激发光的传输路径中,并在所述激发光源的照射下时序输出受激光和激发光。
本发明还提供包括上述光源装置的投影***。
本发明提供的色轮组件,通过将滤光元件设置于承载件的端面,并将波长转换元件环绕设置于承载件的周壁上,使得色轮组件的径向尺寸大大减小,实现了小型化,且色轮组件进行转动控制时,滤光元件以及波长转换元件随同承载件的驱动而被驱动,无需考虑滤光轮以及荧光轮的同步控制问题,使色轮组件的驱动控制更加简单。
附图说明
图1是本发明第一实施例提供的光源装置的结构示意图。
图2是图1所示的色轮组件的结构示意图。
图3是本发明第二实施例提供的光源装置的结构示意图。
图4是图3所示的色轮组件的结构示意图。
图5是本发明第三实施例提供的光源装置的结构示意图。
图6是本发明实施例提供的激发光源、补偿光源的开断时序以及波长转换元件的分段区域的分布的示意图。
图7是本发明第四实施例提供的光源装置的结构示意图。
图8是本发明第五实施例提供的光源装置的结构示意图。
主要元件符号说明
光源装置 100、200、300、400、500
激发光源 120、220、320
发光体 121、331
第二匀光器件 122
收集透镜 141、241
分光合光元件 142、442
第一中继透镜 143
第一反射元件 144
第二反射元件 145
第三反射元件 146、346
合光元件 345、444、546
第二中继透镜 149
色轮组件 160、260、560
承载件 161
容纳腔 162
第一驱动件 163
转换区 164、264
波长转换元件 165、265、365
非转换区 166、266
滤光元件 167
第一匀光器件 180
补偿光源 330、430
散射元件 332
第一透镜 333
第二透镜 334
散射轮 335、535
第二驱动件 336、563
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似应用,因此本发明不受下面公开的具体实施例的限制。
请参阅图1,图1为本发明第一实施例提供的光源装置100的结构示意图。所述光源装置100应用于投影装置。所述光源装置100包括激发光源120、调整装置、色轮组件160及第一匀光器件180。所述激发光源120用于产生至少一种颜色的激发光。所述色轮组件160用于对所述激发光进行波长转换并时序出射受激光和激发光。所述调整装置用于引导沿重叠光路入射的受激光与激发光,并将所述受激光调整为第一发散角从所述色轮组件160出射,且所述激发光以与所述第一发散角相匹配的第二发散角从所述色轮组件160出射。所述重叠光路是指受激光的传输光路和激发光的传输光路存在至少部分重叠。所述第一匀光器件180对以相互匹配的发散角出射的受激光和激发光进行匀光。
具体地,所述激发光源120包括用于产生所述激发光的发光体121与对所述激发光进行匀光的第二匀光器件122。
进一步地,所述激发光源120可以为蓝色光源,发出蓝色激发光。可以理解的是,所述激发光源120不限于蓝色光源,所述激发光源120也可以是紫色光源、红色光源或绿色光源等。本实施方式中,所述发光体121为蓝色激光器,用于发出蓝色激光作为所述激发光。可以理解,所述发光体121可以包括一个、两个或多个蓝色激光器,具体其激光器的数量可以依据实际需要选择。
所述第二匀光器件122位于所述发光体121的出射光路上,用于将所述激发光进行匀光。本实施例中,所述第二匀光器件122为匀光棒,可以理解的是,在其他实施例中,所述第二匀光器件122可以包括复眼透镜、匀光棒、散光片或散射轮 等,并不以此为限。
请一并参阅图1及图2,图2为图1所示的所述色轮组件160的结构示意图。所述色轮组件160包括承载件161、第一驱动件163、波长转换元件165以及滤光元件167。所述第一驱动件163与所述承载件161相连,用于驱动所述承载件161绕预定的转轴旋转。所述波长转换元件165用于接收所述激发光源120发射的激发光并产生受激光,其环绕所述承载件161的周壁固定,构成滚筒式的波长转换结构。所述滤光元件167固定于所述承载件161的端面且环绕所述承载件161的周向延伸,用于接收并过滤所述受激光。
所述承载件161大致为中空筒状。所述承载件161包括端面以及由所述端面的四周延伸形成的周壁。所述端面与所述周壁合围形成一容纳腔162,用于***述第一匀光器件180。所述承载件161的端面为透明材质,使得所述受激光和激发光能够透过所述承载件161入射至所述第一匀光器件180。所述第一驱动件163固定于所述承载件161的端面上。所述第一驱动件163可以为马达等其他驱动装置。
所述波长转换元件165设置于所述激发光的传输路径中,并在所述激发光源120的照射下时序地输出受激光和激发光。具体的,所述波长转换元件165包括周向设置的转换区164和非转换区166。所述转换区164与所述非转换区166在驱动装置的驱动下交替位于所述激发光的光路上,使得所述色轮组件160时序出射进行波长转换的受激光和未进行波长转换的激发光。所述转换区164以及所述非转换区166分别呈方形曲面分布,且所述转换区164以及非转换区166的外表面均与所述色轮组件160的中心轴相平行。本实施例中,所述波长转换元件165为反射式波长转换元件。反射式波长转换元件指的是波长转换元件165的出射光线的传播方向与入射光线的传播方向相反。
具体的,所述转换区164设置有波长转换材料,以在所述激发光的激发下产生至少一种颜色的朗伯光形式的受激光。如图2所示,所述转换区164分为红色区域(R)、绿色区域(G)与黄色区域(Y)。所述红色区域设置红色荧光粉,以在所述激发光的激发下产生红色的受激光;所述绿色区域设置绿色荧光粉,以在所述激发光的激发下产生绿色的受激光;所述黄色区域设置黄色荧光粉,以在所述激发光的激发下产生黄色的受激光。可以理解的是,所述转换区164还可以设置红色、绿色及黄色之外的其他颜色的荧光粉以产生其他颜色的受激光。所述非转换区166设置反射镜或小角度散射片,例如高斯反射片,用于反射激发光。本实施例中,所述非转换区166设为蓝色区域(B-mirror),用于反射蓝色激发光。红色受激光、绿色受激光、黄色受激光以及蓝色激发光在所述第一匀光器件180中匀光后形成白光。
所述滤光元件167大致为环形板状,其包括滤光区168以及非滤光区169。所述滤光区168与所述非滤光区169分别呈扇环形设置。可以理解的是,在其他实施例中,当所述第一驱动件163固定于所述承载件161上未设置所述滤光元件167的其他部位时,所述滤光元件167可设计为圆盘状,此时所述滤光区168以及非滤光区169分别呈扇形设置。所述滤光区168与所述转换区164相对应,用于对受激光进行过滤,以提高光源基色的色纯度。所述非滤光区169与所述非转换区166相对应,用于对激发光进行散射,扩大激发光的发散角,由所述非滤光区169出射的激发光呈郎伯光分布。
具体的,所述滤光区168设置有滤光材料,以对具有至少一种颜色的朗伯光形式的受激光进行过滤。如图2所示,所述滤光区168分为红色区域(R)、绿色区域(G)与黄色区域(Y),所述滤光区168的红色区域、绿色区域以及黄色区域分别与所述转换区164的红色区域、绿色区域以及黄色区域一一对应。 所述红色区域设置红色滤光片,以对红色的受激光进行过滤;所述绿色区域设置绿色滤光片,以对绿色的受激光进行过滤;所述黄色区域设置黄色滤光片,以对黄色的受激光进行过滤。可以理解的是,所述转换区164还可以设置红色、绿色及黄色之外的其他颜色的滤光片以过滤其他颜色的受激光。所述非滤光区169设置散射片或单复眼,用于扩大由非转换区166出射的激发光的发散角。本实施例中,所述非滤光区169设为蓝色区域(B-diffuser),用于扩大蓝色激发光的发散角。
当第一驱动件163驱动承载件161旋转时,由转换区164出射的各种颜色的基色光以及由非转换区166出射的激发光时序地入射至所述滤光元件167上对应颜色的滤光区168以及非滤光区169上,从而使得各基色光时序地合成白光。具体的,所述滤光元件167中的各个分段区域(例如R、G、B、Y区)对应色轮组件160轴心的角度与所述波长转换元件165中对应的各个区域(颜色相对应的区域)对应色轮组件160的轴心的角度相等且重合,使得在所述色轮组件160转动时,由波长转换元件165中的各个分段区域出射的受激光或激发光能够入射至所述滤光元件167中对应的区域。
所述调整装置包括收集透镜141、分光合光元件142、第一中继透镜143、第一反射元件144、第二反射元件145、第三反射元件146及第二中继透镜149。
所述激发光源120的主光轴与所述收集透镜141的主光轴相平行但不重合,以区分所述非转换区166上的激发光的入射光路以及出射光路。所述激发光源120发出的激发光经所述收集透镜141会聚后,以预设角度倾斜入射并会聚于所述波长转换元件165的表面,经所述非转换区166反射后出射。其中,入射至所述非转换区166的激发光的入射光路与由所述非转换区166反射的激发光的出射光路不重叠,并沿所述收集透镜141的主光轴对称设置。
所述分光合光元件142可以采用波长分光的光学结构,即根据入射光的不同波长范围进行合光。作为波长分光的一种实施例,所述分光合光元件142用于透射所述激发光反射所述受激光。其中,所述激发光以及所述激发光的波长范围相同。具体地,所述分光合光元件142包括相对设置的第一表面与第二表面,所述激发光源120出射的激发光由所述第一表面射入所述分光合光元件142并透过所述第二表面出射至所述收集透镜141。所述波长转换元件165出射的激发光以及受激光经所述收集透镜141准直后射入所述分光合光元件142的第二表面,其中受激光由分光合光元件142的第二表面反射,激发光依次透过分光合光元件142的第二表面与第一表面出射至所述第一反射元件144。
所述第一反射元件144用于反射由所述分光合光元件142的第一表面出射的激发光。经由所述第一反射元件144反射的激发光依次透过所述分光合光元件142的第一表面与第二表面出射。由所述分光合光元件142出射的受激光以及激发光在所述分光合光元件142的第二表面合为一路。此时,激发光的光学扩展量小于受激光的光学扩展量,受激光与激发光的角分布不匹配。本实施例中,所述第一反射元件144为平面反射镜。可以理解的是,所述第一反射元件144还可以为凸面反射镜。
由所述分光合光元件142出射的受激光与激发光分别依次经过所述第一中继透镜143、第二反射元件145以及第三反射元件146入射至所述第二中继透镜149,并经所述第二中继透镜149会聚后入射至所述滤光元件167,再耦合进所述第一匀光器件180。其中,所述第一中继透镜143用于将由其第一侧入射的光引导至其第二侧出射,所述第二中继透镜149用于将由其第一侧入射光引导至其第二侧进行会聚出射。在激发光经过所述非滤光区169时,激发光发生散射,使得激发光的发 散角扩大,激发光以与受激光的第一发散角相匹配的第二发散角入射至所述第一匀光器件180,即激发光与受激光在所述第一匀光器件180的入口面处具有相互匹配的角分布,激发光与受激光在所述第一匀光器件180内部进行多次反射,使得由所述第一匀光器件180出射的激发光与受激光混合得更加均匀,提高光源的均匀性。
本实施例的色轮组件160,通过将滤光元件167设置于承载件161的端面,使滤光元件167的宽度沿色轮组件160的径向延伸,并将波长转换元件165环绕设置于承载件161的周壁上,使波长转换元件165的宽度沿色轮组件160的轴向延伸,从而使得色轮组件160的整体宽度仅由滤光元件167的宽度贡献,从而使得色轮组件160的径向尺寸大大减小,实现了小型化。再者,对色轮组件160进行转动控制时,滤光元件167以及波长转换元件165随同承载件161的驱动而被驱动,无需考虑滤光轮以及荧光轮的同步控制问题,使色轮组件160的驱动控制更加简单。另外,受激光经过滤光区168的过滤后,提高了光源基色的色纯度;激发光在光源装置100中无损失,其角分布连续,且在经过非滤光区169的散射后,其角分布与受激光的角分布相匹配,从而实现较好的均匀性。
请参阅图3以及图4,图3是本发明第二实施例的光源装置200的结构示意图,图4是图3所示色轮组件260的结构示意图。本实施例的光源装置200与第一实施例的光源装置100的不同在于收集透镜与激发光源的位置关系以及波长转换元件的转换区的结构不同。
具体的,所述激发光源220与所述收集透镜241同轴设置;所述非转换区266的外表面相对所述色轮组件260的中心轴倾斜设置。激发光源220发出的激发光沿所述收集透镜241的主光轴入射至所述非转换区266,并以预设角度倾斜反射回所述收集透镜241,使所述非转换区266上的激发光的入射光 路与出射光路不重叠。其中,入射光路以及出射光路沿非转换区264的斜面的法线对称设置。
本实施例的光源装置200,除了具有实施例一中的功效外,通过同轴设置的激发光源220与收集透镜241,使得激发光沿所述收集透镜241的主光轴入射至所述波长转换元件265的外表面。根据像差原理可知,轴上光线(零视场)成像像差小于轴外光线(较大视场)的像差。因此,激发光沿所述收集透镜241的主光轴入射,可以在所述波长转换元件265的外表面形成成像质量较好且照度均匀的光斑,进而提高转换区264上的波长转换材料(例如,荧光粉)的激发效率。
请参阅图5,图5是本发明第三实施例的光源装置300的结构示意图。本实施例的光源装置300与第二实施例的光源装置的不同在于增加了用于发出光谱范围与激发光的光谱范围不同的补偿光的补偿光源330以及用于引导补偿光的合光元件345,省略了所述第二反射元件。
本实施例中,所述补偿光源330可以为红色或绿色光源,发出红色或绿色补偿光。可以理解的是,所述补偿光源330不限于红色或绿色光源,也可以是紫色光源等。具体的,所述补偿光源330包括发光体331、散射元件332、第一透镜333以及第二透镜334。所述发光体331用于发出红色或绿色补偿光,其中红色补偿光和绿色补偿光可通过二向色片合光并行。可以理解的是,所述发光体331可以包括一个、两个或多个红色或绿色激光器。补偿光经所述第一透镜333会聚于所述散射元件332的表面后再发散,发散的补偿光经所述第二透镜334会聚于所述合光元件345上。
所述散射元件332用于将所述补偿光均匀化、消相干,并扩大补偿光的发散角。所述散射元件332包括散射轮335以及第二驱动件336。所述第二驱动件336与所述散射轮335相连,用于驱动所述散射轮335绕预定转轴旋转。散射轮335在第二 驱动件336的驱动下转动,能够消除补偿光的散斑现象。
所述合光元件345替代所述第二反射元件并设于所述第二反射元件的位置上。所述合光元件345包括透射区域以及反射区域。所述透射区域用于透射所述补偿光,所述反射区域用于反射所述受激光与激发光。本实施例中,所述透射区域设置有针对红光或绿光波段的增透膜,所述反射区域设置有全波反射膜。补偿光会聚于所述透射区域,并在透过所述透射区域后与受激光进行合光后依次经所述第三反射元件346以及第二中继透镜后以与所述第一发散角相匹配的发散角出射至所述滤光元件。其中,由所述波长转换元件出射的激发光与受激光,以及所述补偿光在所述合光元件345处合为一路。由于补偿光会聚于透射区域,即补偿光照射于透射区域上的光斑较小,使得所述透射区域能够使用较小的面积将补偿光进行透射,从而可以减小射入透射区域而造成的受激光的损失。受激光在透射区域的角分布的损失由补偿光来弥补,使得受激光的角分布仍旧是连续的,使得受激光与激发光在第一匀光器件中依旧能够混合得均匀。
请一并参阅图6,图6是本发明实施例提供的激发光源、补偿光源的开断时序以及波长转换元件的分段区域的分布的示意图。所述波长转换元件的转换区设置有第一波长转换层,所述第一波长转换层在所述激发光的照射下出射第一受激光。其中,所述第一波长转换层指的是可将激发光转换成与所述补偿光存在光谱重叠的受激光的波长转换层。可以理解的是,所述第一波长转换层可以为红色区域(R)、绿色区域(G)及/或黄色区域(Y)的分段区域,所述第一受激光可以为红色的受激光、绿色的受激光及/或黄色的受激光。
光源在驱动时,所述激发光源一直处于开启状态,所述补偿光源在转换区设有第一波长转换层的分段区域位于激发光源的传输路径中时打开,在转换区的其他分段区域以及非转换 区域关闭。具体的,激发光源发出蓝色激发光,若补偿光源为红色激光光源时,当所述激发光源照射于所述转换区的红色区域(R)或黄色区域(Y)时,所述补偿光源打开;当所述激发光源照射于所述转换区的绿色区域(G)或非转换区域(B-mirror)时,所述补偿光源关闭。若补偿光源为绿色激光光源时,当所述激发光源照射于所述转换区的绿色区域(G)或黄色区域(Y)时,所述补偿光源打开;当所述激发光源照射于所述转换区的红色区域(R)或非转换区域(B-mirror)时,所述补偿光源关闭。
本实施例的光源装置300除了具有实施例二中的的光源装置200的功效外,通过增设补偿光源330,提高了光源亮度以及基色(红光或绿光)的色纯度。
请参阅图7,图7是本发明第四实施例的光源装置400的结构示意图。本实施例的光源装置400与所述第二实施例的光源装置的不同在于增加了用于发出光谱范围与激发光的光谱范围不同的补偿光的补偿光源430以及用于引导补偿光的合光元件444,省略了所述第一反射元件。
所述补偿光源430的结构与实施例三中的补偿光源330的结构相同,此处不再赘述。
所述合光元件444替代所述第一反射元件并设于所述第一反射元件的位置上。所述补偿光源430发出的补偿光透过所述合光元件444后会聚于所述分光合光元件442,透过所述分光合光元件442的补偿光依次经过所述第一中继透镜、所述第二反射元件、所述第三反射元件以及所述第二中继透镜后,以与第一发散角相匹配的发散角出射至所述滤光元件。其中,由所述波长转换元件出射的激发光与受激光,以及所述补偿光在所述分光合光元件442处合为一路。具体的,所述合光元件444用于透射所述补偿光并反射所述激发光,所述分光合光元件442包括用于透射所述补偿光的透射区域以及用于反射受 激光并透射激发光的合光区域。其中,所述透射区域设置有全波段增透膜,所述合光区域设置有透蓝反黄的二向色膜。
请参阅图8,图8是本发明第五实施例的光源装置500的结构示意图。本实施例的光源装置500与所述第二实施例的光源装置的不同在于增加了用于发出光谱范围与激发光的光谱范围不同的补偿光的补偿光源530以及用于引导补偿光的合光元件546,省略了所述第三反射元件。
所述合光元件546替代所述第三反射元件并设于所述第三反射元件的位置上。所述补偿光源530发出的补偿光透过所述合光元件546会聚于所述第二中继透镜后,以与第一发散角相匹配的发散角出射至所述滤光元件。其中,由所述波长转换元件出射的激发光与受激光,以及所述补偿光在所述合光元件546处合为一路。具体的,所述合光元件546包括用于透射所述补偿光的透射区域以及用于反射受激光与激发光。其中,所述透射区域设置有针对红光或绿光波段的增透膜,所述反射区域设置有全波反射膜。
所述散射轮535以及所述色轮组件560的承载件分别与第二驱动件563相连,所述第二驱动件563可同时驱动所述散射轮535以及所述承载件绕预定转轴旋转。
本实施例的光源装置500,除了具有实施例三中的光源装置300的功效外,由于散射轮535以及承载件同时由所述第二驱动件563驱动,从而可省去色轮组件560中的驱动装置(第一驱动件),简化了结构。另外,补偿光源530邻近滤光元件设置,补偿光源530发出的补偿光仅需经过合光元件546以及第二中继透镜后,即可出射至所述滤光元件,因此本实施例中的补偿光经过的光学器件的数量较少,从而可提高补偿光的利用率。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相 同相似部分互相参见即可。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (18)

  1. 一种色轮组件,其特征在于,包括:
    承载件;
    波长转换元件,环绕所述承载件的周壁固定,用于接收光源的激发光并产生受激光;以及
    滤光元件,固定于所述承载件的一端面且环绕所述承载件的周向延伸,用于接收并过滤所述受激光。
  2. 一种光源装置,其特征在于,包括:
    激发光源,用于产生激发光;以及
    如权利要求1所述的色轮组件,其中所述波长转换元件设置于所述激发光的传输路径中,并在所述激发光源的照射下时序输出受激光和激发光。
  3. 如权利要求2所述的光源装置,其特征在于,所述波长转换元件包括周向设置的转换区以及非转换区,所述转换区用于将所述激发光进行波长转换并出射受激光;所述滤光元件包括滤光区以及非滤光区,所述滤光区与所述转换区相对应,用于对所述受激光进行过滤,所述非滤光区与所述非转换区相对应,用于扩大由所述非转换区出射的激发光的发散角。
  4. 如权利要求3所述的光源装置,其特征在于,所述滤光区与所述非滤光区分别呈扇环状或扇形设置。
  5. 如权利要求3所述的光源装置,其特征在于,所述光源装置还包括调整装置,其包括分光合光元件、收集透镜、第一中继透镜及第二中继透镜,由所述波长转换元件出射的激发光与受激光分别依次经过所述收集透镜、分光合光元件、第一中继透镜以及第二中继透镜后出射至相应的非滤光区和滤光区,其中由所述波长转换元件出射的激发光与受激光在所述分光合光元件处合为一路。
  6. 如权利要求5所述的光源装置,其特征在于,所述调整装置还包括:
    第一反射元件,由所述波长转换元件出射的激发光依次经过所 述收集透镜以及分光合光元件出射至所述第一反射元件,并由所述第一反射元件反射至所述分光合光元件,使得由所述波长转换元件出射的激发光与受激光在所述分光合光元件处合为一路;
    第二反射元件,用于反射由所述第一中继透镜出射的激发光与受激光;以及
    第三反射元件,用于将由所述第二反射元件出射的激发光以及受激光反射至所述第二中继透镜。
  7. 如权利要求5所述的光源装置,其特征在于,所述激发光源的主光轴与所述收集透镜的主光轴相平行但不重合,所述非转换区的外表面与所述色轮组件的中心轴相平行。
  8. 如权利要求5所述的光源装置,其特征在于,所述激发光源与所述收集透镜同轴设置,所述非转换区的外表面相对所述色轮组件的中心轴倾斜设置。
  9. 如权利要求5所述的光源装置,其特征在于,所述光源装置还包括补偿光源,用于发出光谱范围与所述激发光的光谱范围不同的补偿光,所述补偿光经所述第二中继透镜会聚后出射至所述滤光元件。
  10. 如权利要求9所述的光源装置,其特征在于,所述调整装置还包括:
    第一反射元件,邻近所述分光合光元件设置,用于反射由所述波长转换元件出射的激发光;
    第二反射元件,用于反射由所述第一中继透镜出射的激发光与受激光;以及
    合光元件,用于透射所述补偿光,并反射由所述第二反射元件出射的激发光与受激光,其中所述补偿光、激发光与受激光在所述合光元件处合为一路后出射至所述第二中继透镜。
  11. 如权利要求10所述的光源装置,其特征在于,所述补偿光源包括发光体、散射装置以及两个透镜,所述发光体发出的补偿光经一透镜会聚于所述散射装置后,再经另一个透镜会聚于所述透射 区域。
  12. 如权利要求11所述的光源装置,其特征在于,所述散射装置包括散射轮以及驱动件,所述散射轮用于对所述补偿光进行散射,所述驱动件用于驱动所述散射轮绕预定转轴旋转。
  13. 如权利要求12所述的光源装置,其特征在于,所述散射轮与所述承载件分别与所述驱动件相连。
  14. 如权利要求9所述的光源装置,其特征在于,所述调整装置还包括:
    第一反射元件,邻近所述分光合光元件设置,用于反射由所述波长转换元件出射的激发光;
    合光元件,用于透射所述补偿光,并反射由所述第一中继透镜出射的激发光与受激光,其中所述补偿光、激发光与受激光在所述合光元件处合为一路;以及
    第三反射元件,用于将由所述合光元件出射的补偿光、激发光与受激光反射至所述第二中继透镜。
  15. 如权利要求9所述的光源装置,其特征在于,所述调整装置还包括:
    合光元件,邻近所述分光合光元件设置,用于透射所述补偿光,并反射由所述波长转换元件出射的激发光,其中所述补偿光、激发光与受激光在所述分光合光元件处合为一路后出射至所述第一中继透镜;
    第二反射元件,用于反射由所述第一中继透镜出射的补偿光、激发光与受激光;
    第三反射元件,用于将由所述第二反射元件出射的补偿光、激发光与受激光反射至所述第二中继透镜。
  16. 如权利要求9-15中任一项所述的光源装置,其特征在于,所述转换区设有第一波长转换层,所述激发光源一直处于开启状态,所述补偿光源在所述转换区设有所述第一波长转换层的区域位于所述激发光源的传输路径中时打开,在所述转换区的其他区域以 及所述非转换区关闭,其中所述第一波长转换层指的是可将激发光转换成与所述补偿光存在光谱重叠的受激光的波长转换层。
  17. 如权利要求2所述的光源装置,其特征在于,所述光源装置还包括第一匀光器件,所述承载件的端面与其侧壁合围形成一容纳腔,所述第一匀光器件收容于所述容纳腔中。
  18. 一种投影***,其包括权利要求2-17中任一项所述的光源装置。
PCT/CN2018/080869 2018-01-03 2018-03-28 色轮组件、光源装置及投影*** WO2019134261A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810006236.4 2018-01-03
CN201810006236.4A CN109991803B (zh) 2018-01-03 2018-01-03 色轮组件、光源装置及投影***

Publications (1)

Publication Number Publication Date
WO2019134261A1 true WO2019134261A1 (zh) 2019-07-11

Family

ID=67128477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080869 WO2019134261A1 (zh) 2018-01-03 2018-03-28 色轮组件、光源装置及投影***

Country Status (2)

Country Link
CN (1) CN109991803B (zh)
WO (1) WO2019134261A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114911119A (zh) * 2021-02-09 2022-08-16 苏州佳世达光电有限公司 光源模组

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987468A (zh) * 2019-12-16 2021-06-18 无锡视美乐激光显示科技有限公司 荧光滚筒模组、光源及投影机
CN113132698A (zh) * 2019-12-31 2021-07-16 深圳光峰科技股份有限公司 光源装置和投影设备
CN114441487B (zh) * 2020-11-04 2023-11-03 致茂电子(苏州)有限公司 荧光检测***
TWI777575B (zh) * 2021-05-25 2022-09-11 台達電子工業股份有限公司 雷射光源共軸設備

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722014A (zh) * 2012-05-23 2012-10-10 深圳市绎立锐光科技开发有限公司 色轮和发光装置
CN102854723A (zh) * 2012-01-07 2013-01-02 深圳市光峰光电技术有限公司 发光装置和投影装置
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源***以及投影装置
CN205992115U (zh) * 2016-08-09 2017-03-01 深圳市绎立锐光科技开发有限公司 光源***及投影设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945284A (ja) * 1995-08-03 1997-02-14 Toshiba Lighting & Technol Corp 蛍光ランプ、光源装置、液晶表示装置および読取り装置
JP2006067173A (ja) * 2004-08-26 2006-03-09 Ushio Inc 原稿照明装置
JP4816755B2 (ja) * 2009-04-02 2011-11-16 セイコーエプソン株式会社 光源装置及びプロジェクター
CN102566230B (zh) * 2010-12-08 2015-05-27 深圳市绎立锐光科技开发有限公司 投影***、光源***以及光源组件
CN104020633B (zh) * 2013-02-28 2015-12-09 深圳市绎立锐光科技开发有限公司 发光装置及相关投影***
CN104566229B (zh) * 2013-10-15 2016-06-08 深圳市光峰光电技术有限公司 波长转换装置的制造方法
JP2015094824A (ja) * 2013-11-11 2015-05-18 株式会社リコー 光学素子、光源装置、照明光学系、画像表示装置
CN206671745U (zh) * 2017-03-14 2017-11-24 深圳市光峰光电技术有限公司 光源装置及投影***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854723A (zh) * 2012-01-07 2013-01-02 深圳市光峰光电技术有限公司 发光装置和投影装置
CN102722014A (zh) * 2012-05-23 2012-10-10 深圳市绎立锐光科技开发有限公司 色轮和发光装置
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源***以及投影装置
CN205992115U (zh) * 2016-08-09 2017-03-01 深圳市绎立锐光科技开发有限公司 光源***及投影设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114911119A (zh) * 2021-02-09 2022-08-16 苏州佳世达光电有限公司 光源模组

Also Published As

Publication number Publication date
CN109991803A (zh) 2019-07-09
CN109991803B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2019134261A1 (zh) 色轮组件、光源装置及投影***
US10416440B2 (en) Projection system, light source system and light source assembly
WO2019134260A1 (zh) 色轮组件、光源装置及投影***
US9740088B2 (en) Light source apparatus and projection display apparatus provided with same including waveplate and dichroic prism
CN109557751B (zh) 光源***及应用所述光源***的投影***
WO2019061823A1 (zh) 光源***及投影装置
CN109765745B (zh) 光源装置及投影***
JP2017143061A (ja) 光波長変換器及びそれを有する照明システム
CN111077720B (zh) 光源***及显示设备
WO2020048124A1 (zh) 光源***及投影***
WO2020057299A1 (zh) 光源***及投影设备
US10185214B2 (en) Projector and image display method including a light separation optical system
WO2019041803A1 (zh) 色轮和激光投影设备
CN110874005B (zh) 光源***、提高其光效的方法及显示设备
TWI658292B (zh) 照明系統與投影裝置
CN110389488B (zh) 光源***及投影设备
CN109426052A (zh) 投影***
CN111983878B (zh) 光学旋转装置、照明***以及投影装置
WO2020135300A1 (zh) 光源***及投影装置
CN216210438U (zh) 光源组件及投影装置
CN111856858B (zh) 一种光源***及投影***
CN113885285A (zh) 光源组件与投影设备
JP7200781B2 (ja) 光源装置、画像投射装置及び光源光学系
CN116893565A (zh) 光源装置
CN111381426B (zh) 光源***及投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898009

Country of ref document: EP

Kind code of ref document: A1