WO2019131093A1 - Copper foil for heat dissipation and heat dissipation member - Google Patents

Copper foil for heat dissipation and heat dissipation member Download PDF

Info

Publication number
WO2019131093A1
WO2019131093A1 PCT/JP2018/045344 JP2018045344W WO2019131093A1 WO 2019131093 A1 WO2019131093 A1 WO 2019131093A1 JP 2018045344 W JP2018045344 W JP 2018045344W WO 2019131093 A1 WO2019131093 A1 WO 2019131093A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
layer
heat dissipation
polymer film
thickness
Prior art date
Application number
PCT/JP2018/045344
Other languages
French (fr)
Japanese (ja)
Inventor
一将 笹尾
敦史 三木
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2019131093A1 publication Critical patent/WO2019131093A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a copper foil for heat dissipation and a heat dissipation member.
  • Patent Document 1 Korean Patent Document 1 etc.
  • the mounting substrate of the electronic device usually has a component that generates heat due to use, but if the heat of the component can not be well released, there is a risk of failure.
  • embodiment of this invention makes it a subject to provide the copper foil for thermal radiation which has the outstanding thermal radiation characteristic, and a thermal radiation member.
  • the copper foil for heat dissipation in one embodiment, it has a copper foil base and a polymer film on at least one of the main surfaces of the copper foil base.
  • the thickness of the polymer film is 0.1 ⁇ m to 10 ⁇ m.
  • the thickness of the polymer film is 0.5 ⁇ m to 8 ⁇ m.
  • the thickness of the polymer film is 1 ⁇ m to 5 ⁇ m.
  • the polymer film contains a polymer having at least one hetero atom in the repeating unit.
  • the polymer contains at least one member selected from the group consisting of a carbonyl group, a carboxyl group, an ether group, an epoxy group, a hydroxyl group, and a halogen in the repeating unit Included in
  • the polymer is selected from the group consisting of polyester resin, polycarbonate resin, polyvinyl alcohol resin, cellulose resin, epoxy resin, nylon resin, polyether resin, and fluorine resin. At least one species.
  • the polymer is polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, acetyl cellulose, triacetyl cellulose, cellophane, bisphenol A epoxy resin, polycaproamide, poly At least one selected from the group consisting of dodecaneproamide, polyethylene oxide, polypropylene oxide, polytetrafluoroethylene, polyvinylidene fluoride, and polytetrafluoroethylene.
  • a plating treatment layer is provided on at least one of the main surfaces of the copper foil substrate, and the polymer film is provided on the plating treatment layer.
  • the surface roughness Ra of the plating treated surface of the plating treated layer is 0.30 to 1.50.
  • the surface roughness Rz of the plating treated surface of the plating treated layer is 2.50 to 9.50.
  • the plating treatment layer has a roughened particle layer.
  • the plating treatment layer has a coating layer on the roughening particle layer.
  • the covering layer contains at least one selected from the group consisting of Cu, Zn, Ni, Co, Cr, W, and Fe.
  • the covering layer contains Co and Ni.
  • the covering layer has a covering lower layer and a covering upper layer on the covering lower layer, and the covering lower layer contains Cu, Co, and Ni,
  • the coated upper layer contains Co and Ni.
  • the thickness of the covering layer is 0.001 ⁇ m to 1.0 ⁇ m.
  • the thickness of the covering layer is 0.002 ⁇ m to 0.5 ⁇ m.
  • the thickness of the covering layer is 0.005 ⁇ m to 0.3 ⁇ m.
  • the copper foil for thermal radiation mentioned above is provided.
  • thermographic display temperature in Examples 1-11 and Comparative Examples 1-3.
  • the heat-dissipating copper foil according to an embodiment of the present invention has a copper foil base and a polymer film on at least one of the main surfaces of the copper foil base. According to the present embodiment, by having the polymer film, it has excellent heat dissipation characteristics.
  • the copper foil base used in the present embodiment may be either an electrolytic copper foil or a rolled copper foil.
  • an electrolytic copper foil is manufactured by electrolytically depositing copper on a drum of titanium or stainless steel from a copper sulfate plating bath, and a rolled copper foil is manufactured by repeating plastic working and heat treatment by rolling rolls. Rolled copper foil is often applied to applications where flexibility is required.
  • a copper alloy foil base material shall also be included.
  • the thickness of the copper foil substrate is preferably 1 ⁇ m or more so that, for example, wrinkles and the like do not enter at the time of production. However, in consideration of thin and compact specifications such as smartphones and tablet PCs, 20 ⁇ m or less is preferable.
  • the polymer film in order to improve heat radiation, preferably contains a polymer having at least one hetero atom in the repeating unit. It is believed that this is closely related to the heat radiation characteristics and the chemical structure of the resin in the coating film, and the emissivity of the polymer exhibiting many broad and strong infrared absorption peaks is high.
  • the polymer may contain at least one member selected from the group consisting of a carbonyl group, a carboxyl group, an ether group, an epoxy group, a hydroxyl group, and a halogen in a repeating unit as exhibiting many broad and strong infrared absorption peaks.
  • This polymer is not particularly limited as long as it is a polymer having a chemical structure exhibiting many broad and strong infrared absorption peaks, but, for example, polyester resin, polycarbonate resin, polyvinyl alcohol resin (PVA), cellulose resin, epoxy resin, nylon resin , Polyether resins, and fluorocarbon resins.
  • the polyester resin is not particularly limited, and examples thereof include polyethylene terephthalate, polybutylene terephthalate and polytrimethylene terephthalate.
  • the polycarbonate resin is not particularly limited, and examples thereof include those produced from 2,2-bis (4-hydroxyphenyl) propane (bisphenol A).
  • Polyvinyl alcohol resin refers to a saponified polyvinyl acetate.
  • the cellulose resin is not particularly limited, and examples thereof include acetyl cellulose, triacetyl cellulose, cellophane and the like. Although it does not specifically limit as an epoxy resin, For example, bisphenol-A epoxy resin etc. are mentioned.
  • the nylon resin is not particularly limited, and examples thereof include polycaproamide (nylon 6) and polydodecaneproamide (nylon 10).
  • the polyether resin is not particularly limited, and examples thereof include polyethylene oxide and polypropylene oxide.
  • the fluorine resin is not particularly limited, and examples thereof include polytetrafluoroethylene, polyvinylidene fluoride, polytetrafluoroethylene and the like.
  • the thickness of the polymer film is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably 1 ⁇ m or more, and still more preferably 2 ⁇ m or more, in order to improve heat radiation.
  • 10 ⁇ m or less is preferable, 8 ⁇ m or less is more preferable, 5 ⁇ m or less is more preferable, and 3 ⁇ m or less is still more preferable.
  • the thickness of the polymer film refers to the average thickness of the polymer film.
  • the thickness of the copper foil substrate is measured at three or more points by a gauge thickness measuring instrument, and the average value of the three or more points is calculated.
  • a copper foil for heat dissipation having a polymer film on the copper foil base is prepared.
  • the thickness of the heat-dissipating copper foil is measured at three or more points by a gauge thickness measuring instrument, and the average value of the three or more points is calculated.
  • the average value of the thickness of the copper foil substrate described above is subtracted from the average value of the thickness of the copper foil for heat dissipation to calculate the thickness (average thickness) of the polymer film.
  • the copper foil for thermal radiation has a roughening particle layer and a polymer film, or a roughening particle layer, a coating layer, and a polymer film on the main surface of a copper foil base material
  • a heat-dissipating copper foil having a roughened particle layer and a polymer film, or a roughened particle layer, a covering layer, and a polymer film is prepared on the main surface of the copper foil substrate.
  • the thickness of the heat-dissipating copper foil is measured at three or more points by a gauge thickness measuring instrument, and the average value of the three or more points is calculated.
  • the average value of the thickness of the copper foil described above is subtracted from the average value of the thickness of the copper foil for heat dissipation to calculate the thickness (average thickness) of the polymer film.
  • an anticorrosive layer may be formed on the copper foil base, and further, chromate treatment on the surface, silane Processing such as coupling processing may be performed.
  • silane Processing such as coupling processing may be performed.
  • a well-known thing can be used as a rustproof layer and a silane coupling process.
  • Platinum treatment layer In the present embodiment, it is preferable to further have a plated layer on at least one of the main surfaces of the copper foil base and to have a polymer film on the plated layer.
  • the surface roughness Ra of the plating treated surface of the plating treated layer is preferably 0.30 or more, more preferably 0.40 or more, and preferably 0.45 or more, in order to properly dissipate the heat from the heat generator. Is even more preferred. However, in order to make it difficult for the roughening particles to drop off due to external force, 1.50 or less is preferable, 1.30 or less is more preferable, and 1.20 or less is even more preferable.
  • surface roughness Ra shows the arithmetic mean roughness as described in JIS B 0601: 2013.
  • the surface roughness Rz of the surface to be plated is preferably 2.50 or more, more preferably 3.00 or more, in order to dissipate the heat from the heating element well.
  • the above is even more preferable.
  • it is preferably 9.50 or less, more preferably 8.00 or less, and still more preferably 7.74 or less.
  • surface roughness Rz shows the largest height roughness as described in JIS B 0601: 2013.
  • the surface area ratio B / A of the surface area B of the plated surface to the projected area A of the plated surface is not particularly limited when the plated surface of the plated layer is measured using a laser microscope.
  • the surface area ratio B / A is preferably 1.42 or more, more preferably 1.60 or more, still more preferably 1.81 or more, and further preferably 2.18 or more. More preferably, 2.35 or more is even more preferable.
  • the surface area ratio B / A is high, the roughened particles may be easily detached by an external force despite the fact that the plated layer is excellent in heat radiation, so that the surface area ratio B / A is 3. 42 or less is preferable, 3.25 or less is more preferable, 3.10 or less is more preferable, 2.98 or less is further more preferable, and 2.88 or less is further more preferable.
  • the plated layer preferably has a roughened particle layer in order to improve heat radiation. That is, in the present embodiment, the roughened particle layer and the polymer film are formed in this order on at least one of the main surfaces of the copper foil base material.
  • the roughening treatment can be performed, for example, by forming roughening particles with copper or a copper alloy. The roughening process may be fine.
  • the polymer film covers the surface of the roughened particles.
  • the surface area of the polymer film is increased, so that the heat radiation can be further improved.
  • the tip portion of the roughening particles may be broken or the roughening particles may peel off from the root, which may cause a problem generally referred to as a dusting phenomenon.
  • a dusting phenomenon In this powder dropping phenomenon, although the roughened plated roughened particle layer is excellent in heat radiation, the roughened particles are easily detached by an external force, and "scrub" at the time of production or use of the copper foil Peeling occurs. Therefore, in the present embodiment, the surface of the roughened particles is coated with a polymer film in order to suppress powdering. Then, the tip portion of the roughened particles is thickened by the polymer film, and the root of the roughened particles is thickened by the coating layer and the polymer film. As described above, by forming the polymer film on the roughened particle layer, the roughened particles are less likely to come off due to an external force, so powder removal can be suppressed.
  • the plated layer preferably has a roughened particle layer and a covering layer on the roughened particle layer. That is, in the present embodiment, the roughened particle layer, the covering layer, and the polymer film are formed in this order on at least one of the main surfaces of the copper foil substrate.
  • This covering layer covers the surface of the dendrite of roughening particles. Furthermore, a polymer film is formed on this covering layer. Therefore, in the present embodiment, since the polymer film is provided on the covering layer, the synergistic effect of the covering layer and the polymer film further improves the heat radiation property and also improves the dusting property.
  • the roughened particle layer after forming roughened particles with copper or copper alloy, further comprises Cu, Zn, Ni, Co, Cr, W, and Fe from the viewpoint of heat radiation, powdering, adhesion, etc.
  • a smooth plating process can also be performed to provide a coating layer containing at least one selected from the group.
  • the coated lower layer contains Cu, Co, and Ni
  • the coated upper layer contains Co and Ni. Is preferred.
  • these metals are contained in all or one part (for example, upper part) of a coating layer.
  • the thickness of the covering layer is preferably 0.001 ⁇ m or more, more preferably 0.002 ⁇ m or more, still more preferably 0.005 ⁇ m or more, and still more preferably 0.01 ⁇ m or more, in order to improve heat radiation. However, in consideration of thin and compact specifications such as smartphones and tablet PCs, it is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, still more preferably 0.3 ⁇ m or less, and even more preferably 0.1 ⁇ m or less preferable.
  • the thickness of the covering layer refers to the average thickness of the covering layer.
  • the copper foil for heat dissipation in which the roughening particle layer and the coating layer were formed is prepared.
  • a 2 cm ⁇ 2 cm sample is taken from the heat-dissipating copper foil, and a solution in which the sample is dissolved in a 20% by volume aqueous nitric acid solution is obtained.
  • the concentration of each metal contained in the coating layer in the sample is measured by performing quantitative analysis of the solution by atomic absorption spectrometry using an atomic absorption spectrophotometer, and the sample is measured using the concentration of each metal. Determine the weight of each metal in the overlayer.
  • the volume of the coating layer is calculated from the weight of each metal obtained and the density of the metal. Then, the thickness (average thickness) of the coating layer is calculated by dividing the volume of the obtained coating layer by the value obtained by multiplying the area of the sample (4 cm 2 ) by the measured surface area ratio.
  • an anticorrosive layer may be formed on the plating layer, and further, chromate treatment on the surface, silane coupling Processing such as processing may be performed.
  • silane coupling Processing such as processing may be performed.
  • a well-known thing can be used as a rustproof layer and a silane coupling process.
  • the roughened particle layer preferably forms roughened particles on the condition 1 of formation of the roughened particle layer (A-1) on any one main surface of the copper foil substrate . Moreover, in addition to the formation 1 of the (A-1) roughening particle layer, the roughening particles are further grown under the conditions of the formation 2 of the (A-2) roughening particle layer to form a roughening particle layer Is more preferable.
  • the treatment of formation 1 of the roughening particle layer is a treatment corresponding to roughening plating (rough plating).
  • Roughening plating is plating performed by setting the current density to a limit current density or more.
  • Liquid composition 10 to 20 g / L of copper, 50 to 100 g / L of sulfuric acid
  • Liquid temperature 25 to 50 ° C
  • Current density 20 to 58 A / dm 2 Time: 0.5 to 5 seconds
  • the treatment of formation 2 of the roughening particle layer is a treatment corresponding to roughening plating (rough plating).
  • Roughening plating is plating performed by setting the current density to less than the limiting current density.
  • Liquid composition 15 to 50 g / L of copper, 60 to 100 g / L of sulfuric acid
  • Liquid temperature 25 to 50 ° C
  • Current density 20 to 58 A / dm 2 Time: 1 to 10 seconds
  • the roughened particle layer may be formed by one or more treatments.
  • the coating layer is formed on the roughened particle layer under the conditions for formation of the coating lower layer (B-1), and then after formation of the coating lower layer on the condition for formation of the coating upper layer (B-2) It is preferable to form
  • the treatment of the formation of the coated lower layer and the coated upper layer is a treatment corresponding to smooth plating. Smooth plating is plating performed by setting the current density to less than the limiting current density.
  • the coating lower layer can be formed under the following conditions. In addition, the coating lower layer may not be formed.
  • (B-2) Conditions for Formation of Coated Upper Layer One example of the conditions for forming the coated upper layer is as follows. Liquid composition: 0.001 to 15 g / L of an element containing at least one selected from the group consisting of Cu 10 to 20 g / L, Zn, Ni, Co, Cr, W, and Fe pH: 2 to 3 Liquid temperature: 30 to 50 ° C Current density: 0.5 to 20 A / dm 2 Time: 0.1 to 300 seconds
  • the coated lower layer and the coated upper layer may be formed by one or more treatments.
  • an anticorrosion layer in particular, an anticorrosion layer of a chromate layer may be formed on the copper foil substrate, the roughening particle layer, or the covering layer.
  • a preferred rustproofing treatment is a coating treatment of chromium oxide alone or a mixture coating treatment of chromium oxide and zinc / zinc oxide.
  • a mixture film treatment of chromium oxide and zinc / zinc oxide is zinc consisting of zinc or zinc oxide and chromium oxide by electroplating using a plating bath containing zinc salt or zinc oxide and chromate. It is the process which coats the rustproof layer of the chromium base mixture.
  • At least one kind of dichromate such as K 2 Cr 2 O 7 , Na 2 Cr 2 O 7 or CrO 3 and the like, a water-soluble zinc salt such as ZnO, ZnSO 4 ⁇ 7H
  • Typical plating bath compositions and examples of electrolysis conditions are as follows. In the following, the conditions for electrolytic chromate treatment are shown, but immersion chromate treatment may be used.
  • Plating conditions for forming an anticorrosive layer Solution composition 1 to 10 g / L of potassium dichromate, 0 to 5 g / L of zinc pH: 3 to 4 Liquid temperature: 50 to 60 ° C Current density: 0 to 2 A / dm 2 (for electrolytic chromate treatment) Time: 1 to 10 seconds
  • a polymer film is formed on one of the main surfaces of a copper foil substrate. Furthermore, it is preferable to form a polymer film on the plating treatment layer or to form a polymer film on the rustproof layer.
  • any of spray coating of a coating solution containing a polymer, coating with a coater, immersion, and flow casting may be used.
  • the thickness of the polymer film is adjusted to 0.1 to 10 ⁇ m by adjusting the solid content concentration and the coating amount. After this, if necessary, an annealing treatment may be applied for the purpose of improving the ductility of the copper foil.
  • the heat radiating member provided with the copper foil for heat radiation which concerns on this embodiment can be used in order to thermally radiate with respect to the heat generating member incorporated in mobile apparatuses, such as a smart phone and a tablet PC, for example.
  • Example 1 A polymer film was formed on one of the main surfaces of a 12 ⁇ m thick rolled copper foil (JX Metals Corporation, TPC foil) under the condition range shown below.
  • the application conditions are as follows.
  • Non-contact roughness measuring machine laser microscope, surface roughness Ra (arithmetic mean roughness) and surface roughness Rz (maximum height roughness) of the roughened particle layer side surface of the sample of each example and comparative example It measured using Olympus LEXT OLS 4000).
  • the laser wavelength of the measuring instrument is 405 nm, and the magnification of the built-in lens is 20 times.
  • Ra and Rz were arbitrarily measured at five places, and the average value of the five places of Ra and Rz was taken as the values of Ra and Rz.
  • Ra and Rz were measured similarly to the above-mentioned with respect to the surface of the side scheduled to be roughened of the copper foil base material before the roughening process used in each Example and comparative example.
  • the measurement of Ra and Rz was performed in the TD direction (the width direction, that is, the direction perpendicular to the rolling direction of the copper foil substrate).
  • the settings of the main items of the measurement conditions and the analysis conditions are as follows.
  • the surface area of the plated surface was measured using a non-contact roughness measuring machine (laser microscope, LEXT OLS 4000 manufactured by Olympus).
  • the surface area B of the plated surface with respect to the projected area A of the plated surface was used as the surface area ratio B / A.
  • the surface area of the plating process layer was measured before apply
  • the settings of the main items of the measurement conditions and the analysis conditions are as follows. ⁇ Measurement conditions> The same conditions as those for measuring the surface roughness Ra and Rz described above.
  • the projected area A of the plating treated surface is 16923 ⁇ m 2 by setting the measurement range to 130 ⁇ m in width ⁇ 130 ⁇ m in height.
  • Measurement environment temperature 23 to 25 ° C ⁇ Analysis condition>
  • the threshold setting the histogram, the threshold 1: 0%, and the threshold 2: 100% were used.
  • the thickness of the heat-dissipating copper foil obtained in Example 1 was measured with a gauge thickness measuring instrument (Dr. Ono, Digital Counter DG-1270), and the thickness of the rolled copper foil was determined from the average value of the three points. The thickness of the polymer film was calculated by subtracting (12 ⁇ m).
  • thermography Chino CPA- 0150J
  • a laminate comprising, from the bottom, a heat insulating material 10, a heater 20, an adhesive (Toagosei Co., Ltd., Aron Alpha (registered trademark)) 30, a SUS plate 40, grease 50 for heat dissipation, and copper foil 60 for heat dissipation.
  • a body 1 was made, and this laminate 1 was placed in an enclosure (not shown) made of a heat insulating member.
  • a black body tape 70 with an emissivity of 0.9 was disposed on the heat radiation copper foil 60 of the laminate so as to cover an area approximately half of the heat radiation copper foil 60.
  • the heater 20 is heated by applying a direct current (current: 0.3 A, voltage 4.0 V), and the display temperature of the area covered with the black body tape 70 of the laminate 1 by the infrared thermography 100 is 88.0 ° C. It was heated to become.
  • the display temperature of the portion of the copper foil 60 for heat dissipation of the laminate 1 was measured using the infrared thermography 100 with the area covered with the black body tape 70 as a reference (88.degree. C.).
  • the infrared thermography 100 detects infrared energy emitted from the sample surface, and uses it as a display temperature.
  • the copper for heat dissipation is compared by comparing the temperature for displaying thermography of the copper foil for heat dissipation obtained in Example 1 on the basis of the temperature for displaying the thermography of black body tape whose emissivity is known as described above.
  • the heat radiation of the foil was evaluated.
  • Table 1 the fact that the thermographic display temperature is close to 88.0 ° C. as a reference indicates that the emissivity is high. That is, it shows that the ability to emit infrared rays is excellent and the heat dissipation characteristics are good.
  • Example 2 The solvent used to form the (A) polymer film is prepared in an aqueous solution of 8% by mass of PVA on one of the main surfaces of a 12 ⁇ m thick rolled copper foil (JX Metals Corporation, TPC foil), and the thickness of the polymer film is prepared A polymer film was formed in the same manner as in Example 1 except that the thickness was changed to 2.5 ⁇ m.
  • the thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil.
  • the results are shown in Table 1.
  • the surface roughness Ra and Rz of the surface to be plated and the surface area ratio are the values of the heat-dissipating copper foil of Example 1.
  • Example 3 The solvent used to form the (A) polymer film is prepared in an aqueous solution of 8% by mass of PVA on one of the main surfaces of a 12 ⁇ m thick rolled copper foil (JX Metals Corporation, TPC foil), and the thickness of the polymer film is prepared A polymer film was formed in the same manner as in Example 1 except that the thickness was changed to 3.5 ⁇ m.
  • the thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil.
  • the results are shown in Table 1.
  • the surface roughness Ra and Rz of the surface to be plated and the surface area ratio are the values of the heat-dissipating copper foil of Example 1.
  • Example 4 A solvent to be used to form the (A) polymer film is prepared as a 10% by mass aqueous solution of PVA on one of the main surfaces of a 12 ⁇ m thick rolled copper foil (JX Metals Corporation, TPC foil), and the thickness of the polymer film is prepared A polymer film was formed in the same manner as in Example 1 except that the thickness was changed to 5.0 ⁇ m.
  • the thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil.
  • the results are shown in Table 1.
  • the surface roughness Ra and Rz of the surface to be plated and the surface area ratio are the values of the heat-dissipating copper foil of Example 1.
  • Example 5 Roughened particle layer (Cu), coating layer (Cu-Ni-Co, Ni) on the main surface of one of the 12 ⁇ m thick rolled copper foils (JX Metals Corporation, TPC foil) under the conditions shown below And Co), and a polymer film (PVA) in this order.
  • the bath composition and plating conditions used and the formation conditions of the polymer film are as follows.
  • the thickness of the copper foil (roughened particle layer and covering layer) obtained before forming the polymer film and the copper foil for heat dissipation obtained in Example 5 were measured at three points with a gauge thickness measuring device. The average value of the three points was calculated respectively. Subsequently, the average value of the thickness of the said copper foil was deducted from the average value of the thickness of the said copper foil for thermal radiation, and the thickness (average thickness) of the polymer film was computed.
  • Example 6 A solvent used to form a (E) polymer film is prepared as a 10% by mass aqueous solution of PVA on one of the main surfaces of a 12 ⁇ m thick rolled copper foil (JX Metals Corporation, HA-V2 foil), and the polymer film is prepared.
  • the roughened particle layer (Cu), the coating layer (Cu-Ni-Co, Ni-Co), and the polymer film (PVA) are the same as in Example 5 except that the thickness of the layer is changed to 5.0 ⁇ m. It formed.
  • the thickness of the polymer film, the thermographic display temperature and the powder removal were evaluated for the obtained heat-dissipating copper foil.
  • the results are shown in Table 1.
  • the surface area ratio of the plated surface is the value of the heat-dissipating copper foil of Example 5.
  • Example 7 A roughened particle layer (Cu) and a covering layer (Cu-Ni-Co) on the main surface of one of the 12 ⁇ m thick rolled copper foils (JX Metals Corporation, HA-V2 foil) under the conditions shown below , Ni-Co), an anticorrosive layer, and a polymer film (PVA) in this order.
  • the bath composition and plating conditions used and the formation conditions of the polymer film are as follows.
  • the thickness of the copper foil (roughened particle layer, covering layer, and rustproof layer) obtained before forming the polymer film and the copper foil for heat dissipation obtained in Example 7 were measured using a gauge thickness measuring device. Three points were measured respectively, and the average value of the three points was calculated. Subsequently, the average value of the thickness of the said copper foil was deducted from the average value of the thickness of the said copper foil for thermal radiation, and the thickness (average thickness) of the polymer film was computed.
  • the surface roughness ratio Ra and Rz and the surface area ratio were evaluated for the plating treated surface of the coating layer. Further, the thickness of the polymer film, the thermographic display temperature and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1.
  • Example 8 A solvent used to form a (G) polymer film is prepared as a 6% by mass aqueous solution of PVA on one of the main surfaces of a 12 ⁇ m thick rolled copper foil (JX Metals Corporation, HA-V2 foil), and the polymer film is prepared The roughened particle layer (Cu), the coating layer (Cu-Ni-Co, Ni-Co), the rustproof layer, and the polymer film (the same as in Example 7 except that the thickness of the coating was changed to 1.5 .mu.m) It formed in order of PVA).
  • the thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1.
  • the surface roughness Ra and Rz of the plating treated surface and the surface area ratio are the values of the heat-dissipating copper foil of Example 7.
  • Example 9 A solvent used to form a (G) polymer film is prepared as an aqueous solution of 8% by mass of PVA on one of the main surfaces of a 12 ⁇ m thick rolled copper foil (JX Metals Corporation, HA-V2 foil), and the polymer film is prepared The roughened particle layer (Cu), the coating layer (Cu-Ni-Co, Ni-Co), the rustproof layer, and the polymer film (the same as in Example 7 except that the thickness of the coating was changed to 2.0 ⁇ m) It formed in order of PVA).
  • the thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1.
  • the surface roughness Ra and Rz of the plating treated surface and the surface area ratio are the values of the heat-dissipating copper foil of Example 7.
  • Example 10 A solvent used to form a (G) polymer film is prepared as an aqueous solution of 8% by mass of PVA on one of the main surfaces of a 12 ⁇ m thick rolled copper foil (JX Metals Corporation, HA-V2 foil), and the polymer film is prepared The roughened particle layer (Cu), the coating layer (Cu-Ni-Co, Ni-Co), the rustproof layer, and the polymer film (the same as in Example 7 except that the thickness of the coating was changed to 2.5 ⁇ m) It formed in order of PVA).
  • the thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1.
  • the surface roughness Ra and Rz of the plating treated surface and the surface area ratio are the values of the heat-dissipating copper foil of Example 7.
  • Example 11 A solvent used to form a (G) polymer film is prepared as a 10% by mass aqueous solution of PVA on one of the main surfaces of a 12 ⁇ m thick rolled copper foil (JX Metals Corporation, HA-V2 foil), and the polymer film is prepared The roughened particle layer (Cu), the coating layer (Cu-Ni-Co, Ni-Co), the rustproof layer, and the polymer film (the same as in Example 7 except that the thickness of the coating was changed to 3.0 ⁇ m) It formed in order of PVA).
  • the thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1.
  • the surface roughness Ra and Rz of the plating treated surface and the surface area ratio are the values of the heat-dissipating copper foil of Example 7.
  • Comparative Example 1 The surface roughness Ra and Rz, the surface area ratio, the thermographic display temperature, and the powder removal were evaluated for the rolled copper foil (JX Metals Corporation, TPC foil) used in Example 1. The results are shown in Table 1.
  • Comparative Example 2 Roughened particle layer (Cu) and coating layer (Cu-Ni-Co, Ni) on the main surface of one of the 12 ⁇ m thick rolled copper foils (JX Metals Co., Ltd., TPC foil) under the conditions shown below Formed in the order of -Co).
  • the bath composition and plating conditions used are as follows.
  • thermographic display temperature The surface area ratio, the thermographic display temperature, and the powder loss were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1.
  • Comparative Example 3 A roughened particle layer (Cu) and a covering layer (Cu-Ni-Co) on the main surface of one of the 12 ⁇ m thick rolled copper foils (JX Metals Corporation, HA-V2 foil) under the conditions shown below , Ni-Co), and an anticorrosion layer in this order.
  • the bath composition and plating conditions used are as follows.
  • thermographic display temperature evaluation of the thermographic display temperature and the powder removal was performed. The results are shown in Table 1.
  • the surface roughness Ra and Rz of the plating treated surface and the surface area ratio are the values of the heat-dissipating copper foil of Example 7.
  • Example 1 to 11 it was confirmed that the heat from the heating element was dissipated favorably by having the polymer film. Further, in Examples 2 to 4, 6 and 9 to 11, it was confirmed that the heat from the heating element was dissipated more favorably because the thickness of the polymer film was 2.0 ⁇ m or more. Furthermore, in Examples 5 to 11, by having the polymer film on the coating layer made of Ni—Co, it was confirmed that the heat from the heat generating body was dissipated more favorably, and the evaluation of powder removal was also satisfactory .
  • the heat dissipating member using the heat dissipating copper foil according to the embodiment of the present invention is excellent in heat dissipating characteristics. As a result, as the development of electronic devices progresses, there is provided a useful technology that does not cause a defect or the like due to the heat generation of the electronic component to be used according to the requirements such as miniaturization and high functionality.

Abstract

Provided is a copper foil for heat dissipation, which has excellent heat dissipation characteristics. A copper foil for heat dissipation, which comprises a copper foil base material and a polymer film that is arranged on at least one main surface of the copper foil base material.

Description

放熱用銅箔及び放熱部材Heat dissipation copper foil and heat dissipation member
 本発明は、放熱用銅箔及び放熱部材に関する。 The present invention relates to a copper foil for heat dissipation and a heat dissipation member.
 近年、電子機器の小型化、高精細化に伴い、使用される電子部品の発熱による故障等が問題となっている。従来、このような電子機器における部品の熱を放出するための手段が種々研究・開発されている(特許文献1等)。 2. Description of the Related Art In recent years, with the miniaturization and high definition of electronic devices, failure due to heat generation of electronic components used has become a problem. Heretofore, various means for releasing the heat of parts in such electronic devices have been researched and developed (Patent Document 1 etc.).
特開平08-078461号公報Unexamined-Japanese-Patent No. 08-078461 gazette
 電子機器の実装基板は、通常、使用によって発熱する部品を有しているが、当該部品の熱を良好に放出できなければ故障するおそれがある。 The mounting substrate of the electronic device usually has a component that generates heat due to use, but if the heat of the component can not be well released, there is a risk of failure.
 そこで、本発明の実施形態は、優れた放熱特性を有する放熱用銅箔及び放熱部材を提供することを課題とする。 Then, embodiment of this invention makes it a subject to provide the copper foil for thermal radiation which has the outstanding thermal radiation characteristic, and a thermal radiation member.
 すなわち、本発明に係る放熱用銅箔の一実施形態において、銅箔基材と、前記銅箔基材の少なくともいずれかの主表面の上にポリマー膜とを有する。 That is, in one embodiment of the copper foil for heat dissipation according to the present invention, it has a copper foil base and a polymer film on at least one of the main surfaces of the copper foil base.
 本発明に係る放熱用銅箔の一実施形態において、前記ポリマー膜の厚さが、0.1μm~10μmである。 In one embodiment of the copper foil for heat dissipation according to the present invention, the thickness of the polymer film is 0.1 μm to 10 μm.
 本発明に係る放熱用銅箔の一実施形態において、前記ポリマー膜の厚さが、0.5μm~8μmである。 In one embodiment of the copper foil for heat dissipation according to the present invention, the thickness of the polymer film is 0.5 μm to 8 μm.
 本発明に係る放熱用銅箔の一実施形態において、前記ポリマー膜の厚さが、1μm~5μmである。 In one embodiment of the copper foil for heat dissipation according to the present invention, the thickness of the polymer film is 1 μm to 5 μm.
 本発明に係る放熱用銅箔の一実施形態において、前記ポリマー膜は、繰り返し単位中に少なくとも1種のヘテロ原子を有するポリマーを含む。 In one embodiment of the heat-dissipating copper foil according to the present invention, the polymer film contains a polymer having at least one hetero atom in the repeating unit.
 本発明に係る放熱用銅箔の一実施形態において、前記ポリマーは、カルボニル基、カルボキシル基、エーテル基、エポキシ基、ヒドロキシル基、及びハロゲンからなる群から選択される少なくとも1種を前記繰り返し単位中に含む。 In one embodiment of the copper foil for heat dissipation according to the present invention, the polymer contains at least one member selected from the group consisting of a carbonyl group, a carboxyl group, an ether group, an epoxy group, a hydroxyl group, and a halogen in the repeating unit Included in
 本発明に係る放熱用銅箔の一実施形態において、前記ポリマーは、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルアルコール樹脂、セルロース樹脂、エポキシ樹脂、ナイロン樹脂、ポリエーテル樹脂、及びフッ素樹脂からなる群から選択される少なくとも1種を含む。 In one embodiment of the copper foil for heat dissipation according to the present invention, the polymer is selected from the group consisting of polyester resin, polycarbonate resin, polyvinyl alcohol resin, cellulose resin, epoxy resin, nylon resin, polyether resin, and fluorine resin. At least one species.
 本発明に係る放熱用銅箔の一実施形態において、前記ポリマーは、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、アセチルセルロース、トリアセチルセルロース、セロファン、ビスフェノールA型エポキシ樹脂、ポリカプロアミド、ポリドデカンプロアミド、ポリエチレンオキシド、ポリプロピレンオキシド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、及びポリテトラフルオロエチレンからなる群から選択される少なくとも1種を含む。 In one embodiment of the copper foil for heat dissipation according to the present invention, the polymer is polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, acetyl cellulose, triacetyl cellulose, cellophane, bisphenol A epoxy resin, polycaproamide, poly At least one selected from the group consisting of dodecaneproamide, polyethylene oxide, polypropylene oxide, polytetrafluoroethylene, polyvinylidene fluoride, and polytetrafluoroethylene.
 本発明に係る放熱用銅箔の一実施形態において、前記銅箔基材の少なくともいずれかの主表面の上には、めっき処理層を有し、前記めっき処理層の上には、前記ポリマー膜を有する。 In one embodiment of the copper foil for heat dissipation according to the present invention, a plating treatment layer is provided on at least one of the main surfaces of the copper foil substrate, and the polymer film is provided on the plating treatment layer. Have.
 本発明に係る放熱用銅箔の一実施形態において、前記めっき処理層のめっき処理面の表面粗さRaが0.30~1.50である。 In one embodiment of the copper foil for heat release according to the present invention, the surface roughness Ra of the plating treated surface of the plating treated layer is 0.30 to 1.50.
 本発明に係る放熱用銅箔の一実施形態において、前記めっき処理層のめっき処理面の表面粗さRzが2.50~9.50である。 In one embodiment of the copper foil for heat dissipation according to the present invention, the surface roughness Rz of the plating treated surface of the plating treated layer is 2.50 to 9.50.
 本発明に係る放熱用銅箔の一実施形態において、前記めっき処理層は、粗化粒子層を有する。 In one embodiment of the copper foil for heat dissipation according to the present invention, the plating treatment layer has a roughened particle layer.
 本発明に係る放熱用銅箔の一実施形態において、前記めっき処理層は、前記粗化粒子層の上に被覆層を有する。 In one embodiment of the copper foil for heat dissipation according to the present invention, the plating treatment layer has a coating layer on the roughening particle layer.
 本発明に係る放熱用銅箔の一実施形態において、前記被覆層は、Cu、Zn、Ni、Co、Cr、W、及びFeからなる群から選択される少なくとも1種を含む。 In one embodiment of the copper foil for heat dissipation according to the present invention, the covering layer contains at least one selected from the group consisting of Cu, Zn, Ni, Co, Cr, W, and Fe.
 本発明に係る放熱用銅箔の一実施形態において、前記被覆層は、Co及びNiを含む。 In one embodiment of the copper foil for heat dissipation according to the present invention, the covering layer contains Co and Ni.
 本発明に係る放熱用銅箔の一実施形態において、前記被覆層は、被覆下層と該被覆下層の上に被覆上層とを有し、前記被覆下層が、Cu、Co、及びNiを含み、前記被覆上層が、Co及びNiを含む。 In one embodiment of the copper foil for heat dissipation according to the present invention, the covering layer has a covering lower layer and a covering upper layer on the covering lower layer, and the covering lower layer contains Cu, Co, and Ni, The coated upper layer contains Co and Ni.
 本発明に係る放熱用銅箔の一実施形態において、前記被覆層の厚さが、0.001μm~1.0μmである。 In one embodiment of the copper foil for heat dissipation according to the present invention, the thickness of the covering layer is 0.001 μm to 1.0 μm.
 本発明に係る放熱用銅箔の一実施形態において、前記被覆層の厚さが、0.002μm~0.5μmである。 In one embodiment of the copper foil for heat dissipation according to the present invention, the thickness of the covering layer is 0.002 μm to 0.5 μm.
 本発明に係る放熱用銅箔の一実施形態において、前記被覆層の厚さが、0.005μm~0.3μmである。 In one embodiment of the copper foil for heat dissipation according to the present invention, the thickness of the covering layer is 0.005 μm to 0.3 μm.
 また、本発明に係る放熱部材の一実施形態において、上述した放熱用銅箔を備える。 Moreover, in one Embodiment of the thermal radiation member which concerns on this invention, the copper foil for thermal radiation mentioned above is provided.
 本発明の実施形態によれば、優れた放熱特性を有する放熱用銅箔を提供することができる。 According to the embodiment of the present invention, it is possible to provide a copper foil for heat dissipation having excellent heat dissipation characteristics.
実施例1~11及び比較例1~3におけるサーモグラフィ表示温度の評価方法を示す断面模式図である。It is a cross-sectional schematic diagram which shows the evaluation method of the thermographic display temperature in Examples 1-11 and Comparative Examples 1-3.
 以下、本発明は各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素からいくつかの構成要素を削除してもよい。更に、異なる実施形態の構成要素を適宜組み合わせてもよい。 Hereinafter, the present invention is not limited to the embodiments, and the components can be modified and embodied without departing from the scope of the invention. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in each embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, the components of the different embodiments may be combined as appropriate.
 近年、スマートフォンやタブレットPC等のモバイル機器が盛んに開発されているが、さらに高集積化し高出力になっている基板を小型化する機器に搭載され、放熱性の問題がクローズアップされている。そこで、本発明者らは、鋭意検討した結果、銅箔基材の少なくともいずれかの主表面の上にポリマー膜を有することにより、銅箔の放熱特性が向上することを見出した。
 以下、本発明の一実施形態に係る放熱用銅箔について説明する。
In recent years, mobile devices such as smartphones and tablet PCs have been actively developed, but the problem of heat dissipation has been highlighted by being mounted in devices that miniaturize a substrate that is highly integrated and has a high output. Therefore, as a result of intensive studies, the present inventors have found that the heat dissipation characteristics of the copper foil are improved by having the polymer film on at least one of the main surfaces of the copper foil substrate.
Hereinafter, the copper foil for heat dissipation concerning one embodiment of the present invention is explained.
 本発明の一実施形態に係る放熱用銅箔は、銅箔基材と、銅箔基材の少なくともいずれかの主表面の上にポリマー膜とを有する。本実施形態によれば、ポリマー膜を有することにより、優れた放熱特性を有する。 The heat-dissipating copper foil according to an embodiment of the present invention has a copper foil base and a polymer film on at least one of the main surfaces of the copper foil base. According to the present embodiment, by having the polymer film, it has excellent heat dissipation characteristics.
 (銅箔基材)
 本実施形態に用いることのできる銅箔基材の形態に特に制限はない。また、典型的には本実施形態において使用する銅箔基材は、電解銅箔或いは圧延銅箔いずれであっても良い。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。屈曲性が要求される用途には圧延銅箔を適用することが多い。なお、本明細書において用語「銅箔基材」を単独で用いたときには銅合金箔基材も含むものとする。銅箔基材の厚さは、製造時に例えばシワ等が入らないよう1μm以上が好ましい。ただし、スマートフォンやタブレットPC等薄型・小型化の仕様を考慮し、20μm以下が好ましい。
(Copper foil base material)
There is no restriction | limiting in particular in the form of the copper foil base | substrate which can be used for this embodiment. Also, typically, the copper foil base used in the present embodiment may be either an electrolytic copper foil or a rolled copper foil. Generally, an electrolytic copper foil is manufactured by electrolytically depositing copper on a drum of titanium or stainless steel from a copper sulfate plating bath, and a rolled copper foil is manufactured by repeating plastic working and heat treatment by rolling rolls. Rolled copper foil is often applied to applications where flexibility is required. In addition, when the term "copper foil base material" is used independently in this specification, a copper alloy foil base material shall also be included. The thickness of the copper foil substrate is preferably 1 μm or more so that, for example, wrinkles and the like do not enter at the time of production. However, in consideration of thin and compact specifications such as smartphones and tablet PCs, 20 μm or less is preferable.
 (ポリマー膜)
 本実施形態では、熱放射性を向上させるために、ポリマー膜は、繰り返し単位中に少なくとも1種のヘテロ原子を有するポリマーを含むことが好ましい。これは、熱放射特性と塗膜中の樹脂の化学構造とは密接な関係があり、幅広く強い赤外吸収ピークを多く示すポリマーの放射率が高くなると考えられる。
(Polymer film)
In the present embodiment, in order to improve heat radiation, the polymer film preferably contains a polymer having at least one hetero atom in the repeating unit. It is believed that this is closely related to the heat radiation characteristics and the chemical structure of the resin in the coating film, and the emissivity of the polymer exhibiting many broad and strong infrared absorption peaks is high.
 ポリマーは、幅広く強い赤外吸収ピークを多く示すものとして、カルボニル基、カルボキシル基、エーテル基、エポキシ基、ヒドロキシル基、及びハロゲンからなる群から選択される少なくとも1種を繰り返し単位中に含むことが好ましい。このポリマーとしては、幅広く強い赤外吸収ピークを多く示す化学構造を有するポリマーであれば特に限定されないが、例えば、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルアルコール樹脂(PVA)、セルロース樹脂、エポキシ樹脂、ナイロン樹脂、ポリエーテル樹脂、及びフッ素樹脂が挙げられる。 The polymer may contain at least one member selected from the group consisting of a carbonyl group, a carboxyl group, an ether group, an epoxy group, a hydroxyl group, and a halogen in a repeating unit as exhibiting many broad and strong infrared absorption peaks. preferable. This polymer is not particularly limited as long as it is a polymer having a chemical structure exhibiting many broad and strong infrared absorption peaks, but, for example, polyester resin, polycarbonate resin, polyvinyl alcohol resin (PVA), cellulose resin, epoxy resin, nylon resin , Polyether resins, and fluorocarbon resins.
 ポリエステル樹脂としては特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等が挙げられる。
 ポリカーボネート樹脂としては特に限定されないが、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)から製造されたものが挙げられる。
 ポリビニルアルコール樹脂は、ポリ酢酸ビニルのケン化物を指す。
 セルロース樹脂としては特に限定されないが、例えば、アセチルセルロース、トリアセチルセルロース、セロファン等が挙げられる。
 エポキシ樹脂としては特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂等が挙げられる。
 ナイロン樹脂としては特に限定されないが、例えば、ポリカプロアミド(ナイロン6)、ポリドデカンプロアミド(ナイロン10)等が挙げられる。
 ポリエーテル樹脂としては特に限定されないが、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等が挙げられる。
 フッ素樹脂としては特に限定されないが、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等が挙げられる。
The polyester resin is not particularly limited, and examples thereof include polyethylene terephthalate, polybutylene terephthalate and polytrimethylene terephthalate.
The polycarbonate resin is not particularly limited, and examples thereof include those produced from 2,2-bis (4-hydroxyphenyl) propane (bisphenol A).
Polyvinyl alcohol resin refers to a saponified polyvinyl acetate.
The cellulose resin is not particularly limited, and examples thereof include acetyl cellulose, triacetyl cellulose, cellophane and the like.
Although it does not specifically limit as an epoxy resin, For example, bisphenol-A epoxy resin etc. are mentioned.
The nylon resin is not particularly limited, and examples thereof include polycaproamide (nylon 6) and polydodecaneproamide (nylon 10).
The polyether resin is not particularly limited, and examples thereof include polyethylene oxide and polypropylene oxide.
The fluorine resin is not particularly limited, and examples thereof include polytetrafluoroethylene, polyvinylidene fluoride, polytetrafluoroethylene and the like.
 ポリマー膜の厚さは、熱放射性を向上させるため、0.1μm以上が好ましく、0.5μm以上がより好ましく、1μm以上がさらに好ましく、2μm以上がさらにより好ましい。ただし、スマートフォンやタブレットPC等薄型・小型化の仕様を考慮し、10μm以下が好ましく、8μm以下がより好ましく、5μm以下がさらに好ましく、3μm以下がさらにより好ましい。なお、ポリマー膜の厚さとは、ポリマー膜の平均厚さをいう。 The thickness of the polymer film is preferably 0.1 μm or more, more preferably 0.5 μm or more, still more preferably 1 μm or more, and still more preferably 2 μm or more, in order to improve heat radiation. However, in consideration of thin and compact specifications such as smartphones and tablet PCs, 10 μm or less is preferable, 8 μm or less is more preferable, 5 μm or less is more preferable, and 3 μm or less is still more preferable. The thickness of the polymer film refers to the average thickness of the polymer film.
 ポリマー膜の厚さの計測方法として、測定器による方法の一例を以下で説明する。
 まず、銅箔基材の厚みをゲージ厚測定器により3点以上測定し、その3点以上の平均値を算出する。次に、前記銅箔基材の上にポリマー膜を有する放熱用銅箔を用意する。そして、放熱用銅箔の厚さをゲージ厚測定器により3点以上測定し、その3点以上の平均値を算出する。放熱用銅箔の厚さの平均値から、前述した銅箔基材の厚さの平均値を差し引き、ポリマー膜の厚さ(平均厚さ)を算出する。
 また、放熱用銅箔が、銅箔基材の主表面の上に粗化粒子層及びポリマー膜、又は粗化粒子層、被覆層、及びポリマー膜を有する場合には、下記となる。まず、銅箔基材の主表面の上に粗化粒子層、又は粗化粒子層及び被覆層が形成される銅箔の厚みをゲージ厚測定器により3点以上測定し、その3点以上の平均値を算出する。次に、銅箔基材の主表面の上に粗化粒子層及びポリマー膜、又は粗化粒子層、被覆層、及びポリマー膜を有する放熱用銅箔を用意する。そして、放熱用銅箔の厚さをゲージ厚測定器により3点以上測定し、その3点以上の平均値を算出する。放熱用銅箔の厚さの平均値から、前述した銅箔の厚さの平均値を差し引き、ポリマー膜の厚さ(平均厚さ)を算出する。
As a method of measuring the thickness of the polymer film, an example of a method using a measuring instrument will be described below.
First, the thickness of the copper foil substrate is measured at three or more points by a gauge thickness measuring instrument, and the average value of the three or more points is calculated. Next, a copper foil for heat dissipation having a polymer film on the copper foil base is prepared. Then, the thickness of the heat-dissipating copper foil is measured at three or more points by a gauge thickness measuring instrument, and the average value of the three or more points is calculated. The average value of the thickness of the copper foil substrate described above is subtracted from the average value of the thickness of the copper foil for heat dissipation to calculate the thickness (average thickness) of the polymer film.
Moreover, when the copper foil for thermal radiation has a roughening particle layer and a polymer film, or a roughening particle layer, a coating layer, and a polymer film on the main surface of a copper foil base material, it becomes the following. First, measure the thickness of the roughened particle layer, or the copper foil on which the roughened particle layer and the covering layer are formed on the main surface of the copper foil substrate with a gauge thickness measuring device at three or more points, Calculate the average value. Next, a heat-dissipating copper foil having a roughened particle layer and a polymer film, or a roughened particle layer, a covering layer, and a polymer film is prepared on the main surface of the copper foil substrate. Then, the thickness of the heat-dissipating copper foil is measured at three or more points by a gauge thickness measuring instrument, and the average value of the three or more points is calculated. The average value of the thickness of the copper foil described above is subtracted from the average value of the thickness of the copper foil for heat dissipation to calculate the thickness (average thickness) of the polymer film.
 また、本実施形態では、銅箔基材とポリマー膜との密着性を向上させるために、銅箔基材の上に、防錆層を形成しても良く、更にその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。防錆層、シランカップリング処理としては公知のものを用いることができる。 Further, in the present embodiment, in order to improve the adhesion between the copper foil base and the polymer film, an anticorrosive layer may be formed on the copper foil base, and further, chromate treatment on the surface, silane Processing such as coupling processing may be performed. A well-known thing can be used as a rustproof layer and a silane coupling process.
 (めっき処理層)
 本実施形態では、銅箔基材の少なくともいずれかの主表面の上に、めっき処理層をさらに有し、めっき処理層の上には、ポリマー膜を有することが好ましい。
(Plating treatment layer)
In the present embodiment, it is preferable to further have a plated layer on at least one of the main surfaces of the copper foil base and to have a polymer film on the plated layer.
 本実施形態では、めっき処理層のめっき処理面の表面粗さRaが、発熱体からの熱を良好に放熱するため、0.30以上が好ましく、0.40以上がより好ましく、0.45以上がさらにより好ましい。ただし、粗化粒子が外力により脱落しにくくするためには、1.50以下が好ましく、1.30以下がより好ましく、1.20以下がさらにより好ましい。なお、表面粗さRaは、JIS B 0601:2013に記載の算術平均粗さを示す。 In the present embodiment, the surface roughness Ra of the plating treated surface of the plating treated layer is preferably 0.30 or more, more preferably 0.40 or more, and preferably 0.45 or more, in order to properly dissipate the heat from the heat generator. Is even more preferred. However, in order to make it difficult for the roughening particles to drop off due to external force, 1.50 or less is preferable, 1.30 or less is more preferable, and 1.20 or less is even more preferable. In addition, surface roughness Ra shows the arithmetic mean roughness as described in JIS B 0601: 2013.
 また、本実施形態では、めっき処理面の表面粗さRzが、発熱体からの熱を良好に放熱するため、2.50以上であることが好ましく、3.00以上がより好ましく、3.72以上がさらにより好ましい。ただし、外力により粗化粒子が脱落しにくくするためには、9.50以下であることが好ましく、8.00以下がより好ましく、7.74以下がさらにより好ましい。なお、表面粗さRzは、JIS B 0601:2013に記載の最大高さ粗さを示す。 Further, in the present embodiment, the surface roughness Rz of the surface to be plated is preferably 2.50 or more, more preferably 3.00 or more, in order to dissipate the heat from the heating element well. The above is even more preferable. However, in order to make it difficult for the roughening particles to fall off by an external force, it is preferably 9.50 or less, more preferably 8.00 or less, and still more preferably 7.74 or less. In addition, surface roughness Rz shows the largest height roughness as described in JIS B 0601: 2013.
 本実施形態では、めっき処理層のめっき処理面を、レーザー顕微鏡を用いて測定した場合に、めっき処理面の投影面積Aに対するめっき処理面の表面積Bの表面積比B/Aは、特に制限されない。例えば、めっき処理層の熱放射性をさらに向上させるため、表面積比B/Aは、1.42以上が好ましく、1.60以上がより好ましく、1.81以上がさらに好ましく、2.18以上がさらにより好ましく、2.35以上がさらにより好ましい。ただし、表面積比B/Aが高いと、めっき処理層が熱放射性に優れているにもかかわらず、外力により粗化粒子が脱落し易くなる場合があるので、表面積比B/Aは、3.42以下が好ましく、3.25以下がより好ましく、3.10以下がさらに好ましく、2.98以下がさらにより好ましく、2.88以下がさらにより好ましい。 In the present embodiment, the surface area ratio B / A of the surface area B of the plated surface to the projected area A of the plated surface is not particularly limited when the plated surface of the plated layer is measured using a laser microscope. For example, in order to further improve the heat radiation of the plating treatment layer, the surface area ratio B / A is preferably 1.42 or more, more preferably 1.60 or more, still more preferably 1.81 or more, and further preferably 2.18 or more. More preferably, 2.35 or more is even more preferable. However, if the surface area ratio B / A is high, the roughened particles may be easily detached by an external force despite the fact that the plated layer is excellent in heat radiation, so that the surface area ratio B / A is 3. 42 or less is preferable, 3.25 or less is more preferable, 3.10 or less is more preferable, 2.98 or less is further more preferable, and 2.88 or less is further more preferable.
 (粗化粒子層)
 本実施形態では、めっき処理層は、熱放射性を向上させるため、粗化粒子層を有することが好ましい。すなわち、本実施形態では、銅箔基材の少なくともいずれかの主表面の上に、粗化粒子層、ポリマー膜の順に形成される。なお、粗化粒子層では、粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。
(Roughened particle layer)
In the present embodiment, the plated layer preferably has a roughened particle layer in order to improve heat radiation. That is, in the present embodiment, the roughened particle layer and the polymer film are formed in this order on at least one of the main surfaces of the copper foil base material. In the roughening particle layer, the roughening treatment can be performed, for example, by forming roughening particles with copper or a copper alloy. The roughening process may be fine.
 粗化粒子層とその粗化粒子層の上にポリマー膜とを有する場合には、このポリマー膜は、粗化粒子の表面を被覆する。そうすると、粗化粒子の表面をポリマー膜で被覆することにより、ポリマー膜の表面積が増えるので、さらに熱放射性を向上させることができる。 When the roughened particle layer and the polymer film on the roughened particle layer are provided, the polymer film covers the surface of the roughened particles. In this case, by covering the surface of the roughened particles with the polymer film, the surface area of the polymer film is increased, so that the heat radiation can be further improved.
 また、粗化粒子の先端部分が折れる、又は粗化粒子が根本から剥がれ落ちる等して、一般に粉落ち現象と言われる問題が生じる場合がある。この粉落ち現象は、粗化めっき処理された粗化粒子層が熱放射性にも優れているにもかかわらず、外力により粗化粒子が脱落し易く、銅箔の作成時や使用時に「こすれ」による剥離が生じる。そこで、本実施形態では、粉落ちを抑制するために、この粗化粒子の表面をポリマー膜で被覆する。そうすると、粗化粒子の先端部分はポリマー膜により厚みが増し、粗化粒子の根本は被覆層とポリマー膜により太くなる。このように、粗化粒子層の上にポリマー膜を形成することにより、外力により粗化粒子が脱落しにくくなるので、粉落ちを抑制することができる。 In addition, the tip portion of the roughening particles may be broken or the roughening particles may peel off from the root, which may cause a problem generally referred to as a dusting phenomenon. In this powder dropping phenomenon, although the roughened plated roughened particle layer is excellent in heat radiation, the roughened particles are easily detached by an external force, and "scrub" at the time of production or use of the copper foil Peeling occurs. Therefore, in the present embodiment, the surface of the roughened particles is coated with a polymer film in order to suppress powdering. Then, the tip portion of the roughened particles is thickened by the polymer film, and the root of the roughened particles is thickened by the coating layer and the polymer film. As described above, by forming the polymer film on the roughened particle layer, the roughened particles are less likely to come off due to an external force, so powder removal can be suppressed.
 (被覆層)
 本実施形態では、めっき処理層は、粗化粒子層とその粗化粒子層の上に被覆層とを有することが好ましい。すなわち、本実施形態では、銅箔基材の少なくともいずれかの主表面の上に、粗化粒子層、被覆層、ポリマー膜の順に形成される。この被覆層は、粗化粒子の樹枝の表面を被覆する。さらに、この被覆層の上には、ポリマー膜が形成される。そのため、本実施形態では、被覆層の上にポリマー膜を有するので、被覆層とポリマー膜との相乗効果により、熱放射性がさらに向上し、粉落ち特性も向上する。
(Cover layer)
In the present embodiment, the plated layer preferably has a roughened particle layer and a covering layer on the roughened particle layer. That is, in the present embodiment, the roughened particle layer, the covering layer, and the polymer film are formed in this order on at least one of the main surfaces of the copper foil substrate. This covering layer covers the surface of the dendrite of roughening particles. Furthermore, a polymer film is formed on this covering layer. Therefore, in the present embodiment, since the polymer film is provided on the covering layer, the synergistic effect of the covering layer and the polymer film further improves the heat radiation property and also improves the dusting property.
 粗化粒子層は、銅又は銅合金で粗化粒子を形成した後、熱放射性、粉落ち、及び密着性等の観点から、更にCu、Zn、Ni、Co、Cr、W、及びFeからなる群から選択される少なくとも1種を含む被覆層を設ける平滑めっき処理を行うこともできる。例えば、粗化粒子層の上には、被覆下層とこの被覆下層の上に被覆上層とを有し、被覆下層は、Cu、Co、及びNiを含み、被覆上層は、Co及びNiを含むことが好ましい。なお、これらの金属は、被覆層の全部または一部(例えば、上部)に含まれていることが好ましい。 The roughened particle layer, after forming roughened particles with copper or copper alloy, further comprises Cu, Zn, Ni, Co, Cr, W, and Fe from the viewpoint of heat radiation, powdering, adhesion, etc. A smooth plating process can also be performed to provide a coating layer containing at least one selected from the group. For example, on the roughened particle layer, there is a coated lower layer and a coated upper layer on the coated lower layer, the coated lower layer contains Cu, Co, and Ni, and the coated upper layer contains Co and Ni. Is preferred. In addition, it is preferable that these metals are contained in all or one part (for example, upper part) of a coating layer.
 被覆層の厚さは、熱放射性を向上させるため、0.001μm以上が好ましく、0.002μm以上がより好ましく、0.005μm以上がさらに好ましく、0.01μm以上がさらにより好ましい。ただし、スマートフォンやタブレットPC等薄型・小型化の仕様を考慮し、1.0μm以下であることが好ましく、0.5μm以下がより好ましく、0.3μm以下がさらに好ましく、0.1μm以下がさらにより好ましい。なお、被覆層の厚さは、被覆層の平均厚さをいう。 The thickness of the covering layer is preferably 0.001 μm or more, more preferably 0.002 μm or more, still more preferably 0.005 μm or more, and still more preferably 0.01 μm or more, in order to improve heat radiation. However, in consideration of thin and compact specifications such as smartphones and tablet PCs, it is preferably 1.0 μm or less, more preferably 0.5 μm or less, still more preferably 0.3 μm or less, and even more preferably 0.1 μm or less preferable. The thickness of the covering layer refers to the average thickness of the covering layer.
 被覆層の厚さの計測方法として、重量計測による方法の一例を以下で説明する。
 まず、粗化粒子層及び被覆層が形成された放熱用銅箔を用意する。前記放熱用銅箔から2cm×2cmの試料を採取し、前記試料を20体積%硝酸水溶液に溶解した溶液を得る。次いで、この溶液について原子吸光分光光度計を用いて原子吸光法で定量分析を行うことによって、前記試料中の被覆層に含まれる各金属の濃度を測定し、この各金属濃度を用いて前記試料中の被覆層における各金属の重量を定量する。得られた各金属の重量と、金属の密度とから被覆層の体積を算出する。そして、得られた被覆層の体積を、試料の面積(4cm2)に測定した表面積比を乗じた値で除することにより、被覆層の厚さ(平均厚さ)を算出する。
An example of a method by weight measurement will be described below as a method of measuring the thickness of the covering layer.
First, the copper foil for heat dissipation in which the roughening particle layer and the coating layer were formed is prepared. A 2 cm × 2 cm sample is taken from the heat-dissipating copper foil, and a solution in which the sample is dissolved in a 20% by volume aqueous nitric acid solution is obtained. Then, the concentration of each metal contained in the coating layer in the sample is measured by performing quantitative analysis of the solution by atomic absorption spectrometry using an atomic absorption spectrophotometer, and the sample is measured using the concentration of each metal. Determine the weight of each metal in the overlayer. The volume of the coating layer is calculated from the weight of each metal obtained and the density of the metal. Then, the thickness (average thickness) of the coating layer is calculated by dividing the volume of the obtained coating layer by the value obtained by multiplying the area of the sample (4 cm 2 ) by the measured surface area ratio.
 また、本実施形態では、めっき処理層とポリマー膜との密着性を向上させるために、めっき処理層の上に、防錆層を形成しても良く、更にその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。防錆層、シランカップリング処理としては公知のものを用いることができる。 Further, in the present embodiment, in order to improve the adhesion between the plating layer and the polymer film, an anticorrosive layer may be formed on the plating layer, and further, chromate treatment on the surface, silane coupling Processing such as processing may be performed. A well-known thing can be used as a rustproof layer and a silane coupling process.
 次に、上述のめっき処理層を形成する際の粗化粒子層、被覆層、防錆層、ポリマー膜の各形成条件(浴組成及びめっき条件、薄膜条件)の一例を以下に示す。 Next, examples of formation conditions (bath composition and plating conditions, thin film conditions) for forming the roughened particle layer, the covering layer, the rustproof layer, and the polymer film when forming the above-mentioned plated layer are shown below.
 (A)粗化粒子層
 粗化粒子層は銅箔基材のいずれか一方の主表面の上に(A-1)粗化粒子層の形成1の条件で粗化粒子を形成することが好ましい。また、前記(A-1)粗化粒子層の形成1に加えて、(A-2)粗化粒子層の形成2の条件で粗化粒子をさらに成長させて粗化粒子層を形成されるのがより好ましい。
(A) Roughened particle layer The roughened particle layer preferably forms roughened particles on the condition 1 of formation of the roughened particle layer (A-1) on any one main surface of the copper foil substrate . Moreover, in addition to the formation 1 of the (A-1) roughening particle layer, the roughening particles are further grown under the conditions of the formation 2 of the (A-2) roughening particle layer to form a roughening particle layer Is more preferable.
 (A-1)粗化粒子層の形成1(Cuめっき)
 粗化粒子層の形成1の処理は、粗化めっき(粗めっき)に相当する処理である。粗化めっきは電流密度を限界電流密度以上に設定して行うめっきである。
 液組成  :銅10~20g/L、硫酸50~100g/L
 液温   :25~50℃
 電流密度 :20~58A/dm2
 時間   :0.5~5秒
(A-1) Formation of roughened particle layer 1 (Cu plating)
The treatment of formation 1 of the roughening particle layer is a treatment corresponding to roughening plating (rough plating). Roughening plating is plating performed by setting the current density to a limit current density or more.
Liquid composition: 10 to 20 g / L of copper, 50 to 100 g / L of sulfuric acid
Liquid temperature: 25 to 50 ° C
Current density: 20 to 58 A / dm 2
Time: 0.5 to 5 seconds
 (A-2)粗化粒子層の形成2(Cuめっき)
 粗化粒子層の形成2の処理は、粗化めっき(粗めっき)に相当する処理である。粗化めっきは電流密度を限界電流密度未満に設定して行うめっきである。
 液組成  :銅15~50g/L、硫酸60~100g/L
 液温   :25~50℃
 電流密度 :20~58A/dm2
 時間   :1~10秒
 なお、電流密度が低いほど、および/または、クーロン量が多いほど前述の表面粗さRaの低減効果が大きくなる場合がある。
 また、粗化粒子層は1回または2回以上の処理で形成してもよい。
(A-2) Formation of roughened particle layer 2 (Cu plating)
The treatment of formation 2 of the roughening particle layer is a treatment corresponding to roughening plating (rough plating). Roughening plating is plating performed by setting the current density to less than the limiting current density.
Liquid composition: 15 to 50 g / L of copper, 60 to 100 g / L of sulfuric acid
Liquid temperature: 25 to 50 ° C
Current density: 20 to 58 A / dm 2
Time: 1 to 10 seconds The lower the current density and / or the larger the amount of coulombs, the larger the effect of reducing the surface roughness Ra may be.
Also, the roughened particle layer may be formed by one or more treatments.
 (B)被覆層の形成
 被覆層は粗化粒子層の上に(B-1)被覆下層の形成の条件で被覆下層を形成した後に、(B-2)被覆上層の形成の条件で被覆上層を形成することが好ましい。被覆下層及び被覆上層の形成の処理は、いずれも平滑めっきに相当する処理である。平滑めっきは電流密度を限界電流密度未満に設定して行うめっきである。被覆下層は以下の条件で形成することができる。なお、被覆下層は形成しなくても良い。
(B) Formation of Coating Layer The coating layer is formed on the roughened particle layer under the conditions for formation of the coating lower layer (B-1), and then after formation of the coating lower layer on the condition for formation of the coating upper layer (B-2) It is preferable to form The treatment of the formation of the coated lower layer and the coated upper layer is a treatment corresponding to smooth plating. Smooth plating is plating performed by setting the current density to less than the limiting current density. The coating lower layer can be formed under the following conditions. In addition, the coating lower layer may not be formed.
 (B-1)被覆下層の形成条件
 被覆下層の形成条件の一例を挙げると、下記の通りである。
 液組成  :Cu10~20g/L、Zn、Ni、Co、Cr、W、及びFeからなる群から選択される少なくとも1種を含む元素をそれぞれ0.001~15g/L
 pH   :2~3
 液温   :30~50℃
 電流密度 :10~50A/dm2
 時間   :0.1~2秒
(B-1) Conditions for Forming a Coating Lower Layer Examples of conditions for forming a coating lower layer are as follows.
Liquid composition: 0.001 to 15 g / L of an element containing at least one selected from the group consisting of Cu 10 to 20 g / L, Zn, Ni, Co, Cr, W, and Fe
pH: 2 to 3
Liquid temperature: 30 to 50 ° C
Current density: 10 to 50 A / dm 2
Time: 0.1 to 2 seconds
 (B-2)被覆上層の形成条件
 被覆上層の形成条件の一例を挙げると、下記の通りである。
 液組成  :Cu10~20g/L、Zn、Ni、Co、Cr、W、及びFeからなる群から選択される少なくとも1種を含む元素をそれぞれ0.001~15g/L
 pH   :2~3
 液温   :30~50℃
 電流密度 :0.5~20A/dm2
 時間   :0.1~300秒
 なお、被覆下層及び被覆上層は1回または2回以上の処理で形成してもよい。
(B-2) Conditions for Formation of Coated Upper Layer One example of the conditions for forming the coated upper layer is as follows.
Liquid composition: 0.001 to 15 g / L of an element containing at least one selected from the group consisting of Cu 10 to 20 g / L, Zn, Ni, Co, Cr, W, and Fe
pH: 2 to 3
Liquid temperature: 30 to 50 ° C
Current density: 0.5 to 20 A / dm 2
Time: 0.1 to 300 seconds The coated lower layer and the coated upper layer may be formed by one or more treatments.
 (C)防錆層
 また、前記銅箔基材、前記粗化粒子層、又は前記被覆層の上に、防錆層、特にクロメート層の防錆層を形成してもよい。本実施形態において好ましい防錆処理は、クロム酸化物単独の皮膜処理またはクロム酸化物と亜鉛/亜鉛酸化物との混合物皮膜処理である。クロム酸化物と亜鉛/亜鉛酸化物との混合物皮膜処理とは、亜鉛塩または酸化亜鉛とクロム酸塩とを含むめっき浴を用いて電気めっきにより亜鉛または酸化亜鉛とクロム酸化物とよりなる亜鉛-クロム基混合物の防錆層を被覆する処理である。
(C) Anticorrosion Layer Further, an anticorrosion layer, in particular, an anticorrosion layer of a chromate layer may be formed on the copper foil substrate, the roughening particle layer, or the covering layer. In the present embodiment, a preferred rustproofing treatment is a coating treatment of chromium oxide alone or a mixture coating treatment of chromium oxide and zinc / zinc oxide. A mixture film treatment of chromium oxide and zinc / zinc oxide is zinc consisting of zinc or zinc oxide and chromium oxide by electroplating using a plating bath containing zinc salt or zinc oxide and chromate. It is the process which coats the rustproof layer of the chromium base mixture.
 めっき浴としては、代表的には、K2Cr27、Na2Cr27等の重クロム酸塩やCrO3等の少なくとも一種と、水溶性亜鉛塩、例えばZnO、ZnSO4・7H2O等少なくとも一種と、水酸化アルカリとの混合水溶液が用いられる。代表的なめっき浴組成と電解条件例は次の通りである。下記においては、電解クロメート処理の条件を示したが、浸漬クロメート処理でも良い。 As the plating bath, typically, at least one kind of dichromate such as K 2 Cr 2 O 7 , Na 2 Cr 2 O 7 or CrO 3 and the like, a water-soluble zinc salt such as ZnO, ZnSO 4 · 7H A mixed aqueous solution of at least one such as 2 O and an alkali hydroxide is used. Typical plating bath compositions and examples of electrolysis conditions are as follows. In the following, the conditions for electrolytic chromate treatment are shown, but immersion chromate treatment may be used.
 防錆層を形成するめっき条件
 液組成  :重クロム酸カリウム1~10g/L、亜鉛0~5g/L
 pH   :3~4
 液温   :50~60℃
 電流密度 :0~2A/dm2(電解クロメート処理のため)
 時間   :1~10秒
Plating conditions for forming an anticorrosive layer Solution composition: 1 to 10 g / L of potassium dichromate, 0 to 5 g / L of zinc
pH: 3 to 4
Liquid temperature: 50 to 60 ° C
Current density: 0 to 2 A / dm 2 (for electrolytic chromate treatment)
Time: 1 to 10 seconds
 (D)ポリマー膜の形成
 ポリマー膜は、銅箔基材のいずれか一方の主表面の上に形成される。さらに、めっき処理層の上にポリマー膜を形成し、または防錆層の上にポリマー膜を形成することが好ましい。
(D) Formation of Polymer Film A polymer film is formed on one of the main surfaces of a copper foil substrate. Furthermore, it is preferable to form a polymer film on the plating treatment layer or to form a polymer film on the rustproof layer.
 塗布方法としては、ポリマーを含有するコーティング液のスプレーによる吹付け、コーターでの塗布、浸漬、流しかけ等いずれでもよい。ポリマー膜の厚みが、固形分濃度や塗布量を調整して、0.1~10μmとなるようにする。この後、必要なら、銅箔の延性を改善する目的で焼鈍処理を施すこともある。 As a coating method, any of spray coating of a coating solution containing a polymer, coating with a coater, immersion, and flow casting may be used. The thickness of the polymer film is adjusted to 0.1 to 10 μm by adjusting the solid content concentration and the coating amount. After this, if necessary, an annealing treatment may be applied for the purpose of improving the ductility of the copper foil.
 本実施形態に係る放熱用銅箔を備える放熱部材は、例えば、スマートフォンやタブレットPC等のモバイル機器に内蔵される発熱部材に対して、放熱するために用いることができる。 The heat radiating member provided with the copper foil for heat radiation which concerns on this embodiment can be used in order to thermally radiate with respect to the heat generating member incorporated in mobile apparatuses, such as a smart phone and a tablet PC, for example.
 以下、実施例及び比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例のみに制限されるものではない。すなわち、本発明に含まれる他の態様または変形を包含するものである。 Hereinafter, it demonstrates based on an Example and a comparative example. The present embodiment is merely an example, and the present invention is not limited to this example. That is, it includes other aspects or modifications included in the present invention.
 <実施例1>
 12μm厚さの圧延銅箔(JX金属株式会社、TPC箔)のいずれか一方の主表面に、下記に示す条件範囲で、ポリマー膜を形成した。塗布条件は、次の通りである。
Example 1
A polymer film was formed on one of the main surfaces of a 12 μm thick rolled copper foil (JX Metals Corporation, TPC foil) under the condition range shown below. The application conditions are as follows.
 (A)ポリマー膜の形成(PVA)
 溶剤   :PVA6質量%水溶液
 コート方法:金属製アプリケータ
 膜の厚さ   :1.5μm
(A) Formation of polymer film (PVA)
Solvent: PVA 6% by mass aqueous solution Coating method: Metal applicator Film thickness: 1.5 μm
 まず、上記圧延銅箔について、表面粗さRa及びRz、表面積比を評価した。また、得られた放熱用銅箔について、ポリマー膜の厚さ、サーモグラフィ表示温度及び粉落ちを評価した。その結果は、表1に示す。なお、表面粗さRa及びRz、表面積比、ポリマー膜の厚さ、サーモグラフィ表示温度、粉落ちの評価方法についてそれぞれ説明する。 First, surface roughness Ra, Rz, and surface area ratio were evaluated about the said rolled copper foil. Further, the thickness of the polymer film, the thermographic display temperature and the powder loss were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1. The surface roughness Ra and Rz, the surface area ratio, the thickness of the polymer film, the thermographic display temperature, and the evaluation method of powder loss will be described, respectively.
 (表面粗さRa、Rz)
 各実施例および比較例のサンプルの粗化粒子層側表面の表面粗さRa(算術平均粗さ)及び表面粗さRz(最大高さ粗さ)を非接触式粗さ測定機(レーザー顕微鏡、オリンパス製 LEXT OLS 4000)を用いて測定した。同測定機のレーザー波長は405nm、内蔵レンズの倍率は20倍である。Ra及びRzを任意に5箇所測定し、そのRa及びRzの5箇所の平均値をRa及びRzの値とした。また、各実施例および比較例において使用した粗化処理前の銅箔基材の粗化処理される予定の側の表面についても前述と同様にRaとRzを測定した。なお、RaとRzの測定はTD方向(幅方向、すなわち銅箔基材の圧延方向と垂直な方向)について行った。測定条件及び解析条件のうち主な項目の設定は以下のとおりである。
 <測定条件>
 対物レンズ:MPLAPONLEXT 100(倍率:100倍、開口数:0.95)
 走査モード:XYZ高精度(高さ分解能:10nm、取り込みデータの画素数:1024×1024)
 測定範囲:横130μm×縦130μm
 測定環境温度:23~25℃
 <解析条件>
 解析領域設定:無(測定範囲全視野で解析)
 カットオフ:無(λc、λs、λf全て無し)
 ノイズ除去および傾き補正:無
(Surface roughness Ra, Rz)
Non-contact roughness measuring machine (laser microscope, surface roughness Ra (arithmetic mean roughness) and surface roughness Rz (maximum height roughness) of the roughened particle layer side surface of the sample of each example and comparative example It measured using Olympus LEXT OLS 4000). The laser wavelength of the measuring instrument is 405 nm, and the magnification of the built-in lens is 20 times. Ra and Rz were arbitrarily measured at five places, and the average value of the five places of Ra and Rz was taken as the values of Ra and Rz. Moreover, Ra and Rz were measured similarly to the above-mentioned with respect to the surface of the side scheduled to be roughened of the copper foil base material before the roughening process used in each Example and comparative example. The measurement of Ra and Rz was performed in the TD direction (the width direction, that is, the direction perpendicular to the rolling direction of the copper foil substrate). The settings of the main items of the measurement conditions and the analysis conditions are as follows.
<Measurement conditions>
Objective lens: MPLAPONLEXT 100 (magnification: 100 times, numerical aperture: 0.95)
Scanning mode: XYZ high precision (Height resolution: 10 nm, number of pixels of captured data: 1024 x 1024)
Measurement range: 130 μm wide × 130 μm long
Measurement environment temperature: 23-25 ° C
<Analysis condition>
Analysis area setting: None (analyzed in the entire measurement range)
Cut-off: None (λc, λs, λf none)
Noise removal and skew correction: None
 (表面積比)
 非接触式粗さ測定機(レーザー顕微鏡、オリンパス製 LEXT OLS 4000)を用いて、めっき処理面の表面積を測定した。めっき処理面の投影面積Aに対するめっき処理面の表面積Bを用い、表面積比B/Aとした。なお、めっき処理層上にポリマー膜を有するものについては、前記ポリマー膜を塗布する前にめっき処理層の表面積を測定した。測定条件及び解析条件のうち主な項目の設定は以下のとおりである。
 <測定条件>
 上述の表面粗さRa及びRzを測定した条件と同様。
 なお、測定範囲を横130μm×縦130μmとすることで、めっき処理面の投影面積A:16923μm2となる。
 測定環境温度 :23~25℃
 <解析条件>
 上述の表面粗さRa及びRzを解析した条件と同様。
 ただし、閾値設定については、ヒストグラム、閾値1:0%、閾値2:100%とした。
(Surface area ratio)
The surface area of the plated surface was measured using a non-contact roughness measuring machine (laser microscope, LEXT OLS 4000 manufactured by Olympus). The surface area B of the plated surface with respect to the projected area A of the plated surface was used as the surface area ratio B / A. In addition, about what has a polymer film on a plating process layer, the surface area of the plating process layer was measured before apply | coating the said polymer film. The settings of the main items of the measurement conditions and the analysis conditions are as follows.
<Measurement conditions>
The same conditions as those for measuring the surface roughness Ra and Rz described above.
The projected area A of the plating treated surface is 16923 μm 2 by setting the measurement range to 130 μm in width × 130 μm in height.
Measurement environment temperature: 23 to 25 ° C
<Analysis condition>
The same conditions as those described above for analyzing the surface roughness Ra and Rz.
However, for the threshold setting, the histogram, the threshold 1: 0%, and the threshold 2: 100% were used.
 (ポリマー膜の厚さ)
 実施例1で得られた放熱用銅箔の厚さをゲージ厚測定器(株式会社小野測器、デジタルカウンターDG-1270)により測定し、その3点の平均値から、圧延銅箔の厚さ(12μm)を差し引き、ポリマー膜の厚さを算出した。
(Thickness of polymer film)
The thickness of the heat-dissipating copper foil obtained in Example 1 was measured with a gauge thickness measuring instrument (Dr. Ono, Digital Counter DG-1270), and the thickness of the rolled copper foil was determined from the average value of the three points. The thickness of the polymer film was calculated by subtracting (12 μm).
 (サーモグラフィ表示温度)
 赤外線サーモグラフィ(株式会社チノー CPA-0150J)を用いて、以下の測定条件で測定した。図1に示すように、下から、断熱材10、ヒーター20、接着剤(東亞合成株式会社、アロンアルファ(登録商標))30、SUS板40、放熱用グリス50、放熱用銅箔60からなる積層体1を作成し、この積層体1を断熱部材からなる囲い(不図示)に配置した。さらに、当該積層体の放熱用銅箔60上に、放熱用銅箔60の略半分の面積を覆うように放射率0.9の黒体テープ70を配置した。ヒーター20を直流電流印加(電流:0.3A、電圧4.0V)で加熱し、赤外線サーモグラフィ100で積層体1の黒体テープ70で覆われた領域の表示温度が88.0℃を示す温度になるよう加熱した。赤外線サーモグラフィ100を用い、黒体テープ70で覆われた領域を基準(88.0℃)とし、積層体1の放熱用銅箔60の部分の表示温度を測定した。一般に、赤外線サーモグラフィ100は試料表面から放出された赤外線エネルギーを検出し、それを表示温度とする。放射率が低い最表面を有する試料について測定すると、前記試料から放出される赤外線エネルギーが非常に小さいため、実際の試料温度とサーモグラフィの表示温度では乖離が生じる。そこで、上記のように放射率が判明している黒体テープのサーモグラフィの表示温度を基準として、実施例1で得られた放熱用銅箔のサーモグラフィの表示温度を比較することで、放熱用銅箔の熱放射性を評価した。なお、表1において、サーモグラフィ表示温度が基準となる88.0℃に近いということは、放射率が高いことを示す。すなわち、赤外線を放出する能力が優れており、放熱特性が良好であることを示している。
(Thermographic display temperature)
It measured on the following measurement conditions using infrared thermography (Chino CPA- 0150J). As shown in FIG. 1, a laminate comprising, from the bottom, a heat insulating material 10, a heater 20, an adhesive (Toagosei Co., Ltd., Aron Alpha (registered trademark)) 30, a SUS plate 40, grease 50 for heat dissipation, and copper foil 60 for heat dissipation. A body 1 was made, and this laminate 1 was placed in an enclosure (not shown) made of a heat insulating member. Furthermore, a black body tape 70 with an emissivity of 0.9 was disposed on the heat radiation copper foil 60 of the laminate so as to cover an area approximately half of the heat radiation copper foil 60. The heater 20 is heated by applying a direct current (current: 0.3 A, voltage 4.0 V), and the display temperature of the area covered with the black body tape 70 of the laminate 1 by the infrared thermography 100 is 88.0 ° C. It was heated to become. The display temperature of the portion of the copper foil 60 for heat dissipation of the laminate 1 was measured using the infrared thermography 100 with the area covered with the black body tape 70 as a reference (88.degree. C.). Generally, the infrared thermography 100 detects infrared energy emitted from the sample surface, and uses it as a display temperature. When measurement is performed on a sample having a low emissivity outermost surface, a difference occurs between the actual sample temperature and the thermographic display temperature because infrared energy emitted from the sample is very small. Therefore, the copper for heat dissipation is compared by comparing the temperature for displaying thermography of the copper foil for heat dissipation obtained in Example 1 on the basis of the temperature for displaying the thermography of black body tape whose emissivity is known as described above. The heat radiation of the foil was evaluated. In Table 1, the fact that the thermographic display temperature is close to 88.0 ° C. as a reference indicates that the emissivity is high. That is, it shows that the ability to emit infrared rays is excellent and the heat dissipation characteristics are good.
 (粉落ち評価)
 粉落ち評価は、実施例1で得られた放熱用銅箔の処理面上に透明なメンディングテープ(株式会社モノタロウ、品番125076)を貼り付け、テープ転写法により行った。
 <評価基準>
 ◎:テープに粗化粒子の転写が全くない場合。
 ○:局部的に軽微な粗化粒子転写が存在する場合。
 ×:全体に粗化粒子の転写が観察される場合(軽微であっても全面の場合)。
(Damage evaluation)
The powdering evaluation was performed by affixing a transparent mending tape (Monotaro Co., Ltd., product number 125076) on the treated surface of the copper foil for heat dissipation obtained in Example 1, and using a tape transfer method.
<Evaluation criteria>
◎: There is no transfer of roughening particles on the tape.
:: Localized slight roughened particle transfer exists.
X: When transfer of roughening particles is observed on the whole (in the case of slight, even on the entire surface).
 <実施例2>
 12μm厚さの圧延銅箔(JX金属株式会社、TPC箔)のいずれか一方の主表面に、(A)ポリマー膜の形成に使用される溶剤をPVA8質量%水溶液に調製し、ポリマー膜の厚さを2.5μmに変更したこと以外、実施例1と同様に、ポリマー膜を形成した。
Example 2
The solvent used to form the (A) polymer film is prepared in an aqueous solution of 8% by mass of PVA on one of the main surfaces of a 12 μm thick rolled copper foil (JX Metals Corporation, TPC foil), and the thickness of the polymer film is prepared A polymer film was formed in the same manner as in Example 1 except that the thickness was changed to 2.5 μm.
 得られた放熱用銅箔について、ポリマー膜の厚さ、サーモグラフィ表示温度、粉落ちを評価した。その結果は、表1に示す。なお、めっき処理面の表面粗さRa及びRzと表面積比とは実施例1の放熱用銅箔の値である。 The thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1. The surface roughness Ra and Rz of the surface to be plated and the surface area ratio are the values of the heat-dissipating copper foil of Example 1.
 <実施例3>
 12μm厚さの圧延銅箔(JX金属株式会社、TPC箔)のいずれか一方の主表面に、(A)ポリマー膜の形成に使用される溶剤をPVA8質量%水溶液に調製し、ポリマー膜の厚さを3.5μmに変更したこと以外、実施例1と同様に、ポリマー膜を形成した。
Example 3
The solvent used to form the (A) polymer film is prepared in an aqueous solution of 8% by mass of PVA on one of the main surfaces of a 12 μm thick rolled copper foil (JX Metals Corporation, TPC foil), and the thickness of the polymer film is prepared A polymer film was formed in the same manner as in Example 1 except that the thickness was changed to 3.5 μm.
 得られた放熱用銅箔について、ポリマー膜の厚さ、サーモグラフィ表示温度、粉落ちを評価した。その結果は、表1に示す。なお、めっき処理面の表面粗さRa及びRzと表面積比とは実施例1の放熱用銅箔の値である。 The thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1. The surface roughness Ra and Rz of the surface to be plated and the surface area ratio are the values of the heat-dissipating copper foil of Example 1.
 <実施例4>
 12μm厚さの圧延銅箔(JX金属株式会社、TPC箔)のいずれか一方の主表面に、(A)ポリマー膜の形成に使用される溶剤をPVA10質量%水溶液に調製し、ポリマー膜の厚さを5.0μmに変更したこと以外、実施例1と同様に、ポリマー膜を形成した。
Example 4
A solvent to be used to form the (A) polymer film is prepared as a 10% by mass aqueous solution of PVA on one of the main surfaces of a 12 μm thick rolled copper foil (JX Metals Corporation, TPC foil), and the thickness of the polymer film is prepared A polymer film was formed in the same manner as in Example 1 except that the thickness was changed to 5.0 μm.
 得られた放熱用銅箔について、ポリマー膜の厚さ、サーモグラフィ表示温度、粉落ちを評価した。その結果は、表1に示す。なお、めっき処理面の表面粗さRa及びRzと表面積比とは実施例1の放熱用銅箔の値である。 The thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1. The surface roughness Ra and Rz of the surface to be plated and the surface area ratio are the values of the heat-dissipating copper foil of Example 1.
 <実施例5>
 12μm厚さの圧延銅箔(JX金属株式会社、TPC箔)のいずれか一方の主表面に、下記に示す条件範囲で、粗化粒子層(Cu)、被覆層(Cu-Ni-Co、Ni-Co)、及びポリマー膜(PVA)の順に形成した。使用した浴組成及びめっき条件、ポリマー膜の形成条件は、次の通りである。なお、ポリマー膜を形成する前に得られた銅箔(粗化粒子層及び被覆層)と実施例5で得られた放熱用銅箔との厚さをゲージ厚測定器により3点をそれぞれ測定し、その3点の平均値をそれぞれ算出した。次いで、前記放熱用銅箔の厚さの平均値から、前記銅箔の厚さの平均値を差し引き、ポリマー膜の厚さ(平均厚さ)を算出した。
Example 5
Roughened particle layer (Cu), coating layer (Cu-Ni-Co, Ni) on the main surface of one of the 12 μm thick rolled copper foils (JX Metals Corporation, TPC foil) under the conditions shown below And Co), and a polymer film (PVA) in this order. The bath composition and plating conditions used and the formation conditions of the polymer film are as follows. The thickness of the copper foil (roughened particle layer and covering layer) obtained before forming the polymer film and the copper foil for heat dissipation obtained in Example 5 were measured at three points with a gauge thickness measuring device. The average value of the three points was calculated respectively. Subsequently, the average value of the thickness of the said copper foil was deducted from the average value of the thickness of the said copper foil for thermal radiation, and the thickness (average thickness) of the polymer film was computed.
 [浴組成及びめっき条件]
 (A)粗化粒子層1の形成(Cuめっき)
 液組成  :銅11g/L、硫酸50g/L
 電流密度 :40A/dm2
 液温   :常温
 時間   :1秒
 回数   :2回
 (B)粗化粒子層2の形成(Cuめっき)
 液組成  :銅20g/L、硫酸100g/L
 電流密度 :19A/dm2
 液温   :50℃
 時間   :4.5秒
 回数   :1回
 (C)被覆下層の形成(Cu-Ni-Coめっき)
 液組成  :銅15.5g/L、ニッケル9.5g/L、コバルト7.5g/L
 電流密度 :15A/dm2
 pH   :2.5
 液温   :36℃
 時間   :0.79秒
 回数   :2回
 (D)被覆上層の形成(Ni-Coめっき)
 液組成  :ニッケル13g/L、コバルト3g/L
 電流密度 :11.9A/dm2
 pH   :2.5
 液温   :40℃
 時間   :1秒
 回数   :2回
 (E)ポリマー膜の形成(PVA)
 溶剤   :PVA6質量%水溶液
 コート方法:金属製アプリケータ
 膜の厚さ :1.0μm
[Bath composition and plating conditions]
(A) Formation of roughened particle layer 1 (Cu plating)
Liquid composition: Copper 11 g / L, sulfuric acid 50 g / L
Current density: 40A / dm 2
Liquid temperature: Normal temperature Time: 1 second Number of times: 2 times (B) Formation of roughened particle layer 2 (Cu plating)
Liquid composition: Copper 20 g / L, sulfuric acid 100 g / L
Current density: 19A / dm 2
Liquid temperature: 50 ° C
Time: 4.5 seconds Number of times: 1 time (C) Formation of coating underlayer (Cu-Ni-Co plating)
Liquid composition: 15.5 g / L of copper, 9.5 g / L of nickel, 7.5 g / L of cobalt
Current density: 15A / dm 2
pH: 2.5
Liquid temperature: 36 ° C
Time: 0.79 seconds Number of times: 2 times (D) Formation of coated upper layer (Ni-Co plating)
Liquid composition: Nickel 13 g / L, cobalt 3 g / L
Current density: 11.9 A / dm 2
pH: 2.5
Liquid temperature: 40 ° C
Time: 1 second Number of times: 2 times (E) Formation of polymer film (PVA)
Solvent: PVA 6% by mass aqueous solution Coating method: Metal applicator Film thickness: 1.0 μm
 まず、ポリマー膜を形成する前に、被覆層のめっき処理面について、表面積比の評価を行った。得られた放熱用銅箔について、ポリマー膜の厚さ、サーモグラフィ表示温度、粉落ちを評価した。その結果は、表1に示す。 First, before forming a polymer film, the surface area ratio of the plating-treated surface of the coating layer was evaluated. The thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1.
 <実施例6>
 12μm厚さの圧延銅箔(JX金属株式会社、HA-V2箔)のいずれか一方の主表面に、(E)ポリマー膜の形成に使用される溶剤をPVA10質量%水溶液に調製し、ポリマー膜の厚さを5.0μmに変更したこと以外、実施例5と同様に、粗化粒子層(Cu)、被覆層(Cu-Ni-Co、Ni-Co)、及びポリマー膜(PVA)の順に形成した。
Example 6
A solvent used to form a (E) polymer film is prepared as a 10% by mass aqueous solution of PVA on one of the main surfaces of a 12 μm thick rolled copper foil (JX Metals Corporation, HA-V2 foil), and the polymer film is prepared The roughened particle layer (Cu), the coating layer (Cu-Ni-Co, Ni-Co), and the polymer film (PVA) are the same as in Example 5 except that the thickness of the layer is changed to 5.0 μm. It formed.
 また、得られた放熱用銅箔について、ポリマー膜の厚さ、サーモグラフィ表示温度及び粉落ちの評価を行った。その結果は、表1に示す。なお、めっき処理面の表面積比は実施例5の放熱用銅箔の値である。 Further, the thickness of the polymer film, the thermographic display temperature and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1. The surface area ratio of the plated surface is the value of the heat-dissipating copper foil of Example 5.
 <実施例7>
 12μm厚さの圧延銅箔(JX金属株式会社、HA-V2箔)のいずれか一方の主表面に、下記に示す条件範囲で、粗化粒子層(Cu)、被覆層(Cu-Ni-Co、Ni-Co)、防錆層、及びポリマー膜(PVA)の順に形成した。使用した浴組成及びめっき条件、ポリマー膜の形成条件は、次の通りである。なお、ポリマー膜を形成する前に得られた銅箔(粗化粒子層、被覆層、及び防錆層)と実施例7で得られた放熱用銅箔との厚さをゲージ厚測定器により3点をそれぞれ測定し、その3点の平均値をそれぞれ算出した。次いで、前記放熱用銅箔の厚さの平均値から、前記銅箔の厚さの平均値を差し引き、ポリマー膜の厚さ(平均厚さ)を算出した。
Example 7
A roughened particle layer (Cu) and a covering layer (Cu-Ni-Co) on the main surface of one of the 12 μm thick rolled copper foils (JX Metals Corporation, HA-V2 foil) under the conditions shown below , Ni-Co), an anticorrosive layer, and a polymer film (PVA) in this order. The bath composition and plating conditions used and the formation conditions of the polymer film are as follows. The thickness of the copper foil (roughened particle layer, covering layer, and rustproof layer) obtained before forming the polymer film and the copper foil for heat dissipation obtained in Example 7 were measured using a gauge thickness measuring device. Three points were measured respectively, and the average value of the three points was calculated. Subsequently, the average value of the thickness of the said copper foil was deducted from the average value of the thickness of the said copper foil for thermal radiation, and the thickness (average thickness) of the polymer film was computed.
 [浴組成及びめっき条件]
 (A)粗化粒子層1の形成(Cuめっき)
 液組成  :銅11g/L、硫酸50g/L
 電流密度 :45A/dm2
 液温   :常温
 時間   :0.68秒
 回数   :2回
 (B)粗化粒子層2の形成(Cuめっき)
 液組成  :銅20g/L、硫酸100g/L
 電流密度 :4.11A/dm2
 液温   :50℃
 時間   :1.44秒
 回数   :2回
 (C)被覆下層の形成(Cu-Ni-Coめっき)
 液組成  :銅15.5g/L、ニッケル9.5g/L、コバルト7.5g/L
 電流密度 :30.3A/dm2
 pH   :2.5
 液温   :36℃
 時間   :0.5秒
 回数   :2回
 (D)被覆上層1の形成(Ni-Coめっき)
 液組成  :ニッケル13g/L、コバルト3g/L
 電流密度 :13.7A/dm2
 pH   :2.5
 液温   :40℃
 時間   :0.34秒
 回数   :1回
 (E)被覆上層2の形成(Ni-Coめっき)
 液組成  :ニッケル13g/L、コバルト3g/L
 電流密度 :14.9A/dm2
 pH   :2.5
 液温   :40℃
 時間   :0.34秒
 回数   :1回
 (F)防錆層の形成
 液組成  :重クロム酸カリウム1~10g/L、亜鉛0~5g/L
 pH   :3~4
 液温   :50~60℃
 電流密度 :0~2A/dm2(電解クロメート処理のため)
 クーロン量:0~2As/dm2(電解クロメート処理のため)
 (G)ポリマー膜の形成(PVA)
 溶剤   :PVA4質量%水溶液
 コート方法:金属製アプリケータ
 膜の厚さ :1.0μm
[Bath composition and plating conditions]
(A) Formation of roughened particle layer 1 (Cu plating)
Liquid composition: Copper 11 g / L, sulfuric acid 50 g / L
Current density: 45A / dm 2
Liquid temperature: Normal temperature Time: 0.68 seconds Number of times: 2 times (B) Formation of roughened particle layer 2 (Cu plating)
Liquid composition: Copper 20 g / L, sulfuric acid 100 g / L
Current density: 4.11 A / dm 2
Liquid temperature: 50 ° C
Time: 1.44 seconds Number of times: 2 times (C) Formation of coated underlayer (Cu-Ni-Co plating)
Liquid composition: 15.5 g / L of copper, 9.5 g / L of nickel, 7.5 g / L of cobalt
Current density: 30.3 A / dm 2
pH: 2.5
Liquid temperature: 36 ° C
Time: 0.5 seconds Number of times: 2 times (D) Formation of coated upper layer 1 (Ni-Co plating)
Liquid composition: Nickel 13 g / L, cobalt 3 g / L
Current density: 13.7 A / dm 2
pH: 2.5
Liquid temperature: 40 ° C
Time: 0.34 seconds Number of times: Once (E) Formation of coated upper layer 2 (Ni-Co plating)
Liquid composition: Nickel 13 g / L, cobalt 3 g / L
Current density: 14.9 A / dm 2
pH: 2.5
Liquid temperature: 40 ° C
Time: 0.34 seconds Number of times: 1 time (F) Formation of rustproof layer Liquid composition: 1 to 10 g / L of potassium dichromate, 0 to 5 g of zinc
pH: 3 to 4
Liquid temperature: 50 to 60 ° C
Current density: 0 to 2 A / dm 2 (for electrolytic chromate treatment)
Coulomb amount: 0 to 2 As / dm 2 (for electrolytic chromate treatment)
(G) Formation of polymer film (PVA)
Solvent: PVA 4% by mass aqueous solution Coating method: Metal applicator Film thickness: 1.0 μm
 まず、防錆層を形成する前に、被覆層のめっき処理面について、表面粗さRa及びRzと表面積比との評価を行った。また、得られた放熱用銅箔について、ポリマー膜の厚さ、サーモグラフィ表示温度及び粉落ちの評価を行った。その結果は、表1に示す。 First, before forming the anticorrosive layer, the surface roughness ratio Ra and Rz and the surface area ratio were evaluated for the plating treated surface of the coating layer. Further, the thickness of the polymer film, the thermographic display temperature and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1.
 <実施例8>
 12μm厚さの圧延銅箔(JX金属株式会社、HA-V2箔)のいずれか一方の主表面に、(G)ポリマー膜の形成に使用される溶剤をPVA6質量%水溶液に調製し、ポリマー膜の厚さを1.5μmに変更したこと以外、実施例7と同様に、粗化粒子層(Cu)、被覆層(Cu-Ni-Co、Ni-Co)、防錆層、及びポリマー膜(PVA)の順に形成した。
Example 8
A solvent used to form a (G) polymer film is prepared as a 6% by mass aqueous solution of PVA on one of the main surfaces of a 12 μm thick rolled copper foil (JX Metals Corporation, HA-V2 foil), and the polymer film is prepared The roughened particle layer (Cu), the coating layer (Cu-Ni-Co, Ni-Co), the rustproof layer, and the polymer film (the same as in Example 7 except that the thickness of the coating was changed to 1.5 .mu.m) It formed in order of PVA).
 得られた放熱用銅箔について、ポリマー膜の厚さ、サーモグラフィ表示温度及び粉落ちの評価を行った。その結果は、表1に示す。なお、めっき処理面の表面粗さRa及びRzと表面積比とは実施例7の放熱用銅箔の値である。 The thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1. The surface roughness Ra and Rz of the plating treated surface and the surface area ratio are the values of the heat-dissipating copper foil of Example 7.
 <実施例9>
 12μm厚さの圧延銅箔(JX金属株式会社、HA-V2箔)のいずれか一方の主表面に、(G)ポリマー膜の形成に使用される溶剤をPVA8質量%水溶液に調製し、ポリマー膜の厚さを2.0μmに変更したこと以外、実施例7と同様に、粗化粒子層(Cu)、被覆層(Cu-Ni-Co、Ni-Co)、防錆層、及びポリマー膜(PVA)の順に形成した。
Example 9
A solvent used to form a (G) polymer film is prepared as an aqueous solution of 8% by mass of PVA on one of the main surfaces of a 12 μm thick rolled copper foil (JX Metals Corporation, HA-V2 foil), and the polymer film is prepared The roughened particle layer (Cu), the coating layer (Cu-Ni-Co, Ni-Co), the rustproof layer, and the polymer film (the same as in Example 7 except that the thickness of the coating was changed to 2.0 μm) It formed in order of PVA).
 得られた放熱用銅箔について、ポリマー膜の厚さ、サーモグラフィ表示温度及び粉落ちの評価を行った。その結果は、表1に示す。なお、めっき処理面の表面粗さRa及びRzと表面積比とは実施例7の放熱用銅箔の値である。 The thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1. The surface roughness Ra and Rz of the plating treated surface and the surface area ratio are the values of the heat-dissipating copper foil of Example 7.
 <実施例10>
 12μm厚さの圧延銅箔(JX金属株式会社、HA-V2箔)のいずれか一方の主表面に、(G)ポリマー膜の形成に使用される溶剤をPVA8質量%水溶液に調製し、ポリマー膜の厚さを2.5μmに変更したこと以外、実施例7と同様に、粗化粒子層(Cu)、被覆層(Cu-Ni-Co、Ni-Co)、防錆層、及びポリマー膜(PVA)の順に形成した。
Example 10
A solvent used to form a (G) polymer film is prepared as an aqueous solution of 8% by mass of PVA on one of the main surfaces of a 12 μm thick rolled copper foil (JX Metals Corporation, HA-V2 foil), and the polymer film is prepared The roughened particle layer (Cu), the coating layer (Cu-Ni-Co, Ni-Co), the rustproof layer, and the polymer film (the same as in Example 7 except that the thickness of the coating was changed to 2.5 μm) It formed in order of PVA).
 得られた放熱用銅箔について、ポリマー膜の厚さ、サーモグラフィ表示温度及び粉落ちの評価を行った。その結果は、表1に示す。なお、めっき処理面の表面粗さRa及びRzと表面積比とは実施例7の放熱用銅箔の値である。 The thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1. The surface roughness Ra and Rz of the plating treated surface and the surface area ratio are the values of the heat-dissipating copper foil of Example 7.
 <実施例11>
 12μm厚さの圧延銅箔(JX金属株式会社、HA-V2箔)のいずれか一方の主表面に、(G)ポリマー膜の形成に使用される溶剤をPVA10質量%水溶液に調製し、ポリマー膜の厚さを3.0μmに変更したこと以外、実施例7と同様に、粗化粒子層(Cu)、被覆層(Cu-Ni-Co、Ni-Co)、防錆層、及びポリマー膜(PVA)の順に形成した。
Example 11
A solvent used to form a (G) polymer film is prepared as a 10% by mass aqueous solution of PVA on one of the main surfaces of a 12 μm thick rolled copper foil (JX Metals Corporation, HA-V2 foil), and the polymer film is prepared The roughened particle layer (Cu), the coating layer (Cu-Ni-Co, Ni-Co), the rustproof layer, and the polymer film (the same as in Example 7 except that the thickness of the coating was changed to 3.0 μm) It formed in order of PVA).
 得られた放熱用銅箔について、ポリマー膜の厚さ、サーモグラフィ表示温度及び粉落ちの評価を行った。その結果は、表1に示す。なお、めっき処理面の表面粗さRa及びRzと表面積比とは実施例7の放熱用銅箔の値である。 The thickness of the polymer film, the thermographic display temperature, and the powder removal were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1. The surface roughness Ra and Rz of the plating treated surface and the surface area ratio are the values of the heat-dissipating copper foil of Example 7.
 <比較例1>
 実施例1で使用した圧延銅箔(JX金属株式会社、TPC箔)について、表面粗さRa及びRz、表面積比、サーモグラフィ表示温度、粉落ちの評価を行った。その結果は、表1に示す。
Comparative Example 1
The surface roughness Ra and Rz, the surface area ratio, the thermographic display temperature, and the powder removal were evaluated for the rolled copper foil (JX Metals Corporation, TPC foil) used in Example 1. The results are shown in Table 1.
 <比較例2>
 12μm厚さの圧延銅箔(JX金属株式会社、TPC箔)のいずれか一方の主表面に、下記に示す条件範囲で、粗化粒子層(Cu)及び被覆層(Cu-Ni-Co、Ni-Co)の順に形成した。使用した浴組成及びめっき条件は、次の通りである。
Comparative Example 2
Roughened particle layer (Cu) and coating layer (Cu-Ni-Co, Ni) on the main surface of one of the 12 μm thick rolled copper foils (JX Metals Co., Ltd., TPC foil) under the conditions shown below Formed in the order of -Co). The bath composition and plating conditions used are as follows.
 [浴組成及びめっき条件]
 (A)粗化粒子層1の形成(Cuめっき)
 液組成  :銅11g/L、硫酸50g/L
 電流密度 :40A/dm2
 液温   :常温
 時間   :1秒
 回数   :2回
 (B)粗化粒子層2の形成(Cuめっき)
 液組成  :銅20g/L、硫酸100g/L
 電流密度 :19A/dm2
 液温   :50℃
 時間   :4.5秒
 回数   :1回
 (C)被覆下層の形成(Cu-Ni-Coめっき)
 液組成  :銅15.5g/L、ニッケル9.5g/L、コバルト7.5g/L
 電流密度 :15A/dm2
 pH   :2.5
 液温   :36℃
 時間   :0.79秒
 回数   :2回
 (D)被覆上層の形成(Ni-Coめっき)
 液組成  :ニッケル13g/L、コバルト3g/L
 電流密度 :11.9A/dm2
 pH   :2.5
 液温   :40℃
 時間   :1秒
 回数   :2回
[Bath composition and plating conditions]
(A) Formation of roughened particle layer 1 (Cu plating)
Liquid composition: Copper 11 g / L, sulfuric acid 50 g / L
Current density: 40A / dm 2
Liquid temperature: Normal temperature Time: 1 second Number of times: 2 times (B) Formation of roughened particle layer 2 (Cu plating)
Liquid composition: Copper 20 g / L, sulfuric acid 100 g / L
Current density: 19A / dm 2
Liquid temperature: 50 ° C
Time: 4.5 seconds Number of times: 1 time (C) Formation of coating underlayer (Cu-Ni-Co plating)
Liquid composition: 15.5 g / L of copper, 9.5 g / L of nickel, 7.5 g / L of cobalt
Current density: 15A / dm 2
pH: 2.5
Liquid temperature: 36 ° C
Time: 0.79 seconds Number of times: 2 times (D) Formation of coated upper layer (Ni-Co plating)
Liquid composition: Nickel 13 g / L, cobalt 3 g / L
Current density: 11.9 A / dm 2
pH: 2.5
Liquid temperature: 40 ° C
Time: 1 second Number of times: 2 times
 得られた放熱用銅箔について、表面積比、サーモグラフィ表示温度、及び粉落ちを評価した。その結果は、表1に示す。 The surface area ratio, the thermographic display temperature, and the powder loss were evaluated for the obtained heat-dissipating copper foil. The results are shown in Table 1.
 <比較例3>
 12μm厚さの圧延銅箔(JX金属株式会社、HA-V2箔)のいずれか一方の主表面に、下記に示す条件範囲で、粗化粒子層(Cu)、被覆層(Cu-Ni-Co、Ni-Co)、及び防錆層の順に形成した。使用した浴組成及びめっき条件は、次の通りである。
Comparative Example 3
A roughened particle layer (Cu) and a covering layer (Cu-Ni-Co) on the main surface of one of the 12 μm thick rolled copper foils (JX Metals Corporation, HA-V2 foil) under the conditions shown below , Ni-Co), and an anticorrosion layer in this order. The bath composition and plating conditions used are as follows.
 [浴組成及びめっき条件]
 (A)粗化粒子層1の形成(Cuめっき)
 液組成  :銅11g/L、硫酸50g/L
 電流密度 :45A/dm2
 液温   :常温
 時間   :0.68秒
 回数   :2回
 (B)粗化粒子層2の形成(Cuめっき)
 液組成  :銅20g/L、硫酸100g/L
 電流密度 :4.11A/dm2
 液温   :50℃
 時間   :1.44秒
 回数   :2回
 (C)被覆下層の形成(Cu-Ni-Coめっき)
 液組成  :銅15.5g/L、ニッケル9.5g/L、コバルト7.5g/L
 電流密度 :30.3A/dm2
 pH   :2.5
 液温   :36℃
 時間   :0.5秒
 回数   :2回
 (D)被覆上層1の形成(Ni-Coめっき)
 液組成  :ニッケル13g/L、コバルト3g/L
 電流密度 :13.7A/dm2
 pH   :2.5
 液温   :40℃
 時間   :0.34秒
 回数   :1回
 (E)被覆上層2の形成(Ni-Coめっき)
 液組成  :ニッケル13g/L、コバルト3g/L
 電流密度 :14.9A/dm2
 pH   :2.5
 液温   :40℃
 時間   :0.34秒
 回数   :1回
 (F)防錆層の形成
 液組成  :重クロム酸カリウム1~10g/L、亜鉛0~5g/L
 pH   :3~4
 液温   :50~60℃
 電流密度 :0~2A/dm2(電解クロメート処理のため)
 クーロン量:0~2As/dm2(電解クロメート処理のため)
[Bath composition and plating conditions]
(A) Formation of roughened particle layer 1 (Cu plating)
Liquid composition: Copper 11 g / L, sulfuric acid 50 g / L
Current density: 45A / dm 2
Liquid temperature: Normal temperature Time: 0.68 seconds Number of times: 2 times (B) Formation of roughened particle layer 2 (Cu plating)
Liquid composition: Copper 20 g / L, sulfuric acid 100 g / L
Current density: 4.11 A / dm 2
Liquid temperature: 50 ° C
Time: 1.44 seconds Number of times: 2 times (C) Formation of coated underlayer (Cu-Ni-Co plating)
Liquid composition: 15.5 g / L of copper, 9.5 g / L of nickel, 7.5 g / L of cobalt
Current density: 30.3 A / dm 2
pH: 2.5
Liquid temperature: 36 ° C
Time: 0.5 seconds Number of times: 2 times (D) Formation of coated upper layer 1 (Ni-Co plating)
Liquid composition: Nickel 13 g / L, cobalt 3 g / L
Current density: 13.7 A / dm 2
pH: 2.5
Liquid temperature: 40 ° C
Time: 0.34 seconds Number of times: Once (E) Formation of coated upper layer 2 (Ni-Co plating)
Liquid composition: Nickel 13 g / L, cobalt 3 g / L
Current density: 14.9 A / dm 2
pH: 2.5
Liquid temperature: 40 ° C
Time: 0.34 seconds Number of times: 1 time (F) Formation of rustproof layer Liquid composition: 1 to 10 g / L of potassium dichromate, 0 to 5 g of zinc
pH: 3 to 4
Liquid temperature: 50 to 60 ° C
Current density: 0 to 2 A / dm 2 (for electrolytic chromate treatment)
Coulomb amount: 0 to 2 As / dm 2 (for electrolytic chromate treatment)
 得られた放熱用銅箔について、サーモグラフィ表示温度及び粉落ちの評価を行った。その結果は、表1に示す。なお、めっき処理面の表面粗さRa及びRzと表面積比とは実施例7の放熱用銅箔の値である。 About the obtained copper foil for heat dissipation, evaluation of the thermographic display temperature and the powder removal was performed. The results are shown in Table 1. The surface roughness Ra and Rz of the plating treated surface and the surface area ratio are the values of the heat-dissipating copper foil of Example 7.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~11では、ポリマー膜を有することで、発熱体からの熱を良好に放熱することを確認した。また、実施例2~4,6,9~11では、ポリマー膜の厚さが2.0μm以上であることで、発熱体からの熱をより良好に放熱することを確認した。さらに、実施例5~11では、Ni-Coからなる被覆層の上にポリマー膜を有することで、発熱体からの熱をさらに良好に放熱し、粉落ちの評価も良好であることを確認した。 In Examples 1 to 11, it was confirmed that the heat from the heating element was dissipated favorably by having the polymer film. Further, in Examples 2 to 4, 6 and 9 to 11, it was confirmed that the heat from the heating element was dissipated more favorably because the thickness of the polymer film was 2.0 μm or more. Furthermore, in Examples 5 to 11, by having the polymer film on the coating layer made of Ni—Co, it was confirmed that the heat from the heat generating body was dissipated more favorably, and the evaluation of powder removal was also satisfactory .
 本発明の一実施形態に係る放熱用銅箔を使用した放熱部材において、放熱特性に優れている。これによって、電子機器の発展が進む中で、小型化や高機能化等といった要求に応じ、使用される電子部品の発熱による不具合等が生じることのない有用な技術を提供する。 The heat dissipating member using the heat dissipating copper foil according to the embodiment of the present invention is excellent in heat dissipating characteristics. As a result, as the development of electronic devices progresses, there is provided a useful technology that does not cause a defect or the like due to the heat generation of the electronic component to be used according to the requirements such as miniaturization and high functionality.
 1 積層体
10 断熱材
20 ヒーター
30 接着剤
40 SUS板
50 放熱用グリス
60 放熱用銅箔
70 黒体テープ
100 赤外線サーモグラフィ
DESCRIPTION OF SYMBOLS 1 Laminated body 10 Heat insulation material 20 Heater 30 Adhesive agent 40 SUS board 50 Grease for thermal radiation 60 Copper foil for thermal radiation 70 Black body tape 100 Infrared ray thermography

Claims (20)

  1.  銅箔基材と、
     前記銅箔基材の少なくともいずれかの主表面の上にポリマー膜とを有する、放熱用銅箔。
    Copper foil base material,
    A copper foil for heat dissipation, having a polymer film on at least one of the main surfaces of the copper foil substrate.
  2.  前記ポリマー膜の厚さが、0.1μm~10μmである、請求項1に記載の放熱用銅箔。 The copper foil for heat dissipation according to claim 1, wherein the thickness of the polymer film is 0.1 μm to 10 μm.
  3.  前記ポリマー膜の厚さが、0.5μm~8μmである、請求項1に記載の放熱用銅箔。 The copper foil for heat dissipation according to claim 1, wherein the thickness of the polymer film is 0.5 μm to 8 μm.
  4.  前記ポリマー膜の厚さが、1μm~5μmである、請求項1に記載の放熱用銅箔。 The copper foil for heat dissipation according to claim 1, wherein the thickness of the polymer film is 1 μm to 5 μm.
  5.  前記ポリマー膜は、繰り返し単位中に少なくとも1種のヘテロ原子を有するポリマーを含む、請求項1~4のいずれか1項に記載の放熱用銅箔。 The heat-dissipating copper foil according to any one of claims 1 to 4, wherein the polymer film comprises a polymer having at least one hetero atom in a repeating unit.
  6.  前記ポリマーは、カルボニル基、カルボキシル基、エーテル基、エポキシ基、ヒドロキシル基、及びハロゲンからなる群から選択される少なくとも1種を前記繰り返し単位中に含む、請求項5に記載の放熱用銅箔。 The copper foil for heat dissipation according to claim 5, wherein the polymer contains, in the repeating unit, at least one selected from the group consisting of a carbonyl group, a carboxyl group, an ether group, an epoxy group, a hydroxyl group, and a halogen.
  7.  前記ポリマーは、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルアルコール樹脂、セルロース樹脂、エポキシ樹脂、ナイロン樹脂、ポリエーテル樹脂、及びフッ素樹脂からなる群から選択される少なくとも1種を含む、請求項5に記載の放熱用銅箔。 The heat dissipation according to claim 5, wherein the polymer comprises at least one selected from the group consisting of polyester resin, polycarbonate resin, polyvinyl alcohol resin, cellulose resin, epoxy resin, nylon resin, polyether resin, and fluorine resin. Copper foil.
  8.  前記ポリマーは、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、アセチルセルロース、トリアセチルセルロース、セロファン、ビスフェノールA型エポキシ樹脂、ポリカプロアミド、ポリドデカンプロアミド、ポリエチレンオキシド、ポリプロピレンオキシド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、及びポリテトラフルオロエチレンからなる群から選択される少なくとも1種を含む、請求項5に記載の放熱用銅箔。 The polymer is polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, acetyl cellulose, triacetyl cellulose, cellophane, bisphenol A epoxy resin, polycaproamide, polydodecaneproamide, polyethylene oxide, polypropylene oxide, polytetrafluoroethylene The copper foil for thermal radiation according to claim 5, comprising at least one selected from the group consisting of polyvinylidene fluoride and polytetrafluoroethylene.
  9.  前記銅箔基材の少なくともいずれかの主表面の上に、めっき処理層をさらに有し、
     前記めっき処理層の上には、前記ポリマー膜を有する、請求項1~8のいずれか1項に記載の放熱用銅箔。
    It further has a plating treatment layer on at least one of the main surfaces of the copper foil base,
    The copper foil for heat dissipation according to any one of claims 1 to 8, wherein the polymer film is provided on the plating treatment layer.
  10.  前記めっき処理層のめっき処理面の表面粗さRaが0.30~1.50である、請求項9に記載の放熱用銅箔。 The copper foil for heat dissipation according to claim 9, wherein the surface roughness Ra of the plating treated surface of the plating treated layer is 0.30 to 1.50.
  11.  前記めっき処理層のめっき処理面の表面粗さRzが2.50~9.50である、請求項9又は10に記載の放熱用銅箔。 The copper foil for heat dissipation according to claim 9, wherein a surface roughness Rz of a plating treated surface of the plating treated layer is 2.50 to 9.50.
  12.  前記めっき処理層は、粗化粒子層を有する、請求項9~11のいずれか1項に記載の放熱用銅箔。 The copper foil for heat dissipation according to any one of claims 9 to 11, wherein the plating treatment layer has a roughened particle layer.
  13.  前記めっき処理層は、前記粗化粒子層の上に被覆層を有する、請求項12に記載の放熱用銅箔。 The copper foil for heat dissipation of Claim 12 in which the said plating process layer has a coating layer on the said roughening particle layer.
  14.  前記被覆層は、Cu、Zn、Ni、Co、Cr、W、及びFeからなる群から選択される少なくとも1種を含む、請求項13に記載の放熱用銅箔。 The copper foil for heat dissipation according to claim 13, wherein the covering layer contains at least one selected from the group consisting of Cu, Zn, Ni, Co, Cr, W, and Fe.
  15.  前記被覆層は、Co及びNiを含む、請求項13に記載の放熱用銅箔。 The copper foil for heat dissipation according to claim 13, wherein the covering layer comprises Co and Ni.
  16.  前記被覆層は、被覆下層と該被覆下層の上に被覆上層とを有し、
     前記被覆下層が、Cu、Co、及びNiを含み、
     前記被覆上層が、Co及びNiを含む、請求項13に記載の放熱用銅箔。
    The covering layer has a covering lower layer and a covering upper layer on the covering lower layer,
    The coating underlayer comprises Cu, Co, and Ni,
    The copper foil for heat dissipation of Claim 13 in which the said coating upper layer contains Co and Ni.
  17.  前記被覆層の厚さが、0.001μm~1.0μmである、請求項13~16のいずれか1項に記載の放熱用銅箔。 The copper foil for heat dissipation according to any one of claims 13 to 16, wherein the thickness of the covering layer is 0.001 μm to 1.0 μm.
  18.  前記被覆層の厚さが、0.002μm~0.5μmである、請求項13~16のいずれか1項に記載の放熱用銅箔。 The copper foil for heat dissipation according to any one of claims 13 to 16, wherein the thickness of the covering layer is 0.002 μm to 0.5 μm.
  19.  前記被覆層の厚さが、0.005μm~0.3μmである、請求項13~16のいずれか1項に記載の放熱用銅箔。 The copper foil for heat dissipation according to any one of claims 13 to 16, wherein the thickness of the covering layer is 0.005 μm to 0.3 μm.
  20.  請求項1~19のいずれか1項に記載の放熱用銅箔を備える放熱部材。 A heat dissipating member comprising the heat dissipating copper foil according to any one of claims 1 to 19.
PCT/JP2018/045344 2017-12-26 2018-12-10 Copper foil for heat dissipation and heat dissipation member WO2019131093A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-249982 2017-12-26
JP2017249982 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019131093A1 true WO2019131093A1 (en) 2019-07-04

Family

ID=67063474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045344 WO2019131093A1 (en) 2017-12-26 2018-12-10 Copper foil for heat dissipation and heat dissipation member

Country Status (2)

Country Link
TW (1) TWI688063B (en)
WO (1) WO2019131093A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034819A (en) * 1996-07-18 1998-02-10 Mitsui Petrochem Ind Ltd Copper base material with adhesive
JP2007168085A (en) * 2005-12-19 2007-07-05 Toppan Printing Co Ltd Laminate having high barrier properties
WO2013105266A1 (en) * 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 Copper foil composite, molded body, and method for producing same
WO2013157574A1 (en) * 2012-04-19 2013-10-24 日本パーカライジング株式会社 Self-deposition type surface treatment agent for copper and method for manufacturing copper-containing substrate provided with resin coating film
WO2014080958A1 (en) * 2012-11-20 2014-05-30 Jx日鉱日石金属株式会社 Copper foil having carrier, method for producing copper foil having carrier, printed wiring board, printed circuit board, copper clad laminate, and method for producing printed wiring board
JP2017126775A (en) * 2017-03-16 2017-07-20 Dic株式会社 Conductive Thin Adhesive Sheet
WO2017150043A1 (en) * 2016-03-03 2017-09-08 三井金属鉱業株式会社 Production method for copper-clad laminate plate
WO2018225409A1 (en) * 2017-06-09 2018-12-13 Jx金属株式会社 Surface-treated copper foil, method for producing same, and copper-clad laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM387454U (en) * 2009-12-25 2010-08-21 Asia Electronic Material Co Copper foil substrate used in flexible PCB
CN108277509A (en) * 2012-11-20 2018-07-13 Jx日矿日石金属株式会社 Copper foil with carrier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034819A (en) * 1996-07-18 1998-02-10 Mitsui Petrochem Ind Ltd Copper base material with adhesive
JP2007168085A (en) * 2005-12-19 2007-07-05 Toppan Printing Co Ltd Laminate having high barrier properties
WO2013105266A1 (en) * 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 Copper foil composite, molded body, and method for producing same
WO2013157574A1 (en) * 2012-04-19 2013-10-24 日本パーカライジング株式会社 Self-deposition type surface treatment agent for copper and method for manufacturing copper-containing substrate provided with resin coating film
WO2014080958A1 (en) * 2012-11-20 2014-05-30 Jx日鉱日石金属株式会社 Copper foil having carrier, method for producing copper foil having carrier, printed wiring board, printed circuit board, copper clad laminate, and method for producing printed wiring board
WO2017150043A1 (en) * 2016-03-03 2017-09-08 三井金属鉱業株式会社 Production method for copper-clad laminate plate
JP2017126775A (en) * 2017-03-16 2017-07-20 Dic株式会社 Conductive Thin Adhesive Sheet
WO2018225409A1 (en) * 2017-06-09 2018-12-13 Jx金属株式会社 Surface-treated copper foil, method for producing same, and copper-clad laminate

Also Published As

Publication number Publication date
TW201929165A (en) 2019-07-16
TWI688063B (en) 2020-03-11

Similar Documents

Publication Publication Date Title
Zou et al. Superhydrophobic double-layer coating for efficient heat dissipation and corrosion protection
US9955583B2 (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board
JP5654416B2 (en) Liquid crystal polymer copper clad laminate and copper foil used for the laminate
KR20160047412A (en) Copper heat dissipation material, carrier-attached copper foil, connector, terminal, laminate, shield material, printed-wiring board, metal processed member, electronic device and method for manufacturing the printed-wiring board
WO2016174998A1 (en) Roughened copper foil and printed wiring board
TW201735754A (en) Surface-treated copper foil for printed circuit board, copper-clad laminate for printed circuit board, and printed circuit board
JP2011219790A (en) Treated copper foil for copper-clad laminated board and copper-clad laminated board obtained by adhering the treated copper foil onto insulating resin substrate, and printed circuit board using the copper-clad laminated board
JPWO2014200106A1 (en) Copper foil with carrier, copper-clad laminate, printed wiring board, electronic device, and method for manufacturing printed wiring board
CN106103082A (en) Copper Foil, copper clad laminate and printed substrate with carrier foils
WO2019131092A1 (en) Copper foil for heat dissapation and heat disspating member
TW201803727A (en) Structure having metal material for heat radiation, printed circuit board, electronic apparatus, and metal material for heat radiation
JP2007138224A (en) Surface working method for aluminum material or aluminum alloy material, and aluminum material or aluminum alloy material having surface worked by the method
CA2914976C (en) Gold plate coated stainless material and method of producing gold plate coated stainless material
TW201433223A (en) Composite double-side blackening foil and manufacturing method thereof
TWI655892B (en) Structure with heat dissipation metal material, printed circuit board and electronic equipment, heat dissipation metal material
JP2015016688A (en) Carrier-fitted copper foil, copper-clad laminate, printed wiring board, electronic equipment, and method for producing printed wiring board
WO2019131093A1 (en) Copper foil for heat dissipation and heat dissipation member
EP3930996A1 (en) Composite copper foil and method of fabricating the same
JP2019056175A (en) Magnesium-lithium alloy and surface-treatment method thereof
JP2014129560A (en) Surface-treated copper foil and printed wiring board using the surface-treated copper foil
KR101398431B1 (en) Method for manufacturing metal member
JP6049362B2 (en) Black aluminum material and manufacturing method thereof
TW201247041A (en) Method for forming electronic circuit, electronic circuit, and copper-clad laminated board for forming electronic circuit
WO2019059255A1 (en) Magnesium-lithium alloy and surface-treatment method thereof
JP2019019351A (en) Thin copper foil provided with peeling metal substrate, and method of producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP