WO2019124413A1 - 電荷輸送性ワニス及び電荷輸送性薄膜 - Google Patents

電荷輸送性ワニス及び電荷輸送性薄膜 Download PDF

Info

Publication number
WO2019124413A1
WO2019124413A1 PCT/JP2018/046690 JP2018046690W WO2019124413A1 WO 2019124413 A1 WO2019124413 A1 WO 2019124413A1 JP 2018046690 W JP2018046690 W JP 2018046690W WO 2019124413 A1 WO2019124413 A1 WO 2019124413A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
charge transporting
hydrogen atom
Prior art date
Application number
PCT/JP2018/046690
Other languages
English (en)
French (fr)
Inventor
前田 大輔
倉田 陽介
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN201880081166.7A priority Critical patent/CN111492497B/zh
Priority to KR1020207020293A priority patent/KR20200098630A/ko
Priority to EP18891388.3A priority patent/EP3731291A4/en
Priority to US16/956,446 priority patent/US20200339825A1/en
Priority to JP2019560516A priority patent/JP6958637B2/ja
Publication of WO2019124413A1 publication Critical patent/WO2019124413A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/5403Silicon-containing compounds containing no other elements than carbon or hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to a charge transporting varnish and a charge transporting thin film.
  • the organic electroluminescent (EL) element a charge transporting thin film made of an organic compound is used as a light emitting layer or a charge injecting layer.
  • the hole injection layer is responsible for charge exchange between the anode and the hole transport layer or the light emitting layer, and plays an important function to achieve low voltage drive and high luminance of the organic EL element.
  • an oligoaniline compound has come to be used as a charge transporting substance in a hole injection layer, and improvement of various properties of this compound has been promoted.
  • charge transportability and luminous efficiency and luminance characteristics when used in an organic EL element, when applying a charge transporting varnish containing this compound to form a hole injection layer
  • solubility in organic solvents and the like can be mentioned.
  • Patent Document 4 a 1,4-benzodioxane sulfonic acid compound
  • Patent Document 4 a 1,4-benzodioxane sulfonic acid compound
  • sulfonic acid compounds are poorly soluble in low polar organic solvents, their high solubility, such as N, N-dimethylacetamide, N-methylpyrrolidone, etc. It is necessary to use a solvent containing a polar organic solvent.
  • a solution containing a high polar organic solvent may damage a part of the ink jet coating apparatus, or an organic structure such as an insulating film and a partition wall formed on a substrate.
  • sulfonic acid ester compounds are soluble in various organic solvents, and give a sulfonic acid compound which is a strong organic acid by external stimulation such as heating or chemical action. Therefore, it is considered that the sulfonic acid ester compound can be used as a precursor of the sulfonic acid compound as an electron accepting substance.
  • Sulfonic acid cyclohexyl ester etc. are reported as a specific example of a compound which gives sulfonic acid by heating (nonpatent literature 1). Sulfonic acid ester compounds are also attracting attention in the concept of thermal acid breeders (Patent Document 5, Non-patent Document 2).
  • sulfonic acid ester compounds are unstable and cause inadvertent decomposition to sulfonic acid compounds.
  • a compound having a structure in which a sulfonic acid ester structure is bonded to an aromatic ring lacking an electron eg, aromatic disulfonic acid ester etc.
  • aromatic disulfonic acid ester etc. is easily decomposed by reaction with slight heat, water, basic substances Resulting in.
  • the stability of such sulfonic acid ester compounds was insufficient as a component of the charge transporting varnish.
  • a charge transporting varnish for forming a hole injection layer of an organic EL device in which the stability of a sulfonic acid ester compound contained as a precursor of an electron accepting substance is improved.
  • Patent Document 6 sulfonic acid ester compounds having high stability and high solubility in a wide range of organic solvents.
  • the sulfonic acid ester compound was superior in stability and solubility in organic solvents to sulfonic acid compounds and conventional sulfonic acid ester compounds.
  • this compound in order to dissolve this compound in a low polarity solvent, it is necessary to stir at high temperature for a long time, and when the solution is stored for a long period of time, it may precipitate out, and the stability and solubility in organic solvents There was room for improvement.
  • an object of the present invention is to provide a charge transporting varnish for forming a hole injection layer of an organic EL device, in which the stability of a sulfonic acid ester compound contained as a precursor of an electron accepting substance is improved, and It is an object of the present invention to provide a charge transporting thin film formed by
  • a sulfonic acid ester compound which is an ester of a specific sulfonic acid compound and a specific glycol ether compound, as a precursor of an electron accepting substance leads to a reduction in preparation of a charge transporting varnish. It has been found that the problem caused by the solubility of the same precursor in a polar organic solvent does not occur, and problems such as precipitation of components do not occur even when the charge transporting varnish is stored for a long time. Based on the above new findings, the present invention has been completed.
  • a charge transporting varnish which comprises the following (a) to (d): (A) Oligoaniline compound (b) The following formula (2): (In the formula, R 1c to R 4c independently represent a hydrogen atom, or a linear or branched alkyl group having 1 to 6 carbon atoms, R 5c represents a C 2-20 monovalent hydrocarbon group which may be substituted; A 1 represents -O- or -S-, A 2 represents a (n + 1) -valent group derived from naphthalene or anthracene; A 3 represents an m-valent group derived from perfluorobiphenyl; m represents an integer satisfying 2 ⁇ m ⁇ 4, n represents an integer satisfying 1 ⁇ n ⁇ 4. ) A sulfonic acid ester compound represented by Charge transport varnish comprising (c) one or more metal oxide nanoparticles; and (d) an organic solvent.
  • the said oligoaniline compound (a) is the following (i)-(v): (I) the following formula (1a): (In the formula, R 1 and R 2 independently represent a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group, a t-butoxycarbonyl group, or a benzyloxycarbonyl group, R 3 to R 34 are each independently a hydrogen atom, a hydroxyl group, a silanol group, a thiol group, a carboxyl group, a phosphoric acid group, a phosphoric acid ester group, an ester group, a thioester group, an amide group, a nitro group, substituted or non Represents a substituted monovalent hydrocarbon group, an organooxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group, a sulfone group or a halogen atom, g and h each
  • R 35 , R 36 and R 37 each independently represent a hydrogen atom, an unsubstituted or substituted monovalent hydrocarbon group or an organooxy group
  • L and M are, independently of one another, of the following formula (b-1) or (b-2):
  • R 38 to R 45 independently of one another represent a hydrogen atom, a hydroxyl group, a substituted or unsubstituted monovalent hydrocarbon group or an organooxy group, an acyl group or a sulfonic acid group
  • a divalent group represented by x and y are, independently of one another, an integer of 1 or more and satisfy x + y ⁇ 20.
  • Ph 1 has the following formula (P1): (Wherein, R 3a to R 6a are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom, the carbon number 2 to 20 alkenyl, C 2 to C 20 alkynyl, C 6 to C 20 aryl or C 2 to C 20 heteroaryl.
  • Ar 2 independently represents an unsubstituted or substituted aryl group or a heteroaryl group which may have a monoarylamino group and / or a diarylamino group
  • p represents an integer of 1 to 10.
  • R 1a and R 2a are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted by a halogen atom, or having 2 to 20 carbon atoms
  • Ar 3 independently represents a diarylaminophenyl group, q represents 1 or 2; Ph 1 is the same as that defined for the above formula (1c).
  • R 1b represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may be substituted by Z b
  • Z b is a halogen atom, a nitro group, a cyano group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, a carboxyl group, an aryl group having 6 to 20 carbon atoms optionally substituted by Z b ′
  • Z b ′ Represents a heteroaryl group having 2 to 20 carbon atoms which may be substituted by Z b ′ represents a halogen atom, a nitro group, a cyano group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group or a carboxyl group
  • a method of producing a charge transporting thin film comprising the steps of applying the charge transporting varnish according to any one of items 1 to 3 on a substrate and evaporating the solvent.
  • a method for improving the storage stability of a charge transporting varnish comprising an oligoaniline compound, one or more metal oxide nanoparticles, a precursor of an electron accepting substance, and an organic solvent, wherein the precursor of the electron accepting substance And using a sulfonic acid ester compound represented by the following formula (2).
  • R 1c to R 4c independently represent a hydrogen atom, or a linear or branched alkyl group having 1 to 6 carbon atoms, R 5c represents a C 2-20 monovalent hydrocarbon group which may be substituted;
  • a 1 represents -O- or -S-,
  • a 2 represents a (n + 1) -valent group derived from naphthalene or anthracene;
  • a 3 represents an m-valent group derived from perfluorobiphenyl;
  • m represents an integer satisfying 2 ⁇ m ⁇ 4, n represents an integer satisfying 1 ⁇ n ⁇ 4.
  • the charge transporting varnish of the present invention contains, as a precursor of the electron accepting substance, a stable sulfonic acid ester compound having high solubility in a low polar organic solvent. For this reason, the varnish can be easily prepared by a method that does not include complicated steps such as long-time stirring at high temperature, and its characteristics are improved without problems such as precipitation of components, and it is possible to obtain It can be saved.
  • the charge transporting varnish of the present invention is added with a high polar organic solvent which may damage an ink jet coating apparatus, an organic structure formed on a substrate, etc.
  • the charge transporting varnish of the present invention is suitably used to form the hole injection layer of the organic EL element as described above, but in addition to that, an organic photoelectric conversion device, an organic thin film solar cell, an organic perovskite photoelectric conversion device, Organic integrated circuit, organic field effect transistor, organic thin film transistor, organic light emitting transistor, organic optical inspection device, organic photoreceptor, organic field quenching device, light emitting electrochemical cell, quantum dot light emitting diode, quantum laser, organic laser diode and organic plus It can also be used to form a charge transporting thin film used for an electronic device such as a Mon light emitting device.
  • FIG. 6 is a graph showing the light transmittance in the visible region of a thin film formed on a quartz substrate using the charge transporting varnishes of Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-2.
  • the charge transporting varnish of the present invention is (A) oligoaniline compound; (B) specific sulfonic acid ester compounds; (C) one or more metal oxide nanoparticles; and (d) an organic solvent.
  • A oligoaniline compound
  • B specific sulfonic acid ester compounds
  • C one or more metal oxide nanoparticles
  • d an organic solvent.
  • the oligoaniline compound (a) contained in the charge transporting varnish of the present invention is composed of a plurality of structural units (which may be the same or different) having a weight average molecular weight of 200 to 5,000 and derived from an aniline derivative. It is a compound.
  • the oligoaniline compound (a) two adjacent structural units are bonded to each other.
  • the structural units may be arranged in any order.
  • the oligoaniline compound (a) has a molecular weight of 200 to 500
  • One kind of oligoaniline compound in the range of 5000 and having no molecular weight distribution is used, or two or three kinds of oligoaniline compounds satisfying such conditions are used in combination.
  • any oligoaniline compound (a) may be used as the charge transporting substance, but preferably, the oligoaniline compound (a) is an oligoaniline compound (i) to (v) described in order below. And at least one oligoaniline compound selected from the group consisting of
  • the oligoaniline compound (i) which can be used as the oligoaniline compound (a) has the following formula (1a):
  • R 1 and R 2 independently represent a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group, a t-butoxycarbonyl group, or a benzyloxycarbonyl group
  • R 3 to R 34 are each independently a hydrogen atom, a hydroxyl group, a silanol group, a thiol group, a carboxyl group, a phosphoric acid group, a phosphoric acid ester group, an ester group, a thioester group, an amide group, a nitro group, substituted or non Represents a substituted monovalent hydrocarbon group, an organooxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group, a sulfone group or a hal
  • the carbon number in the monovalent hydrocarbon group is not particularly limited, but is preferably 1 to 20 carbon atoms, and more preferably 1 to 8 carbon atoms.
  • Specific examples of the substituted or unsubstituted monovalent hydrocarbon group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group and n-hexyl group Alkyl groups such as n-octyl group, 2-ethylhexyl group and decyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; bicycloalkyl groups such as bicyclohexyl group; vinyl group, 1-propenyl group, 2-propenyl group And alkenyl groups such as 1-methyl-2-propenyl group, 1 or 2 or 3-butenyl group, and hexenyl group; aryl groups
  • the R 1 and R 2 are preferably, independently of one another, a hydrogen atom, a methyl group, an ethyl group or a t-butoxycarbonyl group, particularly preferably a hydrogen atom or a t-butoxycarbonyl group. That is, R 1 and R 2 are both hydrogen atoms, both t-butoxycarbonyl groups, R 1 is a hydrogen atom and R 2 is a t-butoxycarbonyl group, R 1 is a t-butoxycarbonyl group It is preferable that R 2 be a hydrogen atom.
  • R 3 to R 34 are each independently a hydrogen atom, a hydroxyl group, an amino group, a silanol group, a thiol group, a carboxyl group, a phosphoric acid group, a phosphoric acid ester group, an ester group, a thioester group And an amido group, a nitro group, a substituted or unsubstituted monovalent hydrocarbon group, an organooxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group, a sulfone group, a halogen atom and the like.
  • substituted or unsubstituted monovalent hydrocarbon group include the same as described above.
  • organooxy group include an alkoxy group, an alkenyloxy group, an aryloxy group and the like, and examples of the alkyl group and the alkenyl group include the same as the substituents exemplified above.
  • organoamino group examples include methylamino group, ethylamino group, propylamino group, butylamino group, pentylamino group, hexylamino group, heptylamino group, octylamino group, nonylamino group, decylamino group, laurylamino group
  • Alkylamino groups such as dimethylamino, diethylamino, dipropylamino, dibutylamino, dipentylamino, dihexylamino, diheptylamino, diheptylamino, dioctylamino, dinonylamino, didecylamino and the like;
  • cycloalkylamino groups such as cyclohexylamino group; dicycloalkylamino groups such as dicyclohexylamino group; morpholino groups; arylamino groups such as bipheny
  • organosilyl group examples are trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, tripentylsilyl group, trihexylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, octyldimethylsilyl group, A decyl dimethyl silyl group etc. are mentioned.
  • organothio group examples include alkylthio groups such as methylthio, ethylthio, propylthio, butylthio, pentylthio, hexylthio, heptylthio, octylthio, nonylthio, decylthio, laurylthio and the like.
  • acyl group examples include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • the halogen atom includes a chlorine atom, a bromine atom, a fluorine atom and an iodine atom.
  • Examples of the phosphate group include —P (O) (OQ 1 ) (OQ 2 ).
  • the ester group includes —C (O) OQ 1 and —OC (O) Q 1 .
  • As a thioester group -C (S) OQ 1 and -OC (S) Q 1 can be mentioned.
  • Examples of the amide group, -C (O) NHQ 1, -NHC (O) Q 1, -C (O) NQ 1 Q 2, include -NQ 1 C (O) Q 2 .
  • Q 1 and Q 2 each represent an alkyl group, an alkenyl group or an aryl group, and examples thereof include the same groups as those exemplified for the monovalent hydrocarbon group.
  • the carbon number in the monovalent hydrocarbon group, organooxy group, organoamino group, organosilyl group, organothio group, organothio group, acyl group, phosphoric acid ester group, ester group, thioester group, amide group and the like is Although not particularly limited, it generally has 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms.
  • R 3 to R 34 are preferably, independently of one another, a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group, an organooxy group, an organoamino group or a halogen atom, particularly a hydrogen atom, A substituted or unsubstituted monovalent hydrocarbon group or a halogen atom is preferred.
  • the monovalent hydrocarbon group a phenyl group, a biphenyl group or a naphthyl group is preferable.
  • a halogen atom a fluorine atom is suitable.
  • the organoamino group is preferably an arylamino group, particularly preferably a diphenylamino group.
  • R 3 to R 34 are all hydrogen atoms.
  • g and h are each independently an integer of 1 or more and g + h ⁇ 20, but particularly preferably g + h ⁇ 10, and g + h ⁇ 5 More preferable. By adjusting to these ranges, it becomes easy to secure the solubility in various solvents while exhibiting good charge transportability.
  • the oligoaniline compound of the formula (1a) has no molecular weight distribution, in other words, it is an oligoaniline compound having a dispersion degree of 1 in consideration of enhancing the solubility and making the charge transport property uniform.
  • the molecular weight is usually 200 or more, preferably 400 or more as the lower limit for suppressing volatilization of the material and charge transport property expression, and is usually 5000 or less as the upper limit, preferably 3000 or less for improving the solubility. is there.
  • a quinonediimine compound which is an oxidized form of the oligoaniline compound represented by the formula (1a) may also be suitably used as the oligoaniline compound (a).
  • the oligoaniline compound represented by said Formula (1a) can be manufactured by the method described, for example in international publication 2008/129947.
  • the oligoaniline compound (ii) which can be used as the oligoaniline compound (a) has the following formula (1b): (In the formula, R 35 , R 36 and R 37 each independently represent a hydrogen atom, an unsubstituted or substituted monovalent hydrocarbon group or an organooxy group, L and M are, independently of one another, of the following formula (b-1) or (b-2): (Wherein, R 38 to R 45 are each independently a hydrogen atom, a hydroxyl group, a substituted or unsubstituted monovalent hydrocarbon group or an organooxy group, an acyl group or a sulfonic acid group). And a divalent group represented by x and y are, independently of one another, an integer of 1 or more and satisfy x + y ⁇ 20. ) It is an oligoaniline compound represented by
  • R 35 to R 45 in the above formulas (1b) and (b-1) and (b-2) are preferably a hydrogen atom from the viewpoint of easiness of synthesis, but in order to increase the solubility in a solvent, Alkyl, alkoxy, cyclohexyl, biphenyl, bicyclohexyl, phenylcyclohexyl and the like are preferable.
  • Alkyl group a methyl group, an ethyl group, a propyl group etc. are generally mentioned.
  • the carbon number thereof is generally 1 to 4, but introduction of up to 20 carbon atoms is possible.
  • the numbers of x and y in the above formula (1b) are each independently an integer of 1 or more, preferably 2 or more in consideration of the conductivity, and in consideration of solubility in the solvent, 20 or less is desirable.
  • R 36 is suitably a hydrogen atom, a hydroxyl group, an unsubstituted or substituted monovalent hydrocarbon group or an organooxy group, an acyl group, an alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms.
  • a methyl group, an ethyl group, a propyl group etc. are generally mentioned.
  • the number of carbon atoms is generally 1 to 4, but the introduction of up to 20 carbon atoms is possible.
  • a quinonediimine compound which is an oxidized product of the oligoaniline compound represented by the formula (1b) may also be suitably used as the oligoaniline compound (a).
  • oligoaniline compound (iii) which can be used as the oligoaniline compound (a) has the following formula (1c):
  • Ph 1 has the following formula (P1):
  • R 3a to R 6a are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom, the carbon number 2 to 20 alkenyl, C 2 to C 20 alkynyl, C 6 to C 20 aryl or C 2 to C 20 heteroaryl.
  • Ar 1 independently represents an unsubstituted or substituted aryl group or a heteroaryl group which may have a monoarylamino group and / or a diarylamino group
  • Ar 2 independently represents an unsubstituted or substituted aryl group or a heteroaryl group which may have a monoarylamino group and / or a diarylamino group
  • p represents an integer of 1 to 10.
  • halogen atom examples include the same as described above.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group S-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, etc.
  • Cyclic or branched alkyl group straight chain having 1 to 20 carbon atoms Cyclic or branched alkyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group, Examples thereof include cyclic alkyl groups having 3 to 20 carbon atoms such as bicyclooctyl group, bicyclononyl group and bicyclodecyl group.
  • the alkenyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethenyl group, n-1-propenyl group, n-2-propenyl group, 1-methylethenyl group , N-1-butenyl group, n-2-butenyl group, n-3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1 And -propenyl group, 1-methyl-2-propenyl group, n-1-pentenyl group, n-1-decenyl group, n-1-eicosenyl group and the like.
  • the alkynyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethynyl group, n-1-propynyl group, n-2-propynyl group and n-1-yl group.
  • aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group And 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
  • heteroaryl group having 2 to 20 carbon atoms include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 3-isoxazolyl group, 4-isoxazolyl group, 5-isoxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2-imidazolyl group, Examples thereof include 4-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group and the like.
  • An aryl group and a heteroaryl group having 2 to 20 carbon atoms which may be substituted by a halogen atom are preferable, and a hydrogen atom, a fluorine atom, a cyano group and an alkyl group having 1 to 10 carbons which may be substituted by a halogen atom are preferable.
  • a phenyl group which may be substituted by a halogen atom is more preferable, a hydrogen atom and a fluorine atom are more preferable, and a hydrogen atom is optimum.
  • Ar 1 independently represents a group represented by any one of the following formulas (B1) to (B11).
  • Ar 4 independently represents each other an aryl group having 6 to 20 carbon atoms which may be substituted with a di (aryl having 6 to 20 carbon atoms) amino group
  • R 7a to R 27a , R 30a to R 51a and R 53a to R 154a are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group or a diphenylamino group optionally substituted with a halogen atom
  • R 28a and R 29a each independently represent an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 1a
  • R 52a represents each other an
  • Ar 1 independently of each other represents a group represented by any one of formulas (B1 ′) to (B11 ′).
  • Ar 2 independently represents a group represented by any one of the following formulas (G1) to (G18).
  • R 155a represents a hydrogen atom, the heteroaryl group of the aryl group or Z ⁇ 2 carbon atoms which may be substituted with 1a 14 of Z 1a ⁇ carbon atoms 6 optionally substituted with 14, R 156a and R 157a are optionally substituted independently of one another, an aryl group of Z 1a carbon atoms 6 be substituted by optionally substituted phenyl group to 14, or Z 1a phenyl Represents a heteroaryl group having 2 to 14 carbon atoms which may be substituted by DPA represents a diphenylamino group, Ar 4 and Z 1a are the same as defined for Ar 1 . )
  • a hydrogen atom, an aryl group having 6 to 14 carbon atoms which may be substituted with Z 1a , or a heteroaryl group having 2 to 14 carbon atoms which may be substituted with Z 1a is preferable, and a hydrogen atom, Z 1a in an optionally substituted phenyl group, Z 1a with optionally substituted 1-naphthyl group, Z 1a with optionally substituted 2-naphthyl group, may be substituted with Z 1a 2 - a pyridyl group, substituted by Z 1a may be substituted in a phenyl group 3-pyridyl group, more preferably it may also be 4-pyridyl group optionally substituted by Z 1a, substituted by Z 1a Further, a phenyl group which may be substituted is more preferable, and a phenyl group or a 2,3,5,6-tetrafluoro-4- (trifluoromethyl) phenyl group is
  • R as the 156a and R 157a, substituted with an aryl group, a phenyl group optionally substituted by Z 1a of Z 1a carbon atoms 6 be substituted by optionally substituted phenyl group with ⁇ 14 or a heteroaryl group 2-14 carbon atoms which may have been, more preferably an aryl group which may having 6 to 14 carbon atoms optionally substituted with also a phenyl group optionally substituted by Z 1a, with Z 1a
  • phenyl group optionally substituted with phenyl group optionally substituted with Z 1a optionally substituted phenyl group optionally substituted with Z 1a
  • the 2-naphthyl group is more preferred.
  • aryl group having 6 to 20 carbon atoms in Ar 4 include the same as those described for R 3a to R 6a , and specific examples of the di (aryl having 6 to 20 carbon atoms) amino group And diphenylamino, 1-naphthylphenylamino, di (1-naphthyl) amino, 1-naphthyl-2-naphthylamino, di (2-naphthyl) amino and the like.
  • P represents an integer of 1 to 10, preferably 1 to 5, more preferably 1 to 3, still more preferably 1 or 2, and most preferably 1 from the viewpoint of enhancing the solubility in organic solvents.
  • Ar 2 independently represents a group represented by any one of the following formulas (G1 ′) to (G18 ′).
  • the oligoaniline compound (iv) which can be used as the oligoaniline compound (a) has the following formula (1d): (In the formula, R 1a and R 2a are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted by a halogen atom, or having 2 to 20 carbon atoms And alkenyl group, alkynyl group having 2 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, or heteroaryl group having 2 to 20 carbon atoms, Ar 3 independently represents a diarylaminophenyl group, q represents 1 or 2; Ph 1 is the same as defined for formula (1c)) It is an oligoaniline compound represented by
  • halogen atom alkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, alkynyl group having 2 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms and heteroaryl group having 2 to 20 carbon atoms
  • alkyl group having 1 to 20 carbon atoms alkenyl group having 2 to 20 carbon atoms
  • alkynyl group having 2 to 20 carbon atoms alkynyl group having 2 to 20 carbon atoms
  • aryl group having 6 to 20 carbon atoms aryl group having 6 to 20 carbon atoms
  • heteroaryl group having 2 to 20 carbon atoms mention may be made of the ones exemplified above.
  • R 1a and R 2a each independently represent a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom, or 6 carbon atoms which may be substituted with a halogen atom
  • An aryl group of to 20, and a heteroaryl group having 2 to 20 carbon atoms which may be substituted by a halogen atom are preferable
  • a hydrogen atom, a fluorine atom, a cyano group or a carbon atom optionally substituted by a halogen atom is preferably 1 to 10
  • the alkyl group of the following is more preferable, the phenyl group which may be substituted by the halogen atom is more preferable, the hydrogen atom and the fluorine atom are more preferable, and the hydrogen atom is optimum.
  • Ar 3 independently represents a group represented by any one of the following formulas (I1) to (I8).
  • DPA represents a diphenylamino group.
  • Ar 3 independently represents a group represented by any of (I1 ′) to (I8 ′).
  • DPA represents a diphenylamino group.
  • the oligoaniline compound (v) which can be used as the oligoaniline compound (a) has the following formula (1e):
  • R 1b represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may be substituted by Z b
  • Z b is a halogen atom, a nitro group, a cyano group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, a carboxyl group, an aryl group having 6 to 20 carbon atoms optionally substituted by Z b ′
  • Z b ′ Represents a heteroaryl group having 2 to 20 carbon atoms which may be substituted by Z b ′ represents a halogen atom, a nitro group, a cyano group, an aldehyde group, a hydroxyl group, a thiol group, a s
  • halogen atom alkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, alkynyl group having 2 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms and heteroaryl group having 2 to 20 carbon atoms
  • alkyl group having 1 to 20 carbon atoms alkenyl group having 2 to 20 carbon atoms
  • alkynyl group having 2 to 20 carbon atoms alkynyl group having 2 to 20 carbon atoms
  • aryl group having 6 to 20 carbon atoms aryl group having 6 to 20 carbon atoms
  • heteroaryl group having 2 to 20 carbon atoms mention may be made of the ones exemplified above.
  • R 1b is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms which may be substituted with Z b , in consideration of the solubility of the oligoaniline compound in the organic solvent, and a hydrogen atom, Or an alkyl group having 1 to 4 carbon atoms which may be substituted by Z b is more preferable, and a hydrogen atom is optimal.
  • the plurality of R 1b may be identical to or different from each other.
  • R 2b to R 10b may be substituted by a hydrogen atom, a halogen atom, a nitro group, a cyano group or a halogen atom, in consideration of the solubility of the oligoaniline compound in the organic solvent.
  • An alkyl group having 1 to 10 carbon atoms is preferable, and a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom is more preferable, and the solubility of the oligoaniline compound in an organic solvent Considering the balance with charge transportability, a hydrogen atom is optimal.
  • the plurality of R 2b to R 5b may be identical to or different from each other.
  • a ' is A fluoroalkyl group having 1 to 20 carbon atoms, a fluorocyclo group having 3 to 20 carbon atoms which may be substituted with a cyano group, a chlorine atom, a bromine atom, an iodine atom, a nitro group or a fluoroalkoxy group having 1 to 20 carbon atoms
  • the fluoroalkyl group is not particularly limited as long as it is a linear or branched alkyl group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom, and for example, a fluoromethyl group, a difluoromethyl group, Trifluoromethyl group, 1-fluoroethyl group, 2-fluoroethyl group, 1,2-difluoroethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, 1,1,2-trifluoroethyl group Group, 1,2,2-trifluoroethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 1,2,2,2-tetrafluoroethyl group, 1,1,2,2,2-pentafluoroethyl group, 1-fluoropropyl group, 2-fluoropropyl group, 3-fluoroprop
  • the fluorocycloalkyl group is not particularly limited as long as it is a cycloalkyl group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom, and, for example, 1-fluorocyclopropyl group, 2-fluorocyclopropyl group , 2,2-difluorocyclopropyl group, 2,2,3,3-tetrafluorocyclopropyl group, pentafluorocyclopropyl group, 2,2-difluorocyclobutyl group, 2,2,3,3-tetrafluorocyclo group Butyl group, 2,2,3,3,4,4-hexafluorocyclobutyl group, heptafluorocyclobutyl group, 1-fluorocyclopentyl group, 3-fluorocyclopentyl group, 3,3-difluorocyclopentyl group, 3,3 , 4, 4- tetrafluorocyclopentyl group, nonaflu
  • the fluorobicycloalkyl group is not particularly limited as long as it is a bicycloalkyl group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom, and, for example, 3-fluorobicyclo [1.1.0] butane- 1-yl group, 2,2,4,4-tetrafluorobicyclo [1.1.0] butane-1-yl group, pentafluorobicyclo [1.1.0] butane-1-yl group, 3-fluoro Bicyclo [1.1.1] pentan-1-yl group, 2,2,4,4,5-pentafluorobicyclo [1.1.1] pentan-1-yl group, 2,2,4,4, 5,5-hexafluorobicyclo [1.1.1] pentan-1-yl group, 5-fluorobicyclo [3.1.0] hexan-6-yl group, 6-fluorobicyclo [3.1.0 ] 6,6-Difluorobicyclo [3.1.0] hexan-2-yl group,
  • the fluoroalkenyl group is not particularly limited as long as at least one hydrogen atom on a carbon atom is an alkenyl group substituted with a fluorine atom, and examples thereof include 1-fluoroethenyl group, 2-fluoroethenyl group, 1 2, 2-Difluoroethenyl group, 1, 2, 2- trifluoroethenyl group, 2, 3, 3- trifluoro- 1-propenyl group, 3, 3, 3- trifluoro- 1-propenyl group, 2, 3 , 3,3-Tetrafluoro-1-propenyl group, pentafluoro-1-propenyl group, 1-fluoro-2-propenyl group, 1,1-difluoro-2-propenyl group, 2,3-difluoro-2-propenyl group Group, 3,3-difluoro-2-propenyl group, 2,3,3-trifluoro-2-propenyl group, 1,2,3,3-tetrafluoro
  • the fluoroalkynyl group is not particularly limited as long as it is an alkynyl group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom, and, for example, a fluoroethynyl group, 3-fluoro-1-propynyl group, 3, Examples include 3-difluoro-1-propynyl group, 3,3,3-trifluoro-1-propynyl group, 1-fluoro-2-propynyl group, 1,1-difluoro-2-propynyl group and the like.
  • the fluoroaryl group is not particularly limited as long as at least one hydrogen atom on a carbon atom is an aryl group substituted with a fluorine atom, and, for example, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group Phenyl, 2,3-difluorophenyl, 2,4-difluorophenyl, 2,5-difluorophenyl, 2,6-difluorophenyl, 3,4-difluorophenyl, 3,5-difluorophenyl 2,3,4-trifluorophenyl group, 2,3,5-trifluorophenyl group, 2,3,6-trifluorophenyl group, 2,4,5-trifluorophenyl group, 2,4,6 -Trifluorophenyl group, 3,4,5-trifluorophenyl group, 2,3,4,5-tetrafluorophenyl group, 2,3,4,6-tetrafluoropheny
  • fluoroaryl group cyano group, chlorine atom, bromine atom, in view of balance such as solubility of oligoaniline compound in organic solvent, charge transporting property of oligoaniline compound, availability of raw material of oligoaniline compound, etc.
  • Preferred is a phenyl group.
  • the fluoroalkoxy group is not particularly limited as long as it is an alkoxy group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom, and for example, a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group, 1 -Fluoroethoxy group, 2-fluoroethoxy group, 1,2-difluoroethoxy group, 1,1-difluoroethoxy group, 2,2-difluoroethoxy group, 1,1,2-trifluoroethoxy group, 1,2, 2-trifluoroethoxy group, 2,2,2-trifluoroethoxy group, 1,1,2,2-tetrafluoroethoxy group, 1,2,2,2-tetrafluoroethoxy group, 1,1,2,2 2,2-pentafluoroethoxy group, 1-fluoropropoxy group, 2-fluoropropoxy group, 3-fluoropropoxy group, 1,1-difluor
  • fluoroalkyl group having 1 to 20 carbon atoms fluorocycloalkyl group having 3 to 20 carbon atoms, fluorobicycloalkyl group having 4 to 20 carbon atoms, fluoroalkenyl group having 2 to 20 carbon atoms or fluorocarbon having 2 to 20 carbon atoms
  • An aryl group having 6 to 20 carbon atoms which may be substituted by an alkynyl group and may be substituted by a cyano group, a halogen atom or a fluoroalkoxy group having 1 to 20 carbon atoms (hereinafter also referred to as an aryl group substituted for convenience)
  • At least one hydrogen atom on a carbon atom is a fluoroalkyl group having 1 to 20 carbon atoms, a fluorocycloalkyl group having 3 to 20 carbon atoms, a fluorobicycloalkyl group having 4 to 20 carbon atoms, and An aryl group substituted with 2 to 20 fluoroal
  • the substituted aryl group has 3 to 20 carbon atoms, considering the solubility of the oligoaniline compound in the organic solvent, the charge transportability of the oligoaniline compound, the availability of the raw material of the oligoaniline compound, etc.
  • a phenyl group which may be substituted with a fluoroalkoxy group of up to 20 (hereinafter also referred to as a substituted phenyl group for convenience) is preferable, and a phenyl group substituted with 1 to 3 trifluoromethyl groups is more preferable, The p-trifluoromethylphenyl group is more preferred.
  • the fluoroaralkyl group is not particularly limited as long as at least one hydrogen atom on a carbon atom is an aralkyl group substituted with a fluorine atom, and examples thereof include 2-fluorobenzyl group, 3-fluorobenzyl group, 4- Fluorobenzyl group, 2,3-difluorobenzyl group, 2,4-difluorobenzyl group, 2,5-difluorobenzyl group, 2,6-difluorobenzyl group, 3,4-difluorobenzyl group, 3,5-difluorobenzyl group Group, 2,3,4-trifluorobenzyl group, 2,3,5-trifluorobenzyl group, 2,3,6-trifluorobenzyl group, 2,4,5-trifluorobenzyl group, 2,4,4, 6-trifluorobenzyl group, 2,3,4,5-tetrafluorobenzyl group, 2,3,4,6-tetrafluorobenzyl group, 2,3,5,6
  • the aralkyl group having 7 to 20 carbon atoms which may be substituted by an alkynyl group and which may be substituted by a cyano group, a halogen atom or a fluoroalkoxy group having 1 to 20 carbon atoms is at least one carbon atom
  • the hydrogen atom is a C1-C20 fluoroalkyl group, a C3-C20 fluorocycloalkyl group, a C4-C20 fluorobicycloalkyl group, a C2-C20 fluoroalkenyl group, or a C2-C20 hydrogen atom
  • a ′ is preferably the above-mentioned optionally substituted fluoroalkyl group having 1 to 20 carbon atoms, the above-mentioned optionally substituted fluoroaryl group having 6 to 20 carbon atoms or the above-mentioned substituted aryl group.
  • the fluoroaryl group having 6 to 20 carbon atoms which may be substituted or the substituted aryl group is more preferable, and the fluorophenyl group which may be substituted or the substituted phenyl group is more preferable.
  • r is an integer of 1 to 20, but from the viewpoint of the solubility of the oligoaniline compound in solvent, 10 or less is preferable, 8 or less is more preferable, 5 or less is still more preferable, and 4 or less is still more preferable.
  • 2 or more is preferable, 3 or more is more preferable, and 3 is optimal in consideration of the balance between solubility and charge transportability.
  • oligoaniline compound suitable in the present invention will be listed, but the present invention is not limited thereto.
  • DPA represents a diphenylamino group.
  • the sulfonic acid ester compound (b) contained in the charge transporting varnish of the present invention has the following formula (2): (In the formula, R 1c to R 4c independently represent a hydrogen atom, or a linear or branched alkyl group having 1 to 6 carbon atoms, R 5c represents a C 2-20 monovalent hydrocarbon group which may be substituted; A 1 represents -O- or -S-, A 2 represents a (n + 1) -valent group derived from naphthalene or anthracene; A 3 represents an m-valent group derived from perfluorobiphenyl; m represents an integer satisfying 2 ⁇ m ⁇ 4, n represents an integer satisfying 1 ⁇ n ⁇ 4.
  • a sulfonic acid ester compound represented by This compound functions as a precursor of the electron accepting substance in the charge transporting varnish of the present invention.
  • the electron accepting substance is used to improve charge transportability and film formation uniformity, and is synonymous with the electron accepting dopant.
  • the linear or branched alkyl group is not particularly limited, and a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an tert-butyl group, an n-hexyl group, etc. Can be mentioned. Among these, an alkyl group having 1 to 3 carbon atoms is preferable.
  • Examples of the monovalent hydrocarbon group having 2 to 20 carbon atoms include alkyl groups such as ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and tert-butyl group, phenyl group, naphthyl group, phenanthryl group And aryl groups such as groups.
  • R 1c to R 4c it is preferable that R 1c or R 3c is a linear alkyl group having 1 to 3 carbon atoms, and the rest is a hydrogen atom. More preferably, R 1c is a linear alkyl group having 1 to 3 carbon atoms, and R 2c to R 4c are hydrogen atoms.
  • the linear alkyl group having 1 to 3 carbon atoms is preferably a methyl group.
  • R 5c a linear alkyl group having 2 to 4 carbon atoms or a phenyl group is preferable.
  • a 1 -O- is preferable.
  • a 2 a group derived from naphthalene is preferable.
  • n 1 or 2 is preferable.
  • the sulfonic acid ester compound (b) exhibits high solubility in a wide range of solvents including low polar solvents, so that various solvents can be used to adjust the physical properties of the solution and enhance the coating properties. . Therefore, it is preferable to apply a charge transporting varnish containing a sulfonic acid ester to form a coating film, and to generate sulfonic acid from the sulfonic acid ester when the coating film is dried or fired.
  • the temperature at which the sulfonic acid is generated from the sulfonic acid ester is preferably 40 to 260 ° C. because the sulfonic acid ester is stable at room temperature and the sulfonic acid is preferably generated below the calcination temperature.
  • the temperature is preferably 80 to 230 ° C., more preferably 120 to 180 ° C.
  • the sulfonic acid ester compound (b) can be made into a charge transporting varnish by dissolving or dispersing it in an organic solvent together with the oligoaniline compound (a) which is the main body of the charge transport mechanism.
  • the sulfonic acid ester compound (b) (formula (2)) is prepared, for example, by reacting a sulfonate compound represented by formula (2 ′ ′) with a halogenating agent, as shown in the following scheme A, A sulfonyl halide compound represented by the formula (2 ′) is synthesized (hereinafter also referred to as step 1), and the sulfonyl halide compound is reacted with a glycol ether represented by the formula (3) (hereinafter also referred to as step 2)
  • M + is a monovalent cation such as sodium ion, potassium ion, pyridinium ion, quaternary ammonium ion, etc.
  • Hal represents a halogen atom such as a chlorine atom or a bromine atom.
  • the sulfonate compound represented by the formula (2 ′ ′) can be synthesized according to a known method.
  • halogenating agent used in step 1 examples include halogenating agents such as thionyl chloride, oxalyl chloride, phosphorus oxychloride and phosphorus (V) chloride, and thionyl chloride is preferable.
  • the amount of the halogenating agent to be used is not limited as long as it is at least 1 times the molar amount with respect to the sulfonate compound, but it is preferable to use 2 to 10 times the mass of the sulfonate compound.
  • the reaction solvent used in step 1 is preferably a solvent which does not react with the halogenating agent, and examples thereof include chloroform, dichloroethane, carbon tetrachloride, hexane, heptane and the like. Is preferred).
  • the reaction is carried out without a solvent, it is preferable to use the halogenating agent in an amount equal to or more than a homogeneous solution at the end of the reaction.
  • the reaction temperature can be about 0 to 150 ° C., but is preferably 20 to 100 ° C. and not higher than the boiling point of the halogenating agent used.
  • the crude product obtained by concentration under reduced pressure or the like is used in the next step.
  • glycol ethers represented by the formula (3) propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol monophenyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether etc. are preferable. .
  • a base may be used in combination.
  • examples of usable bases include sodium hydride, pyridine, triethylamine, diisopropylethylamine and the like, with sodium hydride, pyridine and triethylamine being preferred.
  • the amount of the base used is preferably 1-fold mole to solvent amount to the sulfonyl halide compound (2 ′).
  • reaction solvent used in the step 2 tetrahydrofuran, dichloroethane, chloroform and pyridine are preferable.
  • the reaction temperature is not particularly limited, but 0 to 80 ° C. is preferable.
  • post-treatment and purification can be performed using conventional methods such as vacuum concentration, liquid phase extraction, water washing, reprecipitation, recrystallization, chromatography and the like to obtain a pure sulfonic acid ester compound.
  • it can also be led to a highly pure sulfonic acid compound by subjecting the obtained pure sulfonic acid ester compound to a heat treatment or the like.
  • the sulfonic acid ester compound represented by Formula (2) can also be synthesize
  • the halogenating agent used in the first and second stage reactions, the glycol ether represented by the formula (3), the reaction solvent, and the other components are the same as Steps 1 and 2 in Scheme A. The same ones can be used. (Wherein, A 1 to A 3 , R 1c to R 5c , m, n and Hal are as defined above)
  • the sulfonic acid compound represented by the formula (2 ′ ′ ′) can be synthesized, for example, according to the method described in WO 2006/025342.
  • the charge transporting varnish of the present invention comprises one or more metal oxide nanoparticles (c).
  • Nanoparticles mean microparticles whose average particle size for primary particles is on the order of nanometers (typically less than 500 nm). By metal oxide nanoparticles are meant metal oxides formed into nanoparticles.
  • the metals in the metal oxide nanoparticles (c) include semimetals in addition to metals in the usual sense.
  • the metals in the ordinary meaning may be used alone or in combination of two or more, and tin (Sn), titanium (Ti), aluminum (Al), zirconium (Zr), zinc (Zn), It is preferable to use one or more selected from the group consisting of niobium (Nb), tantalum (Ta) and W (tungsten), but is not limited thereto.
  • the term "metalloid” means an element whose chemical and / or physical properties are intermediate between metal and nonmetal.
  • the element is a semimetal. These semimetals may be used alone or in combination of two or more, or may be used in combination with metals in a usual sense.
  • Metal oxide nanoparticles (c) are boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), tin (Sn), titanium (Ti), It is preferable to include an oxide of at least one metal selected from the group consisting of aluminum (Al), zirconium (Zr), zinc (Zn), niobium (Nb), tantalum (Ta) and W (tungsten).
  • the metal oxide may be a mixture of oxides of individual single metals, or a complex oxide containing a plurality of metals.
  • metal oxide examples include B 2 O 3 , B 2 O, SiO 2 , SiO, GeO 2 , GeO, As 2 O 4 , As 2 O 3 , As 2 O 5 , Sb 2 O 3 , sb 2 O 5, TeO 2, SnO 2, ZrO 2, Al is 2 O 3, ZnO and the like, but are not limited to.
  • the metal oxide nanoparticles (c) are B 2 O 3 , B 2 O, SiO 2 , SiO, GeO 2 , GeO, As 2 O 4 , As 2 O 3 , As 2 O 5 , SnO 2 SnO, Sb 2 O 3 , TeO 2 or mixtures thereof.
  • the metal oxide nanoparticles (c) comprise SiO 2 .
  • the average particle size of the primary particles is usually 1 nm or more and 500 nm or less, preferably 1 nm or more and 250 nm or less, more preferably about 1 nm or more and about 100 nm or less, more preferably 1 nm or more 50 nm or less, particularly preferably about 2 nm or more and about 30 nm or less, and most preferably 3 nm or more and 25 nm or less.
  • Examples of the method of measuring the average particle diameter of primary particles include, for example, a method using a transmission electron microscope (TEM), and a method of calculating from the specific surface area determined by the BET method.
  • TEM transmission electron microscope
  • Various methods of measuring the average particle size using a TEM are known, and one example is a method based on the equivalent circle diameter. This is performed by processing a projection image of particles obtained using a TEM (for example, transmission electron microscope HT7700 (manufactured by Hitachi High-Technologies Corporation)) with image processing software to determine the equivalent circle diameter of each particle,
  • the average particle diameter is a method of determining the average particle diameter as a number average of circle equivalent diameters of.
  • the equivalent circle diameter is also called the Haywood diameter, and is the diameter of a circle having the same area as the area of the projected image of particles.
  • processing of the projected image is typically performed using image processing software created by the manufacturer of the TEM provided with the TEM.
  • the metal oxide nanoparticles (c) may comprise one or more organic capping groups.
  • the organic capping group may be reactive or non-reactive. Examples of reactive organic capping groups can include organic capping groups that can be crosslinked by ultraviolet light or radical initiators. In one embodiment, the metal oxide nanoparticles (c) comprise one or more organic capping groups.
  • Metal oxide nanoparticles can also be produced by known methods, but are also commercially available. Commercially available metal oxide nanoparticles are usually in the form of a dispersion. Preferably, commercially available non-aqueous dispersions of metal oxide nanoparticles are used.
  • SiO 2 nanoparticles can be used in various solvents (eg methanol, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethyl acetamide, ethylene glycol, isopropanol, methanol, ethylene glycol mono)
  • solvents eg methanol, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethyl acetamide, ethylene glycol, isopropanol, methanol, ethylene glycol mono
  • ORGANOSILICASOL trade name
  • the content of the metal oxide nanoparticles (c) in the charge transporting varnish of the present invention is the metal oxide nanoparticles (c) and the oligoaniline compound (a) (including those doped and not doped) It is expressed as a weight percentage to the total weight of
  • the content of the metal oxide nanoparticles (c) is usually about 1 wt% to about 98 wt%, preferably about 2 wt%, based on the total weight of the metal oxide nanoparticles (c) and the oligoaniline compound (a). Wt% to about 95% by weight, more preferably about 5% to about 90% by weight, still more preferably about 10% to about 90% by weight.
  • the content of the metal oxide nanoparticles (c) is about 20 wt% to about 98%, preferably the total weight of the metal oxide nanoparticles (c) and the oligoaniline compound (a). About 25 wt% to about 95 wt%.
  • the charge transporting varnish of the present disclosure may be non-aqueous or may contain water, but is preferably non-aqueous from the viewpoint of process compatibility in ink jet coating and storage stability of the varnish.
  • non-aqueous means that the total amount of water in the charge transporting varnish of the present disclosure is 0 to 2% by weight based on the total amount of the charge transporting varnish.
  • the total amount of water in the charge transporting varnish is 0 to 1% by weight, more typically 0 to 0.5% by weight, based on the total amount of the charge transporting varnish.
  • the charge transporting varnish of the present disclosure is substantially free of water.
  • Examples of the organic solvent used for the charge transporting varnish include N, N-dimethylformamide (153 ° C.), N, N-dimethylacetamide (165 ° C.), N-methylpyrrolidone (202 ° C.), and 1,3-dimethylone.
  • a highly soluble solvent capable of well dissolving the oligoaniline compound (a) and the sulfonic acid ester compound (b) can be used.
  • a high solubility solvent for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, diethylene glycol, dimethyl sulfoxide, dimethyl isobutyric acid An amide etc. are mentioned.
  • These solvents may be used alone or in combination of two or more, and the amount thereof may be 5 to 100% by mass with respect to the whole solvent used for the varnish.
  • the charge transporting varnish is preferably in a state in which the respective components are completely dissolved in the above-mentioned solvent or dispersed uniformly.
  • the charge transporting varnish of the present invention has a viscosity of 10 to 200 mPa ⁇ s at 20 ° C., preferably 50 to 150 mPa ⁇ s, and a high viscosity organic solvent having a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure. It is preferable to contain at least one solvent.
  • the high viscosity organic solvent for example, cyclohexanol, ethylene glycol, ethylene glycol dicrisidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3-butanediol, Examples include 2,3-butanediol, 1,4-butanediol, propylene glycol, hexylene glycol and the like.
  • the addition ratio of the high-viscosity organic solvent to the entire solvent used in the varnish of the present invention is preferably in the range in which the solid does not precipitate / precipitate, and the addition ratio is 5 to 80 mass as long as the solid is not precipitated / precipitated. % Is preferred.
  • solvents which can impart flatness to the film at the time of baking It can also be mixed in a proportion of 1 to 90% by weight, preferably 1 to 50% by weight.
  • solvent for example, butyl cellosolve, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, ethyl carbitol, diacetone alcohol, ⁇ -butyrolactone, ethyl lactate and the like can be mentioned.
  • solvent combinations include, but are not limited to, for example, As a combination of two solvents, 1,3-dimethyl-2-imidazolidinone and cyclohexanol, tetraethylene glycol and diethylene glycol monoethyl ether acetate, dipropylene glycol and diethylene glycol monoethyl ether acetate, triethylene glycol monomethyl ether and diethylene glycol Isopropyl ether, diethylene glycol and diethylene glycol monoethyl ether acetate, diethylene glycol and triethylene glycol dimethyl ether, 3-phenoxytoluene and triethylene glycol dimethyl ether, 1,3-dimethyl-2-imidazolidinone and hexylene glycol, 1,3-dimethyl- 2-Imidazolidinone and diethylene glycol monoethyl ether acetate And N, N-dimethylacetamide and cyclohexanol, N, N-dimethylacetamide and diethylene
  • the organic solvent used for the charge transporting varnish in the present invention is an ether such as anisole, ethoxybenzene, dimethoxybenzene and glycol diether (glycol diethers) such as ethylene glycol diether (1 2, 2-dimethoxyethane, 1,2-diethoxyethane and 1,2-dibutoxyethane etc .; diethylene glycol diethers such as diethylene glycol dimethyl ether and diethylene glycol diethyl ether; propylene glycol diethers (propylene glycol dimethyl ether, propylene glycol diethyl ether And propylene glycol dibutyl ether etc.); dipropylene glycol diether (dipropylene glycol dimethyl ether, Propylene glycol diethyl ether and dipropylene glycol dibutyl ether etc.); and higher analogues of ethylene glycol and propylene glycol ether referred to herein (ie tri- and tetra-ana)
  • solvents such as ethylene glycol monoether acetate and propylene glycol monoether acetate (glycol ester ethers) can be considered, wherein the ether is, for example, methyl, ethyl, n-propyl, iso- It can be selected from propyl, n-butyl, sec-butyl, tert-butyl and cyclohexyl. Also included are the higher glycol ether analogs (such as di-, tri- and tetra-) of the above list.
  • Examples include, but are not limited to, propylene glycol methyl ether acetate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate.
  • glycol diacetate and the like can be considered, and also include higher glycol ether analogues (such as di-, tri- and tetra-). Examples include, but are not limited to, ethylene glycol diacetate, triethylene glycol diacetate, propylene glycol diacetate.
  • alcohols such as methanol, ethanol, trifluoroethanol, n-propanol, isopropanol, n-butanol, t-butanol and alkylene glycol monoethers (glycol monoethers) are also considered for use in charge transport varnishes. obtain.
  • glycol monoethers include, but are not limited to, ethylene glycol monopropyl ether, ethylene glycol monohexyl ether (hexyl cellosolve), propylene glycol monobutyl ether (Dowanol PnB), diethylene glycol monoethyl ether (ethyl carbitol), di-ethylene glycol Propylene glycol n-butyl ether (Dowanol DPnB), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monobutyl ether (butyl carbitol), dipropylene glycol monomethyl ether (Dowanol DPM), diisobutyl carbinol, 2-ethylhexyl alcohol, methyl isobutyl carbinol Propylene glycol monopropyl ether (Dowanol PnP), diethylene glycol monopro Pill ether (propyl carbitol), diethylene glycol monohexyl ether
  • organic solvents disclosed herein are, for example, in various proportions in the charge transport varnish to improve the ink properties such as substrate wettability, ease of solvent removal, viscosity, surface tension and ejection. It can be used.
  • the charge transporting varnish comprises dimethyl sulfoxide, ethylene glycol (glycols), tetramethyl urea or a mixture thereof.
  • suitable glycols include, but are not limited to, ethylene glycol, diethylene glycol, dipropylene glycol, polypropylene glycol, propylene glycol, triethylene glycol and the like.
  • glycol solvent The above glycol diethers, glycol ester ethers, glycol diesters, glycol monoethers, glycols and the like are collectively referred to as "glycol solvent”. That is, the “glycol solvent” in the present invention is represented by the formula R G1 -O- (R G0 -O) v -R G2 (wherein each R G0 is independently of each other, a linear C 2 -C 4 unsubstituted alkylene group, and R G1 and R G2, independently of one another, a hydrogen atom, a linear, branched or cyclic C 1 -C 8 unsubstituted alkyl group or a linear or branched C an 1 -C 8 unsubstituted aliphatic acyl group, v is expressed by an a) an integer from 1 to 6, which is an organic solvent that does not have one or more aromatic structures.
  • R is a C 2 or C 3 unsubstituted alkylene group.
  • alkyl group a linear, branched or cyclic C 1 -C 6 unsubstituted alkyl group is preferable, a linear C 1 -C 4 unsubstituted alkyl group is more preferable, and a methyl group and an n-butyl group are preferable. Particularly preferred.
  • acyl group a linear or branched C 2 -C 6 non-substituted aliphatic acyl group is preferable, a linear C 2 -C 4 non-substituted acyl group is more preferable, and an acetyl group and a propionyl group are particularly preferable .
  • v is particularly preferably an integer of 1 to 4.
  • This glycol solvent includes, for example, the following solvents.
  • glycol monoethers which are monoalkyl ethers of the glycols ⁇ glycol diethers which is a dialkyl ether of the glycols Ethers, glycol monoesters which are aliphatic carboxylic acid monoesters of the glycols, glycol diesters which are aliphatic carboxylic acid diesters of the glycols, glycol which is an aliphatic carboxylic acid monoester of the glycol monoethers Ester Ethers
  • a solvent system containing a glycol solvent it is preferable to use a solvent system containing a glycol solvent.
  • the former may be shown as (A) and the latter as (B), for the sake of convenience, comparing the glycol-based solvent and the organic solvent not corresponding thereto.
  • the charge transporting varnish is a charge transporting varnish containing one or more glycol solvents (A).
  • the charge transporting varnish is a charge transporting varnish comprising one or more glycol solvents (A) and one or more organic solvents (B) excluding glycol solvents.
  • glycol solvent (A) Preferably, glycol diethers, glycol monoethers, or glycols are mentioned, You may mix these. Examples include, but are not limited to, mixing glycol diethers and glycols. Specific examples thereof include the specific examples of the above-mentioned glycol diethers and glycols, preferably triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether as glycol diethers, ethylene glycol as glycols, Diethylene glycol is mentioned.
  • Preferred examples of the organic solvent (B) include nitriles, alcohols, aromatic ethers, and aromatic hydrocarbons.
  • Examples include, but are not limited to, as nitriles, methoxypropionitrile, ethoxypropionitrile, as alcohols benzyl alcohol, 2- (benzyloxy) ethanol, as aromatic ethers methylanisole, dimethylanisole, ethylanisole Butyl phenyl ether, butyl anisole, pentyl anisole, hexyl anisole, heptyl anisole, octyl anisole, phenoxytoluene, as aromatic hydrocarbons such as pentylbenzene, hexylbenzene, heptylbenzene, octylbenzene, nonylbenzene, cyclohexylbenzene or tetralin It can be mentioned.
  • alcohols are more preferable, and among the alcohols, 2- (benzyloxy) ethanol is more preferable.
  • the organic solvent (B) By adding the organic solvent (B) to the glycol-based solvent (A), aggregation of the metal oxide nanoparticles can be appropriately performed while maintaining the solubility of the oligoaniline compound and the sulfonic acid ester compound during film formation by inkjet coating. It is possible to control and form a flatter film.
  • the content of the glycol solvent (A): wtA (weight) and the content (weight) of the organic solvent (B): wt B (weight) Preferably satisfy the formula (1-0), more preferably the formula (1-1), still more preferably the formula (1-2), and the formula (1-3) Is most preferred.
  • a silane compound may be blended in the charge transporting varnish of the present invention.
  • a silane compound into the charge transporting varnish, when the charge transporting thin film obtained from the varnish is used as the hole injecting layer of the EL device, the hole injecting property to the hole transporting layer is improved, etc. As a result, reduction of the drive voltage of the element, improvement of the durability and the like can be expected.
  • Specific examples of such silane compounds include alkoxysilane compounds such as dialkoxysilane compounds and trialkoxysilane compounds, and condensates thereof.
  • fluorine-containing silane compounds are preferable, and fluorine-containing alkoxysilane compounds are preferable, from the viewpoint of improving the hole injection property to the hole transport layer when the obtained charge transporting thin film is used as the hole injection layer of the EL device. More preferable. Furthermore, from the viewpoint of obtaining a charge transportable thin film excellent in charge transportability with good reproducibility, fluorine-containing dialkoxysilanes and fluorine-containing trialkoxysilanes are preferable, and fluorine-containing trialkoxysilane compounds are more preferable.
  • the compounding amount of the silane compound is preferably 3% by mass or more based on the total mass of the solid content from the viewpoint of obtaining the above effect, but from the viewpoint of obtaining the charge transportable thin film excellent in charge transportability with good reproducibility. 20 mass% or less is preferable with respect to the total mass of solid content.
  • Specific examples of halogen atom, alkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, alkynyl group having 2 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms and heteroaryl group having 2 to 20 carbon atoms As examples, mention may be made of the ones exemplified above.
  • Y 1 Si (OY 2 ) 3 (11) (Wherein, Y 1 is a halogen atom, a hydrogen atom, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z) And an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, Y 2 represents an alkyl group having 1 to 20 carbon atoms, and Z represents a halogen atom or 1 to 20 carbon atoms.
  • Haloalkyl group alkyl group having 1 to 20 carbon atoms, hydroxyl group, mercapto group, amino group, haloalkoxy group having 1 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, 2 to 20 haloalkenyl group, alkynyl group having 2 to 20 carbon atoms, haloalkynyl group having 2 to 20 carbon atoms, alkylthio group having 1 to 20 carbon atoms, monoalkylamino group having 1 to 20 carbon atoms, 1 carbon atom To 20 A dialkylamino group, a glycidoxy group, an alkylcarbonyl group having 1 to 20 carbon atoms, an alkenylcarbonyl group having 2 to 20 carbon atoms, an alkynylcarbonyl group having 2 to 12 carbon atoms, an alkylcarbonyloxy group having 1 to 12 carbon atoms, 2 to 20 alkenyl
  • Y 3 and Y 4 are each independently a halogen atom, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbons, which may be substituted with Z, an alkenyl group having 2 to 20 carbons, Y 20 represents an alkynyl group, an aryl group or a heteroaryl group, and Y 5 represents an alkyl group having 1 to 20 carbon atoms, and Z has the same meaning as above.
  • a halogen atom for Y 1 , Y 3 , Y 4 and Z an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms and Specific examples of the heteroaryl group having 2 to 20 carbon atoms include the same ones as described above.
  • an alkyl group having 1 to 20 carbon atoms which may be substituted with Z may be selected from the viewpoint of availability of silane compounds and the characteristic improvement of the obtained EL device, An aryl group having 6 to 20 carbon atoms which may be substituted by Z is preferable.
  • haloalkyl group having 1 to 20 carbon atoms include trifluoromethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2,2-pentafluoroethyl group and 3,3,3. -Trifluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, perfluoropropyl group, heptafluoroisopropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group And perfluorooctyl group, perfluorononyl group, perfluorodecyl group, perfluoroundecyl group, perfluorododecyl group, heptadecafluoro-1,1,2,2-tetrahydrodecyl and the like.
  • haloalkoxy group having 1 to 20 carbon atoms include trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2,2-pentafluoroethoxy, 3,3, and the like.
  • alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, s-butoxy group, t-butoxy group, n-pentoxy group and the like Can be mentioned.
  • Specific examples of the haloalkenyl group having 2 to 20 carbon atoms include fluorovinyl group, difluorovinyl group, 3,3,3-trifluoro-1-propenyl group and 3,3,3-trifluoro-2-propenyl group. And 2-propenyl group.
  • Specific examples of the haloalkynyl group having 2 to 20 carbon atoms include 3,3,3-trifluoro-1-propynyl group, 3,3,3-trifluoro-2-propynyl group and the like.
  • alkylthio group having 1 to 20 carbon atoms include methylthio group, ethylthio group, propylthio group, butylthio group, pentylthio group, hexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group, laurylthio group and the like.
  • monoalkylamino group and dialkylamino group having 1 to 20 carbon atoms include methylamino group, ethylamino group, propylamino group, butylamino group, pentylamino group, hexylamino group, heptylamino group and octylamino group.
  • nonylamino group decylamino group, laurylamino group, dimethylamino group, diethylamino group, dipropylamino group, dibutylamino group, dipentylamino group, dipentylamino group, dihexylamino group, diheptylamino group, dioctylamino group, dinonylamino group, didecylamino group Etc.
  • alkylcarbonyl group having 1 to 20 carbon atoms include a methylcarbonyl group, an ethylcarbonyl group, an n-propylcarbonyl group, an i-propylcarbonyl group, an n-butylcarbonyl group, an s-butylcarbonyl group and a t-butyl group. And carbonyl group, n-pentyl carbonyl group and the like.
  • alkylcarbonyloxy group having 1 to 20 carbon atoms include a methylcarbonyloxy group, an ethylcarbonyloxy group, an n-propylcarbonyloxy group, an i-propylcarbonyloxy group, an n-butylcarbonyloxy group, and an s-butyl group.
  • Carbonyloxy group, t-butyl carbonyloxy group, n-pentyl carbonyloxy group and the like can be mentioned.
  • alkenylcarbonyl group having 2 to 20 carbon atoms include a vinylcarbonyl group, 1-propenylcarbonyl group, 2-propenylcarbonyl group, 2-methyl-1-propenylcarbonyl group, 1-methyl-2-propenylcarbonyl group Etc.
  • alkynyl carbonyl group having 2 to 20 carbon atoms include ethynyl carbonyl group, 1-propynyl carbonyl group, 2-propynyl carbonyl group, 2-methyl-1-propynyl carbonyl group, 1-methyl-2-propynyl carbonyl group Etc.
  • alkenylcarbonyloxy group having 2 to 20 carbon atoms include a vinylcarbonyloxy group, 1-propenylcarbonyloxy group, 2-propenylcarbonyloxy group, 2-methyl-1-propenylcarbonyloxy group, 1-methyl- And 2-propenylcarbonyloxy group and the like.
  • alkynyl carbonyloxy group having 2 to 20 carbon atoms include ethynyl carbonyloxy group, 1-propynyl carbonyloxy group, 2-propynyl carbonyloxy group, 2-methyl-1-propynyl carbonyloxy group, 1-methyl- And 2-propynyl carbonyloxy group.
  • haloaryl group having 6 to 20 carbon atoms include 1-fluorophenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 5-fluorophenyl group, pentafluorophenyl group and the like It can be mentioned.
  • haloheteroaryl group having 2 to 20 carbon atoms include 3-fluorothiophen-2-yl group, 4-fluorothiophen-2-yl group, 5-fluorothiophen-2-yl group and the like.
  • a halogen atom a haloalkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, carbon, from the viewpoint of the availability of a silane compound and the improvement of the characteristics of the obtained EL device.
  • Y 1 is preferably a fluorine atom or a substituent containing a fluorine atom
  • Y 3 and Y 4 is It is preferably a fluorine atom or a substituent containing a fluorine atom.
  • Y 2 , Y 5 and Y 6 are each an alkyl group having 1 to 20 carbon atoms, but from the viewpoint of availability of silane compounds and the characteristic improvement of the resulting EL device, alkyl groups having 1 to 5 carbon atoms In particular, a methyl group and an ethyl group are more preferable, and a methyl group is still more preferable.
  • trialkoxysilane compounds include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, Pentyltrimethoxysilane, pentyltriethoxysilane, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxy Silane, Octadecyl
  • trialkoxysilane compounds include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane , Phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, triethoxy (4- (trifluoromethyl) Phenyl) silane, 3,3,3-trifluoropropyltrimethoxysilane, (triethoxysilyl) cyclohexane, perfluorooctylethyltriethoxys
  • more preferable trialkoxysilane compounds include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane and butyltriethoxysilane.
  • dialkoxysilane compound examples include methylhydrogendimethoxysilane, methylhydrogendiethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, methylpropyldimethoxysilane Methylpropyldiethoxysilane, diisopropyldimethoxysilane, phenylmethyldimethoxysilane, vinylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4 -Epoxycyclohexyl) ethylmethyldimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -methacryloxypropylmethyldiethoxys
  • At least two of the various silane compounds described above may be used in combination.
  • the viscosity of the charge transporting varnish of the present invention is usually 1 to 50 mPa ⁇ s at 25 ° C., and the surface tension is usually 20 to 50 mN / m at 25 ° C.
  • the viscosity and surface tension of the charge-transporting varnish of the present invention can be varied by changing the type of organic solvent used and their ratio, solid content concentration, etc., in consideration of various factors such as the coating method used and desired film thickness. It is adjustable.
  • the solid content of the charge transporting varnish is preferably 0.001 to 50% by mass, and more preferably 0.01 to 20% by mass, in consideration of operability in applying the varnish.
  • the solid content in the present invention means oligoaniline compound (a), sulfonic acid ester compound (b) and metal oxide nanoparticles (c).
  • the charge transporting varnish is a charge transporting organic material composed of an oligoaniline compound (a) and a sulfonic acid ester compound (b), which is a main body of charge transporting mechanism, in at least one solvent (d). It is obtained by dissolving or dispersing the metal oxide nanoparticles (c), and from the viewpoint of obtaining highly flat charge transporting thin film with good reproducibility, preferably at least the charge transporting organic material. It is dissolved in one type of solvent (d) and further dispersed with metal oxide nanoparticles (c).
  • the charge transportability is the same as the conductivity, and means any of hole transportability, electron transportability, and both hole and electron charge transportability.
  • the charge transporting varnish of the present invention may be one having charge transportability by itself or may be one having charge transportability in a solid film obtained by using the varnish.
  • the charge transportable thin film can be formed on the substrate by applying the charge transportable varnish described above onto the substrate and evaporating the solvent. It does not specifically limit as a coating method of a varnish, A dip method, a spin coat method, a transfer printing method, a roll coat method, brush coating, an inkjet method, a spray method etc. are mentioned.
  • the evaporation method of the solvent is not particularly limited, and for example, it may be evaporated in an appropriate atmosphere, that is, in the atmosphere, an inert gas such as nitrogen, in vacuum, or the like using a hot plate or an oven.
  • the calcination temperature is not particularly limited as long as the solvent can be evaporated, but the calcination temperature is preferably 40 to 250 ° C. In this case, two or more temperature changes may be applied for the purpose of developing higher uniform film formability or advancing the reaction on the substrate.
  • the charge transporting varnish of the present invention can be produced by mixing an oligoaniline compound, a sulfonic acid ester compound, metal oxide nanoparticles and an organic solvent.
  • the order of mixing is not particularly limited, but as an example of a method capable of producing the charge transporting varnish of the present invention easily and reproducibly, an oligoaniline compound, a sulfonic acid ester compound or the like is mixed with an organic solvent A mixture is obtained, and the method of adding the metal oxide nanoparticle sol prepared beforehand to the mixture, and the method of adding the mixture to the sol of the metal oxide nanoparticles prepared beforehand are mentioned.
  • an additional organic solvent may be added at the end, or some components that are relatively soluble in the solvent may not be included in the mixture but may be added at the end.
  • an additional organic solvent may be added at the end, or some components that are relatively soluble in the solvent may not be included in the mixture but may be added at the end.
  • the charge transporting varnish is for the purpose of obtaining a thin film having higher flatness with high reproducibility, in the process of producing the varnish or after mixing all components, a filter of submicron order, etc. You may use and filter.
  • the thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 200 nm when used as a charge injection layer in the organic EL device.
  • a method of changing the film thickness there are methods such as changing the solid content concentration in the varnish or changing the amount of solution on the substrate at the time of application.
  • the charge transportable thin film obtained as described above contains metal oxide nanoparticles, whereby the average transmittance (%) in the wavelength range of 400 to 800 nm is improved.
  • the term "improved” as used herein refers to the corresponding charge transport thin film in which the average transmittance in the charge transport thin film containing metal oxide nanoparticles (c) does not include metal oxide nanoparticles (c). Means that it is over at.
  • the improved average transmittance of the former as compared to the latter is usually 1% or more, preferably 3% or more, more preferably 5% or more.
  • the charge transporting thin film of the present invention uses the oligoaniline compound (a) which is a colored substance as the charge transporting substance, the light transmittance in the visible region is high, and the conventional thin film There is little coloring in comparison.
  • the average transmittance in the wavelength range of 400 to 800 nm is usually 90% or more, preferably 95% or more, when the film is formed at 50 nm on a quartz substrate.
  • the charge transporting varnish of the present invention is any of an organic EL (hereinafter referred to as “OLED”) device using a low molecular light emitting material and an organic EL (hereinafter referred to as “PLED”) device using a high molecular light emitting material. It can also be used for production. Examples of materials used for producing an OLED element using the charge transporting varnish of the present invention and methods for producing the same include, but are not limited to, the following.
  • the electrode substrate to be used is preferably cleaned in advance by liquid cleaning with detergent, alcohol, pure water, etc. For example, in the case of an anode substrate, surface treatment such as ozone treatment, oxygen-plasma treatment etc. should be performed immediately before use. Is preferred. However, when the anode material contains an organic substance as a main component, the surface treatment may not be performed.
  • the charge transporting varnish is coated on the anode substrate, evaporated and fired by the above method to prepare a hole transporting thin film (hole injecting layer) on the electrode.
  • This is introduced into a vacuum deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode metal are sequentially deposited to obtain an OLED element.
  • a carrier block layer may be provided between arbitrary layers in order to control the light emitting region.
  • the anode material include transparent electrodes represented by indium tin oxide (ITO) and indium zinc oxide (IZO), and those which have been subjected to planarization treatment are preferable.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • a polythiophene derivative or polyaniline derivative having high charge transportability can also be used.
  • the light emitting layer may be formed by co-evaporation of As the electron transporting material, Alq 3 , BAlq, DPVBi, (2- (4-biphenyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole) (PBD), triazole derivative (PBD) TAZ), vasocuproin (BCP), silole derivatives and the like.
  • Materials for forming the electron injection layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), magnesium fluoride (MgF 2 ) and strontium fluoride (SrF 2 ), Liq, Li (acac), lithium acetate, lithium benzoate and the like.
  • the cathode material aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like can be mentioned.
  • the method of producing a PLED element using the charge transporting varnish of the present invention is not particularly limited, the following methods may be mentioned.
  • the charge transportability of the present invention can be obtained by forming a light emitting charge transporting polymer layer instead of performing vacuum deposition operation of a hole transporting layer, a light emitting layer, an electron transporting layer and an electron injecting layer.
  • a PLED device including a charge transporting thin film (hole injection layer) formed by varnish can be produced. Specifically, a charge transporting varnish is applied on an anode substrate to form a hole transporting thin film by the above method, a light emitting charge transporting polymer layer is formed on the top, and a cathode electrode is further formed. It vapor-deposits and it is set as a PLED element.
  • a cathode material to be used the same substance as that in the above-mentioned OLED element production can be used, and the same cleaning treatment and surface treatment can be performed.
  • a method of forming a light emitting charge transporting polymer layer a light emitting charge transporting polymer material or a material obtained by adding a light emitting dopant to the light emitting charge transporting polymer material is added with a solvent and dissolved or uniformly dispersed, hole injection After applying to the electrode substrate which has formed the layer, the method of forming a film by evaporation of a solvent is mentioned.
  • polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylene vinylene
  • polythiophene derivatives such as (MEH-PPV)
  • polythiophene derivatives such as poly (3-alkylthiophene) (PAT), polyvinylcarbazole (PVCz), and the like.
  • Examples of the solvent include toluene, xylene, chloroform and the like, and examples of the dissolution or uniform dispersion method include methods such as stirring, heating and stirring, and ultrasonic dispersion.
  • the coating method is not particularly limited, and examples thereof include an inkjet method, a spray method, a dip method, a spin coating method, a transfer printing method, a roll coating method, and a brush coating.
  • the application is preferably performed under an inert gas such as nitrogen or argon.
  • an inert gas such as nitrogen or argon.
  • a method of heating in an inert gas or under vacuum, in an oven or a hot plate can be mentioned.
  • the charge transporting varnish of the present invention contains the sulfonic acid ester compound represented by the formula (2) in addition to the oligoaniline compound, one or more metal oxide nanoparticles and an organic solvent. And since this sulfonic acid ester compound is not only high in the solubility to a low polar organic solvent but excellent in stability, it can be stored for a long time without problems such as precipitation of components. That is, in the present invention, it is represented by the above-mentioned formula (2) together with an oligoaniline compound, one or more metal oxide nanoparticles, and an organic solvent, particularly a low polar organic solvent, as components of charge transporting varnish.
  • a sulfonic acid ester compound for example, problems such as precipitation or precipitation of components when stored in the air or deterioration of the electrical properties of a film obtained from the varnish can be prevented or improved, and the storage stability of the varnish Can be improved.
  • the present invention will be more specifically described by way of production examples, preparation examples and examples, but the present invention is not limited to the following examples.
  • the used apparatus is as follows. (1) Substrate cleaning: substrate cleaning apparatus (reduced pressure plasma system) manufactured by Choshu Sangyo Co., Ltd. (2) Application of varnish: Spin coater MS-A100 manufactured by Mikasa Co., Ltd. (3) Film thickness measurement: manufactured by Kosaka Research Institute, Ltd. Fine shape measuring apparatus Surf coder ET-4000 (4) Fabrication of EL element: Multifunctional deposition system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd.
  • E-HC made multi-channel IVL measuring device (6)
  • Life measurement of EL element (measurement of half life):
  • Measurement of transmittance Shimadzu Science Co., Ltd. ultraviolet visible near infrared spectrophotometer UV-3600
  • Embodiment 1-2 In a nitrogen atmosphere, 0.045 g of the oligoaniline compound (A1) and 0.165 g of the arylsulfonic acid ester (S1), 4.28 g of triethylene glycol butyl methyl ether, 3.0 g of butyl benzoate and dimethyl phthalate 2 It was dissolved in .0 g of mixed solvent. Thereto, 1.035 g of triethylene glycol butyl methyl ether-dispersed silica sol was added and stirred to obtain a charge transporting varnish.
  • Embodiment 1-3 In a nitrogen atmosphere, 0.023 g of the oligoaniline compound (A1) and 0.083 g of the arylsulfonic acid ester (S1), 4.04 g of triethylene glycol butyl methyl ether, 3.0 g of butyl benzoate and dimethyl phthalate 2 It was dissolved in .0 g of mixed solvent. Thereto, 1.381 g of triethylene glycol butyl methyl ether dispersed silica sol was added and stirred to obtain a charge transporting varnish.
  • Comparative Example 1-1 An attempt was made to prepare a charge transporting varnish in the same manner as Example 1-1 except that the aryl sulfonic acid ester (S1) was changed to 0.205 g of aryl sulfonic acid represented by the following formula (S4).
  • the arylsulfonic acid compound represented by the following formula (S4) did not dissolve, and it was not possible to prepare a charge transporting varnish sufficiently uniform to be used for producing a charge transporting thin film.
  • the arylsulfonic acid ((Hereinafter, arylsulfonic acid (S4)) represented by following formula (S4) was synthesize
  • Example 4-1 In a nitrogen atmosphere, 0.045 g of an oligoaniline compound (A1), 0.058 g of 3,3,3-trifluoropropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.), and arylsulfonic acid ester (S1) 0 In a mixed solvent of 4.59 g of triethylene glycol butyl methyl ether, 3.32 g of butyl benzoate and 2.21 g of dimethyl phthalate was added .165 g. Thereto, 1.033 g of triethylene glycol butyl methyl ether-dispersed silica sol was added and stirred to obtain a charge transporting varnish.
  • A1 oligoaniline compound
  • S1 arylsulfonic acid ester
  • Embodiment 4-2 In a nitrogen atmosphere, 0.037 g of the oligoaniline compound (A1), 0.007 g of the oligoaniline compound represented by the above formula (A2) (hereinafter, oligoaniline compound (A2)), and aryl sulfonic acid ester (S1) 0.166 g was dissolved in a mixed solvent of 4.27 g of triethylene glycol butyl methyl ether, 2.99 g of butyl benzoate and 1.95 g of dimethyl phthalate. Thereto, 1.033 g of triethylene glycol butyl methyl ether-dispersed silica sol was added and stirred to obtain a charge transporting varnish.
  • the oligoaniline compound (A2) was synthesized according to the method described in Synthesis Example 1 of WO 2016/190326 (the same applies hereinafter).
  • Example 4-3 In a nitrogen atmosphere, 0.034 g of an oligoaniline compound (A1), 0.023 g of an oligoaniline compound represented by the above formula (A3) (hereinafter, oligoaniline compound (A3)), and an arylsulfonic acid ester (S1) 0.154 g was dissolved in a mixed solvent of 4.27 g of triethylene glycol butyl methyl ether, 2.99 g of butyl benzoate and 1.99 g of dimethyl phthalate. Thereto, 1.033 g of triethylene glycol butyl methyl ether-dispersed silica sol was added and stirred to obtain a charge transporting varnish.
  • the oligoaniline compound (A3) was synthesized according to the method described in Production Example 24-2 of WO 2015/050253.
  • Example 2-1 The varnish obtained in Example 1-1 was applied to a quartz substrate using a spin coater, and then dried at 120 ° C. for 1 minute under atmospheric firing. Next, the dried quartz substrate was baked at 230 ° C. for 15 minutes in the air atmosphere to form a uniform thin film of 50 nm on the quartz substrate.
  • Example 2-1 is the same as Example 2-1 except that the varnish obtained in Example 1-2, Example 1-3 or Comparative Example 1-3 is used instead of the varnish obtained in Example 1-1.
  • a thin film was formed by the method of
  • Comparative Example 2-1 A thin film is formed in the same manner as in Example 2-1 except that the varnish obtained in Comparative Example 1-2 is used instead of the varnish obtained in Example 1-1, and the drying temperature is set to 80 ° C. did.
  • the light transmittance was measured with a spectrophotometer using the 50 nm thin film-attached quartz substrates obtained in Examples 2-1 to 2-3 and Comparative examples 2-1 to 2-2. The results are shown in FIG. 1 and Table 1.
  • the addition of the organosilica sol improved the average light transmittance in the visible region. That is, the charge-transporting thin film of the present invention containing silica particles exhibited excellent transparency in the visible region as compared to a thin film not containing it.
  • Example 3-1 Preparation of organic EL element and characteristic evaluation
  • the varnish obtained in Example 1-1 was applied to an ITO substrate using a spin coater, and then dried at 120 ° C. for 1 minute in the atmosphere. Next, the dried ITO substrate was baked at 230 ° C. for 15 minutes in the air atmosphere to form a uniform thin film of 50 nm on the ITO substrate.
  • a glass substrate of 25 mm ⁇ 25 mm ⁇ 0.7 t with a patterned 150 nm thick indium tin oxide (ITO) film formed on the surface is used, and an O 2 plasma cleaning device (150 W before use) The impurities on the surface were removed by 30 seconds).
  • ITO indium tin oxide
  • ⁇ -NPD N, N'-di (1-naphthyl) -N, N'- is performed using a vapor deposition apparatus (vacuum degree 1.0 x 10 -5 Pa). 30 nm of diphenyl benzidine was deposited at 0.2 nm / sec. Next, an electron block material HTEB-01 manufactured by Kanto Chemical Co., Ltd. was deposited to 10 nm. Next, a light emitting layer host material NS60 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. and a light emitting layer dopant material Ir (PPy) 3 were co-deposited.
  • the deposition rate was controlled so that the concentration of Ir (PPy) 3 was 6%, and 40 nm was laminated. Subsequently, thin films of Alq 3 , lithium fluoride and aluminum were sequentially laminated to obtain an organic EL element. At this time, the deposition rate was 0.2 nm / sec for Alq 3 and aluminum and 0.02 nm / sec for lithium fluoride, and the film thickness was 20 nm, 0.5 nm and 80 nm, respectively. In addition, in order to prevent the characteristic degradation by the influence of oxygen in the air, water, etc., after sealing the organic EL element with a sealing substrate, the characteristic was evaluated. Sealing was performed in the following procedure.
  • the organic EL element is housed between the sealing substrate in a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -76 ° C. or less, and the sealing substrate is an adhesive ((more manufactured by MORESCO, Mores moisture cut WB90US (P)
  • a water-capturing agent (Dinic Co., Ltd. HD-071010W-40) was placed in the sealing substrate together with the organic EL element. After irradiation (wavelength: 365 nm, irradiation dose: 6,000 mJ / cm 2 ), annealing was performed at 80 ° C. for 1 hour to cure the adhesive.
  • Example 3-1 is used except that the varnish obtained in Example 1-2, Example 1-3, or Comparative Example 1-3 is used instead of the varnish obtained in Example 1-1.
  • An organic EL device was obtained by the same method.
  • Comparative Example 3-1 An organic EL device is manufactured in the same manner as in Example 3-1 except that the varnish obtained in Comparative Example 1-2 is used instead of the varnish obtained in Example 1-1 and the drying temperature is set to 80 ° C. I got
  • Example 5-1 to Example 5-3 An organic EL device is obtained in the same manner as in Example 3-1 except that the varnish obtained in Examples 4-1 to 4-3 is used instead of the varnish obtained in Example 1-1.
  • the varnish obtained in Examples 4-1 to 4-3 is used instead of the varnish obtained in Example 1-1.
  • the driving voltage, current density and luminous efficiency when driven at a luminance of 10,000 cd / m 2 , and the half life of the luminance (the time required for the initial luminance of 10,000 cd / m 2 to reach half) was measured.
  • the results are shown in Table 2.
  • Example 6-1 A uniform thin film of 50 nm was formed on the ITO substrate in the same manner as in Example 2-2 except that the ITO substrate was used instead of the quartz substrate. Next, on the ITO substrate on which the thin film was formed, ⁇ -NPD was deposited to a thickness of 30 nm at 0.2 nm / sec using a vapor deposition apparatus (vacuum degree: 1.0 ⁇ 10 ⁇ 5 Pa). Then, a hole-only device (HOD device) was obtained by laminating 80 nm of aluminum under the condition of 0.2 nm / sec. In addition, it sealed by the same method as Example 3-1.
  • HOD device hole-only device
  • Example 1-2 the varnish obtained in Example 1-2 was stored for one month at room temperature under air. Then, an element was prepared and evaluated in the same manner as the evaluation using the varnish before storage except that the varnish stored was used instead of the varnish before storage (evaluation using the varnish after storage) .
  • Comparative Example 6-1 In the same manner as in Example 6-1 except that the varnish obtained in Comparative Example 1-2 is used instead of the varnish obtained in Example 1-2 and the drying temperature is set to 80 ° C. Evaluation using a varnish and evaluation using a varnish after storage were performed.
  • the rate of change in current density was calculated by the formula (current density in evaluation using varnish after storage) / (current density in evaluation using varnish before storage).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

オリゴアニリン化合物、特定のスルホン酸エステル化合物、金属酸化物ナノ粒子及び有機溶媒を含む電荷輸送性ワニス、その電荷輸送性ワニスから作製される電荷輸送性薄膜、その電荷輸送性薄膜を有する電子デバイス及び有機エレクトロルミネッセンス素子、その電荷輸送性ワニスを用いる電荷輸送性薄膜の製造方法、その電荷輸送性ワニスの製造方法、並びにその電荷輸送性ワニスの保存安定性を向上させる方法が開示される。

Description

電荷輸送性ワニス及び電荷輸送性薄膜
 本発明は、電荷輸送性ワニス及び電荷輸送性薄膜に関する。
 有機エレクトロルミネッセンス(EL)素子には、発光層や電荷注入層として、有機化合物からなる電荷輸送性薄膜が用いられる。特に、正孔注入層は、陽極と、正孔輸送層或いは発光層との電荷の授受を担い、有機EL素子の低電圧駆動及び高輝度を達成するために重要な機能を果たす。
 近年、正孔注入層における電荷輸送性物質として、オリゴアニリン化合物が用いられるようになり、この化合物の種々の特性の改善が進められている。そのような特性の例として、電荷輸送性や、有機EL素子に使用したときの発光効率及び輝度特性に加え、この化合物を含む電荷輸送性ワニスを塗布して正孔注入層を形成する際に用いる、スピンコート、インクジェット塗布、スプレー塗布等の種々の塗布方式に対応するための、特に有機溶媒に対する溶解性などを挙げることができる。
 実際、このオリゴアニリン化合物を有機溶媒に溶解させた均一系溶液からなる電荷輸送性ワニスが見出され、このワニスから得られる正孔注入層を有機EL素子中に挿入することで、下地基板の平坦化効果や、優れた有機EL素子特性が得られることが報告されている(特許文献1~3)。
 一方、オリゴアニリン化合物と組み合わせて、1,4-ベンゾジオキサンスルホン酸化合物(特許文献4)を電子受容性物質として使用することで、有機EL素子の駆動電圧を低下し得ることが報告されている。
 しかし、スルホン酸化合物は低極性有機溶媒に対し難溶性なので、これを溶液とするためには、水溶液とする以外では、N,N-ジメチルアセトアミド、N-メチルピロリドン等の、溶解力の高い高極性有機溶媒を含有する溶媒を使用する必要がある。高極性有機溶媒を含有する溶液は、インクジェット塗布装置の一部や、基板上に形成される絶縁膜及び隔壁等の有機構造物にダメージを与えることがある。また、高極性有機溶媒を含有する電荷輸送性ワニスを長期間大気に暴露すると、吸水により導電率が経時的に増加し、これによりインクジェット吐出が不安定になるという問題もある。加えてスルホン酸化合物は、その高い極性のため、抽出、水洗、シリカゲルカラムクロマトグラフィー等により精製することが困難であった。
 これに対し、スルホン酸エステル化合物は、種々の有機溶媒に対し可溶性であり、加熱や化学的作用等の外的刺激により、有機強酸であるスルホン酸化合物を与える。このためスルホン酸エステル化合物は、電子受容性物質としてのスルホン酸化合物の前駆体として使用しうると考えられる。加熱によりスルホン酸を与える化合物の具体例として、スルホン酸シクロヘキシルエステル等が報告されている(非特許文献1)。スルホン酸エステル化合物はまた、熱酸増殖剤という概念においても注目されている(特許文献5、非特許文献2)。
 しかしスルホン酸エステル化合物には、不安定で、スルホン酸化合物への不慮の分解を起こすものがある。特に、電子が欠乏した芳香環にスルホン酸エステル構造が結合した構造を有する化合物(例えば、芳香族ジスルホン酸エステル等)は、わずかな熱や、水、塩基性物質等との反応により容易に分解してしまう。そのようなスルホン酸エステル化合物の安定性は、電荷輸送性ワニスの成分としては不十分であった。
 このため、電子受容性物質の前駆体として含まれるスルホン酸エステル化合物の安定性が向上した、有機EL素子の正孔注入層を形成するための電荷輸送性ワニスが望まれていた。
 本発明者らは、前記問題点を解決するため、高い安定性を有すると共に、広範囲の有機溶媒への高い溶解性を有するスルホン酸エステル化合物を報告している(特許文献6)。前記スルホン酸エステル化合物は、安定性や有機溶媒への溶解性が、スルホン酸化合物や、従来のスルホン酸エステル化合物よりは優れていた。しかし、この化合物を低極性溶媒に溶解させるためには、高温で長時間攪拌することを必要とし、またその溶液を長期間保存すると析出することがあり、安定性や有機溶媒への溶解性に改善の余地があった。
特開2002-151272号公報 国際公開第2004/043117号 国際公開第2005/043962号 国際公開第2005/000832号 特開平7-134416号公報 特許第5136795号公報
Chemische Berichte, 90, pp. 585-592 (1957) 機能材料、24巻、pp. 72-82、2004年
 本発明は、このような事情に鑑みてなされたものである。従って本発明の目的は、電子受容性物質の前駆体として含まれるスルホン酸エステル化合物の安定性が向上した、有機EL素子の正孔注入層を形成するための電荷輸送性ワニス、及びそれを用いて形成される電荷輸送性薄膜を提供することにある。
 本発明者らは、上記課題を解決すべく、鋭意研究を行った。その結果意外にも、特定のスルホン酸化合物と、特定のグリコールエーテル化合物とのエステルであるスルホン酸エステル化合物を、電子受容性物質の前駆体として用いることにより、電荷輸送性ワニスの調製において、低極性有機溶媒への同前駆体の溶解性に起因する問題が発生せず、またその電荷輸送性ワニスを長期間保存しても、成分の析出などの問題が発生しないことを見出した。以上の新たな知見に基づき、本発明を完成するに至った。
 すなわち、本発明は、
1.電荷輸送性ワニスであって、下記(a)~(d):
(a)オリゴアニリン化合物
(b)下記式(2):
Figure JPOXMLDOC01-appb-C000010

(式中、
 R1c~R4cは、互いに独立して、水素原子、又は直鎖状若しくは分岐状の炭素数1~6のアルキル基を表し、
 R5cは、置換されていてもよい炭素数2~20の1価炭化水素基を表し;
 Aは、-O-又は-S-を表し、
 Aは、ナフタレン又はアントラセンから誘導される(n+1)価の基を表し、
 Aは、パーフルオロビフェニルから誘導されるm価の基を表し;
 mは、2≦m≦4を満たす整数を表し、
 nは、1≦n≦4を満たす整数を表す。)
で表されるスルホン酸エステル化合物;
(c)1種以上の金属酸化物ナノ粒子;並びに
(d)有機溶媒
を含む電荷輸送性ワニス。
2.前記オリゴアニリン化合物(a)が、下記(i)~(v):
(i)下記式(1a):
Figure JPOXMLDOC01-appb-C000011

(式中、
 R及びRは、互いに独立して、水素原子、置換若しくは非置換の一価炭化水素基、t-ブトキシカルボニル基、又はベンジルオキシカルボニル基を示し、
 R~R34は、互いに独立して、水素原子、水酸基、シラノール基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、置換若しくは非置換の一価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、スルホン基又はハロゲン原子を示し、
 g及びhは、それぞれ独立して1以上の整数であり、g+h≦20を満足する。)
で表されるオリゴアニリン化合物、
(ii)下記式(1b):
Figure JPOXMLDOC01-appb-C000012

(式中、
 R35、R36及びR37は、互いに独立して、水素原子、非置換若しくは置換の一価炭化水素基又はオルガノオキシ基を示し、
 L及びMは、互いに独立して、下記式(b-1)又は(b-2):
Figure JPOXMLDOC01-appb-C000013

(式中、R38~R45は、互いに独立して、水素原子、水酸基、非置換若しくは置換の一価炭化水素基又はオルガノオキシ基、アシル基、又はスルホン酸基である)
で表される二価の基であり、
 x及びyは、互いに独立して、1以上の整数であり、x+y≦20を満足する。)
で表されるオリゴアニリン化合物、
(iii)下記式(1c):
Figure JPOXMLDOC01-appb-C000014

(式中、
 Phは、下記式(P1):
Figure JPOXMLDOC01-appb-C000015

(式中、R3a~R6aは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表す。)
で表される基を表し、
 Arは、互いに独立して、モノアリールアミノ基及び/又はジアリールアミノ基を有していてもよい、非置換又は置換アリール基又はヘテロアリール基を表し、
 Arは、互いに独立して、モノアリールアミノ基及び/又はジアリールアミノ基を有していてもよい、非置換又は置換アリール基又はヘテロアリール基を表し、
 pは、1~10の整数を表す。)
で表されるオリゴアニリン化合物、
(iv)下記式(1d):
Figure JPOXMLDOC01-appb-C000016

(式中、
 R1a及びR2aは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、
 Arは、互いに独立して、ジアリールアミノフェニル基を表し、
 qは、1又は2を表し、
 Phは、前記式(1c)について定義したものと同じである。)
で表されるオリゴアニリン化合物、及び
(v)下記式(1e):
Figure JPOXMLDOC01-appb-C000017

(式中、
 R1bは、水素原子、又はZで置換されていてもよい炭素数1~20のアルキル基を表し、
 Zは、ハロゲン原子、ニトロ基、シアノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボキシル基、Zb’で置換されていてもよい炭素数6~20のアリール基又はZb’で置換されていてもよい炭素数2~20のヘテロアリール基を表し、
 Zb’は、ハロゲン原子、ニトロ基、シアノ基、アルデヒド基、水酸基、チオール基、スルホン酸基又はカルボキシル基を表し、
 R2b~R10bは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、
 A’は、少なくとも1個の水素原子がフッ素原子で置換され、かつ他の少なくとも1個の水素原子が他の原子又は置換基で置換されていてもよい、炭素数1~40の炭化水素基を表し、
 rは、1~20の整数である。)
で表されるオリゴアニリン化合物
からなる群より選択される少なくとも1種である、前項1記載の電荷輸送性ワニス。
3.少なくとも1種のシラン化合物を更に含む、前項1又は2記載の電荷輸送性ワニス。
4.前項1~3のいずれか1項記載の電荷輸送性ワニスから作製される電荷輸送性薄膜。
5.前項4記載の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子。
6.前項1~3のいずれか1項記載の電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させる工程を含む、電荷輸送性薄膜の製造方法。
7.前項1記載の電荷輸送性ワニスの製造方法であって、前記(c)1種以上の金属酸化物ナノ粒子のゾルを用いることを特徴とする方法。
8.オリゴアニリン化合物、1種以上の金属酸化物ナノ粒子、電子受容性物質の前駆体及び有機溶媒を含む電荷輸送性ワニスの保存安定性を向上させる方法であって、前記電子受容性物質の前駆体として、下記式(2)で表されるスルホン酸エステル化合物を用いることを特徴とする方法。
Figure JPOXMLDOC01-appb-C000018

(式中、
 R1c~R4cは、互いに独立して、水素原子、又は直鎖状若しくは分岐状の炭素数1~6のアルキル基を表し、
 R5cは、置換されていてもよい炭素数2~20の1価炭化水素基を表し;
 Aは、-O-又は-S-を表し、
 Aは、ナフタレン又はアントラセンから誘導される(n+1)価の基を表し、
 Aは、パーフルオロビフェニルから誘導されるm価の基を表し;
 mは、2≦m≦4を満たす整数を表し、
 nは、1≦n≦4を満たす整数を表す。)
を提供する。
 本発明の電荷輸送性ワニスは、電子受容性物質の前駆体として、低極性有機溶媒への溶解性が高い、安定なスルホン酸エステル化合物を含む。このため同ワニスは、長時間に及ぶ高温での攪拌などの煩雑な工程を含まない方法で容易に調製することができ、また成分の析出などの問題なしにその特性が改善され、かつ長期間保存することができる。また、本発明の電荷輸送性ワニスには、電子受容性物質を溶解させるために、インクジェット塗布装置や、基板上に形成される有機構造物等にダメージを与える恐れがある高極性有機溶媒を添加する必要がない。よって、本発明の電荷輸送性ワニスを用いることにより、塗布手段、塗布パターンなど、前記ダメージを回避するために生じる、電荷輸送性ワニスの塗布工程に関連する制約を著しく減少させることができる。
 更に本発明の電荷輸送性ワニスは、上述した通り有機EL素子の正孔注入層の形成に好適に用いられるが、その他にも有機光電変換素子、有機薄膜太陽電池、有機ぺロブスカイト光電変換素子、有機集積回路、有機電界効果トランジスタ、有機薄膜トランジスタ、有機発光トランジスタ、有機光学検査器、有機光受容器、有機電場消光素子、発光電子化学電池、量子ドット発光ダイオード、量子レーザー、有機レーザーダイオード及び有機プラスモン発光素子等の電子素子に用いる電荷輸送性薄膜の形成にも利用することができる。
実施例2-1~2-3及び比較例2-1~2-2の電荷輸送性ワニスを用いて石英基板上に作成した薄膜の可視領域における光透過率を示すグラフである。
 以下、本発明についてさらに詳しく説明する。
 本発明の電荷輸送性ワニスは、
(a)オリゴアニリン化合物;
(b)特定のスルホン酸エステル化合物;
(c)1種以上の金属酸化物ナノ粒子;並びに
(d)有機溶媒
を含む。これらの各成分につき以下に説明する。
<オリゴアニリン化合物(a)>
 本発明の電荷輸送性ワニスに含まれるオリゴアニリン化合物(a)は、重量平均分子量200~5000の、アニリン誘導体由来の複数の構造単位(同一であっても異なっていてもよい)で構成される化合物である。オリゴアニリン化合物(a)中において、隣接する2個の前記構造単位は互いに結合している。また、オリゴアニリン化合物(a)に2種以上の異なる前記構造単位が含まれる場合、前記構造単位は任意の順序で配列されていてよい。
 また、均一性の高い電荷輸送性ワニスを得る観点や平坦性に優れる電荷輸送性薄膜を再現性よく得る観点から、好ましい態様の1つとしては、オリゴアニリン化合物(a)として、分子量が200~5000の範囲内にあり、且つ分子量分布の無いオリゴアニリン化合物を1種用いるか、又は各々そのような条件を満たすオリゴアニリン化合物2種若しくは3種を併用する。
 本発明においては、電荷輸送性物質として、いかなるオリゴアニリン化合物(a)を用いてもよいが、好ましくは、オリゴアニリン化合物(a)は、以下に順次説明するオリゴアニリン化合物(i)~(v)からなる群より選択される少なくとも1種のオリゴアニリン化合物である。
・オリゴアニリン化合物(i)
 前記オリゴアニリン化合物(a)として使用しうるオリゴアニリン化合物(i)は、下記式(1a):
Figure JPOXMLDOC01-appb-C000019

(式中、
 R及びRは、互いに独立して、水素原子、置換若しくは非置換の一価炭化水素基、t-ブトキシカルボニル基、又はベンジルオキシカルボニル基を示し、
 R~R34は、互いに独立して、水素原子、水酸基、シラノール基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、置換若しくは非置換の一価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、スルホン基又はハロゲン原子を示し、
 g及びhは、互いに独立して、1以上の整数であり、g+h≦20を満足する。)
で表されるオリゴアニリン化合物である。
 前記一価炭化水素基における炭素数は、特に限定されるものではないが、炭素数1~20が好ましく、1~8がより好ましい。
 置換又は非置換一価炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、デシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビシクロヘキシル基等のビシクロアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、1-メチル-2-プロペニル基、1又は2又は3-ブテニル基、ヘキセニル基等のアルケニル基;フェニル基、キシリル基、トリル基、ビフェニル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルシクロヘキシル基等のアラルキル基等や、これらの一価炭化水素基の水素原子の一部又は全部がハロゲン原子、水酸基、アルコキシ基、スルホン基などで置換されたものが挙げられる。
 なお、非置換とは水素原子が結合していることを意味する。また、置換基において、置換基同士が連結されて環状である部分を含んでいてもよい。
 前記R及びRは、互いに独立して、水素原子、メチル基、エチル基、又はt-ブトキシカルボニル基が好ましく、特に、水素原子、t-ブトキシカルボニル基が好ましい。すなわち、R及びRが、共に水素原子のもの、共にt-ブトキシカルボニル基のもの、Rが水素原子でRがt-ブトキシカルボニル基のもの、Rがt-ブトキシカルボニル基でRが水素原子のものが好適である。
 前記式(1a)において、R~R34は、互いに独立して、水素原子、水酸基、アミノ基、シラノール基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、置換又は非置換の一価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、スルホン基、ハロゲン原子などを表す。
 置換又は非置換の一価炭化水素基の具体例としては、前記と同様のものが挙げられる。
 オルガノオキシ基の具体例としては、アルコキシ基、アルケニルオキシ基、アリールオキシ基などが挙げられ、これらのアルキル基、アルケニル基としても、前記で例示した置換基と同様のものが挙げられる。
 オルガノアミノ基の具体例としては、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、ノニルアミノ基、デシルアミノ基、ラウリルアミノ基等のアルキルアミノ基;ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジペンチルアミノ基、ジヘキシルアミノ基、ジヘプチルアミノ基、ジオクチルアミノ基、ジノニルアミノ基、ジデシルアミノ基等のジアルキルアミノ基;シクロヘキシルアミノ基等のシクロアルキルアミノ基;ジシクロヘキシルアミノ基等のジシクロアルキルアミノ基;モルホリノ基;ビフェニルアミノ基等のアリールアミノ基などが挙げられる。
 オルガノシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、オクチルジメチルシリル基、デシルジメチルシリル基などが挙げられる。
 オルガノチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基などのアルキルチオ基が挙げられる。
 アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基等が挙げられる。
 ハロゲン原子としては、塩素原子、臭素原子、フッ素原子、ヨウ素原子が挙げられる。
 リン酸エステル基としては、-P(O)(OQ)(OQ)が挙げられる。
 エステル基としては、-C(O)OQ、-OC(O)Qが挙げられる。
 チオエステル基としては、-C(S)OQ、-OC(S)Qが挙げられる。
 アミド基としては、-C(O)NHQ、-NHC(O)Q、-C(O)NQ、-NQC(O)Qが挙げられる。
 ここで、前記Q及びQは、アルキル基、アルケニル基又はアリール基を示し、これらについては、前記一価炭化水素基で例示した基と同様のものが挙げられる。
 R~R34において、前記一価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、リン酸エステル基、エステル基、チオエステル基及びアミド基などにおける炭素数は、特に限定されるものではないが、一般に炭素数1~20、好ましくは1~8である。
 これらの中でも、R~R34としては、互いに独立して、水素原子、置換若しくは非置換の一価炭化水素基、オルガノオキシ基、オルガノアミノ基、又はハロゲン原子が好ましく、特に、水素原子、置換若しくは非置換の一価炭化水素基、又はハロゲン原子が好適である。
 ここで、一価炭化水素基としては、フェニル基、ビフェニル基又はナフチル基が好適である。
 ハロゲン原子としては、フッ素原子が好適である。オルガノアミノ基としては、アリールアミノ基が好ましく、特にジフェニルアミノ基が好適である。
 一実施態様において、R~R34はすべて水素原子である。
 前記式(1a)において、g及びhは、互いに独立して、1以上、かつ、g+h≦20を満たす整数であるが、特に、g+h≦10を満たすことが好ましく、g+h≦5を満たすことがより好ましい。
 これらの範囲に調整することで、良好な電荷輸送性を発揮させつつ、各種溶媒に対する溶解性を確保することが容易になる。
 式(1a)のオリゴアニリン化合物は、溶解性を高めるとともに、電荷輸送性を均一にするということを考慮すると、分子量分布のない、換言すれば、分散度が1のオリゴアニリン化合物であることが好ましい。
 その分子量は、材料の揮発の抑制及び電荷輸送性発現のために、下限として通常200以上、好ましくは400以上であり、また溶解性向上のために、上限として通常5000以下、好ましくは3000以下である。
 なお、本発明においては、前記式(1a)で表されるオリゴアニリン化合物の酸化体であるキノンジイミン化合物も前記オリゴアニリン化合物(a)として好適に使用しうる。
 前記式(1a)で表されるオリゴアニリン化合物は、例えば、国際公開2008/129947に記載されている方法で製造することができる。
・オリゴアニリン化合物(ii)
 前記オリゴアニリン化合物(a)として使用しうるオリゴアニリン化合物(ii)は、下記式(1b):
Figure JPOXMLDOC01-appb-C000020

(式中、
 R35、R36及びR37は、互いに独立して、水素原子、非置換若しくは置換の一価炭化水素基又はオルガノオキシ基を示し、
 L及びMは、互いに独立して、下記式(b-1)又は(b-2):
Figure JPOXMLDOC01-appb-C000021

(式中、R38~R45は、互いに独立して、水素原子、水酸基、非置換若しくは置換の一価炭化水素基又はオルガノオキシ基、アシル基、又はスルホン酸基である。)
で表される二価の基であり、
 x及びyは、互いに独立して、1以上の整数であり、x+y≦20を満足する。)
で表されるオリゴアニリン化合物である。
 前記式(1b)並びに(b-1)及び(b-2)中のR35~R45は、合成の容易性の観点からは水素原子が好ましいが、溶媒に対する溶解性を上げるためには、アルキル基、アルコキシ基、シクロヘキシル基、ビフェニル基、ビシクロヘキシル基、フェニルシクロヘキシル基などが好ましい。
 例えばアルキル基としては一般的にはメチル基、エチル基、プロピル基等が挙げられる。その炭素数としては1から4が一般的であるが、炭素数20までの導入は可能である。
 前記式(1b)中のx及びyの数は、互いに独立して、1以上の整数であるが、その導電性を考慮した場合2以上が望ましく、またその溶媒に対する溶解性を考慮した場合、20以下が望ましい。
 R36は、水素原子、水酸基、非置換若しくは置換の一価炭化水素基又はオルガノオキシ基、アシル基、炭素数1~20のアルキル基、又は炭素数1~20のアルコキシ基が適している。例えばアルキル基としては一般的にはメチル基、エチル基、プロピル基等が挙げられる。炭素数としては1から4が一般的であるが、炭素数20までの導入は可能である。
 なお、本発明においては、前記式(1b)で表されるオリゴアニリン化合物の酸化体であるキノンジイミン化合物も前記オリゴアニリン化合物(a)として好適に使用しうる。
・オリゴアニリン化合物(iii)
 前記オリゴアニリン化合物(a)として使用しうるオリゴアニリン化合物(iii)は、下記式(1c):
Figure JPOXMLDOC01-appb-C000022

(式中、
 Phは、下記式(P1):
Figure JPOXMLDOC01-appb-C000023

(式中、R3a~R6aは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表す。)
で表される基を表し、
 Arは、互いに独立して、モノアリールアミノ基及び/又はジアリールアミノ基を有していてもよい、非置換又は置換アリール基又はヘテロアリール基を表し、
 Arは、互いに独立して、モノアリールアミノ基及び/又はジアリールアミノ基を有していてもよい、非置換又は置換アリール基又はヘテロアリール基を表し、
 pは、1~10の整数を表す。)
で表されるオリゴアニリン化合物である。
 ハロゲン原子としては、上記と同様のものが挙げられる。
 炭素数1~20のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖状又は分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基等が挙げられる。
 炭素数2~20のアルケニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エテニル基、n-1-プロペニル基、n-2-プロペニル基、1-メチルエテニル基、n-1-ブテニル基、n-2-ブテニル基、n-3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、n-1-ペンテニル基、n-1-デセニル基、n-1-エイコセニル基等が挙げられる。
 炭素数2~20のアルキニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基、1-メチル-2-プロピニル基、n-1-ペンチニル基、n-2-ペンチニル基、n-3-ペンチニル基、n-4-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1,1-ジメチル-n-プロピニル基、n-1-ヘキシニル基、n-1-デシニル基、n-1-ペンタデシニル基、n-1-エイコシニル基等が挙げられる。
 炭素数6~20のアリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。
 炭素数2~20のヘテロアリール基の具体例としては、2-チエニル基、3-チエニル基、2-フラニル基、3-フラニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基、2-イミダゾリル基、4-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基等が挙げられる。
 R3a~R6aとしては、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子で置換されていてもよい炭素数6~20のアリール基、ハロゲン原子で置換されていてもよい炭素数2~20のヘテロアリール基が好ましく、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~10のアルキル基、ハロゲン原子で置換されていてもよいフェニル基がより好ましく、水素原子、フッ素原子がより一層好ましく、水素原子が最適である。
 以下、Phとして好適な基の具体例を挙げるが、これに限定されるわけではない。
Figure JPOXMLDOC01-appb-C000024
 好ましくは、Arは、互いに独立して、下記式(B1)~(B11)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000025

(式中、
 Arは、互いに独立して、ジ(炭素数6~20のアリール)アミノ基で置換されていてもよい炭素数6~20のアリール基を表し、
 R7a~R27a、R30a~R51a及びR53a~R154aは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、ジフェニルアミノ基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、
 R28a及びR29aは、互いに独立して、Z1aで置換されていてもよい、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基を表し、
 R52aは、水素原子、又はZ1aで置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、
 Z1aは、ハロゲン原子、ニトロ基、シアノ基、又はZ2aで置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基を表し、
 Z2aは、ハロゲン原子、ニトロ基、シアノ基、又はZ3aで置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、
 Z3aは、ハロゲン原子、ニトロ基又はシアノ基を表す。)
 より好ましくは、Arは、互いに独立して、式(B1′)~(B11′)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000026

(式中、R7a~R154a及びArは、上記と同じ意味を示す。)
 好ましくは、Arは、互いに独立して、下記式(G1)~(G18)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000027

(式中、
 R155aは、水素原子、Z1aで置換されていてもよい炭素数6~14のアリール基又はZ1aで置換されていてもよい炭素数2~14のヘテロアリール基を表し、
 R156a及びR157aは、互いに独立して、Z1aで置換されていてもよいフェニル基で置換されていてもよい炭素数6~14のアリール基、又はZ1aで置換されていてもよいフェニル基で置換されていてもよい炭素数2~14のヘテロアリール基を表し、
 DPAは、ジフェニルアミノ基を表し、
 Ar及びZ1aは、Arについて定義したものと同じである。)
 R155aとしては、水素原子、Z1aで置換されていてもよい炭素数6~14のアリール基、Z1aで置換されていてもよい炭素数2~14のヘテロアリール基が好ましく、水素原子、Z1aで置換されていてもよいフェニル基、Z1aで置換されていてもよい1-ナフチル基、Z1aで置換されていてもよい2-ナフチル基、Z1aで置換されていてもよい2-ピリジル基、Z1aで置換されていてもよいフェニル基で置換されていてもよい3-ピリジル基、Z1aで置換されていてもよい4-ピリジル基がより好ましく、Z1aで置換されていてもよいフェニル基がさらに好ましく、フェニル基又は2,3,5,6-テトラフルオロ-4-(トリフルオロメチル)フェニル基が最適である。
 また、R156a及びR157aとしては、Z1aで置換されていてもよいフェニル基で置換されていてもよい炭素数6~14のアリール基、Z1aで置換されていてもよいフェニル基で置換されていてもよい炭素数2~14のヘテロアリール基が好ましく、Z1aで置換されていてもよいフェニル基で置換されていてもよい炭素数6~14のアリール基がより好ましく、Z1aで置換されていてもよいフェニル基で置換されていてもよいフェニル基、Z1aで置換されていてもよいフェニル基で置換されていてもよい1-ナフチル基、Z1aで置換されていてもよい2-ナフチル基がより一層好ましい。
 Arにおける炭素数6~20のアリール基の具体例としては、R3a~R6aで説明したものと同様のものが挙げられ、ジ(炭素数6~20のアリール)アミノ基の具体例としては、ジフェニルアミノ基、1-ナフチルフェニルアミノ基、ジ(1-ナフチル)アミノ基、1-ナフチル-2-ナフチルアミノ基、ジ(2-ナフチル)アミノ基等が挙げられる。
 Arとしては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、p-(ジフェニルアミノ)フェニル基、p-(1-ナフチルフェニルアミノ)フェニル基、p-(ジ(1-ナフチル)アミノ)フェニル基、p-(1-ナフチル-2-ナフチルアミノ)フェニル基、p-(ジ(2-ナフチル)アミノ)フェニル基が好ましく、p-(ジフェニルアミノ)フェニル基がより好ましい。
 またpは、1~10の整数を表すが、有機溶媒に対する溶解性を高める観点から、1~5が好ましく、1~3がより好ましく、1又は2がより一層好ましく、1が最適である。
 より好ましくは、Arは、互いに独立して、下記式(G1´)~(G18´)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000028

(式中、R155a~R157a、DPA及びArは、上記と同じ意味を示す。)
・オリゴアニリン化合物(iv)
 前記オリゴアニリン化合物(a)として使用しうるオリゴアニリン化合物(iv)は、下記式(1d):
Figure JPOXMLDOC01-appb-C000029

(式中、
 R1a及びR2aは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、
 Arは、互いに独立して、ジアリールアミノフェニル基を表し、
 qは、1又は2を表し、
 Phは、式(1c)について定義したものと同じである)
で表されるオリゴアニリン化合物である。
 ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基及び炭素数2~20のヘテロアリール基の具体例としては、前記で例示したものと同様のものを挙げることができる。
 これらの中でも、R1a及びR2aは、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子で置換されていてもよい炭素数6~20のアリール基、ハロゲン原子で置換されていてもよい炭素数2~20のヘテロアリール基が好ましく、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~10のアルキル基、ハロゲン原子で置換されていてもよいフェニル基がより好ましく、水素原子、フッ素原子がより一層好ましく、水素原子が最適である。
 好ましくは、Arは、互いに独立して、下記式(I1)~(I8)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000030

(式中、DPAは、ジフェニルアミノ基を表す。)
 より好ましくは、Arは、互いに独立して、(I1′)~(I8′)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000031

(式中、DPAは、ジフェニルアミノ基を表す。)
・オリゴアニリン化合物(v)
 前記オリゴアニリン化合物(a)として使用しうるオリゴアニリン化合物(v)は、下記式(1e):
Figure JPOXMLDOC01-appb-C000032

(式中、
 R1bは、水素原子、又はZで置換されていてもよい炭素数1~20のアルキル基を表し、
 Zは、ハロゲン原子、ニトロ基、シアノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボキシル基、Zb’で置換されていてもよい炭素数6~20のアリール基又はZb’で置換されていてもよい炭素数2~20のヘテロアリール基を表し、
 Zb’は、ハロゲン原子、ニトロ基、シアノ基、アルデヒド基、水酸基、チオール基、スルホン酸基又はカルボキシル基を表し、
 R2b~R10bは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、
 A’は、少なくとも1個の水素原子がフッ素原子で置換され、かつ他の少なくとも1個の水素原子が他の原子又は置換基で置換されていてもよい、炭素数1~40の炭化水素基を表し、
 rは、1~20の整数である。)
で表されるオリゴアニリン化合物である。
 ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基及び炭素数2~20のヘテロアリール基の具体例としては、前記で例示したものと同様のものを挙げることができる。
 これらのうち、R1bとしては、オリゴアニリン化合物の有機溶媒への溶解性を考慮すると、水素原子、又はZで置換されていてもよい炭素数1~10のアルキル基が好ましく、水素原子、又はZで置換されていてもよい炭素数1~4のアルキル基がより好ましく、水素原子が最適である。なお、複数のR1bは、それぞれ同一であっても異なっていてもよい。
 また、これらのうち、R2b~R10bとしては、オリゴアニリン化合物の有機溶媒への溶解性を考慮すると、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい炭素数1~10のアルキル基が好ましく、水素原子、ハロゲン原子、又はハロゲン原子で置換されていてもよい炭素数1~4のアルキル基がより好ましく、オリゴアニリン化合物の有機溶媒への溶解性と電荷輸送性とのバランスを考慮すると、水素原子が最適である。なお、複数のR2b~R5bは、それぞれ同一であっても異なっていてもよい。
 好ましくは、A’は、
 シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基;
 シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数1~20のフルオロアルキル基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、炭素数6~20のフルオロアリール基;
 炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、炭素数6~20のアリール基;
 シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のフルオロアルコキシ基、炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されていてもよい、炭素数7~20のフルオロアラルキル基;又は
 炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、炭素数7~20のアラルキル基
である。
 前記フルオロアルキル基は、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換された直鎖状又は分岐状のアルキル基であれば特に限定されないが、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、1-フルオロエチル基、2-フルオロエチル基、1,2-ジフルオロエチル基、1,1-ジフルオロエチル基、2,2-ジフルオロエチル基、1,1,2-トリフルオロエチル基、1,2,2-トリフルオロエチル基、2,2,2-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基、1,2,2,2-テトラフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、1-フルオロプロピル基、2-フルオロプロピル基、3-フルオロプロピル基、1,1-ジフルオロプロピル基、1,2-ジフルオロプロピル基、1,3-ジフルオロプロピル基、2,2-ジフルオロプロピル基、2,3-ジフルオロプロピル基、3,3-ジフルオロプロピル基、1,1,2-トリフルオロプロピル基、1,1,3-トリフルオロプロピル基、1,2,3-トリフルオロプロピル基、1,3,3-トリフルオロプロピル基、2,2,3-トリフルオロプロピル基、2,3,3-トリフルオロプロピル基、3,3,3-トリフルオロプロピル基、1,1,2,2-テトラフルオロプロピル基、1,1,2,3-テトラフルオロプロピル基、1,2,2,3-テトラフルオロプロピル基、1,3,3,3-テトラフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,3,3,3-テトラフルオロプロピル基、1,1,2,2,3-ペンタフルオロプロピル基、1,2,2,3,3-ペンタフルオロプロピル基、1,1,3,3,3-ペンタフルオロプロピル基、1,2,3,3,3-ペンタフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、ヘプタフルオロプロピル基等が挙げられる。
 前記フルオロシクロアルキル基は、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたシクロアルキル基であれば特に限定されないが、例えば、1-フルオロシクロプロピル基、2-フルオロシクロプロピル基、2,2-ジフルオロシクロプロピル基、2,2,3,3-テトラフルオロシクロプロピル基、ペンタフルオロシクロプロピル基、2,2-ジフルオロシクロブチル基、2,2,3,3-テトラフルオロシクロブチル基、2,2,3,3,4,4-ヘキサフルオロシクロブチル基、ヘプタフルオロシクロブチル基、1-フルオロシクロペンチル基、3-フルオロシクロペンチル基、3,3-ジフルオロシクロペンチル基、3,3,4,4-テトラフルオロシクロペンチル基、ノナフルオロシクロペンチル基、1-フルオロシクロヘキシル基、2-フルオロシクロヘキシル基、4-フルオロシクロヘキシル基、4,4-ジフルオロシクロヘキシル基、2,2,3,3-テトラフルオロシクロヘキシル基、2,3,4,5,6-ペンタフルオロシクロヘキシル基、ウンデカフルオロシクロヘキシル基等が挙げられる。
 前記フルオロビシクロアルキル基は、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたビシクロアルキル基であれば特に限定されないが、例えば、3-フルオロビシクロ[1.1.0]ブタン-1-イル基、2,2,4,4-テトラフルオロビシクロ[1.1.0]ブタン-1-イル基、ペンタフルオロビシクロ[1.1.0]ブタン-1-イル基、3-フルオロビシクロ[1.1.1]ペンタン-1-イル基、2,2,4,4,5-ペンタフルオロビシクロ[1.1.1]ペンタン-1-イル基、2,2,4,4,5,5-ヘキサフルオロビシクロ[1.1.1]ぺンタン-1-イル基、5-フルオロビシクロ[3.1.0]ヘキサン-6-イル基、6-フルオロビシクロ[3.1.0]ヘキサン-6-イル基、6,6-ジフルオロビシクロ[3.1.0]ヘキサン-2-イル基、2,2,3,3,5,5,6,6-オクタフルオロビシクロ[2.2.0]ヘキサン-1-イル基、1-フルオロビシクロ[2.2.1]ヘプタン-2-イル基、3-フルオロビシクロ[2.2.1]ヘプタン-2-イル基、4-フルオロビシクロ[2.2.1]ヘプタン-1-イル基、5-フルオロビシクロ[3.1.1]ヘプタン-1-イル基、1,3,3,4,5,5,6,6,7,7-デカフルオロビシクロ[2.2.1]ヘプタン-2-イル基、ウンデカフルオロビシクロ[2.2.1]ヘプタン-2-イル基、3-フルオロビシクロ[2.2.2]オクタン-1-イル基、4-フルオロビシクロ[2.2.2]オクタン-1-イル基等が挙げられる。
 前記フルオロアルケニル基は、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたアルケニル基であれば特に限定されないが、例えば、1-フルオロエテニル基、2-フルオロエテニル基、1,2-ジフルオロエテニル基、1,2,2-トリフルオロエテニル基、2,3,3-トリフルオロ-1-プロペニル基、3,3,3-トリフルオロ-1-プロペニル基、2,3,3,3-テトラフルオロ-1-プロペニル基、ペンタフルオロ-1-プロペニル基、1-フルオロ-2-プロペニル基、1,1-ジフルオロ-2-プロペニル基、2,3-ジフルオロ-2-プロペニル基、3,3-ジフルオロ-2-プロペニル基、2,3,3-トリフルオロ-2-プロペニル基、1,2,3,3-テトラフルオロ-2-プロペニル基、ペンタフルオロ-2-プロペニル基等が挙げられる。
 前記フルオロアルキニル基は、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたアルキニル基であれば特に限定されないが、例えば、フルオロエチニル基、3-フルオロ-1-プロピニル基、3,3-ジフルオロ-1-プロピニル基、3,3,3-トリフルオロ-1-プロピニル基、1-フルオロ-2-プロピニル基、1,1-ジフルオロ-2-プロピニル基等が挙げられる。
 前記フルオロアリール基は、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたアリール基であれば特に限定されないが、例えば、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,4-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,3,4-トリフルオロフェニル基、2,3,5-トリフルオロフェニル基、2,3,6-トリフルオロフェニル基、2,4,5-トリフルオロフェニル基、2,4,6-トリフルオロフェニル基、3,4,5-トリフルオロフェニル基、2,3,4,5-テトラフルオロフェニル基、2,3,4,6-テトラフルオロフェニル基、2,3,5,6-テトラフルオロフェニル基、ペンタフルオロフェニル基、2-フルオロ-1-ナフチル基、3-フルオロ-1-ナフチル基、4-フルオロ-1-ナフチル基、6-フルオロ-1-ナフチル基、7-フルオロ-1-ナフチル基、8-フルオロ-1-ナフチル基、4,5-ジフルオロ-1-ナフチル基、5,7-ジフルオロ-1-ナフチル基、5,8-ジフルオロ-1-ナフチル基、5,6,7,8-テトラフルオロ-1-ナフチル基、ヘプタフルオロ-1-ナフチル基、1-フルオロ-2-ナフチル基、5-フルオロ-2-ナフチル基、6-フルオロ-2-ナフチル基、7-フルオロ-2-ナフチル基、5,7-ジフルオロ-2-ナフチル基、ヘプタフルオロ-2-ナフチル基等が挙げられる。
 前記フルオロアリール基としては、オリゴアニリン化合物の有機溶媒への溶解性、オリゴアニリン化合物の電荷輸送性、オリゴアニリン化合物の原料の入手容易性等のバランスを考慮すると、シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数1~20のフルオロアルキル基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、3以上のフッ素原子で置換されたフェニル基が好ましい。
 前記フルオロアルコキシ基としては、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたアルコキシ基であれば特に限定されないが、例えば、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、1-フルオロエトキシ基、2-フルオロエトキシ基、1,2-ジフルオロエトキシ基、1,1-ジフルオロエトキシ基、2,2-ジフルオロエトキシ基、1,1,2-トリフルオロエトキシ基、1,2,2-トリフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、1,1,2,2-テトラフルオロエトキシ基、1,2,2,2-テトラフルオロエトキシ基、1,1,2,2,2-ペンタフルオロエトキシ基、1-フルオロプロポキシ基、2-フルオロプロポキシ基、3-フルオロプロポキシ基、1,1-ジフルオロプロポキシ基、1,2-ジフルオロプロポキシ基、1,3-ジフルオロプロポキシ基、2,2-ジフルオロプロポキシ基、2,3-ジフルオロプロポキシ基、3,3-ジフルオロプロポキシ基、1,1,2-トリフルオロプロポキシ基、1,1,3-トリフルオロプロポキシ基、1,2,3-トリフルオロプロポキシ基、1,3,3-トリフルオロプロポキシ基、2,2,3-トリフルオロプロポキシ基、2,3,3-トリフルオロプロポキシ基、3,3,3-トリフルオロプロポキシ基、1,1,2,2-テトラフルオロプロポキシ基、1,1,2,3-テトラフルオロプロポキシ基、1,2,2,3-テトラフルオロプロポキシ基、1,3,3,3-テトラフルオロプロポキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,3,3,3-テトラフルオロプロポキシ基、1,1,2,2,3-ペンタフルオロプロポキシ基、1,2,2,3,3-ペンタフルオロプロポキシ基、1,1,3,3,3-ペンタフルオロプロポキシ基、1,2,3,3,3-ペンタフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、ヘプタフルオロプロポキシ基等が挙げられる。
 前記炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、炭素数6~20のアリール基(以下、便宜上、置換されたアリール基ともいう)としては、炭素原子上の少なくとも1個の水素原子が炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基又は炭素数2~20のフルオロアルキニル基で置換されたアリール基である限り特に限定されないが、例えば、2-(トリフルオロメチル)フェニル基、3-(トリフルオロメチル)フェニル基、4-(トリフルオロメチル)フェニル基、4-エトキシ-3-(トリフルオロメチル)フェニル基、3-フルオロ-4-(トリフルオロメチル)フェニル基、4-フルオロ-3-(トリフルオロメチル)フェニル基、4-フルオロ-2-(トリフルオロメチル)フェニル基、2-フルオロ-5-(トリフルオロメチル)フェニル基、3-フルオロ-5-(トリフルオロメチル)フェニル基、3,5-ジ(トリフルオロメチル)フェニル基、2,4,6-トリ(トリフルオロメチル)フェニル基、4-(ペンタフルオロエチル)フェニル基、4-(3,3,3-トリフルオロプロピル)フェニル基、2,3,5,6-テトラフルオロ-4-(トリフルオロメチル)フェニル基、4-(パーフルオロビニル)フェニル基、4-(パーフルオロプロペニル)フェニル基、4-(パーフルオロブテニル)フェニル基等が挙げられる。
 前記置換されたアリール基としては、オリゴアニリン化合物の有機溶媒への溶解性、オリゴアニリン化合物の電荷輸送性、オリゴアニリン化合物の原料の入手容易性等のバランスを考慮すると、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよいフェニル基(以下、便宜上、置換されたフェニル基ともいう)が好ましく、1~3個のトリフルオロメチル基で置換されたフェニル基がより好ましく、p-トリフルオロメチルフェニル基がより一層好ましい。
 前記フルオロアラルキル基としては、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたアラルキル基である限り特に限定されないが、例えば、2-フルオロベンジル基、3-フルオロベンジル基、4-フルオロベンジル基、2,3-ジフルオロベンジル基、2,4-ジフルオロベンジル基、2,5-ジフルオロベンジル基、2,6-ジフルオロベンジル基、3,4-ジフルオロベンジル基、3,5-ジフルオロベンジル基、2,3,4-トリフルオロベンジル基、2,3,5-トリフルオロベンジル基、2,3,6-トリフルオロベンジル基、2,4,5-トリフルオロベンジル基、2,4,6-トリフルオロベンジル基、2,3,4,5-テトラフルオロベンジル基、2,3,4,6-テトラフルオロベンジル基、2,3,5,6-テトラフルオロベンジル基、2,3,4,5,6-ペンタフルオロベンジル基等が挙げられる。
 前記炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、炭素数7~20のアラルキル基としては、炭素原子上の少なくとも1個の水素原子が炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基又は炭素数2~20のフルオロアルキニル基で置換されたアラルキル基である限り特に限定されないが、2-トリフルオロメチルベンジル基、3-トリフルオロメチルベンジル基、4-トリフルオロメチルベンジル基、2,4-ジ(トリフルオロメチル)ベンジル基、2,5-ジ(トリフルオロメチル)ベンジル基、2,6-ジ(トリフルオロメチル)ベンジル基、3,5-ジ(トリフルオロメチル)ベンジル基、2,4,6-トリ(トリフルオロメチル)ベンジル基等が挙げられる。
 これらの中でも、A’は、前記置換されていてもよい炭素数1~20のフルオロアルキル基、前記置換されていてもよい炭素数6~20のフルオロアリール基又は前記置換されたアリール基が好ましく、前記置換されていてもよい炭素数6~20のフルオロアリール基又は前記置換されたアリール基がより好ましく、前記置換されていてもよいフルオロフェニル基又は前記置換されたフェニル基がより一層好ましく、前記置換されていてもよいトリフルオロフェニル基、前記置換されていてもよいテトラフルオロフェニル基、前記置換されていてもよいペンタフルオロフェニル基又は1~3個のトリフルオロメチル基で置換されたフェニル基が更に好ましい。
 また、rは、1~20の整数であるが、オリゴアニリン化合物の溶媒に対する溶解性の観点から、10以下が好ましく、8以下がより好ましく、5以下がより一層好ましく、4以下が更に好ましい。また、オリゴアニリン化合物の電荷輸送性を高める観点から、2以上が好ましく、3以上がより好ましく、溶解性と電荷輸送性のバランスを考慮すると、3が最適である。
 本発明で好適なオリゴアニリン化合物の具体例を挙げるが、以下に限定されない。
Figure JPOXMLDOC01-appb-C000033

(式中、DPAはジフェニルアミノ基を表す。)
<スルホン酸エステル化合物(b)>
 本発明の電荷輸送性ワニスに含まれるスルホン酸エステル化合物(b)は、下記式(2):
Figure JPOXMLDOC01-appb-C000034

(式中、
 R1c~R4cは、互いに独立して、水素原子、又は直鎖状若しくは分岐状の炭素数1~6のアルキル基を表し、
 R5cは、置換されていてもよい炭素数2~20の1価炭化水素基を表し;
 Aは、-O-又は-S-を表し、
 Aは、ナフタレン又はアントラセンから誘導される(n+1)価の基を表し、
 Aは、パーフルオロビフェニルから誘導されるm価の基を表し;
 mは、2≦m≦4を満たす整数を表し、
 nは、1≦n≦4を満たす整数を表す。)
で表されるスルホン酸エステル化合物である。この化合物は、本発明の電荷輸送性ワニスにおいて、電子受容性物質の前駆体として機能する。電子受容性物質とは、電荷輸送能及び成膜均一性を向上させるために用いられるものであり、電子受容性ドーパントと同義である。
 前記直鎖状若しくは分岐状のアルキル基としては、特に限定されないが、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ヘキシル基等が挙げられる。これらのうち、炭素数1~3のアルキル基が好ましい。
 前記炭素数2~20の1価炭化水素基としては、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等のアルキル基、フェニル基、ナフチル基、フェナントリル基等のアリール基等が挙げられる。
 R1c~R4cのうち、R1c又はR3cが、炭素数1~3の直鎖アルキル基であり、残りが、水素原子であることが好ましい。R1cが、炭素数1~3の直鎖アルキル基であり、R2c~R4cが、水素原子であることがより好ましい。前記炭素数1~3の直鎖アルキル基としては、メチル基が好ましい。また、R5cとしては、炭素数2~4の直鎖アルキル基又はフェニル基が好ましい。
 Aとしては、-O-が好ましい。Aとしては、ナフタレンから誘導される基が好ましい。
 mとしては、2が好ましい。nとしては、1又は2が好ましい。
 スルホン酸エステル化合物(b)は、低極性溶媒を含む広範囲の溶媒に対して高い溶解性を示すため、多様な溶媒を使用して溶液の物性を調整し、塗布特性を高めることが可能である。そのため、スルホン酸エステルを含む電荷輸送性ワニスを塗布して塗膜を形成し、塗膜の乾燥時又は焼成時にスルホン酸エステルからスルホン酸を発生させることが好ましい。スルホン酸エステルが室温で安定であり、かつ焼成温度以下でスルホン酸が発生することが好ましいため、スルホン酸エステルからスルホン酸が発生する温度は、40~260℃が好ましい。更に、ワニス中でのスルホン酸エステルの高い安定性と、焼成時の反応の容易性を考慮すると、80~230℃が好ましく、120~180℃がより好ましい。
 スルホン酸エステル化合物(b)は、電荷輸送機構の本体であるオリゴアニリン化合物(a)と共に有機溶媒に溶解又は分散させることで、電荷輸送性ワニスとすることができる。
 スルホン酸エステル化合物(b)(式(2))は、例えば、下記スキームAに示すように、式(2'')で表されるスルホン酸塩化合物とハロゲン化剤とを反応させて、下記式(2')で表されるスルホニルハライド化合物を合成し(以下、工程1ともいう)、該スルホニルハライド化合物と式(3)で表されるグリコールエーテル類とを反応させる(以下、工程2ともいう)ことで合成することができる。
Figure JPOXMLDOC01-appb-C000035

(式中、A~A、R1c~R5c、m及びnは、前記と同じであり、Mは、ナトリウムイオン、カリウムイオン、ピリジニウムイオン、4級アンモニウムイオン等の1価のカチオンを表し、Halは、塩素原子、臭素原子等のハロゲン原子を表す。)
 式(2'')で表されるスルホン酸塩化合物は、公知の方法に従って合成することができる。
 工程1において使用するハロゲン化剤としては、塩化チオニル、塩化オキサリル、オキシ塩化リン、塩化リン(V)等のハロゲン化剤が挙げられるが、塩化チオニルが好適である。ハロゲン化剤の使用量は、スルホン酸塩化合物に対して1倍モル以上であれば限定されないが、スルホン酸塩化合物に対して質量比で2~10倍量用いることが好ましい。
 工程1において使用される反応溶媒としては、ハロゲン化剤と反応しない溶媒が好ましく、クロロホルム、ジクロロエタン、四塩化炭素、ヘキサン、ヘプタン等を挙げることができるが、無溶媒(液状のハロゲン化剤を溶媒として用いる)が好適である。なお、無溶媒で反応を行う場合、反応終了時には均一系溶液となる量以上でハロゲン化剤を用いることが好ましい。反応温度は0~150℃程度とすることができるが、20~100℃、かつ、使用するハロゲン化剤の沸点以下が好ましい。反応終了後、一般的には、減圧濃縮等により得た粗生成物を次工程に用いる。
 式(3)で表されるグリコールエーテル類としては、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル等が好ましい。
 工程2においては、塩基を併用してもよい。使用可能な塩基としては、水素化ナトリウム、ピリジン、トリエチルアミン、ジイソプロピルエチルアミン等が挙げられるが、水素化ナトリウム、ピリジン、トリエチルアミンが好適である。塩基の使用量は、スルホニルハライド化合物(2')に対して1倍モル~溶媒量が好適である。
 工程2において使用される反応溶媒としては、各種有機溶媒を用いることができるが、テトラヒドロフラン、ジクロロエタン、クロロホルム、ピリジンが好適である。反応温度は特に限定されないが、0~80℃が好適である。反応終了後、減圧濃縮、分液抽出、水洗、再沈殿、再結晶、クロマトグラフィー等の常法を用いて後処理、精製し、純粋なスルホン酸エステル化合物を得ることができる。なお、得られた純粋なスルホン酸エステル化合物に熱処理等を施すことで、高純度のスルホン酸化合物に導くこともできる。
 また、式(2)で表されるスルホン酸エステル化合物は、下記スキームBに示すように、式(2''')で表されるスルホン酸化合物から合成することもできる。なお、下記スキームにおいて、1段目及び2段目の反応で使用するハロゲン化剤、式(3)で表されるグリコールエーテル類、反応溶媒、及びその他の成分は、スキームAにおける工程1及び2と同様のものを使用することができる。
Figure JPOXMLDOC01-appb-C000036

(式中、A~A、R1c~R5c、m、n及びHalは、前記と同じである。)
 式(2''')で表されるスルホン酸化合物は、例えば、国際公開第2006/025342号に記載された方法に従って合成することができる。
 本発明で好適なスルホン酸エステル化合物の具体例を挙げるが、以下に限定されない。
Figure JPOXMLDOC01-appb-C000037
<金属酸化物ナノ粒子(c)>
 本発明の電荷輸送性ワニスは、1種以上の金属酸化物ナノ粒子(c)を含む。ナノ粒子とは、一次粒子についての平均粒子径がナノメートルのオーダー(典型的には500nm以下)である微粒子を意味する。金属酸化物ナノ粒子とは、ナノ粒子に成形された金属酸化物を意味する。
 金属酸化物ナノ粒子(c)における金属は、通常の意味での金属に加え、半金属も包含する。通常の意味での金属は、単独で用いても、2種以上を組み合わせて用いてもよく、スズ(Sn)、チタン(Ti)、アルミニウム(Al)、ジルコニウム(Zr)、亜鉛(Zn)、ニオブ(Nb)、タンタル(Ta)及びW(タングステン)からなる群より選択される1種以上を用いることが好ましいが、それらに限定されない。
 一方、半金属とは、化学的及び/又は物理的性質が金属と非金属の中間である元素を意味する。半金属の普遍的な定義は確立されていないが、本発明では、ホウ素(B)、ケイ素(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)及びテルル(Te)の計6元素を半金属とする。これらの半金属は、単独で用いても、2種以上を組み合わせて用いてもよく、また通常の意味での金属と組み合わせて用いてもよい。
 金属酸化物ナノ粒子(c)は、ホウ素(B)、ケイ素(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)、テルル(Te)、スズ(Sn)、チタン(Ti)、アルミニウム(Al)、ジルコニウム(Zr)、亜鉛(Zn)、ニオブ(Nb)、タンタル(Ta)及びW(タングステン)からなる群より選択される1種以上の金属の酸化物を含むことが好ましい。金属が2種以上の金属の組み合わせである場合、金属酸化物は、個々の単独の金属の酸化物の混合物であってもよく、複数の金属を含む複合酸化物であってもよい。金属酸化物の具体的な例としては、B、BO、SiO、SiO、GeO、GeO、As、As、As、Sb、Sb、TeO、SnO、ZrO、Al、ZnO等を挙げることができるが、これらに限定されない。
 一実施態様において、金属酸化物ナノ粒子(c)は、B、BO、SiO、SiO、GeO、GeO、As、As、As、SnO、SnO、Sb、TeO又はこれらの混合物を含む。他の一実施態様において、金属酸化物ナノ粒子(c)は、SiOを含む。
 金属酸化物ナノ粒子(c)に関し、一次粒子についての平均粒子径は、通常1nm以上、500nm以下、好ましくは1nm以上、250nm以下、より好ましくは約1nm以上、約100nm以下、更に好ましくは1nm以上、50nm以下、特に好ましくは約2nm以上、約30nm以下、最も好ましくは3nm以上、25nm以下の範囲である。一次粒子の平均粒子径を測定する方法の例としては、例えば、透過電子顕微鏡(TEM)を用いる方法、BET法で求めた比表面積から算出する方法などを挙げることができる。
 TEMを用いる平均粒子径の測定方法は種々知られているが、その一例として、円相当径に基づく方法を挙げることができる。これは、TEM(例えば、透過型電子顕微鏡HT7700(株式会社日立ハイテクノロジーズ製))を用いて得られる粒子の投影画像を画像処理ソフトウェアで処理することにより、各粒子の円相当径を求め、それらの円相当径の数平均として、平均粒子径を求める方法である。円相当径はヘイウッド径とも呼ばれ、粒子の投影画像の面積と同じ面積を持つ円の直径である。この方法では、典型的には、TEMと共に提供される、TEMの製造販売元が作成した画像処理ソフトウェアを用いて、投影画像の処理を行う。
 金属酸化物ナノ粒子(c)は、1種以上の有機キャッピング基を含んでもよい。この有機キャッピング基は、反応性であっても非反応性であってもよい。反応性有機キャッピング基の例としては、紫外線又はラジカル開始剤により架橋できる有機キャッピング基を挙げることができる。一実施態様において、金属酸化物ナノ粒子(c)は、1種以上の有機キャッピング基を含む。
 金属酸化物ナノ粒子は、公知の方法により製造することもできるが、市販品としても入手可能である。市販の金属酸化物ナノ粒子は通常、分散液の形態にある。好ましくは、市販されている金属酸化物ナノ粒子の非水系分散液を用いる。適切な市販の金属酸化物ナノ粒子の例としては、SiOナノ粒子が種々の溶媒(例えば、メタノール、メチルエチルケトン、メチルイソブチルケトン、N,N-ジメチルアセトアミド、エチレングリコール、イソプロパノール、メタノール、エチレングリコールモノプロピルエーテル、シクロヘキサノン、酢酸エチル、トルエン及びプロピレングリコールモノメチルエーテルアセタートなど)に分散した非水系分散液であるORGANOSILICASOL(商標)(日産化学工業株式会社製)を挙げることができる。
 本発明の電荷輸送性ワニスにおける金属酸化物ナノ粒子(c)の含有量は、金属酸化物ナノ粒子(c)とオリゴアニリン化合物(a)(ドープされたもの及びドープされていないものを含む)の合計重量に対する重量百分率で表される。金属酸化物ナノ粒子(c)の含有量は、金属酸化物ナノ粒子(c)とオリゴアニリン化合物(a)の合計重量に対し、通常は約1重量%~約98重量%、好ましくは約2重量%~約95重量%、より好ましくは約5重量%~約90重量%、更に好ましくは約10重量%~約90重量%である。一実施態様において、金属酸化物ナノ粒子(c)の含有量は、金属酸化物ナノ粒子(c)とオリゴアニリン化合物(a)の合計重量に対し、約20重量%~約98%、好ましくは約25重量%~約95重量%である。
<有機溶媒(d)>
 本開示の電荷輸送性ワニスは、非水系でもよく水が含まれていても良いが、インクジェット塗布におけるプロセス適合性とワニスの保存安定性の観点で、非水系であることが好ましい。本明細書に使用されるとき、「非水系」は、本開示の電荷輸送性ワニス中の水の総量が、電荷輸送性ワニスの総量に対して0~2重量%であることを意味する。典型的には、電荷輸送性ワニス中の水の総量は、電荷輸送性ワニスの総量に対して0~1重量%、更に典型的には0~0.5重量%である。ある実施態様において、本開示の電荷輸送性ワニスには水が実質的に存在しない。
 電荷輸送性ワニスに用いられる有機溶媒としては、例えば、N,N-ジメチルホルムアミド(153℃)、N,N-ジメチルアセトアミド(165℃)、N-メチルピロリドン(202℃)、1,3-ジメチル-2-イミダゾリジノン(225℃)、ジメチルスルホキシド(189℃)、N-シクロヘキシル-2-ピロリジノン(284℃)、芳香族炭化水素〔ベンゼン(80℃)、トルエン(111℃)、エチルベンゼン(136℃)、p-キシレン(138℃)、o-キシレン(138℃)、スチレン(145℃)等〕、ケトン類〔アセトン(56℃)、メチルエチルケトン(80℃)、メチルイソプロピルケトン(94℃)、ジエチルケトン(102℃)、メチルイソブチルケトン(117℃)、メチルn-ブチルケトン(127℃)、シクロヘキサノン(155℃)、エチルn-アミルケトン(167℃)〕、エステル類〔酢酸エチル(77℃)、酢酸イソプロピル(85℃)、酢酸n-プロピル(101℃)、酢酸イソブチル(116℃)、酢酸n-ブチル(125℃)、酢酸n-アミル(142℃)、カプロン酸メチル(151℃)、酢酸-2-メチルペンチル(162℃)、乳酸n-ブチル(186℃)等〕、グリコールエステル及びグリコールエーテル類〔エチレングリコールジメチルエーテル(85℃)、プロピレングリコールモノメチルエーテル(119℃)、エチレングリコールモノメチルエーテル(124℃)、プロピレングリコールモノエチルエーテル(132℃)、エチレングリコールモノエチルエーテル(136℃)、エチレングリコールモノイソプロピルエーテル(144℃)、エチレングリコールメチルエーテルアセテート(145℃)、プロピレングリコールモノメチルエーテルアセテート(146℃)、エチレングリコールエチルエーテルアセテート(156℃)、ジエチレングリコールジメチルエーテル(162℃)、プロピレングリコールモノブチルエーテル(170℃)、エチレングリコールモノブチルエーテル(171℃)、ジエチレングリコールジエチルエーテル(188℃)、ジプロピレングリコールモノメチルエーテル(189℃)、ジエチレングリコールモノメチルエーテル(194℃)、ジプロピレングリコールモノエチルエーテル(198℃)、ジエチレングリコールモノエチルエーテル(202℃)、トリエチレングリコールジメチルエーテル(216℃)、ジエチレングリコールモノエチルエーテルアセテート(217℃)、ジエチレングリコール(244℃)等〕、アルコール類〔メタノール(65℃)、エタノール(78℃)、イソプロパノール(82℃)、tert-ブタノール(83℃)、アリルアルコール(97℃)、n-プロパノール(97℃)、2-メチル-2-ブタノール(102℃)、イソブタノール(108℃)、n-ブタノール(117℃)、2-メチル-1-ブタノール(130℃)、1-ペンタノール(137℃)、2-メチル-1-ペンタノール(148℃)、2-エチルヘキサノール(185℃)、1-オクタノール(196℃)、エチレングリコール(197℃)、ヘキシレングリコール(198℃)、トリメチレングリコール(214℃)、1-メトキシ-2-ブタノール(135℃)、シクロヘキサノール(161℃)、ジアセトンアルコール(166℃)、フルフリルアルコール(170℃)、テトラヒドロフルフリルアルコール(178℃)、プロピレングリコール(187℃)、ベンジルアルコール(205℃)、1,3-ブタンジオール(208℃)等〕、フェノール類〔フェノール(182℃)、m-クレゾール(202℃)等〕、エーテル類及びカルボン酸とその誘導体〔イソプロピルエーテル(68℃)、1,4-ジオキサン(101℃)、アニソール(154℃)、酢酸(117℃)、γ-ブチロラクトン(204℃)等〕が挙げられる。
 これらの有機溶媒は、単独で、又は2種以上組み合わせて用いることができる。
 本発明においては、オリゴアニリン化合物(a)及びスルホン酸エステル化合物(b)を良好に溶解し得る高溶解性溶媒を用いることができる。このような高溶解性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジエチレングリコール、ジメチルスルホキシド、ジメチルイソ酪酸アミド等が挙げられる。これらの溶媒は1種単独で、又は2種以上混合して用いることができ、その使用量は、ワニスに使用する溶媒全体に対して5~100質量%とすることができる。
 なお、電荷輸送性ワニスは、各成分が上記溶媒に完全に溶解しているか、均一に分散している状態となっていることが好ましい。
 また、本発明の電荷輸送性ワニスは、20℃で10~200mPa・s、特に50~150mPa・sの粘度を有し、常圧で沸点50~300℃、特に150~250℃の高粘度有機溶媒を、少なくとも一種類含有することが好適である。
 高粘度有機溶媒としては、例えば、シクロヘキサノール、エチレングリコール、エチレングリコールジクリシジルエーテル、1,3-オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール、へキシレングリコール等が挙げられる。
 本発明のワニスに用いられる溶媒全体に対する高粘度有機溶媒の添加割合は、固体が析出/沈殿しない範囲内であることが好ましく、固体が析出/沈殿しない限りにおいて、添加割合は、5~80質量%であることが好ましい。
 さらに、基板に対する濡れ性の向上、溶媒の表面張力の調整、極性の調整、沸点の調整等の目的で、焼成時に膜の平坦性を付与し得るその他の溶媒を、ワニスに使用する溶媒全体に対して1~90質量%、好ましくは1~50質量%の割合で混合することもできる。
 このような溶媒としては、例えば、ブチルセロソルブ、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、エチルカルビトール、ジアセトンアルコール、γ-ブチロラクトン、乳酸エチル等が挙げられる。
 これらの溶媒の組み合わせの具体例としては、限定されるものではないが、例えば、
 2種の溶媒の組み合わせとして、1,3-ジメチル-2-イミダゾリジノンとシクロヘキサノール、テトラエチレングリコールとジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールとジエチレングリコールモノエチルエーテルアセテート、トリエチレングリコールモノメチルエーテルとジエチレングリコールイソプロピルエーテル、ジエチレングリコールとジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールとトリエチレングリコールジメチルエーテル、3-フェノキシトルエンとトリエチレングリコールジメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとへキシレングリコール、1,3-ジメチル-2-イミダゾリジノンとジエチレングリコールモノエチルエーテルアセテート、N,N-ジメチルアセトアミドとシクロヘキサノール、N,N-ジメチルアセトアミドとジエチレングリコールジメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとジプロピレングリコールモノプロピルエーテル、N,N-ジメチルアセトアミドとn-へキシレンアセテート、1,3-ジメチル-2-イミダゾリジノンとジエチレングリコールモノエチルエーテルアセテート、1,3-ジメチル-2-イミダゾリジノンとトリエチレングリコールジメチルエーテル、3-フェノキシトルエンとテトラリン、ジエチレングリコールとトリエチレングリコールジメチルエーテル、3-フェノキシトルエンとトリエチレングリコールジメチルエーテル、1,3-ジメチル-2-イミダゾリジノンと2,3-ブタンジオール、ジエチレングリコールモノメチルエーテルとプロピレングリコールモノメチルエーテル;
 3種の溶媒の組み合わせとして、1,3-ジメチル-2-イミダゾリジノンとシクロヘキサノールとプロピレングリコール、1,3-ジメチル-2-イミダゾリジノンとシクロヘキサノールとプロピレングリコール、1,3-ジメチル-2-イミダゾリジノンと2,3-ブタンジオールとジエチレングリコールモノエチルエーテルアセテート、1,3-ジメチル-2-イミダゾリジノンとシクロヘキサノールと2,3-ブタンジオール、1,3-ジメチル-2-イミダゾリジノンとシクロヘキサノールと2,3-ブタンジオール、1,3-ジメチル-2-イミダゾリジノンと2,3-ブタンジオールとジプロピレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンと2,3-ブタンジオールとプロピレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとトリエチレングリコールモノメチルエーテルとへキシレングリコール、1,3-ジメチル-2-イミダゾリジノンと2,3-ブタンジオールとジプロピレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとへキシレングリコールとジプロピレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとジエチレングリコールとジエチレングリコールモノメチルエーテル、テトラエチレングリコールとトリエチレングリコールモノメチルエーテルとトリエチレングリコールジメチルエーテル、テトラエチレングリコールとトリエチレングリコールモノメチルエーテルとジエチレングリコールモノメチルエーテル、ジエチレングリコールとトリエチレングリコールモノメチルエーテルとジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテルとトリエチレングリコールジメチルエーテルと3-フェノキシベンジルアルコール、ジエチレングリコールとトリエチレングリコールジメチルエーテルと2-ベンジルオキシエタノール、エチレングリコールとトリエチレングリコールジメチルエーテルと2-ベンジルオキシエタノール、1,3-ジメチル-2-イミダゾリジノンと2-ベンジルオキシエタノールとトリエチレングリコールジメチルエーテル、ジエチレングリコールとエチレングリコールとトリエチレングリコールモノメチルエーテルと2-ベンジルオキシエタノール、1,3-ジメチル-2-イミダゾリジノンと2,3-ブタンジオールとジエチレングリコールモノエチルエーテルアセテート、1,3-ジメチル-2-イミダゾリジノンとへキシレングリコールとジエチレングリコールモノエチルエーテルアセテート、1,3-ジメチル-2-イミダゾリジノンとトリエチレングリコールモノメチルエーテルとジプロピレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとジエチレングリコールモノメチルエーテルとシクロヘキサノール、1,3-ジメチル-2-イミダゾリジノンとジエチレングリコールと2,3-ブタンジオールとトリエチレングリコールジメチルエーテル、ジエチレングリコールとトリエチレングリコールジメチルエーテルと2,3-ブタンジオール、ジエチレングリコールとジプロピレングリコールモノメチルエーテルとジエチレングリコールモノメチルエーテル、ジエチレングリコールとジプロピレングリコールモノメチルエーテルと1,3-ジメチル-2-イミダゾリジノン、ジエチレングリコールと2-ベンジルオキシエタノールとジプロピレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとジエチレングリコールとトリエチレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとジエチレングリコールとトリエチレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとジエチレングリコールとジプロピレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとジプロピレングリコールとトリプロピレングリコールモノメチルエーテル、N,N-ジメチルアセトアミドとシクロヘキサノールとジエチレングリコールジメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとジプロピレングリコールモノプロピルエーテルとジエチレングリコールモノエチルエーテルアセテート、1,3-ジメチル-2-イミダゾリジノンとジプロピレングリコールとジプロピレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンと2,3-ブタンジオールとジエチレングリコールモノエチルエーテルアセテート、1,3-ジメチル-2-イミダゾリジノンと2-フェノキシエタノールと2,3-ブタンジオール、1,3-ジメチル-2-イミダゾリジノンと1,3-ブタンジオールとジエチレングリコールモノエチルエーテルアセテート、1,3-ジメチル-2-イミダゾリジノンと安息香酸メチルと1,3-ブタンジオール、1,3-ジメチル-2-イミダゾリジノンとテトラエチレングリコールとトリエチレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとへキシレングリコールとジプロピレングリコール、1,3-ジメチル-2-イミダゾリジノンとジエチレングリコールモノメチルエーテルとジエチレングリコール、1,3-ジメチル-2-イミダゾリジノンとへキシレングリコールとトリエチレングリコールジメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとシクロヘキサノールとジエチレングリコールモノエチルエーテルアセテート、1,3-ジメチル-2-イミダゾリジノンとシクロヘキサノールとジエチレングリコールモノブチルエーテルアセテート、テトラエチレングリコールとトリエチレングリコールモノメチルエーテルとへキシレングリコール、テトラエチレングリコールとトリエチレングリコールモノメチルエーテルとジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールとジエチレングリコールモノエチルエーテルアセテートと1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-2-イミダゾリジノンとジプロピレングリコールとジエチレングリコールモノエチルエーテルアセテート、1,3-ジメチル-2-イミダゾリジノンとトリエチレングリコールジメチルエーテルとジエチレングリコール、1,3-ジメチル-2-イミダゾリジノンと2,3-ブタンジオールとジプロピレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンと2,3-ブタンジオールとジプロピレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとジエチレングリコールモノメチルエーテルとプロピレングリコールモノメチルエーテル;
 4種の溶媒の組み合わせとして、ジエチレングリコールとトリエチレングリコールモノメチルエーテルとジエチレングリコールモノメチルエーテルとジプロピレングリコールモノメチルエーテル、ジエチレングリコールとトリエチレングリコールモノメチルエーテルとジエチレングリコールモノメチルエーテルとジエチレングリコールイソプロピルエーテル、1,3-ジメチル-2-イミダゾリジノンとトリエチレングリコールモノメチルエーテルと2,3-ブタンジオールとジエチレングリコールモノエチルエーテルアセテート、1,3-ジメチル-2-イミダゾリジノンとジエチレングリコールとジエチレングリコールモノフェニルエーテルとジエチレングリコールモノメチルエーテル、1,3-ジメチル-2-イミダゾリジノンとテトラエチレングリコールとトリエチレングリコールモノメチルエーテルと3-フェノキシベンジルアルコール、1,3-ジメチル-2-イミダゾリジノンとへキシレングリコールと2,3-ブタンジオールとテトラヒドロフリルアルコール、1,3-ジメチル-2-イミダゾリジノンと2-フェノキシエタノールとジエチレングリコールモノエチルエーテルアセテートと2,3-ブタンジオール
などが挙げられる。
 また、ある実施態様においては本発明における電荷輸送性ワニスに用いる有機溶媒は、エーテル、例えば、アニソール、エトキシベンゼン、ジメトキシベンゼン及びグリコールジエーテル(グリコールジエーテル類)、例えば、エチレングリコールジエーテル(1,2-ジメトキシエタン、1,2-ジエトキシエタン及び1,2-ジブトキシエタンなど);ジエチレングリコールジエーテル(ジエチレングリコールジメチルエーテル及びジエチレングリコールジエチルエーテルなど);プロピレングリコールジエーテル(プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル及びプロピレングリコールジブチルエーテルなど);ジプロピレングリコールジエーテル(ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル及びジプロピレングリコールジブチルエーテルなど);並びに本明細書に言及されるエチレングリコール及びプロピレングリコールエーテルのより高次の類似体(すなわち、トリ-及びテトラ-類似体、例えば、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル等)を含む。
 エチレングリコールモノエーテルアセタート及びプロピレングリコールモノエーテルアセタートなど(グリコールエステルエーテル類)のさらに他の溶媒を考慮することができ、ここで、エーテルは、例えば、メチル、エチル、n-プロピル、イソ-プロピル、n-ブチル、sec-ブチル、tert-ブチル及びシクロヘキシルから選択されることができる。また、上記リストのより高次のグリコールエーテル類似体(ジ-、トリ-及びテトラ-など)を含む。
 例は、限定されないが、プロピレングリコールメチルエーテルアセタート、2-エトキシエチルアセタート、2-ブトキシエチルアセタート、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテートを含む。
 エチレングリコールジアセテートなど(グリコールジエステル類)のさらに他の溶媒を考慮することができ、また、より高次のグリコールエーテル類似体(ジ-、トリ-及びテトラ-など)を含む。
 例は、限定されないが、エチレングリコールジアセテート、トリエチレングリコールジアセテート、プロピレングリコールジアセタートを含む。
 例えば、メタノール、エタノール、トリフルオロエタノール、n-プロパノール、イソプロパノール、n-ブタノール、t-ブタノール及びアルキレングリコールモノエーテル(グリコールモノエーテル類)などのアルコールもまた電荷輸送性ワニス中での使用に考慮され得る。好適なグリコールモノエーテル類の例は、限定されないが、エチレングリコールモノプロピルエーテル、エチレングリコールモノヘキシルエーテル(ヘキシルセロソルブ)、プロピレングリコールモノブチルエーテル(Dowanol PnB)、ジエチレングリコールモノエチルエーテル(エチルカルビトール)、ジプロピレングリコールn-ブチルエーテル(Dowanol DPnB)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノブチルエーテル(ブチルカルビトール)、ジプロピレングリコールモノメチルエーテル(Dowanol DPM)、ジイソブチルカルビノール、2-エチルヘキシルアルコール、メチルイソブチルカルビノール、プロピレングリコールモノプロピルエーテル(Dowanol PnP)、ジエチレングリコールモノプロピルエーテル(プロピルカルビトール)、ジエチレングリコールモノヘキシルエーテル(ヘキシルカルビトール)、2-エチルヘキシルカルビトール、ジプロピレングリコールモノプロピルエーテル(Dowanol DPnP)、トリプロピレングリコールモノメチルエーテル(Dowanol TPM)、ジエチレングリコールモノメチルエーテル(メチルカルビトール)及びトリプロピレングリコールモノブチルエーテル(Dowanol TPnB)を含む。
 本明細書に開示される有機溶媒は、例えば、基板湿潤性、溶媒除去の容易性、粘性、表面張力及び出射性などのインク特性を改善するために、電荷輸送性ワニス中に種々の割合で使用することができる。
 ある実施態様において、電荷輸送性ワニスは、ジメチルスルホキシド、エチレングリコール(グリコール類)、テトラメチルウレア又はそれらの混合物を含む。
 好適なグリコール類の例は、限定されないが、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール、プロピレングリコール、トリエチレングリコール等が挙げられる。
 上記、グリコールジエーテル類、グリコールエステルエーテル類、グリコールジエステル類、グリコールモノエーテル類及びグリコール類等を総称して、「グリコール系溶媒」とする。即ち、本発明にいう「グリコール系溶媒」とは、式RG1-O-(RG0-O)-RG2(式中、それぞれのRG0は、互いに独立して、直鎖状C-C非置換アルキレン基であり、RG1及びRG2は、互いに独立して、水素原子、直鎖状、分岐状又は環状C-C非置換アルキル基或いは直鎖状又は分岐状C-C非置換脂肪族アシル基であり、vは、1~6の整数である)で表される、1種以上の芳香族構造を有していない有機溶媒である。前記Rは、C又はC非置換アルキレン基であることが特に好ましい。前記アルキル基としては、直鎖状、分岐状又は環状C-C非置換アルキル基が好ましく、直鎖状C-C非置換アルキル基がより好ましく、メチル基及びn-ブチル基が特に好ましい。前記アシル基としては、直鎖状又は分岐状C-C非置換脂肪族アシル基が好ましく、直鎖状C-C非置換アシル基がより好ましく、アセチル基及びプロピオニル基が特に好ましい。また前記vは、1~4の整数であることが特に好ましい。このグリコール系溶媒は、例えば以下の溶媒を包含する。
・エチレングリコール、プロピレングリコール又はそのオリゴマー(2量体~4量体、例えばジエチレングリコール)であるグリコール類
・前記グリコール類のモノアルキルエーテルであるグリコールモノエーテル類
・前記グリコール類のジアルキルエーテルであるグリコールジエーテル類
・前記グリコール類の脂肪族カルボン酸モノエステルであるグリコールモノエステル類
・前記グリコール類の脂肪族カルボン酸ジエステルであるグリコールジエステル類
・前記グリコールモノエーテル類の脂肪族カルボン酸モノエステルであるグリコールエステルエーテル類
 インクジェット法による塗布性を考慮すると、グリコール系溶媒を含む溶媒系を使用することが好ましい。
 以降の記載において、便宜上、前記グリコール系溶媒とこれに該当しない有機溶媒を対比して、前者を(A)、後者を(B)で示すことがある。
 ある実施態様において、電荷輸送性ワニスは、1種以上のグリコール系溶媒(A)を含む電荷輸送性ワニスである。
 ある実施態様において、電荷輸送性ワニスは、1種以上のグリコール系溶媒(A)と、グリコール系溶媒を除く1種以上の有機溶媒(B)とを含む電荷輸送性ワニスである。
 前記グリコール系溶媒(A)として、好ましくは、グリコールジエーテル類、グリコールモノエーテル類又はグリコール類が挙げられ、これらは混合してもよい。
 例は、限定されないが、グリコールジエーテル類とグリコール類を混合させることが挙げられる。
 具体例としては、上述のグリコールジエーテル類及びグリコール類の具体例が挙げられるが、好ましくは、グリコールジエーテル類として、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、グリコール類として、エチレングリコール、ジエチレングリコールが挙げられる。
 前記有機溶媒(B)として、好ましくは、ニトリル類、アルコール類、芳香族エーテル類、芳香族炭化水素類が挙げられる。
 例は、限定されないが、ニトリル類として、メトキシプロピオニトリル、エトキシプロピオニトリル、アルコール類として、ベンジルアルコール、2-(ベンジルオキシ)エタノール、芳香族エーテル類として、メチルアニソール、ジメチルアニソール、エチルアニソール、ブチルフェニルエーテル、ブチルアニソール、ペンチルアニソール、ヘキシルアニソール、ヘプチルアニソール、オクチルアニソール、フェノキシトルエン、芳香族炭化水素類として、ペンチルベンゼン、ヘキシルベンゼン、ヘプチルベンゼン、オクチルベンゼン、ノニルベンゼン、シクロヘキシルベンゼン又はテトラリンが挙げられる。
 これらの中でも、アルコール類がより好ましく、アルコール類の中でも2-(ベンジルオキシ)エタノールがより好ましい。
 グリコール系溶媒(A)に有機溶媒(B)を添加することにより、インクジェット塗布による成膜時に、オリゴアニリン化合物とスルホン酸エステル化合物の溶解性を保ったまま金属酸化物ナノ粒子の凝集を適切に制御し、より平坦な膜を形成することができる。
 グリコール系溶媒(A)に有機溶媒(B)を添加する場合、前記グリコール系溶媒(A)の含有量:wtA(重量)と、前記有機溶媒(B)の含有量(重量):wtB(重量)とが、式(1-0)を満たすことが好ましく、式(1-1)を満たすことがより好ましく、式(1-2)を満たすことが更に好ましく、式(1-3)を満たすことが最も好ましい。
0.01≦wtB/(wtA+wtB)≦0.60  (1-0)
0.05≦wtB/(wtA+wtB)≦0.50  (1-1)
0.10≦wtB/(wtA+wtB)≦0.40  (1-2)
0.15≦wtB/(wtA+wtB)≦0.30  (1-3)
(本発明のワニスにグリコール系溶媒(A)が2種以上含有されている場合、wtAはグリコール系溶媒(A)の合計含有量(重量)を示し、有機溶媒(B)が2種以上含有されている場合、wtBは有機溶媒(B)の合計含有量(重量)を示す。)
 また、本発明の電荷輸送性ワニスには、シラン化合物を配合してもよい。電荷輸送性ワニスにシラン化合物を配合することで、当該ワニスから得られる電荷輸送性薄膜をEL素子の正孔注入層として用いた場合に正孔輸送層への正孔注入性の改善等を図ることができ、その結果、素子の駆動電圧の低減、耐久性の向上等を期待できる。
 このようなシラン化合物の具体例としては、ジアルコキシシラン化合物、トリアルコキシシラン化合物等のアルコキシシラン化合物等やその縮合物が挙げられる。
 中でも、得られる電荷輸送性薄膜をEL素子の正孔注入層として用いる場合における、正孔輸送層への正孔注入性を向上させる観点から、含フッ素シラン化合物が好ましく、含フッ素アルコキシシラン化合物がより好ましい。更に、電荷輸送性に優れる電荷輸送性薄膜を再現性よく得る観点から、含フッ素ジアルコキシシラン、含フッ素トリアルコキシシランが好ましく、含フッ素トリアルコキシシラン化合物がより好ましい。
 シラン化合物の配合量は、上記効果を得る観点からは、固形分の全質量に対して、3質量%以上が好ましいが、電荷輸送性に優れる電荷輸送性薄膜を再現性良く得る観点からは、固形分の全質量に対して、20質量%以下が好ましい。
 ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基の具体例としては、前記で例示したものと同様のものを挙げることができる。
 トリアルコキシシラン化合物としては、例えば、式(11)で示されるものが挙げられる。
 YSi(OY   (11)
(式中、Yは、ハロゲン原子、水素原子、又はZで置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、若しくは炭素数2~20のヘテロアリール基を表し、Yは、炭素数1~20のアルキル基を表し、Zは、ハロゲン原子、炭素数1~20のハロアルキル基、炭素数1~20のアルキル基、水酸基、メルカプト基、アミノ基、炭素数1~20のハロアルコキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニル基、炭素数2~20のハロアルケニル基、炭素数2~20のアルキニル基、炭素数2~20のハロアルキニル基、炭素数1~20のアルキルチオ基、炭素数1~20のモノアルキルアミノ基、炭素数1~20のジアルキルアミノ基、グリシドキシ基、炭素数1~20のアルキルカルボニル基、炭素数2~20のアルケニルカルボニル基、炭素数2~12のアルキニルカルボニル基、炭素数1~12のアルキルカルボニルオキシ基、炭素数2~20のアルケニルカルボニルオキシ基、炭素数2~20のアルキニルカルボニルオキシ基、炭素数6~20のアリール基、炭素数6~20のハロアリール基、炭素数2~20のヘテロアリール基、又は炭素数2~20のハロヘテロアリール基を表す。)
 ジアルコキシシラン化合物としては、例えば、式(12)で示されるものが挙げられる。
 YSi(OY   (12)
(式中、Y及びYは、互いに独立して、ハロゲン原子、又はZで置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、アリール基、若しくはヘテロアリール基を表し、Yは、炭素数1~20のアルキル基を表し、Zは、上記と同じ意味を示す。)
 Y、Y、Y及びZにおけるハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基及び炭素数2~20のヘテロアリール基の具体例としては、上記と同様のものが挙げられる。
 中でも、Y、Y及びYとしては、シラン化合物の入手性の観点や得られるEL素子の特性向上の観点から、Zで置換されていてもよい炭素数1~20のアルキル基か、Zで置換されていてもよい炭素数6~20のアリール基が好ましい。
 炭素数1~20のハロアルキル基の具体例としては、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、パーフルオロプロピル基、ヘプタフルオロイソプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロヘプチル基、パーフルオロオクチル基、パーフルオロノニル基、パーフルオロデシル基、パーフルオロウンデシル基、パーフルオロドデシル基、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル等が挙げられる。
 炭素数1~20のハロアルコキシ基の具体例としては、トリフルオロメトキシ基、2,2,2-トリフルオロエトキシ基、1,1,2,2,2-ペンタフルオロエトキシ基、3,3,3-トリフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、パーフルオロプロポキシ基、ヘプタフルオロイソプロポキシ基、パーフルオロブトキシ基、パーフルオロペンチルオキシ基、パーフルオロヘキシルオキシ基、パーフルオロヘプチルオキシ基、パーフルオロオクチルオキシ基、パーフルオロノニルオキシ基、パーフルオロデシルオキシ基、パーフルオロウンデシルオキシ基、パーフルオロドデシルオキシ基、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシルオキシ等が挙げられる。
 炭素数1~20のアルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペントキシ基等が挙げられる。
 炭素数2~20のハロアルケニル基の具体例としては、フルオロビニル基、ジフルオロビニル基、3,3,3-トリフルオロ-1-プロペニル基、3,3,3-トリフルオロ-2-プロペニル基、2-プロペニル基等が挙げられる。
 炭素数2~20のハロアルキニル基の具体例としては、3,3,3-トリフルオロ-1-プロピニル基、3,3,3-トリフルオロ-2-プロピニル基等が挙げられる。
 炭素数1~20のアルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基などが挙げられる。
 炭素数1~20のモノアルキルアミノ基及びジアルキルアミノ基の具体例としては、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、ノニルアミノ基、デシルアミノ基、ラウリルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジペンチルアミノ基、ジヘキシルアミノ基、ジヘプチルアミノ基、ジオクチルアミノ基、ジノニルアミノ基、ジデシルアミノ基等が挙げられる。
 炭素数1~20のアルキルカルボニル基の具体例としては、メチルカルボニル基、エチルカルボニル基、n-プロピルカルボニル基、i-プロピルカルボニル基、n-ブチルカルボニル基、s-ブチルカルボニル基、t-ブチルカルボニル基、n-ペンチルカルボニル基等が挙げられる。
 炭素数1~20のアルキルカルボニルオキシ基の具体例としては、メチルカルボニルオキシ基、エチルカルボニルオキシ基、n-プロピルカルボニルオキシ基、i-プロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基、s-ブチルカルボニルオキシ基、t-ブチルカルボニルオキシ基、n-ペンチルカルボニルオキシ基等が挙げられる。
 炭素数2~20のアルケニルカルボニル基の具体例としては、ビニルカルボニル基、1-プロペニルカルボニル基、2-プロペニルカルボニル基、2-メチル-1-プロペニルカルボニル基、1-メチル-2-プロペニルカルボニル基等が挙げられる。
 炭素数2~20のアルキニルカルボニル基の具体例としては、エチニルカルボニル基、1-プロピニルカルボニル基、2-プロピニルカルボニル基、2-メチル-1-プロピニルカルボニル基、1-メチル-2-プロピニルカルボニル基等が挙げられる。
 炭素数2~20のアルケニルカルボニルオキシ基の具体例としては、ビニルカルボニルオキシ基、1-プロペニルカルボニルオキシ基、2-プロペニルカルボニルオキシ基、2-メチル-1-プロペニルカルボニルオキシ基、1-メチル-2-プロペニルカルボニルオキシ基等が挙げられる。
 炭素数2~20のアルキニルカルボニルオキシ基の具体例としては、エチニルカルボニルオキシ基、1-プロピニルカルボニルオキシ基、2-プロピニルカルボニルオキシ基、2-メチル-1-プロピニルカルボニルオキシ基、1-メチル-2-プロピニルカルボニルオキシ基等が挙げられる。
 炭素数6~20のハロアリール基の具体例としては、1-フルオロフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、5-フルオロフェニル基、ペンタフルオロフェニル基等が挙げられる。
 炭素数2~20のハロヘテロアリール基の具体例としては、3-フルオロチオフェン-2-イル基、4-フルオロチオフェン-2-イル基、5-フルオロチオフェン-2-イル基等が挙げられる。
 これらの中でも、Zとしては、シラン化合物の入手性の観点や、得られるEL素子の特性向上の観点から、ハロゲン原子、炭素数1~20のハロアルキル基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のハロアルケニル基、炭素数2~20のアルキニル基、炭素数2~20のハロアルキニル基、炭素数6~20のアリール基、炭素数6~20のハロアリール基、炭素数2~20のヘテロアリール基、炭素数2~20のハロヘテロアリール基が好ましく、フッ素原子、炭素数1~20のハロアルキル基、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数6~20のハロアリール基がより好ましい。
 本発明においては、上述の通り、含フッ素シラン化合物が好適である。
 したがって、上述したトリアルコキシシランの場合は、Yが、フッ素原子であるか、フッ素原子を含む置換基であることが好ましく、ジアルコキシシランの場合は、Y及びYの少なくとも一方が、フッ素原子であるか、フッ素原子を含む置換基であることが好ましい。
 Y、Y及びYは、炭素数1~20のアルキル基であるが、シラン化合物の入手性の観点や、得られるEL素子の特性向上の観点から、炭素数1~5のアルキル基が好ましく、特に、メチル基、エチル基がより好ましく、メチル基がより一層好ましい。
 トリアルコキシシラン化合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンチルトリメトキシシラン、ペンチルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、トリエトキシ(4-(トリフルオロメチル)フェニル)シラン、ドデシルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、(トリエトキシシリル)シクロヘキサン、パーフルオロオクチルエチルトリエトキシシラン、トリエトキシフルオロシラン、トリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリエトキシシラン、ペンタフルオロフェニルプロピルトリメトキシシラン、3-(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシルトリエトキシシラン、トリエトキシ-2-チエニルシラン、3-(トリエトキシシリル)フランなどが挙げられる。これらは単独で、又は2種以上組み合わせて用いることができる。
 好ましいトリアルコキシシラン化合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、トリエトキシ(4-(トリフルオロメチル)フェニル)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、(トリエトキシシリル)シクロヘキサン、パーフルオロオクチルエチルトリエトキシシラン、トリエトキシフルオロシラン、トリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリエトキシシラン、ペンタフルオロフェニルプロピルトリメトキシシラン、3-(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシルトリエトキシシラン、トリエトキシ-2-チエニルシラン、3-(トリエトキシシリル)フランなどが挙げられる。
 より好ましいトリアルコキシシラン化合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、トリエトキシ(4-(トリフルオロメチル)フェニル)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、(トリエトキシシリル)シクロヘキサン、パーフルオロオクチルエチルトリエトキシシラン、トリエトキシフルオロシラン、トリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリエトキシシラン、ペンタフルオロフェニルプロピルトリメトキシシラン、3-(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシルトリエトキシシラン、トリエトキシ-2-チエニルシラン、3-(トリエトキシシリル)フランなどが挙げられる。
 ジアルコキシシラン化合物の具体例としては、メチルハイドロジェンジメトキシシラン、メチルハイドロジェンジエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、ジイソプロピルジメトキシシラン、フェニルメチルジメトキシシラン、ビニルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシシラン、γ-グリシドキシプロピルメチルジエトキシシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3,3,3-トリフルオロプロピルメチルジメトキシシランなどが挙げられる。これらは単独で、又は2種以上組み合わせて用いることができる。
 好ましいジアルコキシシラン化合物としては、3,3,3-トリフルオロプロピルメチルジメトキシシラン等のフッ素原子を含有するものが挙げられる。
 本発明の電荷輸送性ワニスにおいては、上述した各種シラン化合物のうちの、少なくとも2種を併用してもよい。
 本発明の電荷輸送性ワニスの粘度は、通常、25℃で1~50mPa・sであり、表面張力は、通常、25℃で20~50mN/mである。
 本発明の電荷輸送性ワニスの粘度と表面張力は、用いる塗布方法、所望の膜厚等の各種要素を考慮して、用いる有機溶媒の種類やそれらの比率、固形分濃度等を変更することで調整可能である。
 電荷輸送性ワニスの固形分は、ワニスを塗布する場合の操作性を考慮すると、0.001~50質量%が好ましく、0.01~20質量%がより好ましい。
 なお、本発明における固形分とは、オリゴアニリン化合物(a)、スルホン酸エステル化合物(b)及び金属酸化物ナノ粒子(c)を意味する。
 本発明において電荷輸送性ワニスとは、電荷輸送機構の本体である、オリゴアニリン化合物(a)及びスルホン酸エステル化合物(b)からなる電荷輸送性有機材料を、少なくとも1種の溶媒(d)に溶解又は分散し、更に金属酸化物ナノ粒子(c)を分散してなるものであり、高平坦性の電荷輸送性薄膜を再現性よく得る観点から、好ましくは、当該電荷輸送性有機材料を少なくとも1種の溶媒(d)に溶解し、更に金属酸化物ナノ粒子(c)を分散してなるものである。
 なお電荷輸送性とは、導電性と同義であり、正孔輸送性、電子輸送性、正孔及び電子の両電荷輸送性のいずれかを意味する。本発明の電荷輸送性ワニスは、それ自体に電荷輸送性があるものでもよく、ワニスを使用して得られる固体膜に電荷輸送性があるものでもよい。
 以上で説明した電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させることで基材上に電荷輸送性薄膜を形成させることができる。
 ワニスの塗布方法としては、特に限定されるものではなく、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法等が挙げられる。
 溶媒の蒸発法としては、特に限定されるものではなく、例えば、ホットプレートやオーブンを用いて、適切な雰囲気下、即ち大気、窒素等の不活性ガス、真空中等で蒸発させればよい。これにより、均一な成膜面を有する薄膜を得ることが可能である。
 焼成温度は、溶媒を蒸発させることができれば特に限定されないが、40~250℃で行うことが好ましい。この場合、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよい。
 本発明の電荷輸送性ワニスは、オリゴアニリン化合物、スルホン酸エステル化合物、金属酸化物ナノ粒子及び有機溶媒を混合することで製造できる。
 その混合順序は特に限定されるものではないが、容易に且つ再現性よく、本発明の電荷輸送性ワニスを製造できる方法の一例としては、オリゴアニリン化合物、スルホン酸エステル化合物等を有機溶媒と混合して混合物を得、その混合物に、予め準備した金属酸化物ナノ粒子ゾルを加える方法や、その混合物を、予め準備した金属酸化物ナノ粒子のゾルに加える方法が挙げられる。この場合において、必要であれば、最後に更に有機溶媒を追加で加えたり、溶媒に比較的溶けやすい一部の成分を混合物中に含めないでそれを最後に加えたりしても良いが、構成成分の凝集や分離を抑制し、均一性に優れる電荷輸送性ワニスを再現性よく調製する観点から、良好な分散状態又は良好な溶解状態の金属酸化物ナノ粒子ゾルを、その他の成分を含む混合物とは別に予め準備して、両者を混合し、その後に良く撹拌することが好ましい。なお、ワニスの一部の成分(特に金属酸化物ナノ粒子)が、共に混合する溶媒の種類や量によっては、混合した際に凝集又は沈殿する可能性がある点に留意する。また、ゾルを用いてワニスを調製する場合、最終的に得られるワニス中の金属酸化物ナノ粒子が所望の量となるように、ゾルの濃度やその使用量を決める必要がある点にも留意する。
 ワニスの調製では、成分が分解したり変質したりしない範囲で、適宜加熱してもよい。
 本発明においては、電荷輸送性ワニスは、より平坦性の高い薄膜を再現性よく得る目的で、ワニスを製造する途中の段階で、又は全ての成分を混合した後に、サブミクロンオーダーのフィルター等を用いてろ過しても良い。
 電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子内で電荷注入層として用いる場合、5~200nmであることが望ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の溶液量を変化させたりする等の方法がある。
 以上のようにして得られる電荷輸送性薄膜は、金属酸化物ナノ粒子を含むことにより、波長400~800nmの範囲における平均透過率(%)が向上している。ここでいう「向上している」とは、金属酸化物ナノ粒子(c)を含む電荷輸送性薄膜における前記平均透過率が、金属酸化物ナノ粒子(c)を含まない対応する電荷輸送性薄膜におけるそれを上回っていることを意味する。前者が後者と比較してその向上した平均透過率は、通常1%以上、好ましくは3%以上、より好ましくは5%以上である。
 この結果、本発明の電荷輸送性薄膜は、電荷輸送性物質として有色物質であるオリゴアニリン化合物(a)を用いているにも関わらず、可視領域での光透過率が高く、従来のものに比して着色が少ない。本発明の電荷輸送性薄膜において、石英基板上に50nmで成膜したときの、波長400~800nmの範囲における平均透過率は、通常90%以上、好ましくは95%以上である。
 本発明の電荷輸送性ワニスは、低分子発光材料を用いた有機EL(以下「OLED」と称する)素子と、高分子発光材料を用いた有機EL(以下「PLED」と称する)素子のいずれの作製にも用いることができる。
 本発明の電荷輸送性ワニスを用いてOLED素子を作製する場合に使用する材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されるものではない。
 使用する電極基板は、洗剤、アルコール、純水等による液体洗浄を予め行って浄化しておくことが好ましく、例えば、陽極基板では使用直前にオゾン処理、酸素-プラズマ処理等の表面処理を行うことが好ましい。ただし陽極材料が有機物を主成分とする場合、表面処理を行わなくともよい。
 電荷輸送性ワニスをOLED素子に使用する場合、以下の方法を挙げることができる。
 陽極基板上に当該電荷輸送性ワニスを塗布し、上記の方法により蒸発、焼成を行い、電極上に正孔輸送性薄膜(正孔注入層)を作製する。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層、電子注入層、陰極金属を順次蒸着してOLED素子とする。発光領域をコントロールするために任意の層間にキャリアブロック層を設けてもよい。
 陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
 正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体(TPD)、(α-ナフチルジフェニルアミン)ダイマー(α-NPD)、[(トリフェニルアミン)ダイマー]スピロダイマー(Spiro-TAD)等のトリアリールアミン類、4,4’,4”-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のスターバーストアミン類、5,5”-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2’:5’,2”-ターチオフェン(BMA-3T)等のオリゴチオフェン類を挙げることができる。
 発光層を形成する材料としては、トリス(8-キノリノラート)アルミニウム(III)(Alq)、ビス(8-キノリノラート)亜鉛(II)(Znq)、ビス(2-メチル-8-キノリノラート)(p-フェニルフェノラート)アルミニウム(III)(BAlq)及び4,4’-ビス(2,2-ジフェニルビニル)ビフェニル(DPVBi)等が挙げられ、電子輸送材料又は正孔輸送材料と発光性ドーパントとを共蒸着することによって、発光層を形成してもよい。
 電子輸送材料としては、Alq、BAlq、DPVBi、(2-(4-ビフェニル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール)(PBD)、トリアゾール誘導体(TAZ)、バソクプロイン(BCP)、シロール誘導体等が挙げられる。
 発光性ドーパントとしては、キナクリドン、ルブレン、クマリン540、4-(ジシアノメチレン)-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピラン(DCM)、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy))、(1,10-フェナントロリン)-トリス(4,4,4-トリフルオロ-1-(2-チエニル)-ブタン-1,3-ジオナート)ユーロピウム(III)(Eu(TTA)phen)等が挙げられる。
 キャリアブロック層を形成する材料としては、PBD、TAZ、BCP等が挙げられる。
 電子注入層を形成する材料としては、酸化リチウム(LiO)、酸化マグネシウム(MgO)、アルミナ(Al)、フッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化ストロンチウム(SrF)、Liq、Li(acac)、酢酸リチウム、安息香酸リチウム等が挙げられる。
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
 本発明の電荷輸送性ワニスを用いてPLED素子を作製する方法は、特に限定されないが、以下の方法が挙げられる。
 上記OLED素子作製において、正孔輸送層、発光層、電子輸送層、電子注入層の真空蒸着操作を行う代わりに、発光性電荷輸送性高分子層を形成することによって、本発明の電荷輸送性ワニスによって形成される電荷輸送性薄膜(正孔注入層)を含むPLED素子を作製することができる。
 具体的には、陽極基板上に、電荷輸送性ワニスを塗布して上記の方法により正孔輸送性薄膜を作製し、その上部に発光性電荷輸送性高分子層を形成し、さらに陰極電極を蒸着してPLED素子とする。
 使用する陰極材料としては、上記OLED素子作製時と同様の物質が使用でき、同様の洗浄処理、表面処理を行うことができる。
 発光性電荷輸送性高分子層の形成法としては、発光性電荷輸送性高分子材料、又はこれに発光性ドーパントを加えた材料に溶媒を加えて溶解するか、均一に分散し、正孔注入層を形成してある電極基板に塗布した後、溶媒の蒸発により成膜する方法が挙げられる。
 発光性電荷輸送性高分子材料としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2’-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)などのポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等を挙げることができる。
 溶媒としては、トルエン、キシレン、クロロホルム等を挙げることができ、溶解又は均一分散法としては攪拌、加熱攪拌、超音波分散等の方法が挙げられる。
 塗布方法としては、特に限定されるものではなく、インクジェット法、スプレー法、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り等が挙げられる。なお、塗布は、窒素、アルゴン等の不活性ガス下で行うことが望ましい。
 溶媒の蒸発法としては、不活性ガス下又は真空中、オーブン又はホットプレートで加熱する方法を挙げることができる。
 本発明の電荷輸送性ワニスは、オリゴアニリン化合物、1種以上の金属酸化物ナノ粒子及び有機溶媒の他に、前記式(2)で表されるスルホン酸エステル化合物を含むものである。そして、このスルホン酸エステル化合物は、低極性有機溶媒への溶解性が高いだけでなく、安定性に優れることから、成分の析出などの問題なしに、長期保存が可能となる。
 すなわち、本発明においては、電荷輸送性ワニスの成分として、オリゴアニリン化合物と、1種以上の金属酸化物ナノ粒子と、有機溶媒、特に低極性有機溶媒とともに、前記式(2)で表されるスルホン酸エステル化合物を用いることで、例えば空気下に保存した場合の成分の析出や沈殿、当該ワニスから得られる膜の電気特性の低下等という問題を発生させず又は改善でき、ワニスの保存安定性を向上させることができる。
 以下、製造例、調製例及び実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、使用した装置は以下のとおりである。
(1)基板洗浄:長州産業(株)製 基板洗浄装置(減圧プラズマ方式)
(2)ワニスの塗布:ミカサ(株)製 スピンコーターMS-A100
(3)膜厚測定:(株)小坂研究所製 微細形状測定機サーフコーダET-4000
(4)EL素子の作製:長州産業(株)製 多機能蒸着装置システムC-E2L1G1-N
(5)EL素子の輝度等の測定:(株)イーエッチシー製 多チャンネルIVL測定装置
(6)EL素子の寿命測定(半減期の測定):(株)イーエッチシー製 有機EL輝度寿命評価システムPEL-105S
(7)透過率の測定:島津サイエンス(株)紫外可視近赤外分光光度計UV-3600
[製造例1]
 下記スキームに従って、アリールスルホン酸エステル(S1)を合成した。
Figure JPOXMLDOC01-appb-C000038
 1-ナフトール-3,6-ジスルホン酸ナトリウム11g(31.59mmol)に、窒素雰囲気下で、パーフルオロビフェニル4.8g(14.36mol)、炭酸カリウム4.2g(30.15mol)、及びN,N-ジメチルホルムアミド100mLを順次加え、反応系を窒素置換した後、内温100℃で6時間攪拌した。室温まで放冷後、ろ過により炭酸カリウム残渣を除去し、減圧濃縮した。残存している不純物を除去するために、残渣にメタノール100mLを加え、室温で30分間攪拌した。その後、懸濁溶液をろ過し、スルホン酸ナトリウム塩A11.8gを得た(収率83%)。
 スルホン酸ナトリウム塩A2g(2mmol)に、塩化チオニル(8mL)及びDMF(0.1mL)を加え、1時間加熱還流した後、塩化チオニルを留去し、スルホン酸塩化物Aを含む固体を得た。本化合物は、これ以上精製することなく次工程に使用した。
 前記固体に、クロロホルム(12mL)及びピリジン(8mL)を加え、0℃にてプロピレングリコールモノエチルエーテル(純正化学(株)製)2.50g(24mmol)を加えた。室温まで昇温し、その後3時間攪拌した。溶媒を留去した後、水を加え、酢酸エチルにて抽出し、有機層を硫酸ナトリウムにて乾燥させた。ろ過及び濃縮後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製することにより、アリールスルホン酸エステル(S1)1.09gを白色固体として得た(収率44%(スルホン酸ナトリウム塩Aからの2段階収率))。1H-NMR及びLC/MSの測定結果を以下に示す。得られたアリールスルホン酸エステル(S1)を、後述のワニスの作製に使用した。
1H-NMR(500MHz, CDCl3): δ 0.92-0.97(m, 12H), 1.34 and 1.40(a pair of d, J=6.5Hz, 12H), 3.32-3.52(m, 16H), 4.80-4.87(m, 4H), 7.37(s, 2H), 8.22(d, J=8.5Hz, 2H), 8.45(s, 2H), 8.61(d, J=8.5Hz, 2H) , 8.69(s, 2H).
LC/MS (ESI+) m/z; 1264 [M+NH4]+
[調製例1]
 500mlのナスフラスコに、MEK分散シリカゾル(日産化学工業(株)製 MEK-ST、粒子径10-15nm、SiO30質量%)250gとトリエチレングリコールブチルメチルエーテル170gを入れ、ロータリーエバポレーターにセットした。重量が250gとなるまで減圧濃縮し、SiO30質量%のトリエチレングリコールブチルメチルエーテル分散シリカゾルを得た。得られたトリエチレングリコールブチルメチルエーテル分散シリカゾルを、後述のワニスの作製に使用した。
[1]ワニスの作製
[実施例1-1]
 窒素雰囲気下で、上記式(A1)で表されるオリゴアニリン化合物0.068gと、アリールスルホン酸エステル(S1)0.248gとを、トリエチレングリコールブチルメチルエーテル 4.52g、安息香酸ブチル 3.0g及びフタル酸ジメチル 2.0gの混合溶媒に溶解させた。そこへ、トリエチレングリコールブチルメチルエーテル分散シリカゾル0.690gを加え撹拌し、電荷輸送性ワニスを得た。なお、上記式(A1)で表されるオリゴアニリン化合物(以下、オリゴアニリン化合物(A1))は、国際公開第2013/084664号記載の方法に従って合成した(以下同様)。
[実施例1-2]
 窒素雰囲気下で、オリゴアニリン化合物(A1)0.045gと、アリールスルホン酸エステル(S1)0.165gとを、トリエチレングリコールブチルメチルエーテル 4.28g、安息香酸ブチル 3.0g及びフタル酸ジメチル 2.0gの混合溶媒に溶解させた。そこへ、トリエチレングリコールブチルメチルエーテル分散シリカゾル1.035gを加え撹拌し、電荷輸送性ワニスを得た。
[実施例1-3]
 窒素雰囲気下で、オリゴアニリン化合物(A1)0.023gと、アリールスルホン酸エステル(S1)0.083gとを、トリエチレングリコールブチルメチルエーテル 4.04g、安息香酸ブチル 3.0g及びフタル酸ジメチル 2.0gの混合溶媒に溶解させた。そこへ、トリエチレングリコールブチルメチルエーテル分散シリカゾル1.381gを加え撹拌し、電荷輸送性ワニスを得た。
[比較例1-1]
 アリールスルホン酸エステル(S1)を、下記式(S4)で表されるアリールスルホン酸0.205gに変更した以外は実施例1-1と同様にして、電荷輸送性ワニスの調製を試みたが、下記式(S4)で表されるアリールスルホン酸化合物が溶解せず、電荷輸送性薄膜の製造に使用するのに十分に均一な電荷輸送性ワニスを調製することができなかった。なお、下記式(S4)で表されるアリールスルホン酸((以下、アリールスルホン酸(S4))は、国際公開第2006/025342号に記載された方法に従って合成した(以下同様)。
Figure JPOXMLDOC01-appb-C000039
[比較例1-2]
 窒素雰囲気下で、オリゴアニリン化合物(A1)0.104gと、アリールスルホン酸(S4)0.205gとを、1,3-ジメチル-2-イミダゾリジノン 3.3gに溶解させた。そこへ、2,3-ブタンジオール 4.0g及びジプロピレングリコールモノメチルエーテル 2.7gを加えて撹拌し、電荷輸送性ワニスを得た。
[比較例1-3]
 窒素雰囲気下で、オリゴアニリン化合物(A1)0.114gと、アリールスルホン酸エステル(S1)0.413gとを、トリエチレングリコールブチルメチルエーテル 5.0g、安息香酸ブチル 3.0g及びフタル酸ジメチル 2.0gの混合溶媒に溶解させ、電荷輸送性ワニスを得た。
[実施例4-1]
 窒素雰囲気下で、オリゴアニリン化合物(A1)0.045gと、3,3,3-トリフルオロプロピルトリメトキシシラン(信越化学工業(株)製)0.058gと、アリールスルホン酸エステル(S1)0.165gとを、トリエチレングリコールブチルメチルエーテル4.59g、安息香酸ブチル3.32g及びフタル酸ジメチル2.21gの混合溶媒に溶解させた。そこへ、トリエチレングリコールブチルメチルエーテル分散シリカゾル1.033gを加え撹拌し、電荷輸送性ワニスを得た。
[実施例4-2]
 窒素雰囲気下で、オリゴアニリン化合物(A1)0.037gと、上記式(A2)で表されるオリゴアニリン化合物(以下、オリゴアニリン化合物(A2))0.007gと、アリールスルホン酸エステル(S1)0.166gとを、トリエチレングリコールブチルメチルエーテル4.27g、安息香酸ブチル2.99g及びフタル酸ジメチル1.95gの混合溶媒に溶解させた。そこへ、トリエチレングリコールブチルメチルエーテル分散シリカゾル1.033gを加え撹拌し、電荷輸送性ワニスを得た。なお、オリゴアニリン化合物(A2)は、国際公開第2016/190326号の合成例1に記載の方法に従って合成した(以下同様)。
[実施例4-3]
 窒素雰囲気下で、オリゴアニリン化合物(A1)0.034gと、上記式(A3)で表されるオリゴアニリン化合物(以下、オリゴアニリン化合物(A3))0.023gと、アリールスルホン酸エステル(S1)0.154gとを、トリエチレングリコールブチルメチルエーテル4.27g、安息香酸ブチル2.99g及びフタル酸ジメチル1.99gの混合溶媒に溶解させた。そこへ、トリエチレングリコールブチルメチルエーテル分散シリカゾル1.033gを加え撹拌し、電荷輸送性ワニスを得た。なお、オリゴアニリン化合物(A3)は、国際公開第2015/050253号の製造例24-2に記載の方法に従って合成した。
[2]透過率評価
[実施例2-1]
 実施例1-1で得られたワニスを、スピンコーターを用いて石英基板に塗布した後、大気焼成下、120℃で1分間乾燥した。次に、乾燥させた石英基板を大気雰囲気下、230℃で15分間焼成し、石英基板上に50nmの均一な薄膜を形成した。
[実施例2-2~2-3、比較例2-2]
 実施例1-1で得られたワニスの代わりに、実施例1-2、実施例1-3又は比較例1-3で得られたワニスをそれぞれ用いた以外は、実施例2-1と同様の方法で、薄膜を形成した。
[比較例2-1]
 実施例1-1で得られたワニスの代わりに、比較例1-2で得られたワニスを用い、乾燥温度を80℃とした以外は、実施例2-1と同様の方法で薄膜を形成した。
 実施例2-1~2-3及び比較例2-1~2-2にて得られた50nmの薄膜付き石英基板を用いて、分光光度計にて光透過率の測定を行った。結果を図1と表1に示す。
Figure JPOXMLDOC01-appb-T000040
 図1と表1に示される通り、オルガノシリカゾルの添加により、可視領域の平均光透過率が向上した。
 すなわち、シリカ粒子を含む本発明の電荷輸送性薄膜は、それが含有されない薄膜と比べ、可視領域において優れた透過性を示した。
[3]有機EL素子の作製及び特性評価
[実施例3-1]
 実施例1-1で得られたワニスを、スピンコーターを用いてITO基板に塗布した後、大気下、120℃で1分間乾燥した。次に、乾燥させたITO基板を大気雰囲気下、230℃で15分間焼成し、ITO基板上に50nmの均一な薄膜を形成した。ITO基板としては、パターニングされた厚さ150nmのインジウム錫酸化物(ITO)膜が表面に形成された、25mm×25mm×0.7tのガラス基板を用い、使用前にOプラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。
 次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いて、α-NPD(N,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン)を0.2nm/秒にて30nm成膜した。次に、関東化学社製の電子ブロック材料HTEB-01を10nm成膜した。次いで、新日鉄住金化学社製の発光層ホスト材料NS60と発光層ドーパント材料Ir(PPy)を共蒸着した。共蒸着は、Ir(PPy)の濃度が6%になるように蒸着レートをコントロールし、40nm積層させた。次いで、Alq、フッ化リチウム及びアルミニウムの薄膜を順次積層して、有機EL素子を得た。この際、蒸着レートは、Alq及びアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ20nm、0.5nm及び80nmとした。
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-76℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着剤(((株)MORESCO製、モレスコモイスチャーカット WB90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製,HD-071010W-40)を有機EL素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm)した後、80℃で1時間、アニーリング処理して接着剤を硬化させた。
Figure JPOXMLDOC01-appb-C000041
[実施例3-2~3-3、比較例3-2]
 実施例1-1で得られたワニスの代わりに、実施例1-2、実施例1-3、又は比較例1-3で得られたワニスをそれぞれ用いた以外は、実施例3-1と同様の方法で有機EL素子を得た。
[比較例3-1]
 実施例1-1で得られたワニスの代わりに、比較例1-2で得られたワニスを用い、乾燥温度を80℃とした以外は、実施例3-1と同様の方法で有機EL素子を得た。
[実施例5-1~実施例5-3]
 実施例1-1で得られたワニスの代わりに、実施例4-1~4-3で得られたワニスをそれぞれ用いた以外は、実施例3-1と同様の方法で有機EL素子を得た。
 得られた素子について、輝度10,000cd/mで駆動した場合における駆動電圧、電流密度及び発光効率、並びに輝度の半減期(初期輝度10,000cd/mが半分に達するのに要する時間)を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000042
 比較例1-1から分かるように、アリールスルホン酸(S4)を用いた場合は、本発明において用いた溶媒では電荷輸送性ワニスを得ることができなかった。
 しかし、アリールスルホン酸(S4)に代えてアリールスルホン酸エステル(S1)を用いた場合は、オリゴアニリン化合物及びスルホン酸エステル化合物が均一に溶解し、且つ、金属酸化物ナノ粒子であるシリカ粒子が均一に分散し、保存安定性の優れる電荷輸送性ワニスを得ることができた。
 また、表2に示されるように、本発明の電荷輸送性ワニスから得られた電荷輸送性薄膜を備える有機EL素子は、オルガノシリカゾルの添加により電流効率が向上した。すなわち、上述の通り有機EL素子の備える電荷輸送性薄膜中にシリカ粒子が含まれることにより、この薄膜の透明性が高いため、光取出し効率が向上した。また、寿命特性にも優れていた。
[4]ワニスの保存安定性評価
[実施例6-1]
 石英基板の代わりに、ITO基板を用いた以外は、実施例2-2と同様の方法で、ITO基板上に50nmの均一な薄膜を形成した。
 次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いて、α-NPDを0.2nm/秒にて30nm成膜した。次いで、アルミニウムを0.2nm/秒の条件にて80nm積層することにより、ホールオンリーデバイス(HOD素子)を得た。なお、実施例3-1と同様の方法で封止した。そして、得られた素子に3Vの電圧を印加した場合の電流密度を測定した(保存前ワニスを用いた評価)。
 また、室温、空気下で一ヵ月間、実施例1-2で得られたワニスを保存した。そして、保存前ワニスの代わりに、保存したワニスを用いた以外は、上述の保存前のワニスを用いた評価と同じ方法で素子を作成して評価を行った(保存後ワニスを用いた評価)。
[比較例6-1]
 実施例1-2で得られたワニスの代わりに、比較例1-2で得られたワニスを用い、乾燥温度を80℃とした以外は、実施例6-1と同様の方法で、保存前ワニスを用いた評価と保存後ワニスを用いた評価を行った。
 (保存後ワニスを用いた評価での電流密度)/(保存前ワニスを用いた評価での電流密度)との式により、電流密度の変化率を算出した。
Figure JPOXMLDOC01-appb-T000043
 表3から明らかな通り、ワニスを室温、空気下で一ヵ月間保存した場合、比較例の電荷輸送性ワニスに関しては、得られる薄膜を用いたHOD素子の電流密度が大幅に低下したのに対し、本発明の電荷輸送性ワニスに関しては、そのような低下は認められなかった。

Claims (8)

  1.  電荷輸送性ワニスであって、下記(a)~(d):
    (a)オリゴアニリン化合物
    (b)下記式(2):
    Figure JPOXMLDOC01-appb-C000001

    (式中、
     R1c~R4cは、互いに独立して、水素原子、又は直鎖状若しくは分岐状の炭素数1~6のアルキル基を表し、
     R5cは、置換されていてもよい炭素数2~20の1価炭化水素基を表し;
     Aは、-O-又は-S-を表し、
     Aは、ナフタレン又はアントラセンから誘導される(n+1)価の基を表し、
     Aは、パーフルオロビフェニルから誘導されるm価の基を表し;
     mは、2≦m≦4を満たす整数を表し、
     nは、1≦n≦4を満たす整数を表す。)
    で表されるスルホン酸エステル化合物;
    (c)1種以上の金属酸化物ナノ粒子;並びに
    (d)有機溶媒
    を含む電荷輸送性ワニス。
  2.  前記オリゴアニリン化合物(a)が、下記(i)~(v):
    (i)下記式(1a):
    Figure JPOXMLDOC01-appb-C000002

    (式中、
     R及びRは、互いに独立して、水素原子、置換若しくは非置換の一価炭化水素基、t-ブトキシカルボニル基、又はベンジルオキシカルボニル基を示し、
     R~R34は、互いに独立して、水素原子、水酸基、シラノール基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、置換若しくは非置換の一価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、スルホン基又はハロゲン原子を示し、
     g及びhは、それぞれ独立して1以上の整数であり、g+h≦20を満足する。)
    で表されるオリゴアニリン化合物、
    (ii)下記式(1b):
    Figure JPOXMLDOC01-appb-C000003

    (式中、
     R35、R36及びR37は、互いに独立して、水素原子、非置換若しくは置換の一価炭化水素基又はオルガノオキシ基を示し、
     L及びMは、互いに独立して、下記式(b-1)又は(b-2):
    Figure JPOXMLDOC01-appb-C000004

    (式中、R38~R45は、互いに独立して、水素原子、水酸基、非置換若しくは置換の一価炭化水素基又はオルガノオキシ基、アシル基、又はスルホン酸基である)
    で表される二価の基であり、
     x及びyは、互いに独立して、1以上の整数であり、x+y≦20を満足する。)
    で表されるオリゴアニリン化合物、
    (iii)下記式(1c):
    Figure JPOXMLDOC01-appb-C000005

    (式中、
     Phは、下記式(P1):
    Figure JPOXMLDOC01-appb-C000006

    (式中、R3a~R6aは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表す。)
    で表される基を表し、
     Arは、互いに独立して、モノアリールアミノ基及び/又はジアリールアミノ基を有していてもよい、非置換又は置換アリール基又はヘテロアリール基を表し、
     Arは、互いに独立して、モノアリールアミノ基及び/又はジアリールアミノ基を有していてもよい、非置換又は置換アリール基又はヘテロアリール基を表し、
     pは、1~10の整数を表す。)
    で表されるオリゴアニリン化合物、
    (iv)下記式(1d):
    Figure JPOXMLDOC01-appb-C000007

    (式中、
     R1a及びR2aは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、
     Arは、互いに独立して、ジアリールアミノフェニル基を表し、
     qは、1又は2を表し、
     Phは、前記式(1c)について定義したものと同じである。)
    で表されるオリゴアニリン化合物、及び
    (v)下記式(1e):
    Figure JPOXMLDOC01-appb-C000008

    (式中、
     R1bは、水素原子、又はZで置換されていてもよい炭素数1~20のアルキル基を表し、
     Zは、ハロゲン原子、ニトロ基、シアノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボキシル基、Zb’で置換されていてもよい炭素数6~20のアリール基又はZb’で置換されていてもよい炭素数2~20のヘテロアリール基を表し、
     Zb’は、ハロゲン原子、ニトロ基、シアノ基、アルデヒド基、水酸基、チオール基、スルホン酸基又はカルボキシル基を表し、
     R2b~R10bは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し、
     A’は、少なくとも1個の水素原子がフッ素原子で置換され、かつ他の少なくとも1個の水素原子が他の原子又は置換基で置換されていてもよい、炭素数1~40の炭化水素基を表し、
     rは、1~20の整数である。)
    で表されるオリゴアニリン化合物
    からなる群より選択される少なくとも1種である、請求項1記載の電荷輸送性ワニス。
  3.  少なくとも1種のシラン化合物を更に含む、請求項1又は2記載の電荷輸送性ワニス。
  4.  請求項1~3のいずれか1項記載の電荷輸送性ワニスから作製される電荷輸送性薄膜。
  5.  請求項4記載の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子。
  6.  請求項1~3のいずれか1項記載の電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させる工程を含む、電荷輸送性薄膜の製造方法。
  7.  請求項1記載の電荷輸送性ワニスの製造方法であって、前記(c)1種以上の金属酸化物ナノ粒子のゾルを用いることを特徴とする方法。
  8.  オリゴアニリン化合物、1種以上の金属酸化物ナノ粒子、電子受容性物質の前駆体及び有機溶媒を含む電荷輸送性ワニスの保存安定性を向上させる方法であって、前記電子受容性物質の前駆体として、下記式(2)で表されるスルホン酸エステル化合物を用いることを特徴とする方法。
    Figure JPOXMLDOC01-appb-C000009

    (式中、
     R1c~R4cは、互いに独立して、水素原子、又は直鎖状若しくは分岐状の炭素数1~6のアルキル基を表し、
     R5cは、置換されていてもよい炭素数2~20の1価炭化水素基を表し;
     Aは、-O-又は-S-を表し、
     Aは、ナフタレン又はアントラセンから誘導される(n+1)価の基を表し、
     Aは、パーフルオロビフェニルから誘導されるm価の基を表し;
     mは、2≦m≦4を満たす整数を表し、
     nは、1≦n≦4を満たす整数を表す。)
PCT/JP2018/046690 2017-12-20 2018-12-19 電荷輸送性ワニス及び電荷輸送性薄膜 WO2019124413A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880081166.7A CN111492497B (zh) 2017-12-20 2018-12-19 电荷传输性清漆和电荷传输性薄膜
KR1020207020293A KR20200098630A (ko) 2017-12-20 2018-12-19 전하 수송성 바니시 및 전하 수송성 박막
EP18891388.3A EP3731291A4 (en) 2017-12-20 2018-12-19 CARGO-TRANSPORTING PAINT AND CARGO-TRANSPORTING THIN-FILM
US16/956,446 US20200339825A1 (en) 2017-12-20 2018-12-19 Charge transporting varnish and charge transporting thin film
JP2019560516A JP6958637B2 (ja) 2017-12-20 2018-12-19 電荷輸送性ワニス及び電荷輸送性薄膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-244506 2017-12-20
JP2017244506 2017-12-20
JP2018134156 2018-07-17
JP2018-134156 2018-07-17

Publications (1)

Publication Number Publication Date
WO2019124413A1 true WO2019124413A1 (ja) 2019-06-27

Family

ID=66993449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046690 WO2019124413A1 (ja) 2017-12-20 2018-12-19 電荷輸送性ワニス及び電荷輸送性薄膜

Country Status (7)

Country Link
US (1) US20200339825A1 (ja)
EP (1) EP3731291A4 (ja)
JP (1) JP6958637B2 (ja)
KR (1) KR20200098630A (ja)
CN (1) CN111492497B (ja)
TW (1) TWI784107B (ja)
WO (1) WO2019124413A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510302A (ja) * 2017-12-12 2020-04-02 エルジー・ケム・リミテッド インク組成物および有機発光素子の製造方法
WO2020218316A1 (ja) * 2019-04-26 2020-10-29 日産化学株式会社 アリールスルホン酸エステル化合物の製造方法
KR20230164092A (ko) 2021-03-31 2023-12-01 닛산 가가쿠 가부시키가이샤 전하 수송성 바니시

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105838A (zh) * 2021-11-19 2022-03-01 北京大学深圳研究生院 一种柔性热电材料及其制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136795B2 (ja) 1971-11-12 1976-10-12
JPH07134416A (ja) 1993-06-28 1995-05-23 Oki Electric Ind Co Ltd 放射線感応性樹脂組成物
JP2002151272A (ja) 2000-11-09 2002-05-24 Nissan Chem Ind Ltd 電界発光素子
WO2004043117A1 (ja) 2002-11-07 2004-05-21 Nissan Chemical Industries,Ltd. 電荷輸送性ワニス
WO2005000832A1 (ja) 2003-06-25 2005-01-06 Nissan Chemical Industries, Ltd. 1,4-ベンゾジオキサンスルホン酸化合物及び電子受容性物質としての利用
WO2005043962A1 (ja) 2003-10-31 2005-05-12 Nissan Chemical Industries, Ltd. 1,4−ジチイン環を有する化合物を含む電荷輸送性有機材料
WO2006025342A1 (ja) 2004-08-31 2006-03-09 Nissan Chemical Industries, Ltd. アリールスルホン酸化合物及び電子受容性物質としての利用
JP2007137801A (ja) * 2005-11-16 2007-06-07 Fuji Xerox Co Ltd 電荷輸送性化合物、それを用いた電荷輸送性膜及び電界発光素子
WO2007099808A1 (ja) * 2006-02-23 2007-09-07 Nissan Chemical Industries, Ltd. スルホン酸エステル化合物およびその利用
JP2007531802A (ja) * 2004-03-19 2007-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性有機ポリマー/ナノ粒子複合材料およびその使用方法
WO2008129947A1 (ja) 2007-04-12 2008-10-30 Nissan Chemical Industries, Ltd. オリゴアニリン化合物
JP2009290204A (ja) * 2008-04-28 2009-12-10 Dainippon Printing Co Ltd 正孔注入輸送層を有するデバイス、及びその製造方法、並びに正孔注入輸送層形成用インク
JP2010034315A (ja) * 2008-07-29 2010-02-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2012023020A (ja) * 2010-06-17 2012-02-02 Ricoh Co Ltd 有機エレクトロルミネッセンス素子、その製造方法及び発光装置
WO2013084664A1 (ja) 2011-12-05 2013-06-13 日産化学工業株式会社 帯電防止膜形成組成物及びオリゴマー化合物
WO2015050253A1 (ja) 2013-10-04 2015-04-09 日産化学工業株式会社 アニリン誘導体およびその利用
WO2016190326A1 (ja) 2015-05-27 2016-12-01 日産化学工業株式会社 電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
WO2018135580A1 (ja) * 2017-01-18 2018-07-26 日産化学工業株式会社 電荷輸送性ワニス及びそれを用いる電荷輸送性薄膜

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2419923A1 (de) * 1973-04-28 1974-11-28 Fujisawa Pharmaceutical Co Sulfonsaeureester, verfahren zu deren herstellung und verwendung derselben als kondensationsmittel
JP2004043117A (ja) * 2002-07-12 2004-02-12 Rasa Ind Ltd 容器類集積装置
WO2005092984A1 (ja) * 2004-03-25 2005-10-06 Nissan Chemical Industries, Ltd. 電荷輸送性ワニス及びそれを用いた有機エレクトロルミネッセンス素子
CA2658181C (en) * 2006-07-21 2015-01-06 Plextronics, Inc. Sulfonation of conducting polymers and oled, photovoltaic, and esd devices
WO2008032617A1 (fr) * 2006-09-13 2008-03-20 Nissan Chemical Industries, Ltd. Composé d'oligoaniline et son utilisation
EP2339659B1 (en) * 2008-10-09 2016-02-10 Nissan Chemical Industries, Ltd. Charge-transporting varnishes
WO2015146957A1 (ja) * 2014-03-27 2015-10-01 日産化学工業株式会社 電荷輸送性ワニス
CN107210377B (zh) * 2015-01-20 2019-07-05 日产化学工业株式会社 电荷传输性薄膜形成用清漆
CN107710440B (zh) * 2015-06-15 2019-12-24 日产化学工业株式会社 电荷传输性清漆和有机电致发光元件

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136795B2 (ja) 1971-11-12 1976-10-12
JPH07134416A (ja) 1993-06-28 1995-05-23 Oki Electric Ind Co Ltd 放射線感応性樹脂組成物
JP2002151272A (ja) 2000-11-09 2002-05-24 Nissan Chem Ind Ltd 電界発光素子
WO2004043117A1 (ja) 2002-11-07 2004-05-21 Nissan Chemical Industries,Ltd. 電荷輸送性ワニス
WO2005000832A1 (ja) 2003-06-25 2005-01-06 Nissan Chemical Industries, Ltd. 1,4-ベンゾジオキサンスルホン酸化合物及び電子受容性物質としての利用
WO2005043962A1 (ja) 2003-10-31 2005-05-12 Nissan Chemical Industries, Ltd. 1,4−ジチイン環を有する化合物を含む電荷輸送性有機材料
JP2007531802A (ja) * 2004-03-19 2007-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性有機ポリマー/ナノ粒子複合材料およびその使用方法
WO2006025342A1 (ja) 2004-08-31 2006-03-09 Nissan Chemical Industries, Ltd. アリールスルホン酸化合物及び電子受容性物質としての利用
JP2007137801A (ja) * 2005-11-16 2007-06-07 Fuji Xerox Co Ltd 電荷輸送性化合物、それを用いた電荷輸送性膜及び電界発光素子
WO2007099808A1 (ja) * 2006-02-23 2007-09-07 Nissan Chemical Industries, Ltd. スルホン酸エステル化合物およびその利用
WO2008129947A1 (ja) 2007-04-12 2008-10-30 Nissan Chemical Industries, Ltd. オリゴアニリン化合物
JP2009290204A (ja) * 2008-04-28 2009-12-10 Dainippon Printing Co Ltd 正孔注入輸送層を有するデバイス、及びその製造方法、並びに正孔注入輸送層形成用インク
JP2010034315A (ja) * 2008-07-29 2010-02-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2012023020A (ja) * 2010-06-17 2012-02-02 Ricoh Co Ltd 有機エレクトロルミネッセンス素子、その製造方法及び発光装置
WO2013084664A1 (ja) 2011-12-05 2013-06-13 日産化学工業株式会社 帯電防止膜形成組成物及びオリゴマー化合物
WO2015050253A1 (ja) 2013-10-04 2015-04-09 日産化学工業株式会社 アニリン誘導体およびその利用
WO2016190326A1 (ja) 2015-05-27 2016-12-01 日産化学工業株式会社 電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
WO2018135580A1 (ja) * 2017-01-18 2018-07-26 日産化学工業株式会社 電荷輸送性ワニス及びそれを用いる電荷輸送性薄膜

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMISCHE BERICHTE, vol. 90, 1957, pages 585 - 592
KINO ZAIRYO, vol. 24, 2004, pages 72 - 82

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510302A (ja) * 2017-12-12 2020-04-02 エルジー・ケム・リミテッド インク組成物および有機発光素子の製造方法
US11711971B2 (en) 2017-12-12 2023-07-25 Lg Chem, Ltd. Ink composition and method for manufacturing organic light emitting device
WO2020218316A1 (ja) * 2019-04-26 2020-10-29 日産化学株式会社 アリールスルホン酸エステル化合物の製造方法
KR20230164092A (ko) 2021-03-31 2023-12-01 닛산 가가쿠 가부시키가이샤 전하 수송성 바니시

Also Published As

Publication number Publication date
US20200339825A1 (en) 2020-10-29
KR20200098630A (ko) 2020-08-20
JPWO2019124413A1 (ja) 2021-01-14
JP6958637B2 (ja) 2021-11-02
TWI784107B (zh) 2022-11-21
TW201939783A (zh) 2019-10-01
CN111492497B (zh) 2023-05-26
EP3731291A1 (en) 2020-10-28
CN111492497A (zh) 2020-08-04
EP3731291A4 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
KR101641674B1 (ko) 전하수송성 바니시
JP5413369B2 (ja) 電荷輸送性ワニス
WO2019124413A1 (ja) 電荷輸送性ワニス及び電荷輸送性薄膜
JP5359865B2 (ja) オリゴアニリン化合物
JP6015844B2 (ja) 電荷輸送性ワニス
JP6135752B2 (ja) 電荷輸送性ワニス
JP6597642B2 (ja) 電荷輸送性薄膜形成用ワニス
JP6460093B2 (ja) オリゴアニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
JP6168142B2 (ja) 金属陽極用正孔輸送性ワニスおよび複合金属陽極
JP6424835B2 (ja) アリールスルホン酸化合物及びその利用
JP6927214B2 (ja) 電荷輸送性薄膜形成用ワニス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560516

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207020293

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018891388

Country of ref document: EP

Effective date: 20200720