WO2019124139A1 - 冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法 - Google Patents

冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法 Download PDF

Info

Publication number
WO2019124139A1
WO2019124139A1 PCT/JP2018/045289 JP2018045289W WO2019124139A1 WO 2019124139 A1 WO2019124139 A1 WO 2019124139A1 JP 2018045289 W JP2018045289 W JP 2018045289W WO 2019124139 A1 WO2019124139 A1 WO 2019124139A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
hfo
refrigerant
coordinates
line segment
Prior art date
Application number
PCT/JP2018/045289
Other languages
English (en)
French (fr)
Inventor
熊倉 英二
山田 拓郎
吉見 敦史
岩田 育弘
板野 充司
大輔 加留部
佑樹 四元
一博 高橋
雄三 小松
瞬 大久保
達哉 高桑
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/037483 external-priority patent/WO2019123782A1/ja
Priority claimed from PCT/JP2018/038748 external-priority patent/WO2019123806A1/ja
Priority claimed from PCT/JP2018/038747 external-priority patent/WO2019123805A1/ja
Priority claimed from PCT/JP2018/038746 external-priority patent/WO2019123804A1/ja
Priority to US16/954,613 priority Critical patent/US20200309437A1/en
Priority to BR112020009389-0A priority patent/BR112020009389A2/pt
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020207019793A priority patent/KR20200100681A/ko
Priority to CN201880081190.0A priority patent/CN111492188B/zh
Priority to EP18892500.2A priority patent/EP3730868A4/en
Priority to AU2018387883A priority patent/AU2018387883A1/en
Priority to JP2019560981A priority patent/JPWO2019124139A1/ja
Publication of WO2019124139A1 publication Critical patent/WO2019124139A1/ja
Priority to PH12020550913A priority patent/PH12020550913A1/en
Priority to US16/912,130 priority patent/US20200325375A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/34Protection means thereof, e.g. covers for refrigerant pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • F24F3/048Systems in which all treatment is given in the central station, i.e. all-air systems with temperature control at constant rate of air-flow
    • F24F3/052Multiple duct systems, e.g. systems in which hot and cold air are supplied by separate circuits from the central station to mixing chambers in the spaces to be conditioned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/0018Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/106Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/128Perfluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • C09K2205/43Type R22
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/14Metal deactivation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus and a method of determining a refrigerant charge amount in the refrigeration cycle apparatus.
  • R410A is frequently used as a refrigerant.
  • R410A is a binary mixed refrigerant of (CH 2 F 2 ; HFC-32 or R32) and pentafluoroethane (C 2 HF 5 ; HFC-125 or R125), and is a pseudo-azeotropic composition.
  • LCCP Life Cycle climate Performance
  • GWPRM global warming effect related to refrigerant production
  • W refrigerant charge amount
  • R refrigerant recovery amount at the time of equipment disposal
  • N equipment use period (year)
  • Q CO 2 emission unit
  • A annual consumption It is the amount of power.
  • the content of the present disclosure is in view of the above-described point, and in the case where the heat cycle is performed using a refrigerant with a sufficiently small GWP, the refrigerant cycle in which the LCCP can be suppressed low and the refrigerant encapsulation in the refrigeration cycle device
  • the purpose is to provide a method of determining the quantity.
  • the refrigeration cycle apparatus includes a heat source unit, a utilization unit, and a refrigerant pipe.
  • the heat source unit has a compressor and a heat source side heat exchanger.
  • the utilization unit has a utilization side heat exchanger.
  • the refrigerant pipe connects the heat source unit and the utilization unit.
  • a refrigerant containing at least 1,2-difluoroethylene is enclosed in the refrigerant circuit configured by connecting the compressor, the heat source side heat exchanger, and the use side heat exchanger.
  • the charged amount of the refrigerant in the refrigerant circuit satisfies the condition of 160 g or more and 560 g or less per 1 kW of the refrigeration capacity of the refrigeration cycle apparatus.
  • the refrigeration capacity of the refrigeration cycle apparatus means the rated refrigeration capacity.
  • a refrigerant container (a low pressure receiver, a high pressure receiver, etc., excluding the accumulator attached to the compressor) is provided in the refrigerant circuit. It is preferable that it is 0.4 L or more and 2.5 L or less about what is not carried out, and it is preferable that it is 1.4 L or more and less than 5.0 L about what is provided with the refrigerant
  • the heat source side heat exchanger of the heat source unit provided with only one fan, the air passing through the heat source side heat exchanger on the side in the installed state
  • the heat source unit has a housing in which a blowout port for blowing out the heat source is formed (when the heat source unit is a trunk type etc.)
  • the heat source side heat exchanger which the heat source unit provided with 2 has As an internal volume (volume of fluid that can be filled inside) of the heat source side heat exchanger which the heat source unit provided with 2 has, it is for blowing out the air which passed through the heat source side heat exchanger on the side in the installation state
  • the pressure is 3.5 L or more and less than 5.0 L.
  • the refrigeration cycle apparatus includes a heat source unit, a first usage unit, a second usage unit, and a refrigerant pipe.
  • the heat source unit has a compressor and a heat source side heat exchanger.
  • the first usage unit has a first usage-side heat exchanger.
  • the second usage unit has a second usage-side heat exchanger.
  • the refrigerant pipe connects the heat source unit, the first usage unit, and the second usage unit.
  • the refrigerant including at least 1,2-difluoroethylene is It is enclosed.
  • the enclosed amount per 1 kW of the refrigeration capacity of the refrigerant in the refrigerant circuit satisfies the condition of 190 g or more and 1660 g or less.
  • the refrigerant containing at least 1,2-difluoroethylene is sealed in 190 g or more and 1660 g or less per 1 kW of the refrigeration capacity
  • LCCP can be suppressed low.
  • the first usage unit does not have an expansion valve on the liquid side of the first usage side heat exchanger, and It is preferable that it is 1.4 L or more and less than 5.0 L about the thing which does not have an expansion valve on the liquid side of 2 utilization units and the 2nd utilization side heat exchangers, and the 1st utilization unit is the 1st utilization side heat exchanger. It is preferable that it is 5.0 L or more and 38 L or less about what has an expansion valve in the liquid side of an exchanger, and has an expansion valve in the liquid side of the 2nd usage side heat exchanger also in the 2nd utilization unit .
  • the heat source side heat exchanger of the heat source unit provided with only one fan, the air passing through the heat source side heat exchanger on the side in the installed state
  • the heat source unit has a housing in which a blowout port for blowing out the heat source is formed (when the heat source unit is a trunk type etc.)
  • the heat source side heat exchanger As an internal volume (volume of fluid that can be filled inside) of the heat source side heat exchanger which the heat source unit provided with 2 has, it is for blowing out the air which passed through the heat source side heat exchanger on the side in the installation state
  • the heat source side In the case where the heat source unit has a casing in which the outlet is formed (when the heat source unit is a trunk type etc.), it is preferable that the heat source side is 3.5 L or more and 7.0 L or less.
  • the internal volume of the heat source-side heat exchanger air passing through the exchanger has the heat source unit for blowing upward is preferably less than 5.5 L 38L.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO) -1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO) -1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • GWP is sufficiently small and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equal to R410A and a coefficient of performance (Coefficient of Performance (COP)). It is possible to perform a refrigeration cycle using a refrigerant that has both performance.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the third aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0), Point C (32.9, 67.1, 0.0) and point O (100.0, 0.0, 0.0) Within the range of the figure enclosed by the line segment AA ′, A′B, BD, DC ′, C′C, CO and OA connecting the seven points of Except for the points on OA), The line segment AA ′
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the third aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point G (72.0, 28.0, 0.0), Point I (72.0, 0.0, 28.0), Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0) Within the range of the figure enclosed by the line segments GI, IA, AA ′, A′B, BD, DC ′, C′C and CG connecting
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the third aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point J (47.1, 52.9, 0.0), Point P (55.8, 42.0, 2.2), Point N (68.6, 16.3, 15.1), Point K (61.3, 5.4, 33.3), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0) Within the range of the figure bounded by the JP, PN, NK, KA ', A'B
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the third aspect, wherein, in the refrigerant, mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is indicated as x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point J (47.1, 52.9, 0.0), Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0) Within the range of the figure bounded by the JP, PL, LM, MA ', A'B,
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the third aspect, wherein, in the refrigerant, the mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is respectively x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2) and point T (35.8, 44.9, 19.3) Within the range of the figure bounded by the line segments PL, LM, MA ', A' B, BF, FT and TP connecting the 7 points of , The line segment PL is Coordinates (x,
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the third aspect, wherein, in the refrigerant, the mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is respectively x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point Q (62.8, 29.6, 7.6) and Point R (49.8, 42.3, 7.9) Within the range of the figure bounded by the line segments PL, LQ, QR and RP connecting the four points of The line segment PL is Coordinates (x, -0.1135x 2 + 12.112x- 280.43, 0.1135x 2 -13.112x + 380.43) Represented by The line segment RP is The coordinates (x, 0.0067x
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the third aspect, wherein, in the refrigerant, the mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is respectively x , Y and z, in the ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass, coordinates (x, y, z) are Point S (62.6, 28.3, 9.1), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2) and point T (35.8, 44.9, 19.3) Within the range of the figure enclosed by the line segment SM, MA ′, A ′ B, BF, FT, and TS connecting the six points of The line segment MA 'is The coordinates (x, 0.0016x 2 -0.9473x +
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)) and trifluoroethylene (HFO). 99.5% by mass or more of the total of ⁇ 1123) with respect to the total of the refrigerant, and the refrigerant includes 62.0% by mass to 72.0% by mass of the HFO-1132 (E) with respect to the total of the refrigerant.
  • HFO-1132 (E) trans-1,2-difluoroethylene
  • HFO trifluoroethylene
  • the GWP is sufficiently small, and has a coefficient of performance (coefficient of performance (COP)) equal to that of R410A, and a refrigeration capacity (RefrigerationCapacity (sometimes referred to as Cooling Capacity, Capacity)), It is possible to perform a refrigeration cycle using a refrigerant having the performance of being slightly flammable (2 L class) according to the standards of the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
  • COP coefficient of performance
  • R410A coefficient of performance
  • RefrigerationCapacity sometimes referred to as Cooling Capacity, Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant is a mixture of HFO-1132 (E) and HFO-1123 with respect to the entire refrigerant 99.5.
  • the refrigerant contains 40.1 mass% to 47.1 mass% of HFO-1132 (E) based on the total mass of the refrigerant.
  • the GWP is sufficiently small, and has a coefficient of performance (coefficient of performance (COP)) equal to that of R410A, and a refrigeration capacity (RefrigerationCapacity (sometimes referred to as Cooling Capacity, Capacity)), It is possible to perform a refrigeration cycle using a refrigerant having the performance of being slightly flammable (2 L class) according to the standards of the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
  • COP coefficient of performance
  • R410A coefficient of performance
  • RefrigerationCapacity sometimes referred to as Cooling Capacity, Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO) -1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf) and difluoromethane (R32), HFO-1132 (E), HFO when the mass% of HFO-1132 (E), HFO-1123 and R1234yf and R32 based on the total of these is x, y and z and a, respectively, in the refrigerant.
  • the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO) -1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf) and difluoromethane (R32), HFO-1132 (E), HFO when the mass% of HFO-1132 (E), H
  • Point A (0.0107a 2 -1.9142a + 68.305, 0.0, -0.0107a 2 + 0.9142a + 31.695)
  • Point B (0.0, 0.009a 2 -1.6045a + 59.318, -0.009a 2 + 0.6045a + 40.682)
  • the point W (0.0, 100.0-a, 0.0)
  • GI, IA, AB, BW and WG respectively connecting the five points of the above, or on the straight lines GI and AB (however, points G, I, except)
  • Point G (0.0111a 2 -1.3152a + 68.986,-0.0111a 2 + 0.3152a + 31.014, 0.0)
  • Point I (0.0111a 2 -1.3152a + 68.986, 0.0,-0.0111a 2 + 0.3152a + 31.014)
  • Point A (0.0103a 2 -1.9225a + 68.793, 0.0, -0.0103a
  • GWP is sufficiently small and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equal to R410A and a coefficient of performance (Coefficient of Performance (COP)). It is possible to perform a refrigeration cycle using a refrigerant that has both performance.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO) -1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf) and difluoromethane (R32), HFO-1132 (E), HFO when the mass% of HFO-1132 (E), HFO-1123 and R1234yf and R32 based on the total of these is x, y and z and a, respectively, in the refrigerant.
  • the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO) -1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf) and difluoromethane (R32), HFO-1132 (E), HFO when the mass% of HFO-1132 (E), H
  • GWP is sufficiently small and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equal to R410A and a coefficient of performance (Coefficient of Performance (COP)). It is possible to perform a refrigeration cycle using a refrigerant that has both performance.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), difluoromethane (R32) And 2,3,3,3-tetrafluoro-1-propene (R1234yf), wherein in the refrigerant, the mass% of HFO-1132 (E), R32 and R1234yf, based on their sum, is x,
  • coordinates (x, y, z) are Point I (72.0, 0.0, 28.0), Point J (48.5, 18.3, 33.2), Point N (27.7, 18.2, 54.1) and point E (58.3, 0.0, 41.7)
  • the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), difluoromethane (R32) And 2,3,3,3-tetrafluoro-1-propene (R1234yf)
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to perform a refrigeration cycle using a refrigerant that has the performance of being slightly flammable (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant comprises HFO-1132 (E), R32 and R1234yf, and in the refrigerant, HFO-1132 (E In the three-component composition diagram in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass, where x, y and z are mass% of R32 and R1234yf based on the total of them.
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to perform a refrigeration cycle using a refrigerant that has the performance of being slightly flammable (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant comprises HFO-1132 (E), R32 and R1234yf, and in the refrigerant, HFO-1132 (E In the three-component composition diagram in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass, where x, y and z are mass% of R32 and R1234yf based on the total of them.
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to perform a refrigeration cycle using a refrigerant that has the performance of being slightly flammable (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant comprises HFO-1132 (E), R32 and R1234yf, and in the refrigerant, HFO-1132 (E In the three-component composition diagram in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass, where x, y and z are mass% of R32 and R1234yf based on the total of them.
  • the line segment RT is Coordinates (0.082y 2 -1.8683y + 83.126, y, -0.082y 2 + 0.8683y + 16.874)
  • the line segment LK is Coordinates (0.0049y 2 -0.8842y + 61.488, y, -0.0049y 2 -0.1158y + 38.512)
  • the line segment KQ is Coordinates (0.0095y 2 -1.2222y + 67.676, y, -0.0095y 2 + 0.2222y + 32.324)
  • the line segment TL is a straight line.
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to perform a refrigeration cycle using a refrigerant that has the performance of being slightly flammable (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant comprises HFO-1132 (E), R32 and R1234yf, and in the refrigerant, HFO-1132 (E In the three-component composition diagram in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass, where x, y and z are mass% of R32 and R1234yf based on the total of them.
  • the GWP is sufficiently small, and has a refrigeration capacity [Refrigeration Capacity (sometimes referred to as Cooling Capacity or Capacity)] equivalent to R410A, according to the standards of the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) It is possible to perform a refrigeration cycle using a refrigerant that has the performance of being slightly flammable (2 L class).
  • refrigeration Capacity sometimes referred to as Cooling Capacity or Capacity
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO) -1123) and difluoromethane (R 32), HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant is trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO) -1123) and difluoromethane (R 32), HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point I (72.0, 28, 0, 0.0) Point K (48.4, 33.2, 18.4) Point B '(0.0, 81.6, 18.4) Point H (0.0, 84.2, 15.8) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment IK is Coordinates (0.025z 2 -1.7429z + 72.00, -0.025z 2 + 0.7429z + 28.0, z) Represented by
  • the line segment HR is Coordinates (-0.3123z 2 + 4.234z + 11.06, 0.3123z 2 -5.234z + 88.94, z) Represented by
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 3
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant comprises HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point I (72.0, 28, 0, 0.0) Point J (57.7, 32.8, 9.5) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment IJ is Coordinates (0.025z 2 -1.7429z + 72.0, -0.025z 2 + 0.7429z + 28.0, z)
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.0491z 2 + 0.1544z + 61.5, z) Represented by The line segments JR and GI are straight lines.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point M (47.1, 52.9, 0.0) Point P (31.8, 49.8, 18.4) Point B '(0.0, 81.6, 18.4) Point H (0.0, 84.2, 15.8) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment MP is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z) Represented by
  • the line segment HR is Coordinates (-0.3123z 2 + 4.234z + 11.06, 0.3123z 2 -5.234z + 88.94, z) Represented by
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point M (47.1, 52.9, 0.0) Point N (38.5, 52.1, 9.5) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment MN is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z)
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.0491z 2 + 0.1544z + 61.5, z) Represented by The line segments JR and GI are straight lines.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point P (31.8, 49.8, 18.4) Point S (25.4, 56.2, 18.4) and Point T (34.8, 51.0, 14.2)
  • Point P 31.8, 49.8, 18.4
  • Point S (25.4, 56.2, 18.4)
  • Point T 34.8, 51.0, 14.2
  • the line segment ST is Coordinates (-0.0982z 2 + 0.9622z + 40.931, 0.0982z 2 -1.9622z + 59.069, z)
  • the line segment TP is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z) Represented by
  • the line segment PS is a straight line.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, wherein the refrigerant includes HFO-1132 (E), HFO-1123 and R32, HFO-1132 (E), HFO-1123 and R32, where x, y and z respectively represent mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these refrigerants.
  • the coordinates (x, y, z) are Point Q (28.6, 34.4, 37.0) Point B '' (0.0, 63.0, 37.0) Point D (0.0, 67.0, 33.0) and point U (28.7, 41.2, 30.1)
  • the line segment DU is The coordinates ( ⁇ 3.4962z 2 + 210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z + 3246.1, z) are represented, and the line segment UQ is Coordinates (0.0135z 2 -0.9181z + 44.133, -0.0135z 2 -0.0819z + 55.867, z) Represented by The line segments QB ′ ′ and B′′D are straight lines.
  • a method of determining a refrigerant charge amount in a refrigeration cycle apparatus comprising: connecting a heat source unit having a compressor and a heat source side heat exchanger; a utilization unit having a utilization side heat exchanger; A refrigeration cycle apparatus having a refrigerant circuit including at least a refrigerant which contains at least 1,2-difluoroethylene, the refrigerant circuit comprising a compressor, a heat source side heat exchanger, and a use side heat exchanger connected to each other.
  • the sealed amount per 1 kW of the refrigeration capacity of the refrigerant in the refrigerant circuit is set to 160 g or more and 560 g or less.
  • the heat source unit which has a compressor and a heat source side heat exchanger, the 1st utilization unit which has a 1st utilization side heat exchanger, and the 2nd utilization side heat exchanger 2 using unit, and refrigerant piping connecting the heat source unit, the first using unit and the second using unit, the compressor and the heat source side heat exchanger using the first using heat exchanger and the second using heat
  • the enclosed amount per 1 kW of the refrigeration capacity of the refrigerant in the refrigerant circuit is 190 g More than 1660 g less.
  • the internal volume (volume of fluid that can be filled inside) of the heat source side heat exchanger of the refrigeration cycle apparatus in which one usage unit is provided is a refrigerant container (low pressure receiver, high pressure receiver, etc.) in the refrigerant circuit.
  • a refrigerant container low pressure receiver, high pressure receiver, etc.
  • the refrigeration cycle apparatus provided with one utilization unit is: When the heat source unit has a case where the outlet for blowing out the air that has passed through the heat source side heat exchanger is formed on the side surface in the installed state (when the heat source unit is a trunk type etc.) 0 As an internal volume (volume of fluid that can be filled inside) of the heat source side heat exchanger that the heat source unit provided with two fans, which is preferably 4 L or more and less than 3.5 L, is a side surface in the installed state In the case where the heat source unit has a case in which the outlet for blowing out the air that has passed through the heat source side heat exchanger is formed (when the heat source unit is a trunk type etc.) Is preferably less than or 3.5 L 5.0 L.
  • the first usage unit is the first usage side 1.4 L to 5.0 L for the liquid side of the heat exchanger that does not have an expansion valve and the second usage unit also does not have an expansion valve on the liquid side of the second usage side heat exchanger
  • the first usage unit has an expansion valve on the liquid side of the first usage-side heat exchanger
  • the second usage unit also has an expansion valve on the liquid side of the second usage-side heat exchanger
  • it is preferable that it is 5.0 L or more and 38 L or less.
  • the internal volume of the heat source side heat exchanger of the heat source unit provided with only one fan Is preferably 0.4 L or more and less than 3.5 L, and as the internal volume (volume of fluid that can be charged inside) of the heat source side heat exchanger that the heat source unit provided with two fans has ,
  • the internal volume of the heat source side heat exchanger of the heat source unit which the air passing through the heat source side heat exchanger preferably blows upward is preferably 3.5 L or more and 7.0 L
  • the refrigerant in the method for determining the amount of refrigerant enclosed in the refrigeration cycle device according to the twenty-sixth aspect may be the same refrigerant as the refrigerant used in the refrigeration cycle device according to any of the third to twenty-fifth aspects .
  • FIG. 3 is a diagram showing points A to T and line segments connecting them in a ternary composition diagram in which the total sum of HFO-1132 (E), HFO-1123 and R1234yf is 100% by mass.
  • the sum of HFO-1132 (E), HFO-1123 and R1234yf is (100 ⁇ a) mass%, points A to C, D ′, G, I, J and K ′ and their respective It is the figure which showed the line segment to connect.
  • the three-component composition diagram in which the sum of HFO-1132 (E), R32 and R1234yf is 100% by mass is a diagram showing points A to C, E, G, and I to W and line segments connecting them. .
  • FIG. 3 is a diagram showing points A to U and line segments connecting them in a ternary composition diagram in which the total sum of HFO-1132 (E), HFO-1123 and R32 is 100% by mass.
  • It is a schematic block diagram of the refrigerant circuit concerning a 1st embodiment.
  • refrigerant includes at least a compound having a refrigerant number (ASHRAE number) defined by ISO 817 (International Organization for Standardization) and representing a type of refrigerant. Furthermore, even if the refrigerant number is not yet assigned, those having the same characteristics as the refrigerant are included.
  • refrigerants are roughly classified into “fluorocarbon compounds” and “nonfluorocarbon compounds” in terms of the structure of the compounds.
  • the "fluorocarbon compounds” include chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). Examples of the "non-fluorocarbon compound” include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717) and the like.
  • composition containing a refrigerant further includes (1) the refrigerant itself (including a mixture of refrigerants) and (2) other components, and at least a refrigerator by mixing with a refrigerator oil. At least a composition that can be used to obtain a working fluid, and (3) a working fluid for a refrigerator containing a refrigerator oil.
  • the composition of (2) is referred to as “refrigerant composition” to distinguish it from the refrigerant itself (including a mixture of refrigerants).
  • the thing of the working fluid for refrigerators for (3) is distinguished from a "refrigerant composition", and is described as a "refrigerant oil containing working fluid.”
  • the term "alternate” is used in the context of "substituting" a first refrigerant with a second refrigerant, to operate using the first refrigerant as a first type
  • the second refrigerant is used only by changing and adjusting the number of parts (at least one of refrigerator oil, gasket, packing, expansion valve, dryer and other parts) as needed. Mean that they can be operated under optimum conditions. That is, this type refers to operating the same device with "substituting" the refrigerant.
  • this type of “alternate” “drop in alternative”, “nearly drop in” There may be nealy drop in 'and' retrofit '.
  • the term "refrigerator” refers to any device that maintains a temperature lower than ambient air and maintains this low temperature by removing heat from objects or space.
  • the refrigerator in order to transfer heat from the low temperature side to the high temperature side, the refrigerator refers to a conversion device that obtains energy from the outside, performs work and converts energy.
  • the refrigerant being "WCF slight burn” means that the burning rate is 10 cm / s or less in the most flammable composition (WCF) according to the US ANSI / ASHRAE 34-2013 standard.
  • that the refrigerant is "ASHRAE slight burn” means that the burning rate of WCF is 10 cm / s or less, and storage, transport, and use based on ANSI / ASHRAE 34-2013 using WCF.
  • the most flammable fraction composition (Worst case of fractionation for flammability; WCFF) specified by conducting the leakage test has a burning rate of 10 cm / s or less and the flammability classification of US ANSI / ASHRAE 34-2013 is “ It means that it will be judged as "2L class”.
  • RCL refrigerant concentration limit
  • Temperature Glide refers to the absolute value of the difference between the onset temperature and the end temperature of the phase change process of the composition comprising the refrigerant of the present disclosure in the heat exchanger of the refrigerant system.
  • Refrigerant (2-1) Refrigerant Component Although the details will be described later, any one of the refrigerants A, B, C, D, and E can be used as the refrigerant.
  • the refrigerant of the present disclosure can be preferably used as a working fluid in a refrigerator.
  • compositions of the present disclosure are suitable for use as substitutes for HFC refrigerants such as R410A, R407C and R404A, and HCFC refrigerants such as R22.
  • the refrigerant composition of the present disclosure contains at least the refrigerant of the present disclosure and can be used for the same application as the refrigerant of the present disclosure.
  • the refrigerant composition of the present disclosure can be used to obtain a working fluid for a refrigerator by further mixing with at least a refrigerator oil.
  • the refrigerant composition of the present disclosure further contains at least one other component in addition to the refrigerant of the present disclosure.
  • the refrigerant composition of the present disclosure may optionally contain at least one of the following other components.
  • the refrigerant compositions of the present disclosure are preferably substantially free of refrigeration oil.
  • the refrigerant composition of the present disclosure preferably has a refrigerator oil content of 0 to 1% by mass, more preferably 0 to 0.1% by mass, based on the entire refrigerant composition.
  • the refrigerant composition of the present disclosure may contain a trace amount of water.
  • the water content of the refrigerant composition is preferably 0.1% by mass or less based on the entire refrigerant.
  • the intramolecular double bond of the unsaturated fluorocarbon compound which may be contained in the refrigerant is stabilized, and oxidation of the unsaturated fluorocarbon compound is also less likely to occur.
  • the stability of the refrigerant composition is improved.
  • the tracer is added to the refrigerant composition of the present disclosure at a detectable concentration so that when the refrigerant composition of the present disclosure is diluted, contaminated, or any other change can be traced. .
  • the refrigerant composition of the present disclosure may contain one type alone or two or more types as a tracer.
  • the tracer is not particularly limited, and can be appropriately selected from generally used tracers.
  • a compound that can not be an impurity that is inevitably mixed in the refrigerant of the present disclosure is selected as a tracer.
  • tracers examples include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, fluoroethers, brominated compounds, iodinated compounds, alcohols, Aldehydes, ketones, nitrous oxide (N2O) and the like can be mentioned.
  • hydrofluorocarbons As a tracer, hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons and fluoroethers are particularly preferred.
  • the following compounds are preferable.
  • FC-14 Tetrafluoromethane, CF 4 ) HCC-40 (chloromethane, CH 3 Cl) HFC-23 (trifluoromethane, CHF 3 ) HFC-41 (fluoromethane, CH 3 Cl) HFC-125 (pentafluoroethane, CF 3 CHF 2 ) HFC-134a (1,1,1,2-tetrafluoroethane, CF 3 CH 2 F) HFC-134 (1,1,2,2-tetrafluoroethane, CHF 2 CHF 2 ) HFC-143a (1,1,1-trifluoroethane, CF 3 CH 3 ) HFC-143 (1,1,2-trifluoroethane, CHF 2 CH 2 F) HFC-152a (1,1-difluoroethane, CHF 2 CH 3 ) HFC-152 (1,2-difluoroethane, CH 2 FCH 2 F) HFC-161 (Fluoroethane, CH 3 CH 2 F
  • the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present in the refrigerant composition at a total concentration of about 50 ppm to about 300 ppm.
  • the refrigerant composition of the present disclosure may contain one kind alone or two or more kinds as an ultraviolet fluorescent dye.
  • the ultraviolet fluorescent dye is not particularly limited, and can be appropriately selected from ultraviolet fluorescent dyes generally used.
  • UV fluorescent dyes include, for example, naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene and fluorescein, and derivatives thereof.
  • the ultraviolet fluorescent dye either or both of naphthalimide and coumarin are particularly preferable.
  • the refrigerant composition of the present disclosure may contain one kind alone, or two or more kinds as a stabilizer.
  • the stabilizer is not particularly limited, and can be appropriately selected from generally used stabilizers.
  • a stabilizer As a stabilizer, a nitro compound, ethers, amines etc. are mentioned, for example.
  • nitro compound examples include aliphatic nitro compounds such as nitromethane and nitroethane, and aromatic nitro compounds such as nitrobenzene and nitrostyrene.
  • ethers examples include 1,4-dioxane and the like.
  • amines examples include 2,2,3,3,3-pentafluoropropylamine, diphenylamine and the like.
  • the content ratio of the stabilizer is not particularly limited, and usually 0.01 to 5% by mass is preferable, and 0.05 to 2% by mass is more preferable with respect to the whole refrigerant.
  • the refrigerant composition of the present disclosure may contain one kind alone, or may contain two or more kinds.
  • the polymerization inhibitor is not particularly limited, and can be appropriately selected from commonly used polymerization inhibitors.
  • polymerization inhibitor examples include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, benzotriazole and the like.
  • the content ratio of the polymerization inhibitor is not particularly limited, and is usually preferably 0.01 to 5% by mass, and more preferably 0.05 to 2% by mass, with respect to the entire refrigerant.
  • the refrigerator oil-containing working fluid of the present disclosure at least includes the refrigerant or the refrigerant composition of the present disclosure and a refrigerator oil, and is used as a working fluid in a refrigerator.
  • the refrigerator oil-containing working fluid of the present disclosure is obtained by mixing the refrigerator oil used in the compressor of the refrigerator and the refrigerant or the refrigerant composition with each other.
  • the refrigeration oil-containing working fluid generally contains 10 to 50% by mass of refrigeration oil.
  • the refrigerator oil is not particularly limited, and can be appropriately selected from commonly used refrigerator oils. At that time, if necessary, a refrigerator oil more excellent in the miscibility with the mixture, the effect of improving the stability of the mixture, and the like can be appropriately selected.
  • a base oil of refrigeration oil for example, at least one selected from the group consisting of polyalkylene glycol (PAG), polyol ester (POE) and polyvinyl ether (PVE) is preferable.
  • PAG polyalkylene glycol
  • POE polyol ester
  • PVE polyvinyl ether
  • the refrigerator oil may further contain an additive in addition to the base oil.
  • the additive may be at least one selected from the group consisting of an antioxidant, an extreme pressure agent, an acid scavenger, an oxygen scavenger, a copper deactivator, a rust inhibitor, an oil agent and an antifoamer. .
  • the refrigerator oil one having a kinematic viscosity at 40 ° C. of 5 to 400 cSt is preferable in terms of lubrication.
  • the refrigerator oil-containing working fluid of the present disclosure may further contain at least one additive, as needed.
  • the additive include the following compatibilizers and the like.
  • the refrigeration oil-containing working fluid of the present disclosure may contain one kind alone or two or more kinds as a compatibilizing agent.
  • the compatibilizer is not particularly limited, and can be appropriately selected from commonly used compatibilizers.
  • compatibilizer examples include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers and 1,1,1-trifluoroalkanes.
  • polyoxyalkylene glycol ether is particularly preferred.
  • the following descriptions of the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E are independent of one another, and alphabets indicating points and line segments, numbers of examples, and numbers of comparative examples are all
  • the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E are independent of each other.
  • the first embodiment of the refrigerant A and the first embodiment of the refrigerant B show different embodiments.
  • Refrigerant A of the present disclosure includes trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf). Is a mixed refrigerant containing
  • the refrigerant A of the present disclosure has desirable characteristics as an R410A alternative refrigerant, having the same refrigeration capacity and coefficient of performance as the R410A, and the GWP is sufficiently small.
  • the refrigerant A of the present disclosure may be a composition containing HFO-1132 (E) and R1234yf, and optionally HFO-1123, and may further satisfy the following requirements.
  • This refrigerant also has desirable characteristics as an R410A alternative refrigerant, having the same refrigeration capacity and coefficient of performance as R410A, and having a sufficiently small GWP.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point G (72.0, 28.0, 0.0), Point I (72.0, 0.0, 28.0), Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0)
  • the line segment AA ′ is The line segment AA ′ is The
  • the refrigerant of the present disclosure not only has a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio of 92.5% or more based on R410A when the above requirements are satisfied, and further, it is further specified by ASHRAE. It shows WCF slight flammability (burn rate of WCF composition is 10 cm / s or less).
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-1123, where x, y and z are mass% of HFO-1132 (E) HFO-1123 and R1234yf based on the total of these.
  • the coordinates (x, y, z) are Point J (47.1, 52.9, 0.0), Point P (55.8, 42.0, 2.2), Point N (68.6, 16.3, 15.1), Point K (61.3, 5.4, 33.3), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0)
  • the refrigerant of the present disclosure not only has a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio of 92.5% or more based on R410A when the above requirements are satisfied, and further, it is further specified by ASHRAE. It shows slight flammability (2 L class (burning rate of WCF composition and WCFF composition is 10 cm / s or less)).
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point J (47.1, 52.9, 0.0), Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0) and point C (32.9, 67.1, 0.0)
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio of 92.5% or more based on R410A when the above requirements are satisfied, and further, the RCL is 40 g / m 3 or more.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2) and point T (35.8, 44.9, 19.3)
  • the line segment PL is Coordinates (x, -0.1135x 2 + 12.112x- 280.43
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio based on R410A of 95% or more when the above requirements are satisfied, and further, the RCL is 40 g / l. m 3 or more.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point Q (62.8, 29.6, 7.6) and Point R (49.8, 42.3, 7.9)
  • coordinates (x, y, z) are Point P (55.8, 42.0, 2.2), Point L (63.1, 31.9, 5.0), Point Q (62.8, 29.6, 7.6) and Point R (49.8, 42.3, 7.9)
  • the line segment PL is Coordinates (x, -0.1135x 2 + 12.112x- 280.43, 0.1135x 2 -13.112x + 380.43)
  • Represented by The line segment RP is The coordinates (x, 0.0067x 2 -0.7607x
  • the refrigerant of the present disclosure has a COP ratio of 95% or more based on R410A when the above requirements are satisfied, and not only an RCL of 40 g / m 3 or more but also a condensation temperature glide of 1 ° C. or less .
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point S (62.6, 28.3, 9.1), Point M (60.3, 6.2, 33.5), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2) and point T (35.8, 44.9, 19.3)
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A, a COP ratio based on R410A of 95% or more, and RCL of 40 g / m 3 or more when the above requirements are satisfied. Not only that, the discharge pressure ratio based on R410A is 105% or less.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point d (87.6, 0.0, 12.4), Point g (18.2, 55.1, 26.7), Point h (56.7, 43.3, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment dg is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point l (72.5, 10.2, 17.3), Point g (18.2, 55.1, 26.7), Point h (56.7, 43.3, 0.0) and point i (72.5, 27.5, 0.0)
  • the line segment lg is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment gh is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment gh is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 92.5% or more based on R410A and a COP ratio based on R410A of 92.5% or more when the above requirements are satisfied, and further, it is further specified by ASHRAE. Indicates slight flammability (2 L class).
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point d (87.6, 0.0, 12.4), Point e (31.1, 42.9, 26.0), Point f (65.5, 34.5, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment de is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment ef is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment ef is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 +
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point l (72.5, 10.2, 17.3), Point e (31.1, 42.9, 26.0), Point f (65.5, 34.5, 0.0) and point i (72.5, 27.5, 0.0)
  • the line segment LE is Coordinates (0.0047y 2 -1.5177y + 87.598, y, -0.0047y 2 + 0.5177y + 12.402) Represented by The line segment ef
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 93.5% or more based on R410A and a COP ratio based on R410A of 93.5% or more when the above requirements are satisfied, and further, it is further specified in ASHRAE standard. Indicates slight flammability (2 L class).
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point a (93.4, 0.0, 6.6), Point b (55.6, 26.6, 17.8), Point c (77.6, 22.4, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment ab is Coordinates (0.0052y 2 -1.5588y + 93.385, y,-0.0052y 2 + 0.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 95% or more based on R410A and a COP ratio based on R410A of 95% or more when the above requirements are satisfied.
  • the refrigerant A of the present disclosure is HFO-1132 (E), HFO-, where x, y and z are mass% based on the total of HFO-1132 (E), HFO-1123 and R1234yf, respectively.
  • coordinates (x, y, z) are Point k (72.5, 14.1, 13.4), Point b (55.6, 26.6, 17.8) and point j (72.5, 23.2, 4.3)
  • coordinates (x, y, z) are Point k (72.5, 14.1, 13.4), Point b (55.6, 26.6, 17.8) and point j (72.5, 23.2, 4.3)
  • coordinates (x, y, z) are Point k (72.5, 14.1, 13.4), Point b (55.6, 26.6, 17.8) and point j (72.5, 23.2, 4.3)
  • Within the range of the figure bounded by the line segments kb, bj and jk connecting the three points of The line segment kb is Coordinates (0.0052y 2
  • the line segment bj is Coordinates (-0.0032z 2 -1.1791z + 77.593, 0.0032z 2 + 0.1791z + 22.407, z) It is preferable that the line segment jk is a straight line.
  • the refrigerant of the present disclosure not only has a refrigeration capacity ratio of 95% or more based on R410A and a COP ratio based on R410A of 95% or more when the above requirements are satisfied, and further, it is further specified by ASHRAE. Indicates slight flammability (2 L class).
  • the refrigerant A of the present disclosure may further contain other additional refrigerants in addition to HFO-1132 (E), HFO-1123 and R1234yf, as long as the above-described properties and effects are not impaired.
  • the refrigerant of the present disclosure preferably contains 99.5% by mass or more, more preferably 99.75% by mass or more, of the total of HFO-1132 (E), HFO-1123 and R1234yf with respect to the entire refrigerant. It is more preferable to contain 99.9 mass% or more.
  • the refrigerant A of the present disclosure may contain 99.5 mass% or more, 99.75 mass% or more, of the total of HFO-1132 (E), HFO-1123 and R1234yf with respect to the entire refrigerant. And may further contain 99.9% by mass or more.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant A Below, the Example of the refrigerant
  • the refrigeration capacity of a composition containing a mixture of R410A and HFO-1132 (E), HFO-1123, R1234yf is determined using the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0). It calculated
  • HFO-1132 (E), HFO-1123 and HFO-1123 and HFO-1123 and HFO-1123 and HFO-1123 and H1234b, respectively, are represented by x, y and z, respectively.
  • coordinates (x, y, z) are Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point D (0.0, 80.4, 19.6), Point C '(19.5, 70.5, 10.0), Point C (32.9, 67.1, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment AA ′ is The coordinates (x, 0.0016x 2 -0.9473x + 57.497 ,
  • the point on the line segment AA ′ was determined by finding an approximate curve connecting three points of the point A, the example 1, and the point A ′ by the least square method.
  • the point on the line segment A′B was determined by finding an approximate curve connecting the three points of the point A ′, the example 3 and the point B by the least square method.
  • the point on the line segment DC ′ was determined by finding an approximate curve connecting the three points of the point D, the example 6, and the point C ′ by the least square method.
  • the point on line segment C'C was determined by calculating
  • the coordinates (x, y, z) are Point A (68.6, 0.0, 31.4), Point A '(30.6, 30.0, 39.4), Point B (0.0, 58.7, 41.3), Point F (0.0, 61.8, 38.2), Point T (35.8, 44.9, 19.3), Point E (58.0, 42.0, 0.0) and point O (100.0, 0.0, 0.0)
  • the line segment AA ′ is The coordinates (x, 0.0016x 2 -0.9473x + 57.497 , -0.0016x 2 -0.0527x + 42.503) Represented by The line segment A'B is Coordinates (x, 0.0029x 2 -1.0268x + 58.7 , -0.0029x 2 + 0.0268x + 41.3) Represented by The line segment FT is
  • the points on the line segment FT were determined by finding an approximate curve connecting the three points T, E 'and F by the least squares method.
  • the points on the line segment TE were determined by finding an approximate curve connecting the three points E, R and T by the least square method.
  • R1234yf contributes to the reduction of flammability and the suppression of deterioration such as polymerization, and it is preferable to include this.
  • the burning rate was measured according to the ANSI / ASHRA 34-2013 standard, with the mixed composition as the WCF concentration.
  • the one with a burning rate of 10 cm / s or less is considered as "2 L class (slight flammability)".
  • the burning rate test was done as follows using the apparatus shown in FIG. In FIG. 1, 901 indicates a sample cell, 902 indicates a high-speed camera, 903 indicates a xenon lamp, 904 indicates a collimating lens, 905 indicates a collimating lens, and 906 indicates a ring filter.
  • the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge.
  • the burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC.
  • the WCFF concentration was determined by performing leakage simulation according to NIST Standard Reference Data Base Refleak Version 4.0 with the WCF concentration as the initial concentration.
  • the line segment PN is Coordinates (x, -0.1135x 2 + 12.112x- 280.43, 0.1135x 2 -13.112x + 380.43) Represented by
  • the line segment NK is Coordinates (x, 0.2421x 2 -29.955x + 931.91, -0.2421x 2 + 28.955x-831.91) It is represented by.
  • the point on the line segment PN was determined by finding an approximate curve connecting the three points P, L, and N by the least squares method.
  • the point on the line segment NK was determined by finding an approximate curve connecting the three points of the point N, the point N 'and the point K by the least square method.
  • the refrigerant B of the present disclosure is 99.5 mass% or more of the total of trans-1,2-difluoroethylene (HFO-1132 (E)) and trifluoroethylene (HFO-1123) with respect to the whole of the refrigerant, and the refrigerant is HFO- Or a mixed refrigerant containing 62.0% by mass to 72.0% by mass or 45.1% by mass to 47.1% by mass of 1132 (E) based on the whole of the refrigerant, or
  • the total of HFO-1132 (E) and HFO-1123 is 99.5 mass% or more with respect to the whole of the refrigerant, and the refrigerant contains 40.1 mass% of HFO-1132 (E) with respect to the whole of the refrigerant It is a mixed refrigerant containing ⁇ 47.1% by mass.
  • the refrigerant B of the present disclosure has (1) a coefficient of performance equivalent to R410A, (2) refrigeration capacity equivalent to R410A, (3) sufficiently small GWP, and (4) ASHRAE standard. It has desirable characteristics as a R410A alternative refrigerant, that is, it is slightly flammable (2 L class).
  • the refrigerant B of the present disclosure is a WCF slight-combustible if it is a mixed refrigerant containing 72.0% by mass or less of HFO-1132 (E).
  • the refrigerant B of the present disclosure is a composition containing HFO-1132 (E) at 47.1% or less, and is a “2 L class” which is a slightly flammable refrigerant according to ASHRAE standards with WCF slight combustion and WCFF slight combustion, and handling is easier It becomes.
  • the refrigerant B of the present disclosure contains 62.0% by mass or more of HFO-1132 (E)
  • the coefficient of performance coefficient based on R410A is more excellent at 95% or more, and HFO-1132 (E) and / or Or, the polymerization reaction of HFO-1123 is further suppressed, and the stability becomes more excellent.
  • the refrigerant B of the present disclosure contains 45.1% by mass or more of HFO-1132 (E)
  • the coefficient of performance coefficient based on R410A is more excellent at 93% or more, and HFO-1132 (E) and / or Or, the polymerization reaction of HFO-1123 is further suppressed, and the stability becomes more excellent.
  • the refrigerant B of the present disclosure may further contain other additional refrigerants in addition to HFO-1132 (E) and HFO-1123 as long as the above-described properties and effects are not impaired.
  • the refrigerant B of the present disclosure more preferably contains the total of HFO-1132 (E) and HFO-1123 at 99.75 mass% or more, further preferably 99.9 mass% or more with respect to the entire refrigerant.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant B Below, the Example of the refrigerant
  • a mixed refrigerant was prepared by mixing HFO-1132 (E) and HFO-1123 in mass% (mass%) shown in Table 37 and Table 38, respectively, based on the total of them.
  • IPCC Intergovernmental Panel on Climate Change
  • the refrigeration capacity of a composition containing a mixture of R410A and HFO-1132 (E) and HFO-1123 is as follows using the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) It calculated
  • composition of each mixture is WCF, and NIST Standard Reference Data Base Version under the condition of Equipment, Storage, Shipping, Leak, and Recharge according to ASHRAE 34-2013 standard.
  • a leak simulation was performed according to 4.0, and the most flammable fraction was WCFF.
  • GWP, COP and refrigeration capacity calculated based on these results are shown in Tables 1 and 2.
  • the ratio COP and the specific refrigeration capacity are shown relative to R410A.
  • COP (refrigeration capacity or heating capacity) / power consumption
  • the flammability was measured according to the ANSI / ASHRAE 34-2013 standard. If the burning rate is 10 cm / s or less for both WCF and WCFF, it is considered as "2 L class (slight flammability)".
  • the burning rate test was conducted as follows using the apparatus shown in FIG. First, the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge. The burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC.
  • Refrigerant C of the present disclosure includes trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123) and 2,3,3,3-tetrafluoro-1-propene (R1234yf). And difluoromethane (R32), which further satisfy the following requirements.
  • the refrigerant C of the present disclosure has desirable characteristics as an R410A alternative refrigerant, having a refrigeration capacity and a coefficient of performance equivalent to that of R410A, and having a sufficiently small GWP.
  • the refrigerant C of the present disclosure is HFO-1132, where the mass% of HFO-1132 (E), HFO-1123 and R1234yf, and R32 based on the total of these is x, y and z, and a, respectively.
  • Point A (0.0107a 2 -1.9142a + 68.305, 0.0, -0.0107a 2 + 0.9142a + 31.695)
  • Point B (0.0, 0.009a 2 -1.6045a + 59.318, -0.009a 2 + 0.6045a + 40.682)
  • the point W (0.0, 100.0-a, 0.0)
  • GI, IA, AB, BW and WG respectively connecting the five points of the above, or on the straight lines GI and AB (however, points G, I, except)
  • Point G (0.0111a 2 -1.3152a + 68.986,-0.0111a 2 + 0.3152a + 31.014, 0.0)
  • Point I (0.0111a 2 -1.3152a + 68.986, 0.0,-0.0111a 2 + 0.3152a + 31.014)
  • Point A (0.0103a 2 -1.9225a + 68.793, 0.0, -0.0103a
  • the refrigerant C of the present disclosure is HFO-1132 (E), HFO- when the mass% of HFO-1132 (E), HFO-1123 and R1234yf based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are When 0 ⁇ a ⁇ 11.1
  • Point J (0.0049a 2 -0.9645a + 47.1, -0.0049a 2 -0.0355a + 52.9, 0.0)
  • Point B (0.0, 0.0144a 2 -1.6377a + 58.7,-0.0144a 2 + 0.6377a + 41.3)
  • Point D (0.0, 0.0224a 2 + 0.968a
  • the refrigerant of the present disclosure not only achieves a refrigeration capacity ratio of 85% or more based on R410A and a COP ratio of 92.5% or more based on R410A when the above requirements are satisfied, and further, WCF slight combustion and WCFF slight burn and ASHRAE standards indicate "2L class", a slightly burnt refrigerant.
  • the refrigerant C of the present disclosure further includes R32 in addition to HFO-1132 (E), HFO-1123 and R1234yf, the sum of HFO-1132 (E), HFO-1123 and R1234yf, and R32 is used as a standard.
  • R410A is a point It is an intersection point of an approximate straight line connecting points where the COP ratio is 95% and a straight line ab.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 95% or more based on R410A and a COP ratio based on R410A of 95% or more when the above requirements are satisfied.
  • the refrigerant C of the present disclosure may further contain other additional refrigerant in addition to HFO-1132 (E), HFO-1123 and R1234yf, and R32, as long as the above-described properties and effects are not impaired. Good.
  • the refrigerant of the present disclosure preferably contains 99.5% by mass or more, more preferably 99.75% by mass or more, of the total of HFO-1132 (E), HFO-1123 and R1234yf, and R32 with respect to the entire refrigerant. Preferably, 99.9% by mass or more is included.
  • the refrigerant C of the present disclosure may contain 99.5% by mass or more and 99.75% by mass or more of the total of HFO-1132 (E), HFO-1123 and R1234yf, and R32 with respect to the entire refrigerant. And may contain 99.9% by mass or more.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant C Below, the Example of the refrigerant
  • a mixed refrigerant was prepared by mixing HFO-1132 (E), HFO-1123 and R1234yf, and R32 in the mass% shown in Tables 39 to 96, respectively, based on the total of these.
  • IPCC Intergovernmental Panel on Climate Change
  • the refrigeration capacity of a composition containing a mixture of R410A and HFO-1132 (E) and HFO-1123 is as follows using the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) It calculated
  • the COP ratio and the refrigeration capacity ratio were determined with reference to R410.
  • the calculation conditions were as follows.
  • COP (refrigeration capacity or heating capacity) / power consumption
  • HFO-1132 (E: HFO-1132 (E), HFO-1123 and R1234yf, and R32, based on the sum of these, mass% is x, y and z, and a, respectively).
  • HFO-1123 and R1234yf the bottom line is a straight line connecting point (0.0, 100.0-a, 0.0) and point (0.0, 0.0, 100, 0-a) where the mass becomes (100-a) mass%
  • the coordinates (x, y, z) are When 0 ⁇ a ⁇ 11.1 Point A (0.0134a 2 -1.9681a + 68.6, 0.0, -0.0134a 2 + 0.9681a + 31.4) and point B (0.0, 0.0144a 2 -1.6377a + 58.7, -0.0144a 2 + 0.6377a + 41.3) and A straight line AB connecting the When 11.1
  • a point at which the actual refrigeration capacity ratio is 85% is a curve that extends to the 1234yf side connecting the point A and the point B shown in FIG. Therefore, when it is on the straight line AB or on the left side, the refrigeration capacity ratio based on R410A is 85% or more.
  • the coordinates (x, y, z) are When 0 ⁇ a ⁇ 11.1 Point D '(0.0, 0.0224a 2 + 0.968a + 75.4, -0.0224a 2 -1.968a + 24.6) and point C (-0.2304a 2 -0.4062a + 32.9, 0.2304a 2 -0.5938a + 67.1, 0.0) And the straight line D′ C connecting the When 11.1 ⁇ a ⁇ 46.7 It can be seen that the COP ratio based on R410A is 92.5% or more when in all the regions.
  • FIG. 3 it is the curve CD that the COP ratio is 92.5% or more, but in FIG. 3, when the R1234yf concentration is 5% by mass and 10% by mass, the COP ratio is 92.5% (26.6, 68.4, 5), (19.5, 70.5, 10), and an approximate straight line connecting three points C (32.9, 67.1, 0.0), and the intersection point D ′ (0, 0, 0) with the HFO-1132 (E) concentration of 0.0 mass% A straight line connecting 75.4, 24.6) and the point C is a line segment D'C. Also, in FIG. 4, D ′ (D) is similarly derived from an approximate curve connecting point C (18.4, 74.5, 0), point (13.9, 76.5, 2.5), and point (8.7, 79. Find 0, 83.4, 9.5), and let D'C be a straight line connecting point C.
  • composition of each mixture is WCF, and NIST Standard Reference Data Base Version under the condition of Equipment, Storage, Shipping, Leak, and Recharge according to ASHRAE 34-2013 standard.
  • a leak simulation was performed according to 4.0, and the most flammable fraction was WCFF.
  • the flammability was measured according to the ANSI / ASHRAE 34-2013 standard. If the burning rate is 10 cm / s or less for both WCF and WCFF, it is considered as "2 L class (slight flammability)".
  • the burning rate test was done as follows using the apparatus shown in FIG. First, the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge. The burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC.
  • the point of the actual WCFF slight combustion becomes a curve which spreads to the HFO-1132 (E) side connecting the point J and the point K '(on the straight line AB) shown in FIG. Therefore, when it is on the line of straight line JK 'or below, it becomes WCFF slight flame retardance.
  • the R32 content ratio a (mass%) is 0 mass%, 7.1 mass%, 11.1 mass%, 14.5 mass%, 18.2 mass%, 21.9 mass%, 26.7 mass%, respectively.
  • the compositions are shown for 29.3% by weight, 36.7% by weight, 44.1% by weight and 47.8% by weight.
  • Point A is a point where the HFO-1123 content is 0% by mass and the refrigeration capacity ratio based on R410A is 85%. With respect to the point A, three points were obtained for each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).
  • Point B is a point at which the HFO-1132 (E) content rate is 0% by mass and the refrigeration capacity ratio based on R410A is 85%.
  • E HFO-1132
  • the point D ' is a point at which the HFO-1132 (E) content rate is 0% by mass and the COP ratio based on R410A is 95.5%.
  • the following three points were obtained by calculation and their approximate expressions were obtained (Table 111).
  • Point C is a point where the R1234yf content rate is 0% by mass and the COP ratio based on R410A is 95.5%.
  • point C the following three points were obtained by calculation, and their approximate expressions were obtained (Table 112).
  • the refrigerant D of the present disclosure is a mixture containing trans-1,2-difluoroethylene (HFO-1132 (E)), difluoromethane (R32) and 2,3,3,3-tetrafluoro-1-propene (R1234yf). It is a refrigerant.
  • the refrigerant D of the present disclosure has desirable characteristics as an R410A alternative refrigerant, having a cooling capacity equivalent to that of R410A, a sufficiently small GWP, and a slight flammability (2 L class) according to the ASHRAE standard.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point I (72.0, 0.0, 28.0), Point J (48.5, 18.3, 33.2), Point N (27.7, 18.2, 54.1) and point E (58.3, 0.0, 41.7)
  • the line segment IJ is Coordinates (0.0236y 2 -1.7616y +72.0, y, -0.0236y 2 + 0.7616y +28.0) Represented by
  • the line segment NE is Coordinates (0.012y 2 -1.9003y + 58.3, y, -0.012y 2 + 0.9003y + 41.7) It is preferable that the line segments JN and EI be straight lines.
  • the refrigerant of the present disclosure has a refrigeration capacity
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point M (52.6, 0.0, 47.4), Point M '(39.2, 5.0, 55.8), Point N (27.7, 18.2, 54.1), Point V (11.0, 18.1, 70.9) and Point G (39.6, 0.0, 60.4)
  • the line segment MM ' is Coordinates (x, 0.132x 2 -3.34x + 52.6, -0.132x 2 + 2.34x + 47.4)
  • the line segment M'N is Coordinates (x, 0.0313x 2 -1.4551x + 43.824, -0.0313x 2 + 0.4551x + 56.
  • the line segment VG is Coordinates (0.0123y 2 -1.8033y + 39.6, y, -0.0123y 2 + 0.8033y + 60.4) It is preferable that the line segments NV and GM be straight.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 70% or more based on R410A, a GWP of 125 or less, and ASHRAE slight burn.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point O (22.6, 36.8, 40.6), Point N (27.7, 18.2, 54.1) and point U (3.9, 36.7, 59.4)
  • the line segments ON, NU and UO respectively connecting the three points of The line segment ON is Coordinates (0.0072y 2 -0.6701y + 37.512, y , -0.0072y 2 -0.3299y + 62.488)
  • the line segment NU is Coordinates (0.0083y 2 -1.7403y +56.635, y, -0.0083y 2 + 0.7403y +43.365)
  • the line segment UO be a straight line.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 80% or more based on R410A, a GWP of 250 or less, and ASHRAE slight burn.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point Q (44.6, 23.0, 32.4), Point R (25.5, 36.8, 37.7), Point T (8.6, 51.6, 39.8), Point L (28.9, 51.7, 19.4) and Point K (35.6, 36.8, 27.6)
  • Point Q 44.6, 23.0, 32.4
  • Point R (25.5, 36.8, 37.7)
  • Point T (8.6, 51.6, 39.8)
  • Point L 28.9, 51.7, 19.4
  • Point K (35.6, 36.8, 27.6)
  • the line segments QR, RT, TL, LK and KQ connecting the five points of The line segment QR is Coordinates (0.0099 y 2 -1. 975 y + 84.
  • the line segment RT is Coordinates (0.082y 2 -1.8683y + 83.126, y, -0.082y 2 + 0.8683y + 16.874)
  • the line segment LK is Coordinates (0.0049y 2 -0.8842y + 61.488, y, -0.0049y 2 -0.1158y + 38.512)
  • the line segment KQ is Coordinates (0.0095y 2 -1.2222y + 67.676, y, -0.0095y 2 + 0.2222y + 32.324) It is preferable that the line segment TL be a straight line.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 92.5% or more based on R410A, a GWP of 350 or less, and WCF slight combustion.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point P (20.5, 51.7, 27.8), Point S (21.9, 39.7, 38.4) and point T (8.6, 51.6, 39.8)
  • the line segment PS is Coordinates (0.0064y 2 -0.7103y + 40.1, y, -0.0064y 2 -0.2897y + 59.9)
  • the line segment ST is Coordinates (0.082y 2 -1.8683y + 83.126, y, -0.082y 2 + 0.8683y + 16.874)
  • the line segment TP is a straight line.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 92.5% or more based on R410A, a GWP of 350 or less, and ASHRAE incombustible when the above requirements are satisfied.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point a (71.1, 0.0, 28.9), Point c (36.5, 18.2, 45.3), Point f (47.6, 18.3, 34.1) and point d (72.0, 0.0, 28.0)
  • the line segment ac is Coordinates (0.0181y 2 -2.2288y + 71.096, y, -0.0181y 2 + 1.2288y +28.904)
  • the line segment fd is Coordinates (0.02y 2 -1.7y + 72, y , -0.02y 2 + 0.7y + 28)
  • the line segments cf and da are straight.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A, a GWP of 125 or less, and a slight flame retardancy (2 L class) according to the ASHRAE standard.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point a (71.1, 0.0, 28.9), Point b (42.6, 14.5, 42.9), Point e (51.4, 14.6, 34.0) and point d (72.0, 0.0, 28.0)
  • the line segment ab is Coordinates (0.0181y 2 -2.2288y + 71.096, y, -0.0181y 2 + 1.2288y +28.904)
  • the line segment ed is Coordinates (0.02y 2 -1.7y + 72, y , -0.02y 2 + 0.7y + 28)
  • the line segments be and da are straight lines.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 85% or more based on R410A, a GWP of 100 or less, and a slight flame retardancy (2 L class) according to the ASHRAE standard.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point g (77.5, 6.9, 15.6), Point iI (55.1, 18.3, 26.6) and point j (77.5.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 95% or more based on R410A, a GWP of 100 or less, and is resistant to changes such as polymerization or decomposition, and is excellent in stability. .
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R1234yf, where x, y and z are mass% of HFO-1132 (E), R32 and R1234yf, respectively, based on their total sum.
  • the coordinates (x, y, z) are Point g (77.5, 6.9, 15.6), Point h (61.8, 14.6, 23.6) and point k (77.5, 14.6, 7.9)
  • the line segments gh, hk and kg connecting the three points of The line segment gh is Coordinates (0.02y 2 -2.4583y + 93.396, y , -0.02y 2 + 1.4583y + 6.604)
  • the line segments hk and kg are straight.
  • the refrigerant of the present disclosure has a refrigeration capacity ratio of 95% or more based on R410A, a GWP of 100 or less, and is resistant to changes such as polymerization or decomposition, and is excellent in stability. .
  • the refrigerant D of the present disclosure may further contain other additional refrigerant in addition to HFO-1132 (E), R32 and R1234yf, as long as the above-mentioned properties and effects are not impaired.
  • the refrigerant D of the present disclosure preferably contains 99.5% by mass or more, more preferably 99.75% by mass or more, of the total of HFO-1132 (E), R32 and R1234yf with respect to the entire refrigerant. It is more preferable to contain mass% or more.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant D Below, the Example of the refrigerant
  • each mixed refrigerant of HFO-1132 (E), R32 and R1234yf is WCF, and according to the ASHRAE 34-2013 standard, equipment (Storage), Storage (Storage), Transportation (Shipping), Leakage (Leak) and Recharge (Recharge) Leakage simulation was performed according to NIST Standard Reference Data Base Refleak Version 4.0 under the following conditions, and the most flammable fraction was WCFF.
  • the burning rate test was done as follows using the apparatus shown in FIG. First, the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge. The burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC. The results are shown in Tables 113-115.
  • the coordinates (x, y, z) indicate line segments connecting point M, point M ′, point W, point J, point N, and point P, respectively.
  • a mixed refrigerant was prepared by mixing HFO-1132 (E), R32 and R1234yf in the% by mass shown in Tables 116 to 144, respectively, based on their total sum.
  • the coefficient of performance (coefficient of performance (COP)) ratio based on R410 and the refrigeration capacity ratio were determined. The calculation conditions were as follows.
  • the refrigerant D of the present disclosure is HFO-1132 (E), where x, y and z represent mass% of HFO-1132 (E), R32 and R1234yf based on their total sum, respectively.
  • the coordinates (x, y, z) are Point I (72.0, 0.0, 28.0), Point J (48.5, 18.3, 33.2), Point N (27.7, 18.2, 54.1) and point E (58.3, 0.0, 41.7)
  • the line segment IJ is Coordinates (0.0236y 2 -1.7616y +72.0, y, -0.0236y 2 + 0.7616y +28.0) Represented by The line segment NE is Coordinates (0.0236y 2 -1.7616y +72.0, y, -0.0236y 2 + 0.7616y +28.0) Represented by The line segment NE is Coordinates (0.0236y 2 -1.7616y +72.0, y, -0.0236y 2 + 0.76
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R32 when the mass% of HFO-1132 (E), R32 and R1234yf based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point M (52.6, 0.0, 47.4), Point M '(39.2, 5.0, 55.8), Point N (27.7, 18.2, 54.1), Point V (11.0, 18.1, 70.9) and Point G (39.6, 0.0, 60.4)
  • the line segment VG is Coordinates (0.0123y 2 -1.8033y + 39.6, y, -0.0123y 2 + 0.8033y + 60.4) It can be seen that when the line segments NV and GM are straight, the refrigeration capacity ratio based on R410A is 70% or more, the GWP is 125 or less, and ASHRAE slight burn is achieved.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R32, where the mass% of HFO-1132 (E), R32 and R1234yf based on the total of these is respectively x, y and z.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R32 when the mass% of HFO-1132 (E), R32 and R1234yf based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point Q (44.6, 23.0, 32.4), Point R (25.5, 36.8, 37.7), Point T (8.6, 51.6, 39.8), Point L (28.9, 51.7, 19.4) and Point K (35.6, 36.8, 27.6)
  • coordinates (x, y, z) are Point Q (44.6, 23.0, 32.4), Point R (25.5, 36.8, 37.7), Point T (8.6, 51.6, 39.8), Point L (28.9, 51.7, 19.4) and Point K (35.6, 36.8, 27.6)
  • the line segments QR, RT, TL, LK and KQ connecting the five points of The line segment QR is Coordinates (0.0099 y 2 -1.
  • the line segment RT is Coordinates (0.082y 2 -1.8683y + 83.126, y, -0.082y 2 + 0.8683y + 16.874)
  • the line segment LK is Coordinates (0.0049y 2 -0.8842y + 61.488, y, -0.0049y 2 -0.1158y + 38.512)
  • the line segment KQ is Coordinates (0.0095y 2 -1.2222y + 67.676, y, -0.0095y 2 + 0.2222y + 32.324)
  • the refrigerating capacity ratio based on R410A is 92.5% or more
  • the GWP is 350 or less
  • the WCF is slightly combustible.
  • the refrigerant D of the present disclosure is HFO-1132 (E), R32 and R32, where the mass% of HFO-1132 (E), R32 and R1234yf based on the total of these is respectively x, y and z.
  • the refrigerant E of the present disclosure is a mixed refrigerant containing trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123) and difluoromethane (R32).
  • the refrigerant E of the present disclosure has desirable characteristics as an R410A alternative refrigerant, having a coefficient of performance equivalent to that of R410A, and a sufficiently small GWP.
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point I (72.0, 28, 0, 0.0) Point K (48.4, 33.2, 18.4) Point B '(0.0, 81.6, 18.4) Point H (0.0, 84.2, 15.8) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment IK is Coordinates (0.025z 2 -1.7429z + 72.00, -0.025z 2 + 0.7429z + 28.0, z) Represented by The line segment HR is Coordinates (-
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point I (72.0, 28, 0, 0.0) Point J (57.7, 32.8, 9.5) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment IJ is Coordinates (0.025z 2 -1.7429z + 72.0, -0.025z 2 + 0.7429z + 28.0, z)
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.0491z 2 + 0.1544z + 61.5,
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point M (47.1, 52.9, 0.0) Point P (31.8, 49.8, 18.4)
  • Point G (38.5, 61.5, 0.0)
  • the line segment MP is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z)
  • the line segment HR is Coordinates (-0.3123z
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point M (47.1, 52.9, 0.0) Point N (38.5, 52.1, 9.5) Point R (23.1, 67.4, 9.5) and Point G (38.5, 61.5, 0.0)
  • the line segment MN is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z)
  • the line segment RG is Coordinates ( ⁇ 0.0491z 2 -1.1544z + 38.5, 0.
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point P (31.8, 49.8, 18.4) Point S (25.4, 56.2, 18.4) and Point T (34.8, 51.0, 14.2)
  • the line segment ST is Coordinates (-0.0982z 2 + 0.9622z + 40.931, 0.0982z 2 -1.9622z + 59.069, z)
  • the line segment TP is Coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z) Represented by It is preferable that the line segment PS be a
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point Q (28.6, 34.4, 37.0) Point B '' (0.0, 63.0, 37.0) Point D (0.0, 67.0, 33.0) and point U (28.7, 41.2, 30.1)
  • the line segment DU is The coordinates ( ⁇ 3.4962z 2 + 210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z + 3246.1, z) are represented, and the line segment UQ is Represented by
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point c '(56.7, 43.3, 0.0), Point d '(52.2, 38.3, 9.5), Point e '(41.8, 39.8, 18.4) and point a' (81.6, 0.0, 18.4)
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point c (77.7, 22.3, 0.0), Point d (76.3, 14.2, 9.5), Point e (72.2, 9.4, 18.4) and point a '(81.6, 0.0, 18.4)
  • the line segment cde is It is preferable that the coordinates ( ⁇ 0.017z 2 + 0.0148z + 77.684,
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point c '(56.7, 43.3, 0.0), Point d '(52.2, 38.3, 9.5) and point a (90.5, 0.0, 9.5)
  • the line segment c'd ' is It is preferable if it is represented by the coordinates ( ⁇ 0.0297z 2 ⁇ 0.1915z + 56.7
  • the refrigerant E of the present disclosure is HFO-1132 (E), HFO-, where the mass% of HFO-1132 (E), HFO-1123 and R32 based on the total of these is respectively x, y and z.
  • coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point c (77.7, 22.3, 0.0), Point d (76.3, 14.2, 9.5), Point a (90.5, 0.0, 9.5)
  • the line segment CD is It is preferable if it is represented by coordinates ( ⁇ 0.017z 2 + 0.0148z + 77.684, 0.017z 2 + 0.9852z + 22.316, z), and the line segments Oc, da and aO are straight lines.
  • the refrigerant E of the present disclosure may further contain other additional refrigerants in addition to HFO-1132 (E), HFO-1123, and R32, as long as the above-described properties and effects are not impaired.
  • the refrigerant E of the present disclosure preferably contains 99.5% by mass or more, more preferably 99.75% by mass or more, of the total of HFO-1132 (E), HFO-1123 and R32 with respect to the entire refrigerant. It is more preferable to contain 99.9 mass% or more.
  • the additional refrigerant is not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one kind alone as an additional refrigerant, or may contain two or more kinds.
  • Example of refrigerant E Below, the Example of the refrigerant
  • a mixed refrigerant was prepared by mixing HFO-1132 (E), HFO-1123 and R32 in the mass% shown in Table 145 and Table 146, respectively, based on the total of these.
  • the composition of each mixture is WCF, and in accordance with the ASHRAE 34-2013 standard, the condition (Equipment), (Storage), (Shipping), (Shipping), (Leak) and Recharge the National Institute of Science and Technology (NIST) Leakage simulation was performed according to Standard Reference Data Base Refleak Version 4.0, and the most flammable fraction was WCFF.
  • the burning rate was measured in accordance with the ANSI / ASHRA 34-2013 standard.
  • the WCF composition and the WCFF composition having a burning rate of 10 cm / s or less correspond to the “2 L class (slight flammability)” in the flammability classification of ASHRAE.
  • the burning rate test was done as follows using the apparatus shown in FIG. First, the mixed refrigerant used was 99.5% or more pure and degassed by repeated cycles of freezing, pumping and thawing until no traces of air were visible on the vacuum gauge. The burning rate was measured by the closure method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using Schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two acrylic windows for transmitting light was used as a sample cell, and a xenon lamp was used as a light source.
  • Schlieren images of flames were recorded with a high speed digital video camera at a framing rate of 600 fps and stored on a PC.
  • the points on the line segment KL are approximated curves by the least squares method from three points of K (48.4, 33.2, 18.4), Example 10 (41.1, 31.2, 27.7) and L (35.5, 27.5, 37.0). Determined, determined the coordinates.
  • the line segment MP is represented by coordinates (0.0083z 2 -0.984z + 47.1, -0.0083z 2 -0.016z + 52.9, z), and the line segment PQ is represented by coordinates (0.0135z 2 -0.9181z). +44.133, -0.0135z 2 -0.0819z + 55.867, z).
  • the point on the line segment MP obtains an approximate curve from the three points M, N, and P by the least squares method
  • the point on the line segment PQ approximates the curve from the three points P, U, and Q by the least squares method
  • the refrigeration capacity of a composition containing a mixture of R410A and HFO-1132 (E) and HFO-1123 is as follows using the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) It calculated
  • the coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point A '' (63.0, 0.0, 37.0), Point B '' (0.0, 63.0, 37.0) and Point (0.0, 100.0, 0.0)
  • GWP becomes 250 or less.
  • the coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point A '(81.6, 0.0, 18.4), Point B '(0.0, 81.6, 18.4) and point (0.0, 100.0, 0.0)
  • Point O (100.0, 0.0, 0.0)
  • Point A '(81.6, 0.0, 18.4) Point B '(0.0, 81.6, 18.4)
  • point (0.0, 100.0, 0.0) When it exists in the range of the figure enclosed by the line segment which respectively connects 4 points of, or on the said line segment, it turns out that GWP becomes 125 or less.
  • the coordinates (x, y, z) are Point O (100.0, 0.0, 0.0), Point A (90.5, 0.0, 9.5), Point B (0.0, 90.5, 9.5) and Point (0.0, 100.0, 0.0)
  • Point O 100.0, 0.0, 0.0
  • Point A 90.5, 0.0, 9.5
  • Point B 0.0, 90.5, 9.5
  • Point 0.0, 100.0, 0.0
  • the coordinates (x, y, z) are Point C (50.0, 31.6, 18.4), Point U (28.7, 41.2, 30.1) and Point D (52.2, 38.3, 9.5)
  • the COP ratio based on R410A is 96% or more when it is on the left side of the line segment connecting the three points of or on the line segment.
  • the line segment CU has coordinates ( ⁇ 0.0538z 2 + 0.7888z + 53.701, 0.0538z 2 ⁇ 1.7888z + 46.299, z)
  • the line segment UD has coordinates ( ⁇ 3.4962z 2 + 210.71z ⁇ 3146.1, 3.4962 z 2 -211.71 z + 3246.1, z).
  • the point on the line segment CU is obtained from the three points of the point C, the comparative example 10, and the point U by the least square method.
  • the point on the line segment UD is obtained by the least square method from the three points of the point U, the second embodiment, and the D.
  • the coordinates (x, y, z) are Point E (55.2, 44.8, 0.0), Point T (34.8, 51.0, 14.2)
  • Point E (55.2, 44.8, 0.0)
  • Point T (34.8, 51.0, 14.2)
  • the COP ratio based on R410A is 94.5% or more.
  • the line segment ET the coordinates (-0.0547z 2 -0.5327z + 53.4, 0.0547z 2 -0.4673z + 46.6, z)
  • the segment TF is coordinates (-0.0982z 2 + 0.9622z + 40.931, 0.0982 z 2 ⁇ 1.9622 z + 59.069, z).
  • the point on the line segment ET is obtained by the least square method from the three points of the point E, Example 2, and T.
  • the point on the line segment TG is obtained by the least square method from the three points T, S, and F.
  • the coordinates (x, y, z) are Point G (0.0, 76.7, 23.3), Point R (21.0, 69.5, 9.5) and point H (0.0, 85.9, 14.1)
  • point G 0.0, 76.7, 23.3
  • Point R (21.0, 69.5, 9.5)
  • point H 0.0, 85.9, 14.1
  • the line segment GR is represented by coordinates ( ⁇ 0.0491 2 -1.1544z + 38.5, 0.0491z 2 + 0.1544z + 61.5, z)
  • the line segment RH is represented by coordinates ( ⁇ 0.3123z 2 + 4.234z + 11.06, 0.3123z 2 -5.234z + 88.94, represented by z).
  • the point on the line segment GR is obtained from the three points of the point G, the fifth embodiment, and the point R by the least square method.
  • the point on the line segment RH is obtained from the three points of the point R, the example 7, and the point H by the least square method.
  • FIG. 16 is a schematic configuration diagram of a refrigerant circuit
  • FIG. 17 which is a schematic control block configuration diagram
  • an air conditioner 1 as a refrigeration cycle device according to a first embodiment explain.
  • the air conditioning apparatus 1 is an apparatus that harmonizes air in a target space by performing a vapor compression refrigeration cycle.
  • the air conditioner 1 mainly includes an outdoor unit 20, an indoor unit 30, a liquid side refrigerant communication pipe 6 and a gas side refrigerant communication pipe 5 connecting the outdoor unit 20 and the indoor unit 30, an input device and an output device. It has a remote controller (not shown) and a controller 7 for controlling the operation of the air conditioner 1.
  • a refrigeration cycle is performed in which the refrigerant enclosed in the refrigerant circuit 10 is compressed, cooled or condensed, decompressed, heated or evaporated, and then compressed again.
  • the refrigerant circuit 10 is filled with a refrigerant for performing a vapor compression refrigeration cycle.
  • the refrigerant is a refrigerant containing 1,2-difluoroethylene, and any of the refrigerants A to E described above can be used.
  • the rated cooling capacity of the air conditioning apparatus 1 in which only one indoor unit 30 is provided can be, for example, 2.0 kW or more and 17.0 kW or less, and above all, the low pressure receiver 26 which is a refrigerant container In the present embodiment in which is provided, it is preferable to set to 4.0 kW or more and 17.0 kW or less.
  • Outdoor unit 20 The outdoor unit 20 is connected to the indoor unit 30 via the liquid side refrigerant communication pipe 6 and the gas side refrigerant communication pipe 5, and constitutes a part of the refrigerant circuit 10.
  • the outdoor unit 20 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, an outdoor fan 25, a low pressure receiver 26, a liquid side closing valve 29, and a gas. And a side closing valve 28.
  • the compressor 21 is a device that compresses the low pressure refrigerant in the refrigeration cycle to a high pressure.
  • a compressor of a closed type in which a rotary type or scroll type positive displacement type compression element (not shown) is rotationally driven by a compressor motor is used as the compressor 21 .
  • the compressor motor is for changing the capacity, and an inverter can control the operating frequency.
  • the compressor 21 is provided with an attached accumulator (not shown) on the suction side.
  • the four-way switching valve 22 connects the discharge side of the compressor 21 and the outdoor heat exchanger 23 by switching the connection state, and connects the suction side of the compressor 21 and the gas side shut-off valve 28. It is possible to switch the state and the heating operation connection state in which the suction side of the compressor 21 and the outdoor heat exchanger 23 are connected while connecting the discharge side of the compressor 21 and the gas side closing valve 28.
  • the outdoor heat exchanger 23 is a heat exchanger that functions as a condenser of high pressure refrigerant in the refrigeration cycle during cooling operation, and functions as an evaporator of low pressure refrigerant in the refrigeration cycle during heating operation.
  • a refrigerant container (a low pressure receiver, a high pressure receiver, etc.) in the refrigerant circuit 10 and attached to the compressor It is preferable that it is 1.4 L or more and less than 5.0 L about what is provided with
  • 0 is preferable that it is .4L or more and less than 3.5L.
  • the outdoor fan 25 sucks the outdoor air into the outdoor unit 20, exchanges heat with the refrigerant in the outdoor heat exchanger 23, and then generates an air flow for discharge to the outside.
  • the outdoor fan 25 is rotationally driven by the outdoor fan motor.
  • the outdoor expansion valve 24 can control the valve opening degree, and is provided between the liquid side end of the outdoor heat exchanger 23 and the liquid side closing valve 29.
  • the low pressure receiver 26 is a container provided between one of the connection ports of the four-way switching valve 22 and the suction side of the compressor 21 and capable of storing the refrigerant.
  • the liquid side shut-off valve 29 is a manual valve disposed at a connection portion of the outdoor unit 20 with the liquid side refrigerant communication pipe 6.
  • the gas side shut-off valve 28 is a manual valve disposed at a connection portion between the outdoor unit 20 and the gas side refrigerant communication pipe 5.
  • the outdoor unit 20 includes an outdoor unit control unit 27 that controls the operation of each component of the outdoor unit 20.
  • the outdoor unit control unit 27 includes a microcomputer including a CPU, a memory, and the like.
  • the outdoor unit control unit 27 is connected to the indoor unit control unit 34 of each indoor unit 30 via a communication line, and transmits and receives control signals and the like.
  • the outdoor unit control unit 27 is electrically connected to various sensors (not shown) and receives signals from the respective sensors.
  • the indoor unit 30 is installed on a wall, a ceiling, or the like in the room, which is the target space.
  • the indoor unit 30 is connected to the outdoor unit 20 via the liquid side refrigerant communication pipe 6 and the gas side refrigerant communication pipe 5, and constitutes a part of the refrigerant circuit 10.
  • the indoor unit 30 includes an indoor heat exchanger 31 and an indoor fan 32.
  • the liquid side of the indoor heat exchanger 31 is connected to the liquid side refrigerant communication pipe 6, and the gas side end is connected to the gas side refrigerant communication pipe 5.
  • the indoor heat exchanger 31 is a heat exchanger that functions as an evaporator of low pressure refrigerant in the refrigeration cycle during cooling operation, and functions as a condenser of high pressure refrigerant in the refrigeration cycle during heating operation.
  • the indoor fan 32 sucks the indoor air into the indoor unit 30 and exchanges heat with the refrigerant in the indoor heat exchanger 31 to generate an air flow for discharge to the outside.
  • the indoor fan 32 is rotationally driven by an indoor fan motor.
  • the indoor unit 30 includes an indoor unit control unit 34 that controls the operation of each part constituting the indoor unit 30.
  • the indoor unit control unit 34 has a microcomputer including a CPU, a memory, and the like.
  • the indoor unit control unit 34 is connected to the outdoor unit control unit 27 via a communication line, and transmits and receives control signals and the like.
  • the indoor unit control unit 34 is electrically connected to various sensors (not shown) provided in the indoor unit 30 and receives signals from the respective sensors.
  • controller 7 that controls the operation of the air conditioner 1 is connected by connecting the outdoor unit control unit 27 and the indoor unit control unit 34 via the communication line. It is configured.
  • the controller 7 mainly includes a CPU (central processing unit) and memories such as a ROM and a RAM. Note that various processing and control by the controller 7 are realized by the units included in the outdoor unit control unit 27 and / or the indoor unit control unit 34 functioning in an integrated manner.
  • a CPU central processing unit
  • memories such as a ROM and a RAM.
  • a cooling operation mode and a heating operation mode are provided.
  • the controller 7 determines and executes the cooling operation mode or the heating operation mode based on the instruction received from the remote controller or the like.
  • the connection state of the four-way switching valve 22 is connected to the discharge side of the compressor 21 and the outdoor heat exchanger 23 while the compressor 21 is connected.
  • the refrigerant filled in the refrigerant circuit 10 mainly includes the compressor 21, the outdoor heat exchanger 23, the outdoor expansion valve 24, and the indoor heat exchange It circulates in order of vessel 31.
  • the refrigerant is sucked into and compressed by the compressor 21 in the refrigerant circuit 10 and then discharged.
  • capacity control is performed according to the cooling load required by the indoor unit 30.
  • the capacity control is not particularly limited.
  • the target value of the suction pressure is set according to the cooling load required by the indoor unit 30, and the operating frequency of the compressor 21 is set so that the suction pressure becomes the target value. It may be controlled.
  • the gas refrigerant discharged from the compressor 21 flows into the gas side end of the outdoor heat exchanger 23 through the four-way switching valve 22.
  • the gas refrigerant that has flowed into the gas side end of the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 25 in the outdoor heat exchanger 23, condenses, and becomes liquid refrigerant as outdoor heat exchange It flows out from the liquid side end of the vessel 23.
  • the refrigerant flowing out of the liquid side end of the outdoor heat exchanger 23 is depressurized when passing through the outdoor expansion valve 24.
  • the outdoor expansion valve 24 is controlled such that the degree of subcooling of the refrigerant passing through the liquid-side outlet of the outdoor heat exchanger 23 satisfies a predetermined condition.
  • the method for controlling the degree of opening of the outdoor expansion valve 24 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature.
  • the degree of superheat of the refrigerant discharged from may be controlled to satisfy a predetermined condition.
  • the refrigerant decompressed by the outdoor expansion valve 24 flows into the indoor unit 30 through the liquid side shut-off valve 29 and the liquid side refrigerant communication pipe 6.
  • the refrigerant flowing into the indoor unit 30 flows into the indoor heat exchanger 31, and in the indoor heat exchanger 31, exchanges heat with the indoor air supplied by the indoor fan 32, evaporates, and becomes a gas refrigerant as indoor heat It flows out from the gas side end of the exchanger 31.
  • the gas refrigerant flowing out of the gas side end of the indoor heat exchanger 31 flows to the gas side refrigerant communication pipe 5.
  • the refrigerant having flowed through the gas-side refrigerant communication pipe 5 passes through the gas-side shut-off valve 28 and the four-way switching valve 22 and is again sucked into the compressor 21.
  • the connection state of the four-way switching valve 22 is established by connecting the discharge side of the compressor 21 and the gas side closing valve 28.
  • the refrigerant filled in the refrigerant circuit 10 mainly includes the compressor 21, the indoor heat exchanger 31, the outdoor expansion valve 24, and the outdoor heat exchange It circulates in order of vessel 23.
  • the refrigerant is sucked into and compressed by the compressor 21 in the refrigerant circuit 10 and then discharged.
  • capacity control is performed according to the heating load required by the indoor unit 30.
  • the capacity control is not particularly limited.
  • the target value of the discharge pressure is set according to the heating load required by the indoor unit 30, and the operating frequency of the compressor 21 is set so that the discharge pressure becomes the target value. It is controlled.
  • the gas refrigerant discharged from the compressor 21 flows into the indoor unit 30 after flowing through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5.
  • the refrigerant that has flowed into the indoor unit 30 flows into the gas side end of the indoor heat exchanger 31, and in the indoor heat exchanger 31, exchanges heat with the indoor air supplied by the indoor fan 32, condenses, and It flows out from the liquid side end of the indoor heat exchanger 31 as refrigerant or liquid refrigerant in a phase state.
  • the refrigerant that has flowed out from the liquid side end of the indoor heat exchanger 31 flows to the liquid side refrigerant communication pipe 6.
  • the refrigerant having flowed through the liquid side refrigerant communication pipe 6 is depressurized by the liquid side shut-off valve 29 and the outdoor expansion valve 24 to a low pressure in the refrigeration cycle.
  • the outdoor expansion valve 24 is controlled such that the degree of subcooling of the refrigerant passing through the liquid side outlet of the indoor heat exchanger 31 satisfies a predetermined condition.
  • the method for controlling the degree of opening of the outdoor expansion valve 24 is not particularly limited.
  • the discharge temperature of the refrigerant discharged from the compressor 21 may be controlled to be a predetermined temperature.
  • the degree of superheat of the refrigerant discharged from may be controlled to satisfy a predetermined condition.
  • the refrigerant reduced in pressure by the outdoor expansion valve 24 flows into the liquid side end of the outdoor heat exchanger 23.
  • the refrigerant that has flowed in from the liquid side end of the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 25 in the outdoor heat exchanger 23, evaporates, and becomes a gas refrigerant as the outdoor heat exchanger 23 Flow out from the gas side end of the
  • the refrigerant that has flowed out from the gas side end of the outdoor heat exchanger 23 passes through the four-way switching valve 22 and is again drawn into the compressor 21.
  • the refrigerant is added to the refrigerant circuit 10 so that the amount sealed per 1 kW of the refrigerating capacity is 160 g or more and 560 g or less.
  • the air conditioner 1 which is filled, and in particular, the low pressure receiver 26 as a refrigerant container, the refrigerant is filled in the refrigerant circuit 10 so that the enclosed amount per 1 kW of the refrigeration capacity is 260 g or more and 560 g or less. It is done.
  • the refrigerant of any one of the refrigerants A to E containing 1,2-difluoroethylene is used as the refrigerant.
  • the amount of refrigerant charged is set to 160 g or more and 560 g or less per 1 kW of refrigeration capacity (in particular, 260 g or more and 560 g or less because the low pressure receiver 26 is provided).
  • the cycle capacity due to a lack of refrigerant can be achieved by setting the enclosed amount per 1 kW of refrigeration capacity to 160 g or more (especially 260 g or more because the low pressure receiver 26 is provided). It has become possible to control the decline in LCCP and suppress the rise in LCCP. As mentioned above, when performing a heat cycle using a refrigerant with a sufficiently small GWP, it is possible to keep LCCP low.
  • the refrigerant circuit 10 is filled with the refrigerant such that the amount of the refrigerant charged per 1 kW of the refrigeration capacity is 160 g or more and 400 g or less. And in this case, it is preferable that it is 0.4 L or more and 2.5 L or less as an internal volume (volume of fluid which can be filled inside) of outdoor heat exchanger 23.
  • the refrigerant circuit 10 is filled with the refrigerant such that the amount of the refrigerant charged per 1 kW of the refrigeration capacity is 260 g or more and 560 g or less. And in this case, it is preferable that it is 1.4 L or more and less than 5.0 L as an internal volume (volume of fluid which can be filled inside) of outdoor heat exchanger 23.
  • the air-conditioning apparatus having the trunk-type outdoor unit 20 provided with only one outdoor fan 25 has been described as an example. However, as the air-conditioning apparatus, two outdoor fans 25 are provided. It may have a trunk type outdoor unit 20 provided.
  • the refrigerant circuit 10 is filled with the refrigerant such that the amount of refrigerant charged per 1 kW of the refrigeration capacity is 350 g or more and 540 g or less. And in this case, it is preferable that it is 3.5 L or more and 7.0 L or less as an internal volume (volume of fluid which can be filled inside) of outdoor heat exchanger 23.
  • FIG. 18 is a schematic configuration diagram of a refrigerant circuit
  • FIG. 19 is a schematic control block configuration diagram. explain.
  • an air conditioning apparatus 1a according to the second embodiment will be mainly described focusing on differences from the air conditioning apparatus 1 according to the first embodiment.
  • the refrigerant circuit 10 is a refrigerant containing 1,2-difluoroethylene as a refrigerant for performing a vapor compression refrigeration cycle, and any one of the refrigerants A to E described above is charged. It is done.
  • the outdoor expansion valve 24 of the outdoor unit 20 in the first embodiment instead of the outdoor expansion valve 24 of the outdoor unit 20 in the first embodiment, between the liquid side of the outdoor heat exchanger 23 and the liquid side shut-off valve 29, the first outdoor An expansion valve 44, an intermediate pressure receiver 41, and a second outdoor expansion valve 45 are sequentially provided. Further, the low pressure receiver 26 of the outdoor unit 20 in the first embodiment is not provided in the outdoor unit 20 of the second embodiment.
  • the first outdoor expansion valve 44 and the second outdoor expansion valve 45 can control the valve opening degree.
  • both the end of the pipe extending from the first outdoor expansion valve 44 and the end of the pipe extending from the second outdoor expansion valve 45 are located in the internal space, and store the refrigerant. It is a container that can
  • the intermediate pressure receiver 41 which is a refrigerant container, is provided in the refrigerant circuit 10
  • the internal volume of the outdoor heat exchanger 23 of the outdoor unit 20 (inside The volume of fluid that can be filled is preferably 1.4 L or more and less than 5.0 L.
  • the internal volume (volume of fluid that can be charged inside) of the outdoor heat exchanger 23 of the trunk type outdoor unit 20 provided with only one outdoor fan 25 as in the present embodiment 0 It is preferable that they are more than 4L and less than 3.5L.
  • the first outdoor expansion valve 44 in the cooling operation mode, is controlled such that the degree of subcooling of the refrigerant passing through the liquid side outlet of the outdoor heat exchanger 23 satisfies the predetermined condition.
  • the second outdoor expansion valve 45 is controlled such that the degree of superheat of the refrigerant sucked by the compressor 21 satisfies a predetermined condition.
  • the second outdoor expansion valve 45 may be controlled such that the temperature of the refrigerant discharged by the compressor 21 becomes a predetermined temperature, or the degree of superheat of the refrigerant discharged by the compressor 21 is predetermined. It may be controlled to satisfy the condition.
  • the second outdoor expansion valve 45 is controlled such that the degree of subcooling of the refrigerant passing through the liquid side outlet of the indoor heat exchanger 31 satisfies the predetermined condition.
  • the first outdoor expansion valve 44 is controlled such that the degree of superheat of the refrigerant sucked by the compressor 21 satisfies a predetermined condition.
  • the first outdoor expansion valve 44 may be controlled such that the temperature of the refrigerant discharged by the compressor 21 becomes a predetermined temperature, or the degree of superheat of the refrigerant discharged by the compressor 21 is predetermined It may be controlled to satisfy the condition.
  • the refrigerant is filled in the refrigerant circuit 10 so that the enclosed amount per 1 kW of the refrigeration capacity is 160 g or more and 560 g or less.
  • the refrigerant circuit 10 is filled with the refrigerant such that the enclosed amount per 1 kW of the refrigeration capacity is 260 g or more and 560 g or less.
  • a rated cooling capacity of the air conditioning apparatus 1 in which only one indoor unit 30 is provided for example, it can be 2.2 kW or more and 16.0 kW or less, and is 4.0 kW or more and 16.0 kW or less Is preferred.
  • the LCCP should be kept low. Is possible.
  • the refrigerant circuit 10 is filled with the refrigerant such that the amount of the refrigerant charged per 1 kW of the refrigeration capacity is 260 g or more and 560 g or less. And in this case, it is preferable that it is 1.4 L or more and less than 5.0 L as an internal volume (volume of fluid which can be filled inside) of outdoor heat exchanger 23.
  • the air-conditioning apparatus having the trunk-type outdoor unit 20 provided with only one outdoor fan 25 has been described as an example. However, as the air-conditioning apparatus, two outdoor fans 25 are provided. It may have a trunk type outdoor unit 20 provided.
  • the refrigerant circuit 10 is filled with the refrigerant such that the amount of refrigerant charged per 1 kW of the refrigeration capacity is 350 g or more and 540 g or less. And in this case, it is preferable that it is 3.5 L or more and 7.0 L or less as an internal volume (volume of fluid which can be filled inside) of outdoor heat exchanger 23.
  • FIG. 20 which is a schematic configuration diagram of a refrigerant circuit
  • FIG. 21 which is a schematic control block configuration diagram
  • an air conditioner 1b as a refrigeration cycle device according to a third embodiment. explain.
  • the air conditioning apparatus 1 b of the third embodiment will be mainly described focusing on the difference from the air conditioning apparatus 1 of the first embodiment.
  • the refrigerant circuit 10 is a refrigerant containing 1,2-difluoroethylene as a refrigerant for performing a vapor compression refrigeration cycle, and any one of the refrigerants A to E described above is charged. It is done.
  • a subcooling heat exchanger 47 and a subcooling circuit 46 are provided in the outdoor unit 20 in the first embodiment.
  • the subcooling heat exchanger 47 is provided between the outdoor expansion valve 24 and the liquid side shutoff valve 29.
  • the subcooling circuit 46 is branched from the main circuit between the outdoor expansion valve 24 and the subcooling heat exchanger 47, and is located on the way from one of the connection ports of the four-way switching valve 22 to the low pressure receiver 26. It is a circuit extended to merge. In the middle of the subcooling circuit 46, a subcooling expansion valve 48 for reducing the pressure of the passing refrigerant is provided. The refrigerant flowing through the subcooling circuit 46 and having the pressure reduced by the subcooling expansion valve 48 exchanges heat with the refrigerant flowing through the main circuit in the subcooling heat exchanger 47. As a result, the refrigerant flowing on the main circuit side is further cooled, and the refrigerant flowing on the subcooling circuit 46 evaporates.
  • the internal volume of the outdoor heat exchanger 23 of the outdoor unit 20 The volume is preferably 5.0 L or more and 38 L or less.
  • the outdoor heat exchanger 23 is The internal volume (volume of fluid that can be charged inside) is preferably 7.0 L or less, and in the case where the outdoor unit 20 from which the air having passed through the outdoor heat exchanger 23 blows upward, the outdoor thermal energy is The internal volume of the exchanger 23 is preferably 5.5 L or more.
  • the air conditioning apparatus 1b which concerns on 3rd Embodiment, it has 1st indoor unit 30 and 2nd indoor unit 35 mutually provided in parallel instead of the indoor unit 30 in the said 1st Embodiment.
  • the first indoor unit 30 is provided with a first indoor heat exchanger 31, a first indoor fan 32, and a first indoor unit control unit 34 as in the indoor unit 30 in the first embodiment, and further, A first indoor expansion valve 33 is provided on the liquid side of the indoor heat exchanger 31.
  • the first indoor expansion valve 33 can control the valve opening degree.
  • the second indoor unit 35 is the same as the first indoor unit 30, and the liquid of the second indoor heat exchanger 36, the second indoor fan 37, the second indoor unit control unit 39, and the second indoor heat exchanger 36.
  • a second indoor expansion valve 38 provided on the side. The second indoor expansion valve 38 can control the valve opening degree.
  • the outdoor unit controller 27, the first indoor unit controller 34, and the second indoor unit controller 39 are communicably connected to each other.
  • the outdoor expansion valve 24 is controlled such that the degree of subcooling of the refrigerant passing through the liquid side outlet of the outdoor heat exchanger 23 satisfies a predetermined condition.
  • the supercooling expansion valve 48 is controlled such that the degree of superheat of the refrigerant sucked by the compressor 21 satisfies a predetermined condition.
  • the first indoor expansion valve 33 and the second indoor expansion valve 38 are controlled to be fully open.
  • the first indoor expansion valve 33 is controlled such that the degree of subcooling of the refrigerant passing through the liquid side outlet of the first indoor heat exchanger 31 satisfies a predetermined condition.
  • the second indoor expansion valve 38 is controlled so that the degree of supercooling of the refrigerant passing through the liquid side outlet of the second indoor heat exchanger 36 satisfies a predetermined condition.
  • the outdoor expansion valve 45 is controlled such that the degree of superheat of the refrigerant sucked by the compressor 21 satisfies a predetermined condition.
  • the supercooling expansion valve 48 is controlled such that the degree of superheat of the refrigerant sucked by the compressor 21 satisfies a predetermined condition.
  • the refrigerant circuit 10 is filled with a refrigerant such that the enclosed amount per 1 kW of the refrigeration capacity is 190 g or more and 1660 g or less.
  • the rated cooling capacity of the air conditioner 1b in which a plurality of indoor units 30 are provided may be, for example, 4.0 kW or more and 150.0 kW or less, and may be 14.0 kW or more and 150.0 kW or less. Among them, in the case where the outdoor unit 20 is of the upper blow type, it is preferable to set 22.4 kW or more and 150.0 kW or less.
  • the refrigerant is a refrigerant containing 1,2-difluoroethylene as the refrigerant, and any one of the refrigerants A to E is used.
  • the amount of the enclosed refrigerant is such that the enclosed amount per 1 kW of the refrigeration capacity is 190 g or more and 1660 g or less.
  • LCCP can be reduced by using the refrigerant having a GWP sufficiently smaller than R32 while suppressing the enclosed amount per 1 kW of the refrigeration capacity to 1660 g. It is possible to suppress. Also, in the air conditioner 1b in which a plurality of indoor units are provided, even if the refrigerant has a heat transfer capacity lower than that of R32, the enclosed amount per 1 kW of the refrigeration capacity is 190 g or more, and the cycle efficiency due to the refrigerant shortage It has become possible to control the decline in LCCP and suppress the rise in LCCP. As described above, even in the air conditioning apparatus 1 b in which a plurality of indoor units are provided, it is possible to suppress LCCP low when performing heat cycle using a refrigerant with a sufficiently small GWP.
  • Air conditioner (refrigerating cycle device) 5 Gas side refrigerant communication piping (refrigerant piping) 6 Liquid side refrigerant communication piping (refrigerant piping) 10 refrigerant circuit 20 outdoor unit (heat source unit) 21 compressor 23 outdoor heat exchanger (heat source side heat exchanger) 30 indoor unit, first indoor unit (use unit, first use unit) 31 Indoor heat exchanger, 1st indoor heat exchanger (1st utilization side heat exchanger) 35 2nd indoor unit (2nd usage unit) 36 Second indoor heat exchanger (second use side heat exchanger)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Lubricants (AREA)
  • Liquid Crystal Substances (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

GWPが十分に小さい冷媒を用いて熱サイクルを行う場合において、LCCPを低く抑えることが可能な冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法を提供する。圧縮機(21)および室外熱交換器(23)を有する室外ユニット(20)と、室内熱交換器(31)を有する室内ユニット(30)と、室外ユニット(20)と室内ユニット(30)とを接続する冷媒配管(5、6)と、を備え、圧縮機(21)と室外熱交換器(23)と室内熱交換器(31)が接続されて構成される冷媒回路(10)に、少なくとも1,2-ジフルオロエチレンを含む冷媒が封入されており、冷媒回路(10)における冷媒の冷凍能力1kW当りの封入量が、160g以上560g以下の条件を満たしている。

Description

冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法
 本開示は、冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法に関する。
 従来より、空気調和装置等の熱サイクルシステムでは、冷媒として、R410Aが多用されている。R410Aは、(CH2F2;HFC-32又はR32)とペンタフルオロエタン(C2HF5;HFC-125又はR125)との2成分混合冷媒であり、擬似共沸組成物である。
 しかし、R410Aの地球温暖化係数(GWP)は2088であり、近年、地球温暖化への懸念の高まりから、GWPがより低い675であるR32がより多く使用されつつある。 このため、例えば、特許文献1(国際公開第2015/141678号)においては、R410Aに代替可能な低GWP混合冷媒が種々提案されている。
 ところで、地球温暖化防止を考えた場合の指数として、LCCP(Life Cycle Climate Performance:製品寿命気候負荷)という指数がある。このLCCPは、地球温暖化防止を考えた場合の指数であり、TEWI(Total Equivalent Warning Impact:総等価温暖化影響)に、使用温室効果ガス製造時のエネルギ消費(間接影響)と外気への漏洩(直接影響)を追加した数値であって、単位はkg-CO2である。すなわち、TEWIは、所要の数式によりそれぞれ算出される直接影響と間接影響とを加算して得られる。このLCCPは下記の関係式により算出される。
  LCCP=GWPRM×W+GWP×W×(1-R)+N×Q×A
 ここで、GWPRM:冷媒製造に関わる温暖化効果、W:冷媒充填量、R:機器廃棄時の冷媒回収量、N:機器使用期間(年)、Q:CO2排出原単位、A:年間消費電力量である。
 冷凍サイクル装置のLCCPは、冷媒回路における充填量が少な過ぎると、冷媒不足に起因するサイクル効率の悪化によりLCCPが大きくなり、さらに、冷媒回路における充填量が多過ぎるとGWPの影響が高くなり、LCCPが大きくなる。また、従来多用されているR32よりもGWPの低い冷媒は、熱搬送能力が低い傾向にあり、サイクル効率が悪化することによりLCCPが大きくなる傾向にある。
 本開示の内容は、上述した点に鑑みたものであり、GWPが十分に小さい冷媒を用いて熱サイクルを行う場合において、LCCPを低く抑えることが可能な冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法を提供することを目的とする。
 第1観点に係る冷凍サイクル装置は、熱源ユニットと、利用ユニットと、冷媒配管と、を備えている。熱源ユニットは、圧縮機および熱源側熱交換器を有している。利用ユニットは、利用側熱交換器を有している。冷媒配管は、熱源ユニットと利用ユニットとを接続する。圧縮機と熱源側熱交換器と利用側熱交換器が接続されて構成される冷媒回路には、少なくとも1,2-ジフルオロエチレンを含む冷媒が封入されている。冷媒回路における冷媒の封入量は、冷凍サイクル装置の冷凍能力1kW当り160g以上560g以下の条件を満たしている。
 なお、冷凍サイクル装置の冷凍能力とは、定格冷凍能力を意味する。
 この冷凍サイクル装置は、冷媒回路において、少なくとも1,2-ジフルオロエチレンを含む冷媒が、冷凍能力1kW当り160g以上560g以下封中されているため、GWPが十分に小さい冷媒を用いて熱サイクルを行う場合において、LCCPを低く抑えることが可能となっている。
 なお、上記熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、冷媒回路において冷媒容器(低圧レシーバや高圧レシーバ等であり、圧縮機に付属のアキュムレータを除く)が設けられていないものについては、0.4L以上2.5L以下であることが好ましく、冷媒回路において冷媒容器が設けられているものについては、1.4L以上5.0L未満であることが好ましい。
 また、ファンが1つだけ設けられている熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、設置状態における側面に熱源側熱交換器を通過した空気を吹き出すための吹出口が形成されている筐体を熱源ユニットが有している場合(熱源ユニットがトランク型等の場合)については、0.4L以上3.5L未満であることが好ましく、ファンが2つ設けられている熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、設置状態における側面に熱源側熱交換器を通過した空気を吹き出すための吹出口が形成されている筐体を熱源ユニットが有している場合(熱源ユニットがトランク型等の場合)については、3.5L以上5.0L未満であることが好ましい。
 第2観点に係る冷凍サイクル装置は、熱源ユニットと、第1利用ユニットと、第2利用ユニットと、冷媒配管と、を備えている。熱源ユニットは、圧縮機および熱源側熱交換器を有している。第1利用ユニットは、第1利用側熱交換器を有している。第2利用ユニットは、第2利用側熱交換器を有している。冷媒配管は、熱源ユニットと第1利用ユニットと第2利用ユニットとを接続している。圧縮機および熱源側熱交換器に第1利用側熱交換器と第2利用側熱交換器とが並列に接続されて構成される冷媒回路には、少なくとも1,2-ジフルオロエチレンを含む冷媒が封入されている。冷媒回路における冷媒の冷凍能力1kW当りの封入量は、190g以上1660g以下の条件を満たしている。
 この冷凍サイクル装置は、互いに並列に接続された利用側熱交換器を複数有する冷媒回路において、少なくとも1,2-ジフルオロエチレンを含む冷媒が、冷凍能力1kW当り190g以上1660g以下封中されているため、GWPが十分に小さい冷媒を用いて熱サイクルを行う場合において、LCCPを低く抑えることが可能となっている。
 なお、上記熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、第1利用ユニットが第1利用側熱交換器の液側において膨張弁を有しておらず、第2利用ユニットも第2利用側熱交換器の液側において膨張弁を有していないものについては、1.4L以上5.0L未満であることが好ましく、第1利用ユニットが第1利用側熱交換器の液側において膨張弁を有し、第2利用ユニットも第2利用側熱交換器の液側において膨張弁を有しているものについては、5.0L以上38L以下であることが好ましい。
 また、ファンが1つだけ設けられている熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、設置状態における側面に熱源側熱交換器を通過した空気を吹き出すための吹出口が形成されている筐体を熱源ユニットが有している場合(熱源ユニットがトランク型等の場合)については、0.4L以上3.5L未満であることが好ましく、ファンが2つ設けられている熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、設置状態における側面に熱源側熱交換器を通過した空気を吹き出すための吹出口が形成されている筐体を熱源ユニットが有している場合(熱源ユニットがトランク型等の場合)については、3.5L以上7.0L以下であることが好ましく、熱源側熱交換器を通過した空気が上方に向けて吹き出す熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、5.5L以上38L以下であることが好ましい。
 第3観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒は、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含んでいる。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]及び成績係数[Coefficient of Performance(COP)]を有する、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第4観点に係る冷凍サイクル装置は、第3観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点A(68.6, 0.0, 31.4)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点D(0.0, 80.4, 19.6)、
  点C’(19.5,70.5,10.0)、
  点C(32.9, 67.1, 0.0)及び
  点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD、CO及びOA上の点は除く)、
前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分BD、CO及びOAが直線である。
 第5観点に係る冷凍サイクル装置は、第3観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点G(72.0, 28.0, 0.0)、
  点I(72.0, 0.0, 28.0)、
  点A(68.6, 0.0, 31.4)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点D(0.0, 80.4, 19.6)、
  点C’(19.5,70.5,10.0) 及び
  点C(32.9, 67.1, 0.0)
の8点をそれぞれ結ぶ線分GI、IA、AA’、A’B、BD、DC’、C’C及びCGで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分IA、BD及びCG上の点は除く)、
前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分GI、IA、BD及びCGが直線である。
 第6観点に係る冷凍サイクル装置は、第3観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点J(47.1, 52.9, 0.0)、
  点P(55.8, 42.0, 2.2)、
  点N(68.6, 16.3, 15.1)、
  点K(61.3, 5.4, 33.3)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点D(0.0, 80.4, 19.6)、
  点C’(19.5,70.5,10.0) 及び
  点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PN、NK、KA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
前記線分PNは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分NKは、
  座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
で表わされ、
前記線分KA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分JP、BD及びCGが直線である。
 第7観点に係る冷凍サイクル装置は、第3観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点J(47.1, 52.9, 0.0)、
  点P(55.8, 42.0, 2.2)、
  点L(63.1, 31.9, 5.0)、
  点M(60.3, 6.2, 33.5)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点D(0.0, 80.4, 19.6)、
  点C’(19.5,70.5,10.0) 及び
  点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PL、LM、MA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分JP、LM、BD及びCGが直線である。
 第8観点に係る冷凍サイクル装置は、第3観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点P(55.8, 42.0, 2.2)、
  点L(63.1, 31.9, 5.0)、
  点M(60.3, 6.2, 33.5)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点F(0.0, 61.8, 38.2)及び
  点T(35.8, 44.9, 19.3)
の7点をそれぞれ結ぶ線分PL、LM、MA’、A’B、BF、FT及びTPで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BF上の点は除く)、
前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
前記線分TPは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
前記線分LM及びBFが直線である。
 第9観点に係る冷凍サイクル装置は、第3観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点P(55.8, 42.0, 2.2)、
  点L(63.1, 31.9, 5.0)、
  点Q(62.8, 29.6, 7.6) 及び
  点R(49.8, 42.3, 7.9)
の4点をそれぞれ結ぶ線分PL、LQ、QR及びRPで囲まれる図形の範囲内又は前記線分上にあり、
前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分RPは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
前記線分LQ及びQRが直線である。
 第10観点に係る冷凍サイクル装置は、第3観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
  点S(62.6, 28.3, 9.1)、
  点M(60.3, 6.2, 33.5)、
  点A’(30.6, 30.0, 39.4)、
  点B(0.0, 58.7, 41.3)、
  点F(0.0, 61.8, 38.2)及び
  点T(35.8, 44.9, 19.3)
の6点をそれぞれ結ぶ線分SM、MA’、A’B、BF、FT、及びTSで囲まれる図形の範囲内又は前記線分上にあり、
前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
前記線分TSは、
  座標(x, 0.0017x2-0.7869x+70.888, -0.0017x2-0.2131x+29.112)
で表わされ、かつ
前記線分SM及びBFが直線である。
 第11観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して62.0質量%~72.0質量%含む。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]と冷凍能力[RefrigerationCapacity(Cooling Capacity、Capacityと表記されることもある)]とを有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第12観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、HFO-1132(E)及びHFO-1123の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して45.1質量%~47.1質量%含む。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]と冷凍能力[RefrigerationCapacity(Cooling Capacity、Capacityと表記されることもある)]とを有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第13観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
  0<a≦11.1のとき、
   点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)、
   点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)、
   点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)、
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の6点をそれぞれ結ぶ直線GI、IA、AB、BD’、D’C及びCGで囲まれる図形の範囲内又は前記直線GI、AB及びD’C上にあり(ただし、点G、点I、点A、点B、点D’及び点Cは除く)、
  11.1<a≦18.2のとき、
   点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)、
   点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)、
   点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)、
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
  18.2<a≦26.7のとき、
   点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)、
   点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)、
   点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)、
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
  26.7<a≦36.7のとき、
   点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)、
   点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、及び
  36.7<a≦46.7のとき、
   点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098,0.0)、
   点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2-0.0082a+36.098)、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にある(ただし、点G、点I、点A、点B及び点Wは除く)。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]及び成績係数[Coefficient of Performance(COP)]を有する、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第14観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
  0<a≦11.1のとき、
   点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)、
   点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)、
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’B、BD’、D’C及びCJで囲まれる図形の範囲内又は前記直線JK’、K’B及びD’C上にあり(ただし、点J、点B、点D’及び点Cは除く)、
  11.1<a≦18.2のとき、
   点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)、
   点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)、
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
   点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
  18.2<a≦26.7のとき、
   点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)、
   点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)、
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
   点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
  26.7<a≦36.7のとき、
   点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)、
   点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にあり(ただし、点J、点B及び点Wは除く)、及び
  36.7<a≦46.7のとき、
   点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)、
   点K’(-1.892a+29.443, 0.0, 0.892a+70.557)、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にある(ただし、点J、点B及び点Wは除く)。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]及び成績係数[Coefficient of Performance(COP)]を有する、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第15観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 0.0, 28.0)、
   点J(48.5, 18.3, 33.2)、
   点N(27.7, 18.2, 54.1)及び
   点E(58.3, 0.0, 41.7)
の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
 前記線分IJは、
  座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
で表わされ、
 前記線分NEは、
  座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
で表わされ、かつ
 前記線分JN及びEIが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第16観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(52.6, 0.0, 47.4)、
   点M’(39.2, 5.0, 55.8)、
   点N(27.7, 18.2, 54.1)、
   点V(11.0, 18.1, 70.9)及び
   点G(39.6, 0.0, 60.4)
の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
 前記線分MM’は、
  座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
で表わされ、
 前記線分M’Nは、
  座標(0.0313y2-1.4551y+43.824, y, -0.0313y2+0.4551y+56.176)
で表わされ、
 前記線分VGは、
  座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
で表わされ、かつ
 前記線分NV及びGMが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第17観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(22.6, 36.8, 40.6)、
   点N(27.7, 18.2, 54.1)及び
   点U(3.9, 36.7, 59.4)
の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分ONは、
  座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
で表わされ、
 前記線分NUは、
  座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
で表わされ、かつ
 前記線分UOが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第18観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(44.6, 23.0, 32.4)、
   点R(25.5, 36.8, 37.7)、
   点T(8.6, 51.6, 39.8)、
   点L(28.9, 51.7, 19.4)及び
   点K(35.6, 36.8, 27.6)
の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分QRは、
  座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
で表わされ、
 前記線分RTは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、
 前記線分LKは、
  座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
で表わされ、
 前記線分KQは、
  座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
で表わされ、かつ
 前記線分TLが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第19観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(20.5, 51.7, 27.8)、
   点S(21.9, 39.7, 38.4)及び
   点T(8.6, 51.6, 39.8)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分PSは、
  座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
で表わされ、
 前記線分STは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、かつ
 前記線分TPが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第20観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及びジフルオロメタン(R32)を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点K(48.4, 33.2, 18.4)
   点B’(0.0, 81.6, 18.4)
   点H(0.0, 84.2, 15.8)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分IK、KB’、B’H、HR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGI上の点を除く)、
 前記線分IKは、
  座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.0, z)
で表わされ、
 前記線分HRは、
  座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
 前記線分KB’及びGIが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第21観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点J(57.7, 32.8, 9.5)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分IJ、JR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GI上の点を除く)、
 前記線分IJは、
  座標(0.025z2-1.7429z+72.0, -0.025z2+0.7429z+28.0, z)
で表わされ、かつ
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
 前記線分JR及びGIが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第22観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)
   点P(31.8, 49.8, 18.4)
   点B’(0.0, 81.6, 18.4)
   点H(0.0, 84.2, 15.8)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分MP、PB’、B’H、HR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGM上の点を除く)、
 前記線分MPは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
 前記線分HRは、
  座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
 前記線分PB’及びGMが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第23観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)
   点N(38.5, 52.1, 9.5)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分MN、NR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上の点を除く)、
 前記線分MNは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、かつ
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
 前記線分JR及びGIが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第24観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(31.8, 49.8, 18.4)
   点S(25.4, 56.2, 18.4)及び
   点T(34.8, 51.0, 14.2)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分STは、
  座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)
で表わされ、かつ
 前記線分TPは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
 前記線分PSが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第25観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
 前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(28.6, 34.4, 37.0)
   点B’’(0.0, 63.0, 37.0)
   点D(0.0, 67.0, 33.0)及び
   点U(28.7, 41.2, 30.1)
の4点をそれぞれ結ぶ線分QB’’、B’’D、DU及びUQで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’’D上の点を除く)、
 前記線分DUは、
  座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされ、かつ
 前記線分UQは、
  座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867, z)
で表わされ、
 前記線分QB’’及びB’’Dが直線である。
 この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
 第26観点に係る冷凍サイクル装置における冷媒封入量の決定方法は、圧縮機および熱源側熱交換器を有する熱源ユニットと、利用側熱交換器を有する利用ユニットと、熱源ユニットと利用ユニットとを接続する冷媒配管と、を備え、圧縮機と熱源側熱交換器と利用側熱交換器が接続されて構成される冷媒回路に少なくとも1,2-ジフルオロエチレンを含む冷媒が封入された冷凍サイクル装置については、冷媒回路における冷媒の冷凍能力1kW当りの封入量を、160g以上560g以下とする。そして、当該冷媒封入量の決定方法では、圧縮機および熱源側熱交換器を有する熱源ユニットと、第1利用側熱交換器を有する第1利用ユニットと、第2利用側熱交換器を有する第2利用ユニットと、熱源ユニットと第1利用ユニットと第2利用ユニットとを接続する冷媒配管と、を備え、圧縮機および熱源側熱交換器に第1利用側熱交換器と第2利用側熱交換器とが並列に接続されて構成される冷媒回路に少なくとも1,2-ジフルオロエチレンを含む冷媒が封入された冷凍サイクル装置については、冷媒回路における冷媒の冷凍能力1kW当りの封入量を、190g以上1660g以下とする。
 この冷凍サイクル装置における冷媒封入量の決定方法では、GWPが十分に小さい冷媒を用いて熱サイクルを行う場合において、LCCPを低く抑え冷凍サイクル装置を提供することが可能となっている。
 なお、利用ユニットが1つ設けられている冷凍サイクル装置の熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、冷媒回路において冷媒容器(低圧レシーバや高圧レシーバ等であり、圧縮機に付属のアキュムレータを除く)が設けられていないものについては、0.4L以上2.5L以下であることが好ましく、冷媒回路において冷媒容器が設けられているものについては、1.4L以上5.0L未満であることが好ましい。
 また、利用ユニットが1つ設けられている冷凍サイクル装置について、ファンが1つだけ設けられている熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、設置状態における側面に熱源側熱交換器を通過した空気を吹き出すための吹出口が形成されている筐体を熱源ユニットが有している場合(熱源ユニットがトランク型等の場合)については、0.4L以上3.5L未満であることが好ましく、ファンが2つ設けられている熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、設置状態における側面に熱源側熱交換器を通過した空気を吹き出すための吹出口が形成されている筐体を熱源ユニットが有している場合(熱源ユニットがトランク型等の場合)については、3.5L以上5.0L未満であることが好ましい。
 なお、第1利用ユニットおよび第2利用ユニットが設けられている冷凍サイクル装置の熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、第1利用ユニットが第1利用側熱交換器の液側において膨張弁を有しておらず、第2利用ユニットも第2利用側熱交換器の液側において膨張弁を有していないものについては、1.4L以上5.0L未満であることが好ましく、第1利用ユニットが第1利用側熱交換器の液側において膨張弁を有し、第2利用ユニットも第2利用側熱交換器の液側において膨張弁を有しているものについては、5.0L以上38L以下であることが好ましい。
 さらに、第1利用ユニットと第2利用ユニットが設けられている冷凍サイクル装置について、ファンが1つだけ設けられている熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、設置状態における側面に熱源側熱交換器を通過した空気を吹き出すための吹出口が形成されている筐体を熱源ユニットが有している場合(熱源ユニットがトランク型等の場合)については、0.4L以上3.5L未満であることが好ましく、ファンが2つ設けられている熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、設置状態における側面に熱源側熱交換器を通過した空気を吹き出すための吹出口が形成されている筐体を熱源ユニットが有している場合(熱源ユニットがトランク型等の場合)については、3.5L以上7.0L以下であることが好ましく、熱源側熱交換器を通過した空気が上方に向けて吹き出す熱源ユニットが有する熱源側熱交換器の内容積(内部に充填可能な流体の体積)としては、5.5L以上38L以下であることが好ましい。
 なお、上記第26観点に係る冷凍サイクル装置における冷媒封入量の決定方法の冷媒としては、第3観点から第25観点のいずれかに記載の冷凍サイクル装置に用いられる冷媒と同じ冷媒であってよい。
燃焼性試験に用いた装置の模式図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図に、点A~T並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図に、点A~C、D’、G、I、J及びK’並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が92.9質量%(R32含有割合が7.1質量%)となる3成分組成図に、点A~C、D’、G、I、J及びK’並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が88.9質量%(R32含有割合が11.1質量%)となる3成分組成図に、点A~C、D’、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が85.5質量%(R32含有割合が14.5質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が81.8質量%(R32含有割合が18.2質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が78.1質量%(R32含有割合が21.9質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が73.3質量%(R32含有割合が26.7質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が70.7質量%(R32含有割合が29.3質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が63.3質量%(R32含有割合が36.7質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が55.9質量%(R32含有割合が44.1質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が52.2質量%(R32含有割合が47.8質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図に、点A~C、E、G、及びI~W並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図に、点A~U並びにそれらを互いに結ぶ線分を示した図である。 第1実施形態に係る冷媒回路の概略構成図である。 第1実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2実施形態に係る冷媒回路の概略構成図である。 第2実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第3実施形態に係る冷媒回路の概略構成図である。 第3実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。
 (1)用語の定義
 本明細書において用語「冷媒」には、ISO817(国際標準化機構)で定められた、冷媒の種類を表すRで始まる冷媒番号(ASHRAE番号)が付された化合物が少なくとも含まれ、さらに冷媒番号が未だ付されていないとしても、それらと同等の冷媒としての特性を有するものが含まれる。冷媒は、化合物の構造の面で、「フルオロカーボン系化合物」と「非フルオロカーボン系化合物」とに大別される。「フルオロカーボン系化合物」には、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)及びハイドロフルオロカーボン(HFC)が含まれる。「非フルオロカーボン系化合物」としては、プロパン(R290)、プロピレン(R1270)、ブタン(R600)、イソブタン(R600a)、二酸化炭素(R744)及びアンモニア(R717)等が挙げられる。
 本明細書において、用語「冷媒を含む組成物」には、(1)冷媒そのもの(冷媒の混合物を含む)と、(2)その他の成分をさらに含み、少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることのできる組成物と、(3)冷凍機油を含有する冷凍機用作動流体とが少なくとも含まれる。本明細書においては、これら三態様のうち、(2)の組成物のことを、冷媒そのもの(冷媒の混合物を含む)と区別して「冷媒組成物」と表記する。また、(3)の冷凍機用作動流体のことを「冷媒組成物」と区別して「冷凍機油含有作動流体」と表記する。
 本明細書において、用語「代替」は、第一の冷媒を第二の冷媒で「代替」するという文脈で用いられる場合、第一の類型として、第一の冷媒を使用して運転するために設計された機器において、必要に応じてわずかな部品(冷凍機油、ガスケット、パッキン、膨張弁、ドライヤその他の部品のうち少なくとも一種)の変更及び機器調整のみを経るだけで、第二の冷媒を使用して、最適条件下で運転することができることを意味する。すなわち、この類型は、同一の機器を、冷媒を「代替」して運転することを指す。この類型の「代替」の態様としては、第二の冷媒への置き換えの際に必要とされる変更乃至調整の度合いが小さい順に、「ドロップイン(drop in)代替」、「ニアリー・ドロップイン(nealy drop in)代替」及び「レトロフィット(retrofit)」があり得る。
 第二の類型として、第二の冷媒を用いて運転するために設計された機器を、第一の冷媒の既存用途と同一の用途のために、第二の冷媒を搭載して用いることも、用語「代替」に含まれる。この類型は、同一の用途を、冷媒を「代替」して提供することを指す。
 本明細書において用語「冷凍機(refrigerator)」とは、物あるいは空間の熱を奪い去ることにより、周囲の外気よりも低い温度にし、かつこの低温を維持する装置全般のことをいう。言い換えれば、冷凍機は温度の低い方から高い方へ熱を移動させるために、外部からエネルギーを得て仕事を行いエネルギー変換する変換装置のことをいう。
 本明細書において冷媒が「WCF微燃」であるとは、米国ANSI/ASHRAE34-2013規格に従い最も燃えやすい組成(Worst case of formulation for flammability; WCF)が、燃焼速度が10cm/s以下であることを意味する。また、本明細書において冷媒が「ASHRAE微燃」であるとは、WCFの燃焼速度が10cm/s以下で、かつ、WCFを用いてANSI/ASHRAE34-2013に基づいた貯蔵、輸送、使用時の漏洩試験を行うことで特定される最も燃えやすい分画組成(Worst case of fractionation for flammability; WCFF)が、燃焼速度が10cm/s以下であり、米国ANSI/ASHRAE34-2013規格の燃焼性区分が「2Lクラス」と判断されることを意味する。
 本明細書において冷媒について「RCLがx%以上」というときは、かかる冷媒についての、米国ANSI/ASHRAE34-2013規格に従い算出される冷媒濃度限界(Refrigerant Concentration Limit; RCL)がx%以上であることを意味する。RCLとは、安全係数を考慮した空気中における濃度限界であり、人間が存在する密閉空間において、急性毒性、窒息及び可燃性の危険度を低減することを目的とした指標である。RCLは上記規格に従って決定される。具体的には、上記規格7.1.1、7.1.2及び7.1.3に従いそれぞれ算出される、急性毒性曝露限界(Acute-Toxicity Exposure Limit; ATEL)、酸欠濃度限界(Oxygen Deprivation Limit; ODL)及び可燃濃度限界(Flammable Concentration Limit; FCL)のうち、最も低い濃度がRCLとなる。
 本明細書において温度グライド(Temperature Glide)とは、冷媒システムの熱交換器内における本開示の冷媒を含む組成物の相変化過程の開始温度と終了温度の差の絶対値を意味する。
 (2)冷媒
 (2-1)冷媒成分
 詳細は後述するが、冷媒A、冷媒B、冷媒C、冷媒D、冷媒Eの各種冷媒のいずれか1種を冷媒として用いることができる。
 (2-2)冷媒の用途
 本開示の冷媒は、冷凍機における作動流体として好ましく使用することができる。
 本開示の組成物は、R410A、R407CおよびR404A等のHFC冷媒、並びにR22等のHCFC冷媒の代替冷媒としての使用に適している。
 (3)冷媒組成物
 本開示の冷媒組成物は、本開示の冷媒を少なくとも含み、本開示の冷媒と同じ用途のために使用することができる。また、本開示の冷媒組成物は、さらに少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることができる。
 本開示の冷媒組成物は、本開示の冷媒に加え、さらに少なくとも一種のその他の成分を含有する。本開示の冷媒組成物は、必要に応じて、以下のその他の成分のうち少なくとも一種を含有していてもよい。上述の通り、本開示の冷媒組成物を、冷凍機における作動流体として使用するに際しては、通常、少なくとも冷凍機油と混合して用いられる。したがって、本開示の冷媒組成物は、好ましくは冷凍機油を実質的に含まない。具体的には、本開示の冷媒組成物は、冷媒組成物全体に対する冷凍機油の含有量が好ましくは0~1質量%であり、より好ましくは0~0.1質量%である。
 (3-1)水
 本開示の冷媒組成物は微量の水を含んでもよい。冷媒組成物における含水割合は、冷媒全体に対して、0.1質量%以下とすることが好ましい。冷媒組成物が微量の水分を含むことにより、冷媒中に含まれ得る不飽和のフルオロカーボン系化合物の分子内二重結合が安定化され、また、不飽和のフルオロカーボン系化合物の酸化も起こりにくくなるため、冷媒組成物の安定性が向上する。
 (3-2)トレーサー
 トレーサーは、本開示の冷媒組成物が希釈、汚染、その他何らかの変更があった場合、その変更を追跡できるように検出可能な濃度で本開示の冷媒組成物に添加される。
 本開示の冷媒組成物は、トレーサーとして、一種を単独で含有してもよいし、二種以上を含有してもよい。
 トレーサーとしては、特に限定されず、一般に用いられるトレーサーの中から適宜選択することができる。好ましくは、本開示の冷媒に不可避的に混入する不純物とはなり得ない化合物をトレーサーとして選択する。
 トレーサーとしては、例えば、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン、重水素化炭化水素、重水素化ハイドロフルオロカーボン、パーフルオロカーボン、フルオロエーテル、臭素化化合物、ヨウ素化化合物、アルコール、アルデヒド、ケトン、亜酸化窒素(N2O)等が挙げられる。
 トレーサーとしては、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン及びフルオロエーテルが特に好ましい。
 上記トレーサーとしては、具体的には、以下の化合物が好ましい。
 FC-14(テトラフルオロメタン、CF4
 HCC-40(クロロメタン、CHCl)
 HFC-23(トリフルオロメタン、CHF
 HFC-41(フルオロメタン、CHCl)
 HFC-125(ペンタフルオロエタン、CFCHF
 HFC-134a(1,1,1,2-テトラフルオロエタン、CFCHF)
 HFC-134(1,1,2,2-テトラフルオロエタン、CHFCHF
 HFC-143a(1,1,1-トリフルオロエタン、CFCH
 HFC-143(1,1,2-トリフルオロエタン、CHFCHF)
 HFC-152a(1,1-ジフルオロエタン、CHFCH
 HFC-152(1,2-ジフルオロエタン、CHFCHF)
 HFC-161(フルオロエタン、CHCHF)
 HFC-245fa(1,1,1,3,3-ペンタフルオロプロパン、CFCHCHF
 HFC-236fa(1,1,1,3,3,3-ヘキサフルオロプロパン、CFCHCF
 HFC-236ea(1,1,1,2,3,3-ヘキサフルオロプロパン、CFCHFCHF
 HFC-227ea(1,1,1,2,3,3,3-ヘプタフルオロプロパン、CFCHFCF)
 HCFC-22(クロロジフルオロメタン、CHClF
 HCFC-31(クロロフルオロメタン、CHClF)
 CFC-1113(クロロトリフルオロエチレン、CF=CClF)
 HFE-125(トリフルオロメチル-ジフルオロメチルエーテル、CFOCHF
 HFE-134a(トリフルオロメチル-フルオロメチルエーテル、CFOCHF)
 HFE-143a(トリフルオロメチル-メチルエーテル、CFOCH
 HFE-227ea(トリフルオロメチル-テトラフルオロエチルエーテル、CFOCHFCF
 HFE-236fa(トリフルオロメチル-トリフルオロエチルエーテル、CFOCHCF
 トレーサー化合物は、約10重量百万分率(ppm)~約1000ppmの合計濃度で冷媒組成物中に存在し得る。好ましくは、トレーサー化合物は約30ppm~約500ppmの合計濃度で冷媒組成物中に存在し、最も好ましくは、トレーサー化合物は約50ppm~約300ppmの合計濃度で冷媒組成物中に存在する。
 (3-3)紫外線蛍光染料
 本開示の冷媒組成物は、紫外線蛍光染料として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 紫外線蛍光染料としては、特に限定されず、一般に用いられる紫外線蛍光染料の中から適宜選択することができる。
 紫外線蛍光染料としては、例えば、ナフタルイミド、クマリン、アントラセン、フェナントレン、キサンテン、チオキサンテン、ナフトキサンテン及びフルオレセイン、並びにこれらの誘導体が挙げられる。紫外線蛍光染料としては、ナフタルイミド及びクマリンのいずれか又は両方が特に好ましい。
 (3-4)安定剤
 本開示の冷媒組成物は、安定剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 安定剤としては、特に限定されず、一般に用いられる安定剤の中から適宜選択することができる。
 安定剤としては、例えば、ニトロ化合物、エーテル類及びアミン類等が挙げられる。
 ニトロ化合物としては、例えば、ニトロメタン及びニトロエタン等の脂肪族ニトロ化合物、並びにニトロベンゼン及びニトロスチレン等の芳香族ニトロ化合物等が挙げられる。
 エーテル類としては、例えば、1,4-ジオキサン等が挙げられる。
 アミン類としては、例えば、2,2,3,3,3-ペンタフルオロプロピルアミン、ジフェニルアミン等が挙げられる。
 その他にも、ブチルヒドロキシキシレン、ベンゾトリアゾール等が挙げられる。
 安定剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%とすることが好ましく、0.05~2質量%とすることがより好ましい。
 (3-5)重合禁止剤
 本開示の冷媒組成物は、重合禁止剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 重合禁止剤としては、特に限定されず、一般に用いられる重合禁止剤の中から適宜選択することができる。
 重合禁止剤としては、例えば、4-メトキシ-1-ナフトール、ヒドロキノン、ヒドロキノンメチルエーテル、ジメチル-t-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、ベンゾトリアゾール等が挙げられる。
 重合禁止剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%とすることが好ましく、0.05~2質量%とすることがより好ましい。
 (4)冷凍機油含有作動流体
 本開示の冷凍機油含有作動流体は、本開示の冷媒又は冷媒組成物と、冷凍機油とを少なくとも含み、冷凍機における作動流体として用いられる。具体的には、本開示の冷凍機油含有作動流体は、冷凍機の圧縮機において使用される冷凍機油と、冷媒又は冷媒組成物とが互いに混じり合うことにより得られる。冷凍機油含有作動流体には冷凍機油は一般に10~50質量%含まれる。
 (4-1)冷凍機油
 冷凍機油としては、特に限定されず、一般に用いられる冷凍機油の中から適宜選択することができる。その際には、必要に応じて、前記混合物との相溶性(miscibility)及び前記混合物の安定性等を向上する作用等の点でより優れている冷凍機油を適宜選択することができる。
 冷凍機油の基油としては、例えば、ポリアルキレングリコール(PAG)、ポリオールエステル(POE)及びポリビニルエーテル(PVE)からなる群より選択される少なくとも一種が好ましい。
 冷凍機油は、基油に加えて、さらに添加剤を含んでいてもよい。添加剤は、酸化防止剤、極圧剤、酸捕捉剤、酸素捕捉剤、銅不活性化剤、防錆剤、油性剤及び消泡剤からなる群より選択される少なくとも一種であってもよい。
 冷凍機油として、40℃における動粘度が5~400 cStであるものが、潤滑の点で好ましい。
 本開示の冷凍機油含有作動流体は、必要に応じて、さらに少なくとも一種の添加剤を含んでもよい。添加剤としては例えば以下の相溶化剤等が挙げられる。
 (4-2)相溶化剤
 本開示の冷凍機油含有作動流体は、相溶化剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
 相溶化剤としては、特に限定されず、一般に用いられる相溶化剤の中から適宜選択することができる。
 相溶化剤としては、例えば、ポリオキシアルキレングリコールエーテル、アミド、ニトリル、ケトン、クロロカーボン、エステル、ラクトン、アリールエーテル、フルオロエーテルおよび1,1,1-トリフルオロアルカン等が挙げられる。相溶化剤としては、ポリオキシアルキレングリコールエーテルが特に好ましい。
 (5)各種冷媒
 以下、本実施形態において用いられる冷媒である冷媒A~冷媒Eについて、詳細に説明する。
 なお、以下の冷媒A、冷媒B、冷媒C、冷媒D、冷媒Eの各記載は、それぞれ独立しており、点や線分を示すアルファベット、実施例の番号および比較例の番号は、いずれも冷媒A、冷媒B、冷媒C、冷媒D、冷媒Eの間でそれぞれ独立であるものとする。例えば、冷媒Aの実施例1と冷媒Bの実施例1とは、互いに異なる実施例を示している。
 (5-1)冷媒A
 本開示の冷媒Aは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む混合冷媒である。
 本開示の冷媒Aは、R410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
 本開示の冷媒Aは、HFO-1132(E)及びR1234yf、並びに必要に応じてHFO-1123を含む組成物であって、さらに以下の要件を満たすものであってもよい。この冷媒もR410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
 要件:
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点A(68.6, 0.0, 31.4)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0)、
   点C(32.9, 67.1, 0.0)及び
   点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CO上の点は除く)、
 前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, 0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
 で表わされ、かつ
 前記線分BD、CO及びOAが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
    点G(72.0, 28.0, 0.0)、
   点I(72.0, 0.0, 28.0)、
   点A(68.6, 0.0, 31.4)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0)及び
   点C(32.9, 67.1, 0.0)
の8点をそれぞれ結ぶ線分GI、IA、AA’、A’B、BD、DC’、C’C及びCGで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CG上の点は除く)、
 前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, 0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
 前記線分GI、IA、BD及びCGが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにASHRAEの規格でWCF微燃性(WCF組成の燃焼速度が10cm/s以下)を示す。
 本開示の冷媒Aは、HFO-1132(E) HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点J(47.1, 52.9, 0.0)、
   点P(55.8, 42.0, 2.2)、
   点N(68.6, 16.3, 15.1)、
   点K(61.3, 5.4, 33.3)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0) 及び
   点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PN、NK、KA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CJ上の点は除く)、
 前記線分PNは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分NKは、
  座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
で表わされ、
 前記線分KA’は、
  座標(x, 0.0016x2-0.9473x+57.497, 0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
 前記線分JP、BD及びCGが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス(WCF組成及びWCFF組成の燃焼速度が10cm/s以下))を示す。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点J(47.1, 52.9, 0.0)、
   点P(55.8, 42.0, 2.2)、
   点L(63.1, 31.9, 5.0)、
   点M(60.3, 6.2, 33.5)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0)及び
   点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PL、LM、MA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CJ上の点は除く)、
 前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
 前記線分JP、LM、BD及びCGが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにRCLが40g/m3以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(55.8, 42.0, 2.2)、
   点L(63.1, 31.9, 5.0)、
   点M(60.3, 6.2, 33.5)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点F(0.0, 61.8, 38.2)及び
   点T(35.8, 44.9, 19.3)
の7点をそれぞれ結ぶ線分PL、LM、MA’、A’B、BF、FT及びTPで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BF上の点は除く)、
 前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
 前記線分TPは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
 前記線分LM及びBFが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が95%以上となるだけでなく、さらにRCLが40g/m3以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(55.8, 42.0, 2.2)、
   点L(63.1, 31.9, 5.0)、
   点Q(62.8, 29.6, 7.6) 及び
   点R(49.8, 42.3, 7.9)
の4点をそれぞれ結ぶ線分PL、LQ、QR及びRPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分PLは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分RPは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
 前記線分LQ及びQRが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつRCLが40g/m3以上となるだけでなく、さらに凝縮温度グライドが1℃以下となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点S(62.6, 28.3, 9.1)、
   点M(60.3, 6.2, 33.5)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点F(0.0, 61.8, 38.2)及び
   点T(35.8, 44.9, 19.3)
の6点をそれぞれ結ぶ線分SM、MA’、A’B、BF、FT、及びTSで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分MA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
 前記線分TSは、
  座標(x, 0.0017x2-0.7869x+70.888, -0.0017x2-0.2131x+29.112)
で表わされ、かつ
 前記線分SM及びBFが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、R410Aを基準とするCOP比が95%以上となり、かつRCLが40g/m3以上となるだけでなく、さらにR410Aを基準とする吐出圧力比が105%以下となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点d(87.6, 0.0, 12.4)、
   点g(18.2, 55.1, 26.7)、
   点h(56.7, 43.3, 0.0)及び
   点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分Od、dg、gh及びhOで囲まれる図形の範囲内又は前記線分Od、dg及びgh上にあり(ただし、点O及びhは除く)、
 前記線分dgは、
  座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
 前記線分ghは、
  座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
 前記線分hO及びOdが直線であれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、かつR410Aを基準とするCOP比が92.5%以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点l(72.5, 10.2, 17.3)、
   点g(18.2, 55.1, 26.7)、
   点h(56.7, 43.3, 0.0)及び
   点i(72.5, 27.5, 0.0)
の4点をそれぞれ結ぶ線分lg、gh、hi及びilで囲まれる図形の範囲内又は前記線分lg、gh及びil上にあり(ただし、点h及び点iは除く)、
 前記線分lgは、
  座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
 前記線分ghは、
  座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
 前記線分hi及びilが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点d(87.6, 0.0, 12.4)、
   点e(31.1, 42.9, 26.0)、
   点f(65.5, 34.5, 0.0)及び
   点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分Od、de、ef及びfOで囲まれる図形の範囲内又は前記線分Od、de及びef上にあり(ただし、点O及び点fは除く)、
 前記線分deは、
  座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
 前記線分efは、
  座標(-0.0064z2-1.1565z+65.501, 0.0064z2+0.1565z+34.499, z)
で表わされ、かつ
 前記線分fO及びOdが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が93.5%以上となり、かつR410Aを基準とするCOP比が93.5%以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点l(72.5, 10.2, 17.3)、
   点e(31.1, 42.9, 26.0)、
   点f(65.5, 34.5, 0.0)及び
   点i(72.5, 27.5, 0.0)
の4点をそれぞれ結ぶ線分le、ef、fi及びilで囲まれる図形の範囲内又は前記線分le、ef及びil上にあり(ただし、点f及び点iは除く)、
 前記線分LEは、
  座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
 前記線分efは、
  座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
 前記線分fi及びilが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が93.5%以上となり、かつR410Aを基準とするCOP比が93.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点a(93.4, 0.0, 6.6)、
   点b(55.6, 26.6, 17.8)、
   点c(77.6, 22.4, 0.0)及び
   点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分Oa、ab、bc及びcOで囲まれる図形の範囲内又は前記線分Oa、ab及びbc上にあり(ただし、点O及び点cは除く)、
 前記線分abは、
  座標(0.0052y2-1.5588y+93.385, y, -0.0052y2+0. 5588y+6.615)
で表わされ、
 前記線分bcは、
  座標(-0.0032z2-1.1791z+77.593, 0.0032z2+0.1791z+22.407, z)
で表わされ、かつ
 前記線分cO及びOaが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となる。
 本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点k(72.5, 14.1, 13.4)、
   点b(55.6, 26.6, 17.8)及び
   点j(72.5, 23.2, 4.3)
の3点をそれぞれ結ぶ線分kb、bj及びjkで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分kbは、
  座標(0.0052y2-1.5588y+93.385, y, -0.0052y2+0. 5588y+6.615)
で表わされ、
 前記線分bjは、
  座標(-0.0032z2-1.1791z+77.593, 0.0032z2+0.1791z+22.407, z)
で表わされ、かつ
 前記線分jkが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
 本開示の冷媒Aは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR1234yfに加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒が、HFO-1132(E)、HFO-1123及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 また、本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むものであってよく、99.75質量%以上含むものであってもよく、さらに99.9質量%以上含むものであってもよい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Aの実施例)
 以下に、冷媒Aの実施例を挙げてさらに詳細に説明する。ただし、冷媒Aは、これらの実施例に限定されるものではない。
 R1234yf、及び、R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)、HFO-1123、R1234yfとの混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
 また、混合物のRCLは、HFO-1132(E)のLFL=4.7vol%、HFO-1123のLFL=10vol%、R1234yfのLFL=6.2vol%として、ASHRAE34-2013に基づいて求めた。
 蒸発温度:5℃
 凝縮温度:45℃
 過熱度:5K
 過冷却度:5K
 圧縮機効率:70%
 これらの値を、各混合冷媒についてのGWPと合わせて表1~34に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
 これらの結果から、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点A(68.6, 0.0, 31.4)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点D(0.0, 80.4, 19.6)、
   点C’(19.5, 70.5, 10.0)、
   点C(32.9, 67.1, 0.0)及び
   点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CO上の点は除く)、
 前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, 0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分DC’は、
  座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
 前記線分C’Cは、
  座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
 前記線分BD、CO及びOAが直線である場合に、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となることが判る。
 線分AA’上の点は、点A、実施例1、及び点A’の3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分A’B上の点は、点A’、実施例3、及び点Bの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分DC’上の点は、点D、実施例6、及び点C’の3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分C’C上の点は、点C’、実施例4、及び点Cの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 また、同様に、座標(x,y,z)が、
   点A(68.6, 0.0, 31.4)、
   点A’(30.6, 30.0, 39.4)、
   点B(0.0, 58.7, 41.3)、
   点F(0.0, 61.8, 38.2)、
   点T(35.8, 44.9, 19.3)、
   点E(58.0, 42.0, 0.0)及び
   点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BF、FT、TE、EO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EO上の点は除く)、
 前記線分AA’は、
  座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
 前記線分A’Bは、
  座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
 前記線分FTは、
  座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
 前記線分TEは、
  座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
 前記線分BF、FO及びOAが直線である場合に、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が95%以上となることが判る。
 線分FT上の点は、点T、E’、Fの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分TE上の点は、点E,R,Tの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 表1~34の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0,0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点L(63.1, 31.9, 5.0)及び
   点M(60.3, 6.2, 33.5)
を結ぶ線分LMの上、又は当該線分の下側にある場合にRCLが40g/m3以上となることが明らかとなった。
 また、表1~34の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点Q(62.8, 29.6, 7.6) 及び
   点R(49.8, 42.3, 7.9)
を結ぶ線分QRの上、又は当該線分の左側にある場合に温度グライドが1℃以下となることが明らかとなった。
 また、表1~34の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点S(62.6, 28.3, 9.1)及び
   点T(35.8, 44.9, 19.3)
を結ぶ線分STの上、又は当該線分の右側にある場合にR410Aを基準とする吐出圧力比が105%以下となることが明らかとなった。
 なお、これらの組成物において、R1234yfは燃焼性の低下や重合等の変質抑制に寄与しており、これを含むことが好ましい。
 さらに、これらの各混合冷媒について、混合組成をWCF濃度としてANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度が10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。
 なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。なお、図1において、901は試料セルを、902は高速カメラを、903はキセノンランプを、904はコリメートレンズを、905はコリメートレンズを、906はリングフィルターをそれぞれ示す。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
 また、WCFF濃度は、WCF濃度を初期濃度としてNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行うことで求めた。
 結果を表35及び表36に示す。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
 表35の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和を基準として、HFO-1132(E)を72.0質量%以下含む場合に、WCF微燃性と判断できることが明らかとなった。
 表36の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0,0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とする3成分組成図において、座標(x,y,z)が、
   点J(47.1, 52.9, 0.0)、
   点P(55.8, 42.0, 2.2)、
   点L(63.1,31.9,5.0)
   点N(68.6, 16.3, 15.1)
   点N’(65.0,7.7,27.3)及び
   点K(61.3, 5.4, 33.3)
の6点をそれぞれ結ぶ線分JP、PN及びNKの上、又は当該線分の下側にある場合に、WCF微燃、及びWCFF微燃性と判断できることが明らかとなった。
 ただし、前記線分PNは、
  座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
 前記線分NKは、
  座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
で表わされる。
 線分PN上の点は、点P、点L、点Nの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 線分NK上の点は、点N、点N’、点Kの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
 (5-2)冷媒B
 本開示の冷媒Bは、
 トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ、該冷媒が、HFO-1132(E)を、該冷媒の全体に対して62.0質量%~72.0質量%又は45.1質量%~47.1質量%含む、混合冷媒であるか、または、
 HFO-1132(E)及びHFO-1123の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して45.1質量%~47.1質量%含む、混合冷媒である。
 本開示の冷媒Bは、(1)R410Aと同等の成績係数を有すること、(2)R410Aと同等の冷凍能力を有すること、(3)GWPが十分に小さいこと、及び(4)ASHRAEの規格で微燃性(2Lクラス)であること、という、R410A代替冷媒として望ましい諸特性を有する。
 本開示の冷媒Bは、HFO-1132(E)を72.0質量%以下含む混合冷媒であればWCF微燃となる。本開示の冷媒Bは、HFO-1132(E)を47.1%以下含む組成物であればWCF微燃及びWCFF微燃でASHRAE規格では微燃性冷媒である「2Lクラス」となり、取り扱いがさらに容易となる。
 本開示の冷媒Bは、HFO-1132(E)を、62.0質量%以上含む場合、R410Aを基準とする成績係数比が95%以上でより優れたものとなり、かつHFO-1132(E)及び/又はHFO-1123の重合反応がより抑制され、安定性がより優れたものとなる。本開示の冷媒Bは、HFO-1132(E)を、45.1質量%以上含む場合、R410Aを基準とする成績係数比が93%以上でより優れたものとなり、かつHFO-1132(E)及び/又はHFO-1123の重合反応がより抑制され、安定性がより優れたものとなる。
 本開示の冷媒Bは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)及びHFO-1123に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒Bが、HFO-1132(E)及びHFO-1123の合計を、冷媒全体に対して99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Bの実施例)
 以下に、冷媒Bの実施例を挙げてさらに詳細に説明する。ただし、冷媒Bは、これらの実施例に限定されるものではない。
 HFO-1132(E)及びHFO-1123を、これらの総和を基準として表37及び表38にそれぞれ示した質量%(mass%)で混合した混合冷媒を調製した。
 R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)とHFO-1123との混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
 蒸発温度5℃
 凝縮温度45℃
 過熱温度5K
 過冷却温度5K
 圧縮機効率70%
 また、各混合物の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。
 また、これらの結果をもとに算出したGWP、COP及び冷凍能力を表1、表2に示す。なお、比COP及び比冷凍能力については、R410Aに対する割合を示す。
 成績係数(COP)は、次式により求めた。
 COP =(冷凍能力又は暖房能力)/消費電力量
 また、燃焼性はANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度がWCF及びWCFFともに10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。
 燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 組成物が、HFO-1132(E)を、該組成物の全体に対して62.0質量%~72.0質量%含む場合に、GWP=1という低いGWPを持ちつつも安定で、かつ、WCF微燃を確保し、更に驚くべきことにR410Aと同等の性能を確保することができる。また、組成物が、HFO-1132(E)を、該組成物の全体に対して45.1質量%~47.1質量%含む場合に、GWP=1という低いGWPを持ちつつも安定で、かつ、WCFF微燃を確保し、更に驚くべきことにR410Aと同等の性能を確保することができる。
 (5-3)冷媒C
 本開示の冷媒Cは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)、並びにジフルオロメタン(R32)を含む組成物であって、さらに以下の要件を満たす。本開示の冷媒Cは、R410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
 要件:
 本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
 0<a≦11.1のとき、
   点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)、
   点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)、
   点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)、
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の6点をそれぞれ結ぶ直線GI、IA、AB、BD’、D’C及びCGで囲まれる図形の範囲内又は前記直線GI、AB及びD’C上にあり(ただし、点G、点I、点A、点B、点D’及び点Cは除く)、
 11.1<a≦18.2のとき、
   点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)、
   点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)、
   点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)、
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
 18.2<a≦26.7のとき、
   点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)、
   点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)、
   点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)、
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
 26.7<a≦36.7のとき、
   点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)、
   点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、及び
 36.7<a≦46.7のとき、
   点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098, 0.0)、
   点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2+0.0082a+36.098)、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にある(ただし、点G、点I、点A、点B及び点Wは除く)ものが含まれる。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となり、さらにWCF微燃性となる。
 本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
 0<a≦11.1のとき、
   点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)、
   点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)、
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’B、BD’、D’C及びCJで囲まれる図形の範囲内又は前記直線JK’、K’B及びD’C上にあり(ただし、点J、点B、点D’及び点Cは除く)、
 11.1<a≦18.2のとき、
   点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)、
   点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)、
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
   点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
 18.2<a≦26.7のとき、
   点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)、
   点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)、
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
   点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
 26.7<a≦36.7のとき、
   点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)、
   点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にあり(ただし、点J、点B及び点Wは除く)、及び
 36.7<a≦46.7のとき、
   点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)、
   点K’(-1.892a+29.443, 0.0, 0.892a+70.557)、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
   点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にある(ただし、点J、点B及び点Wは除く)ものが含まれる。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにWCF微燃及びWCFF微燃でASHRAE規格では微燃性冷媒である「2Lクラス」を示す。
 本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yfに加えて、さらにR32を含む場合、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
 0<a≦10.0のとき、
   点a(0.02a2-2.46a+93.4, 0, -0.02a2+2.46a+6.6)、
   点b’(-0.008a2-1.38a+56, 0.018a2-0.53a+26.3, -0.01a2+1.91a+17.7)、
   点c(-0.016a2+1.02a+77.6, 0.016a2-1.02a+22.4, 0)及び
   点o(100.0-a, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線oa、ab’及びb’c上にあり(ただし、点o及び点cは除く)、
 10.0<a≦16.5のとき、
   点a(0.0244a2-2.5695a+94.056, 0, -0.0244a2+2.5695a+5.944)、
   点b’(0.1161a2-1.9959a+59.749, 0.014a2-0.3399a+24.8, -0.1301a2+2.3358a+15.451)、
   点c(-0.0161a2+1.02a+77.6, 0.0161a2-1.02a+22.4, 0)及び
   点o(100.0-a, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線oa、ab’及びb’c上にあり(ただし、点o及び点cは除く)、又は
 16.5<a≦21.8のとき、
   点a(0.0161a2-2.3535a+92.742, 0, -0.0161a2+2.3535a+7.258)、
   点b’(-0.0435a2-0.0435a+50.406, -0.0304a2+1.8991a-0.0661, 0.0739a2-1.8556a+49.6601)、
   点c(-0.0161a2+0.9959a+77.851, 0.0161a2-0.9959a+22.149, 0)及び
   点o(100.0-a, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線oa、ab’及びb’c上にあるものとすることができる(ただし、点o及び点cは除く)。なお、点b’は、前記3成分組成図において、R410Aを基準とする冷凍能力比が95%となり、かつR410Aを基準とするCOP比が95%となる点を点bとすると、R410Aを基準とするCOP比が95%となる点を結ぶ近似直線と、直線abとの交点である。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となる。
 本開示の冷媒Cは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR1234yf並びにR32に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒が、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 また、本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の合計を、冷媒全体に対して99.5質量%以上含むものであってよく、99.75質量%以上含むものであってもよく、さらに99.9質量%以上含むものであってもよい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Cの実施例)
 以下に、冷媒Cの実施例を挙げてさらに詳細に説明する。ただし、冷媒Cは、これらの実施例に限定されるものではない。
 HFO-1132(E)、HFO-1123及びR1234yf、並びにR32を、これらの総和を基準として、表39~96にそれぞれ示した質量%で混合した混合冷媒を調製した。
 R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)とHFO-1123との混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
 これらの各混合冷媒について、R410を基準とするCOP比及び冷凍能力比をそれぞれ求めた。計算条件は以下の通りとした。
 蒸発温度:5℃
 凝縮温度:45℃
 過熱度:5K
 過冷却度;5K
 圧縮機効率70%
 これらの値を、各混合冷媒についてのGWPと合わせて表39~96に示す。なお、比COP及び比冷凍能力については、R410Aに対する割合を示す。
 成績係数(COP)は、次式により求めた。
 COP =(冷凍能力又は暖房能力)/消費電力量
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
 これらの結果から、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる、点(0.0, 100.0-a, 0.0)と点(0.0, 0.0, 100,0-a)とを結ぶ直線を底辺とし、かつ点(0.0, 100.0-a, 0.0)が左側となる3成分組成図において、座標(x,y,z)が、
 0<a≦11.1のとき、
   点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)と
   点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)と
を結ぶ直線ABの線上又は左側、
 11.1<a≦18.2のとき、
   点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)と
   点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)と
を結ぶ直線ABの線上又は左側、
 18.2<a≦26.7のとき、
   点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)と
   点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)と
を結ぶ直線ABの線上又は左側、
 26.7<a≦36.7のとき、
   点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)と
   点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)と
を結ぶ直線ABの線上又は左側、並びに
 36.7<a≦46.7のとき、
   点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)と
   点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)と
を結ぶ直線ABの線上又は左側にある場合に、R410Aを基準とする冷凍能力比が85%以上となることが判る。なお、実際の冷凍能力比85%の点は、図3に示す点A、点Bを結ぶ1234yf側に広がった曲線となる。従って、直線ABの線上又は左側にある場合に、R410Aを基準とする冷凍能力比が85%以上となる。
 同様に、上記3成分組成図において、座標(x,y,z)が、
 0<a≦11.1のとき、
   点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)と
   点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)と
を結ぶ直線D’Cの線上又は右側にある場合に、また、
 11.1<a≦46.7のとき、
全ての領域内にある場合に、R410Aを基準とするCOP比が92.5%以上となることが判る。
 なお、図3においてCOP比が92.5%以上となるのは曲線CDであるが、図3ではR1234yf濃度が5質量%、10質量%のときにCOP比が92.5%となる点(26.6, 68.4,5),(19.5, 70.5, 10)、及び点C(32.9, 67.1, 0.0)の3点を結ぶ近似直線を求め、HFO-1132(E)濃度が0.0質量%との交点D’(0, 75.4, 24.6)と点Cを結ぶ直線を線分D’Cとした。また、図4では、COP比が92.5%となる点C(18.4, 74.5,0)、点(13.9, 76.5, 2.5)、点(8.7, 79.2, 5)を結ぶ近似曲線から同様にD’(0, 83.4, 9.5)を求め、点Cと結ぶ直線をD’Cとした。
 また、各混合物の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。また、燃焼性はANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度がWCF及びWCFFともに10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。
 なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
 結果を表97~104に示す。
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000104
 表97~100の結果から、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の混合冷媒においては、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる、点(0.0,100.0-a, 0.0)と点(0.0, 0.0, 100,0-a)とを結ぶ直線を底辺とする3成分組成図において、
 0<a≦11.1のとき、
   点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)と
   点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)と
を結ぶ直線GIの線上又は下、
 11.1<a≦18.2のとき、
   点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)と
   点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)と
を結ぶ直線GIの線上又は下、
 18.2<a≦26.7のとき、
   点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)と
   点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)と
を結ぶ直線GIの線上又は下、
 26.7<a≦36.7のとき、
   点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)と
   点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)と
を結ぶ直線GIの線上又は下、及び
 36.7<a≦46.7のとき、
   点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098,0.0)と
   点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2-0.0082a+36.098)と
を結ぶ直線GIの線上又は下にある場合に、WCF微燃性と判断できることが明らかとなった。なお、点G(表105)及びI(表106)は、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた。
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000106
 表101~104の結果から、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の混合冷媒においては、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる、点(0.0,100.0-a, 0.0)と点(0.0, 0.0, 100,0-a)とを結ぶ直線を底辺とする3成分組成図において、
 0<a≦11.1のとき、
   点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)と
   点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)と
を結ぶ直線JK’の線上又は下、
 11.1<a≦18.2のとき、
   点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)と
   点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)と
を結ぶ直線JK’の線上又は下、
 18.2<a≦26.7のとき、
   点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)と
   点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)とを結ぶ直線JK’の線上又は下、
 26.7<a≦36.7のとき、
   点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)と
   点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)と
を結ぶ直線JK’の線上又は下、及び
 36.7<a≦46.7のとき、
   点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)と
   点K’(-1.892a+29.443, 0.0, 0.892a+70.557)と
を結ぶ直線JK’の線上又は下にある場合に、WCFF微燃性と判断でき、ASHRAE規格の燃焼性分類で「2L(微燃性)」になることが明らかとなった。
 なお、実際のWCFF微燃の点は、図3に示す点J、点K’(直線AB上)を結ぶHFO-1132(E)側に広がった曲線となる。従って、直線JK’の線上又は下側にある場合にはWCFF微燃性となる。
 なお、点J(表107)及びK’(表108)は、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた。
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000108
 なお、図3~13は、それぞれ、順に、R32含有割合a(質量%)が、0質量%、7.1質量%、11.1質量%、14.5質量%、18.2質量%、21.9質量%、26.7質量%、29.3質量%、36.7質量%、44.1質量%及び47.8質量%の場合の組成を表わしている。
 点A、B、C、D’は、近似計算によりそれぞれ以下のようにして求めた。
 点Aは、HFO-1123含有割合が0質量%であり、かつR410Aを基準とする冷凍能力比が85%となる点である。点Aについて、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた(表109)。
Figure JPOXMLDOC01-appb-T000109
 点Bは、HFO-1132(E)含有割合が0質量%であり、かつR410Aを基準とする冷凍能力比が85%となる点である。点Bについて、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた(表110)。
Figure JPOXMLDOC01-appb-T000110
 点D’は、HFO-1132(E)含有割合が0質量%であり、かつR410Aを基準とするCOP比が95.5%となる点である。点D’について、計算により以下の三点ずつを求め、これらの近似式を求めた(表111)。
Figure JPOXMLDOC01-appb-T000111
 点Cは、R1234yf含有割合が0質量%であり、かつR410Aを基準とするCOP比が95.5%となる点である。点Cについて、計算により以下の三点ずつを求め、これらの近似式を求めた(表112)。
Figure JPOXMLDOC01-appb-T000112
 (5-4)冷媒D
 本開示の冷媒Dは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む混合冷媒である。
 本開示の冷媒Dは、R410Aと同等の冷却能力を有し、GWPが十分に小さく、かつASHRAEの規格で微燃性(2Lクラス)である、という、R410A代替冷媒として望ましい諸特性を有する。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 0.0, 28.0)、
   点J(48.5, 18.3, 33.2)、
   点N(27.7, 18.2, 54.1)及び
   点E(58.3, 0.0, 41.7)
の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
 前記線分IJは、
  座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
で表わされ、
 前記線分NEは、
  座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
で表わされ、かつ
 前記線分JN及びEIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが125以下となり、かつWCF微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(52.6, 0.0, 47.4)、
   点M’(39.2, 5.0, 55.8)、
   点N(27.7, 18.2, 54.1)、
   点V(11.0, 18.1, 70.9)及び
   点G(39.6, 0.0, 60.4)
の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
 前記線分MM’は、
  座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
で表わされ、
 前記線分M’Nは、
  座標(x, 0.0313x2-1.4551x+43.824, -0.0313x2+0.4551x+56.176)
で表わされ、
 前記線分VGは、
  座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
で表わされ、かつ
 前記線分NV及びGMが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が70%以上となり、GWPが125以下となり、かつASHRAE微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(22.6, 36.8, 40.6)、
   点N(27.7, 18.2, 54.1)及び
   点U(3.9, 36.7, 59.4)
の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分ONは、
  座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
で表わされ、
 前記線分NUは、
  座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
で表わされ、かつ
 前記線分UOが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが250以下となり、かつASHRAE微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(44.6, 23.0, 32.4)、
   点R(25.5, 36.8, 37.7)、
   点T(8.6, 51.6, 39.8)、
   点L(28.9, 51.7, 19.4)及び
   点K(35.6, 36.8, 27.6)
の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分QRは、
  座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
で表わされ、
 前記線分RTは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、
 前記線分LKは、
  座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
で表わされ、
 前記線分KQは、
  座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
で表わされ、かつ
 前記線分TLが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつWCF微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準と
する質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの
総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(20.5, 51.7, 27.8)、
   点S(21.9, 39.7, 38.4)及び
   点T(8.6, 51.6, 39.8)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分PSは、
  座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
で表わされ、
 前記線分STは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、かつ
 前記線分TPが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつASHRAE微燃となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点a(71.1, 0.0, 28.9)、
   点c(36.5, 18.2, 45.3)、
   点f(47.6, 18.3, 34.1)及び
   点d(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分ac、cf、fd、及びdaで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分acは、
  座標(0.0181y2-2.2288y+71.096, y, -0.0181y2+1.2288y+28.904)
で表わされ、
 前記線分fdは、
  座標(0.02y2-1.7y+72, y, -0.02y2+0.7y+28)
で表わされ、かつ
 前記線分cf及びdaが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、GWPが125以下となり、かつASHRAEの規格で微燃性(2Lクラス)となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点a(71.1, 0.0, 28.9)、
   点b(42.6, 14.5, 42.9)、
   点e(51.4, 14.6, 34.0)及び
   点d(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分ab、be、ed、及びdaで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分abは、
  座標(0.0181y2-2.2288y+71.096, y, -0.0181y2+1.2288y+28.904)
で表わされ、
 前記線分edは、
  座標(0.02y2-1.7y+72, y, -0.02y2+0.7y+28)
で表わされ、かつ
 前記線分be及びdaが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、GWPが100以下となり、かつASHRAEの規格で微燃性(2Lクラス)となる。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点g(77.5, 6.9, 15.6)、
   点iI(55.1, 18.3, 26.6)及び
   点j(77.5. 18.4, 4.1)
の3点をそれぞれ結ぶ線分gi、ij及びjkで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分giは、
  座標(0.02y2-2.4583y+93.396, y, -0.02y2+1.4583y+6.604)
で表わされ、かつ
 前記線分ij及びjkが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、GWPが100以下となり、かつ重合や分解などの変化を起こしにくく、安定性に優れている。
 本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点g(77.5, 6.9, 15.6)、
   点h(61.8, 14.6, 23.6)及び
   点k(77.5, 14.6, 7.9)
の3点をそれぞれ結ぶ線分gh、hk及びkgで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分ghは、
  座標(0.02y2-2.4583y+93.396, y, -0.02y2+1.4583y+6.604)
で表わされ、かつ
 前記線分hk及びkgが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、GWPが100以下となり、かつ重合や分解などの変化を起こしにくく、安定性に優れている。
 本開示の冷媒Dは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、R32及びR1234yfに加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒Dが、HFO-1132(E)、R32及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Dの実施例)
 以下に、冷媒Dの実施例を挙げてさらに詳細に説明する。ただし、冷媒Dは、これらの実施例に限定されるものではない。
 HFO-1132(E)、R32及びR1234yfの各混合冷媒の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。
 なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。結果を表113~115に示す。
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
 これらの結果から、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる図14の3成分組成図において、座標(x,y,z)が、点I、点J、点K及び点Lをそれぞれ結ぶ線分上又は該線分よりも下側にある場合、WCF微燃となることが判る。
 また、これらの結果から、図14の3成分組成図において、上記座標(x,y,z)が、点M、点M’、点W、点J、点N及び点Pをそれぞれ結ぶ線分上又は該線分よりも下側にある場合、ASHRAE微燃となることが判る。
 HFO-1132(E)、R32及びR1234yfを、これらの総和を基準として、表116~144にそれぞれ示した質量%で混合した混合冷媒を調製した。表116~144の各混合冷媒について、R410を基準とする成績係数[Coefficient of Performance(COP)]比及び冷凍能力比をそれぞれ求めた。計算条件は以下の通りとした。
 蒸発温度:5℃
 凝縮温度:45℃
 過熱度:5K
 過冷却度;5K
 圧縮機効率70%
 これらの値を、各混合冷媒についてのGWPと合わせて表116~144に示す。
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000127
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000136
Figure JPOXMLDOC01-appb-T000137
Figure JPOXMLDOC01-appb-T000138
Figure JPOXMLDOC01-appb-T000139
Figure JPOXMLDOC01-appb-T000140
Figure JPOXMLDOC01-appb-T000141
Figure JPOXMLDOC01-appb-T000142
Figure JPOXMLDOC01-appb-T000143
Figure JPOXMLDOC01-appb-T000144
 これらの結果から、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 0.0, 28.0)、
   点J(48.5, 18.3, 33.2)、
   点N(27.7, 18.2, 54.1)及び
   点E(58.3, 0.0, 41.7)
の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
 前記線分IJは、
  座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
で表わされ、
 前記線分NEは、
  座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
で表わされ、かつ
 前記線分JN及びEIが直線である場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが125以下となり、かつWCF微燃となることが判る。
 また、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(52.6, 0.0, 47.4)、
   点M’(39.2, 5.0, 55.8)、
   点N(27.7, 18.2, 54.1)、
   点V(11.0, 18.1, 70.9)及び
   点G(39.6, 0.0, 60.4)
の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
 前記線分MM’は、
  座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
で表わされ、
 前記線分M’Nは、
  座標(x, 0.0313x2-1.4551x+43.824, -0.0313x2+0.4551x+56.176)
で表わされ、
 前記線分VGは、
   座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
で表わされ、かつ
 前記線分NV及びGMが直線である場合、R410Aを基準とする冷凍能力比が70%以上となり、GWPが125以下となり、かつASHRAE微燃となることが判る。
 さらに、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(22.6, 36.8, 40.6)、
   点N(27.7, 18.2, 54.1)及び
   点U(3.9, 36.7, 59.4)
の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分ONは、
  座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
で表わされ、
 前記線分NUは、
  座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
で表わされ、かつ
 前記線分UOが直線である場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが250以下となり、かつASHRAE微燃となることが判る。
 また、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(44.6, 23.0, 32.4)、
   点R(25.5, 36.8, 37.7)、
   点T(8.6, 51.6, 39.8)、
   点L(28.9, 51.7, 19.4)及び
   点K(35.6, 36.8, 27.6)
の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分QRは、
  座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
で表わされ、
 前記線分RTは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、
 前記線分LKは、
  座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
で表わされ、
 前記線分KQは、
  座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
で表わされ、かつ
 前記線分TLが直線である場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつWCF微燃となることが判る。
 さらに、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(20.5, 51.7, 27.8)、
   点S(21.9, 39.7, 38.4)及び
   点T(8.6, 51.6, 39.8)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分PSは、
  座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
で表わされ、
 前記線分STは、
  座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、かつ
 前記線分TPが直線である場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつASHRAE微燃となることが判る。
 (5-5)冷媒E
 本開示の冷媒Eは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及びジフルオロメタン(R32)を含む混合冷媒である。
 本開示の冷媒Eは、R410Aと同等の成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点K(48.4, 33.2, 18.4)
   点B’(0.0, 81.6, 18.4)
   点H(0.0, 84.2, 15.8)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分IK、KB’、B’H、HR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGI上の点を除く)、
 前記線分IKは、
  座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.0, z)
で表わされ、
 前記線分HRは、
  座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
 前記線分KB’及びGIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、WCF微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点J(57.7, 32.8, 9.5)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分IJ、JR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GI上の点を除く)、
 前記線分IJは、
   座標(0.025z2-1.7429z+72.0, -0.025z2+0.7429z+28.0, z)
で表わされ、かつ
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
 前記線分JR及びGIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、WCF微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)
   点P(31.8, 49.8, 18.4)
   点B’(0.0, 81.6, 18.4)
   点H(0.0, 84.2, 15.8)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分MP、PB’、B’H、HR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGM上の点を除く)、
 前記線分MPは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
 前記線分HRは、
  座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
 前記線分PB’及びGMが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)
   点N(38.5, 52.1, 9.5)
   点R(23.1, 67.4, 9.5)及び
   点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分MN、NR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上の点を除く)、
 前記線分MNは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、かつ
 前記線分RGは、
  座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
 前記線分JR及びGIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが65以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点P(31.8, 49.8, 18.4)
   点S(25.4, 56.2, 18.4)及び
   点T(34.8, 51.0, 14.2)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
 前記線分STは、
  座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)
で表わされ、かつ
 前記線分TPは、
  座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
 前記線分PSが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が94.5%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点Q(28.6, 34.4, 37.0)
   点B’’(0.0, 63.0, 37.0)
   点D(0.0, 67.0, 33.0)及び
   点U(28.7, 41.2, 30.1)
の4点をそれぞれ結ぶ線分QB’’、B’’D、DU及びUQで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’’D上の点を除く)、
 前記線分DUは、
  座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされ、かつ
 前記線分UQは、
  座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867, z)で表わされ、
 前記線分QB’’及びB’’Dが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が96%以上となり、かつGWPが250以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点c’(56.7, 43.3, 0.0)、
   点d’(52.2, 38.3, 9.5)、
   点e’(41.8, 39.8, 18.4)及び
   点a’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分Oc’、c’d’、d’e’、e’a’及びa’Oで囲まれる図形の範囲内又は前記線分c’d’、d’e’及びe’a’上にあり(ただし、点c’及びa’を除く)、
 前記線分c’d’は、
  座標(-0.0297z2-0.1915z+56.7, 0.0297z2+1.1915z+43.3, z)
で表わされ、
 前記線分d’e’は、
  座標(-0.0535z2+0.3229z+53.957, 0.0535z2+0.6771z+46.043, z)で表わされ、かつ
 前記線分Oc’、e’a’及びa’Oが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が92.5%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点c(77.7, 22.3, 0.0)、
   点d(76.3, 14.2, 9.5)、
   点e(72.2, 9.4, 18.4)及び
   点a’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分Oc、cd、de、ea’及びa’Oで囲まれる図形の範囲内又は前記線分cd、de及びea’上にあり(ただし、点c及びa’を除く)、
 前記線分cdeは、
  座標(-0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z)で表わされ、かつ
 前記線分Oc、ea’及びa’Oが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつGWPが125以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点c’(56.7, 43.3, 0.0)、
   点d’(52.2, 38.3, 9.5)及び
   点a(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分Oc’、c’d’、d’a及びaOで囲まれる図形の範囲内又は前記線分c’d’及びd’a上にあり(ただし、点c’及びaを除く)、
 前記線分c’d’は、
  座標(-0.0297z2-0.1915z+56.7, 0.0297z2+1.1915z+43.3, z)で表わされ、かつ
 前記線分Oc’、d’a及びaOが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が93.5%以上となり、かつGWPが65以下となる。
 本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点c(77.7, 22.3, 0.0)、
   点d(76.3, 14.2, 9.5)、
   点a(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分Oc、cd、da及びaOで囲まれる図形の範囲内又は前記線分cd及びda上にあり(ただし、点c及びaを除く)、
 前記線分CDは、
  座標(-0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z)で表わされ、かつ
 前記線分Oc、da及びaOが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつGWPが65以下となる。
 本開示の冷媒Eは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR32に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒Eが、HFO-1132(E)、HFO-1123及びR32の合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
 追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
 (冷媒Eの実施例)
 以下に、冷媒Eの実施例を挙げてさらに詳細に説明する。ただし、冷媒Eは、これらの実施例に限定されるものではない。
 HFO-1132(E)、HFO-1123及びR32を、これらの総和を基準として、表145及び表146にそれぞれ示した質量%で混合した混合冷媒を調製した。各混合物の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNational Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。
 これらの各混合冷媒について、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。WCF組成、及びWCFF組成の燃焼速度が10 cm/s以下となるものはASHRAEの燃焼性分類で「2Lクラス(微燃性)」に相当する。
 なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
 結果を表145及び表146に示す。
Figure JPOXMLDOC01-appb-T000145
Figure JPOXMLDOC01-appb-T000146
 表145の結果から、HFO-1132(E)、HFO-1123及びR32の混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点I(72.0, 28,0, 0.0)
   点K(48.4, 33.2, 18.4)及び
   点L(35.5, 27.5, 37.0)
の3点をそれぞれ結ぶ線分IK及びKLの上、又は当該線分の下側にあり、
 前記線分IKは、
  座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.00, z)で表わされ、かつ
 前記線分KLは、
  座標(0.0098z2-1.238z+67.852, -0.0098z2+0.238z+32.148, z)で表わされる場合にWCF微燃と判断できることが明らかとなった。
 線分IK上の点は、I(72.0, 28,0, 0.0)、J(57.7, 32.8, 9.5)、K(48.4, 33.2, 18.4)の3点から最小二乗法により近似曲線x=0.025z2-1.7429z+72.00を求め、座標(x=0.025z2-1.7429z+72.00, y=100-z-x=-0.00922z2+0.2114z+32.443, z)を求めた。
 以下同様に線分KL上の点は、K(48.4, 33.2, 18.4)、実施例10(41.1, 31.2, 27.7)、L(35.5, 27.5, 37.0)の3点から最小二乗法により近似曲線を求め、座標を定めた。
 表146の結果から、HFO-1132(E)、HFO-1123及びR32の混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
   点M(47.1, 52.9, 0.0)、
   点P(31.8, 49.8, 18.4)及び
   点Q(28.6, 34.4, 37.0)
の3点をそれぞれ結ぶ線分MP及びPQの上、又は当該線分の下側にある場合にASHRAE微燃と判断できることが明らかとなった。ただし、前記線分MPは、座標(0.0083z2-0.984z+47.1, -0.0083z2-0.016z+52.9,z)で表わされ、前記線分PQは、座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867,z)で表わされる。
 線分MP上の点は、点M,N,Pの3点から最小二乗法により近似曲線を求め、線分PQ上の点は点P,U,Qの3点から最小二乗法により近似曲線を求め、座標を定めた。
 また、R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)とHFO-1123との混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。これらの各混合冷媒について、R410を基準とするCOP比及び冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]比をそれぞれ求めた。計算条件は以下の通りとした。
 蒸発温度:5℃
 凝縮温度:45℃
 過熱度:5K
 過冷却度;5K
 圧縮機効率70%
 これらの値を、各混合冷媒についてのGWPと合わせて表147~166に示す。
Figure JPOXMLDOC01-appb-T000147
Figure JPOXMLDOC01-appb-T000148
Figure JPOXMLDOC01-appb-T000149
Figure JPOXMLDOC01-appb-T000150
Figure JPOXMLDOC01-appb-T000151
Figure JPOXMLDOC01-appb-T000152
Figure JPOXMLDOC01-appb-T000153
Figure JPOXMLDOC01-appb-T000154
Figure JPOXMLDOC01-appb-T000155
Figure JPOXMLDOC01-appb-T000156
Figure JPOXMLDOC01-appb-T000157
Figure JPOXMLDOC01-appb-T000158
Figure JPOXMLDOC01-appb-T000159
Figure JPOXMLDOC01-appb-T000160
Figure JPOXMLDOC01-appb-T000161
Figure JPOXMLDOC01-appb-T000162
Figure JPOXMLDOC01-appb-T000163
Figure JPOXMLDOC01-appb-T000164
Figure JPOXMLDOC01-appb-T000165
Figure JPOXMLDOC01-appb-T000166
 これらの結果から、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となり、点(0.0, 100.0, 0.0)と点(0.0, 0.0, 100.0)とを結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側とする3成分組成図において、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点A’’(63.0, 0.0, 37.0)、
   点B’’(0.0, 63.0, 37.0)及び
   点(0.0, 100.0, 0.0)
の4点をそれぞれ結ぶ線分で囲まれる図形の範囲内又は前記線分上にある場合、GWPが250以下となることが判る。
 また、同様に、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点A’(81.6, 0.0, 18.4)、
   点B’(0.0, 81.6, 18.4)及び
   点(0.0, 100.0, 0.0)
の4点をそれぞれ結ぶ線分で囲まれる図形の範囲内又は前記線分上にある場合、GWPが125以下となることが判る。
 また、同様に、座標(x,y,z)が、
   点O(100.0, 0.0, 0.0)、
   点A(90.5, 0.0, 9.5)、
   点B(0.0, 90.5, 9.5)及び
   点(0.0, 100.0, 0.0)
の4点をそれぞれ結ぶ線分で囲まれる図形の範囲内又は前記線分上にある場合、GWPが65以下となることが判る。
 また、同様に、座標(x,y,z)が、
   点C(50.0, 31.6, 18.4)、
   点U(28.7, 41.2, 30.1)及び
   点D(52.2, 38.3, 9.5)
の3点をそれぞれ結ぶ線分の左側又は前記線分上にある場合、R410Aを基準とするCOP比が96%以上となることが判る。ただし、前記線分CUは、座標(-0.0538z2+0.7888z+53.701, 0.0538z2-1.7888z+46.299, z)前記線分UDは、座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされる。
 線分CU上の点は、点C,比較例10,点Uの3点から最小二乗法にて求められる。
 線分UD上の点は、点U,実施例2, Dの3点から最小二乗法にて求められる。
 また、同様に、座標(x,y,z)が、
   点E(55.2, 44.8, 0.0)と、
   点T(34.8, 51.0, 14.2)
   点F(0.0, 76.7, 23.3)と
の3点をそれぞれ結ぶ線分の左側又は前記線分上にある場合、R410Aを基準とするCOP比が94.5%以上となることが判る。ただし、前記線分ETは、座標(-0.0547z2-0.5327z+53.4, 0.0547z2-0.4673z+46.6, z)前記線分TFは、座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)で表わされる。線分ET上の点は、点E,実施例2,Tの3点から最小二乗法にて求められる。
 線分TG上の点は、点T,S,Fの3点から最小二乗法にて求められる。
 また、同様に、座標(x,y,z)が、
   点G(0.0, 76.7, 23.3)、
   点R(21.0, 69.5, 9.5)及び
   点H(0.0, 85.9, 14.1)
の3点をそれぞれ結ぶ線分の左側又は前記線分上にある場合、R410Aを基準とするCOP比が93%以上となることが判る。ただし、前記線分GRは、座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)で表わされ、かつ前記線分RHは、座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)で表わされる。
 線分GR上の点は、点G,実施例5、点Rの3点から最小二乗法にて求められる。
 線分RH上の点は、点R,実施例7,点Hの3点から最小二乗法にて求められる。
 一方、比較例8、9、13、15、17及び18等に示されるようにR32を含まない場合、二重結合を持つHFO-1132(E)及びHFO-1123の濃度が相対的に高くなり、冷媒化合物において分解等の変質や重合を招くため、好ましくない。
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 (6)第1実施形態
 以下、冷媒回路の概略構成図である図16、概略制御ブロック構成図である図17を参照しつつ、第1実施形態に係る冷凍サイクル装置としての空気調和装置1について説明する。
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことで、対象空間の空気を調和させる装置である。
 空気調和装置1は、主として、室外ユニット20と、室内ユニット30と、室外ユニット20と室内ユニット30を接続する液側冷媒連絡配管6およびガス側冷媒連絡配管5と、入力装置および出力装置としての図示しないリモコンと、空気調和装置1の動作を制御するコントローラ7と、を有している。
 空気調和装置1では、冷媒回路10内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、1,2-ジフルオロエチレンを含む冷媒であり、上述した冷媒A~Eのいずれかを用いることができる。なお、室内ユニット30が1台だけ設けられている空気調和装置1の定格冷房能力としては、例えば、2.0kW以上17.0kW以下とすることができ、なかでも、冷媒容器である低圧レシーバ26が設けられた本実施形態では、4.0kW以上17.0kW以下とすることが好ましい。
 (6-1)室外ユニット20
 室外ユニット20は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室内ユニット30と接続されており、冷媒回路10の一部を構成している。室外ユニット20は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、室外膨張弁24と、室外ファン25と、低圧レシーバ26と、液側閉鎖弁29と、ガス側閉鎖弁28と、を有している。
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、ロータリ式やスクロール式等の容積式の圧縮要素(図示省略)が圧縮機モータによって回転駆動される密閉式構造の圧縮機が使用されている。圧縮機モータは、容量を変化させるためのものであり、インバータにより運転周波数の制御が可能である。なお、圧縮機21には、吸入側において、図示しない付属アキュムレータが設けられている。
 四路切換弁22は、接続状態を切り換えることで、圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態と、圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態と、を切り換えることができる。
 室外熱交換器23は、冷房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能し、暖房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能する熱交換器である。なお、室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、本実施形態のように、冷媒回路10において冷媒容器(低圧レシーバや高圧レシーバ等であり、圧縮機に付属のアキュムレータを除く)が設けられているものについては、1.4L以上5.0L未満であることが好ましい。また、本実施形態のように、室外ファン25が1つだけ設けられているトランク型の室外ユニット20が有する室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、0.4L以上3.5L未満であることが好ましい。
 室外ファン25は、室外ユニット20内に室外の空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室外ファン25は、室外ファンモータによって回転駆動される。
 室外膨張弁24は、弁開度を制御可能であり、室外熱交換器23の液側端部と液側閉鎖弁29との間に設けられている。
 低圧レシーバ26は、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に至るまでの間に設けられ、冷媒を溜めることができる容器である。
 液側閉鎖弁29は、室外ユニット20における液側冷媒連絡配管6との接続部分に配置された手動弁である。
 ガス側閉鎖弁28は、室外ユニット20におけるとガス側冷媒連絡配管5との接続部分に配置された手動弁である。
 室外ユニット20は、室外ユニット20を構成する各部の動作を制御する室外ユニット制御部27を有している。室外ユニット制御部27は、CPUやメモリ等を含むマイクロコンピュータを有している。室外ユニット制御部27は、各室内ユニット30の室内ユニット制御部34と通信線を介して接続されており、制御信号等の送受信を行う。また、室外ユニット制御部27は、図示しない各種センサと電気的に接続されており、各センサからの信号を受信する。
 (6-2)室内ユニット30
 室内ユニット30は、対象空間である室内の壁面や天井等に設置されている。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。
 室内ユニット30は、室内熱交換器31と、室内ファン32と、を有している。
 室内熱交換器31は、液側が、液側冷媒連絡配管6と接続され、ガス側端が、ガス側冷媒連絡配管5とを接続されている。室内熱交換器31は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能する熱交換器である。
 室内ファン32は、室内ユニット30内に室内の空気を吸入して、室内熱交換器31において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室内ファン32は、室内ファンモータによって回転駆動される。
 また、室内ユニット30は、室内ユニット30を構成する各部の動作を制御する室内ユニット制御部34を有している。室内ユニット制御部34は、CPUやメモリ等を含むマイクロコンピュータを有している。室内ユニット制御部34は、室外ユニット制御部27と通信線を介して接続されており、制御信号等の送受信を行う。
 室内ユニット制御部34は、室内ユニット30内に設けられている図示しない各種センサと電気的に接続されており、各センサからの信号を受信する。
 (6-3)コントローラ7の詳細
 空気調和装置1では、室外ユニット制御部27と室内ユニット制御部34が通信線を介して接続されることで、空気調和装置1の動作を制御するコントローラ7が構成されている。
 コントローラ7は、主として、CPU(中央演算処理装置)と、ROMやRAM等のメモリを有している。なお、コントローラ7による各種処理や制御は、室外ユニット制御部27および/又は室内ユニット制御部34に含まれる各部が一体的に機能することによって実現されている。
 (6-4)運転モード
 以下、運転モードについて説明する。
 運転モードとしては、冷房運転モードと暖房運転モードとが設けられている。
 コントローラ7は、リモコン等から受け付けた指示に基づいて、冷房運転モードか暖房運転モードかを判断し、実行する。
 (6-4-1)冷房運転モード
 空気調和装置1では、冷房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室外熱交換器23、室外膨張弁24、室内熱交換器31の順に循環させる。
 より具体的には、冷房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される冷却負荷に応じた容量制御が行われる。当該容量制御としては、特に限定されず、例えば、吸入圧力の目標値が室内ユニット30で要求される冷却負荷に応じて設定され、吸入圧力が目標値になるように圧縮機21の運転周波数が制御されるものであってもよい。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を経て、室外熱交換器23のガス側端に流入する。
 室外熱交換器23のガス側端に流入したガス冷媒は、室外熱交換器23において、室外ファン25によって供給される室外側空気と熱交換を行って凝縮し、液冷媒となって室外熱交換器23の液側端から流出する。
 室外熱交換器23の液側端から流出した冷媒は、室外膨張弁24を通過する際に減圧される。なお、室外膨張弁24は、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、液側閉鎖弁29および液側冷媒連絡配管6を経て、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って蒸発し、ガス冷媒となって室内熱交換器31のガス側端から流出する。室内熱交換器31のガス側端から流出したガス冷媒は、ガス側冷媒連絡配管5に流れていく。
 ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (6-4-2)暖房運転モード
 空気調和装置1では、暖房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室内熱交換器31、室外膨張弁24、室外熱交換器23の順に循環させる。
 より具体的には、暖房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21では、室内ユニット30で要求される暖房負荷に応じた容量制御が行われる。当該容量制御としては、特に限定されず、例えば、吐出圧力の目標値が室内ユニット30で要求される暖房負荷に応じて設定され、吐出圧力が目標値になるように圧縮機21の運転周波数が制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22およびガス側冷媒連絡配管5を流れた後、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31のガス側端に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って凝縮し、気液二相状態の冷媒または液冷媒となって室内熱交換器31の液側端から流出する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6に流れていく。
 液側冷媒連絡配管6を流れた冷媒は、液側閉鎖弁29、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。なお、室外膨張弁24は、室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
 室外膨張弁24で減圧された冷媒は、室外熱交換器23の液側端に流入する。
 室外熱交換器23の液側端から流入した冷媒は、室外熱交換器23において、室外ファン25によって供給される室外空気と熱交換を行って蒸発し、ガス冷媒となって室外熱交換器23のガス側端から流出する。
 室外熱交換器23のガス側端から流出した冷媒は、四路切換弁22を経て、再び、圧縮機21に吸入される。
 (6-5)冷媒封入量
 以上の室内ユニット30が1台だけ設けられている空気調和装置1では、冷凍能力1kW当りの封入量が160g以上560g以下となるように、冷媒が冷媒回路10に充填されており、なかでも、冷媒容器としての低圧レシーバ26が設けられている空気調和装置1では、冷凍能力1kW当りの封入量が260g以上560g以下となるように、冷媒が冷媒回路10に充填されている。
 (6-6)第1実施形態の特徴
 例えば、従来多用されているR32冷媒を用いた冷凍サイクル装置では、R32の充填量が少な過ぎると、冷媒不足に起因するサイクル効率の悪化によりLCCPが大きくなり、R32の充填量が多過ぎるとGWPの影響が高くなり、LCCPが大きくなる傾向にある。
 これに対して、本実施形態の室内ユニット30が1台だけ設けられている空気調和装置1では、冷媒として1,2-ジフルオロエチレンを含む上記冷媒A~Eのいずれかの冷媒が用いられており、しかもその冷媒封入量を、冷凍能力1kW当りの封入量が160g以上560g以下(特に、低圧レシーバ26が設けられていることから260g以上560g以下)となるようにしている。
 これにより、R32よりもGWPが十分に小さい冷媒を用いつつ、冷凍能力1kW当りの封入量を560gまでに抑えることで、LCCPを低く抑えることが可能になっている。また、R32よりも熱搬送能力が低い冷媒であっても冷凍能力1kW当りの封入量を160g以上(特に、低圧レシーバ26が設けられていることから260g以上)とすることで冷媒不足によるサイクル効率の低下を抑制してLCCPの上昇を抑えることが可能になっている。以上より、GWPが十分に小さい冷媒を用いて熱サイクルを行う場合において、LCCPを低く抑えることが可能になっている。
 (6-7)第1実施形態の変形例A
 上記第1実施形態では、圧縮機21の吸入側に低圧レシーバが設けられている空気調和装置を例に挙げて説明したが、空気調和装置としては、冷媒回路において冷媒容器(低圧レシーバや高圧レシーバ等であり、圧縮機に付属のアキュムレータを除く)が設けられていないものであってもよい。
 この場合には、冷凍能力1kW当りの冷媒封入量が160g以上400g以下となるように、冷媒が冷媒回路10に充填される。そして、この場合には、室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、0.4L以上2.5L以下であることが好ましい。
 (6-8)第1実施形態の変形例B
 上記第1実施形態では、室内ユニットが1つだけ設けられている空気調和装置を例に挙げて説明したが、空気調和装置としては、互いに並列に接続された複数の室内ユニット(室内膨張弁を有さないもの)が設けられていてもよい。
 この場合には、冷凍能力1kW当りの冷媒封入量が260g以上560g以下となるように、冷媒が冷媒回路10に充填される。そして、この場合には、室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、1.4L以上5.0L未満であることが好ましい。
  (6-9)第1実施形態の変形例C
 上記第1実施形態では、室外ファン25が1つだけ設けられているトランク型の室外ユニット20を有する空気調和装置を例に挙げて説明したが、空気調和装置としては、室外ファン25が2つ設けられているトランク型の室外ユニット20を有するものであってもよい。
 この場合には、冷凍能力1kW当りの冷媒封入量が350g以上540g以下となるように、冷媒が冷媒回路10に充填される。そして、この場合には、室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、3.5L以上7.0L以下であることが好ましい。
 (7)第2実施形態
 以下、冷媒回路の概略構成図である図18、概略制御ブロック構成図である図19を参照しつつ、第2実施形態に係る冷凍サイクル装置としての空気調和装置1aについて説明する。
 以下、主として、第2実施形態の空気調和装置1aについて、第1実施形態の空気調和装置1と異なる箇所を中心に説明する。
 空気調和装置1aにおいても、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒として、1,2-ジフルオロエチレンを含む冷媒であって、上述した冷媒A~Eのいずれかが充填されている。
 空気調和装置1aの室外ユニット20では、上記第1実施形態における室外ユニット20の室外膨張弁24の代わりに、室外熱交換器23の液側から液側閉鎖弁29までの間において、第1室外膨張弁44、中間圧レシーバ41、第2室外膨張弁45が順次設けられている。また、上記第1実施形態における室外ユニット20の低圧レシーバ26は、第2実施形態の室外ユニット20には設けられていない。
 第1室外膨張弁44および第2室外膨張弁45は、弁開度を制御可能である。
 中間圧レシーバ41は、第1室外膨張弁44側から延びる配管の端部と、第2室外膨張弁45側から延びる配管の端部と、の両方が内部空間に位置しており、冷媒を溜めることができる容器である。
 なお、第2実施形態に係る空気調和装置1aでは、冷媒回路10において冷媒容器である中間圧レシーバ41が設けられていることから、室外ユニット20が有する室外熱交換器23の内容積(内部に充填可能な流体の体積)が、1.4L以上5.0L未満であることが好ましい。また、本実施形態のように、室外ファン25が1つだけ設けられているトランク型の室外ユニット20が有する室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、0.4L以上3.5L未満であることが好ましい。
 以上の空気調和装置1aでは、冷房運転モードでは、第1室外膨張弁44は、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、冷房運転モードでは、第2室外膨張弁45は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、冷房運転モードでは、第2室外膨張弁45は、圧縮機21が吐出する冷媒の温度が所定温度となるように制御されてもよいし、圧縮機21が吐出する冷媒の過熱度が所定条件を満たすように制御されてもよい。
 また、暖房運転モードでは、第2室外膨張弁45は、室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、暖房運転モードでは、第1室外膨張弁44は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、暖房運転モードでは、第1室外膨張弁44は、圧縮機21が吐出する冷媒の温度が所定温度となるように制御されてもよいし、圧縮機21が吐出する冷媒の過熱度が所定条件を満たすように制御されてもよい。
 以上の室内ユニット30が1台だけ設けられている空気調和装置1aでは、冷凍能力1kW当りの封入量が160g以上560g以下となるように、冷媒が冷媒回路10に充填されており、なかでも、冷媒容器としての中間圧レシーバ41が設けられている空気調和装置1では、冷凍能力1kW当りの封入量が260g以上560g以下となるように、冷媒が冷媒回路10に充填されている。
 なお、室内ユニット30が1台だけ設けられている空気調和装置1の定格冷房能力としては、例えば、2.2kW以上16.0kW以下とすることができ、4.0kW以上16.0kW以下とすることが好ましい。
 以上の第2実施形態に係る空気調和装置1aにおいても、第1実施形態に係る空気調和装置1と同様に、GWPが十分に小さい冷媒を用いて熱サイクルを行う場合において、LCCPを低く抑えることが可能になっている。
 (7-1)第2実施形態の変形例A
 上記第2実施形態では、室内ユニットが1つだけ設けられている空気調和装置を例に挙げて説明したが、空気調和装置としては、互いに並列に接続された複数の室内ユニット(室内膨張弁を有さないもの)が設けられていてもよい。
 この場合には、冷凍能力1kW当りの冷媒封入量が260g以上560g以下となるように、冷媒が冷媒回路10に充填される。そして、この場合には、室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、1.4L以上5.0L未満であることが好ましい。
 (7-2)第2実施形態の変形例B
 上記第2実施形態では、室外ファン25が1つだけ設けられているトランク型の室外ユニット20を有する空気調和装置を例に挙げて説明したが、空気調和装置としては、室外ファン25が2つ設けられたトランク型の室外ユニット20を有するものであってもよい。
 この場合には、冷凍能力1kW当りの冷媒封入量が350g以上540g以下となるように、冷媒が冷媒回路10に充填される。そして、この場合には、室外熱交換器23の内容積(内部に充填可能な流体の体積)としては、3.5L以上7.0L以下であることが好ましい。
 (8)第3実施形態
 以下、冷媒回路の概略構成図である図20、概略制御ブロック構成図である図21を参照しつつ、第3実施形態に係る冷凍サイクル装置としての空気調和装置1bについて説明する。
 以下、主として、第3実施形態の空気調和装置1bについて、第1実施形態の空気調和装置1と異なる箇所を中心に説明する。
 空気調和装置1bにおいても、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒として、1,2-ジフルオロエチレンを含む冷媒であって、上述した冷媒A~Eのいずれかが充填されている。
 第3実施形態に係る空気調和装置1bの室外ユニット20では、上記第1実施形態における室外ユニット20において、過冷却熱交換器47および過冷却回路46が設けられている。
 過冷却熱交換器47は、室外膨張弁24と液側閉鎖弁29との間に設けられている。
 過冷却回路46は、室外膨張弁24と過冷却熱交換器47との間の主回路から分岐し、四路切換弁22の接続ポートの1つから低圧レシーバ26に至るまでの途中の部分に合流するように延びた回路である。過冷却回路46の途中には、通過する冷媒を減圧させる過冷却膨張弁48が設けられている。過冷却回路46を流れる冷媒であって、過冷却膨張弁48で減圧された冷媒は、過冷却熱交換器47において、主回路側を流れる冷媒との間で熱交換を行う。これにより、主回路側を流れる冷媒はさらに冷却され、過冷却回路46を流れる冷媒は蒸発する。
 なお、室内膨張弁が設けられた室内ユニットを複数有している第3実施形態に係る空気調和装置1bでは、室外ユニット20が有する室外熱交換器23の内容積(内部に充填可能な流体の体積)が、5.0L以上38L以下であることが好ましい。なかでも、室外熱交換器23を通過した空気の吹出口が側方を向いている室外ユニット20において、室外ファン25が2つ設けられているものである場合には、室外熱交換器23の内容積(内部に充填可能な流体の体積)は、7.0L以下であることが好ましく、室外熱交換器23を通過した空気が上方に向けて吹き出す室外ユニット20である場合には、室外熱交換器23の内容積は、5.5L以上であることが好ましい。
 また、第3実施形態に係る空気調和装置1bでは、上記第1実施形態における室内ユニット30の代わりに、互いに並列に設けられた第1室内ユニット30および第2室内ユニット35を有している。
 第1室内ユニット30は、上記第1実施形態における室内ユニット30と同様に第1室内熱交換器31と第1室内ファン32と第1室内ユニット制御部34が設けられており、さらに、第1室内熱交換器31の液側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度が制御可能である。
 第2室内ユニット35は、第1室内ユニット30と同様であり、第2室内熱交換器36と第2室内ファン37と、第2室内ユニット制御部39と、第2室内熱交換器36の液側に設けられた第2室内膨張弁38と、を有している。第2室内膨張弁38は、弁開度が制御可能である。
 なお、第3実施形態のコントローラ7は、室外ユニット制御部27と、第1室内ユニット制御部34と、第2室内ユニット制御部39と、が互いに通信可能に接続されて構成されている。
 冷房運転モードでは、室外膨張弁24は、室外熱交換器23の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、冷房運転モードでは、過冷却膨張弁48は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、冷房運転モードでは、第1室内膨張弁33および第2室内膨張弁38は、全開状態に制御される。
 暖房運転モードでは、第1室内膨張弁33は、第1室内熱交換器31の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。第2室内膨張弁38も同様に、第2室内熱交換器36の液側出口を通過する冷媒の過冷却度が所定条件を満たすように制御される。また、暖房運転モードでは、室外膨張弁45は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。なお、暖房運転モードでは、過冷却膨張弁48は、圧縮機21が吸入する冷媒の過熱度が所定の条件を満たすように制御される。
 以上の室内ユニット30、35が複数台設けられている空気調和装置1bでは、冷凍能力1kW当りの封入量が190g以上1660g以下となるように、冷媒が冷媒回路10に充填されている。
 なお、室内ユニット30が複数台設けられている空気調和装置1bの定格冷房能力としては、例えば、4.0kW以上150.0kW以下とすることができ、14.0kW以上150.0kW以下とすることが好ましく、なかでも、室外ユニット20が上吹き型のものである場合には22.4kW以上150.0kW以下とすることが好ましい。
 以上の第3実施形態の室内ユニットが複数台設けられている空気調和装置1bでは、冷媒として1,2-ジフルオロエチレンを含む冷媒であって、上記冷媒A~Eのいずれかが用いられており、しかもその冷媒封入量を、冷凍能力1kW当りの封入量が190g以上1660g以下となるようにしている。
 これにより、室内ユニットが複数台設けられている空気調和装置1bにおいても、R32よりもGWPが十分に小さい冷媒を用いつつ、冷凍能力1kW当りの封入量を1660gまでに抑えることで、LCCPを低く抑えることが可能になっている。また、室内ユニットが複数台設けられている空気調和装置1bにおいても、R32よりも熱搬送能力が低い冷媒であっても冷凍能力1kW当りの封入量を190g以上とすることで冷媒不足によるサイクル効率の低下を抑制してLCCPの上昇を抑えることが可能になっている。以上より、室内ユニットが複数台設けられている空気調和装置1bにおいても、GWPが十分に小さい冷媒を用いて熱サイクルを行う場合において、LCCPを低く抑えることが可能になっている。
 (9)第4実施形態
 冷凍サイクル装置の冷媒回路に1,2-ジフルオロエチレンを含む冷媒であって上記冷媒A~Eのいずれかを封入する場合の封入冷媒量について、第1実施形態の空気調和装置1や第2実施形態の空気調和装置1aのように室内ユニット30が1台だけ設けられている冷凍サイクル装置については、冷凍能力1kW当りの封入量が160g以上560g以下となるようにしつつ、第3実施形態の空気調和装置1bのように室内ユニット30が複数台設けられている冷凍サイクル装置については、冷凍能力1kW当りの封入量が190g以上1660g以下となるようにする。
 これにより、冷凍サイクル装置の種類に応じて、GWPとLCCPを低く抑えることが可能になる。
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
  1、1a、1b 空気調和装置(冷凍サイクル装置)
  5 ガス側冷媒連絡配管(冷媒配管)
  6 液側冷媒連絡配管(冷媒配管)
 10 冷媒回路
 20 室外ユニット(熱源ユニット)
 21 圧縮機
 23 室外熱交換器(熱源側熱交換器)
 30 室内ユニット、第1室内ユニット(利用ユニット、第1利用ユニット)
 31 室内熱交換器、第1室内熱交換器(第1利用側熱交換器)
 35 第2室内ユニット(第2利用ユニット)
 36 第2室内熱交換器(第2利用側熱交換器)
国際公開第2015/141678号

Claims (26)

  1.  圧縮機(21)および熱源側熱交換器(23)を有する熱源ユニット(20)と、
     利用側熱交換器(31)を有する利用ユニット(30)と、
     前記熱源ユニットと前記利用ユニットとを接続する冷媒配管(5、6)と、
    を備え、
     前記圧縮機と前記熱源側熱交換器と前記利用側熱交換器が接続されて構成される冷媒回路(10)に、少なくとも1,2-ジフルオロエチレンを含む冷媒が封入されており、
     前記冷媒回路における前記冷媒の冷凍能力1kW当りの封入量が、160g以上560g以下の条件を満たしている、
    冷凍サイクル装置(1、1a)。
  2.  圧縮機(21)および熱源側熱交換器(23)を有する熱源ユニット(20)と、
     第1利用側熱交換器(31)を有する第1利用ユニット(30)と、
     第2利用側熱交換器(36)を有する第2利用ユニット(35)と、
     前記熱源ユニットと前記第1利用ユニットと前記第2利用ユニットとを接続する冷媒配管(5、6)と、
    を備え、
     前記圧縮機および前記熱源側熱交換器に前記第1利用側熱交換器と前記第2利用側熱交換器とが並列に接続されて構成される冷媒回路(10)に、少なくとも1,2-ジフルオロエチレンを含む冷媒が封入されており、
     前記冷媒回路における前記冷媒の冷凍能力1kW当りの封入量が、190g以上1660g以下の条件を満たしている、
    冷凍サイクル装置(1b)。
  3.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む、
    請求項1または2に記載の冷凍サイクル装置。
  4.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点A(68.6, 0.0, 31.4)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点D(0.0, 80.4, 19.6)、
      点C’(19.5,70.5,10.0)、
      点C(32.9, 67.1, 0.0)及び
      点O(100.0, 0.0, 0.0)
    の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD、CO及びOA上の点は除く)、
    前記線分AA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
      座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
      座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分BD、CO及びOAが直線である、
    請求項3に記載の冷凍サイクル装置。
  5.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点G(72.0, 28.0, 0.0)、
      点I(72.0, 0.0, 28.0)、
      点A(68.6, 0.0, 31.4)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点D(0.0, 80.4, 19.6)、
      点C’(19.5,70.5,10.0) 及び
      点C(32.9, 67.1, 0.0)
    の8点をそれぞれ結ぶ線分GI、IA、AA’、A’B、BD、DC’、C’C及びCGで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分IA、BD及びCG上の点は除く)、
    前記線分AA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
      座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
      座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分GI、IA、BD及びCGが直線である、
    請求項3に記載の冷凍サイクル装置。
  6.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点J(47.1, 52.9, 0.0)、
      点P(55.8, 42.0, 2.2)、
      点N(68.6, 16.3, 15.1)、
      点K(61.3, 5.4, 33.3)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点D(0.0, 80.4, 19.6)、
      点C’(19.5,70.5,10.0) 及び
      点C(32.9, 67.1, 0.0)
    の9点をそれぞれ結ぶ線分JP、PN、NK、KA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
    前記線分PNは、
      座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分NKは、
      座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
    で表わされ、
    前記線分KA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
      座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
      座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分JP、BD及びCGが直線である、
    請求項3に記載の冷凍サイクル装置。
  7.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点J(47.1, 52.9, 0.0)、
      点P(55.8, 42.0, 2.2)、
      点L(63.1, 31.9, 5.0)、
      点M(60.3, 6.2, 33.5)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点D(0.0, 80.4, 19.6)、
      点C’(19.5,70.5,10.0) 及び
      点C(32.9, 67.1, 0.0)
    の9点をそれぞれ結ぶ線分JP、PL、LM、MA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
    前記線分PLは、
      座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分MA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
      座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
      座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分JP、LM、BD及びCGが直線である、
    請求項3に記載の冷凍サイクル装置。
  8.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点P(55.8, 42.0, 2.2)、
      点L(63.1, 31.9, 5.0)、
      点M(60.3, 6.2, 33.5)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点F(0.0, 61.8, 38.2)及び
      点T(35.8, 44.9, 19.3)
    の7点をそれぞれ結ぶ線分PL、LM、MA’、A’B、BF、FT及びTPで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BF上の点は除く)、
    前記線分PLは、
      座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分MA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分FTは、
      座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
    で表わされ、
    前記線分TPは、
      座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
    で表わされ、かつ
    前記線分LM及びBFが直線である、
    請求項3に記載の冷凍サイクル装置。
  9.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点P(55.8, 42.0, 2.2)、
      点L(63.1, 31.9, 5.0)、
      点Q(62.8, 29.6, 7.6) 及び
      点R(49.8, 42.3, 7.9)
    の4点をそれぞれ結ぶ線分PL、LQ、QR及びRPで囲まれる図形の範囲内又は前記線分上にあり、
    前記線分PLは、
      座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分RPは、
      座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
    で表わされ、かつ
    前記線分LQ及びQRが直線である、
    請求項3に記載の冷凍サイクル装置。
  10.  前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
      点S(62.6, 28.3, 9.1)、
      点M(60.3, 6.2, 33.5)、
      点A’(30.6, 30.0, 39.4)、
      点B(0.0, 58.7, 41.3)、
      点F(0.0, 61.8, 38.2)及び
      点T(35.8, 44.9, 19.3)
    の6点をそれぞれ結ぶ線分SM、MA’、A’B、BF、FT、及びTSで囲まれる図形の範囲内又は前記線分上にあり、
    前記線分MA’は、
      座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
      座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分FTは、
      座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
    で表わされ、
    前記線分TSは、
      座標(x, 0.0017x2-0.7869x+70.888, -0.0017x2-0.2131x+29.112)
    で表わされ、かつ
    前記線分SM及びBFが直線である、
    請求項3に記載の冷凍サイクル装置。
  11.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して62.0質量%~72.0質量%含む、
    請求項1または2に記載の冷凍サイクル装置。
  12.  前記冷媒が、HFO-1132(E)及びHFO-1123の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して45.1質量%~47.1質量%含む、
    請求項1または2に記載の冷凍サイクル装置。
  13.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
      0<a≦11.1のとき、
       点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)、
       点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)、
       点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)、
       点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
       点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
       点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
    の6点をそれぞれ結ぶ直線GI、IA、AB、BD’、D’C及びCGで囲まれる図形の範囲内又は前記直線GI、AB及びD’C上にあり(ただし、点G、点I、点A、点B、点D’及び点Cは除く)、
      11.1<a≦18.2のとき、
       点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)、
       点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)、
       点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)、
       点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
      18.2<a≦26.7のとき、
       点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)、
       点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)、
       点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)、
       点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
      26.7<a≦36.7のとき、
       点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)、
       点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)、
       点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
       点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、及び
      36.7<a≦46.7のとき、
       点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098,0.0)、
       点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2-0.0082a+36.098)、
       点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
       点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にある(ただし、点G、点I、点A、点B及び点Wは除く)、
    請求項1または2に記載の冷凍サイクル装置。
  14.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
      0<a≦11.1のとき、
       点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)、
       点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)、
       点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
       点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
       点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
    の5点をそれぞれ結ぶ直線JK’、K’B、BD’、D’C及びCJで囲まれる図形の範囲内又は前記直線JK’、K’B及びD’C上にあり(ただし、点J、点B、点D’及び点Cは除く)、
      11.1<a≦18.2のとき、
       点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)、
       点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)、
       点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
       点W(0.0, 100.0-a, 0.0)
    の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
      18.2<a≦26.7のとき、
       点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)、
       点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)、
       点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
       点W(0.0, 100.0-a, 0.0)
    の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
      26.7<a≦36.7のとき、
       点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)、
       点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)、
       点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
       点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にあり(ただし、点J、点B及び点Wは除く)、及び
      36.7<a≦46.7のとき、
       点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)、
       点K’(-1.892a+29.443, 0.0, 0.892a+70.557)、
       点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
       点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
       点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にある(ただし、点J、点B及び点Wは除く)、
    請求項1または2に記載の冷凍サイクル装置。
  15.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点I(72.0, 0.0, 28.0)、
       点J(48.5, 18.3, 33.2)、
       点N(27.7, 18.2, 54.1)及び
       点E(58.3, 0.0, 41.7)
    の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
     前記線分IJは、
      座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
    で表わされ、
     前記線分NEは、
      座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
    で表わされ、かつ
     前記線分JN及びEIが直線である、
    請求項1または2に記載の冷凍サイクル装置。
  16.  前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点M(52.6, 0.0, 47.4)、
       点M’(39.2, 5.0, 55.8)、
       点N(27.7, 18.2, 54.1)、
       点V(11.0, 18.1, 70.9)及び
       点G(39.6, 0.0, 60.4)
    の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
     前記線分MM’は、
      座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
    で表わされ、
     前記線分M’Nは、
      座標(0.0313y2-1.4551y+43.824, y, -0.0313y2+0.4551y+56.176)
    で表わされ、
     前記線分VGは、
      座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
    で表わされ、かつ
     前記線分NV及びGMが直線である、
    請求項1または2に記載の冷凍サイクル装置。
  17.  前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点O(22.6, 36.8, 40.6)、
       点N(27.7, 18.2, 54.1)及び
       点U(3.9, 36.7, 59.4)
    の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
     前記線分ONは、
      座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
    で表わされ、
     前記線分NUは、
      座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
    で表わされ、かつ
     前記線分UOが直線である、
    請求項1または2に記載の冷凍サイクル装置。
  18.  前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点Q(44.6, 23.0, 32.4)、
       点R(25.5, 36.8, 37.7)、
       点T(8.6, 51.6, 39.8)、
       点L(28.9, 51.7, 19.4)及び
       点K(35.6, 36.8, 27.6)
    の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
     前記線分QRは、
      座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
    で表わされ、
     前記線分RTは、
      座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
    で表わされ、
     前記線分LKは、
      座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
    で表わされ、
     前記線分KQは、
      座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
    で表わされ、かつ
     前記線分TLが直線である、
    請求項1または2に記載の冷凍サイクル装置。
  19.  前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点P(20.5, 51.7, 27.8)、
       点S(21.9, 39.7, 38.4)及び
       点T(8.6, 51.6, 39.8)
    の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
     前記線分PSは、
      座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
    で表わされ、
     前記線分STは、
      座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
    で表わされ、かつ
     前記線分TPが直線である、
    請求項1または2に記載の冷凍サイクル装置。
  20.  前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及びジフルオロメタン(R32)を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点I(72.0, 28,0, 0.0)
       点K(48.4, 33.2, 18.4)
       点B’(0.0, 81.6, 18.4)
       点H(0.0, 84.2, 15.8)
       点R(23.1, 67.4, 9.5)及び
       点G(38.5, 61.5, 0.0)
    の6点をそれぞれ結ぶ線分IK、KB’、B’H、HR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGI上の点を除く)、
     前記線分IKは、
      座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.0, z)
    で表わされ、
     前記線分HRは、
      座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
    で表わされ、
     前記線分RGは、
      座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
    で表わされ、かつ
     前記線分KB’及びGIが直線である、
    請求項1または2に記載の冷凍サイクル装置。
  21.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点I(72.0, 28,0, 0.0)
       点J(57.7, 32.8, 9.5)
       点R(23.1, 67.4, 9.5)及び
       点G(38.5, 61.5, 0.0)
    の4点をそれぞれ結ぶ線分IJ、JR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GI上の点を除く)、
     前記線分IJは、
      座標(0.025z2-1.7429z+72.0, -0.025z2+0.7429z+28.0, z)
    で表わされ、かつ
     前記線分RGは、
      座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
    で表わされ、
     前記線分JR及びGIが直線である、
    請求項1または2に記載の冷凍サイクル装置。
  22.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点M(47.1, 52.9, 0.0)
       点P(31.8, 49.8, 18.4)
       点B’(0.0, 81.6, 18.4)
       点H(0.0, 84.2, 15.8)
       点R(23.1, 67.4, 9.5)及び
       点G(38.5, 61.5, 0.0)
    の6点をそれぞれ結ぶ線分MP、PB’、B’H、HR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGM上の点を除く)、
     前記線分MPは、
      座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
    で表わされ、
     前記線分HRは、
      座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
    で表わされ、
     前記線分RGは、
      座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
    で表わされ、かつ
     前記線分PB’及びGMが直線である、
    請求項1または2に記載の冷凍サイクル装置。
  23.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点M(47.1, 52.9, 0.0)
       点N(38.5, 52.1, 9.5)
       点R(23.1, 67.4, 9.5)及び
       点G(38.5, 61.5, 0.0)
    の4点をそれぞれ結ぶ線分MN、NR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上の点を除く)、
     前記線分MNは、
      座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
    で表わされ、かつ
     前記線分RGは、
      座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
    で表わされ、
     前記線分JR及びGIが直線である、
    請求項1または2に記載の冷凍サイクル装置。
  24.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点P(31.8, 49.8, 18.4)
       点S(25.4, 56.2, 18.4)及び
       点T(34.8, 51.0, 14.2)
    の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
     前記線分STは、
      座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)
    で表わされ、かつ
     前記線分TPは、
      座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
    で表わされ、
     前記線分PSが直線である、
    請求項1または2に記載の冷凍サイクル装置。
  25.  前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
     前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
       点Q(28.6, 34.4, 37.0)
       点B’’(0.0, 63.0, 37.0)
       点D(0.0, 67.0, 33.0)及び
       点U(28.7, 41.2, 30.1)
    の4点をそれぞれ結ぶ線分QB’’、B’’D、DU及びUQで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’’D上の点を除く)、
     前記線分DUは、
      座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされ、かつ
     前記線分UQは、
      座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867, z)
    で表わされ、
     前記線分QB’’及びB’’Dが直線である、
    請求項1または2に記載の冷凍サイクル装置。
  26.  圧縮機(21)および熱源側熱交換器(23)を有する熱源ユニット(20)と、利用側熱交換器(31)を有する利用ユニット(30)と、前記熱源ユニットと前記利用ユニットとを接続する冷媒配管(5、6)と、を備え、前記圧縮機と前記熱源側熱交換器と前記利用側熱交換器が接続されて構成される冷媒回路(10)に少なくとも1,2-ジフルオロエチレンを含む冷媒が封入された冷凍サイクル装置(1、1a)については、前記冷媒回路における前記冷媒の冷凍能力1kW当りの封入量を、160g以上560g以下とし、
     圧縮機(21)および熱源側熱交換器(23)を有する熱源ユニット(20)と、第1利用側熱交換器(31)を有する第1利用ユニット(30)と、第2利用側熱交換器(36)を有する第2利用ユニット(35)と、前記熱源ユニットと前記第1利用ユニットと前記第2利用ユニットとを接続する冷媒配管(5、6)と、を備え、前記圧縮機および前記熱源側熱交換器に前記第1利用側熱交換器と前記第2利用側熱交換器とが並列に接続されて構成される冷媒回路(10)に少なくとも1,2-ジフルオロエチレンを含む冷媒が封入された冷凍サイクル装置(1b)については、前記冷媒回路における前記冷媒の冷凍能力1kW当りの封入量を、190g以上1660g以下とする、
    冷凍サイクル装置における冷媒封入量の決定方法。
PCT/JP2018/045289 2017-12-18 2018-12-10 冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法 WO2019124139A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2019560981A JPWO2019124139A1 (ja) 2017-12-18 2018-12-10 冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法
AU2018387883A AU2018387883A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus and method for determining refrigerant injection amount in refrigeration cycle apparatus
EP18892500.2A EP3730868A4 (en) 2017-12-18 2018-12-10 REFRIGERATION CYCLE APPARATUS AND METHOD FOR DETERMINING THE QUANTITY OF INJECTION OF REFRIGERATION FLUID INTO A REFRIGERATION CYCLE APPARATUS
CN201880081190.0A CN111492188B (zh) 2017-12-18 2018-12-10 制冷循环装置和制冷循环装置中的制冷剂封入量的确定方法
BR112020009389-0A BR112020009389A2 (pt) 2017-12-18 2018-12-10 aparelho de ciclo de refrigeração e método para determinar a quantidade no compartimento de refrigerante no aparelho de ciclo de refrigeração
US16/954,613 US20200309437A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
KR1020207019793A KR20200100681A (ko) 2017-12-18 2018-12-10 냉동 사이클 장치 및 냉동 사이클 장치에 있어서의 냉매 봉입량의 결정 방법
PH12020550913A PH12020550913A1 (en) 2017-12-18 2020-06-16 Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US16/912,130 US20200325375A1 (en) 2017-12-18 2020-06-25 Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2017-242186 2017-12-18
JP2017-242183 2017-12-18
JP2017242186 2017-12-18
JP2017242187 2017-12-18
JP2017242185 2017-12-18
JP2017-242185 2017-12-18
JP2017-242187 2017-12-18
JP2017242183 2017-12-18
JPPCT/JP2018/037483 2018-10-05
PCT/JP2018/037483 WO2019123782A1 (ja) 2017-12-18 2018-10-05 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
PCT/JP2018/038749 WO2019123807A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JPPCT/JP2018/038749 2018-10-17
PCT/JP2018/038746 WO2019123804A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JPPCT/JP2018/038746 2018-10-17
JPPCT/JP2018/038747 2018-10-17
PCT/JP2018/038747 WO2019123805A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
PCT/JP2018/038748 WO2019123806A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JPPCT/JP2018/038748 2018-10-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/954,613 A-371-Of-International US20200309437A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US16/912,130 Continuation-In-Part US20200325375A1 (en) 2017-12-18 2020-06-25 Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2019124139A1 true WO2019124139A1 (ja) 2019-06-27

Family

ID=66992737

Family Applications (15)

Application Number Title Priority Date Filing Date
PCT/JP2018/042032 WO2019123898A1 (ja) 2017-12-18 2018-11-13 冷媒用または冷媒組成物用の冷凍機油、冷凍機油の使用方法、および、冷凍機油としての使用
PCT/JP2018/042027 WO2019123897A1 (ja) 2017-12-18 2018-11-13 冷凍サイクル装置
PCT/JP2018/045289 WO2019124139A1 (ja) 2017-12-18 2018-12-10 冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法
PCT/JP2018/045288 WO2019124138A1 (ja) 2017-12-18 2018-12-10 空調ユニット
PCT/JP2018/045979 WO2019124230A1 (ja) 2017-12-18 2018-12-13 温水製造装置
PCT/JP2018/045978 WO2019124229A1 (ja) 2017-12-18 2018-12-13 冷凍装置
PCT/JP2018/046427 WO2019124327A1 (ja) 2017-12-18 2018-12-17 冷凍サイクル装置
PCT/JP2018/046428 WO2019124328A1 (ja) 2017-12-18 2018-12-17 熱源ユニットおよび冷凍サイクル装置
PCT/JP2018/046426 WO2019124326A1 (ja) 2017-12-18 2018-12-17 熱交換ユニット
PCT/JP2018/046630 WO2019124398A1 (ja) 2017-12-18 2018-12-18 圧縮機
PCT/JP2018/046531 WO2019124360A1 (ja) 2017-12-18 2018-12-18 空気調和機
PCT/JP2018/046533 WO2019124362A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
PCT/JP2018/046532 WO2019124361A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
PCT/JP2018/046631 WO2019124399A1 (ja) 2017-12-18 2018-12-18 圧縮機
PCT/JP2018/046582 WO2019124380A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/042032 WO2019123898A1 (ja) 2017-12-18 2018-11-13 冷媒用または冷媒組成物用の冷凍機油、冷凍機油の使用方法、および、冷凍機油としての使用
PCT/JP2018/042027 WO2019123897A1 (ja) 2017-12-18 2018-11-13 冷凍サイクル装置

Family Applications After (12)

Application Number Title Priority Date Filing Date
PCT/JP2018/045288 WO2019124138A1 (ja) 2017-12-18 2018-12-10 空調ユニット
PCT/JP2018/045979 WO2019124230A1 (ja) 2017-12-18 2018-12-13 温水製造装置
PCT/JP2018/045978 WO2019124229A1 (ja) 2017-12-18 2018-12-13 冷凍装置
PCT/JP2018/046427 WO2019124327A1 (ja) 2017-12-18 2018-12-17 冷凍サイクル装置
PCT/JP2018/046428 WO2019124328A1 (ja) 2017-12-18 2018-12-17 熱源ユニットおよび冷凍サイクル装置
PCT/JP2018/046426 WO2019124326A1 (ja) 2017-12-18 2018-12-17 熱交換ユニット
PCT/JP2018/046630 WO2019124398A1 (ja) 2017-12-18 2018-12-18 圧縮機
PCT/JP2018/046531 WO2019124360A1 (ja) 2017-12-18 2018-12-18 空気調和機
PCT/JP2018/046533 WO2019124362A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
PCT/JP2018/046532 WO2019124361A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
PCT/JP2018/046631 WO2019124399A1 (ja) 2017-12-18 2018-12-18 圧縮機
PCT/JP2018/046582 WO2019124380A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置

Country Status (4)

Country Link
JP (1) JP7448851B2 (ja)
CN (2) CN111556949B (ja)
WO (15) WO2019123898A1 (ja)
ZA (1) ZA202003916B (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017521A1 (ja) 2018-07-17 2020-01-23 ダイキン工業株式会社 冷媒サイクル装置
EP3825383A4 (en) 2018-07-17 2022-10-05 Daikin Industries, Ltd. REFRIGERATION CIRCUIT DEVICE FOR A VEHICLE
JP7108212B2 (ja) 2018-07-17 2022-07-28 ダイキン工業株式会社 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
WO2020158170A1 (ja) 2019-01-30 2020-08-06 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
JP6737391B1 (ja) 2019-01-30 2020-08-05 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
WO2020162401A1 (ja) 2019-02-05 2020-08-13 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
CN113412398A (zh) 2019-02-06 2021-09-17 大金工业株式会社 含有制冷剂的组合物及使用了该组合物的冷冻方法、冷冻装置的运转方法和冷冻装置
CN115004512A (zh) * 2020-02-07 2022-09-02 三菱电机株式会社 转子、电动机、压缩机、制冷循环装置及空气调节装置
CN111928460A (zh) * 2020-07-20 2020-11-13 江苏大学 一种收集空调外机输出热的装置
CN112097423B (zh) * 2020-09-10 2022-02-18 佛山市艺兴冷气工程有限公司 一种空调的制冷剂分流设备及其使用方法
WO2022163830A1 (ja) * 2021-01-29 2022-08-04 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP2023132720A (ja) * 2022-03-11 2023-09-22 株式会社デンソー 複合型熱交換器、熱交換システム
WO2023181403A1 (ja) * 2022-03-25 2023-09-28 三菱電機株式会社 冷凍サイクル装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089978A (ja) * 2000-09-11 2002-03-27 Daikin Ind Ltd ペア型の冷凍装置およびマルチ型の冷凍装置
WO2013146208A1 (ja) * 2012-03-26 2013-10-03 東芝キヤリア株式会社 冷凍サイクル装置
WO2013151043A1 (ja) * 2012-04-02 2013-10-10 東芝キヤリア株式会社 冷凍サイクル装置
WO2015115252A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015141678A1 (ja) 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186557A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186670A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190115U (ja) * 1975-01-17 1976-07-19
JPS5939790U (ja) * 1982-09-06 1984-03-14 株式会社東芝 コンプレツサの冷却装置
JP2803451B2 (ja) 1991-07-12 1998-09-24 三菱電機株式会社 冷媒圧縮機及び冷蔵庫及び冷凍空調装置及び冷媒圧縮機の組立方法
JPH05264070A (ja) * 1992-03-17 1993-10-12 Mitsubishi Electric Corp 空気調和機の室外ユニット
JPH10309050A (ja) * 1996-05-16 1998-11-17 Matsushita Electric Ind Co Ltd 圧縮機
JP2869038B2 (ja) * 1996-06-05 1999-03-10 松下電器産業株式会社 3成分混合冷媒を用いたヒートポンプ装置
JPH1046170A (ja) * 1996-08-06 1998-02-17 Kao Corp 冷凍機作動流体用組成物
JPH11256358A (ja) 1998-03-09 1999-09-21 Sanyo Electric Co Ltd 熱交換器用耐食性銅パイプ
JP3860942B2 (ja) * 1999-11-18 2006-12-20 株式会社ジャパンエナジー 冷凍装置用潤滑油組成物、作動流体及び冷凍装置
JP3763120B2 (ja) 2000-08-09 2006-04-05 三菱電機株式会社 空気調和装置
JP2002257366A (ja) * 2001-03-02 2002-09-11 Sekisui Chem Co Ltd 給湯暖房システム
JP3885535B2 (ja) 2001-09-07 2007-02-21 株式会社デンソー 給湯装置
JP2004028035A (ja) * 2002-06-28 2004-01-29 Fujitsu General Ltd 密閉形圧縮機
JP3925383B2 (ja) * 2002-10-11 2007-06-06 ダイキン工業株式会社 給湯装置、空調給湯システム、及び給湯システム
JP2004251535A (ja) * 2003-02-20 2004-09-09 Aisin Seiki Co Ltd 空気調和機
JP2004361036A (ja) * 2003-06-06 2004-12-24 Daikin Ind Ltd 空気調和装置
JP2005061711A (ja) * 2003-08-12 2005-03-10 Osaka Gas Co Ltd 排熱回収給湯装置
JP2005241045A (ja) * 2004-02-24 2005-09-08 Sanyo Electric Co Ltd 空気調和装置
JP2006211824A (ja) * 2005-01-28 2006-08-10 Mitsubishi Electric Corp 圧縮機
JP2008039305A (ja) * 2006-08-07 2008-02-21 Daikin Ind Ltd 建物において温水を循環させて暖房を行う温水循環暖房システムおよび蒸発器用散水装置
JP4172514B2 (ja) * 2006-10-10 2008-10-29 ダイキン工業株式会社 圧縮機
JP4859694B2 (ja) * 2007-02-02 2012-01-25 三菱重工業株式会社 多段圧縮機
JP4840215B2 (ja) * 2007-03-27 2011-12-21 株式会社日立製作所 永久磁石式回転電機及びそれを用いた圧縮機
JP2008286422A (ja) * 2007-05-15 2008-11-27 Panasonic Corp 冷蔵庫
JP2009063216A (ja) * 2007-09-06 2009-03-26 Hitachi Appliances Inc 熱交換器およびそれを用いた空気調和機
JP2009092274A (ja) * 2007-10-05 2009-04-30 Hitachi Appliances Inc 空気調和機
JP5038105B2 (ja) * 2007-11-19 2012-10-03 パナソニック株式会社 弁装置およびそれを備える空気調和機
JP2009150620A (ja) * 2007-12-21 2009-07-09 Toshiba Carrier Corp 2元ヒートポンプ式空気調和装置
JP2010103346A (ja) * 2008-10-24 2010-05-06 Daido Steel Co Ltd Ipm型集中巻モータ用磁石及びその製造方法、該磁石を用いたipm型集中巻モータ
JP2010119190A (ja) * 2008-11-12 2010-05-27 Toyota Motor Corp 磁石埋め込み型モータ用ロータと磁石埋め込み型モータ
JP5136495B2 (ja) * 2009-03-27 2013-02-06 パナソニック株式会社 熱交換器
JP5452138B2 (ja) * 2009-09-01 2014-03-26 三菱電機株式会社 冷凍空調装置
JP5542423B2 (ja) * 2009-12-22 2014-07-09 東芝産業機器システム株式会社 回転電機の回転子、および回転電機
JP2011252636A (ja) * 2010-06-01 2011-12-15 Panasonic Corp 温水暖房給湯装置
JP5388969B2 (ja) * 2010-08-23 2014-01-15 三菱電機株式会社 熱交換器及びこの熱交換器が搭載された空気調和機
JP5595245B2 (ja) * 2010-11-26 2014-09-24 三菱電機株式会社 冷凍装置
US9951962B2 (en) * 2011-12-06 2018-04-24 Mitsubishi Electric Corporation Heat pump heating and hot-water system
JP2013126281A (ja) * 2011-12-14 2013-06-24 Daikin Ind Ltd 界磁子の製造方法及び界磁子用の端板
JP5506770B2 (ja) 2011-12-16 2014-05-28 三菱電機株式会社 空気調和機
JP5881435B2 (ja) * 2012-01-27 2016-03-09 三菱電機株式会社 熱交換器及びこれを備えた空気調和機
WO2014045400A1 (ja) 2012-09-21 2014-03-27 三菱電機株式会社 冷凍装置及びその制御方法
JP5776746B2 (ja) * 2013-01-29 2015-09-09 ダイキン工業株式会社 空気調和装置
WO2014118945A1 (ja) * 2013-01-31 2014-08-07 日立アプライアンス株式会社 冷凍サイクル装置
CN105102905B (zh) * 2013-03-29 2017-05-10 松下健康医疗控股株式会社 二元制冷装置
JP6089912B2 (ja) * 2013-04-17 2017-03-08 三菱電機株式会社 冷媒圧縮機
WO2014203354A1 (ja) * 2013-06-19 2014-12-24 三菱電機株式会社 冷凍サイクル装置
JP6141429B2 (ja) * 2013-06-19 2017-06-07 三菱電機株式会社 空気調和機
JP2015023721A (ja) * 2013-07-22 2015-02-02 ダイキン工業株式会社 回転子、モータおよび圧縮機
JP2015055455A (ja) * 2013-09-13 2015-03-23 三菱電機株式会社 室外機及び空気調和機
JP2015078789A (ja) * 2013-10-16 2015-04-23 三菱電機株式会社 熱交換器および熱交換器を備えた空気調和装置
JP6118227B2 (ja) * 2013-10-22 2017-04-19 株式会社日立産機システム 永久磁石回転電機およびそれを用いる圧縮機
EP3070417A4 (en) * 2013-11-12 2017-09-27 Mitsubishi Electric Corporation Refrigeration system
US9593077B2 (en) 2013-11-18 2017-03-14 Arcturus Therapeutics, Inc. Ionizable cationic lipid for RNA delivery
JP2015114082A (ja) * 2013-12-13 2015-06-22 ダイキン工業株式会社 冷媒配管接合体および冷媒配管接合体の製造方法
JP6583261B2 (ja) * 2014-02-20 2019-10-02 Agc株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP6354616B2 (ja) * 2014-02-20 2018-07-11 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP6375639B2 (ja) * 2014-02-21 2018-08-22 ダイキン工業株式会社 空気調和装置
CN106103992B (zh) * 2014-03-14 2018-05-11 三菱电机株式会社 压缩机以及制冷循环装置
JP2015218909A (ja) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 冷凍サイクル装置およびそれを備えた温水生成装置
JP6519909B2 (ja) * 2014-07-18 2019-05-29 出光興産株式会社 冷凍機油組成物、及び冷凍装置
CN107112830B (zh) * 2014-12-22 2019-05-10 三菱电机株式会社 旋转电机的转子
JP6028815B2 (ja) * 2015-01-19 2016-11-24 ダイキン工業株式会社 空気調和装置の熱交換ユニット
JP2016174461A (ja) * 2015-03-17 2016-09-29 ダイキン工業株式会社 ロータ
WO2016190232A1 (ja) * 2015-05-22 2016-12-01 ダイキン工業株式会社 温度調整用流体供給装置
JP6604082B2 (ja) * 2015-08-07 2019-11-13 ダイキン工業株式会社 冷凍装置
US10594176B2 (en) * 2015-09-01 2020-03-17 Mitsubishi Electric Corporation Rotor, rotating electric machine, electric compressor, and refrigeration/air-conditioning apparatus
JP6733145B2 (ja) * 2015-09-30 2020-07-29 ダイキン工業株式会社 水熱交換器収容ユニット
JP6762719B2 (ja) * 2016-01-08 2020-09-30 株式会社デンソーエアクール 熱交換器の製造方法
JP2017145975A (ja) * 2016-02-15 2017-08-24 三菱電機株式会社 冷凍サイクル装置、冷凍サイクル装置の製造方法、冷凍サイクル装置のドロップイン方法、及び、冷凍サイクル装置のリプレース方法
JP2017192190A (ja) * 2016-04-12 2017-10-19 日立ジョンソンコントロールズ空調株式会社 永久磁石モータ、及びそれを用いた圧縮機、空気調和機
GB2564312C (en) * 2016-05-09 2020-12-02 Mitsubishi Electric Corp Refrigerating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089978A (ja) * 2000-09-11 2002-03-27 Daikin Ind Ltd ペア型の冷凍装置およびマルチ型の冷凍装置
WO2013146208A1 (ja) * 2012-03-26 2013-10-03 東芝キヤリア株式会社 冷凍サイクル装置
WO2013151043A1 (ja) * 2012-04-02 2013-10-10 東芝キヤリア株式会社 冷凍サイクル装置
WO2015115252A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015141678A1 (ja) 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186557A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186670A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIRAHARA TAKUHO, FUJIMOTO SATORU: "Latest Refrigerant Trends-LCCP Forecast for Low GWP Candidate Refrigerant Adaptation Equipment-,", REFRIGERATION, vol. 85, no. 987, 15 January 2010 (2010-01-15), pages 15 - 20, XP009521850, ISSN: 0034-3714 *

Also Published As

Publication number Publication date
WO2019124380A1 (ja) 2019-06-27
JP2023010806A (ja) 2023-01-20
WO2019124229A1 (ja) 2019-06-27
CN111556949A (zh) 2020-08-18
WO2019124360A1 (ja) 2019-06-27
CN111492187B (zh) 2022-05-27
ZA202003916B (en) 2022-12-21
WO2019124230A1 (ja) 2019-06-27
WO2019124328A1 (ja) 2019-06-27
JP7448851B2 (ja) 2024-03-13
CN111492187A (zh) 2020-08-04
WO2019124138A1 (ja) 2019-06-27
WO2019124361A1 (ja) 2019-06-27
WO2019124398A1 (ja) 2019-06-27
WO2019124399A1 (ja) 2019-06-27
CN111556949B (zh) 2022-05-13
WO2019124327A1 (ja) 2019-06-27
WO2019124326A1 (ja) 2019-06-27
WO2019124362A1 (ja) 2019-06-27
WO2019123898A1 (ja) 2019-06-27
WO2019123897A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
KR102655073B1 (ko) 냉동 사이클 장치
US20200393178A1 (en) Refrigeration cycle apparatus
WO2019124139A1 (ja) 冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法
US11435118B2 (en) Heat source unit and refrigeration cycle apparatus
US11493244B2 (en) Air-conditioning unit
US20200325375A1 (en) Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US11549695B2 (en) Heat exchange unit
US20200325376A1 (en) Refrigeration cycle apparatus
WO2019124379A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207019793

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018387883

Country of ref document: AU

Date of ref document: 20181210

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018892500

Country of ref document: EP

Effective date: 20200720

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020009389

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020009389

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200512