WO2019117101A1 - Electrolyte solution for nonaqueous electrolyte batteries and nonaqueous electrolyte battery using same - Google Patents

Electrolyte solution for nonaqueous electrolyte batteries and nonaqueous electrolyte battery using same Download PDF

Info

Publication number
WO2019117101A1
WO2019117101A1 PCT/JP2018/045365 JP2018045365W WO2019117101A1 WO 2019117101 A1 WO2019117101 A1 WO 2019117101A1 JP 2018045365 W JP2018045365 W JP 2018045365W WO 2019117101 A1 WO2019117101 A1 WO 2019117101A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbonate
atom
general formula
Prior art date
Application number
PCT/JP2018/045365
Other languages
French (fr)
Japanese (ja)
Inventor
幹弘 高橋
孝敬 森中
益隆 新免
渉 河端
誠 久保
克将 森
亮太 江▲崎▼
貴寛 谷川
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018219846A external-priority patent/JP7116311B2/en
Priority claimed from JP2018219853A external-priority patent/JP7116312B2/en
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to EP18889822.5A priority Critical patent/EP3726636A4/en
Priority to KR1020207018055A priority patent/KR102498193B1/en
Priority to CN201880079898.2A priority patent/CN111527636B/en
Priority to US16/771,109 priority patent/US20200335823A1/en
Publication of WO2019117101A1 publication Critical patent/WO2019117101A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a non-aqueous electrolyte battery and a non-aqueous electrolyte battery using the same.
  • the battery which is an electrochemical device
  • information related equipment, communication equipment that is, storage systems for small-sized, high energy density applications such as personal computers, video cameras, digital cameras, mobile phones, and smartphones, electric vehicles, hybrid vehicles
  • storage systems for large-sized and power applications such as fuel cell vehicle auxiliary power supplies and electric power storage have attracted attention.
  • a non-aqueous electrolyte secondary battery including a lithium ion battery which has a high energy density and a high voltage, and is actively researched and developed at present.
  • optimization of various battery components including active materials of positive and negative electrodes has been studied as a means for improving the durability and battery characteristics of non-aqueous electrolyte batteries.
  • non-aqueous electrolytes examples include lithium carbonate hexafluorophosphate (hereinafter referred to as LiPF 6 ) as a solute in solvents such as cyclic carbonates, linear carbonates, and esters.
  • Non-aqueous electrolytes in which a fluorine-containing electrolyte such as lithium bis (fluorosulfonyl imide) (hereinafter LiFSI) or lithium tetrafluoroborate (hereinafter LiBF 4 ) is dissolved are used to obtain high voltage and high capacity batteries. It is often used because it is suitable.
  • non-aqueous electrolyte batteries using such non-aqueous electrolyte are not always satisfactory in battery characteristics including cycle characteristics and output characteristics.
  • the negative electrode and lithium cation, or the negative electrode and the electrolyte solvent react, and lithium oxide, lithium carbonate, alkyl carbonate on the negative electrode surface Form a coating containing lithium as a main component.
  • the film on the surface of the electrode is called Solid Electrolyte Interface (SEI), and its properties greatly affect the battery performance, such as suppressing the reductive decomposition of the solvent and suppressing the deterioration of the battery performance.
  • SEI Solid Electrolyte Interface
  • SEI Solid Electrolyte Interface
  • a film of a decomposition product is also formed on the positive electrode surface, which also plays an important role such as suppressing the oxidative decomposition of the solvent and suppressing the gas generation inside the battery.
  • Patent Document 1 vinylene carbonate (hereinafter referred to as VC) is used as an additive for forming an effective SEI which significantly improves the durability of a battery.
  • Patent Documents 2 and 3 use a silicon compound having an unsaturated bond, or Patent Document 4 uses a silicon compound containing both an unsaturated bond and a halogen to exhibit cycle characteristics and low temperature characteristics. It is disclosed that an excellent battery can be obtained.
  • Patent Document 5 discloses that the use of a trialkoxyvinylsilane exerts an effect of suppressing battery swelling in a lithium secondary battery having 4.2 V or more and less than 4.35 V.
  • Patent Document 6 discloses that a battery having excellent low temperature output characteristics even at a temperature of not more than ° C and having excellent cycle characteristics at a high temperature of not less than 50 ° C can be obtained.
  • Patent Document 7 discloses an improvement in high-temperature storage characteristics at 70 ° C. or higher and an effect of reducing the amount of gas generated during high-temperature storage, as an electrolyte for non-aqueous electrolyte batteries
  • Electrolyte containing a silane compound containing a group having a carbon-carbon unsaturated bond (II) at least one kind of cyclic sulfonic acid compound and cyclic sulfuric acid ester compound, (III) non-aqueous organic solvent, (IV) solute A liquid is disclosed.
  • Patent Document 8 discloses sulfonic acid ester compounds in which a cyclic sulfone group is bonded to a sulfonic acid ester group in order to improve high temperature characteristics and life characteristics (cycle characteristics) of a lithium battery. It is disclosed to be contained in an electrolytic solution as an additive.
  • Patent Document 9 discloses a lithium ion secondary battery using LiNiO 2 as a positive electrode.
  • Nickel oxide has high theoretical capacity but low thermal stability at the time of charge, and initially cobalt oxide, manganese oxide, iron phosphate and the like have been mainly used as a positive electrode active material.
  • Patent Document 10 discloses a positive electrode in which a part of nickel is replaced with manganese, cobalt or the like.
  • Ni-rich positive electrode in which the nickel ratio is increased, nickel, cobalt, and manganese based ones having a ratio of "3 to 1 to 1" or “8 to 1 to 1", and manganese being replaced by aluminum
  • Nickel, cobalt, and aluminum ratio “8.5 to 1.0 to 0.5”, “8.8 to 0.9 to 0.3”, “9.0 to 0.5 to 0.5”, etc.
  • LiPF 6 synthesis of concentrate used in the nonaqueous electrolyte battery electrolyte solution is disclosed, for example, in Patent Document 11.
  • An electrolytic solution containing a silicon compound having an unsaturated bond is certainly excellent in terms of durability (cycle characteristics, high-temperature storage characteristics), but a Ni-rich positive electrode (specifically, in a metal contained in a positive electrode active material)
  • a Ni-rich positive electrode specifically, in a metal contained in a positive electrode active material
  • the eluted Ni precipitates on the negative electrode, which may cause a short circuit of the battery and is a very dangerous situation. Therefore, it is strongly desired to prevent the elution of Ni from the positive electrode.
  • the inventors of the present invention have well-balanced effects of improving the high-temperature storage characteristics of lithium batteries and reducing the amount of gas generated during high-temperature storage, with an electrolyte containing a durability improver as described in Patent Document 7
  • a durability improver as described in Patent Document 7
  • 1,3-propane sultone, 1,3-propene sultone, 1,3,2-dioxathiolane 2,2-dioxide, methylene methane disulfonate and their derivatives which are used as a durability improver
  • the decomposition may progress during storage at a high temperature of 50 ° C. or more in the liquid state. The solution of this problem is also strongly desired.
  • the present invention provides an electrolytic solution containing a silicon compound having an unsaturated bond, in which the elution of Ni from the Ni-rich positive electrode into the electrolytic solution is reduced without impairing the capacity retention rate after cycling, and the electrolytic solution.
  • An object of the present invention is to provide a non-aqueous electrolyte battery provided with a positive electrode having a high Ni content.
  • this invention makes it a subject to provide the non-aqueous electrolyte battery provided with the electrolyte solution for non-aqueous electrolyte batteries in which high-temperature storage stability (high-temperature storage characteristic) was improved, and the said electrolyte solution.
  • R 1 's each independently represent a group having a carbon-carbon unsaturated bond.
  • R 2 is each independently a fluorine atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an allyl group having 3 to 10 carbon atoms, an alkynyl having 2 to 10 carbon atoms Group selected from the group consisting of a group having 6 to 15 carbon atoms, an aryloxy group having 3 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, and an aryloxy group having 6 to 15 carbon atoms These groups may have a fluorine atom and / or an oxygen atom.
  • having a fluorine atom specifically refers to one in which a hydrogen atom in the above group is substituted by a fluorine atom.
  • having an oxygen atom specifically includes a group in which “—O—” (ether bond) intervenes between carbon atoms of the above group. a is 2 to 4; ] [In general formula (2), R 3 is an alkyl group, an alkenyl group, an aryl group, an alkoxy group, or an aryloxy group.
  • the alkyl group of the above R 3 is preferably a methyl group, a trifluoromethyl group, an ethyl group, a pentafluoroethyl group, a propyl group, a butyl group, a pentyl group or a hexyl group,
  • the alkenyl group is preferably ethenyl group
  • the aryl group may be a phenyl group, a methylphenyl group, a dimethylphenyl group, a tert-butylphenyl group, a tert-amylphenyl group, a biphenyl group or a naphthyl group (even if the hydrogen atom of each aromatic ring is substituted by a fluorine atom Good) is preferable
  • the aryloxy group is a phenoxy group, a methylphenoxy group, a dimethylphenoxy group, a tert-butylphenoxy group, a
  • R 3 is particularly preferably a methyl group, a trifluoromethyl group, an ethyl group, an ethenyl group or a phenyl group.
  • R 4 is an alkoxy group or an aryloxy group
  • R 5 is OLi (note that O is oxygen and Li is lithium).
  • the alkoxy group of the above R 4 is a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a tert-butoxy group, a 2,2-dimethylpropoxy group, a 3-methylbutoxy group, 1- Methyl butoxy, 1-ethylpropoxy, 1,1-dimethylpropoxy, 2,2,2-trifluoroethoxy, 2,2,3,3-tetrafluoropropoxy, 1,1,1-trifluoro Preferred is isopropoxy group, 1,1,1,3,3,3-hexafluoroisopropoxy group or cyclohexyloxy group,
  • the aryloxy group is preferably a phenoxy group, a methylphenoxy group, a dimethylphenoxy group, a fluorophenoxy group, a tert-butylphenoxy group, a tert-amylphenoxy group, a biphenoxy group or a naphthoxy
  • R 4 an ethoxy group is particularly preferable as R 4 from the viewpoint of the balance between the capacity retention rate after cycling and the inhibitory effect on Ni elution and the stability of the compound.
  • R 6 is an aryl group, an alkoxy group, or an aryloxy group.
  • the aryl group of R 6 is a phenyl group, a methylphenyl group, a dimethylphenyl group, a tert-butylphenyl group, a tert-amylphenyl group, a biphenyl group, or a naphthyl group (the hydrogen atom of each aromatic ring is a fluorine atom (Optionally substituted) is preferred,
  • the alkoxy group is a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a tert-butoxy group, a 2,2-dimethylpropoxy group, a 3-methylbutoxy group, a 1-methylbutoxy group, 1 -Ethylpropoxy group, 1,1-dimethylpropoxy group, 2,2,2-trifluoroethoxy group, 2,2,3,3-tetrafluoropropoxy group, 1,1,1-trifluoroisopropoxy group, 1 1,1,
  • R 6 is particularly preferably a phenyl group or a phenoxy group from the viewpoint of the balance between the capacity retention rate after cycling and the inhibitory effect on Ni elution and the stability of the compound.
  • X is an oxygen atom or a methylene group which may be substituted by a halogen atom
  • Y is a phosphorus atom or a sulfur atom.
  • n is 0 when Y is a phosphorus atom, and 1 when it is a sulfur atom.
  • R 7 and R 8 are each independently a halogen atom, an alkyl group which may be substituted by a halogen atom, an alkenyl group, or an aryl group.
  • the halogen atom of R 7 and R 8 is preferably a fluorine atom
  • the alkyl group which may be substituted by a halogen atom is preferably methyl group, trifluoromethyl group, ethyl group, pentafluoroethyl group, propyl group, butyl group, pentyl group or hexyl group
  • the alkenyl group which may be substituted by a halogen atom is preferably ethenyl group
  • the aryl group which may be substituted by a halogen atom is a phenyl group, a methylphenyl group, a dimethylphenyl group, a tert-butylphenyl group, a tert-amylphenyl group, a biphenyl group or a naphthyl group (a hydrogen atom of each aromatic ring Is preferably substituted by a fluor
  • R 7 and R 8 each represent a fluorine atom, a methyl group, a trifluoromethyl group, an ethyl group, an ethenyl group, or a phenyl from the viewpoint of the balance between the capacity retention rate after cycling and the Ni elution suppression effect and the compound stability.
  • Groups and fluorophenyl groups are particularly preferred.
  • the above (III) and (IV) be present in the above-mentioned predetermined concentration in the electrolytic solution.
  • the electrolytic solution containing the above (III) is applied to a battery provided with a Ni-rich positive electrode, the elution of Ni from the Ni-rich positive electrode into the electrolytic solution is reduced. Ru.
  • R 1 in the general formula (1) is preferably ethenyl.
  • the alkyl group of R 2 is methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, sec-pentyl group, 3-pentyl group, and tert.
  • the alkoxy group is a methoxy group, an ethoxy group, a butoxy group, a tert-butoxy group, a propoxy group, an isopropoxy group, a 2,2,2-trifluoroethoxy group, a 2,2,3,3-tetrafluoropropoxy group, 1 And 1,1,1-trifluoroisopropoxy and 1,1,1,3,3,3-hexafluoroisopropoxy are preferred.
  • the allyl group is preferably a 2-propenyl group
  • the alkynyl group is preferably an ethynyl group
  • the aryl group is preferably selected from a phenyl group, a methylphenyl group, a tert-butylphenyl group, and a tert-amylphenyl group (a hydrogen atom of each aromatic ring may be substituted with a fluorine atom)
  • the allyloxy group is preferably a 2-propenyloxy group
  • the alkynyloxy group is preferably a propargyloxy group
  • the aryloxy group is preferably selected from a phenoxy group, a methylphenoxy group, a tert-butylphenoxy group, and a tert-amylphenoxy group (a hydrogen atom of each aromatic ring may be substituted with a fluorine atom).
  • (III) is preferably at least one selected from the group consisting of the following compounds (1-1) to (1-28), and among them, (1-1), (1-2) ), (1-3), (1-4), (1-6), (1-7), (1-8), (1-10), (1-12), (1-15), At least one selected from the group consisting of (1-22), (1-23), (1-24), (1-25), (1-26), (1-27), and (1-28)
  • the species is more preferable in terms of easiness of synthesis and stability of the compound.
  • the silicon compound (1) which is the component (III) can be produced by various methods. For example, as described in Patent Document 13 and Non-Patent Documents 2 and 3, a silicon compound having a silanol group or a hydrolyzable group is reacted with a carbon-carbon unsaturated bond-containing organometallic reagent to form a silicon compound. It can be produced by a method of producing a carbon-carbon unsaturated bond-containing silicon compound in which the OH group or hydrolyzable group of the silanol group is substituted with a carbon-carbon unsaturated bond group.
  • the second aspect of the present invention is (I) non-aqueous organic solvent, (II) an ionic salt, a solute, (III) at least one additive selected from the group consisting of compounds represented by the general formula (1) (hereinafter sometimes referred to as "silicon compound (1)"), and (IV) A non-aqueous electrolyte comprising at least one additive selected from the group consisting of compounds represented by the general formula (6) (hereinafter sometimes referred to as "cyclic sulfur compound (6)”)
  • X is an oxygen atom or a methylene group which may be substituted by a halogen atom
  • Y is a phosphorus atom or a sulfur atom.
  • n is 0 when Y is a phosphorus atom, and 1 when it is a sulfur atom.
  • R 3 and R 4 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a halogen atom, or a cycloalkyl group having 5 to 20 carbon atoms which may be substituted by a halogen atom;
  • a C2-C20 alkenyl group which may be substituted by a halogen atom, a C2-C20 alkynyl group which may be substituted by a halogen atom, a C6-C40 carbon atom which may be substituted by a halogen atom
  • a cycloalkoxy group having 5 to 20 carbon atoms an alkenyloxy group having 2 to 20 carbon atoms which may be substituted by a halogen atom, or a halogen atom.
  • Y is a sulfur atom, R 4 is absent.
  • R 5 and R 6 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a halogen atom, or a carbon number 2 to 20 which may be substituted by a halogen atom Alkenyl group, an alkynyl group having 2 to 20 carbon atoms which may be substituted with a halogen atom, an alkoxy group having 1 to 20 carbon atoms which may be substituted with a halogen atom, carbon which may be substituted for a halogen atom
  • the cycloalkyl group is a cycloalkyl group having a number of 5 to 20, an aryl group having a carbon number of 6 to 40 which may be substituted with a halogen atom, or a heteroaryl group having a carbon number of 2 to 40 which may be substituted for a halogen atom.
  • R 1 in the general formula (1) is preferably ethenyl.
  • the alkyl group of R 2 is methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, sec-pentyl group, 3-pentyl group, and tert.
  • the alkoxy group is a methoxy group, an ethoxy group, a butoxy group, a tert-butoxy group, a propoxy group, an isopropoxy group, a 2,2,2-trifluoroethoxy group, a 2,2,3,3-tetrafluoropropoxy group, 1 And 1,1,1-trifluoroisopropoxy and 1,1,1,3,3,3-hexafluoroisopropoxy are preferred.
  • the allyl group is preferably a 2-propenyl group
  • the alkynyl group is preferably an ethynyl group
  • the aryl group is preferably selected from a phenyl group, a methylphenyl group, a tert-butylphenyl group, and a tert-amylphenyl group (a hydrogen atom of each aromatic ring may be substituted with a fluorine atom)
  • the allyloxy group is preferably a 2-propenyloxy group
  • the alkynyloxy group is preferably a propargyloxy group
  • the aryloxy group is preferably selected from a phenoxy group, a methylphenoxy group, a tert-butylphenoxy group, and a tert-amylphenoxy group (a hydrogen atom of each aromatic ring May be substituted by a fluorine atom).
  • a in the above general formula (1) is 3 or 4 from the viewpoint of better
  • (III) is preferably at least one selected from the group consisting of the above compounds (1-1) to (1-28), and among them, (1-1), (1-2) ), (1-3), (1-4), (1-6), (1-7), (1-9), (1-10), (1-12), (1-15), At least one selected from the group consisting of (1-22), (1-23), (1-24), (1-25), (1-26), (1-27), and (1-28)
  • the species is more preferable in terms of easiness of synthesis and stability of the compound.
  • the silicon compound (1) which is the component (III) can be produced by various methods (see Patent Document 13, Non-patent Documents 2, 3 and the like).
  • R 3 and R 4 in the above general formula (6) are each independently a fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, n-pentyl group , N-hexyl group, trifluoromethyl group, trifluoroethyl group, ethenyl group, 2-propenyl group, 2-propynyl group, phenyl group, naphthyl group, pentafluorophenyl group, methoxy group, ethoxy group, n-propoxy group , Isopropoxy group, n-butoxy group, tert-butoxy group, n-pentyloxy group, n-hexyloxy group, trifluoromethoxy group, trifluoroethoxy group, ethenyl oxy group, 2-propenyloxy group, 2-propynyloxy group Group,
  • R 5 and R 6 each independently represent a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a trifluoromethyl group or a tetrafluoroethyl group It is preferable to select from a group, a phenyl group, a naphthyl group, a pentafluorophenyl group, a pyrrolyl group, and a pyridinyl group, and it is independently selected from a hydrogen atom and a fluorine atom that the synthesis is easy and the stability is high. Particularly preferred from the viewpoint of
  • (IV) is preferably at least one selected from the compounds represented by the following compounds (6-1) to (6-40), and among them, (6-1), 6-2), (6-3), (6-5), (6-7), (6-8), (6-9), (6-11), (6-12), (6- 6) 14), (6-16), (6-19), (6-20), (6-21), (6-22), (6-23), (6-24), (6-25) , (6-27), (6-28), (6-29), (6-31), (6-32), (6-34), (6-38), (6-39) and At least one member selected from the group consisting of 6-40) is more preferable in terms of the ease of synthesis and the height of the high temperature storage characteristics.
  • the cyclic sulfur compound (6) which is the component (IV) can be produced by various methods.
  • the compound of the above formula (6-1) is subjected to hydration reaction of 2,5-dihydrothiophene-1,1-dioxide 3-hydroxytetrahydrothiophene-1,1-dioxide is obtained which can be obtained by reaction with methanesulfonyl chloride in the presence of triethanolamine.
  • the other cyclic sulfur compounds can also be obtained by the same process by changing the corresponding raw materials.
  • the first aspect of the present invention by containing a silicon compound having a specific structure as the component (III) and a specific compound as the component (IV) in a specific concentration in the electrolyte for a non-aqueous electrolyte battery, It is possible to reduce the elution of Ni from the Ni-rich positive electrode into the electrolytic solution without losing the capacity retention rate after cycling.
  • the electrolyte for a non-aqueous electrolyte battery contains a silicon compound having a specific structure as the component (III) and a cyclic sulfur compound having a specific structure as the component (IV).
  • the high temperature storage stability can be improved.
  • the type of nonaqueous organic solvent used in the electrolyte for nonaqueous electrolyte batteries is not particularly limited, and any nonaqueous organic solvent can be used.
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • methyl propyl carbonate ethyl propyl carbonate
  • Methyl butyl carbonate 2,2,2-trifluoroethyl methyl carbonate
  • 2,2,2-trifluoroethyl ethyl carbonate 2,2,2-trifluoroethyl propyl carbonate
  • the non-aqueous organic solvent is preferably at least one member selected from the group consisting of cyclic carbonates and chain carbonates, from the viewpoint of excellent cycle characteristics at high temperatures. Moreover, it is preferable at the point which is excellent in the input-output characteristic in low temperature that the said non-aqueous organic solvent is at least 1 sort (s) chosen from the group which consists of ester.
  • the cyclic carbonate include EC, PC, butylene carbonate, and FEC. Among them, at least one selected from the group consisting of EC, PC, and FEC is preferable.
  • linear carbonates are EMC, DMC, DEC, methyl propyl carbonate, ethyl propyl carbonate, 2,2,2-trifluoroethyl methyl carbonate, 2,2,2-trifluoro ethyl ethyl carbonate, 1,1, 1,3,3,3-hexafluoro-1-propylmethyl carbonate and 1,1,1,3,3,3-hexafluoro-1-propylethyl carbonate etc., among which EMC, DMC, DEC, And at least one selected from the group consisting of methyl propyl carbonate and methyl propyl carbonate.
  • ester examples include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl 2-fluoropropionate, and ethyl 2-fluoropropionate.
  • the non-aqueous electrolyte battery electrolyte of the first embodiment can also contain a polymer, and is generally referred to as a polymer solid electrolyte.
  • Polymer solid electrolytes also include those containing non-aqueous organic solvents as plasticizers.
  • the polymer is not particularly limited as long as it is an aprotic polymer capable of dissolving the solute and the additive.
  • polymers having polyethylene oxide in the main chain or side chain, homopolymers or copolymers of polyvinylidene fluoride, methacrylic acid ester polymers, polyacrylonitrile and the like can be mentioned.
  • an aprotic non-aqueous organic solvent is preferable among the above non-aqueous organic solvents.
  • (II) Solute for example, at least one cation selected from the group consisting of alkali metal ions and alkaline earth metal ions, and hexafluorophosphate anion, tetrafluoroborate anion, trifluoromethanesulfonate anion, fluorosulfone Acid anion, bis (trifluoromethanesulfonyl) imide anion, bis (fluorosulfonyl) imide anion, (trifluoromethane sulfonyl) (fluorosulfonyl) imide anion, bis (difluorophosphonyl) imide anion, (difluorophosphonyl) (fluorosulfonyl) An ionic salt comprising an imido anion, and at least one anion pair selected from the group consisting of (difluorophosphonyl) (trifluoromethanesulfonyl) imide anions Is preferred.
  • the cation of the ionic salt which is the above solute is lithium, sodium, potassium or magnesium
  • the anion is hexafluorophosphate anion, tetrafluoroborate anion, trifluoromethanesulfonate anion, bis (trifluoromethanesulfonyl) imide
  • the concentration of these solutes is not particularly limited, but the lower limit is 0.5 mol / L or more, preferably 0.7 mol / L or more, more preferably 0.9 mol / L or more, and the upper limit is 2.5 mol / L or less, preferably 2.2 mol / L or less, more preferably 2.0 mol / L or less.
  • the ion conductivity will be lowered to lower the cycle characteristics and output characteristics of the non-aqueous electrolyte battery, while if it exceeds 2.5 mol / L, the electrolyte of the non-aqueous electrolyte battery
  • the increase in viscosity may also lower the ion conductivity, which may lower the cycle characteristics and output characteristics of the non-aqueous electrolyte battery.
  • solutes may be used alone or in combination of two or more.
  • Component (III) As the component (III), as described above, the silicon compound represented by the general formula (1) is used.
  • the concentration of (III) is preferably 0.01% by mass or more and 2.00% by mass or less based on 100% by mass of the total amount of (I) to (IV). If it is 0.01 mass% or more, the effect of improving the characteristics of the non-aqueous electrolyte battery is easily obtained, while if it is 2.00 mass% or less, good durability without significantly increasing the amount of Ni elution It is easy to demonstrate the improvement effect. More preferably, it is 0.04 mass% or more and 1.00 mass% or less, and still more preferably in the range of 0.08 mass% or more and 0.50 mass% or less.
  • the concentration of (IV) is 0.01% by mass or more and 5.00% by mass or less based on 100% by mass of the total amount of (I) to (IV). If it is less than 0.01% by mass, the effect of reducing the elution of Ni from the Ni-rich positive electrode into the electrolytic solution can not be sufficiently obtained, while if it exceeds 5.00% by mass, the effect of improving the durability is extremely high. There is a fear that the capacity may decrease, and there is a concern that the positive electrode current collector aluminum may be eluted. More preferably, it is 0.10 mass% or more and 2.50 mass% or less, and still more preferably in the range of 0.50 mass% or more and 1.50 mass% or less.
  • Additives generally used in the electrolyte for a non-aqueous electrolyte battery of the first embodiment may be further added at an arbitrary ratio as long as the gist of the present invention is not impaired.
  • Specific examples include cyclohexylbenzene, cyclohexylfluorobenzene, fluorobenzene (hereinafter sometimes referred to as FB), biphenyl, difluoroanisole, tert-butylbenzene, tert-amylbenzene, 2-fluorotoluene, 2-fluorobiphenyl , Vinylene carbonate, dimethylvinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, methyl propargyl carbonate, ethyl propargyl carbonate, dipropargyl carbonate, maleic anhydride, succinic anhydride, propane sultone, 1,3-propane sultone (hereinafter PS May be described), butane sulf
  • R 9 is a hydrocarbon group having 2 to 5 carbon atoms, and may have a branched structure when the carbon number is 3 or more.
  • the hydrocarbon group may contain a halogen atom, a hetero atom or an oxygen atom.
  • the content of the ionic salt mentioned as the solute in the electrolytic solution is smaller than 0.5 mol / L which is the lower limit of the suitable concentration of the solute, the negative electrode film forming effect as “other additive” And positive electrode protection effect.
  • the content in the electrolytic solution is preferably 0.01% by mass or more and 5.00% by mass or less.
  • Examples of the ionic salt in this case include lithium trifluoromethanesulfonate, sodium trifluoromethanesulfonate, potassium trifluoromethanesulfonate, magnesium trifluoromethanesulfonate, sodium fluorosulfonate, potassium fluorosulfonate, magnesium fluorosulfonate, Bis (trifluoromethanesulfonyl) imide lithium, bis (trifluoromethanesulfonyl) imide sodium, bis (trifluoromethanesulfonyl) imide potassium, bis (trifluoromethanesulfonyl) imide magnesium, bis (fluorosulfonyl) imide lithium, bis (fluorosulfonyl) imide Sodium, Bis (fluorosulfonyl) imide potassium, Bis (fluorosulfonyl) imide Magne Lithium, (trifluoromethanesulfonyl) (fluorosulfonyl
  • non-aqueous electrolyte battery called a polymer battery
  • electrolytic solution pseudo-solidified with a gelling agent or a cross-linked polymer.
  • a nonaqueous electrolyte battery according to a first embodiment of the present invention comprises at least (a) the above-described electrolyte for a non-aqueous electrolyte battery, (a) a positive electrode, (c) a negative electrode, and including. Furthermore, it is preferable to include (d) a separator, an exterior body, and the like.
  • the positive electrode contains one or more oxides containing at least nickel as a positive electrode active material, and the nickel content in the metal contained in the positive electrode active material is 30 to 100% by mass. Even with such a Ni-rich positive electrode, the use of the above-mentioned electrolytic solution can reduce the elution of Ni into the electrolytic solution without impairing the capacity retention rate after cycling.
  • the positive electrode active material constituting (i) the positive electrode is not particularly limited as long as it is various materials capable of charge and discharge.
  • the positive electrode active material constituting (i) the positive electrode is not particularly limited as long as it is various materials capable of charge and discharge.
  • (A) Lithium transition metal complex oxide As a lithium transition metal complex oxide containing a positive electrode active material (A) nickel or nickel and one or more metals selected from the group consisting of manganese, cobalt, and aluminum and having a layered structure, for example, lithium -Nickel composite oxide, lithium-nickel-cobalt composite oxide, lithium-nickel-manganese composite oxide, lithium-nickel-manganese-cobalt composite oxide, etc. may be mentioned.
  • transition metal atoms which are main components of these lithium transition metal complex oxides, may be Al, Ti, V, Cr, Fe, Cu, Zn, Mg, Ga, Zr, Si, B, Ba, Y, Sn Those substituted with other elements such as.
  • lithium-nickel composite oxide aluminum oxide is coated on a part of the particle surface of lithium nickelate or LiNiO 2 particle powder to which different elements such as LiNiO 2 , Mg, Zr, Al, Ti etc. are added May be used.
  • the lithium-nickel-cobalt composite oxide and the composite oxide in which part of nickel-cobalt is substituted with Al or the like are represented by the general formula [1-1].
  • M 1 is at least one element selected from the group consisting of Al, Fe, Mg, Zr, Ti, and B, a is 0.9 ⁇ a ⁇ 1.2, and b is And c satisfy the conditions of 0.1 ⁇ b ⁇ 0.3 and 0 ⁇ c ⁇ 0.1.
  • These can be prepared, for example, according to the manufacturing method etc. which are described in Unexamined-Japanese-Patent No. 2009-137834 grade
  • lithium-nickel-manganese composite oxides examples include LiNi 0.5 Mn 0.5 O 2 and the like.
  • lithium-nickel-manganese-cobalt composite oxide examples include a lithium-containing composite oxide represented by the general formula [1-2].
  • M 2 is at least one element selected from the group consisting of Al, Fe, Mg, Zr, Ti, B, and Sn, and d is 0.9 ⁇ d ⁇ 1.2.
  • a lithium-nickel-manganese-cobalt composite oxide contains manganese in a range represented by the general formula [1-2] in order to enhance the structural stability and improve the safety at high temperature in a lithium secondary battery
  • one further containing cobalt in the range represented by the general formula [1-2] is more preferable.
  • Li [Ni 1/3 Mn 1/3 Co 1/3] O 2 Li [Ni 0.45 Mn 0.35 Co 0.2] O 2
  • Li [Ni 0.5 Mn 0.3 Co 0.2 ] O 2 Li [Ni 0.6 Mn 0.2 Co 0.2 ] O 2
  • Li [Ni 0.49 Mn 0.3 Co 0.2 Zr 0.01 ] O 2 Li [Ni 0.49 Mn 0.3 Co 0.2 Mg 0.01 ] O 2 etc. It can be mentioned.
  • M 3 may contain Ni, and may further contain at least one metal element selected from the group consisting of Co, Fe, Mg, Cr, Cu, Al and Ti.
  • j is 1.05 ⁇ j ⁇ 1.15, and k is 0 ⁇ k ⁇ 0.20.
  • LiMn 1.9 Ni 0.1 O 4 , LiMn 1.5 Ni 0.5 O 4 and the like can be mentioned.
  • (C) olivine lithium phosphate) examples include those represented by the general formula [1-4].
  • M 4 contains Ni, and is at least one selected from Co, Mn, Cu, Zn, Nb, Mg, Al, Ti, W, Zr and Cd, and n is other than that , 0 ⁇ n ⁇ 1.
  • LiNiPO 4 and the like.
  • Examples of the nickel-containing lithium-exclusive layered transition metal oxide having a positive electrode active material (D) layered rock salt type structure include those represented by the general formula [1-5].
  • x is a number satisfying 0 ⁇ x ⁇ 1
  • M 5 is at least one or more metal elements having an average oxidation number of 3 +
  • M 6 is an average oxidation It is at least one metal element whose number is 4 + .
  • M 5 is preferably one metal element selected from trivalent Mn, Ni, Co, Fe, V, and Cr, but is equivalent to divalent and tetravalent
  • the average oxidation number may be trivalent with a metal of In the formula [1-5]
  • M 6 is preferably at least one metal element selected from Mn, Zr, and Ti. Incidentally, either M 5 or M 6 necessarily contains nickel.
  • the positive electrode active material (D) represented by this general formula [1-5] expresses high capacity by high voltage charge of 4.4 V (Li basis) or more (for example, US Pat. No. 7, , 135, 252).
  • These positive electrode active materials can be prepared, for example, according to the manufacturing method described in JP-A-2008-270201, WO2013 / 118661, JP-A-2013-030284 and the like.
  • the positive electrode active material contains at least one selected from the above (A) to (D) as a main component, contains at least one oxide containing at least nickel, and is contained in the metal contained in the positive electrode active material.
  • the nickel content may be 30 to 100% by mass, and examples of other elements include transition element chalcogenides such as FeS 2 , TiS 2 , TiO 2 , V 2 O 5 , MoO 3 , MoS 2 and the like.
  • conductive polymers such as polyacetylene, polyparaphenylene, polyaniline and polypyrrole, activated carbon, polymers generating radicals, carbon materials and the like can be mentioned.
  • the positive electrode has a positive electrode current collector.
  • the positive electrode current collector for example, aluminum, stainless steel, nickel, titanium or an alloy thereof can be used.
  • a positive electrode active material layer is formed on at least one surface of a positive electrode current collector.
  • the positive electrode active material layer is made of, for example, the above-described positive electrode active material, a binder, and, as needed, a conductive agent.
  • a binder polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, styrene butadiene rubber (SBR), carboxymethylcellulose, methylcellulose, cellulose acetate phthalate, hydroxypropyl methylcellulose, polyvinyl alcohol Etc.
  • the conductive agent for example, carbon materials such as acetylene black, ketjen black, furnace black, carbon fiber, graphite (particulate graphite and flake graphite), fluorinated graphite and the like can be used.
  • carbon materials such as acetylene black, ketjen black, furnace black, carbon fiber, graphite (particulate graphite and flake graphite), fluorinated graphite and the like can be used.
  • acetylene black or ketjen black having low crystallinity is preferably used.
  • the negative electrode material is not particularly limited, but in the case of a lithium battery or lithium ion battery, lithium metal, an alloy or intermetallic compound of lithium metal and another metal, various carbon materials (such as artificial graphite and natural graphite), metal Oxides, metal nitrides, tin (single), tin compounds, silicon (single), silicon compounds, activated carbon, conductive polymers and the like are used.
  • Examples of the carbon material include graphitizable carbon, non-graphitizable carbon (hard carbon) having a spacing of 0.32 nm or more on the (002) plane, and graphite having a spacing of 0.34 nm or less on the (002) plane.
  • cokes include pitch coke, needle coke, and petroleum coke.
  • the organic polymer compound fired body is a product obtained by firing and carbonizing a phenol resin, furan resin or the like at an appropriate temperature.
  • the carbon material is preferable because a change in crystal structure accompanying storage and release of lithium is very small, so that high energy density and excellent cycle characteristics can be obtained.
  • the shape of the carbon material may be fibrous, spherical, granular or scaly. Amorphous carbon or a graphite material coated with amorphous carbon on the surface is more preferable because the reactivity between the material surface and the electrolytic solution is lowered.
  • the negative electrode preferably contains at least one negative electrode active material.
  • a lithium ion secondary battery in which the cation in the non-aqueous electrolytic solution is mainly lithium
  • (c) as a negative electrode active material constituting the negative electrode lithium ions can be doped and de-doped
  • G An oxide of one or more metals selected from Si, Sn, Al, (H) Si, one or more metals selected from Si, Sn, Al, an alloy containing these metals, or an alloy of these metals or alloys with lithium And (I) those containing at least one selected from lithium titanium oxides.
  • These negative electrode active materials can be used alone or in combination of two or more
  • (E) Carbon material in which the d value of the lattice plane (002 plane) in X-ray diffraction is 0.340 nm or less As a carbon material whose d value of the lattice plane (002 plane) in the negative electrode active material (E) X-ray diffraction is 0.340 nm or less, for example, pyrolytic carbons, cokes (for example, pitch coke, needle coke, petroleum coke, etc.) Graphites, organic polymer compound fired bodies (for example, those obtained by firing and carbonizing a phenol resin, furan resin and the like at an appropriate temperature), carbon fibers, activated carbon and the like may be mentioned, and these may be graphitized.
  • the carbon material is a graphite having a (002) plane spacing (d 002) of 0.340 nm or less measured by X-ray diffraction method, and a true density of 1.70 g / cm 3 or more, or a graphite thereof Highly crystalline carbon materials having similar properties are preferred.
  • Examples of carbon materials in which the d value of the lattice plane (002 plane) in the negative electrode active material (F) X-ray diffraction exceeds 0.340 nm include amorphous carbon, which is heat treated at a high temperature of 2000 ° C. or higher Is also a carbon material with almost no change in the stacking order.
  • amorphous carbon which is heat treated at a high temperature of 2000 ° C. or higher Is also a carbon material with almost no change in the stacking order.
  • non-graphitizable carbon (hard carbon), mesocarbon microbeads (MCMB) calcined at 1500 ° C. or less, mesophased Bitch carbon fiber (MCF), etc. are exemplified.
  • Carbotron (registered trademark) P and the like manufactured by Kureha Co., Ltd. is a typical example.
  • the oxide of one or more metals selected from the negative electrode active material (G) Si, Sn, and Al include, for example, silicon oxide, tin oxide, and the like which can be doped and de-doped with lithium ions.
  • SiO x or the like having a structure in which ultrafine particles of Si are dispersed in SiO 2 .
  • this material When this material is used as a negative electrode active material, charging / discharging is smoothly performed because Si reacting with Li is ultrafine particles, while the SiO x particles having the above structure have a small surface area, so the negative electrode active material layer
  • the coating properties when forming a composition (paste) for forming a metal, and the adhesion of the negative electrode mixture layer to the current collector are also good.
  • SiO x has a large volume change due to charge and discharge, high capacity and good charge and discharge cycle characteristics can be achieved by using SiO x and the graphite of the above-mentioned negative electrode active material (E) in combination with the negative electrode active material at a specific ratio. And both.
  • the negative electrode active material (H) As a metal selected from one or more metals selected from Si, Sn, Al or an alloy containing these metals or an alloy of these metals or alloys and lithium, for example, a metal such as silicon, tin, aluminum, a silicon alloy And tin alloys, aluminum alloys and the like, and materials in which such metals and alloys are alloyed with lithium during charge and discharge can also be used.
  • Specific preferred examples thereof include simple metals such as silicon (Si) and tin (Sn) described in, for example, WO 2004/100293, JP-A 2008-016424, etc. And compounds containing the metal, alloys containing tin (Sn) and cobalt (Co) in the metal, and the like.
  • Si silicon
  • Sn tin
  • Co cobalt
  • the said metal is used for an electrode, high charge capacity can be expressed, and since expansion and contraction of the volume accompanying charge and discharge are comparatively small, it is preferable.
  • these metals are used as the negative electrode of a lithium ion secondary battery, they are known to exhibit high charge capacity because they are alloyed with Li during charge, and this point is also preferable.
  • a negative electrode active material formed of silicon pillars of submicron diameter, a negative electrode active material formed of fibers composed of silicon, or the like described in WO 2004/042851 or WO 2007/083155 may be used. .
  • Examples of the negative electrode active material (I) lithium titanium oxide include lithium titanate having a spinel structure and lithium titanate having a ramsdellite structure.
  • Examples of lithium titanate having a spinel structure include Li 4 + ⁇ Ti 5 O 12 ( ⁇ changes within the range of 0 ⁇ ⁇ ⁇ 3 by charge and discharge reaction).
  • As the lithium titanate having a ramsdellite structure for example, Li (the beta vary in the range of 0 ⁇ ⁇ ⁇ 3 by charge and discharge reactions) 2 + ⁇ Ti 3 O 7 and the like.
  • These negative electrode active materials can be prepared, for example, according to the production method described in JP-A-2007-18883, JP-A-2009-176752, and the like.
  • a sodium ion secondary battery in which the cation in the non-aqueous electrolytic solution is mainly sodium hard carbon or an oxide such as TiO 2 , V 2 O 5 , MoO 3 or the like is used as the negative electrode active material.
  • a sodium-containing transition metal complex oxide such as NaFeO 2 , NaCrO 2 , NaNiO 2 , NaMnO 2 , NaCoO 2 as a positive electrode active material
  • a mixture of a plurality of transition metals such as Fe, Cr, Ni, Mn, Co, etc.
  • transition metals of their sodium-containing transition metal complex oxides and some of the transition metals of their sodium-containing transition metal complex oxides are other than the other transition metals
  • Phosphoric acid compounds of transition metals such as Na 2 FeP 2 O 7 and NaCo 3 (PO 4 ) 2 P 2 O 7
  • sulfides such as TiS 2 and FeS 2
  • Conducting polymers such as phenylene, polyaniline and polypyrrole, activated carbon, polymers generating radicals, carbon materials, etc. are used
  • the negative electrode has a negative electrode current collector.
  • the negative electrode current collector for example, copper, stainless steel, nickel, titanium or an alloy thereof can be used.
  • a negative electrode active material layer is formed on at least one surface of a negative electrode current collector.
  • the negative electrode active material layer is made of, for example, the above-described negative electrode active material, a binder, and, as needed, a conductive agent.
  • a binder polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, styrene butadiene rubber (SBR), carboxymethylcellulose, methylcellulose, cellulose acetate phthalate, hydroxypropyl methylcellulose, polyvinyl alcohol Etc.
  • the conductive agent for example, carbon materials such as acetylene black, ketjen black, furnace black, carbon fiber, graphite (particulate graphite and flake graphite), fluorinated graphite and the like can be used.
  • the electrode is obtained, for example, by dispersing and kneading an active material, a binder and, if necessary, a conductive agent in a predetermined amount in a solvent such as N-methyl-2-pyrrolidone (NMP) or water.
  • NMP N-methyl-2-pyrrolidone
  • the paste can be applied to a current collector and dried to form an active material layer.
  • the obtained electrode is preferably compressed by a method such as a roll press to adjust to an electrode of appropriate density.
  • the above non-aqueous electrolyte battery can be provided with (d) a separator.
  • separators for preventing contact between (i) the positive electrode and (ii) the negative electrode non-woven fabric or porous sheet made of polyolefin such as polypropylene and polyethylene, cellulose, paper or glass fiber is used. It is preferable that these films be micro-porous so that the electrolyte can penetrate and the ions can easily permeate.
  • a polyolefin separator the film which electrically insulates the positive electrode and negative electrodes, such as microporous polymer films, such as a porous polyolefin film, for example, and can permeate
  • porous polyolefin film for example, a porous polyethylene film alone, or a porous polyethylene film and a porous polypropylene film may be laminated and used as a multilayer film. Moreover, the film etc. which compounded the porous polyethylene film and the polypropylene film are mentioned.
  • a metal can such as a coin type, a cylindrical type, or a square type, or a laminate outer package can be used.
  • the metal can material include a steel plate plated with nickel, a stainless steel plate, a stainless steel plate plated with nickel, aluminum or an alloy thereof, nickel, titanium and the like.
  • the laminate outer package for example, an aluminum laminate film, a laminate film made of SUS, a polypropylene coated with silica, a laminate film such as polyethylene, and the like can be used.
  • the configuration of the non-aqueous electrolyte battery according to the first embodiment is not particularly limited.
  • the electrode element in which the positive electrode and the negative electrode are disposed facing each other, and the non-aqueous electrolyte are included in the outer package.
  • the configuration can be made.
  • the shape of the non-aqueous electrolyte battery is not particularly limited, but an electrochemical device having a coin shape, a cylindrical shape, a square shape, an aluminum laminate sheet type, or the like can be assembled from the above-described elements.
  • Second Embodiment 1 Electrolyte Solution for Nonaqueous Electrolyte Battery Electrolyte Solution for Nonaqueous Electrolyte Battery According to Second Embodiment of the Present Invention (I) non-aqueous organic solvent, (II) an ionic salt, a solute, (III) at least one additive selected from the group consisting of compounds represented by the above general formula (1), and (IV) at least one additive selected from the group consisting of compounds represented by the above general formula (6).
  • Nonaqueous Organic Solvent As the nonaqueous organic solvent, the same nonaqueous organic solvent as that of the first embodiment is preferably used. The category is different from the non-aqueous solvent, but an ionic liquid can also be used.
  • the non-aqueous organic solvent is preferably at least one selected from the group consisting of cyclic carbonates and chain carbonates, from the viewpoint of excellent cycle characteristics at high temperatures, and from the group consisting of esters It is preferable at the point which is excellent in the input-output characteristic in low temperature as it is at least 1 sort (s) chosen.
  • Specific examples of the cyclic carbonate, linear carbonate, and ester are the same as in the first embodiment.
  • solute As the solute, the same solute (ionic salt) as in the first embodiment can be suitably used. The concentration of the solute is also the same as in the first embodiment.
  • the silicon compound represented by the general formula (1) is used.
  • the concentration of (III) with respect to the total amount 100 mass% of (I) to (IV) is the same as that of the first embodiment, and a particularly preferable concentration range is 0.08 mass% or more, 0 .75 mass% or less.
  • Component (IV) in the second embodiment, as the component (IV), as described above, at least one additive selected from the group consisting of compounds represented by General Formula (6) is used.
  • the concentration of (IV) with respect to the total amount 100 mass% of (I) to (IV) is the same as that of the first embodiment, and the more preferable concentration range is 0.10 mass% or more; It is 00 mass% or less, and a more preferable concentration range is 0.30 mass% or more and 2.00 mass% or less.
  • additive components may be further added to the electrolyte solution for a non-aqueous electrolyte battery of the second embodiment at an arbitrary ratio.
  • Specific examples include cyclohexylbenzene, cyclohexylfluorobenzene, fluorobenzene (hereinafter sometimes referred to as FB), biphenyl, difluoroanisole, tert-butylbenzene, tert-amylbenzene, 2-fluorotoluene, 2-fluorobiphenyl , Vinylene carbonate, dimethylvinylene carbonate, vinyl ethylene carbonate, FEC, trans-difluoroethylene carbonate, methyl propargyl carbonate, ethyl propargyl carbonate, dipropargyl carbonate, maleic anhydride, succinic anhydride, methyl methanesulfonate, 1,6-di Isocyanatohe
  • the content of the ionic salt mentioned as the solute in the electrolytic solution is smaller than 0.5 mol / L which is the lower limit of the suitable concentration of the solute, the negative electrode film forming effect as “other additive” And positive electrode protection effect.
  • the content in the electrolytic solution is preferably 0.01% by mass or more and 5.00% by mass.
  • Examples of the ionic salt in this case include lithium trifluoromethanesulfonate, sodium trifluoromethanesulfonate, potassium trifluoromethanesulfonate, magnesium trifluoromethanesulfonate, lithium fluorosulfonate (hereinafter referred to as LiSO 3 F) Sodium fluorosulfonate, potassium fluorosulfonate, magnesium fluorosulfonate, lithium bis (trifluoromethanesulfonyl) imide, sodium bis (trifluoromethanesulfonyl) imide, potassium bis (trifluoromethanesulfonyl) imide, bis (trifluoromethanesulfonyl) ) Imidomagnesium, bis (fluorosulfonyl) imide lithium, bis (fluorosulfonyl) imide sodium, bis (ful (Sulfonyl) imide potassium, bis (fluorosulfonyl) imide magnesium, (
  • alkali metal salts other than the above-mentioned solutes may be used as an additive.
  • carboxylates such as lithium acrylate, sodium acrylate, lithium methacrylate, sodium methacrylate and the like, lithium methyl sulfate, sodium methyl sulfate, lithium ethyl sulfate, sulfuric acid ester salts such as sodium methyl sulfate and the like can be mentioned. .
  • the polymer may be contained, and the electrolyte for non-aqueous electrolyte battery may be gelled as in the case of a non-aqueous electrolyte battery called a polymer battery. It is also possible to use it as a pseudosolid by using a crosslinking agent or a crosslinking polymer.
  • concentration range is 0.01 to 1.0% by mass in the electrolytic solution and is a range smaller than the concentration of the component (IV).
  • a nonaqueous electrolyte battery according to a second embodiment of the present invention comprises at least (a) the above-mentioned electrolyte for a non-aqueous electrolyte battery, (a) a positive electrode, and (c) lithium metal And a negative electrode having at least one selected from the group consisting of a negative electrode material capable of inserting and extracting lithium, sodium, potassium, or magnesium. Furthermore, it is preferable to include (d) a separator, an exterior body, and the like. Since the above-mentioned electrolytic solution is excellent in high-temperature storage stability (high-temperature storage characteristic), the durability of the battery can be improved.
  • the positive electrode preferably contains at least one oxide and / or polyanion compound as a positive electrode active material.
  • the positive electrode active material constituting (i) the positive electrode is not particularly limited as long as it is various materials capable of charge and discharge.
  • (A) lithium transition metal complex oxide having at least one metal of nickel, manganese, cobalt and having a layered structure (B) lithium manganese complex oxide having a spinel structure, (C) The lithium-containing olivine-type phosphate and the lithium-containing layered transition metal oxide having a layered rock salt-type structure (D) include at least one of them.
  • (A) Lithium transition metal complex oxide As a lithium transition metal complex oxide containing a positive electrode active material (A) at least one or more metals of nickel, manganese, and cobalt and having a layered structure, for example, lithium-cobalt complex oxide, lithium-nickel complex oxide , Lithium-nickel-cobalt composite oxide, lithium-nickel-cobalt-aluminum composite oxide, lithium-cobalt-manganese composite oxide, lithium-nickel-manganese composite oxide, lithium-nickel-manganese-cobalt composite oxide Etc.
  • transition metal atoms which are main components of these lithium transition metal complex oxides, may be Al, Ti, V, Cr, Fe, Cu, Zn, Mg, Ga, Zr, Si, B, Ba, Y, Sn Those substituted with other elements such as.
  • lithium-cobalt complex oxide and lithium-nickel complex oxide include lithium cobaltate (LiCo 0.98 Mg 0.01 Zr 0.01 O) to which LiCoO 2 , LiNiO 2 or different elements such as Mg, Zr, Al, Ti, etc. are added.
  • LiCo 0.98 Mg 0.01 Al 0.01 O 2 LiCo 0.975 Mg 0.01 Zr 0.005 Al 0.01 O 2 and the like
  • lithium cobaltate having a rare earth compound fixed to the surface described in WO 2014/034043 may be used .
  • a part of the particle surface of LiCoO 2 powder may be coated with aluminum oxide.
  • lithium-nickel-cobalt composite oxide and the lithium-nickel-cobalt-aluminum composite oxide include the composite oxide represented by the above general formula [1-1], and specific examples thereof are the first embodiment. It is the same as illustrated.
  • lithium-cobalt-manganese composite oxide examples include LiNi 0.5 Mn 0.5 O 2 and LiCo 0.5 Mn 0.5 O 2 .
  • lithium-nickel-manganese-cobalt composite oxide examples include the composite oxide represented by the above general formula [1-2], and specific examples thereof are the same as those exemplified in the first embodiment.
  • the lithium-nickel-manganese-cobalt composite oxide also improves the structural stability and the safety at high temperatures in the lithium secondary battery, and in the second embodiment, manganese is also represented by the general formula [1-2] Those which are contained in the range shown in are preferable, and in particular, those further containing cobalt in the range shown in the general formula [1-2] are more preferable in order to enhance the high rate characteristics of the lithium ion secondary battery.
  • (B) Lithium manganese complex oxide having spinel structure As a lithium manganese complex oxide which has a positive electrode active material (B) spinel structure, the spinel type lithium manganese complex oxide shown by said general formula [1-3] is mentioned, for example.
  • M 3 may be at least one metal element selected from the group consisting of Ni, Co, Fe, Mg, Cr, Cu, Al and Ti. Specific examples thereof include LiMnO 2 , LiMn 2 O 4 , LiMn 1.95 Al 0.05 O 4 , LiMn 1.9 Al 0.1 O 4 , LiMn 1.9 Ni 0.1 O 4 , LiMn 1.5 Ni 0.5 O 4 and the like.
  • (C) Lithium-containing olivine-type phosphate examples include those represented by the above general formula [1-4].
  • M 4 may be at least one selected from Co, Ni, Mn, Cu, Zn, Nb, Mg, Al, Ti, W, Zr and Cd. Specific examples include, LiFePO 4, LiCoPO 4, LiNiPO 4, LiMnPO 4, and among them LiFePO 4 and / or LiMnPO 4 are preferred.
  • lithium-rich layered transition metal oxide having a positive electrode active material (D) layered rock salt structure examples include those represented by the above general formula [1-5]. However, in the first embodiment, either M 5 or M 6 necessarily includes nickel, but in the second embodiment, M 5 or M 6 may not necessarily include nickel. Specific examples of the lithium excess layered transition metal oxide are the same as those exemplified in the first embodiment.
  • At least one selected from the above (A) to (D) may be contained as a main component, and as other substances contained, for example, FeS 2 , TiS 2 , TiO 2 , V Transition element chalcogenides such as 2 O 5 , MoO 3 and MoS 2 or conductive polymers such as polyacetylene, polyparaphenylene, polyaniline, and polypyrrole, activated carbon, polymers generating radicals, carbon materials, etc. may be mentioned.
  • the positive electrode has a positive electrode current collector and a positive electrode active material layer formed on at least one surface of the positive electrode current collector.
  • the configurations of the electrostatic current collector and the positive electrode active material layer are the same as those of the first embodiment, and thus the description thereof is omitted here.
  • the configuration of the non-aqueous electrolyte battery according to the second embodiment is also not particularly limited, and, for example, as in the first embodiment, an electrode element in which a positive electrode and a negative electrode are disposed opposite to each other, and non-aqueous electrolysis
  • the liquid may be contained in the outer package.
  • the shape of the non-aqueous electrolyte battery is not particularly limited, but an electrochemical device having a coin shape, a cylindrical shape, a square shape, an aluminum laminate sheet type, or the like can be assembled from the above-described elements.
  • a non-aqueous electrolyte battery using the non-aqueous electrolyte according to the first embodiment was produced and performance evaluation was performed.
  • NCM 811 positive electrode Mix 9% by mass of LiNi 0.8 Mn 0.1 Co 0.1 O 2 powder, 4.5% by mass of polyvinylidene fluoride (hereinafter PVDF) as a binder, and 4.5% by mass of acetylene black as a conductive material, and further N-methyl.
  • PVDF polyvinylidene fluoride
  • acetylene black as a conductive material
  • NMP -2-Pyrrolidone
  • NCA positive electrode 5.0 mass% of PVDF as a binder, 6.0 mass% of acetylene black as a conductive material are mixed with 89.0 mass% of LiNi 0.87 Co 0.10 Al 0.03 O 2 powder, NMP is further added, and a positive electrode mixture paste Was produced. This paste was applied to both sides of an aluminum foil (A1085), dried and pressurized, and then punched into 4 ⁇ 5 cm to obtain an NCA positive electrode for test.
  • the silicon compound having a substituent having an unsaturated bond represented by the above general formula (1) can be produced by various methods.
  • the production method is not limited.
  • ethynyltrichlorosilane, diethynyldichlorosilane, and triethynyl can be reacted by reacting silicon tetrachloride and ethynyl Grignard reagent in tetrahydrofuran at an internal temperature of 40 ° C. or less.
  • a chlorosilane, tetraethynylsilane (1-15) is obtained.
  • it is possible to separately produce these silicon compounds by performing distillation under reduced pressure at an internal temperature of 100 ° C. or less after adjusting the amount of ethynyl Grignard reagent to be used for reaction.
  • Compound (1-5) is reacted with diethynyldichlorosilane in the presence of 2 equivalents of methanol in the presence of a base such as triethylamine, and compound (1-17) is reacted with 2 equivalents of allyl Grignard reagent to give a compound 1-19) was obtained by reacting 2 equivalents of sodium acetylide.
  • Compounds (1-25), (1-26) and (1-27) are reacted with diethynyldichlorosilane in the presence of a base in the presence of a base after reacting one equivalent of the corresponding alcohol or an organolithium reagent, It was obtained by reacting potassium fluoride.
  • compounds (1-9) and (1-20) were obtained by reacting ethynyltrichlorosilane as a raw material and reacting 3 equivalents of propargyl alcohol or sodium acetylide.
  • Compound (1-12) reacts phenyltrichlorosilane with 3 equivalents of ethynyl Grignard reagent
  • compound (1-18) reacts phenyltrichlorosilane with an equal number of moles of ethynyl Grignard reagent after reacting 2 equivalents of sodium It was obtained by reacting acetylide.
  • Compound (1-24) was obtained by reacting trichloromethylsilane with 3 equivalents of ethynyl Grignard reagent.
  • methanesulfonyl fluoride can be obtained by fluorinating methanesulfonyl chloride manufactured by Aldrich, benzenesulfonyl chloride manufactured by Tokyo Chemical Industry Co., Ltd., phenyl dichlorophosphate, and phenyldichlorophosphine oxide manufactured by Wako Pure Chemical Industries, Ltd. with potassium fluoride.
  • compound (2-4) benzenesulfonyl fluoride
  • compound (2-2) benzenesulfonyl fluoride
  • phenyl difluorophosphate hereinafter, as There were obtained “compound (4-1)”, phenyldifluorophosphine oxide (hereinafter sometimes described as “compound (4-2)”).
  • compound (2-3) trifluoromethanesulfonyl fluoride
  • compound (3-1) lithium ethyl fluorophosphate was obtained by reacting lithium difluorophosphate with ethanol.
  • LiPF 6 solution (DMC, EMC)
  • the synthesis of the LiPF 6 concentrate was performed. That is, after phosphorus trichloride, lithium chloride and chlorine are reacted in carbonate ester (DMC or EMC) to synthesize lithium hexachloride phosphate, fluorination is carried out by introducing hydrogen fluoride there, A DMC solution containing LiPF 6 and hydrogen chloride and unreacted hydrogen fluoride, and an EMC solution were obtained, respectively. This was concentrated under reduced pressure to obtain a LiPF 6 concentrate from which almost all hydrogen chloride and most of the hydrogen fluoride were removed.
  • DMC carbonate ester
  • each carbonate is added to adjust the concentration to 30.0% by mass to reduce the viscosity, and then 10% by mass of dehydrated ion exchange resin is added to 100 g of each concentrate.
  • the purification process was performed.
  • a 30.0% by weight of LiPF 6 / DMC solution, LiPF 6 / EMC solution 30.0 mass% was obtained.
  • Nonaqueous Electrolyte According to Examples and Comparative Examples
  • the silicon compound (1-1) corresponding to 0.25 mass% was added to the reference electrolyte solution 1 and dissolved by stirring for 1 hour. This was designated as non-aqueous electrolyte 1- (1-1) -0.25- (0).
  • a silicon compound (1-1) corresponding to 0.25 mass% and LiSO 3 F corresponding to 0.02 mass% were added to the reference electrolyte solution 1 and dissolved by stirring for 1 hour. The resultant was used as a non-aqueous electrolyte 1- (1-1) -0.25-LiSO3F-0.02.
  • the component (III), the component (IV), and other solutes or added components are added to the reference electrolyte 1 so as to have the concentrations shown in Table 3 and stirred. Each non-aqueous electrolyte was obtained by dissolving.
  • LiPO 2 F 2 means lithium difluorophosphate
  • LTFOP means lithium tetrafluorooxalatophosphate
  • LDFBOP means lithium difluorobis (oxalato) phosphate
  • LDFOB is difluorooxalato Means lithium borate
  • LiFSI means bis (fluorosulfonyl) imide lithium
  • LTFFSI means (trifluoromethanesulfonyl) (fluorosulfonyl) imide lithium
  • LDFPI means bis (difluorophosphonyl) imide lithium .
  • the component (III), the component (IV), and other solutes or added components are added to the reference electrolyte 2 so as to have the concentrations shown in Table 5 and stirred. Each non-aqueous electrolyte was obtained by dissolving.
  • NCM 811 / Graphite After welding the terminal to the above NCM 811 positive electrode in argon atmosphere with dew point-50 ° C or less, sandwich both sides with two polyethylene separators (5 x 6 cm) and further The negative electrode active material surface was pinched
  • the assembled battery described above had a capacity of 73 mAh, which was standardized by the weight of the positive electrode active material.
  • the battery was placed in a 25 ° C. constant temperature bath and connected to a charge / discharge device in that state.
  • the battery was charged to 4.2 V at a charge rate of 0.2 C (current value that fully charges in 5 hours).
  • discharge was performed to 3.0 V at a discharge rate of 0.2C. This was defined as one cycle of charge and discharge, and a total of three cycles of charge and discharge were performed to stabilize the battery.
  • Capacity retention rate [%] (discharge capacity after 400 cycles / discharge capacity at first cycle) ⁇ 100
  • Ni elution amount measurement After 400 cycles, the battery was disassembled in an atmosphere not exposed environment, and the negative electrode was taken out. The collected negative electrode was washed with dimethyl carbonate, and then the active material layer on the current collector was scraped off and collected. The recovered active material layer was added to a 14.0 mass% high-purity nitric acid aqueous solution and heated at 150 ° C. for 2 hours. The amount of the Ni component [ ⁇ g / g] contained in the active material layer was measured with an inductively coupled plasma emission spectrophotometer (ICPS-7510 manufactured by Shimadzu Corp.) using an aqueous solution in which the entire amount of the residue was dissolved in ultrapure water.
  • ICPS-7510 inductively coupled plasma emission spectrophotometer
  • Ni component / negative electrode active material layer was determined. Similarly, only the test negative electrode (a test negative electrode before being incorporated into a battery) obtained in the above [Production of Graphite Negative Electrode] was similarly washed with dimethyl carbonate, and then the active material layer on the current collector was scraped off and collected. The amount of Ni component contained in the negative electrode active material layer was measured with an inductively coupled plasma emission spectrometry after the same process as described above for the collected active material layer, and the detection lower limit of less than 1.0 ⁇ g / g ( Since it was Ni component / negative electrode active material layer), it can be said that all Ni components quantified from the negative electrode active material layer taken out from the battery after 400 cycles were eluted from the positive electrode active material.
  • Tables 6 and 7 show the evaluation results of the NCM811 / graphite electrode configuration battery.
  • Comparative Examples 1-9, 1-10, and Examples 1-13 to 1-17 after 400 cycles, the capacity retention ratio of the Comparative Example 1-9 using the electrolytic solution not containing the component (III), Ni elution It showed as a relative value when quantity was made into 100 each.
  • the amount of LiSO 3 F is adjusted to 0. 0. 0.
  • the amount of LiSO 3 F was up to 2.40% by mass, the improvement of the capacity retention rate was observed together with the suppression of the Ni elution amount (Examples 1-1 to 1-5, Comparative Example 1-1).
  • the concentration of the silicon compound having an unsaturated bond represented by General Formula (1) is 0.01 to 2.00.
  • Examples 1-13 to 1-17 which are% by mass are likely to exhibit a good durability improvement effect without significantly increasing the amount of Ni elution.
  • Examples 1-14 to 1-16 having the same concentration of 0.04 to 1.00% by mass are more likely to exert the above-mentioned effects, and the examples having the same concentration of 0.08 to 0.50% by mass.
  • Examples 1-15 to 1-16 are particularly easy to exhibit the effects described above.
  • the amount of addition of LiSO 3 F (the amount of addition of the component (IV)) is fixed to 1.00% by mass which is in the particularly preferable range of 0.50 to 1.50% by mass. It is carried out.
  • the addition amount of the silicon compound having an unsaturated bond represented by the general formula (1) is particularly preferably in the range of 0.08 to 0.50 mass%. The experiment is performed by fixing to 25% by mass.
  • Comparative Examples 1-11 to 1-20 and Examples 1-18 to 1-27 show the evaluation results when the type of the silicon compound having an unsaturated bond represented by the general formula (1) is changed. In either case, as compared to the system without addition of LiSO 3 F, towards the system plus LiSO 3 F 1.00% by weight, the capacity maintenance rate of improvement and Ni elution of inhibition was confirmed clearly.
  • the above-mentioned assembled battery had a capacity of 70 mAh, which was standardized by the weight of the positive electrode active material.
  • the battery was placed in a 25 ° C. constant temperature bath and connected to a charge / discharge device in that state.
  • the battery was charged to 4.1 V at a charge rate of 0.2 C (current value that fully charges in 5 hours).
  • discharge was performed at a discharge rate of 0.2 C to 2.7 V. This was defined as one cycle of charge and discharge, and a total of three cycles of charge and discharge were performed to stabilize the battery.
  • the evaluation results are shown in Tables 8 and 9.
  • the values of the capacity retention rate and the elution amount of Ni of Examples 2-1 to 2-18 are the values of the retention rates of the capacity and the elution amount of Ni of Comparative Examples 2-1 to 2-18, respectively. It is a relative value.
  • the component (III), the component (IV), and the other solutes or the additive components are added to the reference electrolyte 1 or the reference electrolyte 2.
  • the respective non-aqueous electrolytes were obtained by adding so as to give the concentrations shown in 10 to 13 and stirring and dissolving.
  • the aluminum laminate type batteries according to Examples 3-1 to 3-12 are fabricated by the same procedure as Example 1-1 except that the non-aqueous electrolyte described in Table 18 is used, and the same evaluation is performed. went. The results are shown in Table 19. In addition, about the Example of Table 19, it showed as a relative value when the capacity
  • lithium fluorosulfonate as the component (IV)
  • the compounds (2-1) to (2- (2) to (2- (2)) were used as the component (IV) as compared to Example 3-12 using the compound (3-1) as the component (IV).
  • Examples 3-1 to 3-11 using (4-1) to (4-2) and (5-1) to (5-4) show the capacity retention ratio and Ni after 400 cycles. It was confirmed that the evaluation result of one or both of the elution amounts is more excellent.
  • the component (III) and the component (IV) are added to the reference electrolyte 1 so as to have the concentrations shown in Table 20, stirred and dissolved. By doing this, each non-aqueous electrolyte was obtained.
  • Example 21 In the same manner as in Example 1-1 except that the non-aqueous electrolyte described in Table 20 was used, production of an aluminum laminate type battery according to Examples 4-1 to 4-28 and Comparative Example 4-1 And made a similar assessment. The results are shown in Table 21. In addition, regarding the example of Table 21 and the comparative example, it is shown as a relative value when the capacity retention ratio after 400 cycles of Comparative Example 4-1 is 100.
  • a non-aqueous electrolyte battery using the non-aqueous electrolyte according to the second embodiment was manufactured, and performance evaluation was performed.
  • NCM 811 positive electrode Mix 9% by mass of LiNi 0.8 Mn 0.1 Co 0.1 O 2 powder, 4.5% by mass of polyvinylidene fluoride (hereinafter PVDF) as a binder, and 4.5% by mass of acetylene black as a conductive material, and further N-methyl.
  • PVDF polyvinylidene fluoride
  • acetylene black as a conductive material
  • NMP -2-Pyrrolidone
  • LiPF 6 solution Preparation of LiPF 6 solution
  • EC, FEC, EMC, and DMC were mixed at a volume ratio of 2: 1: 3: 4, respectively. Thereafter, while maintaining the internal temperature at 40 ° C. or less, LiPF 6 was added in an amount to give a concentration of 1.0 M, and was completely dissolved by stirring to obtain a LiPF 6 solution.
  • the component (III), the component (IV), and other solutes or added components are added to the LiPF 6 solution to a concentration shown in Table 24, and dissolved by stirring. By doing this, each non-aqueous electrolyte was obtained.
  • a terminal is welded to the above NCM 811 positive electrode in an argon atmosphere with a dew point of -50 ° C. or less, and then both sides are sandwiched between two polyethylene separators (5 ⁇ 6 cm), and further the terminal is welded in advance. Two sheets were inserted so that the negative electrode active material surface faced the positive electrode active material surface. And after putting them in the bag of the aluminum laminate in which the opening part of one side was left, after vacuum-injecting non-aqueous electrolyte, the opening part is sealed with heat, The aluminum laminate which concerns on an Example and a comparative example Type batteries were made. The non-aqueous electrolytes described in Tables 1 to 3 were used. In addition, the non-aqueous electrolyte used the new thing (The thing which did not evaluate above "50 degreeC storage stability of electrolyte solution").
  • the above-described assembled battery had a capacity of 75 mAh, which was specified by weight of the positive electrode active material.
  • the battery was placed in a 25 ° C. constant temperature bath and connected to a charge / discharge device in that state.
  • the battery was charged to 4.2 V at a charge rate of 0.2 C (current value that fully charges in 5 hours).
  • discharge was performed to 3.0 V at a discharge rate of 0.2C. This was defined as one cycle of charge and discharge, and a total of three cycles of charge and discharge were performed to stabilize the battery.
  • Tables 25 and 26 show the evaluation results (APHA) of the storage stability of the above electrolyte solution at 50 ° C. and the measurement results of the recovery capacity of a cell manufactured using an electrolyte solution having the same composition.
  • the recovery capacity is defined as the cyclic sulfur compound (6), PRS, or the cyclic sulfur compound (6), with the value of cells (for example, Comparative Examples 5-1, 5-3, 5-5, etc.) using an electrolytic solution containing no cyclic sulfur compound being 100 respectively.
  • the relative values of cells using an electrolyte containing MMDS are shown.
  • MMDS The stability of MMDS is lower than that of PRS, and when 1% by mass of MMDS is added to silicon compounds (1-1), (1-12) and (1-24), the increase in APHA over PRS addition increases Were observed (Comparative Examples 8-1 and 8-2, Comparative Examples 10-1 and 10-2, and Comparative Examples 12-1 and 12-2).
  • cyclic sulfur compounds (6-1), (6-5), (6-11), (6-19), (6-22), (6-38) may be used.
  • the recovery capacity could be improved without a significant increase in APHA (Examples 8-1 to 8-2, Examples 10-1 to 10-2, Examples 12-1 to 12-2).
  • Table 27 shows the results (APHA) and measurement results of recovery capacity of cells produced using electrolytes of the same composition. The recovery capacity was shown as a relative value when the value of the cell using the electrolyte solution which does not contain other components is set to 100, respectively.
  • LiSO 3 F, LDFOB, LiPO 2 F 2 , and LDFBOP was added, further improvement of the recovery capacity could be achieved without significantly affecting APHA.

Abstract

This electrolyte solution for nonaqueous electrolyte batteries contains (I) a nonaqueous organic solvent, (II) a solute which is an ionic salt, (III) at least one additive which is selected from the group consisting of compounds represented by general formula (1), and (IV) an additive which has a specific structure. Due to the combined use of the component (III) and the component (IV), effects such as reduction of Ni dissolution from the Ni-rich positive electrode into the electrolyte solution and improvement of the storage stability of the electrolyte solution at high temperatures are able to be achieved without deteriorating the capacity retention rate after cycles.

Description

非水電解液電池用電解液及びそれを用いた非水電解液電池Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
 本発明は、非水電解液電池用電解液とこれを用いた非水電解液電池に関する。 The present invention relates to an electrolyte for a non-aqueous electrolyte battery and a non-aqueous electrolyte battery using the same.
 電気化学デバイスである電池において、近年、情報関連機器、通信機器、すなわち、パソコン、ビデオカメラ、デジタルカメラ、携帯電話、スマートフォン等の小型、高エネルギー密度用途向けの蓄電システムや、電気自動車、ハイブリッド車、燃料電池車補助電源、電力貯蔵等の大型、パワー用途向けの蓄電システムが注目を集めている。その候補の一つがエネルギー密度や電圧が高く高容量が得られるリチウムイオン電池を始めとした非水電解液二次電池であり、現在、盛んに研究開発が行われている。特に、非水電解液電池の耐久性や電池特性を向上するための手段として、正極や負極の活物質をはじめとする様々な電池構成要素の最適化が検討されている。 In the battery, which is an electrochemical device, in recent years, information related equipment, communication equipment, that is, storage systems for small-sized, high energy density applications such as personal computers, video cameras, digital cameras, mobile phones, and smartphones, electric vehicles, hybrid vehicles In addition, storage systems for large-sized and power applications such as fuel cell vehicle auxiliary power supplies and electric power storage have attracted attention. One of the candidates is a non-aqueous electrolyte secondary battery including a lithium ion battery which has a high energy density and a high voltage, and is actively researched and developed at present. In particular, optimization of various battery components including active materials of positive and negative electrodes has been studied as a means for improving the durability and battery characteristics of non-aqueous electrolyte batteries.
 非水電解液電池用電解液(以下「非水電解液」と記載する場合がある)としては、環状カーボネートや、鎖状カーボネート、エステル等の溶媒に溶質としてヘキサフルオロリン酸リチウム(以下LiPF6)や、ビス(フルオロスルホニルイミド)リチウム(以下LiFSI)、テトラフルオロホウ酸リチウム(以下LiBF4)等の含フッ素電解質を溶解した非水電解液が、高電圧及び高容量の電池を得るのに好適であることからよく利用されている。しかしながら、このような非水電解液を用いる非水電解液電池は、サイクル特性、出力特性を始めとする電池特性において必ずしも満足できるものではない。 Examples of electrolytes for non-aqueous electrolyte batteries (hereinafter sometimes referred to as “non-aqueous electrolytes”) include lithium carbonate hexafluorophosphate (hereinafter referred to as LiPF 6 ) as a solute in solvents such as cyclic carbonates, linear carbonates, and esters. Non-aqueous electrolytes in which a fluorine-containing electrolyte such as lithium bis (fluorosulfonyl imide) (hereinafter LiFSI) or lithium tetrafluoroborate (hereinafter LiBF 4 ) is dissolved are used to obtain high voltage and high capacity batteries. It is often used because it is suitable. However, non-aqueous electrolyte batteries using such non-aqueous electrolyte are not always satisfactory in battery characteristics including cycle characteristics and output characteristics.
 例えばリチウムイオン二次電池の場合、初充電時に負極にリチウムカチオンが挿入される際に、負極とリチウムカチオン、又は負極と電解液溶媒が反応し、負極表面上に酸化リチウムや炭酸リチウム、アルキル炭酸リチウムを主成分とする被膜を形成する。この電極表面上の皮膜はSolid Electrolyte Interface(SEI)と呼ばれ、更なる溶媒の還元分解を抑制し電池性能の劣化を抑える等、その性質が電池性能に大きな影響を与える。また、同様に正極表面上にも分解物による皮膜が形成され、これも溶媒の酸化分解を抑制し、電池内部でのガス発生を抑える等といった重要な役割を果たす事が知られている。 For example, in the case of a lithium ion secondary battery, when lithium cation is inserted into the negative electrode at the time of initial charge, the negative electrode and lithium cation, or the negative electrode and the electrolyte solvent react, and lithium oxide, lithium carbonate, alkyl carbonate on the negative electrode surface Form a coating containing lithium as a main component. The film on the surface of the electrode is called Solid Electrolyte Interface (SEI), and its properties greatly affect the battery performance, such as suppressing the reductive decomposition of the solvent and suppressing the deterioration of the battery performance. Similarly, it is known that a film of a decomposition product is also formed on the positive electrode surface, which also plays an important role such as suppressing the oxidative decomposition of the solvent and suppressing the gas generation inside the battery.
 サイクルや高温貯蔵といった耐久性や、入出力特性などを始めとする電池特性を向上させるためには、イオン伝導性が高く、かつ、電子伝導性が低い安定なSEIを形成させることが重要であり、添加剤と称される化合物を電解液中に少量(通常は0.001質量%以上10質量%以下)加えることで、積極的に良好なSEIを形成させる試みが広くなされている。 In order to improve battery characteristics such as durability such as cycle and high temperature storage and input / output characteristics, it is important to form stable SEI with high ion conductivity and low electron conductivity. Attempts have been widely made to actively form a favorable SEI by adding a small amount (usually 0.001% by mass or more and 10% by mass or less) of a compound referred to as an additive to the electrolytic solution.
 例えば、特許文献1ではビニレンカーボネート(以下VCと記載する)が電池の耐久性を大幅に向上させる有効なSEIを形成させる添加剤として用いられている。また、VC以外にも、特許文献2、3では不飽和結合を有するケイ素化合物を用いる事で、又は特許文献4では不飽和結合とハロゲンの両方を含むケイ素化合物を用いる事でサイクル特性及び低温特性に優れた電池が得られる事が開示されている。また特許文献5ではトリアルコキシビニルシランを用いる事で、4.2V以上4.35V未満であるリチウム二次電池において電池膨れの抑制効果を奏する事が開示されている。更には、不飽和結合を有するケイ素化合物と、含フッ素化合物(特定の構造のフルオロリン酸塩、特定の構造のフルオロホスホリル構造及び/又はフルオロスルホニル構造を有するイミド塩)を同時に用いる事で-30℃以下でも優れた低温出力特性を有し、かつ50℃以上の高温でのサイクル特性が優れた電池が得られる事を特許文献6にて開示している。 For example, in Patent Document 1, vinylene carbonate (hereinafter referred to as VC) is used as an additive for forming an effective SEI which significantly improves the durability of a battery. In addition to VC, Patent Documents 2 and 3 use a silicon compound having an unsaturated bond, or Patent Document 4 uses a silicon compound containing both an unsaturated bond and a halogen to exhibit cycle characteristics and low temperature characteristics. It is disclosed that an excellent battery can be obtained. Further, Patent Document 5 discloses that the use of a trialkoxyvinylsilane exerts an effect of suppressing battery swelling in a lithium secondary battery having 4.2 V or more and less than 4.35 V. Furthermore, by simultaneously using a silicon compound having an unsaturated bond and a fluorine-containing compound (fluorophosphate having a specific structure, or an imide salt having a fluorophosphoryl structure and / or a fluorosulfonyl structure having a specific structure) Patent Document 6 discloses that a battery having excellent low temperature output characteristics even at a temperature of not more than ° C and having excellent cycle characteristics at a high temperature of not less than 50 ° C can be obtained.
 さらに、特許文献7には、70℃以上での高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量の低減効果をバランスよく発揮することができる非水電解液電池用電解液として、(I)炭素-炭素不飽和結合を有する基を含有するシラン化合物、(II)環状スルホン酸化合物及び環状硫酸エステル化合物からなる少なくとも1種、(III)非水有機溶媒、(IV)溶質を含む、電解液が開示されている。また、上記(II)として、以下の一般式(II-1a)~(II-1f)で示される化合物を用いることが開示されており、例えば、1,3-プロパンスルトン、1,3-プロペンスルトン、1,3,2-ジオキサチオラン2,2-ジオキシド、メチレンメタンジスルホネート等を用いることが好ましいことが開示されている。
Figure JPOXMLDOC01-appb-C000010
Furthermore, Patent Document 7 discloses an improvement in high-temperature storage characteristics at 70 ° C. or higher and an effect of reducing the amount of gas generated during high-temperature storage, as an electrolyte for non-aqueous electrolyte batteries (I ) Electrolyte containing a silane compound containing a group having a carbon-carbon unsaturated bond, (II) at least one kind of cyclic sulfonic acid compound and cyclic sulfuric acid ester compound, (III) non-aqueous organic solvent, (IV) solute A liquid is disclosed. Also, it is disclosed that compounds represented by the following general formulas (II-1a) to (II-1f) are used as the above (II), for example, 1,3-propane sultone, 1,3-propene It is disclosed that it is preferable to use sultone, 1,3,2-dioxathiolane 2,2-dioxide, methylene methane disulfonate and the like.
Figure JPOXMLDOC01-appb-C000010
 特許文献8には、リチウム電池の高温特性や寿命特性(サイクル特性)を向上するために、環状スルホン基(cyclic sulfone group)がスルホン酸エステル基(sulfonate group)に結合したスルホン酸エステル系化合物を添加剤として電解液に含有させることが開示されている。 Patent Document 8 discloses sulfonic acid ester compounds in which a cyclic sulfone group is bonded to a sulfonic acid ester group in order to improve high temperature characteristics and life characteristics (cycle characteristics) of a lithium battery. It is disclosed to be contained in an electrolytic solution as an additive.
 また、サイクル特性、出力特性を始めとする電池特性の向上の検討と共に、電池自体のエネルギー密度を高める研究が盛んに行われており、それは大きく分けて二通りの手法がある。一つは電池の充電電圧を高くする手法であり、これによって平均放電電圧が高くなり、大きな放電容量が得られる。しかし、電圧が上がる事で溶媒が酸化分解され、ガス発生による電池の膨れが顕著であり、充電電圧が4.5V以上となる高電圧電池は広く実用化されていないのが現状である。 In addition to studies on improvement of battery characteristics such as cycle characteristics and output characteristics, studies for increasing the energy density of the battery itself are being actively conducted, and there are two types of methods. One is a method of increasing the charge voltage of the battery, which increases the average discharge voltage and provides a large discharge capacity. However, as the voltage increases, the solvent is oxidized and decomposed, and battery swelling is remarkable due to gas generation, and at present, high voltage batteries having a charge voltage of 4.5 V or more have not been widely put to practical use.
 もう一つの電池のエネルギー密度を高める手法が、正極としてニッケル酸化物を利用する方法である。例えば、特許文献9には、正極としてLiNiO2を用いるリチウムイオン二次電池が開示されている。 Another method of increasing the energy density of a battery is a method of using nickel oxide as a positive electrode. For example, Patent Document 9 discloses a lithium ion secondary battery using LiNiO 2 as a positive electrode.
 ニッケル酸化物は、理論容量は高いものの、充電時の熱安定性が低く、当初はコバルト酸化物や、マンガン酸化物、そしてリン酸鉄等が主に正極活物質として使用されてきた。しかし、電池のエネルギー密度向上への要求が更に厳しくなり、更には、コバルトは天然資源の埋蔵量に懸念があるため、ニッケル、コバルト、マンガンを組み合わせた三元系正極「1対1対1」が用いられるようになってきた。例えば、特許文献10には、ニッケルの一部をマンガンやコバルト等に置換した正極が開示されている。この三元系正極に関しても、コバルトの使用を更に削減するため、そして更に正極容量を増大させる事を目的としてこれ以上にニッケル比率を増加させた正極を用いた電池の開発が非常に盛んに行われている。ここで、ニッケル比率を増加させたNiリッチ正極としては、ニッケル、コバルト、マンガン系ではその比率が「3対1対1」や「8対1対1」のもの、そして、マンガンをアルミニウムに置き換え、ニッケル、コバルト、アルミニウムの比率が「8.5対1.0対0.5」、「8.8対0.9対0.3」「9.0対0.5対0.5」等のものが知られている。 Nickel oxide has high theoretical capacity but low thermal stability at the time of charge, and initially cobalt oxide, manganese oxide, iron phosphate and the like have been mainly used as a positive electrode active material. However, since the demand for improving the energy density of the battery becomes more severe, and cobalt is concerned about the reserves of natural resources, a ternary positive electrode “1 to 1 to 1” combining nickel, cobalt and manganese Has come to be used. For example, Patent Document 10 discloses a positive electrode in which a part of nickel is replaced with manganese, cobalt or the like. Also with regard to this ternary positive electrode, in order to further reduce the use of cobalt and to further increase the positive electrode capacity, development of a battery using a positive electrode whose nickel ratio is further increased is extremely active. It is Here, as the Ni-rich positive electrode in which the nickel ratio is increased, nickel, cobalt, and manganese based ones having a ratio of "3 to 1 to 1" or "8 to 1 to 1", and manganese being replaced by aluminum , Nickel, cobalt, and aluminum ratio “8.5 to 1.0 to 0.5”, “8.8 to 0.9 to 0.3”, “9.0 to 0.5 to 0.5”, etc. Are known.
 なお、非水電解液電池用電解液に用いられるLiPF6濃縮液の合成方法の一例は、例えば特許文献11に開示されている。 Incidentally, an example of LiPF 6 synthesis of concentrate used in the nonaqueous electrolyte battery electrolyte solution is disclosed, for example, in Patent Document 11.
特開平8-045545号公報Japanese Patent Application Laid-Open No. 8-045545 特許第3497812号公報Patent No. 3497812 gazette 特許第5072379号公報Patent No. 5072379 gazette 特開2004-039510号公報Japanese Patent Application Publication No. 2004-039510 特許第6051537号公報Patent No. 6051537 特開2016-157679号公報JP, 2016-157679, A 国際公開第2017/138452号パンフレットInternational Publication No. 2017/138452 pamphlet 米国公開特許第2017/0271715号明細書US Patent Publication No. 2017/0271715 Specification 特開平6-096769号公報JP-A-6-096769 WO2010/113583WO 2010/113583 特許第5845955号公報Patent No. 5845955 gazette 特許第5668684公報Patent No. 56668684 特開平10-139784号公報JP 10-139784 A
 不飽和結合を有するケイ素化合物を含有する電解液は確かに耐久性(サイクル特性、高温貯蔵特性)の点では優れるが、Niリッチな正極(具体的には、正極活物質に含まれる金属中のニッケル含有量が30~100質量%)を用いた電池において、充放電を繰り返すと当該正極からNiが電解液中に溶出する傾向があった。溶出したNiは負極に析出する事となるが、これは電池の短絡の原因となり得るものであり非常に危険な状況なため、正極からのNiの溶出防止策が強く望まれていた。 An electrolytic solution containing a silicon compound having an unsaturated bond is certainly excellent in terms of durability (cycle characteristics, high-temperature storage characteristics), but a Ni-rich positive electrode (specifically, in a metal contained in a positive electrode active material) In a battery using a nickel content of 30 to 100% by mass), when charge and discharge were repeated, there was a tendency for Ni to be eluted from the positive electrode into the electrolytic solution. The eluted Ni precipitates on the negative electrode, which may cause a short circuit of the battery and is a very dangerous situation. Therefore, it is strongly desired to prevent the elution of Ni from the positive electrode.
 さらに本発明者らは、特許文献7に記載のような耐久性向上剤を含む電解液は、リチウム電池の高温貯蔵特性の向上、及び高温貯蔵時に発生したガス量の低減効果をバランスよく発揮する傾向を示すものの、耐久性向上剤として用いられる1,3-プロパンスルトン、1,3-プロペンスルトン、1,3,2-ジオキサチオラン2,2-ジオキシド、メチレンメタンジスルホネートやそれらの誘導体は、電解液の状態で50℃以上での高温保存中に分解が進む場合があるという問題を見出した。この問題の解決も強く望まれている。 Furthermore, the inventors of the present invention have well-balanced effects of improving the high-temperature storage characteristics of lithium batteries and reducing the amount of gas generated during high-temperature storage, with an electrolyte containing a durability improver as described in Patent Document 7 Although showing tendency, 1,3-propane sultone, 1,3-propene sultone, 1,3,2-dioxathiolane 2,2-dioxide, methylene methane disulfonate and their derivatives, which are used as a durability improver, It has been found that the decomposition may progress during storage at a high temperature of 50 ° C. or more in the liquid state. The solution of this problem is also strongly desired.
 本発明は、サイクル後の容量維持率を損なうことなく、Niリッチな正極から電解液中へのNi溶出が低減された、不飽和結合を有するケイ素化合物を含有する電解液、及び該電解液を用いたNi含有量の多い正極を備える非水電解液電池を提供することを目的とする。 The present invention provides an electrolytic solution containing a silicon compound having an unsaturated bond, in which the elution of Ni from the Ni-rich positive electrode into the electrolytic solution is reduced without impairing the capacity retention rate after cycling, and the electrolytic solution. An object of the present invention is to provide a non-aqueous electrolyte battery provided with a positive electrode having a high Ni content.
 また、本発明は、高温保存安定性(高温貯蔵特性)が向上された非水電解液電池用電解液、及び、当該電解液を備えた非水電解液電池を提供することを課題とする。 Moreover, this invention makes it a subject to provide the non-aqueous electrolyte battery provided with the electrolyte solution for non-aqueous electrolyte batteries in which high-temperature storage stability (high-temperature storage characteristic) was improved, and the said electrolyte solution.
 本発明の第一の態様は、
少なくともニッケルを含む1種以上の酸化物を正極活物質として含み、当該正極活物質に含まれる金属中のニッケル含有量が30~100質量%である正極を含む非水電解液電池用の電解液であって、
 (I)非水有機溶媒、
 (II)イオン性塩である、溶質、
 (III)一般式(1)で示される化合物からなる群から選ばれる少なくとも1種(以降、「ケイ素化合物(1)」と記載する場合がある)、及び、
 (IV)フルオロスルホン酸リチウム(以降、LiSO3Fと記載する場合がある)、一般式(2)で示されるO=S-F結合を有する化合物、一般式(3)で示されるO=P-F結合を有する化合物、一般式(4)で示されるP(=O)F2結合を有する化合物、及び一般式(5)で示される化合物からなる群から選ばれる少なくとも1種を含み、
 上記(I)~(IV)の総量100質量%に対する、上記(IV)の濃度が0.01~5.00質量%である、非水電解液電池用電解液(以降、単純に「非水電解液」又は「電解液」と記載する場合がある)である。
Figure JPOXMLDOC01-appb-C000011
[一般式(1)中、R1はそれぞれ互いに独立して炭素-炭素不飽和結合を有する基を表す。R2はそれぞれ互いに独立して、フッ素原子、炭素数が1~10のアルキル基、炭素数が1~10のアルコキシ基、炭素数が3~10のアリル基、炭素数が2~10のアルキニル基、炭素数が6~15のアリール基、炭素数が3~10のアリルオキシ基、炭素数が2~10のアルキニルオキシ基、及び炭素数が6~15のアリールオキシ基からなる群から選ばれる基を示し、これらの基はフッ素原子及び/又は酸素原子を有していても良い。なお「フッ素原子を有している」とは、具体的には上記の基における水素原子がフッ素原子に置換されたものを指す。また「酸素原子を有している」とは、具体的には上記の基の炭素原子の間に「-O-」(エーテル結合)が介在する基が挙げられる。aは2~4である。]
Figure JPOXMLDOC01-appb-C000012
[一般式(2)中、R3は、アルキル基、アルケニル基、アリール基、アルコキシ基、又はアリールオキシ基である。]
 上記R3の、アルキル基は、メチル基、トリフルオロメチル基、エチル基、ペンタフルオロエチル基、プロピル基、ブチル基、ペンチル基、又はヘキシル基が好ましく、
 アルケニル基は、エテニル基が好ましく、
 アリール基は、フェニル基、メチルフェニル基、ジメチルフェニル基、tert-ブチルフェニル基、tert-アミルフェニル基、ビフェニル基、又はナフチル基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)が好ましく、
 アリールオキシ基は、フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、tert-ブチルフェノキシ基、tert-アミルフェノキシ基、又はナフトキシ基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)が好ましく、
 アルコキシ基は、フッ素で置換されていても良い、シクロヘキシロキシ基、メトキシ基、又はエトキシ基が好ましい。
 中でも、サイクル後の容量維持率とNi溶出の抑制効果のバランスや、化合物の安定性の観点から、R3はメチル基、トリフルオロメチル基、エチル基、エテニル基、フェニル基が特に好ましい。
Figure JPOXMLDOC01-appb-C000013
[一般式(3)中、R4は、アルコキシ基、又はアリールオキシ基であり、R5はOLiである(なお、Oは酸素、Liはリチウムを表す)。]
 上記R4の、アルコキシ基は、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、tert-ブトキシ基、2,2-ジメチルプロポキシ基、3-メチルブトキシ基、1-メチルブトキシ基、1-エチルプロポキシ基、1,1-ジメチルプロポキシ基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基、又はシクロヘキシロキシ基が好ましく、
 アリールオキシ基は、フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、フルオロフェノキシ基、tert-ブチルフェノキシ基、tert-アミルフェノキシ基、ビフェノキシ基、又はナフトキシ基が好ましく、それぞれの芳香環の水素原子がフッ素原子に置換されていても良い。
 中でも、サイクル後の容量維持率とNi溶出の抑制効果のバランスや、化合物の安定性の観点から、R4はエトキシ基が特に好ましい。
Figure JPOXMLDOC01-appb-C000014
[一般式(4)中、R6は、アリール基、アルコキシ基、又はアリールオキシ基である。]
 上記R6の、アリール基は、フェニル基、メチルフェニル基、ジメチルフェニル基、tert-ブチルフェニル基、tert-アミルフェニル基、ビフェニル基、又はナフチル基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)が好ましく、
 アルコキシ基は、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、tert-ブトキシ基、2,2-ジメチルプロポキシ基、3-メチルブトキシ基、1-メチルブトキシ基、1-エチルプロポキシ基、1,1-ジメチルプロポキシ基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基、又はシクロヘキシロキシ基が好ましく、
 アリールオキシ基は、フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、フルオロフェノキシ基、tert-ブチルフェノキシ基、tert-アミルフェノキシ基、ビフェノキシ基、又はナフトキシ基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)が好ましい。
 中でも、サイクル後の容量維持率とNi溶出の抑制効果のバランスや、化合物の安定性の観点から、R6はフェニル基、フェノキシ基が特に好ましい。
Figure JPOXMLDOC01-appb-C000015
[一般式(5)中、Xは酸素原子、又はハロゲン原子に置換されていてもよいメチレン基であり、Yはリン原子、又は硫黄原子である。nはYがリン原子の場合は0、硫黄原子の場合は1である。R7及びR8はそれぞれ独立で、ハロゲン原子、ハロゲン原子に置換されていてもよい、アルキル基、アルケニル基、又はアリール基である。なお、Yが硫黄原子の場合、R8は存在しない。]
 上記R7及びR8の、ハロゲン原子はフッ素原子が好ましく、
 ハロゲン原子に置換されていてもよいアルキル基は、メチル基、トリフルオロメチル基、エチル基、ペンタフルオロエチル基、プロピル基、ブチル基、ペンチル基、又はヘキシル基が好ましく、
 ハロゲン原子に置換されていてもよいアルケニル基は、エテニル基が好ましく、
 ハロゲン原子に置換されていてもよいアリール基は、フェニル基、メチルフェニル基、ジメチルフェニル基、tert-ブチルフェニル基、tert-アミルフェニル基、ビフェニル基、又はナフチル基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)が好ましい。
 中でも、サイクル後の容量維持率とNi溶出の抑制効果のバランスや、化合物の安定性の観点から、R7、R8はフッ素原子、メチル基、トリフルオロメチル基、エチル基、エテニル基、フェニル基、フルオロフェニル基が特に好ましい。
The first aspect of the present invention is
An electrolytic solution for a non-aqueous electrolyte battery including a positive electrode containing at least one oxide containing at least nickel as a positive electrode active material, and the nickel content in the metal contained in the positive electrode active material is 30 to 100% by mass And
(I) non-aqueous organic solvent,
(II) an ionic salt, a solute,
(III) at least one selected from the group consisting of compounds represented by the general formula (1) (hereinafter sometimes referred to as "silicon compound (1)"), and
(IV) lithium fluorosulfonate (hereinafter sometimes referred to as LiSO 3 F), a compound having an O = SF bond represented by the general formula (2), O = P represented by the general formula (3) A compound having a —F bond, a compound having a P (= O) F 2 bond represented by the general formula (4), and at least one selected from the group consisting of a compound represented by the general formula (5),
Concentration of the above (IV) is 0.01 to 5.00% by mass with respect to the total amount 100% by mass of the above (I) to (IV) It may be described as "electrolyte solution" or "electrolyte solution".
Figure JPOXMLDOC01-appb-C000011
[In General Formula (1), R 1 's each independently represent a group having a carbon-carbon unsaturated bond. R 2 is each independently a fluorine atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an allyl group having 3 to 10 carbon atoms, an alkynyl having 2 to 10 carbon atoms Group selected from the group consisting of a group having 6 to 15 carbon atoms, an aryloxy group having 3 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, and an aryloxy group having 6 to 15 carbon atoms These groups may have a fluorine atom and / or an oxygen atom. In addition, "having a fluorine atom" specifically refers to one in which a hydrogen atom in the above group is substituted by a fluorine atom. Further, “having an oxygen atom” specifically includes a group in which “—O—” (ether bond) intervenes between carbon atoms of the above group. a is 2 to 4; ]
Figure JPOXMLDOC01-appb-C000012
[In general formula (2), R 3 is an alkyl group, an alkenyl group, an aryl group, an alkoxy group, or an aryloxy group. ]
The alkyl group of the above R 3 is preferably a methyl group, a trifluoromethyl group, an ethyl group, a pentafluoroethyl group, a propyl group, a butyl group, a pentyl group or a hexyl group,
The alkenyl group is preferably ethenyl group,
The aryl group may be a phenyl group, a methylphenyl group, a dimethylphenyl group, a tert-butylphenyl group, a tert-amylphenyl group, a biphenyl group or a naphthyl group (even if the hydrogen atom of each aromatic ring is substituted by a fluorine atom Good) is preferable,
The aryloxy group is a phenoxy group, a methylphenoxy group, a dimethylphenoxy group, a tert-butylphenoxy group, a tert-amylphenoxy group, or a naphthoxy group (a hydrogen atom of each aromatic ring may be substituted with a fluorine atom) Is preferred,
The alkoxy group is preferably a cyclohexyloxy group, a methoxy group or an ethoxy group which may be substituted by fluorine.
Among them, from the viewpoint of the balance between the capacity retention rate after cycling and the inhibitory effect on Ni elution and the stability of the compound, R 3 is particularly preferably a methyl group, a trifluoromethyl group, an ethyl group, an ethenyl group or a phenyl group.
Figure JPOXMLDOC01-appb-C000013
[In general formula (3), R 4 is an alkoxy group or an aryloxy group, R 5 is OLi (note that O is oxygen and Li is lithium). ]
The alkoxy group of the above R 4 is a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a tert-butoxy group, a 2,2-dimethylpropoxy group, a 3-methylbutoxy group, 1- Methyl butoxy, 1-ethylpropoxy, 1,1-dimethylpropoxy, 2,2,2-trifluoroethoxy, 2,2,3,3-tetrafluoropropoxy, 1,1,1-trifluoro Preferred is isopropoxy group, 1,1,1,3,3,3-hexafluoroisopropoxy group or cyclohexyloxy group,
The aryloxy group is preferably a phenoxy group, a methylphenoxy group, a dimethylphenoxy group, a fluorophenoxy group, a tert-butylphenoxy group, a tert-amylphenoxy group, a biphenoxy group or a naphthoxy group, and the hydrogen atom of each aromatic ring is fluorine It may be substituted by an atom.
Among them, an ethoxy group is particularly preferable as R 4 from the viewpoint of the balance between the capacity retention rate after cycling and the inhibitory effect on Ni elution and the stability of the compound.
Figure JPOXMLDOC01-appb-C000014
[In general formula (4), R 6 is an aryl group, an alkoxy group, or an aryloxy group. ]
The aryl group of R 6 is a phenyl group, a methylphenyl group, a dimethylphenyl group, a tert-butylphenyl group, a tert-amylphenyl group, a biphenyl group, or a naphthyl group (the hydrogen atom of each aromatic ring is a fluorine atom (Optionally substituted) is preferred,
The alkoxy group is a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a tert-butoxy group, a 2,2-dimethylpropoxy group, a 3-methylbutoxy group, a 1-methylbutoxy group, 1 -Ethylpropoxy group, 1,1-dimethylpropoxy group, 2,2,2-trifluoroethoxy group, 2,2,3,3-tetrafluoropropoxy group, 1,1,1-trifluoroisopropoxy group, 1 1,1,1,3,3,3-hexafluoroisopropoxy group or cyclohexyloxy group is preferable,
The aryloxy group is a phenoxy group, a methylphenoxy group, a dimethylphenoxy group, a fluorophenoxy group, a tert-butylphenoxy group, a tert-amylphenoxy group, a biphenoxy group, or a naphthoxy group (the hydrogen atom of each aromatic ring is a fluorine atom (Optionally substituted) is preferred.
Among them, R 6 is particularly preferably a phenyl group or a phenoxy group from the viewpoint of the balance between the capacity retention rate after cycling and the inhibitory effect on Ni elution and the stability of the compound.
Figure JPOXMLDOC01-appb-C000015
[In general formula (5), X is an oxygen atom or a methylene group which may be substituted by a halogen atom, and Y is a phosphorus atom or a sulfur atom. n is 0 when Y is a phosphorus atom, and 1 when it is a sulfur atom. R 7 and R 8 are each independently a halogen atom, an alkyl group which may be substituted by a halogen atom, an alkenyl group, or an aryl group. When Y is a sulfur atom, R 8 does not exist. ]
The halogen atom of R 7 and R 8 is preferably a fluorine atom,
The alkyl group which may be substituted by a halogen atom is preferably methyl group, trifluoromethyl group, ethyl group, pentafluoroethyl group, propyl group, butyl group, pentyl group or hexyl group,
The alkenyl group which may be substituted by a halogen atom is preferably ethenyl group,
The aryl group which may be substituted by a halogen atom is a phenyl group, a methylphenyl group, a dimethylphenyl group, a tert-butylphenyl group, a tert-amylphenyl group, a biphenyl group or a naphthyl group (a hydrogen atom of each aromatic ring Is preferably substituted by a fluorine atom).
Among them, R 7 and R 8 each represent a fluorine atom, a methyl group, a trifluoromethyl group, an ethyl group, an ethenyl group, or a phenyl from the viewpoint of the balance between the capacity retention rate after cycling and the Ni elution suppression effect and the compound stability. Groups and fluorophenyl groups are particularly preferred.
 本発明の第1の態様では、電解液中に上記(III)と、(IV)が上述の所定の濃度で存在することが重要である。上記(IV)を含有することで、上記(III)を含む電解液をNiリッチな正極を備えた電池に適用した際に、当該Niリッチな正極から電解液中へのNiの溶出が低減される。 In the first aspect of the present invention, it is important that the above (III) and (IV) be present in the above-mentioned predetermined concentration in the electrolytic solution. By containing the above (IV), when the electrolytic solution containing the above (III) is applied to a battery provided with a Ni-rich positive electrode, the elution of Ni from the Ni-rich positive electrode into the electrolytic solution is reduced. Ru.
 上記(IV)成分として、フルオロスルホン酸リチウム、上記一般式(2)で示されるO=S-F結合を有する化合物、上記一般式(4)で示されるP(=O)F2結合を有する化合物、及び上記一般式(5)で示される化合物からなる群から選ばれる少なくとも1種を用いると、サイクル後の容量維持率とNi溶出の抑制効果をよりバランスよく発揮できるため特に好ましい。 As a component (IV), lithium fluorosulfonate, a compound having an O = SF bond represented by the general formula (2), a P (= O) F 2 bond represented by the general formula (4) It is particularly preferable to use at least one member selected from the group consisting of a compound and a compound represented by the above general formula (5), because the capacity retention ratio after cycling and the effect of suppressing Ni elution can be exhibited in a more balanced manner.
 上記一般式(1)のR1はエテニル基である事が好ましい。
 また、R2のアルキル基は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、sec-ペンチル基、3-ペンチル基、及びtert-ペンチル基から選ばれることが好ましく、
 アルコキシ基は、メトキシ基、エトキシ基、ブトキシ基、tert-ブトキシ基、プロポキシ基、イソプロポキシ基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、及び1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基から選ばれることが好ましく、
 アリル基は、2-プロペニル基が好ましく、
 アルキニル基は、エチニル基が好ましく、
 アリール基は、フェニル基、メチルフェニル基、tert-ブチルフェニル基、及びtert-アミルフェニル基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)から選ばれることが好ましく、
 アリルオキシ基は、2-プロペニルオキシ基が好ましく、
 アルキニルオキシ基は、プロパルギルオキシ基が好ましく、また、
 アリールオキシ基は、フェノキシ基、メチルフェノキシ基、tert-ブチルフェノキシ基、及びtert-アミルフェノキシ基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)から選ばれることが好ましい。
 また、上記一般式(1)のaが3又は4であると耐久性向上効果が優れる観点からより好ましい。
R 1 in the general formula (1) is preferably ethenyl.
In addition, the alkyl group of R 2 is methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, sec-pentyl group, 3-pentyl group, and tert. It is preferable to be selected from -pentyl group,
The alkoxy group is a methoxy group, an ethoxy group, a butoxy group, a tert-butoxy group, a propoxy group, an isopropoxy group, a 2,2,2-trifluoroethoxy group, a 2,2,3,3-tetrafluoropropoxy group, 1 And 1,1,1-trifluoroisopropoxy and 1,1,1,3,3,3-hexafluoroisopropoxy are preferred.
The allyl group is preferably a 2-propenyl group,
The alkynyl group is preferably an ethynyl group,
The aryl group is preferably selected from a phenyl group, a methylphenyl group, a tert-butylphenyl group, and a tert-amylphenyl group (a hydrogen atom of each aromatic ring may be substituted with a fluorine atom),
The allyloxy group is preferably a 2-propenyloxy group,
The alkynyloxy group is preferably a propargyloxy group, and
The aryloxy group is preferably selected from a phenoxy group, a methylphenoxy group, a tert-butylphenoxy group, and a tert-amylphenoxy group (a hydrogen atom of each aromatic ring may be substituted with a fluorine atom).
Moreover, it is more preferable from a viewpoint that durability improvement effect is excellent in it being 3 or 4 of a of the said General formula (1).
 上記(III)は、具体的には下記の化合物(1-1)~(1-28)からなる群から選ばれる少なくとも1種であることが好ましく、中でも(1-1)、(1-2)、(1-3)、(1-4)、(1-6)、(1-7)、(1-8)、(1-10)、(1-12)、(1-15)、(1-22)、(1-23)、(1-24)、(1-25)、(1-26)、(1-27)、及び(1-28)からなる群から選ばれる少なくとも1種が合成の容易さと、化合物の安定性の点からより好ましい。それらの中でも、(1-1)、(1-2)、(1-4)、(1-10)、(1-12)、(1-15)、(1-22)、(1-24)、(1-25)、及び(1-28)からなる群から選ばれる少なくとも1種であると耐久性向上効果がより優れる観点から好ましく、(1-1)、(1-2)、(1-12)、及び(1-15)からなる群から選ばれる少なくとも1種であると特に好ましい。
Figure JPOXMLDOC01-appb-C000016
Specifically, (III) is preferably at least one selected from the group consisting of the following compounds (1-1) to (1-28), and among them, (1-1), (1-2) ), (1-3), (1-4), (1-6), (1-7), (1-8), (1-10), (1-12), (1-15), At least one selected from the group consisting of (1-22), (1-23), (1-24), (1-25), (1-26), (1-27), and (1-28) The species is more preferable in terms of easiness of synthesis and stability of the compound. Among them, (1-1), (1-2), (1-4), (1-10), (1-12), (1-15), (1-22), (1-24) At least one selected from the group consisting of (1-25) and (1-28) is preferable from the viewpoint of more excellent durability improvement effect, and (1-1), (1-2), ( It is particularly preferable that it is at least one selected from the group consisting of 1-12) and (1-15).
Figure JPOXMLDOC01-appb-C000016
 上記(III)成分であるケイ素化合物(1)は、種々の方法により製造できる。例えば、特許文献13、非特許文献2、3に記載のように、シラノール基又は加水分解性基を有するケイ素化合物と炭素-炭素不飽和結合含有有機金属試薬とを反応させて、該ケイ素化合物中のシラノール基のOH基又は加水分解性基を炭素-炭素不飽和結合基に置換するような、炭素-炭素不飽和結合含有ケイ素化合物を製造する方法により製造できる。 The silicon compound (1) which is the component (III) can be produced by various methods. For example, as described in Patent Document 13 and Non-Patent Documents 2 and 3, a silicon compound having a silanol group or a hydrolyzable group is reacted with a carbon-carbon unsaturated bond-containing organometallic reagent to form a silicon compound. It can be produced by a method of producing a carbon-carbon unsaturated bond-containing silicon compound in which the OH group or hydrolyzable group of the silanol group is substituted with a carbon-carbon unsaturated bond group.
 本発明の第二の態様は、
 (I)非水有機溶媒、
 (II)イオン性塩である、溶質、
 (III)一般式(1)で示される化合物からなる群から選ばれる少なくとも1種の添加剤(以降、「ケイ素化合物(1)」と記載する場合がある)、及び、
 (IV)一般式(6)で示される化合物からなる群から選ばれる少なくとも1種の添加剤(以降、「環状硫黄化合物(6)」と記載する場合がある)と、を含む非水電解液電池用電解液(以降、単純に「非水電解液」又は「電解液」と記載する場合がある)である。
Figure JPOXMLDOC01-appb-C000017
[式中、R1、R2、aは前記一般式(1)と同じである。]
Figure JPOXMLDOC01-appb-C000018
[一般式(6)中、Xは酸素原子、又はハロゲン原子に置換されていてもよいメチレン基であり、Yはリン原子、又は硫黄原子である。nはYがリン原子の場合は0、硫黄原子の場合は1である。R3、R4はそれぞれ独立で、ハロゲン原子、ハロゲン原子に置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子に置換されていてもよい炭素数5~20のシクロアルキル基、ハロゲン原子に置換されていてもよい炭素数2~20のアルケニル基、ハロゲン原子に置換されていてもよい炭素数2~20のアルキニル基、ハロゲン原子に置換されていてもよい炭素数6~40のアリール基、ハロゲン原子に置換されていてもよい炭素数2~40のヘテロアリール基、ハロゲン原子に置換されていてもよい炭素数1~20のアルコキシ基、ハロゲン原子に置換されていてもよい炭素数5~20のシクロアルコキシ基、ハロゲン原子に置換されていてもよい炭素数2~20のアルケニルオキシ基、ハロゲン原子に置換されていてもよい炭素数2~20のアルキニルオキシ基、ハロゲン原子に置換されていてもよい炭素数6~40のアリールオキシ基、又は、ハロゲン原子に置換されていてもよい炭素数2~40のヘテロアリールオキシ基であり、Yが硫黄原子の場合、R4は存在しない。R5、R6は、それぞれ独立して、水素原子、ハロゲン原子、ハロゲン原子に置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子に置換されていてもよい炭素数2~20のアルケニル基、ハロゲン原子に置換されていてもよい炭素数2~20のアルキニル基、ハロゲン原子に置換されていてもよい炭素数1~20のアルコキシ基、ハロゲン原子に置換されていてもよい炭素数5~20のシクロアルキル基、ハロゲン原子に置換されていてもよい炭素数6~40のアリール基、又は、ハロゲン原子に置換されていてもよい炭素数2~40のヘテロアリール基である。]
The second aspect of the present invention is
(I) non-aqueous organic solvent,
(II) an ionic salt, a solute,
(III) at least one additive selected from the group consisting of compounds represented by the general formula (1) (hereinafter sometimes referred to as "silicon compound (1)"), and
(IV) A non-aqueous electrolyte comprising at least one additive selected from the group consisting of compounds represented by the general formula (6) (hereinafter sometimes referred to as "cyclic sulfur compound (6)") This is a battery electrolyte (hereinafter sometimes simply referred to as "non-aqueous electrolyte" or "electrolyte").
Figure JPOXMLDOC01-appb-C000017
IN FORMULA, R < 1 >, R < 2 >, a is the same as the said General formula (1). ]
Figure JPOXMLDOC01-appb-C000018
[In general formula (6), X is an oxygen atom or a methylene group which may be substituted by a halogen atom, and Y is a phosphorus atom or a sulfur atom. n is 0 when Y is a phosphorus atom, and 1 when it is a sulfur atom. R 3 and R 4 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a halogen atom, or a cycloalkyl group having 5 to 20 carbon atoms which may be substituted by a halogen atom; A C2-C20 alkenyl group which may be substituted by a halogen atom, a C2-C20 alkynyl group which may be substituted by a halogen atom, a C6-C40 carbon atom which may be substituted by a halogen atom Or an aryl group of 2 to 40 carbon atoms which may be substituted with a halogen atom, an alkoxy group having 1 to 20 carbon atoms which may be substituted with a halogen atom, or a halogen atom. It may be substituted by a cycloalkoxy group having 5 to 20 carbon atoms, an alkenyloxy group having 2 to 20 carbon atoms which may be substituted by a halogen atom, or a halogen atom. An alkynyloxy group having 2 to 20 carbons, an aryloxy group having 6 to 40 carbons that may be substituted with a halogen atom, or a heteroaryloxy group having 2 to 40 carbons that may be substituted with a halogen atom And when Y is a sulfur atom, R 4 is absent. R 5 and R 6 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a halogen atom, or a carbon number 2 to 20 which may be substituted by a halogen atom Alkenyl group, an alkynyl group having 2 to 20 carbon atoms which may be substituted with a halogen atom, an alkoxy group having 1 to 20 carbon atoms which may be substituted with a halogen atom, carbon which may be substituted for a halogen atom The cycloalkyl group is a cycloalkyl group having a number of 5 to 20, an aryl group having a carbon number of 6 to 40 which may be substituted with a halogen atom, or a heteroaryl group having a carbon number of 2 to 40 which may be substituted for a halogen atom. ]
 上記一般式(1)のR1はエテニル基である事が好ましい。
 また、R2のアルキル基は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、sec-ペンチル基、3-ペンチル基、及びtert-ペンチル基から選ばれることが好ましく、
 アルコキシ基は、メトキシ基、エトキシ基、ブトキシ基、tert-ブトキシ基、プロポキシ基、イソプロポキシ基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、及び1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基から選ばれることが好ましく、
 アリル基は、2-プロペニル基が好ましく、
 アルキニル基は、エチニル基が好ましく、
 アリール基は、フェニル基、メチルフェニル基、tert-ブチルフェニル基、及びtert-アミルフェニル基から選ばれることが好ましく(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)、
 アリルオキシ基は、2-プロペニルオキシ基が好ましく、
 アルキニルオキシ基は、プロパルギルオキシ基が好ましく、また
 アリールオキシ基は、フェノキシ基、メチルフェノキシ基、tert-ブチルフェノキシ基、及びtert-アミルフェノキシ基から選ばれることが好ましい(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)。
 上記一般式(1)のaが3又は4であることが、高温貯蔵試験後の回復容量がより良好である観点から好ましい。
R 1 in the general formula (1) is preferably ethenyl.
In addition, the alkyl group of R 2 is methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, sec-pentyl group, 3-pentyl group, and tert. It is preferable to be selected from -pentyl group,
The alkoxy group is a methoxy group, an ethoxy group, a butoxy group, a tert-butoxy group, a propoxy group, an isopropoxy group, a 2,2,2-trifluoroethoxy group, a 2,2,3,3-tetrafluoropropoxy group, 1 And 1,1,1-trifluoroisopropoxy and 1,1,1,3,3,3-hexafluoroisopropoxy are preferred.
The allyl group is preferably a 2-propenyl group,
The alkynyl group is preferably an ethynyl group,
The aryl group is preferably selected from a phenyl group, a methylphenyl group, a tert-butylphenyl group, and a tert-amylphenyl group (a hydrogen atom of each aromatic ring may be substituted with a fluorine atom),
The allyloxy group is preferably a 2-propenyloxy group,
The alkynyloxy group is preferably a propargyloxy group, and the aryloxy group is preferably selected from a phenoxy group, a methylphenoxy group, a tert-butylphenoxy group, and a tert-amylphenoxy group (a hydrogen atom of each aromatic ring May be substituted by a fluorine atom).
It is preferable that a in the above general formula (1) is 3 or 4 from the viewpoint of better recovery capacity after the high temperature storage test.
 上記(III)は、具体的には上記の化合物(1-1)~(1-28)からなる群から選ばれる少なくとも1種であることが好ましく、中でも(1-1)、(1-2)、(1-3)、(1-4)、(1-6)、(1-7)、(1-9)、(1-10)、(1-12)、(1-15)、(1-22)、(1-23)、(1-24)、(1-25)、(1-26)、(1-27)、及び(1-28)からなる群から選ばれる少なくとも1種が合成の容易さと、化合物の安定性の点からより好ましい。それらの中でも、(1-1)、(1-2)、(1-4)、(1-6)、(1-9)、(1-12)、(1-15)、(1-22)、及び(1-24)からなる群から選ばれる少なくとも1種であると高温貯蔵特性向上効果がより優れる観点から好ましく、(1-1)、(1-9)、(1-15)、及び(1-22)からなる群から選ばれる少なくとも1種であると特に好ましい。 Specifically, (III) is preferably at least one selected from the group consisting of the above compounds (1-1) to (1-28), and among them, (1-1), (1-2) ), (1-3), (1-4), (1-6), (1-7), (1-9), (1-10), (1-12), (1-15), At least one selected from the group consisting of (1-22), (1-23), (1-24), (1-25), (1-26), (1-27), and (1-28) The species is more preferable in terms of easiness of synthesis and stability of the compound. Among them, (1-1), (1-2), (1-4), (1-6), (1-9), (1-12), (1-15), (1-22) And at least one selected from the group consisting of (1-24), from the viewpoint that the high-temperature storage characteristic improvement effect is more excellent, (1-1), (1-9), (1-15), It is particularly preferable that it is at least one selected from the group consisting of and (1-22).
 上述の通り、(III)成分であるケイ素化合物(1)は、種々の方法により製造できる(特許文献13、非特許文献2、3等参照)。 As described above, the silicon compound (1) which is the component (III) can be produced by various methods (see Patent Document 13, Non-patent Documents 2, 3 and the like).
 上記一般式(6)のR3及びR4が、それぞれ独立して、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、トリフルオロメチル基、トリフルオロエチル基、エテニル基、2-プロペニル基、2-プロピニル基、フェニル基、ナフチル基、ペンタフルオロフェニル基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、トリフルオロメトキシ基、トリフルオロエトキシ基、エテニルオキシ基、2-プロペニルオキシ基、2-プロピニルオキシ基、フェノキシ基、ナフチルオキシ基、ペンタフルオロフェノキシ基、ピロリル基、及びピリジニル基から選ばれることが好ましく、それぞれ独立して、フッ素原子、メチル基、トリフルオロメチル基、エテニル基、2-プロぺニル基、フェニル基、フェノキシ基から選ばれることが合成の容易さと、高温貯蔵特性の高さの観点から特に好ましい。
 R5及びR6が、それぞれ独立して、水素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、トリフルオロメチル基、テトラフルオロエチル基、フェニル基、ナフチル基、ペンタフルオロフェニル基、ピロリル基、及びピリジニル基から選ばれることが好ましく、それぞれ独立して、水素原子、フッ素原子から選ばれることが合成の容易さと、安定性の高さの観点から特に好ましい。
R 3 and R 4 in the above general formula (6) are each independently a fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, n-pentyl group , N-hexyl group, trifluoromethyl group, trifluoroethyl group, ethenyl group, 2-propenyl group, 2-propynyl group, phenyl group, naphthyl group, pentafluorophenyl group, methoxy group, ethoxy group, n-propoxy group , Isopropoxy group, n-butoxy group, tert-butoxy group, n-pentyloxy group, n-hexyloxy group, trifluoromethoxy group, trifluoroethoxy group, ethenyl oxy group, 2-propenyloxy group, 2-propynyloxy group Group, phenoxy group, naphthyloxy group, pentafluorophenoxy group, pyrrolyl group, and pyridinyl group It is preferably selected from the group consisting of: each independently selected from a fluorine atom, a methyl group, a trifluoromethyl group, an ethenyl group, a 2-propenyl group, a phenyl group and a phenoxy group; Particularly preferred in view of the height of the properties.
R 5 and R 6 each independently represent a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a trifluoromethyl group or a tetrafluoroethyl group It is preferable to select from a group, a phenyl group, a naphthyl group, a pentafluorophenyl group, a pyrrolyl group, and a pyridinyl group, and it is independently selected from a hydrogen atom and a fluorine atom that the synthesis is easy and the stability is high. Particularly preferred from the viewpoint of
 上記(IV)は、具体的には以下の化合物(6-1)~(6-40)で表される化合物から選択される少なくとも1種であることが好ましく、中でも(6-1)、(6-2)、(6-3)、(6-5)、(6-7)、(6-8)、(6-9)、(6-11)、(6-12)、(6-14)、(6-16)、(6-19)、(6-20)、(6-21)、(6-22)、(6-23)、(6-24)、(6-25)、(6-27)、(6-28)、(6-29)、(6-31)、(6-32)、(6-34)、(6-38)、(6-39)及び(6-40)からなる群から選ばれる少なくとも1種が合成の容易さと、高温貯蔵特性の高さの点からより好ましい。それらの中でも、(6-1)、(6-2)、(6-5)、(6-7)、(6-9)、(6-11)、(6-14)、(6-19)、(6-20)、(6-21)、(6-22)、(6-23)、(6-25)、(6-27)、(6-29)、(6-31)、(6-34)、(6-38)、(6-39)、及び(6-40)からなる群から選ばれる少なくとも1種であると高温貯蔵特性の高さがより優れる観点から好ましく、(6-1)、(6-5)、(6-11)、(6-19)、(6-21)、(6-22)、(6-31)、(6-38)、及び(6-40)からなる群から選ばれる少なくとも1種であると特に好ましい。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Specifically, (IV) is preferably at least one selected from the compounds represented by the following compounds (6-1) to (6-40), and among them, (6-1), 6-2), (6-3), (6-5), (6-7), (6-8), (6-9), (6-11), (6-12), (6- 6) 14), (6-16), (6-19), (6-20), (6-21), (6-22), (6-23), (6-24), (6-25) , (6-27), (6-28), (6-29), (6-31), (6-32), (6-34), (6-38), (6-39) and At least one member selected from the group consisting of 6-40) is more preferable in terms of the ease of synthesis and the height of the high temperature storage characteristics. Among them, (6-1), (6-2), (6-5), (6-7), (6-9), (6-11), (6-14), (6-19) ), (6-20), (6-21), (6-22), (6-23), (6-25), (6-27), (6-29), (6-31), At least one selected from the group consisting of (6-34), (6-38), (6-39), and (6-40) is preferable from the viewpoint that the height of the high-temperature storage characteristics is more excellent, 6-1), (6-5), (6-11), (6-19), (6-21), (6-22), (6-31), (6-38), and (6) It is particularly preferable that it is at least one selected from the group consisting of -40).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上記(IV)成分である環状硫黄化合物(6)は、種々の方法により製造できる。例えば、上記式(6-1)の化合物は、特許文献8の段落[0107]~[0116]に記載のように、2,5-ジハイドロチオフェン-1,1-ジオキシドを水和反応させて3-ヒドロキシテトラヒドロチオフェン-1,1-ジオキシドを得て、これをトリエタノールアミン存在下でメタンスルホニルクロリドと反応させることによって得ることができる。他の環状硫黄化合物についても、対応する原料を変更することで同様の製法で得ることができる。 The cyclic sulfur compound (6) which is the component (IV) can be produced by various methods. For example, as described in paragraphs [0107] to [0116] of Patent Document 8, the compound of the above formula (6-1) is subjected to hydration reaction of 2,5-dihydrothiophene-1,1-dioxide 3-hydroxytetrahydrothiophene-1,1-dioxide is obtained which can be obtained by reaction with methanesulfonyl chloride in the presence of triethanolamine. The other cyclic sulfur compounds can also be obtained by the same process by changing the corresponding raw materials.
 本発明の第1の態様によると、非水電解液電池用電解液に(III)成分として特定の構造のケイ素化合物と、(IV)成分として特定の化合物を特定の濃度で含有させることにより、サイクル後の容量維持率を損なうことなく、Niリッチな正極から電解液中へのNi溶出を低減することができる。 According to the first aspect of the present invention, by containing a silicon compound having a specific structure as the component (III) and a specific compound as the component (IV) in a specific concentration in the electrolyte for a non-aqueous electrolyte battery, It is possible to reduce the elution of Ni from the Ni-rich positive electrode into the electrolytic solution without losing the capacity retention rate after cycling.
 また、本発明の第2の態様によると、非水電解液電池用電解液に(III)成分として特定の構造のケイ素化合物と、(IV)成分として特定の構造の環状硫黄化合物とを含有させることにより、高温保存安定性を向上することができる。 Further, according to the second aspect of the present invention, the electrolyte for a non-aqueous electrolyte battery contains a silicon compound having a specific structure as the component (III) and a cyclic sulfur compound having a specific structure as the component (IV). Thus, the high temperature storage stability can be improved.
 以下の実施形態における各構成及びそれらの組み合わせは例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換及びその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 The respective configurations and their combinations in the following embodiments are examples, and additions, omissions, substitutions, and other modifications of the configurations are possible without departing from the spirit of the present invention. Further, the present invention is not limited by the embodiments, and is limited only by the scope of claims.
 [第1の実施形態]
 1.非水電解液電池用電解液
 本発明の第1の実施形態に係る非水電解液電池用電解液は、
少なくともニッケルを含む1種以上の酸化物を正極活物質として含み、当該正極活物質に含まれる金属中のニッケル含有量が30~100質量%である正極を含む非水電解液電池用の電解液であって、
(I)非水有機溶媒、
(II)イオン性塩である、溶質、
(III)上記一般式(1)で示される化合物からなる群から選ばれる少なくとも1種、及び、
(IV)LiSO3F、上記一般式(2)で示されるO=S-F結合を有する化合物、上記一般式(3)で示されるO=P-F結合を有する化合物、上記一般式(4)で示されるP(=O)F2  結合を有する化合物、及び上記一般式(5)で示される化合物からなる群から選ばれる少なくとも1種を含み、
 (I)~(IV)の総量100質量%に対する、上記(IV)の濃度が0.01~5.00質量%である。
First Embodiment
1. Electrolyte for Nonaqueous Electrolyte Battery The electrolyte for nonaqueous electrolyte battery according to the first embodiment of the present invention,
An electrolytic solution for a non-aqueous electrolyte battery including a positive electrode containing at least one oxide containing at least nickel as a positive electrode active material, and the nickel content in the metal contained in the positive electrode active material is 30 to 100% by mass And
(I) non-aqueous organic solvent,
(II) an ionic salt, a solute,
(III) at least one selected from the group consisting of compounds represented by the above general formula (1), and
(IV) LiSO 3 F, a compound having an O = SF bond represented by the general formula (2), a compound having an O = PF bond represented by the general formula (3), the general formula (4) And at least one selected from the group consisting of a compound having a P (= O) F 2 bond represented by the above, and a compound represented by the above general formula (5),
The concentration of (IV) is 0.01 to 5.00% by mass with respect to 100% by mass of the total amount of (I) to (IV).
 (I)非水有機溶媒について
 第1の実施形態において、非水電解液電池用電解液に用いる非水有機溶媒の種類は、特に限定されず、任意の非水有機溶媒を用いることができる。具体的には、エチルメチルカーボネート(以降「EMC」と記載する)、ジメチルカーボネート(以降「DMC」と記載する)、ジエチルカーボネート(以降「DEC」と記載する)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルブチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、2,2,2-トリフルオロエチルエチルカーボネート、2,2,2-トリフルオロエチルプロピルカーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート、1,1,1,3,3,3-ヘキサフルオロ-1-プロピルメチルカーボネート、1,1,1,3,3,3-ヘキサフルオロ-1-プロピルエチルカーボネート、1,1,1,3,3,3-ヘキサフルオロ-1-プロピルプロピルカーボネート、ビス(1,1,1,3,3,3-ヘキサフルオロ-1-プロピル)カーボネート、エチレンカーボネート(以降「EC」と記載する)、プロピレンカーボネート(以降「PC」と記載する)、ブチレンカーボネート、フルオロエチレンカーボネート(以降「FEC」と記載する)、ジフルオロエチレンカーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、2-フルオロプロピオン酸メチル、2-フルオロプロピオン酸エチル、ジエチルエーテル、ジブチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、フラン、テトラヒドロピラン、1,3-ジオキサン、1,4-ジオキサン、N,N-ジメチルホルムアミド、アセトニトリル、プロピオニトリル、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、及びγ-バレロラクトンからなる群から選ばれる少なくとも1種であることが好ましい。
(I) Nonaqueous Organic Solvent In the first embodiment, the type of nonaqueous organic solvent used in the electrolyte for nonaqueous electrolyte batteries is not particularly limited, and any nonaqueous organic solvent can be used. Specifically, ethyl methyl carbonate (hereinafter described as "EMC"), dimethyl carbonate (hereinafter described as "DMC"), diethyl carbonate (hereinafter described as "DEC"), methyl propyl carbonate, ethyl propyl carbonate, Methyl butyl carbonate, 2,2,2-trifluoroethyl methyl carbonate, 2,2,2-trifluoroethyl ethyl carbonate, 2,2,2-trifluoroethyl propyl carbonate, bis (2,2,2-trifluoro ethyl carbonate Ethyl) carbonate, 1,1,1,3,3,3-hexafluoro-1-propyl methyl carbonate, 1,1,1,3,3,3-hexafluoro-1-propyl ethyl carbonate, 1,1,1, 1,3,3,3-Hexafluoro-1-propylpropyl carbonate , Bis (1,1,1,3,3,3-hexafluoro-1-propyl) carbonate, ethylene carbonate (hereinafter referred to as “EC”), propylene carbonate (hereinafter referred to as “PC”), butylene carbonate Fluoroethylene carbonate (hereinafter referred to as “FEC”), difluoroethylene carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl 2-fluoropropionate, ethyl 2-fluoropropionate, diethyl ether, Butyl ether, diisopropyl ether, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, furan, tetrahydropyran, 1,3-dioxane, 1,4-dioxane, N, N-dimethylformamide, acetonitrile, Ropionitoriru, dimethyl sulfoxide, sulfolane, and is preferably at least one selected from the group consisting of γ- butyrolactone, and γ- valerolactone.
 また、上記非水有機溶媒は、環状カーボネート及び鎖状カーボネートからなる群から選ばれる少なくとも1種であると、高温でのサイクル特性に優れる点で好ましい。また、上記非水有機溶媒が、エステルからなる群から選ばれる少なくとも1種であると、低温での入出力特性に優れる点で好ましい。
 上記環状カーボネートの具体例としてEC、PC、ブチレンカーボネート、及びFEC等が挙げられ、中でもEC、PC、及びFECからなる群から選ばれる少なくとも1種が好ましい。
 上記鎖状カーボネートの具体例としてEMC、DMC、DEC、メチルプロピルカーボネート、エチルプロピルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、2,2,2-トリフルオロエチルエチルカーボネート、1,1,1,3,3,3-ヘキサフルオロ-1-プロピルメチルカーボネート、及び1,1,1,3,3,3-ヘキサフルオロ-1-プロピルエチルカーボネート等が挙げられ、中でもEMC、DMC、DEC、及びメチルプロピルカーボネートからなる群から選ばれる少なくとも1種が好ましい。
 また、上記エステルの具体例として、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、2-フルオロプロピオン酸メチル、及び2-フルオロプロピオン酸エチル等が挙げられる。
The non-aqueous organic solvent is preferably at least one member selected from the group consisting of cyclic carbonates and chain carbonates, from the viewpoint of excellent cycle characteristics at high temperatures. Moreover, it is preferable at the point which is excellent in the input-output characteristic in low temperature that the said non-aqueous organic solvent is at least 1 sort (s) chosen from the group which consists of ester.
Specific examples of the cyclic carbonate include EC, PC, butylene carbonate, and FEC. Among them, at least one selected from the group consisting of EC, PC, and FEC is preferable.
Specific examples of the above linear carbonates are EMC, DMC, DEC, methyl propyl carbonate, ethyl propyl carbonate, 2,2,2-trifluoroethyl methyl carbonate, 2,2,2-trifluoro ethyl ethyl carbonate, 1,1, 1,3,3,3-hexafluoro-1-propylmethyl carbonate and 1,1,1,3,3,3-hexafluoro-1-propylethyl carbonate etc., among which EMC, DMC, DEC, And at least one selected from the group consisting of methyl propyl carbonate and methyl propyl carbonate.
In addition, specific examples of the above-mentioned ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl 2-fluoropropionate, and ethyl 2-fluoropropionate.
 第1の実施形態の非水電解液電池用電解液は、ポリマーを含むこともでき、一般にポリマー固体電解質と呼ばれる。ポリマー固体電解質には、可塑剤として非水有機溶媒を含有するものも含まれる。
 ポリマーは、上記溶質及び上記添加剤を溶解できる非プロトン性のポリマーであれば特に限定されるものではない。例えば、ポリエチレンオキシドを主鎖又は側鎖に持つポリマー、ポリビニリデンフロライドのホモポリマー又はコポリマー、メタクリル酸エステルポリマー、ポリアクリロニトリルなどが挙げられる。これらのポリマーに可塑剤を加える場合は、上記の非水有機溶媒のうち非プロトン性非水有機溶媒が好ましい。
The non-aqueous electrolyte battery electrolyte of the first embodiment can also contain a polymer, and is generally referred to as a polymer solid electrolyte. Polymer solid electrolytes also include those containing non-aqueous organic solvents as plasticizers.
The polymer is not particularly limited as long as it is an aprotic polymer capable of dissolving the solute and the additive. For example, polymers having polyethylene oxide in the main chain or side chain, homopolymers or copolymers of polyvinylidene fluoride, methacrylic acid ester polymers, polyacrylonitrile and the like can be mentioned. When a plasticizer is added to these polymers, an aprotic non-aqueous organic solvent is preferable among the above non-aqueous organic solvents.
 (II)溶質について
 例えば、アルカリ金属イオン、及びアルカリ土類金属イオンからなる群から選ばれる少なくとも1種のカチオンと、ヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、トリフルオロメタンスルホン酸アニオン、フルオロスルホン酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミドアニオン、ビス(ジフルオロホスホニル)イミドアニオン、(ジフルオロホスホニル)(フルオロスルホニル)イミドアニオン、及び(ジフルオロホスホニル)(トリフルオロメタンスルホニル)イミドアニオンからなる群から選ばれる少なくとも1種のアニオンの対からなるイオン性塩であることが好ましい。
(II) Solute For example, at least one cation selected from the group consisting of alkali metal ions and alkaline earth metal ions, and hexafluorophosphate anion, tetrafluoroborate anion, trifluoromethanesulfonate anion, fluorosulfone Acid anion, bis (trifluoromethanesulfonyl) imide anion, bis (fluorosulfonyl) imide anion, (trifluoromethane sulfonyl) (fluorosulfonyl) imide anion, bis (difluorophosphonyl) imide anion, (difluorophosphonyl) (fluorosulfonyl) An ionic salt comprising an imido anion, and at least one anion pair selected from the group consisting of (difluorophosphonyl) (trifluoromethanesulfonyl) imide anions Is preferred.
 また、上記溶質であるイオン性塩のカチオンがリチウム、ナトリウム、カリウム、又はマグネシウムであり、アニオンがヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、トリフルオロメタンスルホン酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、ビス(ジフルオロホスホニル)イミドアニオンからなる群から選ばれる少なくとも1種であることが、上記非水有機溶媒に対する溶解度の高さや、その電気化学安定性の点から好ましい。 Further, the cation of the ionic salt which is the above solute is lithium, sodium, potassium or magnesium, the anion is hexafluorophosphate anion, tetrafluoroborate anion, trifluoromethanesulfonate anion, bis (trifluoromethanesulfonyl) imide At least one member selected from the group consisting of anions, bis (fluorosulfonyl) imide anions and bis (difluorophosphonyl) imide anions, as well as the high solubility in the non-aqueous organic solvent and the point of its electrochemical stability It is preferable from
 これら溶質の濃度については、特に制限はないが、下限は0.5mol/L以上、好ましくは0.7mol/L以上、さらに好ましくは0.9mol/L以上であり、また、上限は2.5mol/L以下、好ましくは2.2mol/L以下、さらに好ましくは2.0mol/L以下の範囲である。0.5mol/Lを下回るとイオン伝導度が低下することにより非水電解液電池のサイクル特性、出力特性が低下し、一方、2.5mol/Lを超えると非水電解液電池用電解液の粘度が上昇することによりやはりイオン伝導を低下させ、非水電解液電池のサイクル特性、出力特性を低下させる恐れがある。また、これら溶質は単独で用いても良いし、複数を組み合わせて使用しても良い。 The concentration of these solutes is not particularly limited, but the lower limit is 0.5 mol / L or more, preferably 0.7 mol / L or more, more preferably 0.9 mol / L or more, and the upper limit is 2.5 mol / L or less, preferably 2.2 mol / L or less, more preferably 2.0 mol / L or less. If it is less than 0.5 mol / L, the ion conductivity will be lowered to lower the cycle characteristics and output characteristics of the non-aqueous electrolyte battery, while if it exceeds 2.5 mol / L, the electrolyte of the non-aqueous electrolyte battery The increase in viscosity may also lower the ion conductivity, which may lower the cycle characteristics and output characteristics of the non-aqueous electrolyte battery. These solutes may be used alone or in combination of two or more.
 一度に多量の該溶質を非水有機溶媒に溶解すると、溶質の溶解熱のため非水電解液の温度が上昇することがあり、該液温が著しく上昇すると、例えば溶質としてLiPF6を用いた場合に、LiPF6が分解する恐れがあるため好ましくない。 When dissolving a large amount of solute in a nonaqueous organic solvent at a time, there is the temperature of the non-aqueous electrolyte for the solute heat of solution is increased, using the liquid temperature is significantly increased, the LiPF 6 as for example a solute In such a case, it is not preferable because LiPF 6 may be decomposed.
 (III)成分について
 (III)成分として、上記の通り、一般式(1)で示されるケイ素化合物が用いられる。
Component (III) As the component (III), as described above, the silicon compound represented by the general formula (1) is used.
 上記非水電解液において、(I)~(IV)の総量100質量%に対する、(III)の濃度は0.01質量%以上、2.00質量%以下が好ましい。0.01質量%以上であれば非水電解液電池の特性を向上させる効果が得られ易く、一方、2.00質量%以下であればNi溶出量を大幅に増大させることなく良好な耐久性向上効果を発揮し易い。より好ましくは0.04質量%以上、1.00質量%以下であり、さらに好ましくは0.08質量%以上、0.50質量%以下の範囲である。 In the non-aqueous electrolyte, the concentration of (III) is preferably 0.01% by mass or more and 2.00% by mass or less based on 100% by mass of the total amount of (I) to (IV). If it is 0.01 mass% or more, the effect of improving the characteristics of the non-aqueous electrolyte battery is easily obtained, while if it is 2.00 mass% or less, good durability without significantly increasing the amount of Ni elution It is easy to demonstrate the improvement effect. More preferably, it is 0.04 mass% or more and 1.00 mass% or less, and still more preferably in the range of 0.08 mass% or more and 0.50 mass% or less.
 (IV)成分について
 (IV)成分としては、上記の通り、一般式(2)で示されるO=S-F結合を有する化合物、一般式(3)で示されるO=P-F結合を有する化合物、一般式(4)で示されるP(=O)F2結合を有する化合物、及び一般式(5)で示される化合物からなる群から選ばれる少なくとも1種が用いられる。
Component (IV) As the component (IV), as described above, a compound having an O = SF bond represented by the general formula (2) and an O = PF bond represented by the general formula (3) At least one selected from the group consisting of a compound, a compound having a P (= O) F 2 bond represented by the general formula (4), and a compound represented by the general formula (5) is used.
 上記非水電解液において、(I)~(IV)の総量100質量%に対する、(IV)の濃度は0.01質量%以上、5.00質量%以下である。0.01質量%を下回るとNiリッチな正極から電解液中へのNi溶出の低減効果が十分に得られず、一方、5.00質量%を超えると耐久性向上効果は極めて高いものの、初期容量が低下する恐れや、正極集電体アルミニウムの溶出の懸念がある。より好ましくは0.10質量%以上、2.50質量%以下であり、さらに好ましくは0.50質量%以上、1.50質量%以下の範囲である。 In the non-aqueous electrolyte, the concentration of (IV) is 0.01% by mass or more and 5.00% by mass or less based on 100% by mass of the total amount of (I) to (IV). If it is less than 0.01% by mass, the effect of reducing the elution of Ni from the Ni-rich positive electrode into the electrolytic solution can not be sufficiently obtained, while if it exceeds 5.00% by mass, the effect of improving the durability is extremely high. There is a fear that the capacity may decrease, and there is a concern that the positive electrode current collector aluminum may be eluted. More preferably, it is 0.10 mass% or more and 2.50 mass% or less, and still more preferably in the range of 0.50 mass% or more and 1.50 mass% or less.
 その他の添加剤について
 本発明の要旨を損なわない限りにおいて、第1の実施形態の非水電解液電池用電解液に一般に用いられる添加成分を任意の比率でさらに添加しても良い。具体例としては、シクロヘキシルベンゼン、シクロヘキシルフルオロベンゼン、フルオロベンゼン(以降、FBと記載する場合がある)、ビフェニル、ジフルオロアニソール、tert-ブチルベンゼン、tert-アミルベンゼン、2-フルオロトルエン、2-フルオロビフェニル、ビニレンカーボネート、ジメチルビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、メチルプロパルギルカーボネート、エチルプロパルギルカーボネート、ジプロパルギルカーボネート、無水マレイン酸、無水コハク酸、プロパンサルトン、1,3-プロパンスルトン(以降、PSと記載する場合がある)、ブタンスルトン、メチレンメタンジスルホネート、ジメチレンメタンジスルホネート、トリメチレンメタンジスルホネート、下記一般式(7)で示される化合物(例えば、R9がエチレン基である化合物(以降、「Dod」と記載する場合がある)、R9がプロピレン基である化合物(以降、「Dad」と記載する場合がある)、R9がブチレン基である化合物、R9がペンチレン基である化合物、R9が-CH2-CH(C37)-基である化合物(以降「pDod」と記載する場合がある))、メタンスルホン酸メチル、ジフルオロビス(オキサラト)リン酸リチウム(以降、LDFBOPと記載する場合がある)、ジフルオロビス(オキサラト)リン酸ナトリウム、ジフルオロビス(オキサラト)リン酸カリウム、ジフルオロオキサラトホウ酸リチウム(以降、LDFOBと記載する場合がある)、ジフルオロオキサラトホウ酸ナトリウム、ジフルオロオキサラトホウ酸カリウム、ビス(オキサラト)ホウ酸リチウム、ビス(オキサラト)ホウ酸ナトリウム、ビス(オキサラト)ホウ酸カリウム、テトラフルオロオキサラトリン酸リチウム(以降、LTFOPと記載する場合がある)、テトラフルオロオキサラトリン酸ナトリウム、テトラフルオロオキサラトリン酸カリウム、トリス(オキサラト)リン酸リチウム、ジフルオロリン酸リチウム(以降、LiPO22と記載する場合がある)、フルオロリン酸リチウム等の過充電防止効果、負極皮膜形成効果や正極保護効果を有する化合物が挙げられる。当該その他の添加剤の電解液中の含有量は0.01質量%以上、8.00質量%以下が好ましい。
Figure JPOXMLDOC01-appb-C000021
[一般式(7)中、R9は炭素数2~5の炭化水素基であり、炭素数が3以上の場合は分枝構造をとってもよい。また、当該炭化水素基にはハロゲン原子やヘテロ原子や酸素原子が含まれていてもよい。]
Other Additives Additives generally used in the electrolyte for a non-aqueous electrolyte battery of the first embodiment may be further added at an arbitrary ratio as long as the gist of the present invention is not impaired. Specific examples include cyclohexylbenzene, cyclohexylfluorobenzene, fluorobenzene (hereinafter sometimes referred to as FB), biphenyl, difluoroanisole, tert-butylbenzene, tert-amylbenzene, 2-fluorotoluene, 2-fluorobiphenyl , Vinylene carbonate, dimethylvinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, methyl propargyl carbonate, ethyl propargyl carbonate, dipropargyl carbonate, maleic anhydride, succinic anhydride, propane sultone, 1,3-propane sultone (hereinafter PS May be described), butane sultone, methylene methane disulfonate, dimethylene methane disulfonate, trimethylene methane dis Honeto, a compound represented by the following general formula (7) (e.g., compounds in which R 9 is ethylene group (hereinafter, may be referred to as "Dod"), the compound R 9 is a propylene group (hereinafter, "Dad Compounds in which R 9 is a butylene group, compounds in which R 9 is a pentylene group, compounds in which R 9 is a -CH 2 -CH (C 3 H 7 )-group (hereinafter referred to as "pDod") May be described))), methyl methanesulfonate, lithium difluorobis (oxalato) phosphate (hereinafter sometimes referred to as LDFBOP), sodium difluorobis (oxalato) phosphate, difluorobis (oxalato) phosphorus Potassium borate, lithium difluorooxalatoborate (hereinafter sometimes referred to as LDFOB), sodium difluorooxalatoborate, difluro Looxarato borate potassium, lithium bis (oxalato) borate, sodium bis (oxalato) borate, potassium bis (oxalato) borate, lithium tetrafluorooxalatophosphate (hereinafter sometimes referred to as LTFOP), tetrafluoro oxi Overcharge-preventing effects of sodium Saratophosphate, potassium tetrafluorooxalatophosphate, lithium tris (oxalato) phosphate, lithium difluorophosphate (hereinafter sometimes referred to as LiPO 2 F 2 ), lithium fluorophosphate, etc. And compounds having a negative electrode film forming effect or a positive electrode protective effect. The content of the other additive in the electrolytic solution is preferably 0.01% by mass or more and 8.00% by mass or less.
Figure JPOXMLDOC01-appb-C000021
[In the general formula (7), R 9 is a hydrocarbon group having 2 to 5 carbon atoms, and may have a branched structure when the carbon number is 3 or more. In addition, the hydrocarbon group may contain a halogen atom, a hetero atom or an oxygen atom. ]
 また、溶質として挙げられたイオン性塩は、溶質の好適な濃度の下限である0.5mol/Lよりも電解液中の含有量が少ない場合に、“その他の添加剤”として負極皮膜形成効果や正極保護効果を発揮し得る。この場合、電解液中の含有量が0.01質量%以上、5.00質量%以下が好ましい。この場合のイオン性塩としては、例えば、トリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸カリウム、トリフルオロメタンスルホン酸マグネシウム、フルオロスルホン酸ナトリウム、フルオロスルホン酸カリウム、フルオロスルホン酸マグネシウム、ビス(トリフルオロメタンスルホニル)イミドリチウム、ビス(トリフルオロメタンスルホニル)イミドナトリウム、ビス(トリフルオロメタンスルホニル)イミドカリウム、ビス(トリフルオロメタンスルホニル)イミドマグネシウム、ビス(フルオロスルホニル)イミドリチウム、ビス(フルオロスルホニル)イミドナトリウム、ビス(フルオロスルホニル)イミドカリウム、ビス(フルオロスルホニル)イミドマグネシウム、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミドリチウム、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミドナトリウム、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミドカリウム、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミドマグネシウム、ビス(ジフルオロホスホニル)イミドリチウム、ビス(ジフルオロホスホニル)イミドナトリウム、ビス(ジフルオロホスホニル)イミドカリウム、ビス(ジフルオロホスホニル)イミドマグネシウム、(ジフルオロホスホニル)(フルオロスルホニル)イミドリチウム、(ジフルオロホスホニル)(フルオロスルホニル)イミドナトリウム、(ジフルオロホスホニル)(フルオロスルホニル)イミドカリウム、(ジフルオロホスホニル)(フルオロスルホニル)イミドマグネシウム、(ジフルオロホスホニル)(トリフルオロメタンスルホニル)イミドリチウム、(ジフルオロホスホニル)(トリフルオロメタンスルホニル)イミドナトリウム、(ジフルオロホスホニル)(トリフルオロメタンスルホニル)イミドカリウム、及び(ジフルオロホスホニル)(トリフルオロメタンスルホニル)イミドマグネシウム等が挙げられる。 In addition, when the content of the ionic salt mentioned as the solute in the electrolytic solution is smaller than 0.5 mol / L which is the lower limit of the suitable concentration of the solute, the negative electrode film forming effect as “other additive” And positive electrode protection effect. In this case, the content in the electrolytic solution is preferably 0.01% by mass or more and 5.00% by mass or less. Examples of the ionic salt in this case include lithium trifluoromethanesulfonate, sodium trifluoromethanesulfonate, potassium trifluoromethanesulfonate, magnesium trifluoromethanesulfonate, sodium fluorosulfonate, potassium fluorosulfonate, magnesium fluorosulfonate, Bis (trifluoromethanesulfonyl) imide lithium, bis (trifluoromethanesulfonyl) imide sodium, bis (trifluoromethanesulfonyl) imide potassium, bis (trifluoromethanesulfonyl) imide magnesium, bis (fluorosulfonyl) imide lithium, bis (fluorosulfonyl) imide Sodium, Bis (fluorosulfonyl) imide potassium, Bis (fluorosulfonyl) imide Magne Lithium, (trifluoromethanesulfonyl) (fluorosulfonyl) imide lithium, (trifluoromethanesulfonyl) (fluorosulfonyl) imide sodium, (trifluoromethane sulfonyl) (fluorosulfonyl) imide potassium, (trifluoromethane sulfonyl) (fluorosulfonyl) imide magnesium, Bis (difluorophosphonyl) imide lithium, bis (difluorophosphonyl) imide sodium, bis (difluorophosphonyl) imide potassium, bis (difluorophosphonyl) imide magnesium, (difluorophosphonyl) (fluorosulfonyl) imide lithium, (difluoro Phosphonyl) (fluorosulfonyl) imide sodium, (difluorophosphonyl) (fluorosulfonyl) imide potassium, ( Fluorophosphonyl) (fluorosulfonyl) imide magnesium, (difluorophosphonyl) (trifluoromethanesulfonyl) imide lithium, (difluorophosphonyl) (trifluoromethanesulfonyl) imide sodium, (difluorophosphonyl) (trifluoromethanesulfonyl) imide potassium, And (difluorophosphonyl) (trifluoromethanesulfonyl) imide magnesium and the like.
 更には、ポリマー電池と呼ばれる非水電解液電池に使用される場合のように非水電解液電池用電解液をゲル化剤や架橋ポリマーにより擬固体化して使用することも可能である。 Furthermore, as in the case of use in a non-aqueous electrolyte battery called a polymer battery, it is also possible to use the non-aqueous electrolyte battery electrolytic solution pseudo-solidified with a gelling agent or a cross-linked polymer.
 2.非水電解液電池
 本発明の第1の実施形態に係る非水電解液電池は、少なくとも、(ア)上記の非水電解液電池用電解液と、(イ)正極と、(ウ)負極とを含む。さらには、(エ)セパレータや外装体等を含むことが好ましい。
2. Nonaqueous Electrolyte Battery A nonaqueous electrolyte battery according to a first embodiment of the present invention comprises at least (a) the above-described electrolyte for a non-aqueous electrolyte battery, (a) a positive electrode, (c) a negative electrode, and including. Furthermore, it is preferable to include (d) a separator, an exterior body, and the like.
 〔(イ)正極〕
 (イ)正極は、少なくともニッケルを含む1種以上の酸化物を正極活物質として含み、当該正極活物質に含まれる金属中のニッケル含有量が30~100質量%である。このようなNiリッチな正極であっても、上記の電解液の使用により、サイクル後の容量維持率を損なうことなく、電解液中へのNi溶出を低減することができる。
[(I) positive electrode]
(A) The positive electrode contains one or more oxides containing at least nickel as a positive electrode active material, and the nickel content in the metal contained in the positive electrode active material is 30 to 100% by mass. Even with such a Ni-rich positive electrode, the use of the above-mentioned electrolytic solution can reduce the elution of Ni into the electrolytic solution without impairing the capacity retention rate after cycling.
 [正極活物質]
 非水電解液中のカチオンがリチウム主体となるリチウムイオン二次電池の場合、(イ)正極を構成する正極活物質は、充放電が可能な種々の材料であれば特に限定されるものでないが、例えば、(A)ニッケル、又はニッケルに加えてマンガン、コバルト、アルミニウムからなる群から選ばれる一つ以上の金属を含有し、かつ層状構造を有するリチウム遷移金属複合酸化物、(B)スピネル構造を有するリチウムマンガン複合酸化物、(C)リチウム含有オリビン型リン酸塩、及び(D)層状岩塩型構造を有するリチウム過剰層状遷移金属酸化物から少なくとも1種を含有するものが挙げられる。
[Positive electrode active material]
In the case of a lithium ion secondary battery in which the cation in the non-aqueous electrolytic solution is mainly lithium, the positive electrode active material constituting (i) the positive electrode is not particularly limited as long as it is various materials capable of charge and discharge. For example, (A) Nickel or a lithium transition metal complex oxide having a layered structure, containing at least one metal selected from the group consisting of manganese, cobalt, and aluminum in addition to nickel, and (B) spinel structure And lithium manganese-containing composite oxide, (C) lithium-containing olivine-type phosphate, and (D) a lithium-rich layered transition metal oxide having a layered rock salt-type structure.
 ((A)リチウム遷移金属複合酸化物)
 正極活物質(A)ニッケル、又はニッケルに加えてマンガン、コバルト、アルミニウムからなる群から選ばれる一つ以上の金属を含有し、かつ層状構造を有するリチウム遷移金属複合酸化物としては、例えば、リチウム・ニッケル複合酸化物、リチウム・ニッケル・コバルト複合酸化物、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・マンガン・コバルト複合酸化物等が挙げられる。また、これらリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部を、Al、Ti、V、Cr、Fe、Cu、Zn、Mg、Ga、Zr、Si、B、Ba、Y、Sn等の他の元素で置換したものを用いても良い。
((A) Lithium transition metal complex oxide)
As a lithium transition metal complex oxide containing a positive electrode active material (A) nickel or nickel and one or more metals selected from the group consisting of manganese, cobalt, and aluminum and having a layered structure, for example, lithium -Nickel composite oxide, lithium-nickel-cobalt composite oxide, lithium-nickel-manganese composite oxide, lithium-nickel-manganese-cobalt composite oxide, etc. may be mentioned. In addition, a part of transition metal atoms, which are main components of these lithium transition metal complex oxides, may be Al, Ti, V, Cr, Fe, Cu, Zn, Mg, Ga, Zr, Si, B, Ba, Y, Sn Those substituted with other elements such as.
 リチウム・ニッケル複合酸化物の具体例としては、LiNiO2やMg、Zr、Al、Ti等の異種元素を添加したニッケル酸リチウム、LiNiO2粒子粉末の粒子表面の一部に酸化アルミニウムが被覆したものを用いても良い。 As a specific example of the lithium-nickel composite oxide, aluminum oxide is coated on a part of the particle surface of lithium nickelate or LiNiO 2 particle powder to which different elements such as LiNiO 2 , Mg, Zr, Al, Ti etc. are added May be used.
 リチウム・ニッケル・コバルト複合酸化物及びニッケル・コバルトの一部をAlなどで置換した複合酸化物については、一般式[1-1]で示される。
Figure JPOXMLDOC01-appb-C000022
式[1-1]中、M1はAl、Fe、Mg、Zr、Ti、Bからなる群より選ばれる少なくとも1つの元素であり、aは0.9≦a≦1.2であり、b、cは、0.1≦b≦0.3、0≦c≦0.1の条件を満たす。
 これらは、例えば、特開2009-137834号公報等に記載される製造方法等に準じて調製することができる。具体的には、LiNi0.8Co0.22、LiNi0.85Co0.10Al0.052、LiNi0.87Co0.10Al0.032、LiNi0.6Co0.3Al0.12等が挙げられる。
The lithium-nickel-cobalt composite oxide and the composite oxide in which part of nickel-cobalt is substituted with Al or the like are represented by the general formula [1-1].
Figure JPOXMLDOC01-appb-C000022
In the formula [1-1], M 1 is at least one element selected from the group consisting of Al, Fe, Mg, Zr, Ti, and B, a is 0.9 ≦ a ≦ 1.2, and b is And c satisfy the conditions of 0.1 ≦ b ≦ 0.3 and 0 ≦ c ≦ 0.1.
These can be prepared, for example, according to the manufacturing method etc. which are described in Unexamined-Japanese-Patent No. 2009-137834 grade | etc.,. Specifically, LiNi 0.8 Co 0.2 O 2, LiNi 0.85 Co 0.10 Al 0.05 O 2, LiNi 0.87 Co 0.10 Al 0.03 O 2, LiNi 0.6 Co 0.3 Al 0.1 O 2 and the like.
 リチウム・ニッケル・マンガン複合酸化物の具体例としては、LiNi0.5Mn0.52等が挙げられる。 Examples of lithium-nickel-manganese composite oxides include LiNi 0.5 Mn 0.5 O 2 and the like.
 リチウム・ニッケル・マンガン・コバルト複合酸化物及びニッケル・マンガン・コバルトの一部をAlなどで置換した複合酸化物としては、一般式[1-2]で示されるリチウム含有複合酸化物が挙げられる。
Figure JPOXMLDOC01-appb-C000023
式[1-2]中、M2はAl、Fe、Mg、Zr、Ti、B、Snからなる群より選ばれる少なくとも1つの元素であり、dは0.9≦d≦1.2であり、e、f、g及びhは、e+f+g+h=1、0≦e≦0.7、0≦f≦0.5、0≦g≦0.5、及びh≧0の条件を満たす。
 リチウム・ニッケル・マンガン・コバルト複合酸化物は、構造安定性を高め、リチウム二次電池における高温での安全性を向上させるためにマンガンを一般式[1-2]に示す範囲で含有するものが好ましく、特にリチウムイオン二次電池の高率特性を高めるためにコバルトを一般式[1-2]に示す範囲でさらに含有するものがより好ましい。
 具体的には、例えば4.3V以上に充放電領域を有する、Li[Ni1/3Mn1/3Co1/3]O2、Li[Ni0.45Mn0.35Co0.2]O2、Li[Ni0.5Mn0.3Co0.2]O2、Li[Ni0.6Mn0.2Co0.2]O2、Li[Ni0.49Mn0.3Co0.2Zr0.01]O2、Li[Ni0.49Mn0.3Co0.2Mg0.01]O2等が挙げられる。
Examples of the lithium-nickel-manganese-cobalt composite oxide and the composite oxide in which a part of nickel-manganese-cobalt is substituted with Al or the like include a lithium-containing composite oxide represented by the general formula [1-2].
Figure JPOXMLDOC01-appb-C000023
In the formula [1-2], M 2 is at least one element selected from the group consisting of Al, Fe, Mg, Zr, Ti, B, and Sn, and d is 0.9 ≦ d ≦ 1.2. , E, f, g and h satisfy the conditions of e + f + g + h = 1, 0 ≦ e ≦ 0.7, 0 ≦ f ≦ 0.5, 0 ≦ g ≦ 0.5, and h ≧ 0.
A lithium-nickel-manganese-cobalt composite oxide contains manganese in a range represented by the general formula [1-2] in order to enhance the structural stability and improve the safety at high temperature in a lithium secondary battery In particular, in order to enhance the high rate characteristics of the lithium ion secondary battery, one further containing cobalt in the range represented by the general formula [1-2] is more preferable.
Specifically, with a discharge region, for example, 4.3V or more, Li [Ni 1/3 Mn 1/3 Co 1/3] O 2, Li [Ni 0.45 Mn 0.35 Co 0.2] O 2, Li [Ni 0.5 Mn 0.3 Co 0.2 ] O 2 , Li [Ni 0.6 Mn 0.2 Co 0.2 ] O 2 , Li [Ni 0.49 Mn 0.3 Co 0.2 Zr 0.01 ] O 2 , Li [Ni 0.49 Mn 0.3 Co 0.2 Mg 0.01 ] O 2 etc. It can be mentioned.
 ((B)スピネル構造を有するニッケル含有リチウムマンガン複合酸化物)
 正極活物質(B)スピネル構造を有するリチウムマンガン複合酸化物としては、例えば、一般式[1-3]で示されるスピネル型リチウムマンガン複合酸化物が挙げられる。
Figure JPOXMLDOC01-appb-C000024
式[1-3]中、M3はNiを含み、それ以外にCo、Fe、Mg、Cr、Cu、Al及びTiからなる群より選ばれる少なくとも1つの金属元素を含んでも良い。jは1.05≦j≦1.15であり、kは0<k≦0.20である。
 具体的には、例えば、LiMn1.9Ni0.14、LiMn1.5Ni0.54等が挙げられる。
((B) Nickel-containing lithium manganese composite oxide having a spinel structure)
As a lithium manganese complex oxide which has a positive electrode active material (B) spinel structure, the spinel type lithium manganese complex oxide shown by General formula [1-3] is mentioned, for example.
Figure JPOXMLDOC01-appb-C000024
In the formula [1-3], M 3 may contain Ni, and may further contain at least one metal element selected from the group consisting of Co, Fe, Mg, Cr, Cu, Al and Ti. j is 1.05 ≦ j ≦ 1.15, and k is 0 <k ≦ 0.20.
Specifically, for example, LiMn 1.9 Ni 0.1 O 4 , LiMn 1.5 Ni 0.5 O 4 and the like can be mentioned.
 ((C)オリビン型リチウムリン酸塩)
 正極活物質(C)オリビン型リチウムリン酸塩としては、例えば一般式[1-4]で示されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000025
式[1-4]中、M4はNiを含み、それ以外にCo、Mn、Cu、Zn、Nb、Mg、Al、Ti、W、Zr及びCdから選ばれる少なくとも1つであり、nは、0<n≦1である。
 具体的には、例えば、LiNiPO4等が挙げられる。
((C) olivine lithium phosphate)
Examples of the positive electrode active material (C) olivine lithium phosphate include those represented by the general formula [1-4].
Figure JPOXMLDOC01-appb-C000025
In the formula [1-4], M 4 contains Ni, and is at least one selected from Co, Mn, Cu, Zn, Nb, Mg, Al, Ti, W, Zr and Cd, and n is other than that , 0 <n ≦ 1.
Specifically, for example, LiNiPO 4, and the like.
 ((D)リチウム過剰層状遷移金属酸化物)
 正極活物質(D)層状岩塩型構造を有するニッケル含有リチウム過剰層状遷移金属酸化物としては、例えば一般式[1-5]で示されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000026
式[1-5]中、xは、0<x<1を満たす数であり、M5は、平均酸化数が3+である少なくとも1種以上の金属元素であり、M6は、平均酸化数が4+である少なくとも1種の金属元素である。式[1-5]中、M5は、好ましくは3価のMn、Ni、Co、Fe、V、Crから選ばれてなる1種の金属元素であるが、2価と4価の等量の金属で平均酸化数を3価にしてもよい。
 また、式[1-5]中、M6は、好ましくはMn、Zr、Tiから選ばれてなる1種以上の金属元素である。なお、M5、M6のどちらかに必ずニッケルが含まれる。具体的には、0.5[LiNi0.5Mn0.52]・0.5[Li2MnO3]、0.5[LiNi1/3Co1/3Mn1/32]・0.5[Li2MnO3]、0.5[LiNi0.375Co0.25Mn0.3752]・0.5[Li2MnO3]、0.5[LiNi0.375Co0.125Fe0.125Mn0.3752]・0.5[Li2MnO3]、0.45[LiNi0.375Co0.25Mn0.3752]・0.10[Li2TiO3]・0.45[Li2MnO3]等が挙げられる。
 この一般式[1-5]で表される正極活物質(D)は、4.4V(Li基準)以上の高電圧充電で高容量を発現することが知られている(例えば、米国特許7,135,252号明細書)。これら正極活物質は、例えば特開2008-270201号公報、WO2013/118661号公報、特開2013-030284号公報等に記載される製造方法等に準じて調製することができる。
((D) Lithium Excess Layered Transition Metal Oxide)
Examples of the nickel-containing lithium-exclusive layered transition metal oxide having a positive electrode active material (D) layered rock salt type structure include those represented by the general formula [1-5].
Figure JPOXMLDOC01-appb-C000026
In the formula [1-5], x is a number satisfying 0 <x <1, M 5 is at least one or more metal elements having an average oxidation number of 3 + , and M 6 is an average oxidation It is at least one metal element whose number is 4 + . In the formula [1-5], M 5 is preferably one metal element selected from trivalent Mn, Ni, Co, Fe, V, and Cr, but is equivalent to divalent and tetravalent The average oxidation number may be trivalent with a metal of
In the formula [1-5], M 6 is preferably at least one metal element selected from Mn, Zr, and Ti. Incidentally, either M 5 or M 6 necessarily contains nickel. Specifically, 0.5 [LiNi 0.5 Mn 0.5 O 2 ] .0.5 [Li 2 MnO 3 ] 0.5 [LiNi 1/3 Co 1/3 Mn 1/3 O 2 ] .0.5 [Li 2 MnO 3 ], 0.5 [LiNi 0.375 Co 0.25 Mn 0.375 O 2 ], 0.5 [Li 2 MnO 3 ], 0.5 [LiNi 0.375 Co 0.125 Fe 0.125 Mn 0.375 O 2 ] 0.5 [Li 2 MnO 3 ], 0.45 [LiNi 0.375 Co 0.25 Mn 0.375 O 2 ], 0.10 [Li 2 TiO 3 ], 0.45 [Li 2 MnO 3 ], etc. may be mentioned.
It is known that the positive electrode active material (D) represented by this general formula [1-5] expresses high capacity by high voltage charge of 4.4 V (Li basis) or more (for example, US Pat. No. 7, , 135, 252). These positive electrode active materials can be prepared, for example, according to the manufacturing method described in JP-A-2008-270201, WO2013 / 118661, JP-A-2013-030284 and the like.
 正極活物質としては、上記(A)~(D)から選ばれる少なくとも1つを主成分として含有し、少なくともニッケルを含む1種以上の酸化物を含み、当該正極活物質に含まれる金属中のニッケル含有量が30~100質量%であればよいが、それ以外に含まれるものとしては、例えばFeS2、TiS2、TiO2、V25、MoO3、MoS2等の遷移元素カルコゲナイド、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が挙げられる。 The positive electrode active material contains at least one selected from the above (A) to (D) as a main component, contains at least one oxide containing at least nickel, and is contained in the metal contained in the positive electrode active material. The nickel content may be 30 to 100% by mass, and examples of other elements include transition element chalcogenides such as FeS 2 , TiS 2 , TiO 2 , V 2 O 5 , MoO 3 , MoS 2 and the like. Alternatively, conductive polymers such as polyacetylene, polyparaphenylene, polyaniline and polypyrrole, activated carbon, polymers generating radicals, carbon materials and the like can be mentioned.
 [正極集電体]
 (イ)正極は、正極集電体を有する。正極集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケル、チタン又はこれらの合金等を用いることができる。
[Positive current collector]
(A) The positive electrode has a positive electrode current collector. As the positive electrode current collector, for example, aluminum, stainless steel, nickel, titanium or an alloy thereof can be used.
 [正極活物質層]
 (イ)正極は、例えば正極集電体の少なくとも一方の面に正極活物質層が形成される。正極活物質層は、例えば、前述の正極活物質と、結着剤と、必要に応じて導電剤とにより構成される。
 結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース、メチルセルロース、酢酸フタル酸セルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール等が挙げられる。
 導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、炭素繊維、黒鉛(粒状黒鉛や燐片状黒鉛)、フッ素化黒鉛等の炭素材料を用いることができる。正極においては、結晶性の低いアセチレンブラックやケッチェンブラックを用いることが好ましい。
[Positive electrode active material layer]
(A) In the positive electrode, for example, a positive electrode active material layer is formed on at least one surface of a positive electrode current collector. The positive electrode active material layer is made of, for example, the above-described positive electrode active material, a binder, and, as needed, a conductive agent.
As a binder, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, styrene butadiene rubber (SBR), carboxymethylcellulose, methylcellulose, cellulose acetate phthalate, hydroxypropyl methylcellulose, polyvinyl alcohol Etc.
As the conductive agent, for example, carbon materials such as acetylene black, ketjen black, furnace black, carbon fiber, graphite (particulate graphite and flake graphite), fluorinated graphite and the like can be used. In the positive electrode, acetylene black or ketjen black having low crystallinity is preferably used.
 〔(ウ)負極〕
 負極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、リチウム金属、リチウム金属と他の金属との合金や金属間化合物、種々の炭素材料(人造黒鉛、天然黒鉛など)、金属酸化物、金属窒化物、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、活性炭、導電性ポリマー等が用いられる。
[(C) negative electrode]
The negative electrode material is not particularly limited, but in the case of a lithium battery or lithium ion battery, lithium metal, an alloy or intermetallic compound of lithium metal and another metal, various carbon materials (such as artificial graphite and natural graphite), metal Oxides, metal nitrides, tin (single), tin compounds, silicon (single), silicon compounds, activated carbon, conductive polymers and the like are used.
 炭素材料とは、例えば、易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素(ハードカーボン)や、(002)面の面間隔が0.34nm以下の黒鉛などである。より具体的には、熱分解性炭素、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭あるいはカーボンブラック類などがある。このうち、コークス類にはピッチコークス、ニードルコークスあるいは石油コークスなどが含まれる。有機高分子化合物焼成体とは、フェノール樹脂やフラン樹脂などを適当な温度で焼成して炭素化したものをいう。炭素材料は、リチウムの吸蔵及び放出に伴う結晶構造の変化が非常に少ないため、高いエネルギー密度が得られると共に優れたサイクル特性が得られるので好ましい。なお、炭素材料の形状は、繊維状、球状、粒状あるいは鱗片状のいずれでもよい。また、非晶質炭素や非晶質炭素を表面に被覆した黒鉛材料は、材料表面と電解液との反応性が低くなるため、より好ましい。 Examples of the carbon material include graphitizable carbon, non-graphitizable carbon (hard carbon) having a spacing of 0.32 nm or more on the (002) plane, and graphite having a spacing of 0.34 nm or less on the (002) plane. Etc. More specifically, there are pyrolytic carbon, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, carbon blacks and the like. Among these, cokes include pitch coke, needle coke, and petroleum coke. The organic polymer compound fired body is a product obtained by firing and carbonizing a phenol resin, furan resin or the like at an appropriate temperature. The carbon material is preferable because a change in crystal structure accompanying storage and release of lithium is very small, so that high energy density and excellent cycle characteristics can be obtained. The shape of the carbon material may be fibrous, spherical, granular or scaly. Amorphous carbon or a graphite material coated with amorphous carbon on the surface is more preferable because the reactivity between the material surface and the electrolytic solution is lowered.
 [負極活物質]
 (ウ)負極は、少なくとも1種の負極活物質を含むことが好ましい。非水電解液中のカチオンがリチウム主体となるリチウムイオン二次電池の場合、(ウ)負極を構成する負極活物質としては、リチウムイオンのドープ・脱ドープが可能なものであり、例えば(E)X線回折における格子面(002面)のd値が0.340nm以下の炭素材料、(F)X線回折における格子面(002面)のd値が0.340nmを超える炭素材料、(G)Si、Sn、Alから選ばれる1種以上の金属の酸化物、(H)Si、Sn、Alから選ばれる1種以上の金属若しくはこれら金属を含む合金又はこれら金属若しくは合金とリチウムとの合金、及び(I)リチウムチタン酸化物から選ばれる少なくとも1種を含有するものが挙げられる。これら負極活物質は、1種を単独で用いることができ、2種以上を組合せて用いることもできる。
[Anode active material]
(C) The negative electrode preferably contains at least one negative electrode active material. In the case of a lithium ion secondary battery in which the cation in the non-aqueous electrolytic solution is mainly lithium, (c) as a negative electrode active material constituting the negative electrode, lithium ions can be doped and de-doped; D) Carbon materials in which d value of lattice plane (002 plane) in X-ray diffraction is 0.340 nm or less, (d) Carbon material in which d value of lattice plane (002 plane) in X-ray diffraction exceeds 0.340 nm, (G ) An oxide of one or more metals selected from Si, Sn, Al, (H) Si, one or more metals selected from Si, Sn, Al, an alloy containing these metals, or an alloy of these metals or alloys with lithium And (I) those containing at least one selected from lithium titanium oxides. These negative electrode active materials can be used alone or in combination of two or more.
 ((E)X線回折における格子面(002面)のd値が0.340nm以下の炭素材料)
 負極活物質(E)X線回折における格子面(002面)のd値が0.340nm以下の炭素材料としては、例えば熱分解炭素類、コークス類(例えばピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、有機高分子化合物焼成体(例えばフェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭等が挙げられ、これらは黒鉛化したものでもよい。当該炭素材料は、X線回折法で測定した(002)面の面間隔(d002)が0.340nm以下のものであり、中でも、その真密度が1.70g/cm3以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料が好ましい。
((E) Carbon material in which the d value of the lattice plane (002 plane) in X-ray diffraction is 0.340 nm or less)
As a carbon material whose d value of the lattice plane (002 plane) in the negative electrode active material (E) X-ray diffraction is 0.340 nm or less, for example, pyrolytic carbons, cokes (for example, pitch coke, needle coke, petroleum coke, etc.) Graphites, organic polymer compound fired bodies (for example, those obtained by firing and carbonizing a phenol resin, furan resin and the like at an appropriate temperature), carbon fibers, activated carbon and the like may be mentioned, and these may be graphitized. The carbon material is a graphite having a (002) plane spacing (d 002) of 0.340 nm or less measured by X-ray diffraction method, and a true density of 1.70 g / cm 3 or more, or a graphite thereof Highly crystalline carbon materials having similar properties are preferred.
 ((F)X線回折における格子面(002面)のd値が0.340nmを超える炭素材料)
 負極活物質(F)X線回折における格子面(002面)のd値が0.340nmを超える炭素材料としては、非晶質炭素が挙げられ、これは、2000℃以上の高温で熱処理してもほとんど積層秩序が変化しない炭素材料である。例えば難黒鉛化炭素(ハードカーボン)、1500℃以下で焼成したメソカーボンマイクロビーズ(MCMB)、メソペーズビッチカーボンファイバー(MCF)等が例示される。株式会社クレハ製のカーボトロン(登録商標)P等は、その代表的な事例である。
((F) Carbon material in which d value of lattice plane (002 plane) exceeds 0.340 nm in X-ray diffraction)
Examples of carbon materials in which the d value of the lattice plane (002 plane) in the negative electrode active material (F) X-ray diffraction exceeds 0.340 nm include amorphous carbon, which is heat treated at a high temperature of 2000 ° C. or higher Is also a carbon material with almost no change in the stacking order. For example, non-graphitizable carbon (hard carbon), mesocarbon microbeads (MCMB) calcined at 1500 ° C. or less, mesophased Bitch carbon fiber (MCF), etc. are exemplified. Carbotron (registered trademark) P and the like manufactured by Kureha Co., Ltd. is a typical example.
 ((G)Si、Sn、Alから選ばれる1種以上の金属の酸化物)
 負極活物質(G)Si、Sn、Alから選ばれる1種以上の金属の酸化物としては、リチウムイオンのドープ・脱ドープが可能な、例えば酸化シリコン、酸化スズ等が挙げられる。
 Siの超微粒子がSiO2中に分散した構造を持つSiOx等がある。この材料を負極活物質として用いると、Liと反応するSiが超微粒子であるために充放電がスムーズに行われる一方で、上記構造を有するSiOx粒子自体は表面積が小さいため、負極活物質層を形成するための組成物(ペースト)とした際の塗料性や負極合剤層の集電体に対する接着性も良好である。
 なお、SiOxは充放電に伴う体積変化が大きいため、SiOxと上述負極活物質(E)の黒鉛とを特定比率で負極活物質に併用することで高容量化と良好な充放電サイクル特性とを両立することができる。
((G) Oxide of at least one metal selected from Si, Sn and Al)
Examples of the oxide of one or more metals selected from the negative electrode active material (G) Si, Sn, and Al include, for example, silicon oxide, tin oxide, and the like which can be doped and de-doped with lithium ions.
There is SiO x or the like having a structure in which ultrafine particles of Si are dispersed in SiO 2 . When this material is used as a negative electrode active material, charging / discharging is smoothly performed because Si reacting with Li is ultrafine particles, while the SiO x particles having the above structure have a small surface area, so the negative electrode active material layer The coating properties when forming a composition (paste) for forming a metal, and the adhesion of the negative electrode mixture layer to the current collector are also good.
In addition, since SiO x has a large volume change due to charge and discharge, high capacity and good charge and discharge cycle characteristics can be achieved by using SiO x and the graphite of the above-mentioned negative electrode active material (E) in combination with the negative electrode active material at a specific ratio. And both.
 ((H)Si、Sn、Alから選ばれる1種以上の金属若しくはこれら金属を含む合金又はこれら金属若しくは合金とリチウムとの合金)
 負極活物質(H)Si、Sn、Alから選ばれる1種以上の金属若しくはこれら金属を含む合金又はこれら金属若しくは合金とリチウムとの合金としては、例えばシリコン、スズ、アルミニウム等の金属、シリコン合金、スズ合金、アルミニウム合金等が挙げられ、これらの金属や合金が、充放電に伴いリチウムと合金化した材料も使用できる。
 これらの好ましい具体例としては、WO2004/100293号や特開2008-016424号等に記載される、例えばケイ素(Si)、スズ(Sn)等の金属単体(例えば粉末状のもの)、該金属合金、該金属を含有する化合物、該金属にスズ(Sn)とコバルト(Co)とを含む合金等が挙げられる。当該金属を電極に使用した場合、高い充電容量を発現することができ、かつ、充放電に伴う体積の膨張・収縮が比較的少ないことから好ましい。また、これらの金属は、これをリチウムイオン二次電池の負極に用いた場合に、充電時にLiと合金化するため、高い充電容量を発現することが知られており、この点でも好ましい。
 さらに、例えばWO2004/042851号、WO2007/083155号等に記載される、サブミクロン直径のシリコンのピラーから形成された負極活物質、シリコンで構成される繊維からなる負極活物質等を用いてもよい。
((H) One or more metals selected from (H) Si, Sn, Al or alloys containing these metals, or alloys of these metals or alloys with lithium)
The negative electrode active material (H) As a metal selected from one or more metals selected from Si, Sn, Al or an alloy containing these metals or an alloy of these metals or alloys and lithium, for example, a metal such as silicon, tin, aluminum, a silicon alloy And tin alloys, aluminum alloys and the like, and materials in which such metals and alloys are alloyed with lithium during charge and discharge can also be used.
Specific preferred examples thereof include simple metals such as silicon (Si) and tin (Sn) described in, for example, WO 2004/100293, JP-A 2008-016424, etc. And compounds containing the metal, alloys containing tin (Sn) and cobalt (Co) in the metal, and the like. When the said metal is used for an electrode, high charge capacity can be expressed, and since expansion and contraction of the volume accompanying charge and discharge are comparatively small, it is preferable. In addition, when these metals are used as the negative electrode of a lithium ion secondary battery, they are known to exhibit high charge capacity because they are alloyed with Li during charge, and this point is also preferable.
Furthermore, for example, a negative electrode active material formed of silicon pillars of submicron diameter, a negative electrode active material formed of fibers composed of silicon, or the like described in WO 2004/042851 or WO 2007/083155 may be used. .
 ((I)リチウムチタン酸化物)
 負極活物質(I)リチウムチタン酸化物としては、例えば、スピネル構造を有するチタン酸リチウム、ラムスデライト構造を有するチタン酸リチウム等を挙げることができる。
 スピネル構造を有するチタン酸リチウムとしては、例えば、Li4+αTi512(αは充放電反応により0≦α≦3の範囲内で変化する)を挙げることができる。また、ラムスデライト構造を有するチタン酸リチウムとしては、例えば、Li2+βTi37(βは充放電反応により0≦β≦3の範囲内で変化する)を挙げることができる。これら負極活物質は、例えば特開2007-018883号公報、特開2009-176752号公報等に記載される製造方法等に準じて調製することができる。
 例えば、非水電解液中のカチオンがナトリウム主体となるナトリウムイオン二次電池の場合、負極活物質としてハードカーボンやTiO2、V25、MoO3等の酸化物等が用いられる。例えば、非水電解液中のカチオンがナトリウム主体となるナトリウムイオン二次電池の場合、正極活物質としてNaFeO2、NaCrO2、NaNiO2、NaMnO2、NaCoO2等のナトリウム含有遷移金属複合酸化物、それらのナトリウム含有遷移金属複合酸化物のFe、Cr、Ni、Mn、Co等の遷移金属が複数混合したもの、それらのナトリウム含有遷移金属複合酸化物の遷移金属の一部が他の遷移金属以外の金属に置換されたもの、Na2FeP27、NaCo3(PO4227等の遷移金属のリン酸化合物、TiS2、FeS2等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が使用される。
((I) lithium titanium oxide)
Examples of the negative electrode active material (I) lithium titanium oxide include lithium titanate having a spinel structure and lithium titanate having a ramsdellite structure.
Examples of lithium titanate having a spinel structure include Li 4 + α Ti 5 O 12 (α changes within the range of 0 ≦ α ≦ 3 by charge and discharge reaction). As the lithium titanate having a ramsdellite structure, for example, Li (the beta vary in the range of 0 ≦ β ≦ 3 by charge and discharge reactions) 2 + β Ti 3 O 7 and the like. These negative electrode active materials can be prepared, for example, according to the production method described in JP-A-2007-18883, JP-A-2009-176752, and the like.
For example, in the case of a sodium ion secondary battery in which the cation in the non-aqueous electrolytic solution is mainly sodium, hard carbon or an oxide such as TiO 2 , V 2 O 5 , MoO 3 or the like is used as the negative electrode active material. For example, in the case of a sodium ion secondary battery in which the cation in the non-aqueous electrolyte is mainly sodium, a sodium-containing transition metal complex oxide such as NaFeO 2 , NaCrO 2 , NaNiO 2 , NaMnO 2 , NaCoO 2 as a positive electrode active material A mixture of a plurality of transition metals such as Fe, Cr, Ni, Mn, Co, etc. of their sodium-containing transition metal complex oxides, and some of the transition metals of their sodium-containing transition metal complex oxides are other than the other transition metals Phosphoric acid compounds of transition metals such as Na 2 FeP 2 O 7 and NaCo 3 (PO 4 ) 2 P 2 O 7 ; sulfides such as TiS 2 and FeS 2 ; Conducting polymers such as phenylene, polyaniline and polypyrrole, activated carbon, polymers generating radicals, carbon materials, etc. are used
 [負極集電体]
 (ウ)負極は、負極集電体を有する。負極集電体としては、例えば、銅、ステンレス鋼、ニッケル、チタン又はこれらの合金等を用いることができる。
[Anode current collector]
(C) The negative electrode has a negative electrode current collector. As the negative electrode current collector, for example, copper, stainless steel, nickel, titanium or an alloy thereof can be used.
 [負極活物質層]
 (ウ)負極は、例えば負極集電体の少なくとも一方の面に負極活物質層が形成される。負極活物質層は、例えば、前述の負極活物質と、結着剤と、必要に応じて導電剤とにより構成される。
 結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース、メチルセルロース、酢酸フタル酸セルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール等が挙げられる。
 導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、炭素繊維、黒鉛(粒状黒鉛や燐片状黒鉛)、フッ素化黒鉛等の炭素材料を用いることができる。
[Anode active material layer]
(C) In the negative electrode, for example, a negative electrode active material layer is formed on at least one surface of a negative electrode current collector. The negative electrode active material layer is made of, for example, the above-described negative electrode active material, a binder, and, as needed, a conductive agent.
As a binder, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, styrene butadiene rubber (SBR), carboxymethylcellulose, methylcellulose, cellulose acetate phthalate, hydroxypropyl methylcellulose, polyvinyl alcohol Etc.
As the conductive agent, for example, carbon materials such as acetylene black, ketjen black, furnace black, carbon fiber, graphite (particulate graphite and flake graphite), fluorinated graphite and the like can be used.
 〔電極((イ)正極及び(ウ)負極)の製造方法〕
 電極は、例えば、活物質と、結着剤と、必要に応じて導電剤とを所定の配合量でN-メチル-2-ピロリドン(NMP)や水等の溶媒中に分散混練し、得られたペーストを集電体に塗布、乾燥して活物質層を形成することで得ることができる。得られた電極は、ロールプレス等の方法により圧縮して、適当な密度の電極に調節することが好ましい。
[Method of producing electrode ((i) positive electrode and (c) negative electrode)]
The electrode is obtained, for example, by dispersing and kneading an active material, a binder and, if necessary, a conductive agent in a predetermined amount in a solvent such as N-methyl-2-pyrrolidone (NMP) or water. The paste can be applied to a current collector and dried to form an active material layer. The obtained electrode is preferably compressed by a method such as a roll press to adjust to an electrode of appropriate density.
 〔(エ)セパレータ〕
 上記の非水電解液電池は、(エ)セパレータを備えることができる。(イ)正極と(ウ)負極の接触を防ぐためのセパレータとしては、ポリプロピレン、ポリエチレン等のポリオレフィンや、セルロース、紙、又はガラス繊維等で作られた不織布や多孔質シートが使用される。これらのフィルムは、電解液がしみ込んでイオンが透過し易いように、微多孔化されているものが好ましい。
 ポリオレフィンセパレータとしては、例えば多孔性ポリオレフィンフィルム等の微多孔性高分子フィルムといった正極と負極とを電気的に絶縁し、かつリチウムイオンが透過可能な膜が挙げられる。多孔性ポリオレフィンフィルムの具体例としては、例えば多孔性ポリエチレンフィルム単独、又は多孔性ポリエチレンフィルムと多孔性ポリプロピレンフィルムとを重ね合わせて複層フィルムとして用いてもよい。また、多孔性のポリエチレンフィルムとポリプロピレンフィルムとを複合化したフィルム等が挙げられる。
[(D) Separator]
The above non-aqueous electrolyte battery can be provided with (d) a separator. As separators for preventing contact between (i) the positive electrode and (ii) the negative electrode, non-woven fabric or porous sheet made of polyolefin such as polypropylene and polyethylene, cellulose, paper or glass fiber is used. It is preferable that these films be micro-porous so that the electrolyte can penetrate and the ions can easily permeate.
As a polyolefin separator, the film which electrically insulates the positive electrode and negative electrodes, such as microporous polymer films, such as a porous polyolefin film, for example, and can permeate | transmit lithium ion is mentioned. As a specific example of the porous polyolefin film, for example, a porous polyethylene film alone, or a porous polyethylene film and a porous polypropylene film may be laminated and used as a multilayer film. Moreover, the film etc. which compounded the porous polyethylene film and the polypropylene film are mentioned.
 〔外装体〕
 非水電解液電池を構成するにあたり、非水電解液電池の外装体としては、例えばコイン型、円筒型、角型等の金属缶や、ラミネート外装体を用いることができる。金属缶材料としては、例えばニッケルメッキを施した鉄鋼板、ステンレス鋼板、ニッケルメッキを施したステンレス鋼板、アルミニウム又はその合金、ニッケル、チタン等が挙げられる。
 ラミネート外装体としては、例えば、アルミニウムラミネートフィルム、SUS製ラミネートフィルム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルム等を用いることができる。
[Exterior body]
In forming the non-aqueous electrolyte battery, as the outer package of the non-aqueous electrolyte battery, for example, a metal can such as a coin type, a cylindrical type, or a square type, or a laminate outer package can be used. Examples of the metal can material include a steel plate plated with nickel, a stainless steel plate, a stainless steel plate plated with nickel, aluminum or an alloy thereof, nickel, titanium and the like.
As the laminate outer package, for example, an aluminum laminate film, a laminate film made of SUS, a polypropylene coated with silica, a laminate film such as polyethylene, and the like can be used.
 第1の実施形態にかかる非水電解液電池の構成は、特に制限されるものではないが、例えば、正極及び負極が対向配置された電極素子と、非水電解液とが、外装体に内包されている構成とすることができる。非水電解液電池の形状は、特に限定されるものではないが、以上の各要素からコイン状、円筒状、角形、又はアルミラミネートシート型等の形状の電気化学デバイスが組み立てられる。 The configuration of the non-aqueous electrolyte battery according to the first embodiment is not particularly limited. For example, the electrode element in which the positive electrode and the negative electrode are disposed facing each other, and the non-aqueous electrolyte are included in the outer package. The configuration can be made. The shape of the non-aqueous electrolyte battery is not particularly limited, but an electrochemical device having a coin shape, a cylindrical shape, a square shape, an aluminum laminate sheet type, or the like can be assembled from the above-described elements.
 [第2の実施形態]
 1.非水電解液電池用電解液
 本発明の第2の実施形態に係る非水電解液電池用電解液は、
(I)非水有機溶媒、
(II)イオン性塩である、溶質、
(III)上記一般式(1)で示される化合物からなる群から選ばれる少なくとも1種の添加剤、及び、
(IV)上記一般式(6)で示される化合物からなる群から選ばれる少なくとも1種の添加剤を含む。
Second Embodiment
1. Electrolyte Solution for Nonaqueous Electrolyte Battery Electrolyte Solution for Nonaqueous Electrolyte Battery According to Second Embodiment of the Present Invention
(I) non-aqueous organic solvent,
(II) an ionic salt, a solute,
(III) at least one additive selected from the group consisting of compounds represented by the above general formula (1), and
(IV) at least one additive selected from the group consisting of compounds represented by the above general formula (6).
 (I)非水有機溶媒について
 非水有機溶媒としては、第1の実施形態と同様の非水有機溶媒を好適に用いられる。非水溶媒とはカテゴリーが異なるがイオン液体等も用いることができる。
(I) Nonaqueous Organic Solvent As the nonaqueous organic solvent, the same nonaqueous organic solvent as that of the first embodiment is preferably used. The category is different from the non-aqueous solvent, but an ionic liquid can also be used.
 また、第2の実施形態でも、非水有機溶媒は、環状カーボネート及び鎖状カーボネートからなる群から選ばれる少なくとも1種であると、高温でのサイクル特性に優れる点で好ましく、エステルからなる群から選ばれる少なくとも1種であると、低温での入出力特性に優れる点で好ましい。環状カーボネート、鎖状カーボネート、エステルの具体例は、第1の実施形態と同様である。 Also in the second embodiment, the non-aqueous organic solvent is preferably at least one selected from the group consisting of cyclic carbonates and chain carbonates, from the viewpoint of excellent cycle characteristics at high temperatures, and from the group consisting of esters It is preferable at the point which is excellent in the input-output characteristic in low temperature as it is at least 1 sort (s) chosen. Specific examples of the cyclic carbonate, linear carbonate, and ester are the same as in the first embodiment.
 (II)溶質について
 溶質も、第1の実施形態と同様の溶質(イオン性塩)を好適に用いることができる。溶質の濃度も第1の実施形態と同様である。
(II) Solute As the solute, the same solute (ionic salt) as in the first embodiment can be suitably used. The concentration of the solute is also the same as in the first embodiment.
 (III)成分について
 (III)成分として、上記の通り、一般式(1)で示されるケイ素化合物が用いられる。非水電解液において、(I)~(IV)の総量100質量%に対する(III)の濃度は、第1の実施形態と同様であり、特に好適な濃度範囲は0.08質量%以上、0.75質量%以下である。
Component (III) As the component (III), as described above, the silicon compound represented by the general formula (1) is used. In the non-aqueous electrolytic solution, the concentration of (III) with respect to the total amount 100 mass% of (I) to (IV) is the same as that of the first embodiment, and a particularly preferable concentration range is 0.08 mass% or more, 0 .75 mass% or less.
 (IV)成分について
 第2の実施形態では、(IV)成分として、上記の通り、一般式(6)で示される化合物からなる群から選ばれる少なくとも1種の添加剤が用いられる。非水電解液において、(I)~(IV)の総量100質量%に対する(IV)の濃度は、第1の実施形態と同様であり、より好ましい濃度範囲は0.10質量%以上、3.00質量%以下であり、さらに好ましい濃度範囲は0.30質量%以上、2.00質量%以下である。
Component (IV) In the second embodiment, as the component (IV), as described above, at least one additive selected from the group consisting of compounds represented by General Formula (6) is used. In the non-aqueous electrolytic solution, the concentration of (IV) with respect to the total amount 100 mass% of (I) to (IV) is the same as that of the first embodiment, and the more preferable concentration range is 0.10 mass% or more; It is 00 mass% or less, and a more preferable concentration range is 0.30 mass% or more and 2.00 mass% or less.
 その他の添加剤について
 本発明の要旨を損なわない限りにおいて、第2の実施形態の非水電解液電池用電解液にも、一般に用いられる添加成分を任意の比率でさらに添加しても良い。具体例としては、シクロヘキシルベンゼン、シクロヘキシルフルオロベンゼン、フルオロベンゼン(以降、FBと記載する場合がある)、ビフェニル、ジフルオロアニソール、tert-ブチルベンゼン、tert-アミルベンゼン、2-フルオロトルエン、2-フルオロビフェニル、ビニレンカーボネート、ジメチルビニレンカーボネート、ビニルエチレンカーボネート、FEC、trans-ジフルオロエチレンカーボネート、メチルプロパルギルカーボネート、エチルプロパルギルカーボネート、ジプロパルギルカーボネート、無水マレイン酸、無水コハク酸、メタンスルホン酸メチル、1,6-ジイソシアナトヘキサン、トリス(トリメチルシリル)ボレート、スクシノニトリル、(エトキシ)ペンタフルオロシクロトリホスファゼン、ジフルオロビス(オキサラト)リン酸リチウム(以降、LDFBOPと記載する場合がある)、ジフルオロビス(オキサラト)リン酸ナトリウム、ジフルオロビス(オキサラト)リン酸カリウム、ジフルオロオキサラトホウ酸リチウム(以降、LDFOBと記載する場合がある)、ジフルオロオキサラトホウ酸ナトリウム、ジフルオロオキサラトホウ酸カリウム、ジオキサラトホウ酸リチウム、ジオキサラトホウ酸ナトリウム、ジオキサラトホウ酸カリウム、テトラフルオロオキサラトリン酸リチウム、テトラフルオロオキサラトリン酸ナトリウム、テトラフルオロオキサラトリン酸カリウム、トリス(オキサラト)リン酸リチウム、ジフルオロリン酸リチウム(以降、LiPO22と記載する場合がある)、エチルフルオロリン酸リチウム、フルオロリン酸リチウム、エテンスルホニルフルオリド、トリフルオロメタンスルホニルフルオリド、メタンスルホニルフルオリド、ジフルオロリン酸フェニル等の過充電防止効果、負極皮膜形成効果や正極保護効果を有する化合物が挙げられる。当該その他の添加剤の電解液中の含有量は0.01質量%以上、8.00質量%以下が好ましい。
Other Additives As long as the gist of the present invention is not impaired, commonly used additive components may be further added to the electrolyte solution for a non-aqueous electrolyte battery of the second embodiment at an arbitrary ratio. Specific examples include cyclohexylbenzene, cyclohexylfluorobenzene, fluorobenzene (hereinafter sometimes referred to as FB), biphenyl, difluoroanisole, tert-butylbenzene, tert-amylbenzene, 2-fluorotoluene, 2-fluorobiphenyl , Vinylene carbonate, dimethylvinylene carbonate, vinyl ethylene carbonate, FEC, trans-difluoroethylene carbonate, methyl propargyl carbonate, ethyl propargyl carbonate, dipropargyl carbonate, maleic anhydride, succinic anhydride, methyl methanesulfonate, 1,6-di Isocyanatohexane, tris (trimethylsilyl) borate, succinonitrile, (ethoxy) pentafluorocyclotriphospase , Lithium difluorobis (oxalato) phosphate (hereinafter sometimes referred to as LDFBOP), sodium difluorobis (oxalato) phosphate, potassium difluorobis (oxalato) phosphate, lithium difluorooxalatoborate (hereinafter LDFOB and May be described), sodium difluorooxalato borate, potassium difluorooxalato borate, lithium dioxalato borate, sodium dioxalato borate, potassium dioxalato borate, lithium tetrafluorooxalatorate, sodium tetrafluorooxalatorate, tetra Potassium fluorooxalatophosphate, lithium tris (oxalato) phosphate, lithium difluorophosphate (hereinafter sometimes referred to as LiPO 2 F 2 ), ethyl fluorophosphate And compounds having an overcharge preventing effect, a negative electrode film forming effect, and a positive electrode protecting effect, such as lithium fluorophosphate, ethenesulfonyl fluoride, trifluoromethanesulfonyl fluoride, methanesulfonyl fluoride, phenyl difluorophosphate and the like. The content of the other additive in the electrolytic solution is preferably 0.01% by mass or more and 8.00% by mass or less.
 また、溶質として挙げられたイオン性塩は、溶質の好適な濃度の下限である0.5mol/Lよりも電解液中の含有量が少ない場合に、“その他の添加剤”として負極皮膜形成効果や正極保護効果を発揮し得る。この場合、電解液中の含有量が0.01質量%以上、5.00質量%が好ましい。この場合のイオン性塩としては、例えば、トリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸カリウム、トリフルオロメタンスルホン酸マグネシウム、フルオロスルホン酸リチウム(以降、LiSO3Fと記載する場合がある)、フルオロスルホン酸ナトリウム、フルオロスルホン酸カリウム、フルオロスルホン酸マグネシウム、ビス(トリフルオロメタンスルホニル)イミドリチウム、ビス(トリフルオロメタンスルホニル)イミドナトリウム、ビス(トリフルオロメタンスルホニル)イミドカリウム、ビス(トリフルオロメタンスルホニル)イミドマグネシウム、ビス(フルオロスルホニル)イミドリチウム、ビス(フルオロスルホニル)イミドナトリウム、ビス(フルオロスルホニル)イミドカリウム、ビス(フルオロスルホニル)イミドマグネシウム、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミドリチウム、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミドナトリウム、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミドカリウム、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミドマグネシウム、ビス(ジフルオロホスホニル)イミドリチウム、ビス(ジフルオロホスホニル)イミドナトリウム、ビス(ジフルオロホスホニル)イミドカリウム、ビス(ジフルオロホスホニル)イミドマグネシウム、(ジフルオロホスホニル)(フルオロスルホニル)イミドリチウム、(ジフルオロホスホニル)(フルオロスルホニル)イミドナトリウム、(ジフルオロホスホニル)(フルオロスルホニル)イミドカリウム、(ジフルオロホスホニル)(フルオロスルホニル)イミドマグネシウム、(ジフルオロホスホニル)(トリフルオロメタンスルホニル)イミドリチウム、(ジフルオロホスホニル)(トリフルオロメタンスルホニル)イミドナトリウム、(ジフルオロホスホニル)(トリフルオロメタンスルホニル)イミドカリウム、及び(ジフルオロホスホニル)(トリフルオロメタンスルホニル)イミドマグネシウム等が挙げられる。 In addition, when the content of the ionic salt mentioned as the solute in the electrolytic solution is smaller than 0.5 mol / L which is the lower limit of the suitable concentration of the solute, the negative electrode film forming effect as “other additive” And positive electrode protection effect. In this case, the content in the electrolytic solution is preferably 0.01% by mass or more and 5.00% by mass. Examples of the ionic salt in this case include lithium trifluoromethanesulfonate, sodium trifluoromethanesulfonate, potassium trifluoromethanesulfonate, magnesium trifluoromethanesulfonate, lithium fluorosulfonate (hereinafter referred to as LiSO 3 F) Sodium fluorosulfonate, potassium fluorosulfonate, magnesium fluorosulfonate, lithium bis (trifluoromethanesulfonyl) imide, sodium bis (trifluoromethanesulfonyl) imide, potassium bis (trifluoromethanesulfonyl) imide, bis (trifluoromethanesulfonyl) ) Imidomagnesium, bis (fluorosulfonyl) imide lithium, bis (fluorosulfonyl) imide sodium, bis (ful (Sulfonyl) imide potassium, bis (fluorosulfonyl) imide magnesium, (trifluoromethanesulfonyl) (fluorosulfonyl) imide lithium, (trifluoromethanesulfonyl) (fluorosulfonyl) imide sodium, (trifluoromethanesulfonyl) (fluorosulfonyl) imide potassium, (Trifluoromethanesulfonyl) (fluorosulfonyl) imide magnesium, bis (difluorophosphonyl) imide lithium, bis (difluorophosphonyl) imide sodium, bis (difluorophosphonyl) imide potassium, bis (difluorophosphonyl) imide magnesium, (difluoro) Phosphonyl) (fluorosulfonyl) imidolithium, (difluorophosphonyl) (fluorosulfonyl) imidonatri (Difluorophosphonyl) (fluorosulfonyl) imide potassium, (difluorophosphonyl) (fluorosulfonyl) imide magnesium, (difluorophosphonyl) (trifluoromethanesulfonyl) imide lithium, (difluorophosphonyl) (trifluoromethanesulfonyl) imide Sodium, (difluorophosphonyl) (trifluoromethanesulfonyl) imide potassium, (difluorophosphonyl) (trifluoromethanesulfonyl) imide magnesium and the like can be mentioned.
 また、上記溶質(リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩)以外のアルカリ金属塩を添加剤として用いてもよい。具体的には、アクリル酸リチウム、アクリル酸ナトリウム、メタクリル酸リチウム、メタクリル酸ナトリウムなどのカルボン酸塩、リチウムメチルサルフェート、ナトリウムメチルサルフェート、リチウムエチルサルフェート、ナトリウムメチルサルフェートなどの硫酸エステル塩などが挙げられる。 In addition, alkali metal salts other than the above-mentioned solutes (lithium salt, sodium salt, potassium salt, magnesium salt) may be used as an additive. Specifically, carboxylates such as lithium acrylate, sodium acrylate, lithium methacrylate, sodium methacrylate and the like, lithium methyl sulfate, sodium methyl sulfate, lithium ethyl sulfate, sulfuric acid ester salts such as sodium methyl sulfate and the like can be mentioned. .
 第2の実施形態でも、第1の実施形態と同様に、ポリマーを含むことができ、ポリマー電池と呼ばれる非水電解液電池に使用される場合のように非水電解液電池用電解液をゲル化剤や架橋ポリマーにより擬固体化して使用することも可能である。 Also in the second embodiment, as in the first embodiment, the polymer may be contained, and the electrolyte for non-aqueous electrolyte battery may be gelled as in the case of a non-aqueous electrolyte battery called a polymer battery. It is also possible to use it as a pseudosolid by using a crosslinking agent or a crosslinking polymer.
 本発明の要旨を損なわない濃度範囲であれば、1,3-プロパンスルトン、1,3-プロペンスルトン、1,3,2-ジオキサチオラン2,2-ジオキシド、メチレンメタンジスルホネートやそれらの誘導体をその他の添加剤として含んでもよい。当該濃度範囲としては電解液中において0.01~1.0質量%であり、かつ上記(IV)成分の濃度よりも少ない範囲である。 1,3-propanesultone, 1,3-propenesultone, 1,3,2-dioxathiolane 2,2-dioxide, methylene methanedisulfonate and their derivatives, etc., as long as the concentration does not impair the gist of the present invention May be included as an additive of The concentration range is 0.01 to 1.0% by mass in the electrolytic solution and is a range smaller than the concentration of the component (IV).
 2.非水電解液電池
 本発明の第2の実施形態に係る非水電解液電池は、少なくとも、(ア)上記の非水電解液電池用電解液と、(イ)正極と、(ウ)リチウム金属を含む負極材料、リチウム、ナトリウム、カリウム、又はマグネシウムの吸蔵放出が可能な負極材料からなる群から選ばれる少なくとも1種を有する負極とを含む。さらには、(エ)セパレータや外装体等を含むことが好ましい。上記の電解液は、高温保存安定性(高温貯蔵特性)に優れるため、電池の耐久性を向上することができる。
2. Nonaqueous Electrolyte Battery A nonaqueous electrolyte battery according to a second embodiment of the present invention comprises at least (a) the above-mentioned electrolyte for a non-aqueous electrolyte battery, (a) a positive electrode, and (c) lithium metal And a negative electrode having at least one selected from the group consisting of a negative electrode material capable of inserting and extracting lithium, sodium, potassium, or magnesium. Furthermore, it is preferable to include (d) a separator, an exterior body, and the like. Since the above-mentioned electrolytic solution is excellent in high-temperature storage stability (high-temperature storage characteristic), the durability of the battery can be improved.
 〔(イ)正極〕
 (イ)正極は、少なくとも1種の酸化物及び/又はポリアニオン化合物を正極活物質として含むことが好ましい。
[(I) positive electrode]
(A) The positive electrode preferably contains at least one oxide and / or polyanion compound as a positive electrode active material.
 [正極活物質]
 非水電解液中のカチオンがリチウム主体となるリチウムイオン二次電池の場合、(イ)正極を構成する正極活物質は、充放電が可能な種々の材料であれば特に限定されるものでないが、例えば、(A)ニッケル、マンガン、コバルトの少なくとも1種以上の金属を含有し、かつ層状構造を有するリチウム遷移金属複合酸化物、(B)スピネル構造を有するリチウムマンガン複合酸化物、(C)リチウム含有オリビン型リン酸塩、及び(D)層状岩塩型構造を有するリチウム過剰層状遷移金属酸化物から少なくとも1種を含有するものが挙げられる。
[Positive electrode active material]
In the case of a lithium ion secondary battery in which the cation in the non-aqueous electrolytic solution is mainly lithium, the positive electrode active material constituting (i) the positive electrode is not particularly limited as long as it is various materials capable of charge and discharge. For example, (A) lithium transition metal complex oxide having at least one metal of nickel, manganese, cobalt and having a layered structure, (B) lithium manganese complex oxide having a spinel structure, (C) The lithium-containing olivine-type phosphate and the lithium-containing layered transition metal oxide having a layered rock salt-type structure (D) include at least one of them.
 ((A)リチウム遷移金属複合酸化物)
 正極活物質(A)ニッケル、マンガン、コバルトの少なくとも1種以上の金属を含有し、かつ層状構造を有するリチウム遷移金属複合酸化物としては、例えば、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物、リチウム・ニッケル・コバルト複合酸化物、リチウム・ニッケル・コバルト・アルミニウム複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・マンガン・コバルト複合酸化物等が挙げられる。また、これらリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部を、Al、Ti、V、Cr、Fe、Cu、Zn、Mg、Ga、Zr、Si、B、Ba、Y、Sn等の他の元素で置換したものを用いても良い。
((A) Lithium transition metal complex oxide)
As a lithium transition metal complex oxide containing a positive electrode active material (A) at least one or more metals of nickel, manganese, and cobalt and having a layered structure, for example, lithium-cobalt complex oxide, lithium-nickel complex oxide , Lithium-nickel-cobalt composite oxide, lithium-nickel-cobalt-aluminum composite oxide, lithium-cobalt-manganese composite oxide, lithium-nickel-manganese composite oxide, lithium-nickel-manganese-cobalt composite oxide Etc. In addition, a part of transition metal atoms, which are main components of these lithium transition metal complex oxides, may be Al, Ti, V, Cr, Fe, Cu, Zn, Mg, Ga, Zr, Si, B, Ba, Y, Sn Those substituted with other elements such as.
 リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物の具体例としては、LiCoO2、LiNiO2やMg、Zr、Al、Ti等の異種元素を添加したコバルト酸リチウム(LiCo0.98Mg0.01Zr0.012、LiCo0.98Mg0.01Al0.012、LiCo0.975Mg0.01Zr0.005Al0.012等)、WO2014/034043号公報に記載の表面に希土類の化合物を固着させたコバルト酸リチウム等を用いても良い。また、特開2002-151077号公報等に記載されているように、LiCoO2粒子粉末の粒子表面の一部に酸化アルミニウムが被覆したものを用いても良い。 Specific examples of the lithium-cobalt complex oxide and lithium-nickel complex oxide include lithium cobaltate (LiCo 0.98 Mg 0.01 Zr 0.01 O) to which LiCoO 2 , LiNiO 2 or different elements such as Mg, Zr, Al, Ti, etc. are added. 2 , LiCo 0.98 Mg 0.01 Al 0.01 O 2 , LiCo 0.975 Mg 0.01 Zr 0.005 Al 0.01 O 2 and the like, lithium cobaltate having a rare earth compound fixed to the surface described in WO 2014/034043 may be used . Further, as described in JP-A-2002-151077, a part of the particle surface of LiCoO 2 powder may be coated with aluminum oxide.
 リチウム・ニッケル・コバルト複合酸化物、リチウム・ニッケル・コバルト・アルミニウム複合酸化物については、上記一般式[1-1]で示される複合酸化物が挙げられ、その具体例は第1の実施形態で例示したものと同じである。 Examples of the lithium-nickel-cobalt composite oxide and the lithium-nickel-cobalt-aluminum composite oxide include the composite oxide represented by the above general formula [1-1], and specific examples thereof are the first embodiment. It is the same as illustrated.
 リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル・マンガン複合酸化物の具体例としては、LiNi0.5Mn0.52、LiCo0.5Mn0.52等が挙げられる。 Examples of the lithium-cobalt-manganese composite oxide and the lithium-nickel-manganese composite oxide include LiNi 0.5 Mn 0.5 O 2 and LiCo 0.5 Mn 0.5 O 2 .
 リチウム・ニッケル・マンガン・コバルト複合酸化物としては、上記一般式[1-2]で示される複合酸化物が挙げられ、その具体例は第1の実施形態で例示したものと同じである。リチウム・ニッケル・マンガン・コバルト複合酸化物は、構造安定性を高め、リチウム二次電池における高温での安全性を向上させるために、第2の実施形態でも、マンガンを一般式[1-2]に示す範囲で含有するものが好ましく、特にリチウムイオン二次電池の高率特性を高めるためにコバルトを一般式[1-2]に示す範囲でさらに含有するものがより好ましい。 Examples of the lithium-nickel-manganese-cobalt composite oxide include the composite oxide represented by the above general formula [1-2], and specific examples thereof are the same as those exemplified in the first embodiment. The lithium-nickel-manganese-cobalt composite oxide also improves the structural stability and the safety at high temperatures in the lithium secondary battery, and in the second embodiment, manganese is also represented by the general formula [1-2] Those which are contained in the range shown in are preferable, and in particular, those further containing cobalt in the range shown in the general formula [1-2] are more preferable in order to enhance the high rate characteristics of the lithium ion secondary battery.
 ((B)スピネル構造を有するリチウムマンガン複合酸化物)
 正極活物質(B)スピネル構造を有するリチウムマンガン複合酸化物としては、例えば、上記一般式[1-3]で示されるスピネル型リチウムマンガン複合酸化物が挙げられる。但し、M3はNi、Co、Fe、Mg、Cr、Cu、Al及びTiからなる群より選ばれる少なくとも1つの金属元素であればよい。具定例としては、例えば、LiMnO2、LiMn24、LiMn1.95Al0.054、LiMn1.9Al0.14、LiMn1.9Ni0.14、LiMn1.5Ni0.54等が挙げられる。
((B) Lithium manganese complex oxide having spinel structure)
As a lithium manganese complex oxide which has a positive electrode active material (B) spinel structure, the spinel type lithium manganese complex oxide shown by said general formula [1-3] is mentioned, for example. However, M 3 may be at least one metal element selected from the group consisting of Ni, Co, Fe, Mg, Cr, Cu, Al and Ti. Specific examples thereof include LiMnO 2 , LiMn 2 O 4 , LiMn 1.95 Al 0.05 O 4 , LiMn 1.9 Al 0.1 O 4 , LiMn 1.9 Ni 0.1 O 4 , LiMn 1.5 Ni 0.5 O 4 and the like.
 ((C)リチウム含有オリビン型リン酸塩)
 正極活物質(C)リチウム含有オリビン型リン酸塩としては、例えば上記一般式[1-4]で示されるものが挙げられる。但し、M4はCo、Ni、Mn、Cu、Zn、Nb、Mg、Al、Ti、W、Zr及びCdから選ばれる少なくとも1つであればよい。具体例としては、例えば、LiFePO4、LiCoPO4、LiNiPO4、LiMnPO4等が挙げられ、中でもLiFePO4及び/又はLiMnPO4が好ましい。
((C) Lithium-containing olivine-type phosphate)
Examples of the positive electrode active material (C) lithium-containing olivine-type phosphate include those represented by the above general formula [1-4]. However, M 4 may be at least one selected from Co, Ni, Mn, Cu, Zn, Nb, Mg, Al, Ti, W, Zr and Cd. Specific examples include, LiFePO 4, LiCoPO 4, LiNiPO 4, LiMnPO 4, and among them LiFePO 4 and / or LiMnPO 4 are preferred.
 ((D)リチウム過剰層状遷移金属酸化物)
 正極活物質(D)層状岩塩型構造を有するリチウム過剰層状遷移金属酸化物としては、例えば上記一般式[1-5]で示されるものが挙げられる。但し、第1の実施形態では、M5、M6のどちらかに必ずニッケルが含まれるが、第2の実施形態では、M5、M6に必ずしもニッケルが含まれなくてもよい。リチウム過剰層状遷移金属酸化物の具体例は第1の実施形態で例示したものと同じである。
((D) Lithium Excess Layered Transition Metal Oxide)
Examples of the lithium-rich layered transition metal oxide having a positive electrode active material (D) layered rock salt structure include those represented by the above general formula [1-5]. However, in the first embodiment, either M 5 or M 6 necessarily includes nickel, but in the second embodiment, M 5 or M 6 may not necessarily include nickel. Specific examples of the lithium excess layered transition metal oxide are the same as those exemplified in the first embodiment.
 正極活物質としては、上記(A)~(D)から選ばれる少なくとも1つを主成分として含有すればよいが、それ以外に含まれるものとしては、例えばFeS2、TiS2、TiO2、V25、MoO3、MoS2等の遷移元素カルコゲナイド、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が挙げられる。 As the positive electrode active material, at least one selected from the above (A) to (D) may be contained as a main component, and as other substances contained, for example, FeS 2 , TiS 2 , TiO 2 , V Transition element chalcogenides such as 2 O 5 , MoO 3 and MoS 2 or conductive polymers such as polyacetylene, polyparaphenylene, polyaniline, and polypyrrole, activated carbon, polymers generating radicals, carbon materials, etc. may be mentioned.
 [正極集電体及び正極活物質層]
 (イ)正極は、正極集電体と、該正極集電体の少なくとも一方の面に形成された正極活物質層を有する。静電集電体及び正極活物質層の構成は、第1の実施形態と同様であるため、ここでは説明を省略する。
[Positive Electrode Current Collector and Positive Electrode Active Material Layer]
(A) The positive electrode has a positive electrode current collector and a positive electrode active material layer formed on at least one surface of the positive electrode current collector. The configurations of the electrostatic current collector and the positive electrode active material layer are the same as those of the first embodiment, and thus the description thereof is omitted here.
 〔(ウ)負極、(エ)セパレータ及び外装体〕
 (ウ)負極、(エ)セパレータ及び外装体の構造・材質も、第1の実施形態と同様であるため、説明を省略する。
[(C) negative electrode, (d) separator and outer package]
The structures and materials of the negative electrode, the separator, and the outer package are the same as in the first embodiment, and thus the description thereof will be omitted.
 第2の実施形態にかかる非水電解液電池の構成も、特に限定されるものではなく、例えば、第1の実施形態と同様に、正極及び負極が対向配置された電極素子と、非水電解液とが、外装体に内包されている構成とすることができる。非水電解液電池の形状は、特に限定されるものではないが、以上の各要素からコイン状、円筒状、角形、又はアルミラミネートシート型等の形状の電気化学デバイスが組み立てられる。 The configuration of the non-aqueous electrolyte battery according to the second embodiment is also not particularly limited, and, for example, as in the first embodiment, an electrode element in which a positive electrode and a negative electrode are disposed opposite to each other, and non-aqueous electrolysis The liquid may be contained in the outer package. The shape of the non-aqueous electrolyte battery is not particularly limited, but an electrochemical device having a coin shape, a cylindrical shape, a square shape, an aluminum laminate sheet type, or the like can be assembled from the above-described elements.
 以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these descriptions.
 まず、以下の通り、上記第1の実施形態に係る非水電解液を用いた非水電解液電池を作製し、性能評価を行った。 First, as described below, a non-aqueous electrolyte battery using the non-aqueous electrolyte according to the first embodiment was produced and performance evaluation was performed.
 〔NCM811正極の作製〕
 LiNi0.8Mn0.1Co0.12粉末91.0質量%に、バインダーとしてポリフッ化ビニリデン(以降PVDF)を4.5質量%、導電材としてアセチレンブラックを4.5質量%混合し、さらにN-メチル-2-ピロリドン(以降NMP)を添加し、正極合材ペーストを作製した。このペーストをアルミニウム箔(A1085)の両面に塗布して、乾燥、加圧を行った後に、4×5cmに打ち抜くことで試験用NCM811正極を得た。
[Fabrication of NCM 811 positive electrode]
Mix 9% by mass of LiNi 0.8 Mn 0.1 Co 0.1 O 2 powder, 4.5% by mass of polyvinylidene fluoride (hereinafter PVDF) as a binder, and 4.5% by mass of acetylene black as a conductive material, and further N-methyl. -2-Pyrrolidone (hereinafter NMP) was added to prepare a positive electrode mixture paste. This paste was applied to both sides of an aluminum foil (A1085), dried and pressurized, and then punched into 4 × 5 cm to obtain an NCM 811 positive electrode for test.
 〔NCA正極の作製〕
 LiNi0.87Co0.10Al0.032粉末89.0質量%に、バインダーとしてPVDFを5.0質量%、導電材としてアセチレンブラックを6.0質量%混合し、さらにNMPを添加し、正極合材ペーストを作製した。このペーストをアルミニウム箔(A1085)の両面に塗布して、乾燥、加圧を行った後に、4×5cmに打ち抜くことで試験用NCA正極を得た。
[Preparation of NCA positive electrode]
5.0 mass% of PVDF as a binder, 6.0 mass% of acetylene black as a conductive material are mixed with 89.0 mass% of LiNi 0.87 Co 0.10 Al 0.03 O 2 powder, NMP is further added, and a positive electrode mixture paste Was produced. This paste was applied to both sides of an aluminum foil (A1085), dried and pressurized, and then punched into 4 × 5 cm to obtain an NCA positive electrode for test.
 〔黒鉛負極の作製〕
 人造黒鉛粉末92.0質量%に、バインダーとして8.0質量%のPVDFを混合し、さらにNMPを添加し、負極合材ペーストを作製した。このペーストを銅箔の片面に塗布して、乾燥、加圧を行った後に、4×5cmに打ち抜くことで試験用黒鉛負極を得た。
[Production of Graphite Negative Electrode]
A mixture of 8.0% by mass of PVDF as a binder was mixed with 92.0% by mass of artificial graphite powder, and NMP was further added to prepare a negative electrode mixture paste. The paste was applied to one side of a copper foil, dried and pressurized, and then punched out into 4 × 5 cm to obtain a graphite negative electrode for test.
 〔一般式(1)で示される不飽和結合を有するケイ素化合物の合成〕
 上記一般式(1)で示される不飽和結合を有する置換基を備えたケイ素化合物は種々の方法により製造できる。製造法としては、限定されることはないが、例えば、四塩化ケイ素とエチニルグリニャール試薬とをテトラヒドロフラン中で内温40℃以下にて反応させる事により、エチニルトリクロロシラン、ジエチニルジクロロシラン、トリエチニルクロロシラン、テトラエチニルシラン(1-15)が得られる。この時、エチニルグリニャール試薬の使用量を調整して反応させた後に、内温100℃以下で減圧蒸留する事によりこれらのケイ素化合物を作り分けることが可能である。
[Synthesis of silicon compound having unsaturated bond represented by the general formula (1)]
The silicon compound having a substituent having an unsaturated bond represented by the above general formula (1) can be produced by various methods. The production method is not limited. For example, ethynyltrichlorosilane, diethynyldichlorosilane, and triethynyl can be reacted by reacting silicon tetrachloride and ethynyl Grignard reagent in tetrahydrofuran at an internal temperature of 40 ° C. or less. A chlorosilane, tetraethynylsilane (1-15) is obtained. At this time, it is possible to separately produce these silicon compounds by performing distillation under reduced pressure at an internal temperature of 100 ° C. or less after adjusting the amount of ethynyl Grignard reagent to be used for reaction.
 そして、化合物(1-1)、(1-2)、(1-3)、(1-4)、(1-6)、(1-7)、(1-8)、(1-10)はトリエチニルクロロシランを原料とし、トリエチルアミン等の塩基存在下で、1当量の対応するアルコールを反応させる事で容易に入手できた。同様に、化合物(1-11)、(1-13)、(1-14)、(1-16)、(1-28)は、トリエチニルクロロシランに1当量の対応する有機リチウム試薬、又はグリニャール試薬、又はフッ化カリウムを反応させる事で入手した。
 化合物(1-5)はジエチニルジクロロシランにトリエチルアミン等の塩基存在下で2当量のメタノールを反応させる事で、化合物(1-17)は2当量のアリルグリニャール試薬を反応させる事で、化合物(1-19)は2当量のナトリウムアセチリドを反応させる事で得た。化合物(1-25)、(1-26)、(1-27)はジエチニルジクロロシランに、塩基存在下で1当量の対応するアルコール、又は有機リチウム試薬を反応させた後に、更に1当量のフッ化カリウムを反応させる事で得た。
 更に化合物(1-9)、(1-20)はエチニルトリクロロシランを原料とし、3当量のプロパルギルアルコール、又はナトリウムアセチリドを反応させる事でそれぞれを得た。
 化合物(1-12)はフェニルトリクロロシランに3当量のエチニルグリニャール試薬を反応させる事で、化合物(1-18)はフェニルトリクロロシランに当モル数のエチニルグリニャール試薬を反応させた後に2当量のナトリウムアセチリドを反応させる事で得られた。
 化合物(1-24)はトリクロロメチルシランに3当量のエチニルグリニャール試薬を反応させる事で得た。そして、化合物(1-21)、(1-22)、(1-23)はトリクロロメチルシランに2当量のエチニルグリニャール試薬を反応させた後に、トリエチルアミン等の塩基存在下で1当量の対応するアルコール、又は有機リチウム試薬を反応させる事で得た。
And compounds (1-1), (1-2), (1-3), (1-4), (1-6), (1-7), (1-8), (1-10) Were readily available from triethynyl chlorosilane as a raw material by reacting one equivalent of the corresponding alcohol in the presence of a base such as triethylamine. Similarly, compounds (1-11), (1-13), (1-14), (1-16), (1-28) are the corresponding organolithium reagents equivalent to triethynyl chlorosilane, or Grignard It was obtained by reacting a reagent or potassium fluoride.
Compound (1-5) is reacted with diethynyldichlorosilane in the presence of 2 equivalents of methanol in the presence of a base such as triethylamine, and compound (1-17) is reacted with 2 equivalents of allyl Grignard reagent to give a compound 1-19) was obtained by reacting 2 equivalents of sodium acetylide. Compounds (1-25), (1-26) and (1-27) are reacted with diethynyldichlorosilane in the presence of a base in the presence of a base after reacting one equivalent of the corresponding alcohol or an organolithium reagent, It was obtained by reacting potassium fluoride.
Further, compounds (1-9) and (1-20) were obtained by reacting ethynyltrichlorosilane as a raw material and reacting 3 equivalents of propargyl alcohol or sodium acetylide.
Compound (1-12) reacts phenyltrichlorosilane with 3 equivalents of ethynyl Grignard reagent, and compound (1-18) reacts phenyltrichlorosilane with an equal number of moles of ethynyl Grignard reagent after reacting 2 equivalents of sodium It was obtained by reacting acetylide.
Compound (1-24) was obtained by reacting trichloromethylsilane with 3 equivalents of ethynyl Grignard reagent. Then, after compounds (1-21), (1-22) and (1-23) react trichloromethylsilane with 2 equivalents of ethynyl Grignard reagent, 1 equivalent of the corresponding alcohol in the presence of a base such as triethylamine Or obtained by reacting an organolithium reagent.
 〔(IV)について〕
 市販のフルオロスルホン酸を0℃に冷却しながら1当量のアンモニアで中和する事でフルオロスルホン酸アンモニウムが得られた。このフルオロスルホン酸アンモニウムに塩化リチウムを加え、カチオン交換を行う事によってLiSO3Fが得られた。
 エテンスルホニルフルオリド(以降、「化合物(2-1)」と記載する場合がある)はAldrich社製のものを使用した。
 また、Aldrich社製のメタンスルホニルクロリド、東京化成工業製のベンゼンスルホニルクロリド、ジクロロリン酸フェニル、和光純薬製のフェニルジクロロホスフィンオキシドを、フッ化カリウムでフッ素化する事で、それぞれ、メタンスルホニルフルオリド(以降、「化合物(2-4)」と記載する場合がある)、ベンゼンスルホニルフルオリド(以降、「化合物(2-2)」と記載する場合がある)、ジフルオロリン酸フェニル(以降、「化合物(4-1)」と記載する場合がある)、フェニルジフルオロホスフィンオキシド(以降、「化合物(4-2)」と記載する場合がある)を得た。
 また、トリフルオロメタンスルホニルフルオリド(以降、「化合物(2-3)」と記載する場合がある)はセントラル硝子製のものを使用した。
 また、エチルフルオロリン酸リチウム(以降、「化合物(3-1)」と記載する場合がある)は、ジフルオロリン酸リチウムにエタノールを反応させる事で得た。
 以下に示す化合物(5-1)、(5-3)は、Combi-blocks社製のテトラヒドロチオフェン-3-オール-1,1-ジオキシドと、Aldric社製のメタンスルホニルクロリド、または非特許文献1に記載された手法にてジフルオロリン酸カリウムをオキシ塩化リンにて塩素化して合成したクロロジフルオロホスフィンオキシドとの反応にてそれぞれ得た。
 また、以下に示す化合物(5-2)は、上記のテトラヒドロチオフェン-3-オール-1,1-ジオキシドと東京化成工業製の2-クロロエタンスルホニルクロリドを反応させた後に、トリエチルアミンを作用させて脱塩酸にて二重結合を形成させる事で得た。
 また、特許文献12に記載された手法にて2、3-ジヒドロキシプロパンスルホン酸ナトリウムと塩化チオニルを反応させた後に塩酸水溶液で処理する事で合成した2-ヒドロキシ-1,3-プロパンスルトンと、上記のクロロジフルオロホスフィンオキシドとを反応させる事で以下に示す化合物(5-4)を得た。
Figure JPOXMLDOC01-appb-C000027
[About (IV)]
The commercially available fluorosulfonic acid was neutralized with one equivalent of ammonia while cooling to 0 ° C. to obtain ammonium fluorosulfonate. Lithium chloride was added to this ammonium fluorosulfonate, and cation exchange was carried out to obtain LiSO 3 F.
The ethenesulfonyl fluoride (hereinafter sometimes referred to as “compound (2-1)”) used was manufactured by Aldrich.
In addition, methanesulfonyl fluoride can be obtained by fluorinating methanesulfonyl chloride manufactured by Aldrich, benzenesulfonyl chloride manufactured by Tokyo Chemical Industry Co., Ltd., phenyl dichlorophosphate, and phenyldichlorophosphine oxide manufactured by Wako Pure Chemical Industries, Ltd. with potassium fluoride. (Hereinafter, may be described as "compound (2-4)"), benzenesulfonyl fluoride (hereinafter, sometimes described as "compound (2-2)"), phenyl difluorophosphate (hereinafter, as There were obtained “compound (4-1)”, phenyldifluorophosphine oxide (hereinafter sometimes described as “compound (4-2)”).
Further, trifluoromethanesulfonyl fluoride (hereinafter sometimes referred to as “compound (2-3)”) used was made of central glass.
In addition, lithium ethyl fluorophosphate (hereinafter sometimes referred to as “compound (3-1)”) was obtained by reacting lithium difluorophosphate with ethanol.
Compounds (5-1) and (5-3) shown below are tetrahydrothiophen-3-ol-1,1-dioxide manufactured by Combi-blocks and methanesulfonyl chloride manufactured by Aldric, or Non-Patent Document 1 They were respectively obtained by the reaction with chlorodifluorophosphine oxide which was synthesized by chlorinating potassium difluorophosphate with phosphorus oxychloride according to the method described in.
In addition, after the compound (5-2) shown below is reacted with the above-mentioned tetrahydrothiophene-3-ol-1,1-dioxide and 2-chloroethanesulfonyl chloride manufactured by Tokyo Chemical Industry Co., Ltd., triethylamine is allowed to act to remove the compound. Obtained by forming a double bond with hydrochloric acid.
Further, 2-hydroxy-1,3-propane sultone synthesized by reacting sodium 2,3-dihydroxypropane sulfonate and thionyl chloride by a method described in Patent Document 12 and then treating with sodium chloride aqueous solution, Compound (5-4) shown below was obtained by reacting with the above chlorodifluorophosphine oxide.
Figure JPOXMLDOC01-appb-C000027
 〔LiPF6溶液(DMC、EMC)の調製〕
 特許文献11に開示した方法に従って、LiPF6濃縮液の合成を行った。すなわち、炭酸エステル(DMC、又はEMC)中で、三塩化リンと塩化リチウムと塩素を反応させて六塩化リン酸リチウムを合成した後に、そこにフッ化水素を導入する事でフッ素化を行い、LiPF6と塩化水素と未反応のフッ化水素が含まれるDMC溶液、EMC溶液をそれぞれ得た。これを減圧濃縮する事でほぼ全ての塩化水素と大部分のフッ化水素が除去されたLiPF6濃縮液が得られた。残るフッ化水素を取り除くため、各炭酸エステルを添加して濃度30.0質量%に調整して粘度を下げた後に、濃縮液各100gに対して10質量%の脱水イオン交換樹脂を添加し、精製処理を行った。これによって、30.0質量%のLiPF6/DMC溶液と、30.0質量%のLiPF6/EMC溶液が得られた。
[Preparation of LiPF 6 solution (DMC, EMC)]
According to the method disclosed in Patent Document 11, the synthesis of the LiPF 6 concentrate was performed. That is, after phosphorus trichloride, lithium chloride and chlorine are reacted in carbonate ester (DMC or EMC) to synthesize lithium hexachloride phosphate, fluorination is carried out by introducing hydrogen fluoride there, A DMC solution containing LiPF 6 and hydrogen chloride and unreacted hydrogen fluoride, and an EMC solution were obtained, respectively. This was concentrated under reduced pressure to obtain a LiPF 6 concentrate from which almost all hydrogen chloride and most of the hydrogen fluoride were removed. In order to remove the remaining hydrogen fluoride, each carbonate is added to adjust the concentration to 30.0% by mass to reduce the viscosity, and then 10% by mass of dehydrated ion exchange resin is added to 100 g of each concentrate. The purification process was performed. Thus, a 30.0% by weight of LiPF 6 / DMC solution, LiPF 6 / EMC solution 30.0 mass% was obtained.
 〔基準電解液の調製〕
 上記で調製した30.0質量%のLiPF6/EMC溶液と、非水溶媒である、EMC、DEC、ECとを、LiPF6濃度が1.0M、溶媒比(体積)がEMC:DEC:EC=4:2:3となるように混合し、これを基準電解液1とした。同様に、30.0質量%のLiPF6/DMC溶液と、DMCとECとを、LiPF6濃度が1.0M、溶媒比(体積)がDMC:EC=2:1となるように混合したものを基準電解液2とした。
Preparation of Reference Electrolyte
The 30.0 mass% LiPF 6 / EMC solution prepared above and the non-aqueous solvents EMC, DEC, EC, LiPF 6 concentration is 1.0 M, solvent ratio (volume) is EMC: DEC: EC It mixed so that it might be set to 4: 2: 3, and this was made into the reference electrolyte solution 1. Similarly, a solution of 30.0% by weight of LiPF 6 / DMC, DMC and EC mixed such that the concentration of LiPF 6 is 1.0 M and the solvent ratio (volume) is DMC: EC = 2: 1 As reference electrolyte 2.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 〔実施例及び比較例に係る非水電解液の調製〕
 基準電解液1に対し、0.25質量%に相当するケイ素化合物(1-1)を加え、1時間攪拌して溶解した。これを非水電解液1-(1-1)-0.25-(0)とした。
 次に、基準電解液1に対し、0.25質量%に相当するケイ素化合物(1-1)と、0.02質量%に相当するLiSO3Fを加え、1時間攪拌して溶解した。これを非水電解液1-(1-1)-0.25-LiSO3F-0.02とした。
Preparation of Nonaqueous Electrolyte According to Examples and Comparative Examples
The silicon compound (1-1) corresponding to 0.25 mass% was added to the reference electrolyte solution 1 and dissolved by stirring for 1 hour. This was designated as non-aqueous electrolyte 1- (1-1) -0.25- (0).
Next, a silicon compound (1-1) corresponding to 0.25 mass% and LiSO 3 F corresponding to 0.02 mass% were added to the reference electrolyte solution 1 and dissolved by stirring for 1 hour. The resultant was used as a non-aqueous electrolyte 1- (1-1) -0.25-LiSO3F-0.02.
 同様に、表2に示す通りに、基準電解液1に対して、(III)成分と(IV)成分を表2に示す濃度となるように添加し、攪拌して溶解する事で、それぞれの非水電解液を得た。 Similarly, as shown in Table 2, the components (III) and (IV) are added to the reference electrolyte 1 so as to have the concentrations shown in Table 2 and dissolved by stirring. A non-aqueous electrolyte was obtained.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 同様に、表3に示す通りに、基準電解液1に対して、(III)成分と(IV)成分とその他の溶質又は添加成分を表3に示す濃度となるように添加し、攪拌して溶解する事で、それぞれの非水電解液を得た。 Similarly, as shown in Table 3, the component (III), the component (IV), and other solutes or added components are added to the reference electrolyte 1 so as to have the concentrations shown in Table 3 and stirred. Each non-aqueous electrolyte was obtained by dissolving.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 なお、表中でLiPO22はジフルオロリン酸リチウムを意味し、LTFOPはテトラフルオロオキサラトリン酸リチウムを意味し、LDFBOPはジフルオロビス(オキサラト)リン酸リチウムを意味し、LDFOBはジフルオロオキサラトホウ酸リチウムを意味し、LiFSIはビス(フルオロスルホニル)イミドリチウムを意味し、LTFFSIは(トリフルオロメタンスルホニル)(フルオロスルホニル)イミドリチウムを意味し、LDFPIはビス(ジフルオロホスホニル)イミドリチウムを意味する。 In the table, LiPO 2 F 2 means lithium difluorophosphate, LTFOP means lithium tetrafluorooxalatophosphate, LDFBOP means lithium difluorobis (oxalato) phosphate, and LDFOB is difluorooxalato Means lithium borate, LiFSI means bis (fluorosulfonyl) imide lithium, LTFFSI means (trifluoromethanesulfonyl) (fluorosulfonyl) imide lithium, LDFPI means bis (difluorophosphonyl) imide lithium .
 同様に、表4に示す通りに、基準電解液2に対して、(III)成分と(IV)成分を表4に示す濃度となるように添加し、攪拌して溶解する事で、それぞれの非水電解液を得た。 Similarly, as shown in Table 4, the components (III) and (IV) are added to the reference electrolyte 2 so as to have the concentrations shown in Table 4 and dissolved by stirring. A non-aqueous electrolyte was obtained.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 同様に、表5に示す通りに、基準電解液2に対して、(III)成分と(IV)成分とその他の溶質又は添加成分を表5に示す濃度となるように添加し、攪拌して溶解する事で、それぞれの非水電解液を得た。 Similarly, as shown in Table 5, the component (III), the component (IV), and other solutes or added components are added to the reference electrolyte 2 so as to have the concentrations shown in Table 5 and stirred. Each non-aqueous electrolyte was obtained by dissolving.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 〔非水電解液電池の作製〕 NCM811/黒鉛
 露点-50℃以下のアルゴン雰囲気で、上述のNCM811正極に端子を溶接した後に、その両側をポリエチレン製セパレータ(5×6cm)2枚で挟み、更にその外側を予め端子を溶接した黒鉛負極2枚で、負極活物質面が正極活物質面と対向するように挟み込んだ。そして、それらを一辺の開口部が残されたアルミラミネートの袋に入れ、非水電解液を真空注液した後に、開口部を熱で封止する事によって、実施例1-1~1-39、比較例1-1~1-32に係るアルミラミネート型の電池を作製した。なお、非水電解液として表2、3に記載のものを用いた。
[Preparation of Nonaqueous Electrolyte Battery] NCM 811 / Graphite After welding the terminal to the above NCM 811 positive electrode in argon atmosphere with dew point-50 ° C or less, sandwich both sides with two polyethylene separators (5 x 6 cm) and further The negative electrode active material surface was pinched | interposed with two graphite negative electrodes which welded the terminal in advance so that a negative electrode active material surface might be opposite. Then, they are placed in an aluminum laminate bag in which an opening on one side is left, and after the non-aqueous electrolyte is vacuum-injected, the opening is sealed with heat to obtain Examples 1-1 to 1-39. Then, aluminum laminate type batteries according to Comparative Examples 1-1 to 1-32 were produced. In addition, the thing of Table 2, 3 was used as a non-aqueous electrolyte.
 〔初期充放電〕
 組み立てた上記の電池は、正極活物質重量で規格した容量は73mAhとなった。電池を25℃恒温槽に入れその状態で充放電装置と接続した。充電レート0.2C(5時間で満充電となる電流値)にて4.2Vまで充電を行った。4.2Vを1時間維持した後に、放電レート0.2Cにて3.0Vまで放電を行った。これを充放電1サイクルとし、計3サイクルの充放電を行って電池を安定化させた。
[Initial charge and discharge]
The assembled battery described above had a capacity of 73 mAh, which was standardized by the weight of the positive electrode active material. The battery was placed in a 25 ° C. constant temperature bath and connected to a charge / discharge device in that state. The battery was charged to 4.2 V at a charge rate of 0.2 C (current value that fully charges in 5 hours). After maintaining 4.2 V for 1 hour, discharge was performed to 3.0 V at a discharge rate of 0.2C. This was defined as one cycle of charge and discharge, and a total of three cycles of charge and discharge were performed to stabilize the battery.
 〔400サイクル後 容量測定試験(サイクル特性評価)〕
 次に、50℃の恒温槽に電池を入れて2時間静置した後に、充電レート2Cにて4.2Vまで充電を行った。4.2Vに到達後はその電圧を1時間維持した後、放電レート2Cにて3.0Vまで放電を行った。この50℃の環境下での2Cでの充放電を400サイクル繰り返した。そして以下の計算式よりサイクル後の容量維持率を算出した。
容量維持率[%]=(400サイクル後の放電容量/1サイクル目の放電容量)×100
[After 400 cycles, capacity measurement test (cycle characteristic evaluation)]
Next, the battery was put in a thermostat of 50 ° C. and allowed to stand for 2 hours, and then charging was performed to 4.2 V at a charge rate of 2C. After reaching 4.2 V, the voltage was maintained for 1 hour and then discharged to 3.0 V at a discharge rate of 2C. The charge and discharge at 2C in an environment of 50 ° C. were repeated 400 cycles. And the capacity retention rate after the cycle was calculated from the following formula.
Capacity retention rate [%] = (discharge capacity after 400 cycles / discharge capacity at first cycle) × 100
 〔Ni溶出量測定〕
 400サイクル後の電池を大気非暴露の環境下で分解し、負極を取り出した。回収した負極は、炭酸ジメチルで洗浄した後に集電体上の活物質層を削り取って回収した。回収した活物質層は14.0質量%の高純度硝酸水溶液に加え、150℃で2時間加熱を行った。残渣の全量を超純水に溶解させた水溶液を、誘導結合プラズマ発光分光分析装置(島津製作所製ICPS-7510)にて測定し、活物質層中に含まれるNi成分の量[μg/g](Ni成分/負極活物質層)を求めた。上記の〔黒鉛負極の作製〕で得られた試験用負極のみ(電池に組み込む前の試験用負極)を同様に炭酸ジメチル洗浄した後に集電体上の活物質層を削り取って回収した。回収した活物質層について、上記と同様の処理を経て、誘導結合プラズマ発光分光分析装置にて、負極活物質層中に含まれるNi成分の量を測定したところ、検出下限1.0μg/g未満(Ni成分/負極活物質層)であったことから、400サイクル後の電池から取り出した負極活物質層から定量されたNi成分は全て正極活物質から溶出したと言える。
[Ni elution amount measurement]
After 400 cycles, the battery was disassembled in an atmosphere not exposed environment, and the negative electrode was taken out. The collected negative electrode was washed with dimethyl carbonate, and then the active material layer on the current collector was scraped off and collected. The recovered active material layer was added to a 14.0 mass% high-purity nitric acid aqueous solution and heated at 150 ° C. for 2 hours. The amount of the Ni component [μg / g] contained in the active material layer was measured with an inductively coupled plasma emission spectrophotometer (ICPS-7510 manufactured by Shimadzu Corp.) using an aqueous solution in which the entire amount of the residue was dissolved in ultrapure water. (Ni component / negative electrode active material layer) was determined. Similarly, only the test negative electrode (a test negative electrode before being incorporated into a battery) obtained in the above [Production of Graphite Negative Electrode] was similarly washed with dimethyl carbonate, and then the active material layer on the current collector was scraped off and collected. The amount of Ni component contained in the negative electrode active material layer was measured with an inductively coupled plasma emission spectrometry after the same process as described above for the collected active material layer, and the detection lower limit of less than 1.0 μg / g ( Since it was Ni component / negative electrode active material layer), it can be said that all Ni components quantified from the negative electrode active material layer taken out from the battery after 400 cycles were eluted from the positive electrode active material.
 NCM811/黒鉛の電極構成の電池の評価結果を表6、7に示す。比較例1-9、1-10、実施例1-13~1-17に関しては、成分(III)が含まれない電解液を用いた比較例1-9の400サイクル後容量維持率、Ni溶出量をそれぞれ100としたときの相対値として示した。また、それ以外の実施例、比較例に関しては、それぞれの電解液組成において、成分(IV)が含まれない組成の電解液を用いた比較例の400サイクル後容量維持率、Ni溶出量をそれぞれ100としたときの相対値として示した。 Tables 6 and 7 show the evaluation results of the NCM811 / graphite electrode configuration battery. Regarding Comparative Examples 1-9, 1-10, and Examples 1-13 to 1-17, after 400 cycles, the capacity retention ratio of the Comparative Example 1-9 using the electrolytic solution not containing the component (III), Ni elution It showed as a relative value when quantity was made into 100 each. In addition, with respect to the other examples and comparative examples, the capacity retention ratio after 400 cycles of the comparative example using an electrolytic solution having a composition not containing the component (IV) in each electrolytic solution composition, and the amount of eluted Ni It is shown as a relative value when taken as 100.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 ケイ素化合物(1-1)を使用し、その添加量を特に好適な0.08~0.50質量%の範囲内である0.25質量%に固定して、LiSO3Fの量を0.00質量%から5.50質量%に変化させた場合、LiSO3Fの量が増えるにつれてNiの溶出を抑制する傾向が見られた。LiSO3Fの量が2.40質量%まではNi溶出量の抑制とともに容量維持率の向上が見られた(実施例1-1~1-5、比較例1-1)。4.50質量%では更なる容量維持率の向上が得られず(実施例1-6)、5.50質量%に至っては2.40、4.50質量%と比べた時の容量維持率の低下が見られた(比較例1-2)。これは、添加量が多すぎるために正極集電体のアルミニウム等へ悪影響が顕在化したためだと思われる。 Using the silicon compound (1-1) and fixing its addition amount to 0.25% by mass, which is a particularly preferable range of 0.08 to 0.50% by mass, the amount of LiSO 3 F is adjusted to 0. 0. When changing from 00% by mass to 5.50% by mass, a tendency was observed to suppress the elution of Ni as the amount of LiSO 3 F increased. When the amount of LiSO 3 F was up to 2.40% by mass, the improvement of the capacity retention rate was observed together with the suppression of the Ni elution amount (Examples 1-1 to 1-5, Comparative Example 1-1). No further improvement in capacity retention rate can be obtained at 4.50% by mass (Example 1-6), and the capacity retention rate when compared to 2.40 and 4.50% by mass at 5.50% by mass The decrease of was observed (Comparative Example 1-2). This is considered to be due to the fact that the adverse effect appeared to aluminum of the positive electrode current collector and the like because the addition amount was too large.
 ケイ素化合物(1-2)、(1-12)、(1-15)を用いた結果について比較すると、(1-1)を用いた場合と同様の傾向が確認された(実施例1-7~1-12、比較例1-3~1-8)。LiSO3Fの量が0.00質量%から0.60質量%、1.40質量%と増加するにつれて、容量維持率の向上だけでなくNi溶出量の低減が見られた。また、5.50質量%添加においては、さらなるNi溶出抑制が確認されたものの、1.40質量%と比べた時の容量維持率の低下が見られ、正極集電体のアルミニウム等へ悪影響が顕在化したことが窺われた。 When the results of using the silicon compounds (1-2), (1-12) and (1-15) were compared, the same tendency as in the case of using (1-1) was confirmed (Example 1-7) To 1-12, Comparative Examples 1-3 to 1-8). As the amount of LiSO 3 F was increased from 0.00% by mass to 0.60% by mass and 1.40% by mass, not only the improvement of the capacity retention but also the reduction of the Ni elution amount were observed. In addition, although the further suppression of Ni elution was confirmed at 5.50 mass% addition, a decrease in capacity retention rate was observed when compared with 1.40 mass%, and there was an adverse effect on aluminum etc. of the positive electrode current collector. It was told that it had become apparent.
 実施例1-1~1-6の結果から明らかであるように、容量維持率、Ni溶出抑制の両方に向上効果が見られるのはLiSO3Fが2.40質量%添加までである。ただし、更なる長期試験や、温度を上げた試験においてはよりLiSO3Fの添加量が少ない場合においても正極集電体のアルミニウム等への悪影響が見えてくる可能性も考えられるため、さらには、LiSO3Fの添加コストや性能向上の上昇幅をも総合して鑑みると、0.10~2.50質量%がよりバランスの取れた添加量であり、0.50~1.50質量%が特にバランスの取れた添加量と言える。
 そこで、これ以降の実施例及び比較例ではLiSO3Fの添加量が特に好適な0.50~1.50質量%の範囲内である1.00質量%に固定して実験を行っている。
As is clear from the results of Examples 1-1 to 1-6, the improvement effect is seen in both the capacity retention rate and the Ni elution suppression until the addition of 2.40% by mass of LiSO 3 F. However, even in the case where the addition amount of LiSO 3 F is smaller than in the long-term test or the test in which the temperature is raised, the adverse effect of the positive electrode current collector on aluminum etc. may be observed. In view of the cost of LiSO 3 F addition and the increase in performance improvement as well, 0.10 to 2.50% by mass is a more balanced addition, and 0.50 to 1.50% by mass. Is a particularly well-balanced addition amount.
Therefore, in the following Examples and Comparative Examples, the experiment is performed by fixing the addition amount of LiSO 3 F to 1.00 mass% which is in the particularly preferable range of 0.50 to 1.50 mass%.
 上述の通り、LiSO3Fの量を1.00質量%に固定した上で、ケイ素化合物(1-1)の添加量を0.00~2.50質量%まで増加させた時の評価を行ったところ(比較例1-9、1-10、実施例1-13~1-17)、添加量が0.02質量%から1.50質量%までは、徐々に容量維持率の向上が見られると共に、Ni溶出量の増加が見られた(実施例1-13~1-17)。それに対して、添加量を2.50質量%に増やすと、容量維持率の向上は見られずに、Ni溶出量の増加のみが確認された(比較例1-10)。 As described above, after fixing the amount of LiSO 3 F to 1.00% by mass, the evaluation is performed when the addition amount of the silicon compound (1-1) is increased to 0.00 to 2.50% by mass. The results (Comparative Examples 1-9 and 1-10, Examples 1-13 to 1-17) show that the capacity retention rate gradually improves when the addition amount is from 0.02% by mass to 1.50% by mass. As a result, the elution amount of Ni increased (Examples 1-13 to 1-17). On the other hand, when the addition amount was increased to 2.50% by mass, only the increase of the Ni elution amount was confirmed without the improvement of the capacity retention rate (Comparative Example 1-10).
 当然ながら、Niの溶出は抑えつつ、可能な限り容量維持率を向上させる事が望まれる。上記の比較例1-9、1-10、実施例1-13~1-17の結果から、一般式(1)で示される不飽和結合を有するケイ素化合物の濃度が0.01~2.00質量%である実施例1-13~1-17は、Ni溶出量を大幅に増大させることなく良好な耐久性向上効果を発揮し易い。さらに同濃度が0.04~1.00質量%である実施例1-14~1-16は、上述の効果をより発揮し易く、同濃度が0.08~0.50質量%である実施例1-15~1-16は、上述の効果を特に発揮し易い。
 これ以降の実施例ではLiSO3Fの添加量((IV)成分の添加量)を、特に好適な0.50~1.50質量%の範囲内である1.00質量%に固定して実験を行っている。
 また、これ以降の実施例及び比較例では一般式(1)で示される不飽和結合を有するケイ素化合物の添加量を、特に好適な0.08~0.50質量%の範囲内である0.25質量%に固定して実験を行っている。
Of course, it is desirable to improve the capacity retention rate as much as possible while suppressing the elution of Ni. From the results of Comparative Examples 1-9 and 1-10 and Examples 1-13 to 1-17 above, the concentration of the silicon compound having an unsaturated bond represented by General Formula (1) is 0.01 to 2.00. Examples 1-13 to 1-17 which are% by mass are likely to exhibit a good durability improvement effect without significantly increasing the amount of Ni elution. Furthermore, Examples 1-14 to 1-16 having the same concentration of 0.04 to 1.00% by mass are more likely to exert the above-mentioned effects, and the examples having the same concentration of 0.08 to 0.50% by mass. Examples 1-15 to 1-16 are particularly easy to exhibit the effects described above.
In the following examples, the amount of addition of LiSO 3 F (the amount of addition of the component (IV)) is fixed to 1.00% by mass which is in the particularly preferable range of 0.50 to 1.50% by mass. It is carried out.
In addition, in the following examples and comparative examples, the addition amount of the silicon compound having an unsaturated bond represented by the general formula (1) is particularly preferably in the range of 0.08 to 0.50 mass%. The experiment is performed by fixing to 25% by mass.
 比較例1-11~1-20、実施例1-18~1-27に、一般式(1)で示される不飽和結合を有するケイ素化合物の種類を替えた時の評価結果を示した。何れの場合においても、LiSO3Fを添加しない系に比べて、LiSO3Fを1.00質量%加えた系の方が、容量維持率の向上とNi溶出の抑制が明らかに確認出来た。 Comparative Examples 1-11 to 1-20 and Examples 1-18 to 1-27 show the evaluation results when the type of the silicon compound having an unsaturated bond represented by the general formula (1) is changed. In either case, as compared to the system without addition of LiSO 3 F, towards the system plus LiSO 3 F 1.00% by weight, the capacity maintenance rate of improvement and Ni elution of inhibition was confirmed clearly.
 比較例1-21~1-32、実施例1-28~1-39に、一般式(1)で示される不飽和結合を有するケイ素化合物の種類を替え、さらに種々のその他の溶質又は添加成分を含有させた場合の評価結果を示した。何れの場合においても、LiSO3Fを添加しない系に比べて、LiSO3Fを1.00質量%加えた系の方が、容量維持率の向上とNi溶出の抑制が明らかに確認出来た。 In Comparative Examples 1-21 to 1-32, Examples 1-28 to 1-39, the kind of silicon compound having an unsaturated bond represented by the general formula (1) is changed, and various other solutes or additive components are further added. The evaluation results were shown in the case of containing. In either case, as compared to the system without addition of LiSO 3 F, towards the system plus LiSO 3 F 1.00% by weight, the capacity maintenance rate of improvement and Ni elution of inhibition was confirmed clearly.
 〔非水電解液電池の作製〕 NCA/黒鉛
 露点-50℃以下のアルゴン雰囲気で、上述のNCA正極に端子を溶接した後に、その両側をポリエチレン製セパレータ(5×6cm)2枚で挟み、更にその外側を予め端子を溶接した黒鉛負極2枚で、負極活物質面が正極活物質面と対向するように挟み込んだ。そして、それらを一辺の開口部が残されたアルミラミネートの袋に入れ、非水電解液を真空注液した後に、開口部を熱で封止する事によって、実施例2-1~2-18、比較例2-1~2-18に係るアルミラミネート型の電池を作製した。なお、非水電解液として表4、5に記載のものを用いた。
[Fabrication of non-aqueous electrolyte battery] NCA / graphite After welding a terminal to the above-mentioned NCA positive electrode under argon atmosphere with dew point-50 ° C or less, sandwich both sides with two polyethylene separators (5 x 6 cm), and further The negative electrode active material surface was pinched | interposed with two graphite negative electrodes which welded the terminal in advance so that a negative electrode active material surface might be opposite. Then, they are placed in an aluminum laminate bag in which an opening on one side is left, and after the non-aqueous electrolyte is vacuum-injected, the opening is sealed with heat, whereby Examples 2-1 to 2-18. Then, aluminum laminate type batteries according to Comparative Examples 2-1 to 2-18 were produced. In addition, the thing of Table 4, 5 was used as a non-aqueous electrolyte.
 〔初期充放電〕
 組み立てた上記の電池は、正極活物質重量で規格した容量は70mAhとなった。電池を25℃恒温槽に入れその状態で充放電装置と接続した。充電レート0.2C(5時間で満充電となる電流値)にて4.1Vまで充電を行った。4.1Vを1時間維持した後に、放電レート0.2Cにて2.7Vまで放電を行った。これを充放電1サイクルとし、計3サイクルの充放電を行って電池を安定化させた。
[Initial charge and discharge]
The above-mentioned assembled battery had a capacity of 70 mAh, which was standardized by the weight of the positive electrode active material. The battery was placed in a 25 ° C. constant temperature bath and connected to a charge / discharge device in that state. The battery was charged to 4.1 V at a charge rate of 0.2 C (current value that fully charges in 5 hours). After maintaining 4.1 V for 1 hour, discharge was performed at a discharge rate of 0.2 C to 2.7 V. This was defined as one cycle of charge and discharge, and a total of three cycles of charge and discharge were performed to stabilize the battery.
 〔400サイクル後 容量測定試験(サイクル特性評価)〕
 NCM811/黒鉛の電極構成の電池と同様の条件で評価を行った。
[After 400 cycles, capacity measurement test (cycle characteristic evaluation)]
The evaluation was performed under the same conditions as the battery of the NCM 811 / graphite electrode configuration.
 〔Ni溶出量測定〕
 NCM811/黒鉛の電極構成の電池と同様の条件で評価を行った。
[Ni elution amount measurement]
The evaluation was performed under the same conditions as the battery of the NCM 811 / graphite electrode configuration.
 評価結果を表8、9に示す。実施例2-1~2-18の容量維持率、及びNi溶出量の値は、それぞれ、比較例2-1~2-18の容量維持率、及びNi溶出量の値を100とした時の相対値である。 The evaluation results are shown in Tables 8 and 9. The values of the capacity retention rate and the elution amount of Ni of Examples 2-1 to 2-18 are the values of the retention rates of the capacity and the elution amount of Ni of Comparative Examples 2-1 to 2-18, respectively. It is a relative value.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 上記の結果から明らかなように、正極がNCAに変わっても、NCM811の場合と同様に、一般式(1)で示される不飽和結合を有する何れのケイ素化合物においても、LiSO3Fを添加しない系に比べて、LiSO3Fを1.00質量%加えた系の方が、容量維持率の向上とNi溶出の抑制が確認出来た。 As apparent from the above results, even if the positive electrode is changed to NCA, LiSO 3 F is not added to any silicon compound having an unsaturated bond represented by the general formula (1) as in the case of NCM811. Compared with the system, the system in which 1.00 mass% of LiSO 3 F was added was able to confirm the improvement of the capacity retention rate and the suppression of the Ni elution.
 また、上述と同様の手順で、表10~13に示す通りに、基準電解液1、又は基準電解液2に対して、(III)成分と(IV)成分とその他の溶質又は添加成分を表10~13に示す濃度となるように添加し、攪拌して溶解する事で、それぞれの非水電解液を得た。 Also, in the same manner as described above, as shown in Tables 10 to 13, the component (III), the component (IV), and the other solutes or the additive components are added to the reference electrolyte 1 or the reference electrolyte 2. The respective non-aqueous electrolytes were obtained by adding so as to give the concentrations shown in 10 to 13 and stirring and dissolving.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 表10、11に記載の非水電解液を用いたこと以外は実施例1-1と同様の手順で、実施例1-40~1-77、比較例1-33~1-70に係るアルミラミネート型の電池を作製し、同様の評価を行った。結果を表14、15に示す。なお、表14、15に記載の実施例、比較例に関しては、それぞれの電解液組成において、成分(IV)が含まれない組成の電解液を用いた比較例の400サイクル後容量維持率、Ni溶出量をそれぞれ100としたときの相対値として示した。 Aluminum according to Examples 1-40 to 1-77 and Comparative Examples 1-33 to 1-70 in the same manner as Example 1-1 except that the non-aqueous electrolytes listed in Tables 10 and 11 were used. A laminate type battery was produced and subjected to the same evaluation. The results are shown in Tables 14 and 15. Regarding Examples and Comparative Examples shown in Tables 14 and 15, the capacity retention ratio after 400 cycles of Comparative Example using an electrolytic solution having a composition not containing Component (IV) in each electrolytic solution composition, Ni It showed as a relative value when the amount of elution was made into 100, respectively.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 表12、13に記載の非水電解液を用いたこと以外は実施例2-1と同様の手順で、実施例2-19~2-36、比較例2-19~2-36に係るアルミラミネート型の電池を作製し、同様の評価を行った。結果を表16、17に示す。なお、表16、17に記載の実施例、比較例に関しては、それぞれの電解液組成において、成分(IV)が含まれない組成の電解液を用いた比較例の400サイクル後容量維持率、Ni溶出量をそれぞれ100としたときの相対値として示した。 Aluminum according to Examples 2-19 to 2-36 and Comparative Examples 2-19 to 2-36 in the same procedure as Example 2-1 except that the non-aqueous electrolytes listed in Tables 12 and 13 were used. A laminate type battery was produced and subjected to the same evaluation. The results are shown in Tables 16 and 17. As to the examples and comparative examples shown in Tables 16 and 17, the capacity retention ratio after 400 cycles of a comparative example using an electrolytic solution having a composition not containing the component (IV) in each electrolytic solution composition, Ni It showed as a relative value when the amount of elution was made into 100, respectively.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 表14の結果から、成分(IV)として、LiSO3Fの代わりに、一般式(2)で示されるO=S-F結合を有する化合物、一般式(3)で示されるO=P-F結合を有する化合物、一般式(4)で示されるP(=O)F2  結合を有する化合物、一般式(5)で示される化合物を用いた場合においても、成分(IV)を添加しない系に比べて、成分(IV)を1.00質量%加えた系の方が、容量維持率の向上とNi溶出の抑制が明らかに確認出来た。 From the results of Table 14, as a component (IV), instead of LiSO 3 F, a compound having an O = SF bond represented by the general formula (2), an O = PF represented by the general formula (3) Even when a compound having a bond, a compound having a P (有 す る O) F 2 bond represented by the general formula (4), or a compound represented by the general formula (5) is used in a system to which the component (IV) is not added In comparison, in the system added with 1.00% by mass of the component (IV), the improvement of the capacity retention rate and the suppression of the Ni elution were clearly confirmed.
 また、表15の結果から、上述の効果は、更にその他の溶質又は添加成分を添加した場合においても、同様に確認出来た。 In addition, from the results of Table 15, the above-described effects were similarly confirmed even when other solutes or additional components were further added.
 また、表16~17の結果から、上述の効果は、正極がNCAに変わっても、NCM811の場合と同様に確認出来た。 Further, from the results of Tables 16 to 17, the above-mentioned effects could be confirmed as in the case of NCM 811 even when the positive electrode was changed to NCA.
 また、上述と同様の手順で、表18に示す通りに、基準電解液1に対して、(III)成分と(IV)成分を表18に示す濃度となるように添加し、攪拌して溶解する事で、それぞれの非水電解液を得た。 Further, in the same procedure as described above, as shown in Table 18, the components (III) and (IV) are added to the reference electrolyte 1 so as to have the concentrations shown in Table 18, and are stirred and dissolved. By doing this, each non-aqueous electrolyte was obtained.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 表18に記載の非水電解液を用いたこと以外は実施例1-1と同様の手順で、実施例3-1~3-12に係るアルミラミネート型の電池を作製し、同様の評価を行った。結果を表19に示す。なお、表19の実施例に関しては、実施例3-12の400サイクル後容量維持率、Ni溶出量をそれぞれ100としたときの相対値として示した。 The aluminum laminate type batteries according to Examples 3-1 to 3-12 are fabricated by the same procedure as Example 1-1 except that the non-aqueous electrolyte described in Table 18 is used, and the same evaluation is performed. went. The results are shown in Table 19. In addition, about the Example of Table 19, it showed as a relative value when the capacity | capacitance maintenance factor after 400 cycles of Example 3-12 and Ni elution amount are each set to 100.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 表19の結果から、(IV)成分として化合物(3-1)を用いた実施例3-12に比べて、(IV)成分として、フルオロスルホン酸リチウム、化合物(2-1)~(2-4)、(4-1)~(4-2)、(5-1)~(5-4)を用いた実施例3-1~3-11の方が、400サイクル後容量維持率及びNi溶出量のいずれか或いは両方の評価結果がより優れることが確認された。このことから、(IV)成分として、フルオロスルホン酸リチウム、上記一般式(2)で示されるO=S-F結合を有する化合物、上記一般式(4)で示されるP(=O)F2結合を有する化合物、及び上記一般式(5)で示される化合物からなる群から選ばれる少なくとも1種を用いると、サイクル後の容量維持率とNi溶出の抑制効果をよりバランスよく発揮できることがわかる。 From the results in Table 19, lithium fluorosulfonate as the component (IV), the compounds (2-1) to (2- (2) to (2- (2)) were used as the component (IV) as compared to Example 3-12 using the compound (3-1) as the component (IV). 4) Examples 3-1 to 3-11 using (4-1) to (4-2) and (5-1) to (5-4) show the capacity retention ratio and Ni after 400 cycles. It was confirmed that the evaluation result of one or both of the elution amounts is more excellent. From this, as the component (IV), lithium fluorosulfonate, a compound having an O = SF bond represented by the above general formula (2), P (= O) F 2 represented by the above general formula (4) It can be seen that the use of at least one member selected from the group consisting of a compound having a bond and a compound represented by the above general formula (5) can exhibit a balance between the capacity retention rate after cycling and the Ni elution suppression effect.
 また、上述と同様の手順で、表20に示す通りに、基準電解液1に対して、(III)成分と(IV)成分を表20に示す濃度となるように添加し、攪拌して溶解する事で、それぞれの非水電解液を得た。 Further, in the same procedure as described above, as shown in Table 20, the component (III) and the component (IV) are added to the reference electrolyte 1 so as to have the concentrations shown in Table 20, stirred and dissolved. By doing this, each non-aqueous electrolyte was obtained.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 表20に記載の非水電解液を用いたこと以外は実施例1-1と同様の手順で、実施例4-1~4-28、比較例4-1に係るアルミラミネート型の電池を作製し、同様の評価を行った。結果を表21に示す。なお、表21の実施例、比較例に関しては、比較例4-1の400サイクル後容量維持率を100としたときの相対値として示した。 In the same manner as in Example 1-1 except that the non-aqueous electrolyte described in Table 20 was used, production of an aluminum laminate type battery according to Examples 4-1 to 4-28 and Comparative Example 4-1 And made a similar assessment. The results are shown in Table 21. In addition, regarding the example of Table 21 and the comparative example, it is shown as a relative value when the capacity retention ratio after 400 cycles of Comparative Example 4-1 is 100.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 表21の結果から、(III)成分を含有しない比較例4-1に比べて、(III)成分として、化合物(1-1)~(1-28)を用いた実施例4-1~4-28では耐久性(400サイクル後容量維持率)の向上が確認された。一般式(1)のaが3又は4である、化合物(1-1)~(1-4)、(1-6)~(1-28)を用いた実施例では、3%以上という大きな耐久性(400サイクル後容量維持率)の向上が確認された。
 中でも、化合物(1-1)、(1-2)、(1-4)、(1-10)、(1-12)、(1-15)、(1-22)、(1-24)、(1-25)、(1-28)を用いた実施例では、より大きな耐久性(400サイクル後容量維持率)の向上が確認された。
 更にその中でも、化合物(1-1)、(1-2)、(1-12)、(1-15)を用いた実施例では、特に大きな耐久性(400サイクル後容量維持率)の向上が確認された。
From the results in Table 21, Examples 4-1 to 4 in which compounds (1-1) to (1-28) were used as the component (III) as compared to Comparative Example 4-1 which did not contain the component (III) At -28, improvement in durability (capacity retention rate after 400 cycles) was confirmed. In Examples using compounds (1-1) to (1-4) and (1-6) to (1-28) in which a in the general formula (1) is 3 or 4, a large value of 3% or more An improvement in durability (volume retention after 400 cycles) was confirmed.
Among them, compounds (1-1), (1-2), (1-4), (1-10), (1-12), (1-15), (1-22), (1-24) In the examples using (1-25) and (1-28), it was confirmed that the durability (capacity maintenance rate after 400 cycles) was improved.
Furthermore, among the examples, in the examples using the compounds (1-1), (1-2), (1-12) and (1-15), the improvement of the particularly high durability (capacity retention after 400 cycles) confirmed.
 次に、以下の通り、上記第2の実施形態に係る非水電解液を用いた非水電解液電池を作製し、性能評価を行った。 Next, as described below, a non-aqueous electrolyte battery using the non-aqueous electrolyte according to the second embodiment was manufactured, and performance evaluation was performed.
 〔NCM811正極の作製〕
 LiNi0.8Mn0.1Co0.12粉末91.0質量%に、バインダーとしてポリフッ化ビニリデン(以降PVDF)を4.5質量%、導電材としてアセチレンブラックを4.5質量%混合し、さらにN-メチル-2-ピロリドン(以降NMP)を添加し、正極合材ペーストを作製した。このペーストをアルミニウム箔(A1085)の両面に塗布して、乾燥、加圧を行った後に、4×5cmに打ち抜くことで試験用NCM811正極を得た。
[Fabrication of NCM 811 positive electrode]
Mix 9% by mass of LiNi 0.8 Mn 0.1 Co 0.1 O 2 powder, 4.5% by mass of polyvinylidene fluoride (hereinafter PVDF) as a binder, and 4.5% by mass of acetylene black as a conductive material, and further N-methyl. -2-Pyrrolidone (hereinafter NMP) was added to prepare a positive electrode mixture paste. This paste was applied to both sides of an aluminum foil (A1085), dried and pressurized, and then punched into 4 × 5 cm to obtain an NCM 811 positive electrode for test.
 〔ケイ素含有黒鉛負極の作製〕
 人造黒鉛粉末85質量%に、ナノシリコン7質量%、導電材(HS-100)3質量%、カーボンナノチューブ(VGCF)2質量%、そしてスチレンブタジエンゴム2質量%、カルボキシメチルセルロースナトリウム1質量%と水を混合し、負極合材ペーストを作製した。このペーストを銅箔の片面に塗布して、乾燥、加圧を行った後に、4×5cmに打ち抜くことで試験用ケイ素含有黒鉛負極を得た。
[Fabrication of silicon-containing graphite negative electrode]
85% by mass of artificial graphite powder, 7% by mass of nanosilicon, 3% by mass of conductive material (HS-100), 2% by mass of carbon nanotube (VGCF), 2% by mass of styrene butadiene rubber, 1% by mass of sodium carboxymethylcellulose and water Were mixed to prepare a negative electrode mixture paste. The paste was applied to one side of a copper foil, dried and pressurized, and then punched out into 4 × 5 cm to obtain a silicon-containing graphite negative electrode for test.
 〔LiPF6溶液の調製〕
 露点-60℃以下のグローブボックス内において、EC、FEC、EMC、DMCをそれぞれ2:1:3:4の体積比率で混合させた。その後、内温を40℃以下に保ちながら1.0Mの濃度となる量のLiPF6を添加し、攪拌して完全に溶解させる事でLiPF6溶液を得た。
[Preparation of LiPF 6 solution]
In a glove box with a dew point of −60 ° C. or less, EC, FEC, EMC, and DMC were mixed at a volume ratio of 2: 1: 3: 4, respectively. Thereafter, while maintaining the internal temperature at 40 ° C. or less, LiPF 6 was added in an amount to give a concentration of 1.0 M, and was completely dissolved by stirring to obtain a LiPF 6 solution.
 〔電解液の調製〕
 LiPF6溶液に対して0.1質量%に相当するケイ素化合物(1-2)を加え、1時間攪拌して溶解した。これを非水電解液1-(1-2)-0.1とした。次に、LiPF6溶液に対して0.1質量%に相当するケイ素化合物(1-2)と、1.0質量%に相当する環状硫黄化合物(6-1)を加え、1時間攪拌して溶解した。これを非水電解液1-(1-2)-0.1-(6-1)-1.0とした。以下、同様に表22、23に示す通りに、(III)成分と(IV)成分を表22、23に示す濃度となるように添加し、攪拌して溶解する事で、それぞれの非水電解液を得た。
 なお、表中でPRSは1,3-プロペンスルトン、MMDSはメチレンメタンジスルホネートを意味する。
Preparation of Electrolytic Solution
The silicon compound (1-2) corresponding to 0.1% by mass with respect to the LiPF 6 solution was added and dissolved by stirring for 1 hour. This was designated as non-aqueous electrolyte 1- (1-2) -0.1. Next, a silicon compound (1-2) corresponding to 0.1% by mass and a cyclic sulfur compound (6-1) corresponding to 1.0% by mass with respect to the LiPF 6 solution are added and stirred for 1 hour. It dissolved. This was designated as non-aqueous electrolyte 1- (1-2) -0.1- (6-1) -1.0. Likewise, as shown in Tables 22 and 23, components (III) and (IV) are added to the concentrations shown in Tables 22 and 23 and dissolved by stirring to dissolve each non-aqueous electrolysis. I got a liquid.
In the Table, PRS means 1,3-propene sultone, and MMDS means methylene methane disulfonate.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 同様に、表24に示す通りに、LiPF6溶液に対して、(III)成分と(IV)成分とその他の溶質又は添加成分を表24に示す濃度となるように添加し、攪拌して溶解する事で、それぞれの非水電解液を得た。 Similarly, as shown in Table 24, the component (III), the component (IV), and other solutes or added components are added to the LiPF 6 solution to a concentration shown in Table 24, and dissolved by stirring. By doing this, each non-aqueous electrolyte was obtained.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 〔電解液の50℃保存安定性の評価〕
 容量250mLのステンレス製ボトル(本体とキャップの材質はSUS304で酸洗浄品。パッキン材質はテトラフルオロエチレン-パープルオロビニルエーテル共重合体。)に各非水電解液を150mL加え、密閉した後に50℃の恒温槽内で保管した。1ヵ月後に恒温槽から取り出し、室温で24時間静置した後、ハーゼンメーター(日本電色工業製、TZ6000)を使用してハーゼン色数(APHA)を測定した。
[Evaluation of storage stability of the electrolyte at 50 ° C.]
150 mL of each non-aqueous electrolyte was added to a 250 mL stainless steel bottle (the main body and cap are made of SUS 304 and acid-cleaned, and the packing material is tetrafluoroethylene-puro uro vinyl ether copolymer) and sealed at 50 ° C It stored in a thermostat. After one month, it was taken out of the thermostatic bath and allowed to stand at room temperature for 24 hours, and then the Hazen color number (APHA) was measured using a Hazen meter (Nippon Denshoku Kogyo, TZ6000).
 〔非水電解液電池の作製〕
 露点-50℃以下のアルゴン雰囲気で、上述のNCM811正極に端子を溶接した後に、その両側をポリエチレン製セパレータ(5×6cm)2枚で挟み、更にその外側を予め端子を溶接したケイ素含有黒鉛負極2枚で、負極活物質面が正極活物質面と対向するように挟み込んだ。そして、それらを一辺の開口部が残されたアルミラミネートの袋に入れ、非水電解液を真空注液した後に、開口部を熱で封止する事によって、実施例及び比較例に係るアルミラミネート型の電池を作製した。なお、非水電解液として表1~3に記載のものを用いた。なお、非水電解液は新しいもの(上記の「電解液の50℃保存安定性の評価」を行っていないもの)を使用した。
[Fabrication of non-aqueous electrolyte battery]
A terminal is welded to the above NCM 811 positive electrode in an argon atmosphere with a dew point of -50 ° C. or less, and then both sides are sandwiched between two polyethylene separators (5 × 6 cm), and further the terminal is welded in advance. Two sheets were inserted so that the negative electrode active material surface faced the positive electrode active material surface. And after putting them in the bag of the aluminum laminate in which the opening part of one side was left, after vacuum-injecting non-aqueous electrolyte, the opening part is sealed with heat, The aluminum laminate which concerns on an Example and a comparative example Type batteries were made. The non-aqueous electrolytes described in Tables 1 to 3 were used. In addition, the non-aqueous electrolyte used the new thing (The thing which did not evaluate above "50 degreeC storage stability of electrolyte solution").
 〔初期充放電〕
 組み立てた上記の電池は、正極活物質重量で規格した容量は75mAhとなった。電池を25℃恒温槽に入れその状態で充放電装置と接続した。充電レート0.2C(5時間で満充電となる電流値)にて4.2Vまで充電を行った。4.2Vを1時間維持した後に、放電レート0.2Cにて3.0Vまで放電を行った。これを充放電1サイクルとし、計3サイクルの充放電を行って電池を安定化させた。
[Initial charge and discharge]
The above-described assembled battery had a capacity of 75 mAh, which was specified by weight of the positive electrode active material. The battery was placed in a 25 ° C. constant temperature bath and connected to a charge / discharge device in that state. The battery was charged to 4.2 V at a charge rate of 0.2 C (current value that fully charges in 5 hours). After maintaining 4.2 V for 1 hour, discharge was performed to 3.0 V at a discharge rate of 0.2C. This was defined as one cycle of charge and discharge, and a total of three cycles of charge and discharge were performed to stabilize the battery.
 〔70℃ 2週間保存後 回復容量の測定〕
 次に、充電レート0.2Cで4.2Vまで充電を行った後に、セルを充放電装置から取外し、70℃の恒温槽内に入れた。2週間後にセルを恒温槽から取り出し、室温で24時間静置した後、放電レート0.2Cで3.0Vまで放電させた。続いて充電レート0.2Cで4.2Vまでの充電と、放電レート0.2Cで3.0Vまでの放電を行い、この時の放電で得られた容量を回復容量とした。
[Measurement of recovery volume after storage at 70 ° C for 2 weeks]
Next, after charging to 4.2 V at a charge rate of 0.2 C, the cell was removed from the charge / discharge device and placed in a 70 ° C. thermostat. After 2 weeks, the cell was removed from the thermostat, allowed to stand at room temperature for 24 hours, and then discharged to 3.0 V at a discharge rate of 0.2C. Subsequently, charge to 0.2 V at a charge rate of 0.2 C and discharge to 3.0 V at a discharge rate of 0.2 C were performed, and the capacity obtained by the discharge at this time was regarded as a recovery capacity.
 上記の電解液の50℃保存安定性の評価結果(APHA)と、同様組成の電解液を用いて作製されたセルの回復容量の測定結果を表25、26に示す。回復容量は、環状硫黄化合物を含まない電解液を用いたセル(例えば比較例5-1、5-3、5-5等)の値をそれぞれ100として、環状硫黄化合物(6)、PRS、又はMMDSを含む電解液を用いたセルの相対値を示した。 Tables 25 and 26 show the evaluation results (APHA) of the storage stability of the above electrolyte solution at 50 ° C. and the measurement results of the recovery capacity of a cell manufactured using an electrolyte solution having the same composition. The recovery capacity is defined as the cyclic sulfur compound (6), PRS, or the cyclic sulfur compound (6), with the value of cells (for example, Comparative Examples 5-1, 5-3, 5-5, etc.) using an electrolytic solution containing no cyclic sulfur compound being 100 respectively. The relative values of cells using an electrolyte containing MMDS are shown.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 ケイ素化合物(1-2)に対してPRSを1.0質量%加えると、セルの回復容量は10~23%の向上が見られるが、50℃保存後のAPHAは38~55のものが103~120へと急上昇している(比較例5-1と比較例5-2、比較例5-3と比較例5-4、比較例5-5と比較例5-6の比較)。APHAの上昇は液の着色の増加を意味しており、これは電解液に含まれる成分が分解・変質することによるものと考えられる。なお、ケイ素化合物(1-2)の添加量が0.1質量%、0.25質量%、0.5質量%と増加するにつれてAPHAの値は若干の増加が見られるが(比較例5-1、5-3、5-5の比較)、PRSを加える事で大幅に増加している事から、ケイ素化合物(1-2)よりもPRSの分解の方が顕著である事が分かる。そして、PRSに換えて環状硫黄化合物(6-1)を1.0質量%加えたところ、APHAをほとんど増加させる事無く回復容量の向上が見られており(比較例5-1と実施例5-1、比較例5-3と実施例5-3、比較例5-5と実施例5-9の比較)、環状硫黄化合物(6-1)が50℃保存後でも分解していないことが分かる。また、環状硫黄化合物(6-1)を(6-5)、(6-11)、(6-19)、(6-31)に換える事でもAPHAの増加無しに回復容量を向上させることが可能であった(比較例5-3と実施例5-5、5-6、5-7、5-8の比較)。 When 1.0% by mass of PRS is added to the silicon compound (1-2), the recovery capacity of the cell is improved by 10 to 23%, but the APHA after storage at 50 ° C. is 38 to 55 103 There is a sharp increase to ̃120 (comparative examples 5-1 and 5-2, comparative examples 5-3 and 5-4, and comparative examples 5-5 and 5-6). An increase in APHA means an increase in coloration of the solution, which is considered to be due to decomposition and deterioration of components contained in the electrolyte. Although the value of APHA slightly increases as the addition amount of the silicon compound (1-2) increases to 0.1% by mass, 0.25% by mass, and 0.5% by mass (Comparative Example 5) 1. Comparison of 1, 5-3, and 5-5) and the increase by adding PRS indicate that the decomposition of PRS is more remarkable than the silicon compound (1-2). And when it replaced with PRS and added 1.0 mass% of cyclic sulfur compounds (6-1), improvement of recovery capacity was seen without almost increasing APHA (comparative example 5-1 and Example 5) -1, Comparative Example 5-3 and Example 5-3, Comparative Example 5-5 and Example 5-9), that the cyclic sulfur compound (6-1) is not decomposed even after storage at 50 ° C. I understand. Also, changing the cyclic sulfur compound (6-1) to (6-5), (6-11), (6-19), or (6-31) can improve the recovery capacity without increasing APHA. It was possible (comparison of Comparative Example 5-3 and Examples 5-5, 5-6, 5-7, 5-8).
 ケイ素化合物(1-9)、(1-22)、(1-4)、(1-15)、(1-28)をそれぞれ用いた場合でも、PRSを加えると顕著にAPHAが増加するのに対し(比較例6-3と比較例6-4、比較例7-3と比較例7-4、比較例9-1と比較例9-2、比較例11-1と比較例11-2、比較例13-1と比較例13-2の比較)、環状硫黄化合物として(6-1)、(6-5)、(6-11)、(6-21)、(6-22)、(6-31)、(6-38)、(6-40)を加えた場合に、APHAの大幅な増加無しに回復容量を向上させることができた(実施例6-3、実施例6-5~6-8、実施例7-3、実施例7-5~7-8、実施例9-1~9-2、実施例11-1~11-2、実施例13-1~13-2)。 Even when silicon compounds (1-9), (1-22), (1-4), (1-15) and (1-28) are used, however, the addition of PRS significantly increases APHA. (Comparative Example 6-3 and Comparative Example 6-4, Comparative Example 7-3 and Comparative Example 7-4, Comparative Example 9-1 and Comparative Example 9-2, and Comparative Example 11-1 and Comparative Example 11-2, Comparative Example 13-1 and Comparative Example 13-2), cyclic sulfur compounds (6-1), (6-5), (6-11), (6-21), (6-22), ( When 6-31), (6-38), and (6-40) were added, the recovery capacity could be improved without a significant increase in APHA (Example 6-3, Example 6-5). To 6-8, Example 7-3, Examples 7-5 to 7-8, Examples 9-1 to 9-2, Examples 11-1 to 11-2, Examples 13-1 to 13-2 ).
 PRSに比べてMMDSは更に安定性が低く、ケイ素化合物(1-1)、(1-12)、(1-24)に対して1質量%のMMDSを添加するとPRS添加時以上のAPHAの増加が観察された(比較例8-1と8-2、比較例10-1と10-2、比較例12-1と12-2)。しかし、ここでもMMDSに替えて環状硫黄化合物(6-1)、(6-5)、(6-11)、(6-19)、(6-22)、(6-38)を使用する事で、大幅なAPHAの増加無しに回復容量を向上させることができた(実施例8-1~8-2、実施例10-1~10-2、実施例12-1~12-2)。 The stability of MMDS is lower than that of PRS, and when 1% by mass of MMDS is added to silicon compounds (1-1), (1-12) and (1-24), the increase in APHA over PRS addition increases Were observed (Comparative Examples 8-1 and 8-2, Comparative Examples 10-1 and 10-2, and Comparative Examples 12-1 and 12-2). However, here too, in place of MMDS, cyclic sulfur compounds (6-1), (6-5), (6-11), (6-19), (6-22), (6-38) may be used. Thus, the recovery capacity could be improved without a significant increase in APHA (Examples 8-1 to 8-2, Examples 10-1 to 10-2, Examples 12-1 to 12-2).
 成分(I)、(II)、(III)、(IV)に、その他の成分としてLiSO3F、LDFOB、LiPO22、LDFBOPの何れかを加えた電解液の50℃保存安定性の評価結果(APHA)と、同様組成の電解液を用いて作製されたセルの回復容量の測定結果を表27に示す。回復容量は、その他の成分を含まない電解液を用いたセルの値をそれぞれ100としたときの相対値として示した。 Evaluation of storage stability of the electrolyte prepared by adding any of LiSO 3 F, LDFOB, LiPO 2 F 2 and LDFBOP to the components (I), (II), (III) and (IV) as other components Table 27 shows the results (APHA) and measurement results of recovery capacity of cells produced using electrolytes of the same composition. The recovery capacity was shown as a relative value when the value of the cell using the electrolyte solution which does not contain other components is set to 100, respectively.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 ここではケイ素化合物(1-1)、(1-2)、(1-4)、(1-9)、(1-12)、(1-15)、(1-22)、(1-24)、(1-28)と環状硫黄化合物(6-1)、(6-5)、(6-11)、(6-21)、(6-22)の組み合わせに対して、その他の成分としてLiSO3F、LDFOB、LiPO22、LDFBOPの何れかを追加したが、この追加によって、APHAに大きな影響を与えることなく、回復容量の更なる向上を達成する事が出来た。 Here, silicon compounds (1-1), (1-2), (1-4), (1-9), (1-12), (1-15), (1-22), (1-24) And combinations of (1-28) and cyclic sulfur compounds (6-1), (6-5), (6-11), (6-21), and (6-22) as other components. Although one of LiSO 3 F, LDFOB, LiPO 2 F 2 , and LDFBOP was added, further improvement of the recovery capacity could be achieved without significantly affecting APHA.

Claims (35)

  1.  少なくともニッケルを含む1種以上の酸化物を正極活物質として含み、当該正極活物質に含まれる金属中のニッケル含有量が30~100質量%である正極を含む非水電解液電池用の電解液であって、
     (I)非水有機溶媒、
     (II)イオン性塩である、溶質、
     (III)一般式(1)で示される化合物からなる群から選ばれる少なくとも1種、及び、
     (IV)フルオロスルホン酸リチウム、一般式(2)で示されるO=S-F結合を有する化合物、一般式(3)で示されるO=P-F結合を有する化合物、一般式(4)で示されるP(=O)F2結合を有する化合物、及び一般式(5)で示される化合物からなる群から選ばれる少なくとも1種を含み、
     前記(I)~(IV)の総量100質量%に対する、前記(IV)の濃度が0.01~5.00質量%である、非水電解液電池用電解液。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、R1はそれぞれ互いに独立して炭素-炭素不飽和結合を有する基を表す。R2はそれぞれ互いに独立して、フッ素原子、炭素数が1~10のアルキル基、炭素数が1~10のアルコキシ基、炭素数が3~10のアリル基、炭素数が2~10のアルキニル基、炭素数が6~15のアリール基、炭素数が3~10のアリルオキシ基、炭素数が2~10のアルキニルオキシ基、及び炭素数が6~15のアリールオキシ基からなる群から選ばれる基を示し、これらの基はフッ素原子及び/又は酸素原子を有していても良い。aは2~4である。]
    Figure JPOXMLDOC01-appb-C000002
    [一般式(2)中、R3は、アルキル基、アルケニル基、アリール基、アルコキシ基、又はアリールオキシ基である。]
    Figure JPOXMLDOC01-appb-C000003
    [一般式(3)中、R4は、アルコキシ基、又はアリールオキシ基であり、R5は、OLiである(なお、Oは酸素、Liはリチウムを表す)。]
    Figure JPOXMLDOC01-appb-C000004
    [一般式(4)中、R6は、アリール基、アルコキシ基、又はアリールオキシ基である。]
    Figure JPOXMLDOC01-appb-C000005
    [一般式(5)中、Xは酸素原子、又はハロゲン原子に置換されていてもよいメチレン基であり、Yはリン原子、又は硫黄原子である。nはYがリン原子の場合は0、硫黄原子の場合は1である。R7及びR8はそれぞれ独立で、ハロゲン原子、ハロゲン原子に置換されていてもよい、アルキル基、アルケニル基、又はアリール基である。なお、Yが硫黄原子の場合、R8は存在しない。]
    An electrolytic solution for a non-aqueous electrolyte battery including a positive electrode containing at least one oxide containing at least nickel as a positive electrode active material, and the nickel content in the metal contained in the positive electrode active material is 30 to 100% by mass And
    (I) non-aqueous organic solvent,
    (II) an ionic salt, a solute,
    (III) at least one selected from the group consisting of compounds represented by the general formula (1), and
    (IV) Lithium fluorosulfonate, a compound having an O = SF bond represented by the general formula (2), a compound having an O = PF bond represented by the general formula (3), and a compound represented by the general formula (4) And at least one selected from the group consisting of a compound having a P (= O) F 2 bond shown and a compound represented by the general formula (5),
    An electrolyte for a non-aqueous electrolyte battery, wherein the concentration of (IV) is 0.01 to 5.00% by mass with respect to 100% by mass of the total of (I) to (IV).
    Figure JPOXMLDOC01-appb-C000001
    [In General Formula (1), R 1 's each independently represent a group having a carbon-carbon unsaturated bond. R 2 is each independently a fluorine atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an allyl group having 3 to 10 carbon atoms, an alkynyl having 2 to 10 carbon atoms Group selected from the group consisting of a group having 6 to 15 carbon atoms, an aryloxy group having 3 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, and an aryloxy group having 6 to 15 carbon atoms These groups may have a fluorine atom and / or an oxygen atom. a is 2 to 4; ]
    Figure JPOXMLDOC01-appb-C000002
    [In general formula (2), R 3 is an alkyl group, an alkenyl group, an aryl group, an alkoxy group, or an aryloxy group. ]
    Figure JPOXMLDOC01-appb-C000003
    [In general formula (3), R 4 is an alkoxy group or an aryloxy group, R 5 is OLi (note that O represents oxygen and Li represents lithium). ]
    Figure JPOXMLDOC01-appb-C000004
    [In general formula (4), R 6 is an aryl group, an alkoxy group, or an aryloxy group. ]
    Figure JPOXMLDOC01-appb-C000005
    [In general formula (5), X is an oxygen atom or a methylene group which may be substituted by a halogen atom, and Y is a phosphorus atom or a sulfur atom. n is 0 when Y is a phosphorus atom, and 1 when it is a sulfur atom. R 7 and R 8 are each independently a halogen atom, an alkyl group which may be substituted by a halogen atom, an alkenyl group, or an aryl group. When Y is a sulfur atom, R 8 does not exist. ]
  2.  前記一般式(1)のR1がエテニル基である、請求項1に記載の非水電解液電池用電解液。 The electrolyte solution for non-aqueous electrolyte batteries according to claim 1, wherein R 1 in the general formula (1) is an ethenyl group.
  3.  前記一般式(1)のR2の、アルキル基が、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、sec-ペンチル基、3-ペンチル基、及びtert-ペンチル基から選ばれる基であり、
     アルコキシ基が、メトキシ基、エトキシ基、ブトキシ基、tert-ブトキシ基、プロポキシ基、イソプロポキシ基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、及び1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基から選ばれる基であり、
     アリル基が、2-プロペニル基であり、
     アルキニル基が、エチニル基であり、
     アリール基が、フェニル基、メチルフェニル基、tert-ブチルフェニル基、及びtert-アミルフェニル基から選ばれる基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)であり、
     アリルオキシ基が、2-プロペニルオキシ基であり、
     アルキニルオキシ基が、プロパルギルオキシ基であり、
     アリールオキシ基が、フェノキシ基、メチルフェノキシ基、tert-ブチルフェノキシ基、及びtert-アミルフェノキシ基から選ばれる基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)である、請求項1又は2に記載の非水電解液電池用電解液。
    The alkyl group of R 2 in the general formula (1) is a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, an isopentyl group, a sec-pentyl group, 3 A group selected from -pentyl group and tert-pentyl group,
    The alkoxy group is methoxy, ethoxy, butoxy, tert-butoxy, propoxy, isopropoxy, 2,2,2-trifluoroethoxy, 2,2,3,3-tetrafluoropropoxy, 1 A group selected from: 1,1,1-trifluoroisopropoxy, and 1,1,1,3,3,3-hexafluoroisopropoxy;
    The allyl group is a 2-propenyl group,
    The alkynyl group is an ethynyl group,
    And the aryl group is a group selected from a phenyl group, a methylphenyl group, a tert-butylphenyl group, and a tert-amylphenyl group (a hydrogen atom of each aromatic ring may be substituted with a fluorine atom),
    The allyloxy group is a 2-propenyloxy group,
    The alkynyloxy group is a propargyloxy group,
    And the aryloxy group is a group selected from phenoxy group, methyl phenoxy group, tert-butyl phenoxy group, and tert-amyl phenoxy group (the hydrogen atom of each aromatic ring may be substituted with a fluorine atom), The electrolyte solution for non-aqueous electrolyte batteries according to claim 1 or 2.
  4.  前記一般式(1)のaが3又は4である、請求項1~3のいずれかに記載の非水電解液電池用電解液。 The electrolyte for a non-aqueous electrolyte battery according to any one of claims 1 to 3, wherein a in the general formula (1) is 3 or 4.
  5.  前記(III)が、下記(1-1)~(1-28)からなる群から選ばれる少なくとも1種である、請求項1~4のいずれかに記載の非水電解液電池用電解液。
    Figure JPOXMLDOC01-appb-C000006
    The electrolyte solution for a non-aqueous electrolyte battery according to any one of claims 1 to 4, wherein the (III) is at least one selected from the group consisting of the following (1-1) to (1-28).
    Figure JPOXMLDOC01-appb-C000006
  6.  前記(III)が、前記(1-1)、(1-2)、(1-3)、(1-4)、(1-6)、(1-7)、(1-8)、(1-10)、(1-12)、(1-15)、(1-22)、(1-23)、(1-24)、(1-25)、(1-26)、(1-27)、及び(1-28)からなる群から選ばれる少なくとも1種である、請求項5に記載の非水電解液電池用電解液。 Said (III) is said (1-1), (1-2), (1-3), (1-4), (1-6), (1-7), (1-8), (( 1-10), (1-12), (1-15), (1-22), (1-23), (1-24), (1-25), (1-26), (1-) The electrolyte according to claim 5, which is at least one selected from the group consisting of 27) and (1-28).
  7.  前記(III)が、前記(1-1)、(1-2)、(1-4)、(1-10)、(1-12)、(1-15)、(1-22)、(1-24)、(1-25)、及び(1-28)からなる群から選ばれる少なくとも1種である、請求項5に記載の非水電解液電池用電解液。 Said (III) is said (1-1), (1-2), (1-4), (1-10), (1-12), (1-15), (1-22), ( The electrolyte according to claim 5, which is at least one selected from the group consisting of 1-24), (1-25), and (1-28).
  8.  前記一般式(2)のR3の、アルキル基が、メチル基、トリフルオロメチル基、エチル基、ペンタフルオロエチル基、プロピル基、ブチル基、ペンチル基、又はヘキシル基であり、
     アルケニル基が、エテニル基であり、
     アリール基が、フェニル基、メチルフェニル基、ジメチルフェニル基、tert-ブチルフェニル基、tert-アミルフェニル基、ビフェニル基、又はナフチル基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)である、請求項1~7のいずれかに記載の非水電解液電池用電解液。
    The alkyl group of R 3 in the general formula (2) is a methyl group, a trifluoromethyl group, an ethyl group, a pentafluoroethyl group, a propyl group, a butyl group, a pentyl group or a hexyl group,
    An alkenyl group is an ethenyl group,
    The aryl group may be a phenyl group, a methylphenyl group, a dimethylphenyl group, a tert-butylphenyl group, a tert-amylphenyl group, a biphenyl group or a naphthyl group (even if the hydrogen atom of each aromatic ring is substituted by a fluorine atom The electrolyte according to any one of claims 1 to 7, which is good.
  9.  前記一般式(3)のR4の、アルコキシ基が、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、tert-ブトキシ基、2,2-ジメチルプロポキシ基、3-メチルブトキシ基、1-メチルブトキシ基、1-エチルプロポキシ基、1,1-ジメチルプロポキシ基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基、又はシクロヘキシロキシ基であり、
     アリールオキシ基が、フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、フルオロフェノキシ基、tert-ブチルフェノキシ基、tert-アミルフェノキシ基、ビフェノキシ基、又はナフトキシ基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)である、請求項1~8のいずれかに記載の非水電解液電池用電解液。
    The alkoxy group of R 4 in the general formula (3) is a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a tert-butoxy group, a 2,2-dimethylpropoxy group, 3- Methyl butoxy group, 1-methyl butoxy group, 1-ethyl propoxy group, 1,1-dimethyl propoxy group, 2,2,2-trifluoroethoxy group, 2,2,3,3-tetrafluoropropoxy group, 1, 1,1-trifluoroisopropoxy group, 1,1,1,3,3,3-hexafluoroisopropoxy group, or cyclohexyloxy group,
    Wherein the aryloxy group is a phenoxy group, a methylphenoxy group, a dimethylphenoxy group, a fluorophenoxy group, a tert-butylphenoxy group, a tert-amylphenoxy group, a biphenoxy group, or a naphthoxy group (the hydrogen atom of each aromatic ring is a fluorine atom The electrolyte solution for a non-aqueous electrolyte battery according to any one of claims 1 to 8, which may be substituted.
  10.  前記一般式(4)のR6の、アリール基が、フェニル基、メチルフェニル基、ジメチルフェニル基、tert-ブチルフェニル基、tert-アミルフェニル基、ビフェニル基、又はナフチル基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)であり、
     アルコキシ基が、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、tert-ブトキシ基、2,2-ジメチルプロポキシ基、3-メチルブトキシ基、1-メチルブトキシ基、1-エチルプロポキシ基、1,1-ジメチルプロポキシ基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基、又はシクロヘキシロキシ基であり、
     アリールオキシ基が、フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、フルオロフェノキシ基、tert-ブチルフェノキシ基、tert-アミルフェノキシ基、ビフェノキシ基、又はナフトキシ基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)である、請求項1~9のいずれかに記載の非水電解液電池用電解液。
    The aryl group of R 6 in the general formula (4) is a phenyl group, a methylphenyl group, a dimethylphenyl group, a tert-butylphenyl group, a tert-amylphenyl group, a biphenyl group, or a naphthyl group (each of aromatic rings A hydrogen atom may be substituted by a fluorine atom),
    Alkoxy group is methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, tert-butoxy group, 2,2-dimethylpropoxy group, 3-methylbutoxy group, 1-methylbutoxy group, 1 -Ethylpropoxy group, 1,1-dimethylpropoxy group, 2,2,2-trifluoroethoxy group, 2,2,3,3-tetrafluoropropoxy group, 1,1,1-trifluoroisopropoxy group, 1 , 1,1,3,3,3-hexafluoroisopropoxy group or cyclohexyloxy group,
    Wherein the aryloxy group is a phenoxy group, a methylphenoxy group, a dimethylphenoxy group, a fluorophenoxy group, a tert-butylphenoxy group, a tert-amylphenoxy group, a biphenoxy group, or a naphthoxy group (the hydrogen atom of each aromatic ring is a fluorine atom The electrolyte according to any one of claims 1 to 9, which may be substituted.
  11.  前記一般式(5)のR7及びR8の、ハロゲン原子がフッ素原子であり、
     ハロゲン原子に置換されていてもよいアルキル基が、メチル基、トリフルオロメチル基、エチル基、ペンタフルオロエチル基、プロピル基、ブチル基、ペンチル基、又はヘキシル基であり、
     ハロゲン原子に置換されていてもよいアルケニル基が、エテニル基であり、
     ハロゲン原子に置換されていてもよいアリール基が、フェニル基、メチルフェニル基、ジメチルフェニル基、tert-ブチルフェニル基、tert-アミルフェニル基、ビフェニル基、又はナフチル基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)である、請求項1~10のいずれかに記載の非水電解液電池用電解液。
    The halogen atom of R 7 and R 8 in the general formula (5) is a fluorine atom,
    The alkyl group which may be substituted by a halogen atom is a methyl group, a trifluoromethyl group, an ethyl group, a pentafluoroethyl group, a propyl group, a butyl group, a pentyl group or a hexyl group,
    An alkenyl group which may be substituted by a halogen atom is an ethenyl group,
    The aryl group which may be substituted by a halogen atom is a phenyl group, a methylphenyl group, a dimethylphenyl group, a tert-butylphenyl group, a tert-amylphenyl group, a biphenyl group, or a naphthyl group (a hydrogen atom of each aromatic ring The electrolyte solution for a non-aqueous electrolyte battery according to any one of claims 1 to 10, wherein H is optionally substituted with a fluorine atom.
  12.  前記非水有機溶媒が、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルブチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、2,2,2-トリフルオロエチルエチルカーボネート、2,2,2-トリフルオロエチルプロピルカーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート、1,1,1,3,3,3-ヘキサフルオロ-1-プロピルメチルカーボネート、1,1,1,3,3,3-ヘキサフルオロ-1-プロピルエチルカーボネート、1,1,1,3,3,3-ヘキサフルオロ-1-プロピルプロピルカーボネート、ビス(1,1,1,3,3,3-ヘキサフルオロ-1-プロピル)カーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、2-フルオロプロピオン酸メチル、2-フルオロプロピオン酸エチル、ジエチルエーテル、ジブチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、フラン、テトラヒドロピラン、1,3-ジオキサン、1,4-ジオキサン、N,N-ジメチルホルムアミド、アセトニトリル、プロピオニトリル、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、及びγ-バレロラクトンからなる群から選ばれる少なくとも1種である、請求項1~11のいずれかに記載の非水電解液電池用電解液。 The non-aqueous organic solvent is ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl butyl carbonate, 2,2,2-trifluoroethyl methyl carbonate, 2,2,2-trifluoroethyl Ethyl carbonate, 2,2,2-trifluoroethyl propyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, 1,1,1,3,3,3-hexafluoro-1-propyl methyl carbonate, 1,1,1,3,3,3-hexafluoro-1-propylethyl carbonate, 1,1,1,3,3,3-hexafluoro-1-propylpropyl carbonate, bis (1,1,1,3 3,3,3-Hexafluoro-1-propyl) carbone Ethylene carbonate, propylene carbonate, butylene carbonate, fluoroethylene carbonate, difluoroethylene carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl 2-fluoropropionate, ethyl 2-fluoropropionate, diethyl ether, Butyl ether, diisopropyl ether, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, furan, tetrahydropyran, 1,3-dioxane, 1,4-dioxane, N, N-dimethylformamide, acetonitrile, propionitrile, dimethyl 12. The method according to claim 1, wherein at least one member selected from the group consisting of sulfoxide, sulfolane, γ-butyrolactone, and γ-valerolactone. Nonaqueous electrolyte battery electrolyte according to any Re.
  13.  前記非水有機溶媒が、環状カーボネート及び鎖状カーボネートからなる群から選ばれる少なくとも1種を含有する、請求項1~11のいずれかに記載の非水電解液電池用電解液。 The electrolyte solution for a non-aqueous electrolyte battery according to any one of claims 1 to 11, wherein the non-aqueous organic solvent contains at least one selected from the group consisting of cyclic carbonates and chain carbonates.
  14.  前記環状カーボネートが、エチレンカーボネート、プロピレンカーボネート、及びフルオロエチレンカーボネートからなる群から選ばれる少なくとも1種であり、前記鎖状カーボネートが、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、及びメチルプロピルカーボネートからなる群から選ばれる少なくとも1種である、請求項13に記載の非水電解液電池用電解液。 The cyclic carbonate is at least one member selected from the group consisting of ethylene carbonate, propylene carbonate, and fluoroethylene carbonate, and the chain carbonate is a group consisting of ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, and methyl propyl carbonate The electrolyte solution for non-aqueous electrolyte batteries according to claim 13, which is at least one selected from the group consisting of
  15.  前記溶質が、アルカリ金属イオン、及びアルカリ土類金属イオンからなる群から選ばれる少なくとも1種のカチオンと、ヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、トリフルオロメタンスルホン酸アニオン、及びビス(トリフルオロメタンスルホニル)イミドアニオンからなる群から選ばれる少なくとも1種のアニオンとの対からなるイオン性塩である請求項1~14のいずれかに記載の非水電解液電池用電解液。 At least one cation selected from the group consisting of an alkali metal ion and an alkaline earth metal ion, a hexafluorophosphate anion, a tetrafluoroborate anion, a trifluoromethanesulfonate anion, and bis (trifluoromethane); The electrolyte according to any one of claims 1 to 14, which is an ionic salt comprising a pair with at least one anion selected from the group consisting of sulfonyl) imide anions.
  16.  前記溶質のカチオンがリチウム、ナトリウム、カリウム、又はマグネシウムであり、アニオンがヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、トリフルオロメタンスルホン酸アニオン、及びビス(トリフルオロメタンスルホニル)イミドアニオンからなる群から選ばれる少なくとも1種である、請求項15に記載の非水電解液電池用電解液。 The cation of the solute is lithium, sodium, potassium or magnesium, and the anion is selected from the group consisting of hexafluorophosphate anion, tetrafluoroborate anion, trifluoromethanesulfonate anion, and bis (trifluoromethanesulfonyl) imide anion The electrolyte according to claim 15, which is at least one selected from the group consisting of
  17.  前記(I)~(IV)の総量100質量%に対する、前記(III)の濃度が0.01~2.00質量%である、請求項1~16のいずれかに記載の非水電解液電池用電解液。 The non-aqueous electrolyte battery according to any one of claims 1 to 16, wherein the concentration of (III) is 0.01 to 2.00% by mass with respect to 100% by mass of the total of (I) to (IV). Electrolyte.
  18.  少なくともニッケルを含む1種以上の酸化物を正極活物質として含み、当該正極活物質に含まれる金属中のニッケル含有量が30~100質量%である正極と、負極と、請求項1~17のいずれかに記載の非水電解液電池用電解液とを含む、非水電解液電池。 18. A positive electrode comprising at least one oxide containing at least nickel as a positive electrode active material, and a content of nickel in a metal contained in the positive electrode active material is 30 to 100% by mass, a negative electrode, and The non-aqueous electrolyte battery containing the electrolyte solution for non-aqueous electrolyte batteries as described in any one.
  19.  (I)非水有機溶媒、
     (II)イオン性塩である、溶質、
     (III)一般式(1)で示される化合物からなる群から選ばれる少なくとも1種の添加剤、及び、
     (IV)一般式(6)で示される化合物からなる群から選ばれる少なくとも1種の添加剤を含む非水電解液電池用電解液。
    Figure JPOXMLDOC01-appb-C000007
    [一般式(1)中、R1はそれぞれ互いに独立して炭素-炭素不飽和結合を有する基を表す。R2はそれぞれ互いに独立して、フッ素原子、炭素数が1~10のアルキル基、炭素数が1~10のアルコキシ基、炭素数が3~10のアリル基、炭素数が2~10のアルキニル基、炭素数が6~15のアリール基、炭素数が3~10のアリルオキシ基、炭素数が2~10のアルキニルオキシ基、及び炭素数が6~15のアリールオキシ基からなる群から選ばれる基を示し、これらの基はフッ素原子及び/又は酸素原子を有していても良い。なお「フッ素原子を有している」とは、具体的には上記の基における水素原子がフッ素原子に置換されたものを指す。また「酸素原子を有している」とは、具体的には上記の基の炭素原子の間に「-O-」(エーテル結合)が介在する基が挙げられる。aは2~4である。]
    Figure JPOXMLDOC01-appb-C000008
    [一般式(6)中、Xは酸素原子、又はハロゲン原子に置換されていてもよいメチレン基であり、Yはリン原子、又は硫黄原子である。nはYがリン原子の場合は0、硫黄原子の場合は1である。R3、R4はそれぞれ独立で、ハロゲン原子、ハロゲン原子に置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子に置換されていてもよい炭素数5~20のシクロアルキル基、ハロゲン原子に置換されていてもよい炭素数2~20のアルケニル基、ハロゲン原子に置換されていてもよい炭素数2~20のアルキニル基、ハロゲン原子に置換されていてもよい炭素数6~40のアリール基、ハロゲン原子に置換されていてもよい炭素数2~40のヘテロアリール基、ハロゲン原子に置換されていてもよい炭素数1~20のアルコキシ基、ハロゲン原子に置換されていてもよい炭素数5~20のシクロアルコキシ基、ハロゲン原子に置換されていてもよい炭素数2~20のアルケニルオキシ基、ハロゲン原子に置換されていてもよい炭素数2~20のアルキニルオキシ基、ハロゲン原子に置換されていてもよい炭素数6~40のアリールオキシ基、又は、ハロゲン原子に置換されていてもよい炭素数2~40のヘテロアリールオキシ基であり、Yが硫黄原子の場合、R4は存在しない。R5、R6は、それぞれ独立して、水素原子、ハロゲン原子、ハロゲン原子に置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子に置換されていてもよい炭素数2~20のアルケニル基、ハロゲン原子に置換されていてもよい炭素数2~20のアルキニル基、ハロゲン原子に置換されていてもよい炭素数1~20のアルコキシ基、ハロゲン原子に置換されていてもよい炭素数5~20のシクロアルキル基、ハロゲン原子に置換されていてもよい炭素数6~40のアリール基、又は、ハロゲン原子に置換されていてもよい炭素数2~40のヘテロアリール基である。]
    (I) non-aqueous organic solvent,
    (II) an ionic salt, a solute,
    (III) at least one additive selected from the group consisting of compounds represented by the general formula (1), and
    (IV) An electrolyte for a non-aqueous electrolyte battery, comprising at least one additive selected from the group consisting of compounds represented by the general formula (6).
    Figure JPOXMLDOC01-appb-C000007
    [In General Formula (1), R 1 's each independently represent a group having a carbon-carbon unsaturated bond. R 2 is each independently a fluorine atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an allyl group having 3 to 10 carbon atoms, an alkynyl having 2 to 10 carbon atoms Group selected from the group consisting of a group having 6 to 15 carbon atoms, an aryloxy group having 3 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, and an aryloxy group having 6 to 15 carbon atoms These groups may have a fluorine atom and / or an oxygen atom. In addition, "having a fluorine atom" specifically refers to one in which a hydrogen atom in the above group is substituted by a fluorine atom. Further, “having an oxygen atom” specifically includes a group in which “—O—” (ether bond) intervenes between carbon atoms of the above group. a is 2 to 4; ]
    Figure JPOXMLDOC01-appb-C000008
    [In general formula (6), X is an oxygen atom or a methylene group which may be substituted by a halogen atom, and Y is a phosphorus atom or a sulfur atom. n is 0 when Y is a phosphorus atom, and 1 when it is a sulfur atom. R 3 and R 4 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a halogen atom, or a cycloalkyl group having 5 to 20 carbon atoms which may be substituted by a halogen atom; A C2-C20 alkenyl group which may be substituted by a halogen atom, a C2-C20 alkynyl group which may be substituted by a halogen atom, a C6-C40 carbon atom which may be substituted by a halogen atom Or an aryl group of 2 to 40 carbon atoms which may be substituted with a halogen atom, an alkoxy group having 1 to 20 carbon atoms which may be substituted with a halogen atom, or a halogen atom. It may be substituted by a cycloalkoxy group having 5 to 20 carbon atoms, an alkenyloxy group having 2 to 20 carbon atoms which may be substituted by a halogen atom, or a halogen atom. An alkynyloxy group having 2 to 20 carbons, an aryloxy group having 6 to 40 carbons that may be substituted with a halogen atom, or a heteroaryloxy group having 2 to 40 carbons that may be substituted with a halogen atom And when Y is a sulfur atom, R 4 is absent. R 5 and R 6 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a halogen atom, or a carbon number 2 to 20 which may be substituted by a halogen atom Alkenyl group, an alkynyl group having 2 to 20 carbon atoms which may be substituted with a halogen atom, an alkoxy group having 1 to 20 carbon atoms which may be substituted with a halogen atom, carbon which may be substituted for a halogen atom The cycloalkyl group is a cycloalkyl group having a number of 5 to 20, an aryl group having a carbon number of 6 to 40 which may be substituted with a halogen atom, or a heteroaryl group having a carbon number of 2 to 40 which may be substituted for a halogen atom. ]
  20.  前記R1がエテニル基である、請求項19に記載の非水電解液電池用電解液。 The electrolyte for non-aqueous electrolyte batteries according to claim 19, wherein R 1 is an ethenyl group.
  21.  前記一般式(1)のR2の、アルキル基が、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、sec-ペンチル基、3-ペンチル基、及びtert-ペンチル基から選ばれる基であり、
     アルコキシ基が、メトキシ基、エトキシ基、ブトキシ基、tert-ブトキシ基、プロポキシ基、イソプロポキシ基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、及び1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基から選ばれる基であり、
     アリル基が、2-プロペニル基であり、
     アルキニル基が、エチニル基であり、
     アリール基が、フェニル基、メチルフェニル基、tert-ブチルフェニル基、及びtert-アミルフェニル基から選ばれる基(それぞれの芳香環の水素原子がフッ素子に置換されていても良い)であり、
     アリルオキシ基が、2-プロペニルオキシ基であり、
     アルキニルオキシ基が、プロパルギルオキシ基であり、
     アリールオキシ基が、フェノキシ基、メチルフェノキシ基、tert-ブチルフェノキシ基、及びtert-アミルフェノキシ基から選ばれる基(それぞれの芳香環の水素原子がフッ素原子に置換されていても良い)である、請求項19又は20に記載の非水電解液電池用電解液。
    The alkyl group of R 2 in the general formula (1) is a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, an isopentyl group, a sec-pentyl group, 3 A group selected from -pentyl group and tert-pentyl group,
    The alkoxy group is methoxy, ethoxy, butoxy, tert-butoxy, propoxy, isopropoxy, 2,2,2-trifluoroethoxy, 2,2,3,3-tetrafluoropropoxy, 1 A group selected from: 1,1,1-trifluoroisopropoxy, and 1,1,1,3,3,3-hexafluoroisopropoxy;
    The allyl group is a 2-propenyl group,
    The alkynyl group is an ethynyl group,
    And the aryl group is a group selected from a phenyl group, a methylphenyl group, a tert-butylphenyl group, and a tert-amylphenyl group (a hydrogen atom of each aromatic ring may be substituted with a fluorine atom),
    The allyloxy group is a 2-propenyloxy group,
    The alkynyloxy group is a propargyloxy group,
    And the aryloxy group is a group selected from phenoxy group, methyl phenoxy group, tert-butyl phenoxy group, and tert-amyl phenoxy group (the hydrogen atom of each aromatic ring may be substituted with a fluorine atom), The electrolyte solution for non-aqueous electrolyte batteries according to claim 19 or 20.
  22.  前記一般式(1)のaが3又は4である、請求項19~21のいずれかに記載の非水電解液電池用電解液。 The electrolyte according to any one of claims 19 to 21, wherein a in the general formula (1) is 3 or 4.
  23.  前記(III)が、下記(1-1)~(1-28)からなる群から選ばれる少なくとも1種である、請求項19~22のいずれかに記載の非水電解液電池用電解液。
    Figure JPOXMLDOC01-appb-C000009
    The electrolyte solution for a non-aqueous electrolyte battery according to any one of claims 19 to 22, wherein the (III) is at least one selected from the group consisting of the following (1-1) to (1-28).
    Figure JPOXMLDOC01-appb-C000009
  24.  前記(III)が、前記(1-1)、(1-2)、(1-3)、(1-4)、(1-6)、(1-7)、(1-9)、(1-10)、(1-12)、(1-15)、(1-22)、(1-23)、(1-24)、(1-25)、(1-26)、(1-27)、及び(1-28)からなる群から選ばれる少なくとも1種である、請求項23に記載の非水電解液電池用電解液。 Said (III) is said (1-1), (1-2), (1-3), (1-4), (1-6), (1-7), (1-9), (( 1-10), (1-12), (1-15), (1-22), (1-23), (1-24), (1-25), (1-26), (1-) 27. The electrolyte solution for a non-aqueous electrolyte battery according to claim 23, which is at least one selected from the group consisting of (27) and (1-28).
  25.  前記(III)が、前記(1-1)、(1-2)、(1-4)、(1-6)(1-9)、(1-12)、(1-15)、(1-22)及び(1-24)からなる群から選ばれる少なくとも1種である、請求項23に記載の非水電解液電池用電解液。 The (III) may be any of (1-1), (1-2), (1-4), (1-6), (1-9), (1-12), (1-15), (1). The electrolyte according to claim 23, which is at least one selected from the group consisting of -22) and (1-24).
  26.  前記一般式(6)のR3及びR4が、それぞれ独立して、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、トリフルオロメチル基、トリフルオロエチル基、エテニル基、2-プロペニル基、2-プロピニル基、フェニル基、ナフチル基、ペンタフルオロフェニル基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、トリフルオロメトキシ基、トリフルオロエトキシ基、エテニルオキシ基、2-プロペニルオキシ基、2-プロピニルオキシ基、フェノキシ基、ナフチルオキシ基、ペンタフルオロフェノキシ基、ピロリル基、及びピリジニル基から選ばれる、請求項19~25のいずれかに記載の非水電解液電池用電解液。 R 3 and R 4 in the general formula (6) are each independently a fluorine atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group or an n-pentyl group , N-hexyl group, trifluoromethyl group, trifluoroethyl group, ethenyl group, 2-propenyl group, 2-propynyl group, phenyl group, naphthyl group, pentafluorophenyl group, methoxy group, ethoxy group, n-propoxy group , Isopropoxy group, n-butoxy group, tert-butoxy group, n-pentyloxy group, n-hexyloxy group, trifluoromethoxy group, trifluoroethoxy group, ethenyl oxy group, 2-propenyloxy group, 2-propynyloxy group Group, phenoxy group, naphthyloxy group, pentafluorophenoxy group, pyrrolyl group, and pyridinyl group The electrolyte for a non-aqueous electrolyte battery according to any one of claims 19 to 25, which is selected from
  27.  前記一般式(6)のR3及びR4が、それぞれ独立して、フッ素原子、メチル基、トリフルオロメチル基、エテニル基、2-プロぺニル基、フェニル基、フェノキシ基から選ばれる、請求項19~25のいずれかに記載の非水電解液電池用電解液。 The R 3 and R 4 in the general formula (6) are each independently selected from a fluorine atom, a methyl group, a trifluoromethyl group, an ethenyl group, a 2-propenyl group, a phenyl group and a phenoxy group. 26. The electrolytic solution for a non-aqueous electrolytic battery according to any one of items 19 to 25.
  28.  前記一般式(6)のR5及びR6が、それぞれ独立して、水素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、トリフルオロメチル基、テトラフルオロエチル基、フェニル基、ナフチル基、ペンタフルオロフェニル基、ピロリル基、及びピリジニル基から選ばれる、請求項19~27のいずれかに記載の非水電解液電池用電解液。 R 5 and R 6 in the general formula (6) each independently represent a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, The electrolyte for a non-aqueous electrolyte battery according to any one of claims 19 to 27, which is selected from a fluoromethyl group, a tetrafluoroethyl group, a phenyl group, a naphthyl group, a pentafluorophenyl group, a pyrrolyl group and a pyridinyl group.
  29.  前記一般式(6)のR5及びR6が、それぞれ独立して、水素原子、フッ素原子から選ばれる、請求項19~27のいずれかに記載の非水電解液電池用電解液。 Wherein R 5 and R 6 in the general formula (6) are each independently a hydrogen atom, selected from fluorine atom, a nonaqueous electrolyte battery electrolyte solution according to any one of claims 19-27.
  30.  前記非水有機溶媒が、環状カーボネート及び鎖状カーボネートからなる群から選ばれる少なくとも1種を含有する、請求項19~29のいずれかに記載の非水電解液電池用電解液。 The electrolyte solution for a non-aqueous electrolyte battery according to any one of claims 19 to 29, wherein the non-aqueous organic solvent contains at least one selected from the group consisting of cyclic carbonates and chain carbonates.
  31.  前記環状カーボネートが、エチレンカーボネート、プロピレンカーボネート、及びフルオロエチレンカーボネートからなる群から選ばれる少なくとも1種であり、前記鎖状カーボネートが、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、及びメチルプロピルカーボネートからなる群から選ばれる少なくとも1種である、請求項30に記載の非水電解液電池用電解液。 The cyclic carbonate is at least one member selected from the group consisting of ethylene carbonate, propylene carbonate, and fluoroethylene carbonate, and the chain carbonate is a group consisting of ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, and methyl propyl carbonate The electrolyte for a non-aqueous electrolyte battery according to claim 30, which is at least one selected from the group consisting of
  32.  前記溶質が、アルカリ金属イオン、及びアルカリ土類金属イオンからなる群から選ばれる少なくとも1種のカチオンと、ヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、トリフルオロメタンスルホン酸アニオン、及びビス(トリフルオロメタンスルホニル)イミドアニオンからなる群から選ばれる少なくとも1種のアニオンとの対からなるイオン性塩である請求項19~31のいずれかに記載の非水電解液電池用電解液。 At least one cation selected from the group consisting of an alkali metal ion and an alkaline earth metal ion, a hexafluorophosphate anion, a tetrafluoroborate anion, a trifluoromethanesulfonate anion, and bis (trifluoromethane); The electrolyte according to any one of claims 19 to 31, which is an ionic salt comprising a pair with at least one anion selected from the group consisting of sulfonyl) imide anions.
  33.  前記溶質のカチオンがリチウム、ナトリウム、カリウム、又はマグネシウムであり、アニオンがヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、トリフルオロメタンスルホン酸アニオン、及びビス(トリフルオロメタンスルホニル)イミドアニオンからなる群から選ばれる少なくとも1種である、請求項32に記載の非水電解液電池用電解液。 The cation of the solute is lithium, sodium, potassium or magnesium, and the anion is selected from the group consisting of hexafluorophosphate anion, tetrafluoroborate anion, trifluoromethanesulfonate anion, and bis (trifluoromethanesulfonyl) imide anion 33. The non-aqueous electrolyte battery according to claim 32, which is at least one selected from the group consisting of
  34.  前記(I)~(IV)の総量100質量%に対する、前記(III)の濃度が0.01~2.00質量%である、請求項19~33のいずれかに記載の非水電解液電池用電解液。 The non-aqueous electrolyte battery according to any one of claims 19 to 33, wherein the concentration of (III) is 0.01 to 2.00% by mass with respect to 100% by mass of the total of (I) to (IV). Electrolyte.
  35.  少なくとも、請求項19~34のいずれかに記載の非水電解液電池用電解液と、正極と、リチウム金属を含む負極材料、リチウム、ナトリウム、カリウム、又はマグネシウムの吸蔵放出が可能な負極材料からなる群から選ばれる少なくとも1種を有する負極とを含む、非水電解液電池。 At least an electrolyte for a non-aqueous electrolyte battery according to any one of claims 19 to 34, a positive electrode, a negative electrode material containing lithium metal, and a negative electrode material capable of absorbing and releasing lithium, sodium, potassium or magnesium. And a negative electrode having at least one selected from the group consisting of
PCT/JP2018/045365 2017-12-12 2018-12-10 Electrolyte solution for nonaqueous electrolyte batteries and nonaqueous electrolyte battery using same WO2019117101A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18889822.5A EP3726636A4 (en) 2017-12-12 2018-12-10 Electrolyte solution for nonaqueous electrolyte batteries and nonaqueous electrolyte battery using same
KR1020207018055A KR102498193B1 (en) 2017-12-12 2018-12-10 Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
CN201880079898.2A CN111527636B (en) 2017-12-12 2018-12-10 Electrolyte for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
US16/771,109 US20200335823A1 (en) 2017-12-12 2018-12-10 Electrolyte Solution for Nonaqueous Electrolyte Batteries and Nonaqueous Electrolyte Battery Using Same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-237455 2017-12-12
JP2017237455 2017-12-12
JP2018-219853 2018-11-26
JP2018219846A JP7116311B2 (en) 2017-12-12 2018-11-26 Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP2018219853A JP7116312B2 (en) 2018-11-26 2018-11-26 Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP2018-219846 2018-11-26

Publications (1)

Publication Number Publication Date
WO2019117101A1 true WO2019117101A1 (en) 2019-06-20

Family

ID=66820342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045365 WO2019117101A1 (en) 2017-12-12 2018-12-10 Electrolyte solution for nonaqueous electrolyte batteries and nonaqueous electrolyte battery using same

Country Status (1)

Country Link
WO (1) WO2019117101A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246521A1 (en) * 2019-06-05 2020-12-10 セントラル硝子株式会社 Nonaqueous electrolyte solution
WO2021006302A1 (en) * 2019-07-08 2021-01-14 セントラル硝子株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
WO2021006238A1 (en) * 2019-07-09 2021-01-14 セントラル硝子株式会社 Nonaqueous electrolyte and nonaqeuous electrolyte secondary battery
CN113036212A (en) * 2021-03-05 2021-06-25 星恒电源股份有限公司 Non-aqueous electrolyte with high rate performance and sodium ion battery
CN113054254A (en) * 2019-12-27 2021-06-29 丰田自动车株式会社 Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery, and method for producing nonaqueous electrolyte secondary battery
CN114188607A (en) * 2021-12-20 2022-03-15 珠海市赛纬电子材料股份有限公司 Additive, electrolyte using additive and lithium ion battery
WO2022092136A1 (en) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
CN114552014A (en) * 2022-02-25 2022-05-27 惠州锂威新能源科技有限公司 Electrolyte and electrochemical device containing same
CN116435601A (en) * 2023-06-14 2023-07-14 广州天赐高新材料股份有限公司 Electrolyte and application thereof

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497812B1 (en) 1970-11-09 1974-02-22
JPS5845955B2 (en) 1978-12-28 1983-10-13 住友化学工業株式会社 Method for improving heat transfer material
JPS6051537B2 (en) 1981-06-29 1985-11-14 日本鋼管株式会社 Manufacturing method of aluminum killed cold rolled steel sheet with excellent hollowability
JPH0696769A (en) 1992-09-11 1994-04-08 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous electrolytic lithium secondary battery
JPH0845545A (en) 1994-04-22 1996-02-16 Saft (Soc Accumulateurs Fixes Traction) Sa Lithium storage battery with carbon anode
JPH10139784A (en) 1996-11-06 1998-05-26 Kanegafuchi Chem Ind Co Ltd Production of vinylsilyl group-containing silicone compound
JP2002141110A (en) * 2000-11-01 2002-05-17 Matsushita Electric Ind Co Ltd Electrolyte for nonaqueous battery and secondary battery using the same
JP2002151077A (en) 2000-11-14 2002-05-24 Toda Kogyo Corp Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing process
JP2004039510A (en) 2002-07-05 2004-02-05 Denso Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the electrolyte
WO2004042851A2 (en) 2002-11-05 2004-05-21 Imperial College Innovations Limited Structured silicon anode
WO2004100293A1 (en) 2003-05-09 2004-11-18 Sony Corporation Negative active material and method for production thereof, non-aqueous electrolyte secondary cell using the same
WO2005104289A1 (en) * 2004-04-19 2005-11-03 Bridgestone Corporation Nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery using same
US7135252B2 (en) 2000-06-22 2006-11-14 Uchicago Argonne Llc Lithium metal oxide electrodes for lithium cells and batteries
JP2007018883A (en) 2005-07-07 2007-01-25 Toshiba Corp Negative electrode active material, nonaqueous electrolyte battery and battery pack
WO2007083155A1 (en) 2006-01-23 2007-07-26 Nexeon Ltd A method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
JP2008016424A (en) 2006-06-05 2008-01-24 Sony Corp Electrolyte, battery using it, and method for manufacturing electrolyte
JP2008270201A (en) 2007-03-27 2008-11-06 Univ Kanagawa Positive electrode material for lithium ion battery
JP2009137834A (en) 2007-11-12 2009-06-25 Toda Kogyo Corp Li-Ni-BASED COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2010113583A1 (en) 2009-03-31 2010-10-07 日鉱金属株式会社 Positive electrode active material for lithium ion battery
JP5072379B2 (en) 2007-01-26 2012-11-14 株式会社デンソー Non-aqueous electrolyte and secondary battery using the electrolyte
JP2012230897A (en) * 2011-04-13 2012-11-22 Mitsubishi Chemicals Corp Lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolyte secondary battery
JP2013030284A (en) 2011-07-26 2013-02-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte battery
WO2013118661A1 (en) 2012-02-06 2013-08-15 日本電気株式会社 Lithium-ion battery and method for producing same
WO2014034043A1 (en) 2012-08-27 2014-03-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5668684B2 (en) 2009-08-04 2015-02-12 和光純薬工業株式会社 Method for producing cyclic sulfonate ester and intermediate thereof
JP2016035820A (en) * 2014-08-01 2016-03-17 セントラル硝子株式会社 Electrolytic solution for nonaqueous electrolyte battery, and nonaqueous electrolyte battery arranged by use thereof
JP2016157679A (en) 2015-02-19 2016-09-01 セントラル硝子株式会社 Electrolytic solution for nonaqueous electrolyte battery, and nonaqueous electrolyte battery arranged by use thereof
WO2017138452A1 (en) 2016-02-08 2017-08-17 セントラル硝子株式会社 Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery using same
US20170271715A1 (en) 2016-03-18 2017-09-21 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery using the same
WO2018016195A1 (en) * 2016-07-19 2018-01-25 住友精化株式会社 Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497812B1 (en) 1970-11-09 1974-02-22
JPS5845955B2 (en) 1978-12-28 1983-10-13 住友化学工業株式会社 Method for improving heat transfer material
JPS6051537B2 (en) 1981-06-29 1985-11-14 日本鋼管株式会社 Manufacturing method of aluminum killed cold rolled steel sheet with excellent hollowability
JPH0696769A (en) 1992-09-11 1994-04-08 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous electrolytic lithium secondary battery
JPH0845545A (en) 1994-04-22 1996-02-16 Saft (Soc Accumulateurs Fixes Traction) Sa Lithium storage battery with carbon anode
JPH10139784A (en) 1996-11-06 1998-05-26 Kanegafuchi Chem Ind Co Ltd Production of vinylsilyl group-containing silicone compound
US7135252B2 (en) 2000-06-22 2006-11-14 Uchicago Argonne Llc Lithium metal oxide electrodes for lithium cells and batteries
JP2002141110A (en) * 2000-11-01 2002-05-17 Matsushita Electric Ind Co Ltd Electrolyte for nonaqueous battery and secondary battery using the same
JP2002151077A (en) 2000-11-14 2002-05-24 Toda Kogyo Corp Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing process
JP2004039510A (en) 2002-07-05 2004-02-05 Denso Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the electrolyte
WO2004042851A2 (en) 2002-11-05 2004-05-21 Imperial College Innovations Limited Structured silicon anode
WO2004100293A1 (en) 2003-05-09 2004-11-18 Sony Corporation Negative active material and method for production thereof, non-aqueous electrolyte secondary cell using the same
WO2005104289A1 (en) * 2004-04-19 2005-11-03 Bridgestone Corporation Nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery using same
JP2007018883A (en) 2005-07-07 2007-01-25 Toshiba Corp Negative electrode active material, nonaqueous electrolyte battery and battery pack
JP2009176752A (en) 2005-07-07 2009-08-06 Toshiba Corp Negative electrode active substance and its manufacturing method, nonaqueous electrolyte battery, and battery pack
WO2007083155A1 (en) 2006-01-23 2007-07-26 Nexeon Ltd A method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
JP2008016424A (en) 2006-06-05 2008-01-24 Sony Corp Electrolyte, battery using it, and method for manufacturing electrolyte
JP5072379B2 (en) 2007-01-26 2012-11-14 株式会社デンソー Non-aqueous electrolyte and secondary battery using the electrolyte
JP2008270201A (en) 2007-03-27 2008-11-06 Univ Kanagawa Positive electrode material for lithium ion battery
JP2009137834A (en) 2007-11-12 2009-06-25 Toda Kogyo Corp Li-Ni-BASED COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2010113583A1 (en) 2009-03-31 2010-10-07 日鉱金属株式会社 Positive electrode active material for lithium ion battery
JP5668684B2 (en) 2009-08-04 2015-02-12 和光純薬工業株式会社 Method for producing cyclic sulfonate ester and intermediate thereof
JP2012230897A (en) * 2011-04-13 2012-11-22 Mitsubishi Chemicals Corp Lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolyte secondary battery
JP2013030284A (en) 2011-07-26 2013-02-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte battery
WO2013118661A1 (en) 2012-02-06 2013-08-15 日本電気株式会社 Lithium-ion battery and method for producing same
WO2014034043A1 (en) 2012-08-27 2014-03-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2016035820A (en) * 2014-08-01 2016-03-17 セントラル硝子株式会社 Electrolytic solution for nonaqueous electrolyte battery, and nonaqueous electrolyte battery arranged by use thereof
JP2016157679A (en) 2015-02-19 2016-09-01 セントラル硝子株式会社 Electrolytic solution for nonaqueous electrolyte battery, and nonaqueous electrolyte battery arranged by use thereof
WO2017138452A1 (en) 2016-02-08 2017-08-17 セントラル硝子株式会社 Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery using same
US20170271715A1 (en) 2016-03-18 2017-09-21 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery using the same
WO2018016195A1 (en) * 2016-07-19 2018-01-25 住友精化株式会社 Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICKE ZVESTI, vol. 18, 1954, pages 21 - 7
JOURNAL OF ORGANIC CHEMISTRY, vol. 22, 1957, pages 1200 - 2
ROVNANIK PRVEL: "Z. Anorg. Chem.", vol. 632, 2006, WILEY-VCH VERLAG CMBH & CO. KGAA, article "Syntheses of Phosphoryl Chloro- and Bromofluorodies and Crystal Structures of POFC12 and POF2CI", pages: 1356
See also references of EP3726636A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246521A1 (en) * 2019-06-05 2020-12-10 セントラル硝子株式会社 Nonaqueous electrolyte solution
WO2021006302A1 (en) * 2019-07-08 2021-01-14 セントラル硝子株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
WO2021006238A1 (en) * 2019-07-09 2021-01-14 セントラル硝子株式会社 Nonaqueous electrolyte and nonaqeuous electrolyte secondary battery
CN114128006A (en) * 2019-07-09 2022-03-01 中央硝子株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
CN113054254A (en) * 2019-12-27 2021-06-29 丰田自动车株式会社 Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery, and method for producing nonaqueous electrolyte secondary battery
WO2022092136A1 (en) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
CN113036212A (en) * 2021-03-05 2021-06-25 星恒电源股份有限公司 Non-aqueous electrolyte with high rate performance and sodium ion battery
CN114188607A (en) * 2021-12-20 2022-03-15 珠海市赛纬电子材料股份有限公司 Additive, electrolyte using additive and lithium ion battery
CN114188607B (en) * 2021-12-20 2022-09-06 珠海市赛纬电子材料股份有限公司 Additive, electrolyte using additive and lithium ion battery
CN114552014A (en) * 2022-02-25 2022-05-27 惠州锂威新能源科技有限公司 Electrolyte and electrochemical device containing same
CN116435601A (en) * 2023-06-14 2023-07-14 广州天赐高新材料股份有限公司 Electrolyte and application thereof
CN116435601B (en) * 2023-06-14 2024-03-22 广州天赐高新材料股份有限公司 Electrolyte and application thereof

Similar Documents

Publication Publication Date Title
CN111527636B (en) Electrolyte for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
JP7116314B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
US11177507B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
US11230564B2 (en) Method for producing phosphoryl imide salt, method for producing nonaqueous electrolyte solution containing said salt, and method for producing nonaqueous secondary battery
JP7116311B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
WO2019117101A1 (en) Electrolyte solution for nonaqueous electrolyte batteries and nonaqueous electrolyte battery using same
US10454139B2 (en) Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
WO2019111983A1 (en) Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
WO2016117280A1 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution cell using same
JP7116312B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
WO2020246522A1 (en) Nonaqueous electrolyte solution, and nonaqueous electrolyte battery
JP2019102451A (en) Electrolyte solution for nonaqueous electrolyte battery and nonaqueous electrolyte battery using the same
WO2016208738A1 (en) Additive for nonaqueous electrolyte solution, manufacturing method for same, nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery
WO2019111958A1 (en) Liquid electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which said liquid electrolyte for non-aqueous electrolyte cell is used
JP2022042755A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery including the same
US20220278371A1 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery using the same
KR101797273B1 (en) Electrolyte and secondary battery including the same
JP2019169238A (en) Cation for nonaqueous electrolyte solution, nonaqueous electrolyte solution, power storage device using the same, and phosphonium salt used therefor
US20220231337A1 (en) Nonaqueous Electrolytic Solution
KR20220163631A (en) Additives for non-aqueous electrolyte, non-aqueous electrolyte comprising the same and lithium secondary battery
EP3965204A1 (en) Nonaqueous electrolyte solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207018055

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018889822

Country of ref document: EP

Effective date: 20200713