WO2019116669A1 - 重合体組成物及びその用途 - Google Patents

重合体組成物及びその用途 Download PDF

Info

Publication number
WO2019116669A1
WO2019116669A1 PCT/JP2018/035267 JP2018035267W WO2019116669A1 WO 2019116669 A1 WO2019116669 A1 WO 2019116669A1 JP 2018035267 W JP2018035267 W JP 2018035267W WO 2019116669 A1 WO2019116669 A1 WO 2019116669A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
component derived
thermoplastic elastomer
styrene
Prior art date
Application number
PCT/JP2018/035267
Other languages
English (en)
French (fr)
Inventor
奈菜 ▲高▼山
隼人 栗田
智弘 山口
勇佑 依田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US16/769,026 priority Critical patent/US20210230415A1/en
Priority to JP2019558917A priority patent/JP7034176B2/ja
Priority to CN201880079606.5A priority patent/CN111448253A/zh
Priority to KR1020207015465A priority patent/KR102387508B1/ko
Priority to EP18889071.9A priority patent/EP3725842A4/en
Publication of WO2019116669A1 publication Critical patent/WO2019116669A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K37/00Dashboards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/02Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to polymer compositions and their uses.
  • Thermoplastic elastomers are lightweight and easy to recycle, and therefore they are energy saving and resource saving type elastomers, especially for automobile parts, industrial machine parts, electric / electronic parts, building materials etc. as a substitute for vulcanized rubber and vinyl chloride resin. It is widely used.
  • thermoplastic elastomers use ethylene / propylene / non-conjugated diene copolymer (EPDM) and crystalline polyolefins such as polypropylene as raw materials, so they have lower specific gravity and heat resistance than other thermoplastic elastomers. It has excellent durability such as aging and weather resistance.
  • EPDM non-conjugated diene copolymer
  • crystalline polyolefins such as polypropylene
  • thermoplastic elastomer used for a skin member of an automobile interior part, excellent oil resistance is required together with a soft touch.
  • thermoplastic elastomer composition obtained by blending an olefin-based thermoplastic elastomer and a styrene-based thermoplastic elastomer (for example, Patent Document 1 and Patent Document 2).
  • Patent Document 1 discloses a specific polypropylene resin, a specific propylene, and an olefinic thermoplastic elastomer (I) formed by dynamically heat-treating a mixture containing a specific polypropylene resin, an ethylene copolymer rubber and a softener.
  • ⁇ Thermoplastic elastomer composition for injection foam molding comprising a thermoplastic elastomer (II) to which an ⁇ -olefin copolymer rubber and a softener are added, an ethylene / ⁇ -olefin copolymer, and a styrenic thermoplastic elastomer It is described that the material has flowability, foamability, flexibility and can be suitably used for automobile interior parts etc. (for example, abstract, paragraph 0064).
  • Patent Document 2 shows a composition containing a specific olefin-based thermoplastic elastomer and a specific styrenic thermoplastic elastomer, and a thermoplastic elastomer composition having a type A hardness (instantaneous value) of 55 or less in accordance with JIS K6253. It is described that it has flexibility and moldability (injection foam) and can be used for automobile parts such as automobile interior parts and automobile exterior parts (for example, claim 1, paragraph 0096).
  • Patent documents 1 and 2 do not mention oil resistance at all.
  • An object of the present invention is to provide a polymer composition capable of producing a skin member of an automobile interior part having both flexibility and oil resistance.
  • the gist of the present invention is as follows. (1) Component 20 to 60 parts by mass derived from ethylene copolymer rubber (A), 5 to 30 parts by mass of component derived from polypropylene resin (B), component 4 to 14 parts derived from styrene thermoplastic elastomer (C) Component and 5 to 70 parts by mass of a component derived from a softener (D) (the total amount of components (A), (B), (C) and (D) is 100 parts by mass), and a styrene thermoplastic resin A composition wherein the mass ratio ((C) / (D)) of the component derived from the elastomer (C) to the component derived from the softener (D) is 0.01 to 1.
  • At least the component derived from the ethylene copolymer rubber (A) and the component derived from the styrene thermoplastic elastomer (C) are crosslinked by the crosslinking agent (E) containing an organic peroxide ((2) The composition as described in 1).
  • the composition as described in (2) The composition as described in (2).
  • composition of the present invention is suitable for use as a skin member for automobile interior parts because it has both a soft touch and excellent oil resistance. Therefore, the skin member of the automobile interior part of the present invention and the automobile interior part have both a soft touch and excellent oil resistance. Both soft touch and softness here indicate low hardness.
  • composition of the present invention comprises at least a component derived from an ethylene copolymer rubber (A), a component derived from a polypropylene resin (B), a component derived from a styrenic thermoplastic elastomer (C) and a component derived from a softening agent (D) Contains ingredients.
  • component derived from ethylene copolymer rubber “component derived from polypropylene resin”, “component derived from styrenic thermoplastic elastomer” and “component derived from softener” are ethylene-based copolymer
  • the component obtained by using a united rubber, a polypropylene resin, a styrenic thermoplastic elastomer and a softener as raw materials is shown.
  • the ethylene copolymer rubber (A) used in the present invention is an elastic copolymer rubber comprising ethylene and an ⁇ -olefin having 3 to 20 carbon atoms as main components, preferably ethylene and 3 to 20 carbon atoms. And an amorphous random elastic copolymer rubber composed of ethylene, an ⁇ -olefin having 3 to 20 carbon atoms, and a nonconjugated polyene.
  • ⁇ -olefin examples include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 2-methyl-1-propene, 3-methyl-1-pentene, Examples include 4-methyl-1-pentene, 5-methyl-1-hexene and the like. These ⁇ -olefins may be used alone or in combination of two or more.
  • the molar ratio of ethylene to the ⁇ -olefin having 3 to 20 carbon atoms in the ethylene copolymer rubber (A) is usually 55/45 to 85/15, preferably 60/40 to 83/17.
  • non-conjugated polyene examples include dicyclopentadiene, cyclooctadiene, methylene norbornene (for example, 5-methylene-2-norbornene), ethylidene norbornene (for example, 5-ethylidene-2-norbornene), and methyltetrahydro Cyclic dienes such as indene, 5-vinyl-2-norbornene, 5-isopropylidene-2-norbornene, 6-chloromethyl-5-isopropenyl-2-norbornene, norbornadiene, etc .; 1,4-hexadiene, 3-methyl-1 , 4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 4,5-dimethyl-1,4-hexadiene, 6-methyl-1,6-octadiene, 7-methyl -1,6-octadiene, 6-ethy
  • Chain dienes such as 2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene-5-norbornene and the like.
  • trienes such as 2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene-5-norbornene and the like.
  • non-conjugated polyenes 5-ethylidene-2-norbornene, dicyclopentadiene, 1,4-hexadiene and the like are preferable, and 5-ethylidene-2-norbornene is more preferable.
  • ethylene copolymer rubber (A) ethylene / propylene / non-conjugated diene copolymer rubber and ethylene / 1-butene / non-conjugated diene copolymer rubber are preferable, and ethylene / propylene / non-conjugated diene copolymer Rubber, in particular ethylene / propylene • 5-ethylidene-2-norbornene copolymer rubber is particularly preferable in that a thermoplastic elastomer having a suitable crosslinked structure can be obtained.
  • the Mooney viscosity [ML 1 + 4 (125 ° C.)] of the ethylene copolymer rubber (A) is usually 35 to 300, preferably 40 to 160.
  • the ethylene copolymer rubber (A) used in the present invention may be a so-called oil-extended rubber which is blended with a softener, preferably a mineral oil softener, in the production thereof.
  • a softener preferably a mineral oil softener
  • mineral oil-based softeners include conventionally known mineral oil-based softeners such as paraffinic process oil.
  • the iodine value of the ethylene copolymer rubber (A) is usually 3 to 30, preferably 5 to 25.
  • the iodine value of the ethylene copolymer rubber (A) is in such a range, crosslinking is performed with good balance, and a thermoplastic elastomer composition excellent in moldability and rubber elasticity can be obtained.
  • the blending amount of the ethylene copolymer rubber (A) is 100 parts by mass in total of the ethylene copolymer rubber (A), the polypropylene resin (B), the styrene thermoplastic elastomer (C) and the softener (D). 20 to 60 parts by weight, preferably 30 to 50 parts by weight, and more preferably 30 to 45 parts by weight. If it is in this range, it is excellent in flexibility.
  • the polypropylene resin (B) used in the present invention comprises a high molecular weight solid product obtained by polymerizing propylene alone, or propylene and one or more other monoolefins by the high pressure method or the low pressure method.
  • Suitable raw material olefins other than propylene in the polypropylene resin (B) are preferably ⁇ -olefins having 2 or 4 to 20 carbon atoms, specifically ethylene, 1-butene, 1-pentene, 1-hexene, 1 Octene, 1-decene, 2-methyl-1-propene, 3-methyl-1-pentene, 4-methyl-1-pentene, 5-methyl-1-hexene and the like.
  • the polymerization mode may be random or block as long as a resinous material is obtained.
  • These polypropylene resins may be used alone or in combination of two or more.
  • the polypropylene resin (B) used in the present invention is preferably a propylene-based polymer having a propylene content of 40 mol% or more, more preferably a propylene-based polymer having a propylene content of 50 mol% or more.
  • propylene homopolymers propylene / ethylene block copolymers, propylene / ethylene random copolymers, propylene / ethylene / butene random copolymers, and the like are particularly preferable.
  • the polypropylene resin (B) used in the present invention has a melting point of usually 80 to 170 ° C., preferably 120 to 170 ° C.
  • the polypropylene resin (B) used in the present invention has MFR (ASTM D1238-65T, 230 ° C., 2.16 kg load) usually in the range of 0.01 to 100 g / 10 min, particularly 0.05 to 50 g / 10 min. Is preferred.
  • the steric structure of the polypropylene resin (B) used in the present invention is preferably an isotactic structure, but a syndiotactic structure, a mixture of these structures, or a partially atactic structure is also used. be able to.
  • the polypropylene resin (B) used in the present invention is polymerized by various known polymerization methods.
  • the compounding amount of the polypropylene resin (B) is based on 100 parts by mass of the total amount of the ethylene copolymer rubber (A), the polypropylene resin (B), the styrene thermoplastic elastomer (C) and the softener (D),
  • the amount is 1 to 40 parts by mass, preferably 5 to 30 parts by mass, and more preferably 5 to 14 parts by mass. Within this range, the balance between flexibility and oil resistance is particularly excellent.
  • thermoplastic elastomer (C) Specific examples of the styrene-based thermoplastic elastomer (C) used in the present invention include a styrene / isoprene block copolymer, a hydrogenated product of a styrene / isoprene block copolymer (SEP), a styrene / isoprene / styrene block copolymer Polymer hydrogenated products (SEPS; polystyrene / polyethylene / propylene / polystyrene block copolymer), styrene / butadiene copolymer, styrene / butadiene block copolymer, hydrogenated products of styrene / butadiene block copolymer (SEBS) Polystyrene / polyethylene / butylene / polystyrene block copolymer) and the like,
  • the styrene-based thermoplastic elastomer (C) is at least one selected from block copolymers of styrene and one or more conjugated dienes selected from butadiene and isoprene and hydrogenated products thereof. Is more preferable in terms of oil resistance of the composition.
  • the component (C) is a styrene / isoprene block copolymer, a hydrogenated product of a styrene / isoprene block copolymer, a hydrogenated product of a styrene / isoprene / styrene block copolymer, a styrene / butadiene block copolymer, It is to be one or more selected from hydrogenated products of styrene butadiene block copolymer.
  • the styrenic thermoplastic elastomer (C) used in the present invention has a type A hardness (instantaneous value) in accordance with JIS K6253 of usually 30 to 96, preferably 35 to 69.
  • the styrene thermoplastic elastomer (C) used in the present invention has a styrene content of usually 10 to 70% by mass, preferably 20 to 50% by mass.
  • the blending amount of the styrene-based thermoplastic elastomer (C) is 100 parts by mass in total of the ethylene-based copolymer rubber (A), the polypropylene resin (B), the styrene-based thermoplastic elastomer (C) and the softener (D).
  • the amount is 4 to 14 parts by mass, preferably 5 to 12 parts by mass, more preferably 5 to 11 parts by mass, and particularly preferably 5 to 10 parts by mass.
  • the blending amount of the styrene-based thermoplastic elastomer (C) is 4 to 14 parts by mass, the oil resistance, the weight change rate and the flexibility are good, and the heat resistance does not decrease, so that the formability in vacuum forming etc.
  • the imprint transfer residual property is also good.
  • the upper limit of the said compounding quantity of a styrene-type thermoplastic elastomer (C) is 10 mass parts or less, heat resistance does not fall in addition to vacuum moldability (emboss transfer residual property), release from a roll It is also excellent in formability.
  • the styrene-based thermoplastic elastomer (C) may be a so-called oil-extended product blended with a softener, preferably a mineral oil-based softener.
  • a softener preferably a mineral oil-based softener.
  • mineral oil-based softeners include conventionally known mineral oil-based softeners such as paraffinic process oil.
  • Softener (D) The softening agent is previously added to the ethylene copolymer rubber (A), the polypropylene resin (B), the styrene thermoplastic elastomer (C), or the mixture of the ethylene copolymer rubber (A) and the polypropylene resin (B). Alternatively, the mixture is added by a method injected at the time of dynamic crosslinking. At that time, the above methods may be added alone or in combination.
  • softener used in the present invention include process oils, lubricating oils, paraffins, liquid paraffin, polyethylene wax, polypropylene wax, petroleum asphalt, petroleum-based softeners such as petroleum asphalt and petrolatum; coal tar, coal tar pitch, etc.
  • Coal tar-based softeners Fatty oil-based softeners such as castor oil, linseed oil, rapeseed oil, soybean oil, coconut oil; tall oil; sub (factice); waxes such as beeswax, carnauba wax, lanolin, etc .: ricinoleic acid Fatty acids and fatty acid salts such as palmitic acid, stearic acid, barium stearate, calcium stearate, zinc laurate; naphthenic acid; pine oil, rosin or derivatives thereof; terpene resin, petroleum resin, coumarone indene resin, atactic polypropylene etc.
  • Fatty oil-based softeners such as castor oil, linseed oil, rapeseed oil, soybean oil, coconut oil; tall oil; sub (factice); waxes such as beeswax, carnauba wax, lanolin, etc .
  • ricinoleic acid Fatty acids and fatty acid salts
  • Synthetic polymer materials include dioctyl phthalate Ester softeners such as dioctyl adipate and dioctyl sebacate; microcrystalline wax, liquid polybutadiene, modified liquid polybutadiene, liquid polyisoprene, terminal modified polyisoprene, hydrogenated terminal modified polyisoprene, liquid thiocol, hydrocarbon based synthetic lubricating oil, etc.
  • dioctyl phthalate Ester softeners such as dioctyl adipate and dioctyl sebacate
  • microcrystalline wax liquid polybutadiene, modified liquid polybutadiene, liquid polyisoprene, terminal modified polyisoprene, hydrogenated terminal modified polyisoprene, liquid thiocol, hydrocarbon based synthetic lubricating oil, etc.
  • petroleum-based softeners particularly process oils, are preferably used.
  • the blending amount of the softener (D) is 100 parts by mass of the total amount of the ethylene copolymer rubber (A), the polypropylene resin (B), the styrenic thermoplastic elastomer (C) and the softener (D),
  • the amount is 5 to 70 parts by mass, preferably 30 to 55 parts by mass, and more preferably 41 to 55 parts by mass. If the blending amount of the softener (D) is less than 5 parts by mass, the oil resistance and the weight change rate deteriorate, while if the blending amount of the softener (D) exceeds 70 parts by mass, the heat resistance is reduced. As it decreases, the formability in vacuum forming and the like (especially the emboss transfer residual property) is deteriorated.
  • the mass ratio ((C) / (D)) of the styrene-based thermoplastic elastomer (C) to the softening agent (D) is 0.01 from the viewpoint of oil resistance, heat resistance and roll processability.
  • ⁇ 1 preferably 0.02 to 0.9, more preferably 0.03 to 0.7, more preferably 0.05 to 0.5, particularly preferably 0.07 to 0.3, most preferably 0 .1 to 0.3.
  • crosslinking agent examples include organic peroxides, sulfur, sulfur compounds, phenol-based vulcanizing agents such as phenol resins, and the like, among which organic peroxides are points in the color of molded articles, cutting in resin tensile test A point that is excellent in mechanical strength such as time elongation, a point at which the resin is easy to be stretched at the time of secondary processing of the molded article and is excellent in moldability (the formability is also related to the excellent elongation at cutting in the above-mentioned tensile test) It is preferably used from the viewpoint of vacuum formability, in particular corner transferability, and as the crosslinking agent (E), in terms of hue of molded articles, mechanical strength, formability (especially vacuum formability such as corner transferability), More preferably, only organic peroxides are used. In addition, even when using only an organic peroxide as a crosslinking agent, you may use the crosslinking adjuvant and polyfunctional vinyl monomer
  • organic peroxide examples include dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, 2,5-dimethyl-2, 5-di- (tert-butylperoxy) hexyne-3,1,3-bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane, n -Butyl-4,4-bis (tert-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl peroxyisopropyl carbonate, diacetylperoxy , Lauroyl peroxide, etc. tert
  • the organic peroxide is generally 0.01 to 5 with respect to 100 parts by mass in total of ethylene copolymer rubber (A), polypropylene resin (B), styrenic thermoplastic elastomer (C) and softener (D). It is used in a proportion by mass, preferably 0.05 to 3 parts by mass, more preferably 0.05 to 1 parts by mass.
  • the organic peroxide is preferably used in an amount of 0.01 to 2 parts by mass with respect to 100 parts by mass of the ethylene copolymer rubber (A) used as a raw material from the viewpoint of flexibility and oil resistance, and the upper limit of the addition amount
  • the value of is preferably 1.9 parts by mass, more preferably 1.6 parts by mass, still more preferably 1.5 parts by mass, particularly preferably 1.4 parts by mass, and the lower limit of the addition amount is preferably Is 0.02 parts by mass, more preferably 0.05 parts by mass.
  • Cross-linking aids such as N'-m-phenylenedimaleimide, divinylbenzene, triallyl cyanurate, triallyl isocyanurate, or ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, Multifunctional methacrylate monomers such as allyl methacrylate, and polyfunctional vinyl monomers such as vinyl butyrate and vinyl stearate can be blended.
  • Divinylbenzene is easy to handle, has good compatibility with ethylene copolymer rubber (A) and polypropylene resin (B), which are the main components of the above-mentioned cross-linked product, and solubilizes the organic peroxide Since it has an action and acts as a dispersant for the organic peroxide, the resin composition can be obtained in which the crosslinking effect of the heat treatment is homogeneous and the flowability and physical properties are balanced.
  • the cross-linking aid is generally 0.01 part by weight based on 100 parts by weight of the total amount of ethylene copolymer rubber (A), polypropylene resin (B), styrene thermoplastic elastomer (C) and softener (D). It is used in a proportion of -15 parts by mass, preferably 0.03-12 parts by mass.
  • the composition of the present invention comprises a component derived from an ethylene copolymer rubber (A), a component derived from a polypropylene resin (B), a component derived from a styrene thermoplastic elastomer (C) and a component derived from a softener (D)
  • A ethylene copolymer rubber
  • B polypropylene resin
  • C styrene thermoplastic elastomer
  • D a component derived from a softener
  • other polymers such as butyl rubber, polyisobutylene rubber, nitrile rubber (NBR), natural rubber (NR), silicone rubber and the like as long as the object of the present invention is not impaired May be added.
  • the amount of addition in the case of using another polymer is usually 0.1 to 50 parts by mass, preferably 5 to 40 parts by mass with respect to 100 parts by mass of the component (A).
  • additives such as slip agents, nucleating agents, fillers, antioxidants, weathering stabilizers, coloring agents, etc. are blended in a range that does not impair the object of the present invention.
  • the total amount of these other additives is usually 0.01 to 20 parts by mass, preferably 0.1 to 10 parts by mass, more preferably 100 parts by mass of the total amount of the components (A) to (D). Is 0.1 to 5 parts by mass.
  • the amount of the filler is usually 1 to 50 parts by mass, preferably 1 to 45 parts by mass, and more preferably 1 to 40 parts by mass, with respect to 100 parts by mass of the component (A).
  • nucleating agent examples include non-melting and melting crystallization nucleating agents, which may be used alone or in combination of two or more.
  • Non-melting type crystallization nucleating agents such as talc, mica, silica, inorganic substances such as aluminum, brominated biphenyl ether, aluminum hydroxy di-p-tert-butyl benzoate (TBBA), organic phosphate, rosin type crystallization Nucleating agents, substituted triethylene glycol terephthalates and Terylene & Nylon fibers, etc., particularly aluminum hydroxy-di-p-tert-butylbenzoate, methylene bis (2,4-di-tert-butylphenyl) phosphate sodium salt, 2, Sodium 2'-methylenebis (4,6-di-tert-butylphenyl) phosphate, a rosin-based crystallization nucleating agent is desirable.
  • Melt-type crystallization nucleating agents include sorbitol-based compounds such as dibenzylidene sorbitol (DBS), substituted DBS, lower alkyl dibenzylidene sorbitol (PDTS) and the like.
  • DBS dibenzylidene sorbitol
  • PDTS lower alkyl dibenzylidene sorbitol
  • slip agent examples include fatty acid amide, silicone oil, glycerin, wax, paraffin oil and the like.
  • filler conventionally known fillers, specifically, carbon black, calcium carbonate, calcium silicate, clay, kaolin, talc, silica, diatomaceous earth, mica powder, asbestos, alumina, barium sulfate, aluminum sulfate And one or more selected from calcium sulfate, basic magnesium carbonate, molybdenum disulfide, graphite, glass fibers, glass spheres, silas balloon, basic magnesium sulfate whiskers, calcium titanate whiskers, aluminum borate whiskers and the like.
  • the composition of the present invention preferably comprises ethylene copolymer rubber (A), polypropylene resin (B), styrenic thermoplastic elastomer (C) and softener (D), and optionally, optional components. It is obtained by dynamically crosslinking the mixture containing the determination. When dynamic crosslinking is performed, it is preferable to perform heat treatment dynamically in the presence of the crosslinking agent or in the presence of the crosslinking agent and the crosslinking aid. When the component (C) is also crosslinked as in the preferred embodiment, the oil resistance is excellent.
  • the raw materials (A) and (C), which are the raw materials are all thermally treated in the presence of the crosslinking agent, or in the presence of the crosslinking agent and the crosslinking aid.
  • the components (B) and (D) are preferably at least partially subjected to dynamic heat treatment in the presence of the crosslinking agent or in the presence of the crosslinking agent and the crosslinking aid, respectively. It is further preferred that is dynamically heat treated in the presence of a crosslinker.
  • the crosslinking is preferably performed by heat treatment dynamically in the presence of 0.01 to 2 parts by mass of the organic peroxide with respect to 100 parts by mass of the ethylene copolymer rubber (A).
  • “dynamically heat-treating” refers to kneading in a molten state.
  • the dynamic heat treatment in the present invention is preferably performed in a non-open type apparatus, and is preferably performed in an inert gas atmosphere such as nitrogen and carbon dioxide gas.
  • the temperature of the heat treatment is in the range of 300 ° C. from the melting point of the polypropylene resin (B), usually 150 to 270 ° C., preferably 170 ° C. to 250 ° C.
  • the kneading time is usually 1 to 20 minutes, preferably 1 to 10 minutes.
  • the shear force applied is shear rate at 10 ⁇ 50,000sec -1, preferably in the range of 100 ⁇ 10,000sec -1.
  • composition of the present invention is particularly suitable for use in solid molding, and usually no foaming agent is used.
  • a mixing roll As a kneading apparatus, a mixing roll, an intensive mixer (for example, a Banbury mixer, a kneader), a single screw or twin screw extruder, etc. can be used, but a non-open type apparatus is preferable.
  • an intensive mixer for example, a Banbury mixer, a kneader
  • a single screw or twin screw extruder etc.
  • a non-open type apparatus is preferable.
  • a resin composition in which at least a part of the ethylene copolymer rubber (A) is crosslinked is obtained by the above-mentioned dynamic heat treatment.
  • the melt flow rate (MFR) of the composition of the present invention measured at a load of 10 kgf or 2.16 kgf at 230 ° C. in accordance with JIS K 7210 is not particularly limited, but the corner transferability in vacuum forming and the emboss transfer residual From the viewpoint of coexistence of properties, the MFR measured under a load of 10 kgf at 230 ° C. is preferably 0.1 to 150 g / 10 min, more preferably 0.1 to 80 g / 10 min.
  • the composition of the present invention has a Shore A hardness (instantaneous value) measured in accordance with JIS K6253 of usually 30 to 60, preferably 40 to 54.
  • the composition of the present invention is made into a thermoplastic elastomer molded body by various known molding methods, specifically, for example, various molding methods such as injection molding, extrusion molding, press molding, calendar molding, hollow molding and the like. be able to. Furthermore, a formed body such as a sheet obtained by the above-mentioned forming method can be secondarily processed by thermoforming or the like.
  • the composition of the present invention is excellent in the sharpness of the shape of the corner when vacuum forming the sheet into a shape having a corner at the time of thermoforming.
  • the shape of the skin member of a car instrument panel or the skin member of a car door trim is mentioned, for example.
  • the sheet is also excellent in ease of remaining of the emboss after thermoforming.
  • the reason why the composition of the present invention is excellent in the above-mentioned transferability of the corner portion and the emboss transfer residual property is that the composition of the present invention has heat resistance.
  • the transferability of the corner portion and the emboss transfer remanence are excellent, it may be said that the vacuum formability is excellent.
  • composition described above has a soft touch and excellent oil resistance, and is most suitable as a skin member for automobile interior parts, such as a skin member for a car instrument panel or a car door trim.
  • Tm Melting point (Tm) of polypropylene resin (B)] It measured by the following method using a differential scanning calorimeter (DSC: Differential scanning calorimetry) based on JISK7121. About 5 mg of the polymer was sealed in an aluminum pan for measurement by a differential scanning calorimeter (DSC 220C type) manufactured by Seiko Instruments Inc., and heated from room temperature to 200 ° C. at 10 ° C./min. In order to completely melt the polymer, it was kept at 200 ° C. for 5 minutes and then cooled to ⁇ 50 ° C. at 10 ° C./min. After 5 minutes at -50.degree. C., the second heating to 200.degree. C. was performed at 10.degree. C./minute, and the peak temperature (.degree. C.) at this second heating was taken as the melting point (Tm) of the polymer. When a plurality of peaks were detected, the peak detected at the highest temperature was employed.
  • DSC Differential scanning calori
  • the hardness of the thermoplastic elastomer can be expressed as Shore A hardness.
  • a high Shore A hardness value indicates that the material is hard, while a low value indicates that the material is soft and flexible.
  • the criteria for this flexibility are shown below. (Judgment criteria of flexibility) :: Shore A hardness 45 or less ⁇ ⁇ ⁇ : Shore A hardness 46 to 54 :: Shore A hardness is 55 to 59 X: Shore A hardness is 60 or more
  • melt flow rate MFR
  • the melt flow rate was measured at 230 ° C. under a load of 10 kgf or 2.16 kgf in accordance with JIS K7210.
  • PHR oil flow rate
  • Butyl rubber (trade name: IIR065; ExxonMobil Chemical Co., degree of unsaturation: 0.8 mol%, Mooney viscosity ML (1 + 8) 125 ° C .: 32) and propylene / ethylene block copolymer (trade name: EL-Pro P740J A 1: 1 master batch product (4) propylene / ethylene copolymer with MFR (ASTM D 1238-65 T; 230 ° C., 2.16 kg load) 27 g / 10 min, melting point 163 ° C. manufactured by SCG Chemicals Used ones.
  • Example 2 Pellets of a resin composition were obtained in the same manner as in Example 1 except that the blending amounts of the components were changed as shown in Table 1. The results are shown in Table 1.
  • Example 4 Pellets of a resin composition were obtained in the same manner as in Example 1 except that the blending amounts of the components were changed as shown in Table 1 and that a styrene-based thermoplastic elastomer was added after the crosslinking treatment.
  • EPDM ethylene / propylene / diene copolymer rubber
  • ethylene content 64% by mass
  • diene content 5.4% by mass
  • Mooney viscosity ML (1 + 4) 125 ° C 51
  • oil spread 40 (PHR) 36 parts by mass
  • propylene / ethylene random copolymer crystalline resin
  • PHR propylene / ethylene random copolymer
  • crystalline resin trade name: Prime Polypro B 241, manufactured by Prime Polymer Co., Ltd., density: 0.91 g / Cm 3
  • MFR temperature: 230 ° C., load: 2.16 kg load
  • softener trade name: Idemitsu Kosan manufactured Diana Process PW
  • 0.40 parts by mass of organic peroxide Perhexa 25B, manufactured by Nippon Oil and Fats Co., Ltd.
  • KTX-30 manufactured by Kobe Steel, Ltd., cylinder temperature: C1: 50 ° C., C2: 90 ° C., C3: 100 ° C., C4: 120 ° C., C5: 180 ° C., C6: 200 ° C., C7 to C14: Dynamic crosslinking of the obtained mixture was performed at 200 ° C., die temperature: 200 ° C., screw rotation speed: 400 rpm, extrusion amount: 50 kg / h to obtain pellets of a resin composition. The formulations and results are shown in Table 2.
  • compositions of Examples 1 to 3 have both a soft touch and excellent oil resistance.
  • the color of the pellets is generally good if milky white, and it is considered that coloring to yellow etc. is not preferable, but all the compositions of Examples 1 to 3 had milky white .
  • Comparative Examples 1 and 2 do not contain the styrenic thermoplastic elastomer (C), so the weight change rate (oil resistance) is poor.
  • Comparative Example 3 when the blending amount of the styrene-based thermoplastic elastomer (C) is too large, the oil resistance is deteriorated, and the emboss transfer residual property and the releasability from the roll are deteriorated.
  • the comparative example 4 shows that oil resistance and vacuum moldability deteriorate when there are too few compounding quantities of a styrene-type thermoplastic elastomer (C).
  • Comparative Example 5 shows that in the case of a hard material having a large blending amount of the polypropylene resin (B), the oil resistance is good even if the styrene-based thermoplastic elastomer (C) is not blended, but the flexibility is bad.
  • Comparative Example 6 shows that when the styrenic thermoplastic elastomer (C) is blended in a hard material having a large blending amount of polypropylene resin (B), oil resistance is improved but flexibility is poor.
  • the comparative example 7 shows that oil resistance deteriorates, when there are more compounding quantities of a styrene-type thermoplastic elastomer (C) than a softener.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、エチレン系共重合体ゴム(A)由来の成分20~60質量部、ポリプロピレン樹脂(B)由来の成分5~30質量部、スチレン系熱可塑性エラストマー(C)由来の成分4~14質量部及び軟化剤(D)由来の成分5~70質量部(成分(A)、(B)、(C)及び(D)の合計量は100質量部である)を含有し、スチレン系熱可塑性エラストマー(C)由来の成分と軟化剤(D)由来の成分の質量比((C)/(D))が0.01~1である組成物;前記組成物を含んでなる自動車内装部品の表皮部材;及び前記表皮部材を有する自動車内装部品に関する。

Description

重合体組成物及びその用途
 本発明は、重合体組成物及びその用途に関する。
 熱可塑性エラストマーは、軽量でリサイクルが容易であることから、省エネルギー、省資源タイプのエラストマーとして、特に加硫ゴムや塩化ビニル樹脂の代替として自動車部品、工業機械部品、電気・電子部品、建材等に広く使用されている。
 中でも、オレフィン系熱可塑性エラストマーは、エチレン・プロピレン・非共役ジエン共重合体(EPDM)とポリプロピレンなどの結晶性ポリオレフィンを原料としていることから、他の熱可塑性エラストマーに比べて、比重が軽く、耐熱老化性、耐候性などの耐久性に優れている。
 自動車内装部品の表皮部材に用いる熱可塑性エラストマーとしては、軟らかい触感とともに、優れた耐油性が求められている。
 しかしながら、柔軟性と耐油性は背反する物性であり、柔軟性と耐油性を両立させた熱可塑性エラストマーは報告されていない。
 オレフィン系熱可塑性エラストマーとスチレン系熱可塑性エラストマーとをブレンドした熱可塑性エラストマー組成物で柔軟性を有する組成物が報告されている(例えば、特許文献1、特許文献2)。
 特許文献1には、特定のポリプロピレン樹脂、エチレン系共重合体ゴム及び軟化剤を含む混合物を動的に熱処理してなるオレフィン系熱可塑性エラストマー(I)に対し、特定のポリプロピレン樹脂、特定のプロピレン・α-オレフィン共重合体ゴム及び軟化剤を添加してなる熱可塑性エラストマー(II)と、エチレン・α-オレフィン共重合体と、スチレン系熱可塑性エラストマーとからなる射出発泡成形用熱可塑性エラストマー組成物が流動性、発泡性、柔軟性を兼ね備えており、自動車の内装部品等に好適に利用できることが記載されている(例えば、要約、段落0064)。
 特許文献2には、特定のオレフィン系熱可塑性エラストマーと、特定のスチレン系熱可塑性エラストマーを含む組成物であり、JIS K6253に準拠するタイプA硬度(瞬間値)55以下の熱可塑性エラストマー組成物が柔軟性及び成形性(射出発泡)を兼ね備えており、自動車内装部品、自動車外装部品等の自動車部品に利用できることが記載されている(例えば、請求項1、段落0096)。
 特許文献1及び2は、いずれも耐油性については言及していない。
特開2002-206034号公報 国際公開第2016/039310号
 本発明の課題は、柔軟性と耐油性を両立させた自動車内装部品の表皮部材を製造することができる重合体組成物を提供することである。
 本発明の要旨は以下のとおりである。
(1)エチレン系共重合体ゴム(A)由来の成分20~60質量部、ポリプロピレン樹脂(B)由来の成分5~30質量部、スチレン系熱可塑性エラストマー(C)由来の成分4~14質量部及び軟化剤(D)由来の成分5~70質量部(成分(A)、(B)、(C)及び(D)の合計量は100質量部である)を含有し、スチレン系熱可塑性エラストマー(C)由来の成分と軟化剤(D)由来の成分の質量比((C)/(D))が0.01~1である組成物。
(2)少なくともエチレン系共重合体ゴム(A)由来の成分とスチレン系熱可塑性エラストマー(C)由来の成分とは、有機ペルオキシドを含む架橋剤(E)により、架橋されたものである前記(1)に記載の組成物。
(3)エチレン系共重合体ゴム(A)由来の成分20~60質量部、ポリプロピレン樹脂(B)由来の成分5~14質量部、スチレン系熱可塑性エラストマー(C)由来の成分5~12質量部及び軟化剤(D)由来の成分5~70質量部(成分(A)、(B)、(C)及び(D)の合計量は100質量部である)を含有する前記(1)又は(2)に記載の組成物。
(4)スチレン系熱可塑性エラストマー(C)がスチレンと、ブタジエン及びイソプレンから選ばれる1種以上の共役ジエンとの、ブロック共重合体及びその水添物から選ばれる前記(1)~(3)のいずれかに記載の組成物。
(5)架橋剤(E)が有機ペルオキシドのみからなる前記(2)~(4)のいずれかに記載の組成物。
(6)230℃、10kg荷重でのMFRが0.1~150である前記(1)~(5)のいずれかに記載の組成物。
(7)前記(1)~(6)のいずれかに記載の組成物を含んでなる自動車内装部品の表皮部材。
(8)前記(7)に記載の表皮部材を有する自動車内装部品。
(9)インストゥルメントパネル又はドアトリムである前記(8)に記載の自動車内装部品。
  本発明の組成物は、軟らかい触感と優れた耐油性を兼ね備えているため、自動車内装部品の表皮部材への使用に好適である。したがって、本発明の自動車内装部品の表皮部材、及び自動車内装部品は軟らかい触感と優れた耐油性を兼ね備えている。本明細書において、軟らかい触感も柔軟性も、硬度が低いことを示す。
 本発明の組成物は、少なくとも、エチレン系共重合体ゴム(A)由来の成分、ポリプロピレン樹脂(B)由来の成分、スチレン系熱可塑性エラストマー(C)由来の成分及び軟化剤(D)由来の成分を含有する。
 本発明において、「エチレン系共重合体ゴム由来の成分」、「ポリプロピレン樹脂由来の成分」、「スチレン系熱可塑性エラストマー由来の成分」及び「軟化剤由来の成分」とは、それぞれエチレン系共重合体ゴム、ポリプロピレン樹脂、スチレン系熱可塑性エラストマー及び軟化剤を原料として得られる成分を表す。
[エチレン系共重合体ゴム(A)]
 本発明に用いるエチレン系共重合体ゴム(A)は、エチレンと炭素数3~20のα-オレフィンとを主成分とする弾性共重合体ゴムであり、好ましくは、エチレンと炭素数3~20のα-オレフィンからなる無定形ランダムな弾性共重合体ゴム、エチレンと炭素数3~20のα-オレフィンと非共役ポリエンとからなる無定形ランダムな弾性共重合体ゴムが挙げられる。
 前記α-オレフィンとしては、具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、2-メチル-1-プロペン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、5-メチル-1-ヘキセン等が挙げられる。これらのα-オレフィンは、単独で、又は2種以上混合して用いられる。
 エチレン系共重合体ゴム(A)におけるエチレンと炭素数3~20のα-オレフィンとのモル比は、通常55/45~85/15であり、好ましくは60/40~83/17である。
 前記非共役ポリエンとしては、具体的には、ジシクロペンタジエン、シクロオクタジエン、メチレンノルボルネン(例えば、5-メチレン-2-ノルボルネン)、エチリデンノルボルネン(例えば、5-エチリデン-2-ノルボルネン)、メチルテトラヒドロインデン、5-ビニル-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン、ノルボルナジエン等の環状ジエン;1,4-ヘキサジエン、3-メチル-1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、4,5-ジメチル-1,4-ヘキサジエン、6-メチル-1,6-オクタジエン、7-メチル-1,6-オクタジエン、6-エチル-1,6-オクタジエン、6-プロピル-1,6-オクタジエン、6-ブチル-1,6-オクタジエン、6-メチル-1,6-ノナジエン、7-メチル-1,6-ノナジエン、6-エチル-1,6-ノナジエン、7-エチル-1,6-ノナジエン、6-メチル-1,6-デカジエン、7-メチル-1,6-デカジエン、6-メチル-1,6-ウンデカジエン、7-メチル-1,6-オクタジエン等の鎖状ジエン;2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン等のトリエン等が挙げられる。これらの非共役ポリエンのうち、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、1,4-ヘキサジエン等が好ましく、5-エチリデン-2-ノルボルネンが更に好ましい。
 エチレン系共重合体ゴム(A)としては、エチレン・プロピレン・非共役ジエン共重合体ゴム、エチレン・1-ブテン・非共役ジエン共重合体ゴムが好ましく、エチレン・プロピレン・非共役ジエン共重合体ゴム、中でもエチレン・プロピレン・5-エチリデン-2-ノルボルネン共重合体ゴムが、適度な架橋構造を有する熱可塑性エラストマーが得られる点で特に好ましい。
 エチレン系共重合体ゴム(A)のムーニー粘度[ML1+4(125℃)]は、通常35~300、好ましくは40~160である。
 本発明に用いるエチレン系共重合体ゴム(A)は、その製造の際に軟化剤、好ましくは鉱物油系軟化剤を配合した、いわゆる油展ゴムであってもよい。鉱物油系軟化剤としては、従来公知の鉱物油系軟化剤、例えばパラフィン系プロセスオイルなどが挙げられる。
 また、エチレン系共重合体ゴム(A)のヨウ素価は、通常3~30、好ましくは5~25である。エチレン系共重合体ゴム(A)のヨウ素価がこのような範囲にあると、バランスよく架橋され、成形性とゴム弾性に優れた熱可塑性エラストマー組成物が得られる。
 エチレン系共重合体ゴム(A)の配合量は、エチレン系共重合体ゴム(A)、ポリプロピレン樹脂(B)、スチレン系熱可塑性エラストマー(C)及び軟化剤(D)の合計量100質量部に対して、20~60質量部、好ましくは30~50質量部、更に好ましくは30~45質量部である。この範囲にあれば柔軟性に優れる。
[ポリプロピレン樹脂(B)]
 本発明に用いるポリプロピレン樹脂(B)は、プロピレン単独、又はプロピレンとその他の1種又は2種以上のモノオレフィンを高圧法又は低圧法により重合して得られる高分子量固体生成物からなる。
 ポリプロピレン樹脂(B)のプロピレン以外の適当な原料オレフィンとしては、好ましくは炭素数2又は4~20のα-オレフィン、具体的には、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、2-メチル-1-プロペン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、5-メチル-1-ヘキセン等が挙げられる。重合様式は、樹脂状物が得られれば、ランダム型でもブロック型でもよい。これらのポリプロピレン樹脂は、単独でも、また2種以上組み合わせて用いてもよい。
 本発明に用いるポリプロピレン樹脂(B)は、好ましくはプロピレン含量が40モル%以上のプロピレン系重合体、更に好ましくは、プロピレン含量が50モル%以上のプロピレン系重合体である。
 これらのポリプロピレン樹脂の中でも、プロピレン単独重合体、プロピレン・エチレンブロック共重合体、プロピレン・エチレンランダム共重合体、プロピレン・エチレン・ブテンランダム共重合体等が特に好ましい。
 本発明に用いるポリプロピレン樹脂(B)は、融点が通常80~170℃、好ましくは120~170℃の範囲にある。
 本発明に用いるポリプロピレン樹脂(B)は、MFR(ASTM D1238-65T、230℃、2.16kg荷重)が通常0.01~100g/10分、特に0.05~50g/10分の範囲にあることが好ましい。
 本発明に用いるポリプロピレン樹脂(B)は、立体構造としては、アイソタクチック構造が好ましいが、シンジオタクチック構造のものやこれらの構造の混ざったもの、あるいは、一部アタクチック構造を含むものも用いることができる。
 本発明に用いるポリプロピレン樹脂(B)は、種々公知の重合方法によって重合される。
 ポリプロピレン樹脂(B)の配合量は、エチレン系共重合体ゴム(A)、ポリプロピレン樹脂(B)、スチレン系熱可塑性エラストマー(C)及び軟化剤(D)の合計量100質量部に対して、1~40質量部、好ましくは5~30質量部、更に好ましくは5~14質量部である。この範囲にあれば柔軟性と耐油性のバランスが特に優れている。
[スチレン系熱可塑性エラストマー(C)]
 本発明に用いるスチレン系熱可塑性エラストマー(C)としては、具体的には、スチレン・イソプレンブロック共重合体、スチレン・イソプレンブロック共重合体の水添物(SEP)、スチレン・イソプレン・スチレンブロック共重合体の水添物(SEPS;ポリスチレン・ポリエチレン/プロピレン・ポリスチレンブロック共重合体)、スチレン・ブタジエン共重合体、スチレン・ブタジエンブロック共重合体、スチレン・ブタジエンブロック共重合体の水添物(SEBS;ポリスチレン・ポリエチレン/ブチレン・ポリスチレンブロック共重合体)等が挙げられ、より具体的には、セプトン[クラレ(株)製]、EARNESTON[クラレプラスチック(株)製]、ハイブラー(HYBRAR)[クラレ(株)製]、クレイトン(KRATON)、クレイトンG[Kraton Polymer社製]、ユーロプレンSOLT[Versalis社製]、JSR-TR、JSR-SIS[JSR(株)製]、クインタック[日本ゼオン(株)製]、タフテック[旭化成工業(株)製](以上商品名)等が挙げられる。
 これらのうちでは、スチレン系熱可塑性エラストマー(C)が、スチレンと、ブタジエン及びイソプレンから選ばれる1種以上の共役ジエンとの、ブロック共重合体及びその水添物から選ばれる1種以上であることが、組成物の耐油性の点でより好ましい。特に好ましくは(C)成分がスチレン・イソプレンブロック共重合体、スチレン・イソプレンブロック共重合体の水添物、スチレン・イソプレン・スチレンブロック共重合体の水添物、スチレン・ブタジエンブロック共重合体、スチレン・ブタジエンブロック共重合体の水添物から選ばれる1種以上であることである。
 本発明に用いるスチレン系熱可塑性エラストマー(C)は、JIS K6253に準拠するタイプA硬度(瞬間値)が通常30~96、好ましくは35~69である。
 本発明に用いるスチレン系熱可塑性エラストマー(C)は、スチレン含有量が通常10~70質量%、好ましくは20~50質量%である。
 スチレン系熱可塑性エラストマー(C)の配合量は、エチレン系共重合体ゴム(A)、ポリプロピレン樹脂(B)、スチレン系熱可塑性エラストマー(C)及び軟化剤(D)の合計量100質量部に対して、4~14質量部、好ましくは5~12質量部、更に好ましくは5~11質量部、特に好ましくは5~10質量部である。前記スチレン系熱可塑性エラストマー(C)の配合量が4~14質量部であると、耐油性、重量変化率及び柔軟性が良好であり、かつ耐熱性が低下しないため真空成形等での成形性(特にシボ転写残存性)も良好である。スチレン系熱可塑性エラストマー(C)の前記配合量の上限が10質量部以下であると、耐油性に加えて、耐熱性が低下せず、真空成形性(シボ転写残存性)、ロールからの離形性にもより優れる。
 スチレン系熱可塑性エラストマー(C)は軟化剤、好ましくは鉱物油系軟化剤を配合した、いわゆる油展品であってもよい。鉱物油系軟化剤としては、従来公知の鉱物油系軟化剤、例えばパラフィン系プロセスオイルなどが挙げられる。
[軟化剤(D)]
 軟化剤は、予めエチレン系共重合体ゴム(A)、ポリプロピレン樹脂(B)、スチレン系熱可塑性エラストマー(C)、あるいはエチレン系共重合体ゴム(A)とポリプロピレン樹脂(B)の混合時に、あるいは、混合物を動的架橋する時に注入する方法により加える。その際、前記方法を単独で、あるいは前記方法を併用して添加してもよい。
 本発明に用いる軟化剤としては、具体的には、プロセスオイル、潤滑油、パラフィン、流動パラフィン、ポリエチレンワックス、ポリプロピレンワックス、石油アスファルト、ワセリン等の石油系軟化剤;コールタール、コールタールピッチ等のコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、大豆油、椰子油等の脂肪油系軟化剤;トール油;サブ、(ファクチス);蜜ロウ、カルナウバロウ、ラノリン等のロウ類;リシノール酸、パルミチン酸、ステアリン酸、ステアリン酸バリウム、ステアリン酸カルシウム、ラウリン酸亜鉛等の脂肪酸及び脂肪酸塩;ナフテン酸;パイン油、ロジン又はその誘導体;テルペン樹脂、石油樹脂、クマロンインデン樹脂、アタクチックポリプロピレン等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート、ジオクチルセバケート等のエステル系軟化剤;マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、液状ポリイソプレン、末端変性ポリイソプレン、水添末端変性ポリイソプレン、液状チオコール、炭化水素系合成潤滑油などが挙げられる。中でも、石油系軟化剤、特にプロセスオイルが好ましく用いられる。
 軟化剤(D)の配合量は、エチレン系共重合体ゴム(A)、ポリプロピレン樹脂(B)、スチレン系熱可塑性エラストマー(C)及び軟化剤(D)の合計量100質量部に対して、5~70質量部、好ましくは30~55質量部、更に好ましくは41~55質量部である。前記軟化剤(D)の配合量が5質量部未満であると、耐油性及び重量変化率が悪化し、一方、前記軟化剤(D)の配合量が70質量部を超えると、耐熱性が低下するため真空成形等での成形性(特にシボ転写残存性)が悪化する。
 本発明の組成物において、耐油性、耐熱性及びロール加工性の点から、スチレン系熱可塑性エラストマー(C)と軟化剤(D)の質量比((C)/(D))は0.01~1、好ましくは0.02~0.9、更に好ましくは0.03~0.7、より好ましくは0.05~0.5、特に好ましくは0.07~0.3、最も好ましくは0.1~0.3である。
[架橋剤]
 本発明に用いる架橋剤としては、例えば有機ペルオキシド、イオウ、イオウ化合物、フェノール樹脂等のフェノール系加硫剤などが挙げられるが、中でも有機ペルオキシドが成形体の色相の点、樹脂の引張試験における切断時伸びなどの機械強度に優れる点、成形体の二次加工時に樹脂が伸びやすく成形性に優れる点(成形性については、前記した引張試験における切断時伸びに優れることともある程度関係する)、そして真空成形性、特にコーナー転写性の点から好ましく用いられ、架橋剤(E)としては、成形体の色相の点、機械強度、成形性(特にコーナー転写性などの真空成形性)の点で、有機ペルオキシドのみを用いることがより好ましい。なお、架橋剤として有機ペルオキシドのみを用いる場合でも、後述する架橋助剤や多官能ビニルモノマーを用いてもよい。
 前記有機ペルオキシドとしては、具体的には、ジクミルペルオキシド、ジ-tert-ブチルペルオキシド、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、tert-ブチルペルオキシベンゾエート、tert-ブチルペルオキシイソプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、tert-ブチルクミルペルオキシド等が挙げられる。
 これらのうち、臭気性、スコーチ安定性の点で、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルペルオキシ)バレレートが好ましく、なかでも、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼンが最も好ましい。
 有機ペルオキシドは、エチレン系共重合体ゴム(A)、ポリプロピレン樹脂(B)、スチレン系熱可塑性エラストマー(C)及び軟化剤(D)の合計量100質量部に対して、通常0.01~5質量部、好ましくは0.05~3質量部、より好ましくは0.05~1質量部の割合で用いられる。また有機ペルオキシドは、原料として用いられるエチレン系共重合体ゴム(A)100質量部に対して、0.01~2質量部を用いることが柔軟性と耐油性の点から好ましく、添加量の上限の値は、好ましくは1.9質量部、より好ましくは1.6質量部、更に好ましくは1.5質量部、特に好ましくは1.4質量部であり、添加量の下限の値は、好ましくは0.02質量部、より好ましくは0.05質量部である。
 前記有機ペルオキシドによる架橋処理に際し、イオウ、p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシム、N-メチル-N,4-ジニトロソアニリン、ニトロソベンゼン、ジフェニルグアニジン、トリメチロールプロパン、N,N’-m-フェニレンジマレイミド、ジビニルベンゼン、トリアリルシアヌレート、トリアリルイソシアヌレートのような架橋助剤、あるいはエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、アリルメタクリレートのような多官能性メタクリレートモノマー、ビニルブチラート、ビニルステアレートのような多官能性ビニルモノマーを配合することができる。
 前記のような化合物を用いることにより、均一かつ緩和な架橋反応が期待できる。特に、本発明においては、ジビニルベンゼンが最も好ましい。ジビニルベンゼンは、取扱い易く、前記の被架橋処理物の主成分であるエチレン系共重合体ゴム(A)、ポリプロピレン樹脂(B)との相溶性が良好であり、かつ、有機ペルオキシドを可溶化する作用を有し、有機ペルオキシドの分散剤として働くため、熱処理による架橋効果が均質で、流動性と物性とのバランスのとれた樹脂組成物が得られる。
 前記架橋助剤は、エチレン系共重合体ゴム(A)、ポリプロピレン樹脂(B)、スチレン系熱可塑性エラストマー(C)及び軟化剤(D)の合計量100質量部に対して、通常0.01~15質量部、好ましくは0.03~12質量部の割合で用いられる。
[その他添加剤]
 本発明の組成物は、エチレン系共重合体ゴム(A)由来の成分、ポリプロピレン樹脂(B)由来の成分、スチレン系熱可塑性エラストマー(C)由来の成分及び軟化剤(D)由来の成分が前記した量で存在していればよいが、本発明の目的を損なわない範囲で、他の重合体、例えばブチルゴム、ポリイソブチレンゴム、ニトリルゴム(NBR)、天然ゴム(NR)、及びシリコーンゴムなどを添加してもよい。
 他の重合体を用いる場合の添加量は、前記成分(A)100質量部に対して、通常0.1~50質量部、好ましくは5~40質量部である。
 本発明の組成物には、必要に応じて、スリップ剤、核剤、充填剤、酸化防止剤、耐候安定剤、着色剤等の添加剤を、本発明の目的を損なわない範囲で配合することができる。これらその他の添加剤の合計量は、前記成分(A)~(D)の合計量100質量部に対して、通常0.01~20質量部、好ましくは0.1~10質量部、更に好ましくは0.1~5質量部である。また充填剤については、前記成分(A)100質量部に対して、通常1~50質量部、好ましくは1~45質量部、更に好ましくは1~40質量部である。
 前記核剤としては、非融解型及び融解型の結晶化核剤が挙げられ、これらを単独で又は2種以上組み合わせて用いることができる。非融解型の結晶化核剤としては、タルク、マイカ、シリカ、アルミニウムなどの無機物、臭素化ビフェニルエーテル、アルミニウムヒドロキシジ-p-tert-ブチルベンゾエート(TBBA)、有機リン酸塩、ロジン系結晶化核剤、置換トリエチレングリコールテレフタレート及びTerylene&Nylon繊維などが挙げられ、特にヒドロキシ-ジ-p-tert-ブチル安息香酸アルミニウム、メチレンビス(2,4-ジ-tert-ブチルフェニル)リン酸ナトリウム塩、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)リン酸ナトリウム、ロジン系結晶化核剤が望ましい。融解型の結晶化核剤としては、ジベンジリデンソルビトール(DBS)、置換DBS、低級アルキルジベンジリデンソルビトール(PDTS)、などのソルビトール系の化合物が挙げられる。
 前記スリップ剤としては、例えば脂肪酸アミド、シリコーンオイル、グリセリン、ワックス、パラフィン系オイルなどが挙げられる。
 前記充填剤としては、従来公知の充填剤、具体的には、カーボンブラック、炭酸カルシウム、ケイ酸カルシウム、クレー、カオリン、タルク、シリカ、ケイソウ土、雲母粉、アスベスト、アルミナ、硫酸バリウム、硫酸アルミニウム、硫酸カルシウム、塩基性炭酸マグネシウム、二硫化モリブデン、グラファイト、ガラス繊維、ガラス球、シラスバルーン、塩基性硫酸マグネシウムウィスカー、チタン酸カルシウムウィスカー、ホウ酸アルミニウムウィスカーなどから選ばれる1種以上が挙げられる。
[本発明の組成物の製造方法]
 本発明の組成物は、好ましくは、エチレン系共重合体ゴム(A)、ポリプロピレン樹脂(B)、スチレン系熱可塑性エラストマー(C)及び軟化剤(D)、必要に応じて任意的成分を所定量含む混合物を動的架橋することにより得られる。動的架橋を行う際には、前記架橋剤の存在下、あるいは前記架橋剤と前記架橋助剤の存在下に、動的に熱処理することが好ましい。前記好ましい態様のように(C)成分も架橋されていると、耐油性に優れる。
 また原料である(A)成分及び(C)成分は、それぞれ全量が架橋剤の存在下に、あるいは前記架橋剤と前記架橋助剤の存在下に動的に熱処理されたものであることが好ましい。(B)成分と(D)成分は、それぞれ少なくとも一部は架橋剤の存在下にあるいは前記架橋剤と前記架橋助剤の存在下に動的熱処置されたものであることが好ましく、それぞれ全量が架橋剤の存在下に動的に熱処置されたものであることが更に好ましい。
 架橋は、エチレン系共重合体ゴム(A)100質量部に対し、有機ペルオキシド0.01~2質量部の存在下で動的に熱処理することにより行うことが好ましい。
 ここに、「動的に熱処理する」とは、溶融状態で混練することをいう。
 本発明における動的な熱処理は、非開放型の装置中で行うことが好ましく、また窒素、炭酸ガス等の不活性ガス雰囲気下で行うことが好ましい。熱処理の温度は、ポリプロピレン樹脂(B)の融点から300℃の範囲であり、通常150~270℃、好ましくは170℃~250℃である。混練時間は、通常1~20分間、好ましくは1~10分間である。また、加えられる剪断力は、剪断速度で10~50,000sec-1、好ましくは100~10,000sec-1の範囲である。
 本発明の組成物は、特にソリッド成形に用いるのに適するものであり、通常、発泡剤等は用いない。
 混練装置としては、ミキシングロール、インテンシブミキサー(例えばバンバリーミキサー、ニーダー)、一軸又は二軸押出機等を用いることができるが、非開放型の装置が好ましい。
 本発明によれば、上述した動的な熱処理によって、エチレン系共重合体ゴム(A)の少なくとも一部が架橋された樹脂組成物が得られる。
[本発明の組成物]
 本発明の組成物のJIS K7210に準拠して230℃で10kgf又は2.16kgfの荷重にて測定したメルトフローレート(MFR)に特に制限はないが、真空成形でのコーナー転写性とシボ転写残存性の両立の点から、230℃で10kgfの荷重にて測定したMFRは、好ましくは0.1~150g/10min、更に好ましくは0.1~80g/10minである。
 本発明の組成物は、JIS K6253に準拠して測定したショアーA硬度(瞬間値)が通常30~60、好ましくは40~54である。
 本発明の組成物は、種々の公知の成形方法、具体的には、例えば、射出成形、押出成形、プレス成形、カレンダー成形、中空成形等の各種の成形方法により、熱可塑性エラストマー成形体とすることができる。更に、前記成形方法で得られたシートなど成形体を熱成形などで二次加工することができる。本発明の組成物は、熱成形時にシートを、コーナー部を有する形に真空成形した際に、コーナー部の形のシャープさに優れる。コーナー部を有する形としては、例えば自動車インストゥルメントパネルの表皮部材または自動車ドアトリムの表皮部材の形状が挙げられる。またシートにシボを付与してから熱成形に供した場合にも、熱成形後のシボの残りやすさにも優れている。本発明の組成物が前記したコーナー部の転写性、シボ転写残存性に優れている理由としては、本発明の組成物が、耐熱性を備えていることが挙げられる。本発明では前記コーナー部の転写性、シボ転写残存性のいずれか一方又は両方が優れることを真空成形性に優れる、ということがある。
 前記の組成物は、軟らかい触感と優れた耐油性を兼ね備えており、自動車内装部品の表皮部材、例えば自動車インストゥルメントパネル用表皮部材、自動車ドアトリム用表皮部材として最適である。
 本明細書は、本願の優先権の基礎である特願2017-237039の明細書及び図面に記載される内容を包含する。
 以下、本発明を実施例により説明するが、本発明は、これら実施例により何ら限定されるものではない。なお、実施例及び比較例で行った物性の測定方法、評価方法等は、下記のとおりである。
[ショアーA硬度]
 JIS K6253(硬さ試験方法)に準拠して、厚さ2mmのプレスシートを用い、デュロメーターを用いてショアーA硬度(瞬間値)を求めた。
[ポリプロピレン樹脂(B)の融点(Tm)]
 JIS K7121に準拠して示差走査熱量計(DSC:Differential scanning calorimetry)を用い、下記の方法により測定した。
 約5mgの重合体をセイコーインスツル(株)製の示差走査熱量計(DSC220C型)の測定用アルミニウムパン中に密封し、室温から10℃/分で200℃まで加熱した。重合体を完全融解させるために、200℃で5分間保持し、次いで、10℃/分で-50℃まで冷却した。-50℃で5分間置いた後、10℃/分で200℃まで2度目の加熱を行い、この2度目の加熱でのピーク温度(℃)を重合体の融点(Tm)とした。なお、複数のピークが検出される場合には、最も高温側で検出されるピークを採用した。
[引張特性]
 JIS K6251の方法に従って測定した。
 なお、試験片は、厚さ2mmのプレスシートから3号ダンベル片を打ち抜いて用いた。 測定温度:23℃
 M100:100%伸び時の応力(MPa)
 T:引張強さ(MPa)
 E:切断時伸び(%)
[耐油試験:重量変化率]
 試験油として流動パラフィン(軟質)(ナカライテスク社製コード番号:26132-35)を使用し、2mmプレスシートを80℃×24時間浸漬した。その後、サンプル表面をふき取り、n数=3にて重量変化率を測定した。
(耐油性の判定基準)
◎:重量変化率が110以下
〇:重量変化率が110より大きく130以下
△:重量変化率が130より大きく150以下
×:重量変化率が150より大きい値である
[柔軟性]
 熱可塑性エラストマーの硬さを、ショアーA硬度で表すことができる。ショアーA硬度の値が高ければその材料は硬く、低ければその材料は軟らかく柔軟性があるといえる。本件の柔軟性の判定基準を下記に示す。
(柔軟性の判定基準)
◎:ショアーA硬度が45以下
〇:ショアーA硬度が46~54
△:ショアーA硬度が55~59
×:ショアーA硬度が60以上
[メルトフローレート:MFR]
 JIS K7210に準拠して230℃で10kgf又は2.16kgfの荷重にてメルトフローレートを測定した。
[真空成形性]
 インストゥルメントパネルの形に成形し(成形温度:125℃)、布施真空(株)製真空成形機BVF-1010-PWBを用いて、コーナー転写性及びシボ転写残存性を以下の基準にしたがって評価した。
(コーナー転写性の評価基準)
◎:成形体のコーナーが非常にシャープである様子
○:成形体のコーナーがシャープである様子
△:成形体のコーナーがやや丸みを帯びている様子
×:成形体のコーナーが丸みを帯びている様子
(シボ転写残存性の評価基準)
◎:成形体の転写されたシボが非常にくっきり残っている
○:成形体の転写されたシボがくっきり残っている
△:成形体の転写されたシボが薄くなっている部分がある
×:成形体の転写されたシボが消えかかっている部分がある
[ロール加工性]
 以下の試験条件及び判定基準に従って、ロールからの離形性を評価した。
(試験条件)
機器名:安田精機製作所 No.191-TM/WM テストミキシングロール
ロール温度:180℃
回転数:5インチ,フロント12.2/リア15.3rpm
試料量:100g
混練時間:10分
膜厚:0.5mmt
ガイド幅:21cm
(離形性の判定基準)
◎:自重でロールから用意に剥がれる
〇:手を加えて容易に剥がれる
△:粘着あるが剥がれる
×:ロールに強く粘着し、剥がれない・剥がれにくい様子
[実施例1~4及び比較例1~7]
<使用材料>
(1)エチレン系共重合体ゴム(A)としては以下のものを使用した。
エチレン・プロピレン・ジエン共重合体ゴム(EPDM)(商品名:3072EPM;三井化学(株)製、エチレン含量=64質量%、ジエン含量=5.4質量%、ムーニー粘度ML(1+4)125℃=51、油展量=40(PHR))
(2)ポリプロピレン樹脂(B)としては以下のものを使用した。
(a)プロピレン/エチレンランダム共重合体(結晶性樹脂)(商品名:プライムポリプロB241、(株)プライムポリマー社製、密度:0.91g/cm、MFR(温度:230℃、荷重:2.16kg荷重):0.5g/10分、DSCで測定した融点140℃、密度0.91g/cm
(b)プロピレン・エチレンブロック共重合体(商品名:EL-Pro P740J;SCG Chemicals社製、MFR(ASTM D1238-65T;230℃、2.16kg荷重)27g/10分、DSCで測定した融点163℃)
(3)ブチルゴムとしては以下のものを使用した。
ブチルゴム(商品名:IIR065;エクソンモービルケミカル社製、不飽和度:0.8モル%、ムーニー粘度ML(1+8)125℃:32)とプロピレン・エチレンブロック共重合体(商品名:EL-Pro P740J;SCG Chemicals社製、MFR(ASTM D1238-65T;230℃、2.16kg荷重)27g/10分、融点163℃)との1:1マスターバッチ品
(4)プロピレン・エチレン共重合体としては以下のものを使用した。
The Dow Chemical Company社製、VERSIFYTM2400.05(メルトフローレート(230℃、2.16kg荷重)2g/10分、密度863kg/m)、重量平均分子量1.0×10以上の成分の含有率1.0%、重量平均分子量5.0×10以下の成分の含有率2.5%、融点51.8℃
(5)スチレン系熱可塑性エラストマー(C)としては以下のものを使用した。
旭化成工業製タフテックTMH1272:ポリスチレン-水素添加されたポリブタジエン-ポリスチレンの構造を有し、結合スチレン量35質量%、数平均分子量が約120000(パラフィン系オイル(出光興産製ダイアナプロセスオイルPW-380[パラフィン系プロセスオイル、動粘度:381.6cst(40℃)、30.1(100℃)、平均分子量746、環分析値:CA=0%、CN=27%、CP=73%])35質量%油展品(油展量=56(PHR)))
(実施例1)
 エチレン・プロピレン・ジエン共重合体ゴム(EPDM)(商品名:3072EPM:三井化学(株)製、エチレン含量=64質量%、ジエン含量=5.4質量%、ムーニー粘度ML(1+4)125℃=51、油展量=40(PHR))50質量部、プロピレン/エチレンランダム共重合体(結晶性樹脂)(商品名:プライムポリプロB241、(株)プライムポリマー社製、密度:0.91g/cm、MFR(温度:230℃、荷重:2.16kg荷重):0.5g/10分、密度0.91g/cm)10質量部、スチレン系熱可塑性エラストマー(旭化成工業製タフテックTMH1272、パラフィン系オイル35質量%油展品(油展量=56(PHR))10質量部、軟化剤(商品名:出光興産製ダイアナプロセスPW-100、パラフィンオイル)30質量部、架橋剤として有機ペルオキシド(パーヘキサ25B、日本油脂(株)製)0.40質量部、及び架橋助剤としてジビニルベンゼン0.40質量部をヘンシェルミキサーで充分に混合した後、押出機(品番 KTX-30、神戸製鋼(株)製、シリンダー温度:C1:50℃、C2:90℃、C3:100℃、C4:120℃、C5:180℃、C6:200℃、C7~C14:200℃、ダイス温度:200℃、スクリュー回転数:400rpm、押出量:50kg/h)にて、得られた混合物の動的架橋を行い、樹脂組成物のペレットを得た。配合及び結果を表1に示す。
(実施例2及び3)
 成分の配合量を表1に示すように変更する以外は、実施例1と同様にして、樹脂組成物のペレットを得た。結果を表1に示す。
(実施例4)
 成分の配合量を表1に示すように変更するとともに、スチレン系熱可塑性エラストマーを架橋処理後に添加する以外は、実施例1と同様にして、樹脂組成物のペレットを得た。
 すなわち、エチレン・プロピレン・ジエン共重合体ゴム(EPDM)(商品名:3072EPM:三井化学(株)製、エチレン含量=64質量%、ジエン含量=5.4質量%、ムーニー粘度ML(1+4)125℃=51、油展量=40(PHR))36質量部、プロピレン/エチレンランダム共重合体(結晶性樹脂)(商品名:プライムポリプロB241、(株)プライムポリマー社製、密度:0.91g/cm、MFR(温度:230℃、荷重:2.16kg荷重):0.5g/10分、密度0.91g/cm)10質量部、軟化剤(商品名:出光興産製ダイアナプロセスPW-100、パラフィンオイル)46質量部、架橋剤として有機ペルオキシド(パーヘキサ25B、日本油脂(株)製)0.40質量部、及び架橋助剤としてジビニルベンゼン0.40質量部をヘンシェルミキサーで充分に混合した後、押出機(品番 KTX-30、神戸製鋼(株)製、シリンダー温度:C1:50℃、C2:90℃、C3:100℃、C4:120℃、C5:180℃、C6:200℃、C7~C14:200℃、ダイス温度:200℃、スクリュー回転数:400rpm、押出量:50kg/h)にて、得られた混合物の動的架橋を行ってペレットを得た後、当該ペレットとスチレン系熱可塑性エラストマー(旭化成工業製タフテックTMH1272、パラフィン系オイル35質量%油展品(油展量=56(PHR))とを、成分の配合量が表1に示す値となるように、同じ押出機で混合し、樹脂組成物のペレットを得た。結果を表1に示す。
(比較例1)
 エチレン・プロピレン・ジエン共重合体ゴム(EPDM)(商品名:3072EPM:三井化学(株)製、エチレン含量=64質量%、ジエン含量=5.4質量%、ムーニー粘度ML(1+4)125℃=51、油展量=40(PHR))60質量部、ブチルゴム(商品名:IIR065;エクソンモービルケミカル社製、不飽和度:0.8モル%、ムーニー粘度ML(1+8)125℃:32)とプロピレン・エチレンブロック共重合体(商品名:EL-Pro P740J;SCG Chemicals社製、MFR(ASTM D1238-65T;230℃、2.16kg荷重)27g/10分、融点163℃)との1:1マスターバッチ品29質量部、軟化剤(商品名:出光興産製ダイアナプロセスPW-100、パラフィンオイル)11質量部、架橋剤として有機ペルオキシド(パーヘキサ25B、日本油脂(株)製)0.3質量部、及び架橋助剤としてジビニルベンゼン0.2質量部をヘンシェルミキサーで充分に混合した後、押出機(品番 KTX-30、神戸製鋼(株)製、シリンダー温度:C1:50℃、C2:90℃、C3:100℃、C4:120℃、C5:180℃、C6:200℃、C7~C14:200℃、ダイス温度:200℃、スクリュー回転数:400rpm、押出量:50kg/h)にて、得られた混合物の動的架橋を行い、樹脂組成物のペレットを得た。配合及び結果を表2に示す。
(比較例2)
 エチレン・プロピレン・ジエン共重合体ゴム(EPDM)(商品名:3072EPM:三井化学(株)製、エチレン含量=64質量%、ジエン含量=5.4質量%、ムーニー粘度ML(1+4)125℃=51、油展量=40(PHR))55質量部、プロピレン・エチレンブロック共重合体(商品名:EL-Pro P740J;SCG Chemicals社製、メルトフローレート(ASTM D1238-65T;230℃、2.16kg荷重)27g/10分、融点163℃)16質量部、プロピレン・エチレン共重合体(商品名:VERSIFYTM2400.05、The Dow Chemical Company社製、メルトフローレート(230℃、2.16kg荷重)2g/10分、密度863kg/m)8質量部、軟化剤(商品名:出光興産製ダイアナプロセスPW-100、パラフィンオイル)21質量部、架橋剤として有機ペルオキシド(パーヘキサ25B、日本油脂(株)製)0.25質量部、及び架橋助剤としてジビニルベンゼン0.15質量部をヘンシェルミキサーで充分に混合した後、押出機(品番 KTX-30、神戸製鋼(株)製、シリンダー温度:C1:50℃、C2:90℃、C3:100℃、C4:120℃、C5:180℃、C6:200℃、C7~C14:200℃、ダイス温度:200℃、スクリュー回転数:400rpm、押出量:50kg/h)にて、得られた混合物の動的架橋を行い、樹脂組成物のペレットを得た。配合及び結果を表2に示す。
(比較例3)
 エチレン・プロピレン・ジエン共重合体ゴム(EPDM)(商品名:3072EPM:三井化学(株)製、エチレン含量=64質量%、ジエン含量=5.4質量%、ムーニー粘度ML(1+4)125℃=51、油展量=40(PHR))28質量部、プロピレン/エチレンランダム共重合体(結晶性樹脂)(商品名:プライムポリプロB241、(株)プライムポリマー社製、密度:0.91g/cm、MFR(温度:230℃、荷重:2.16kg荷重):0.5g/10分、密度0.91g/cm)13質量部、スチレン系熱可塑性エラストマー(旭化成工業製タフテックTMH1272、パラフィン系オイル35質量%油展品(油展量=56(PHR))25質量部、軟化剤(商品名:出光興産製ダイアナプロセスPW-100、パラフィンオイル)34質量部、架橋剤として有機ペルオキシド(パーヘキサ25B、日本油脂(株)製)0.40質量部、及び架橋助剤としてジビニルベンゼン0.40質量部をヘンシェルミキサーで充分に混合した後、押出機(品番 KTX-30、神戸製鋼(株)製、シリンダー温度:C1:50℃、C2:90℃、C3:100℃、C4:120℃、C5:180℃、C6:200℃、C7~C14:200℃、ダイス温度:200℃、スクリュー回転数:400rpm、押出量:50kg/h)にて、得られた混合物の動的架橋を行い、樹脂組成物のペレットを得た。配合及び結果を表2に示す。
(比較例4~7)
 成分及びその配合量を表2に示すように変更する以外は、比較例1と同様にして、樹脂組成物のペレットを得た。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2に示す結果から、実施例1~3の組成物は、軟らかい触感と優れた耐油性を兼ね備えていることがわかる。また、ペレットの色相は、一般に、乳白色であれば良好であり、黄色等への着色は好ましくないとされるが、実施例1~3の組成物は、いずれもペレットの色相は乳白色であった。
 比較例1及び2は、スチレン系熱可塑性エラストマー(C)を含有しないので重量変化率(耐油性)が悪い。比較例3は、スチレン系熱可塑性エラストマー(C)の配合量が多すぎると、耐油性が悪化し、シボ転写残存性及びロールからの離形性が悪化することを示す。比較例4は、スチレン系熱可塑性エラストマー(C)の配合量が少なすぎると、耐油性や真空成形性が悪化することを示す。比較例5は、ポリプロピレン樹脂(B)の配合量が多い硬い材料の場合は、スチレン系熱可塑性エラストマー(C)を配合しなくても多少耐油性はよいが、柔軟性が悪いことを示す。比較例6は、ポリプロピレン樹脂(B)の配合量が多い硬い材料にスチレン系熱可塑性エラストマー(C)を配合すると、耐油性はよくなるが、柔軟性が悪いことを示す。比較例7は、軟化剤よりスチレン系熱可塑性エラストマー(C)の配合量が多いと、耐油性が悪化することを示す。
 本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書中にとり入れるものとする。

Claims (9)

  1.  エチレン系共重合体ゴム(A)由来の成分20~60質量部、ポリプロピレン樹脂(B)由来の成分5~30質量部、スチレン系熱可塑性エラストマー(C)由来の成分4~14質量部及び軟化剤(D)由来の成分5~70質量部(成分(A)、(B)、(C)及び(D)の合計量は100質量部である)を含有し、スチレン系熱可塑性エラストマー(C)由来の成分と軟化剤(D)由来の成分の質量比((C)/(D))が0.01~1である組成物。
  2.  少なくともエチレン系共重合体ゴム(A)由来の成分とスチレン系熱可塑性エラストマー(C)由来の成分とは、有機ペルオキシドを含む架橋剤(E)により、架橋されたものである請求項1記載の組成物。
  3.  エチレン系共重合体ゴム(A)由来の成分20~60質量部、ポリプロピレン樹脂(B)由来の成分5~14質量部、スチレン系熱可塑性エラストマー(C)由来の成分5~12質量部及び軟化剤(D)由来の成分5~70質量部(成分(A)、(B)、(C)及び(D)の合計量は100質量部である)を含有する請求項1又は2記載の組成物。
  4.  スチレン系熱可塑性エラストマー(C)がスチレンと、ブタジエン及びイソプレンから選ばれる1種以上の共役ジエンとの、ブロック共重合体及びその水添物から選ばれる請求項1~3のいずれか1項に記載の組成物。
  5.  架橋剤(E)が有機ペルオキシドのみからなる請求項2~4のいずれか1項に記載の組成物。
  6.  230℃、10kg荷重でのMFRが0.1~150である請求項1~5のいずれか1項に記載の組成物。
  7.  請求項1~6のいずれか1項に記載の組成物を含んでなる自動車内装部品の表皮部材。
  8.  請求項7記載の表皮部材を有する自動車内装部品。
  9.  インストゥルメントパネル又はドアトリムである請求項8記載の自動車内装部品。
PCT/JP2018/035267 2017-12-11 2018-09-25 重合体組成物及びその用途 WO2019116669A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/769,026 US20210230415A1 (en) 2017-12-11 2018-09-25 Polymer composition and use thereof
JP2019558917A JP7034176B2 (ja) 2017-12-11 2018-09-25 重合体組成物及びその用途
CN201880079606.5A CN111448253A (zh) 2017-12-11 2018-09-25 聚合物组合物及其用途
KR1020207015465A KR102387508B1 (ko) 2017-12-11 2018-09-25 중합체 조성물 및 그의 용도
EP18889071.9A EP3725842A4 (en) 2017-12-11 2018-09-25 COMPOSITION OF POLYMER AND ITS USE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017237039 2017-12-11
JP2017-237039 2017-12-11

Publications (1)

Publication Number Publication Date
WO2019116669A1 true WO2019116669A1 (ja) 2019-06-20

Family

ID=66820209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035267 WO2019116669A1 (ja) 2017-12-11 2018-09-25 重合体組成物及びその用途

Country Status (6)

Country Link
US (1) US20210230415A1 (ja)
EP (1) EP3725842A4 (ja)
JP (1) JP7034176B2 (ja)
KR (1) KR102387508B1 (ja)
CN (1) CN111448253A (ja)
WO (1) WO2019116669A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225203A1 (en) * 2022-05-18 2023-11-23 Mcpp Innovation Llc Split-proof automotive corner molding compound

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994926A (ja) * 1995-09-28 1997-04-08 Mitsui Petrochem Ind Ltd 熱可塑性エラストマー積層体を用いた逐次射出成形自動車内外装部品
JPH10324200A (ja) * 1997-03-27 1998-12-08 Toyoda Gosei Co Ltd 自動車用ウェザストリップ
JP2002206034A (ja) 2001-01-10 2002-07-26 Mitsui Chemicals Inc 射出発泡成形性の良好な熱可塑性エラストマー組成物
JP2003176397A (ja) * 2001-09-12 2003-06-24 Riken Technos Corp 熱可塑性エラストマー組成物
WO2005090466A1 (ja) * 2004-03-17 2005-09-29 Mitsui Chemicals, Inc. 樹脂組成物およびそれからなる成形体
JP2007031544A (ja) * 2005-07-26 2007-02-08 Asahi Kasei Chemicals Corp 架橋熱可塑性重合体組成物
JP2012107261A (ja) * 2012-03-13 2012-06-07 Mitsubishi Chemicals Corp 熱可塑性エラストマー組成物及びその製造方法
JP2014080488A (ja) * 2012-10-16 2014-05-08 Kuraray Co Ltd 熱可塑性エラストマー組成物および該組成物からなる成形体
WO2016039310A1 (ja) 2014-09-08 2016-03-17 三井化学株式会社 熱可塑性エラストマー組成物及びその成形体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012362A1 (fr) * 2000-08-04 2002-02-14 Zeon Corporation Copolymere bloc, son procede de production et objet moule
JP3694789B2 (ja) * 2001-09-18 2005-09-14 Jsr株式会社 熱可塑性エラストマー組成物および成形品
JP2003277519A (ja) 2002-03-25 2003-10-02 Sumitomo Chem Co Ltd 熱可塑性エラストマー組成物及び成形体
US7319121B2 (en) * 2005-10-07 2008-01-15 Advanced Elestomer Systems, Inc. Microcellular foams of thermoplastic vulcanizates
JP5228277B2 (ja) * 2006-02-03 2013-07-03 横浜ゴム株式会社 熱可塑性エラストマー組成物およびそれを用いるグレイジングガスケット
US7863368B2 (en) 2006-11-17 2011-01-04 Mitsui Chemicals, Inc. Propylene resin composition, process for producing propylene resin composition, propylene polymer composition, shaped article produced of the propylene resin composition, and electric wire
KR100891836B1 (ko) * 2007-01-23 2009-04-07 주식회사 엘지화학 내스크래치성이 우수한 고유동 올레핀계 열가소성 수지조성물
US20090192250A1 (en) * 2008-01-29 2009-07-30 Sumitomo Chemical Company, Limited Thermoplastic elastomer composition and composite molding
CN101959953B (zh) * 2008-03-07 2013-12-11 Jsr株式会社 热塑性弹性体组合物
JP5550215B2 (ja) * 2008-07-18 2014-07-16 三井化学株式会社 発泡用熱可塑性エラストマー組成物、その発泡成形体、その複合成形体および自動車用インストゥルメントパネル
DE102013003948B4 (de) * 2013-03-07 2023-07-13 Iwis Motorsysteme Gmbh & Co. Kg Verfahren zum Herstellen einer Spann- oder Führungsschiene mit einem Schwingungstilger, Spann- oder Führungsschiene sowie Endlostrieb mit einer solchen
KR101577363B1 (ko) * 2014-06-26 2015-12-14 롯데케미칼 주식회사 향상된 진동 절연성과 내열성을 갖는 열가소성 엘라스토머 조성물 및 이로부터 형성된 성형품
JP6889388B2 (ja) * 2016-03-31 2021-06-18 オムロン株式会社 電子機器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994926A (ja) * 1995-09-28 1997-04-08 Mitsui Petrochem Ind Ltd 熱可塑性エラストマー積層体を用いた逐次射出成形自動車内外装部品
JPH10324200A (ja) * 1997-03-27 1998-12-08 Toyoda Gosei Co Ltd 自動車用ウェザストリップ
JP2002206034A (ja) 2001-01-10 2002-07-26 Mitsui Chemicals Inc 射出発泡成形性の良好な熱可塑性エラストマー組成物
JP2003176397A (ja) * 2001-09-12 2003-06-24 Riken Technos Corp 熱可塑性エラストマー組成物
WO2005090466A1 (ja) * 2004-03-17 2005-09-29 Mitsui Chemicals, Inc. 樹脂組成物およびそれからなる成形体
JP2007031544A (ja) * 2005-07-26 2007-02-08 Asahi Kasei Chemicals Corp 架橋熱可塑性重合体組成物
JP2012107261A (ja) * 2012-03-13 2012-06-07 Mitsubishi Chemicals Corp 熱可塑性エラストマー組成物及びその製造方法
JP2014080488A (ja) * 2012-10-16 2014-05-08 Kuraray Co Ltd 熱可塑性エラストマー組成物および該組成物からなる成形体
WO2016039310A1 (ja) 2014-09-08 2016-03-17 三井化学株式会社 熱可塑性エラストマー組成物及びその成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3725842A4

Also Published As

Publication number Publication date
KR102387508B1 (ko) 2022-04-15
JP7034176B2 (ja) 2022-03-11
EP3725842A1 (en) 2020-10-21
EP3725842A4 (en) 2021-11-17
JPWO2019116669A1 (ja) 2020-11-19
CN111448253A (zh) 2020-07-24
KR20200070397A (ko) 2020-06-17
US20210230415A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
JP5972200B2 (ja) 熱可塑性エラストマー組成物、それを用いた成形体、および用途
WO2016039310A1 (ja) 熱可塑性エラストマー組成物及びその成形体
KR20010078775A (ko) 저포깅성 열가소성 엘라스토머 조성물 및 이 조성물의제조방법 및 용도
JP2019077851A (ja) エラストマー樹脂組成物及び成形体
KR102272775B1 (ko) 성형 외관이 우수한 열가소성 엘라스토머 조성물 및 그의 성형체
JP2020117649A (ja) 熱可塑性樹脂組成物、それを用いた成形体、及び用途
JP2003155387A (ja) オレフィン系熱可塑性エラストマーおよびその成形体
JP5055072B2 (ja) 熱可塑性エラストマー組成物の製造方法、及び成形体
JP7034176B2 (ja) 重合体組成物及びその用途
JP2018178006A (ja) 熱可塑性エラストマー組成物、並びにその用途及び製造方法
JP6994357B2 (ja) カレンダー成形用樹脂組成物並びに自動車内装表皮材及び成形体の製造方法
JP7223584B2 (ja) 熱可塑性エラストマー組成物及びその成形体
JP5279223B2 (ja) 熱可塑性エラストマー組成物およびその製造方法、並びにそれを用いた成形体
JP5189245B2 (ja) 熱可塑性エラストマー組成物およびその成形体
JP4054523B2 (ja) 射出成形性に優れたオレフィン系熱可塑性エラストマー組成物
JP3984073B2 (ja) 熱可塑性エラストマー組成物
JP5204512B2 (ja) 熱可塑性エラストマー組成物
JP3821748B2 (ja) オレフィン系熱可塑性エラストマー成形体
WO2019077989A1 (ja) エラストマー樹脂組成物及び成形体
JP6792522B2 (ja) 柔らかい触感の熱可塑性エラストマー組成物及びその成形体
JP3486011B2 (ja) オレフィン系熱可塑性エラストマー組成物
JP2007169662A (ja) 熱可塑性エラストマー組成物
JP3984072B2 (ja) 熱可塑性エラストマー組成物
JP2020117650A (ja) 熱可塑性樹脂組成物、それを用いた成形体、及び用途
KR20240009507A (ko) 열가소성 엘라스토머 조성물, 그의 성형체, 및 그의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558917

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207015465

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018889071

Country of ref document: EP

Effective date: 20200713