WO2019116607A1 - 車両用清掃システム - Google Patents

車両用清掃システム Download PDF

Info

Publication number
WO2019116607A1
WO2019116607A1 PCT/JP2018/021938 JP2018021938W WO2019116607A1 WO 2019116607 A1 WO2019116607 A1 WO 2019116607A1 JP 2018021938 W JP2018021938 W JP 2018021938W WO 2019116607 A1 WO2019116607 A1 WO 2019116607A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
vehicle
adhesion
condition
cleaned
Prior art date
Application number
PCT/JP2018/021938
Other languages
English (en)
French (fr)
Inventor
雄介 山内
大祐 白倉
茂久 濱口
尚太 足立
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/771,290 priority Critical patent/US11708054B2/en
Priority to CN201880079745.8A priority patent/CN111479728B/zh
Priority to JP2019558886A priority patent/JP6988914B2/ja
Priority to DE112018006324.0T priority patent/DE112018006324T5/de
Publication of WO2019116607A1 publication Critical patent/WO2019116607A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/56Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/46Cleaning windscreens, windows or optical devices using liquid; Windscreen washers
    • B60S1/48Liquid supply therefor
    • B60S1/481Liquid supply therefor the operation of at least part of the liquid supply being controlled by electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0896Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/46Cleaning windscreens, windows or optical devices using liquid; Windscreen washers
    • B60S1/48Liquid supply therefor
    • B60S1/481Liquid supply therefor the operation of at least part of the liquid supply being controlled by electric means
    • B60S1/482Liquid supply therefor the operation of at least part of the liquid supply being controlled by electric means combined with the operation of windscreen wipers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/46Cleaning windscreens, windows or optical devices using liquid; Windscreen washers
    • B60S1/48Liquid supply therefor
    • B60S1/52Arrangement of nozzles; Liquid spreading means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/54Cleaning windscreens, windows or optical devices using gas, e.g. hot air

Definitions

  • the present invention relates to a cleaning system for a vehicle.
  • various on-vehicle sensors are required to detect the traveling state of the vehicle.
  • satellite positioning systems for example, GPS
  • acceleration sensors for example, acceleration sensors, gyro sensors, temperature sensors, level sensors, speed sensors, rotational speed sensors, travel distance sensors, driving operation detectors, etc.
  • radars that detect the condition around the vehicle using radio waves such as millimeter wave radar, the traveling condition of the vehicle, traveling lanes, signs, traveling division lines, other vehicles, or outside the vehicle
  • An optical sensor for detecting an obstacle or the like is also included.
  • Japanese Patent Application Laid-Open No. 2015-224032 discloses a technique for removing dirt attached to the surface of an on-vehicle camera lens. According to the technique described in the above document, after cleaning the dirt on the lens surface by spraying pressurized cleaning water from the liquid nozzle onto the lens surface, the pressurized air is jetted from the air nozzle and cleaning remains on the lens surface It is what dries the water. In this technique, both pressurized wash water and pressurized air are generated using a common liquid pump.
  • a large number of on-vehicle sensors are mounted on a vehicle on which the driving support system is mounted, and in the case where a deposit adheres to the sensor surface of these on-vehicle sensors, the detection capability of the on-vehicle sensor may be reduced.
  • the techniques described in the above document are described for manually operating the cleaning system to clean one optical sensor. However, when the cleaning system is operated manually, it is necessary to grasp the degree of contamination to be cleaned, which is a burden on the user of the vehicle. In particular, when there are a plurality of cleaning targets, it is difficult to grasp all the degrees of the stains of the individual cleaning targets.
  • the present invention has been made in consideration of the above-described fact, and it is an object of the present invention to provide a vehicle cleaning system capable of automatically and appropriately cleaning a cleaning object provided on a vehicle.
  • a vehicle cleaning system comprising: a cleaning unit configured to clean an object to be cleaned including an onboard sensor provided in the vehicle; a traveling condition of the vehicle; an environmental condition of the vehicle; And a control unit configured to determine a cleaning condition by the cleaning unit according to at least one of the indicators related to the adhesion of the deposit on the cleaning unit and to clean the cleaning target under the cleaning condition determined by the cleaning unit.
  • a first aspect of the present invention includes a cleaning unit provided in a vehicle for cleaning an object to be cleaned.
  • the traveling condition of the vehicle has a correlation with the adhesion of the attachment to the cleaning object
  • the environmental condition of the vehicle also has a correlation with the adhesion of the attachment to the cleaning object.
  • the index for adhesion is also correlated with the adhesion of the adhesion to the object to be cleaned.
  • the control unit is a cleaning unit according to at least one of the traveling condition of the vehicle, the environmental condition of the vehicle, and the index related to the adhesion of the deposit to the cleaning object of the vehicle. Determine the cleaning conditions according to and clean the object to be cleaned under the cleaning conditions determined by the cleaning unit.
  • the control section sets at least one of the operating strength, the operating time and the number of times of operation of the cleaning section as the cleaning condition by the cleaning section.
  • the condition for cleaning the object to be cleaned is determined, and in the cleaning of the object to be cleaned by the cleaning unit, at least one of the operation intensity, the operation time and the number of operations of the cleaning unit is controlled.
  • the cleaning condition by the cleaning unit is the traveling condition of the vehicle, the environmental condition of the vehicle, and the cleaning object
  • the control unit further includes a storage unit that stores the index in association with at least one of the indicators related to the adhesion of attached matter to the vehicle, and the control unit controls the traveling condition of the vehicle and the environment of the vehicle based on information stored in the storage unit.
  • the cleaning condition corresponding to the condition and at least one of the indicators related to the adhesion of the deposit to the object to be cleaned is determined.
  • the control unit is not required to perform cleaning even if the cleaning unit causes the cleaning unit to perform cleaning a predetermined number of times. It reports, when the index about adhesion of the adhesion thing of is a value which shows adhesion existence. Thereby, when it is estimated that it is difficult to remove the extraneous matter attached to the object to be cleaned by the cleaning by the cleaning unit, it is possible to notify the occupant of the vehicle to that effect.
  • a plurality of the cleaning portions are provided corresponding to a plurality of cleaning targets provided in a vehicle
  • the control unit controls each cleaning unit independently.
  • each of the plurality of cleaning targets provided in the vehicle can be cleaned automatically and appropriately according to the adhesion state of the deposit.
  • the control unit acquires an index related to the adhesion of the deposit to the first cleaning target provided on the vehicle,
  • the cleaning condition is determined using the index relating to the adhesion of the deposit to the first cleaning object as the index regarding the adhesion of the deposit to the second cleaning object provided on the vehicle, and the cleaning condition is determined based on the determined cleaning condition
  • the cleaning unit that cleans the second cleaning target is controlled.
  • the cleaning target of the cleaning object is an index regarding the adhesion of the attached matter. It can be used and controlled, and the object to be cleaned can be cleaned accurately.
  • a vehicle speed of the vehicle, a travel route of the vehicle, a travel distance of the vehicle, and predetermined processing Includes at least one of the elapsed times.
  • the environmental condition of the vehicle includes at least one of air temperature and weather.
  • the index related to the adhesion of the deposit on the cleaning target of the vehicle is the adhesion degree of the deposit on the cleaning target , The type of deposit, and at least one of the deposition sites of the deposit.
  • the cleaning section cleans by injecting a liquid or air to the object to be cleaned.
  • the vehicle is equipped with a driving assistance device or an automatic driving device, and the cleaning object provided in the vehicle Includes a sensor used by the driving support device or the automatic driving device.
  • the vehicle 6 shown in FIG. 1 is equipped with an ADAS (Advanced Driver Assistance System) -ECU (Electronic Control Unit: Electronic Cont-rol Unit) 10, and further, cleaning of a predetermined portion of the vehicle 6 A vehicle cleaning system 1 is mounted.
  • ADAS Advanced Driver Assistance System
  • ECU Electronic Control Unit: Electronic Cont-rol Unit
  • Level 0 (without operation automation)
  • Level 1 (driving support)
  • Level 2 (Partial operation automation)
  • Level 3 (conditional automatic operation)
  • Level 4 Advanced automatic operation
  • Level 5 (fully automatic operation)
  • a level 0 vehicle is a vehicle that requires the driver to carry out all driving operations, and corresponds to a general vehicle without a driving automation system.
  • the driving automation system performs either steering wheel operation or acceleration / deceleration control of the vehicle, and other operations are performed by the driver.
  • the driver At this level of vehicle, it is necessary for the driver to appropriately control the vehicle according to the surrounding conditions and to monitor the operation of the automatic driving system. This corresponds to a vehicle having an adaptive cruise control function (constant speed traveling and inter-vehicle distance control device).
  • a driving automation system controls both steering wheel operation and acceleration / deceleration of the vehicle, and other operations are performed by the driver. Even at this level of vehicle, it is necessary for the driver to control the vehicle according to the surrounding conditions and to monitor the operation of the autonomous driving system.
  • Vehicles from level 3 to level 5 are classified as vehicles having a so-called automatic driving system.
  • the driving automation system performs all driving operations in response to the surrounding conditions, but in an emergency, driver intervention is required.
  • a driving automation system performs all driving operations in response to surrounding conditions, and driver intervention is not expected.
  • unmanned operation can be performed temporarily.
  • the driving automation system performs all driving operations unconditionally in response to the surrounding conditions, and complete unmanned driving becomes possible.
  • the ADAS-ECU 10 includes a CPU 10a, a memory 10b, and a non-volatile storage unit 10c.
  • a program for performing the automatic driving process is stored in the storage unit 10c, and the program is read from the storage unit 10c, expanded in the memory 10b, and executed by the CPU 10a.
  • the ADAS-ECU 10 includes a camera group 7 mounted on a vehicle 6, a lidar (LIDAR; Light Detection and Ranging or Laser Imaging Detection and Ranging) group 8, a radar group 9 (details of each will be described later), and an instrument panel 18 It is connected.
  • LIDAR Light Detection and Ranging or Laser Imaging Detection and Ranging
  • the ADAS-ECU 10 acquires detection information from each camera of the camera group 7, each rider of the rider group 8, and each radar of the radar group 9, recognizes the situation around the vehicle 6 based on the acquired detection information, and performs leveling. Perform automatic operation processing at any of levels 3 to 5.
  • the ADAS-ECU 10 is an example of an automatic driving device.
  • the ADAS-ECU 10 grasps information such as the traveling condition of the vehicle 6 and the environmental condition of the vehicle 6 and the like.
  • the traveling conditions of the vehicle 6 include the speed of the vehicle 6, traveling distance (total traveling distance), traveling route (classification of routes such as general road or expressway, paved road or unpaved road, congestion information, etc.), traveling It includes information such as the direction and the status of the vehicle 6 (information such as the state of the ignition switch and the type of vehicle).
  • Environmental conditions include information such as weather, temperature, road surface conditions, and the like.
  • the front camera 21 is disposed at the upper inside of the front window (front side windshield) 20.
  • the front camera 21 is installed above the front window 20 in the passenger compartment and behind the rearview mirror toward the front of the vehicle 6 and shoots the front of the front window 20 through the glass.
  • the front camera 21 is not limited to being installed at the back of the rearview mirror, and for example, the front camera 21 may be directly attached to the upper side of the front window 20 on the vehicle interior side.
  • the front camera 21 is an example of an on-vehicle sensor.
  • the front camera 21 is included in the camera group 7 shown in FIG. 2, and an image taken by the front camera 21 is output to the ADAS-ECU 10.
  • the ADAS-ECU 10 performs an image analysis process on an image captured by each camera of the camera group 7 to detect an object present around the vehicle 6. For example, in detection of an object based on an image captured by the front camera 21, identification of the object is possible, other vehicles and pedestrians can be detected separately from other objects, and road signs and road surfaces can be detected. The recognition of the upper lane mark is also possible.
  • one front camera 21 is provided, but two or more may be provided depending on the role.
  • a single-eye camera may be used as the front camera 21
  • a so-called stereo camera including a plurality of (for example, two) cameras may be used. In this case, even an object is obtained based on the parallax of a plurality of photographed images. It is possible to estimate the distance of
  • the vehicle cleaning system 1 includes the front side cleaning system 2 and the rear side cleaning system 3, and the front side cleaning system 2 cleans the front window 20 disposed on the front of the front camera 21.
  • the wiper 40 and the washer nozzle 40a provided at the lower front of the front window 20 are included.
  • the wiper 40 and the washer nozzle 40a are an example of a cleaning unit, and spray cleaning liquid from the washer nozzle 40a, and wipe the deposits on the front window 20 including the front surface of the front camera 21 by the wiper 40.
  • a rider 26 On the front side of the front grille 25, a rider 26, a front grille camera 27 and a millimeter wave radar 28 for long distance are provided at the center, and a middle distance millimeter wave radar 29 is provided at both ends. A headlight 30 is provided.
  • the lidar 26 is included in the rider group 8 shown in FIG. 2
  • the front grill camera 27 is included in the camera group 7 shown in FIG. 2
  • the millimeter wave radars 28, 29 are included in the radar group 9 shown in FIG.
  • the lidar 26 and the front grille camera 27 are examples of an on-vehicle sensor.
  • the lidar 26 is, for example, a sensor that irradiates laser light in the infrared region in a pulse shape, and measures the distance from the time from the time it is reflected by the object to the time it comes back.
  • the orientation of the object can also be detected by scanning with changing. Since the lidar 26 uses laser light in the infrared range, it can detect objects with low radio wave reflectance, and in particular can detect objects that interfere with traveling as road scatterers such as cardboard boxes, wood, and polystyrene foam. . Furthermore, because the lidar 26 can detect distance and orientation with high spatial resolution, not only object detection but also detection of free space between them is possible.
  • the lidar 26 is, for example, a sensor using light such as infrared light, so if dirt adheres to the sensor surface, the detection capability may be reduced. For this reason, there is a demand to clean the sensor surface of the rider 26.
  • the front side cleaning system 2 is provided near the sensor surface of the lidar 26 in order to clean the sensor surface of the lidar 26, and includes a washer nozzle 26a that sprays the cleaning liquid toward the sensor surface.
  • the washer nozzle 26a is an example of a cleaning unit.
  • the millimeter wave radars 28, 29 as radio wave sensors irradiate radio waves of very short wavelength called millimeter waves, and detect the distance and direction to the object by detecting radio waves reflected back from the object. be able to. Since the millimeter wave radars 28 and 29 detect using the radio waves emitted by themselves, they can maintain good detection characteristics regardless of the light source or the weather, and can accurately measure the distance to the object. In particular, the long-distance millimeter wave radar 28 can accurately detect other vehicles present ahead while traveling during heavy rain, thick fog or snowfall. Since the millimeter wave radars 28 and 29 use radio waves, even if deposits such as dirt or water droplets adhere to the detection surface, detection is not hindered as long as the radio waves are transmitted. For this reason, the need for providing a cleaning unit on the detection surface is low. However, if necessary, a cleaning unit such as a washer nozzle may be provided.
  • the object In the detection of an object based on an image captured by the front grille camera 27, the object can be identified, and other vehicles and pedestrians can be detected separately from other objects, and road signs and road surfaces can be detected. Recognition of lane marks is also possible. Furthermore, it can also be used for round views.
  • the sensor surface of the front grille camera 27 is contaminated with mud or the like, a shadow is reflected in the image.
  • water droplets adhere during rainfall. As a result, the image becomes unclear and the image analysis is disturbed. Therefore, there is a request to clean the sensor surface of the front grille camera 27. Therefore, the front side cleaning system 2 includes a washer nozzle 27a that sprays a cleaning liquid toward the sensor surface of the front grill camera 27 in order to clean the sensor surface of the front grill camera 27.
  • the washer nozzle 27a is also an example of the cleaning unit.
  • the headlights 30 are provided on the left and right sides on the front side of the front grille 25 and illuminate the front of the vehicle 6 at night or when it rains.
  • the headlights 30 are provided near both ends of the front grille 25. For example, there is a possibility that the light amount may become insufficient if they are soiled by mud splashes or the like when traveling on a rough road or when it is raining.
  • the front side cleaning system 2 includes a washer nozzle 30 a provided in the vicinity of the headlight 30 for cleaning the irradiation surface of the headlight 30 and injecting a cleaning solution toward the irradiation surface of the headlight 30.
  • the washer nozzle 30a is also an example of the cleaning unit.
  • a cleaning unit such as a washer nozzle may be provided not only for the headlight 30 but also for lighting such as a sidemark light and a turn signal.
  • a door mirror camera 36 for photographing the rear is provided in a door mirror 35 of the vehicle 6, and an image photographed by the door mirror camera 36 displays the photographed image on a display unit provided on the instrument panel 18. Further, by providing a lower door mirror camera 37 below the door mirror, it is possible to detect other vehicles, pedestrians and the like present in the surrounding area.
  • the cleaning unit is not provided for the door mirror camera 36 and the door mirror lower camera 37, but a cleaning unit such as an air nozzle may be provided as needed. Furthermore, if necessary, a cleaning portion such as an air nozzle may be provided on the reflection surface of the outer mirror such as a door mirror or a fender mirror. For example, when it is difficult to see the mirror due to water droplets or the like, it is possible to blow off the water droplets on the reflective surface of the mirror by injecting air with an air nozzle. The air nozzle will be described in the second embodiment.
  • a side rider 38 is provided on the side of the vehicle 6, and can detect other vehicles, pedestrians, and the like on the side.
  • the side riders 38 are included in the rider group 8 shown in FIG. Since the lidar is a sensor using light such as infrared light, for example, if dirt adheres to the sensor surface, the detection capability may be reduced. For this reason, there is a demand to clean the sensor surface of the side rider 38.
  • the front side cleaning system 2 is provided near the sensor surface of the side lidar 38 to clean the sensor surface of the side lidar 38, and includes a washer nozzle 38a that sprays the cleaning liquid toward the sensor surface.
  • the washer nozzle 38a is an example of a cleaning unit
  • the side rider 38 is an example of an on-vehicle sensor.
  • a rear camera 46 is provided inside the central upper surface of the rear window (rear side windshield) 45.
  • the rear camera 46 is a so-called inner mirror camera, and is used in place of the rear mirror by projecting an image of the rear camera 46 at the position of the rear mirror, for example.
  • an image sensor it is possible to use as an image sensor by analyzing an image of the rear camera 46.
  • the rear camera 46 can also have a function as a camera for round view.
  • the rear camera 46 is included in the camera group 7 shown in FIG. 2 and is an example of an on-vehicle sensor.
  • the rear side cleaning system 3 has a washer nozzle 46 a provided at the upper center of the rear window 45 and a lower center of the rear window 45 in order to clean the rear window 45 arranged on the imaging surface side of the rear camera 46. And a rear wiper 47 provided. While spraying the cleaning liquid from the washer nozzle 46a, the rear wiper 47 can wipe off dirt on the rear window 45 including the imaging surface side of the rear camera 46.
  • the washer nozzle 46a and the rear wiper 47 are an example of a cleaning unit.
  • the rear camera 46 may be provided at the center of the rear bumper 50. In this case, in order to clean the sensor surface of the rear camera 46, a cleaning unit such as a washer nozzle for jetting a cleaning liquid to the sensor surface and an air nozzle for jetting air to the sensor surface may be provided.
  • a rider 52 is provided at the center of the rear bumper 50 of the vehicle 6.
  • the rider 52 is included in the rider group 8 shown in FIG. 2 and is an example of an on-vehicle sensor.
  • the lidar 52 is, for example, a sensor using light such as infrared rays, and therefore if there is adhesion such as dirt on the sensor surface, the detection capability may be reduced. Therefore, the rear side cleaning system 3 includes a washer nozzle 52a which is provided in the vicinity of the sensor surface of the lidar 52 and jets the cleaning liquid to the sensor surface in order to clean the sensor surface of the lidar 52.
  • the washer nozzle 52a is an example of a cleaning unit.
  • the vehicle 6 is provided with a side rider 56 also on the rear side in order to detect other vehicles or pedestrians on the rear side.
  • the side rider 56 is included in the rider group 8 shown in FIG. 2 and is an example of an on-vehicle sensor.
  • the rear side cleaning system 3 includes a washer nozzle 56a which is provided in the vicinity of the sensor surface of the side lidar 56 in order to clean the sensor surface of the side lidar 56 and sprays the cleaning liquid toward the sensor surface.
  • the washer nozzle 56a is also an example of the cleaning unit.
  • a rear camera 53 is provided at the center of the rear bumper 50 of the vehicle 6.
  • the rear camera 53 is used to capture an image of the rear of the vehicle 6 at the time of reverse travel and display it on the display unit of the instrument panel 18.
  • the rear camera 53 is included in the camera group 7 shown in FIG. 2, and in an automatic driving system, it is used as an image sensor for analyzing an image of the rear camera 46.
  • the rear side cleaning system 3 is provided in the vicinity of the rear camera 53 in order to clean the sensor surface of the rear camera 53, and includes a washer nozzle 53a that jets a cleaning liquid toward the sensor surface.
  • the washer nozzle 53a is an example of a cleaning unit.
  • a mid-range millimeter wave radar 55 is provided, which is mainly used to detect other vehicles from the rear to the side and to measure the distance between the vehicles. .
  • the millimeter wave radar 55 is included in the radar group 9 shown in FIG. Since the millimeter wave radar uses radio waves, even if dirt adheres to the detection surface, as long as the radio waves are transmitted, there is no hindrance to the detection. For this reason, the need for providing a cleaning unit on the detection surface is low. Therefore, in the present embodiment, the cleaning unit is not provided in the middle distance millimeter wave radar 55. However, if necessary, a cleaning unit such as a washer nozzle may be provided.
  • cleaning parts such as a washer nozzle and an air nozzle
  • a brake lamp a turn signal in the back
  • a side indicator light a side indicator light in the back.
  • mud dirt can be blown away with rain water by injecting air from the air nozzle.
  • a washer tank 12 as a storage unit is provided in the engine room of the vehicle 6, and the washer tank 12 is provided with a level sensor 13 for detecting the remaining amount of the cleaning liquid in the washer tank 12.
  • a front washer pump 14 for supplying the cleaning liquid for the washer tank 12 to the front multi valve 16 is provided.
  • the front washer pump 14 and the front multi valve 16 are connected by a hose as a conduction part.
  • a rear washer pump 15 for supplying the cleaning liquid for the washer tank 12 to the rear multi valve 17 is provided.
  • the rear washer pump 15 and the rear multi valve 17 are connected by a hose as a conduction part.
  • Cleaning fluid is supplied from the washer tank 12 to the front multi valve 16 by a front washer pump 14 via a hose.
  • the output side of the front multi-valve 16 is provided with a plurality of valves that can be individually controlled to open and close.
  • the washer nozzle 26a for the lidar 26 provided at the center on the front side of the front grille 25 and the washer nozzle for the front grille camera 27 provided at the center on the front side of the front grille 25 27a
  • washer nozzles 30a for the headlights 30 on both left and right sides washer nozzles 38a for cleaning the sensor surface of the side lidar 38, and washer nozzles 40a provided at the lower front of the front window 20, respectively. It is connected via a hose as a conducting part.
  • the cleaning liquid is supplied to the front multi valve 16 in a pressurized state, so when the front multi valve 16 is controlled to open, the cleaning liquid is supplied from the corresponding washer nozzles 26a, 27a, 30a, 38a, 40a. It is injected to the object of cleaning.
  • Cleaning fluid is supplied to the rear multi-valve 17 from the washer tank 12 by the rear washer pump 15 through a hose.
  • the output side of the rear multi-valve 17 is provided with a plurality of valves that can be individually controlled to open and close.
  • a washer nozzle 46 a and a lidar 52 are provided at the upper center of the rear window 45 at the output side of each valve.
  • the washer nozzle 52a for cleaning the sensor surface of the second embodiment, the washer nozzle 53a for cleaning the sensor surface of the rear camera 53, and the washer nozzle 56a for cleaning the sensor surface of the side lidar 56 are separately conducted. Connected as a hose.
  • the cleaning liquid is supplied to the rear multi-valve 17 in a pressurized state, when the valve of the rear multi-valve 17 is controlled to open, the cleaning liquid is to be cleaned from the corresponding washer nozzles 46a, 52a, 53a, 56a. It is injected.
  • the number of washer tanks 12 is not limited to one.
  • the washer tanks 12 may be dispersedly arranged in accordance with the arrangement of the front side cleaning system 2 and the rear side cleaning system 3.
  • one washer tank may be provided in the vicinity of the front side cleaning system 2, and one washer tank may be provided in the vicinity of the rear side cleaning system 3. This makes it possible to omit the hose connecting the vehicle 6 in the front-rear direction, and to increase the total capacity of the washer tank.
  • connect each washer tank with a hose and when the capacity of one of the washer tanks decreases, supply the cleaning liquid from the other washer tank to the one washer tank. You may
  • the vehicle cleaning system 1 includes a cleaning control ECU 22.
  • the cleaning control ECU 22 includes a CPU 22a, a memory 22b, and a non-volatile storage unit 22c.
  • a cleaning control program 23a and a cleaning condition table 23b are stored in the storage unit 22c.
  • the cleaning control program 23a is read from the storage unit 22c, expanded in the memory 22b, and executed by the CPU 22a.
  • the cleaning control ECU 22 performs a dirt detection process and a cleaning process described later.
  • the cleaning control ECU 22 is connected to the ADAS-ECU 10 via a bus 19.
  • the cleaning control ECU 22 is an example of a control unit
  • the storage unit 22c is an example of a storage unit.
  • the cleaning control ECU 22 is connected via a motor 62 that drives the front washer pump 14, a voltage modulation unit 24, and a washer pump drive unit 31.
  • the voltage modulation unit 24 supplies the motor 62 with an operating voltage of a magnitude instructed by the cleaning control ECU 22.
  • the washer pump drive unit 31 turns the motor 62 on and off according to the instructed operation time and the number of operations.
  • the cleaning control ECU 22 is also connected to the front multi-valve 16.
  • the cleaning control ECU 22 individually controls the opening and closing of the plurality of front multi-valves 16.
  • the cleaning control ECU 22 is connected via a wiper motor 34 that generates a driving force for wiping the wiper 40 back and forth, and a wiper motor drive unit 39.
  • the wiper motor drive unit 39 is instructed by the cleaning control ECU 22 on the drive direction and drive speed of the wiper motor 34, and controls the drive of the wiper motor 34 according to the instructed drive direction and drive speed.
  • the cleaning control ECU 22 is connected via a motor 42 for driving the rear washer pump 15, a voltage modulation unit 43 and a washer pump drive unit 44.
  • the voltage modulation unit 43 supplies the motor 42 with an operating voltage of a magnitude instructed by the cleaning control ECU 22.
  • the cleaning pump drive unit 44 is instructed by the cleaning control ECU 22 to indicate the operation time and the number of times of operation of the motor 42, and turns the motor 42 on and off according to the instructed operation time and number of times of operation.
  • the cleaning control ECU 22 is connected to the rear multi-valve 17.
  • the cleaning control ECU 22 individually controls the opening and closing of the plurality of rear multi-valves 17.
  • the cleaning control ECU 22 is connected to a wiper motor 58 via a wiper motor drive unit 59. Between the wiper motor 58 and the wiper 47, there is interposed a link mechanism (not shown) for converting rotation of the output shaft of the wiper motor 58 in one direction into reciprocating rotation and transmitting it to the wiper 47.
  • the wiper motor drive unit 59 drives the wiper motor 58 according to the instruction, and the wiper 47 is wiped back and forth accordingly.
  • the cleaning control ECU 22 is connected to the level sensor 13 (not shown), and a detection signal of the level sensor 13 is input.
  • each camera of the camera group 7 and each lidar of the lidar group 8 provided in a portion of the vehicle 6 to be cleaned by the vehicle cleaning system 1 are collectively referred to as “vehicle sensor”, and Let N be the total number.
  • the cleaning control ECU 22 obtains detection information, which the ADAS-ECU 10 respectively obtains from the N on-vehicle sensors and stores in the storage unit 10 c, etc., from the ADAS-ECU 10 Are stored in the storage unit 22c.
  • detection information of the camera is, for example, image information captured by the camera
  • detection information of the lidar includes, for example, the light reception amount for each of a plurality of light receiving sensors distributed on the sensor surface of the lidar Information including the distance to the object).
  • step 102 the cleaning control ECU 22 sets 1 to a variable i for identifying each on-vehicle sensor.
  • the cleaning control ECU 22 reads detection information of the ith on-vehicle sensor from the storage unit 22c. Then, in step 106, the cleaning control ECU 22 calculates an evaluation value for evaluating the degree of contamination of the object to be cleaned corresponding to the ith on-vehicle sensor based on the detection information read in step 104.
  • the cleaning target corresponding to the i-th on-vehicle sensor in the present embodiment is often “the sensor surface of the i-th on-vehicle sensor”, but is not limited thereto.
  • the cleaning target is the front window 20.
  • an evaluation value of the degree of contamination of the object to be cleaned for example, an evaluation value for evaluating the degree of contamination (transmittance) of the object to be cleaned as a whole can be applied.
  • the dirt level of the cleaning target is a value obtained by normalizing the average brightness or the minimum brightness of the entire image, which is the detection information, within a numerical range of 0 to 100 as an example.
  • the average value or the minimum value of the light reception amount for each of a plurality of light reception sensors included in the detection information is specified within the numerical range of 0 to 100 as an example.
  • the converted value may be applied as an evaluation value of the degree of contamination to be cleaned.
  • the calculation of the evaluation value is not limited to using detection information at one time, and the detection information previously acquired from the ADAS-ECU 10 is accumulated and stored in the storage unit 22c, and the detection information acquired this time May be compared with detection information of one past time or a plurality of times, and the evaluation value of the degree of contamination of the cleaning target may be calculated based on the time-series change of the detection information.
  • the evaluation value of the degree of contamination of the object to be cleaned is an example of an index related to the adhesion of the deposit to the object to be cleaned, and more specifically, an example of the degree of adhesion of the deposit to the object to be cleaned.
  • step 108 the cleaning control ECU 22 compares the evaluation value of the degree of contamination of the cleaning target corresponding to the i-th on-vehicle sensor with a predetermined value to determine whether the cleaning target corresponding to the i-th on-vehicle sensor has contamination. Determine if Note that the above-mentioned predetermined value may be different depending on the type of the on-vehicle sensor (camera or rider). If the evaluation value of the degree of contamination of the object to be cleaned corresponding to the i-th on-vehicle sensor is equal to or greater than the predetermined value (the degree of contamination is small), the determination at step 108 is negative and the process proceeds to step 124.
  • the control ECU 22 stores the evaluation value of the degree of contamination in the storage unit 22c for the cleaning target corresponding to the i-th on-vehicle sensor. When the process of step 124 is performed, the process proceeds to step 126.
  • step 110 the cleaning control ECU 22 determines whether the i-th on-vehicle sensor is a camera. If the determination in step 110 is affirmed, the process proceeds to step 112, and in step 112, the cleaning control ECU 22 determines the i-th on-vehicle sensor based on detection information of the i-th on-vehicle sensor, ie, an image captured by a camera. Determine the type of dirt to be cleaned that corresponds to
  • the types of dirt to be cleaned can be roughly classified into three types, for example, "water droplets,” “mud water,” and “dry mud.”
  • water droplets adhere to the object to be cleaned, the image captured by the corresponding camera undergoes irregular reflection at the water droplets, and the luminance changes frequently. Therefore, as one example, an evaluation value is calculated by integrating the luminance change between adjacent pixels of the image over the entire image, and if the calculated evaluation value is equal to or more than a predetermined value, water droplets adhere to the cleaning object It can be determined.
  • the determination as to whether or not water droplets are attached to the object to be cleaned is not limited to the above.
  • the average luminance is calculated for each area when the image is divided into a plurality of areas, and it is determined that muddy water adheres to the cleaning object when the distribution of the average luminance for each area is equal to or more than a predetermined value. can do.
  • the determination as to whether or not mud water adheres to the object to be cleaned is not limited to the above.
  • the sharpness of the image captured by the corresponding camera is reduced. Therefore, as an example, it is possible to calculate the sharpness of the image and to determine that dry mud is attached to the object to be cleaned when the calculated sharpness of the image is equal to or less than a predetermined value.
  • the determination as to whether or not dry mud has adhered to the object to be cleaned is not limited to the above.
  • the type of soiling object to be cleaned is also an example of an index related to the adhesion of the adhesion portion to the cleaning object, and more specifically, is an example of the type of adhering matter.
  • step 112 the process proceeds to step 122, and in step 122, the cleaning control ECU 22 determines the degree of dirt on the cleaning target corresponding to the i-th on-vehicle sensor
  • the storage unit 22c stores the evaluation value of the mark and the type of stain.
  • the type of the soiling is also stored for the cleaning object determined to be soiled.
  • step 110 determines whether the i-th on-vehicle sensor is a rider. If it is determined in step 110 that the i-th on-vehicle sensor is a rider, the determination in step 110 is negative and the process proceeds to step 114.
  • the cleaning control ECU 22 determines the type of dirt determined for the cleaning target corresponding to the camera present in the vicinity of the i-th on-vehicle sensor (lider) with the cleaning target corresponding to the i-th on-vehicle sensor (lider). Load as dirt type.
  • the type of dirt determined as to the cleaning object corresponding to the front grille camera 27 present in the vicinity of the rider 26 as the type of dirt to be cleaned corresponding to the rider 26 Load
  • the cleaning target corresponding to the front grille camera 27 is an example of a first cleaning target
  • the cleaning target corresponding to the rider 26 is an example of a second cleaning target.
  • the cleaning control ECU 22 determines an area having a large degree of contamination among the cleaning targets corresponding to the ith on-vehicle sensor (lider) based on the detection information of the ith on-vehicle sensor (lider).
  • the amount of light received by the light receiving sensor corresponding to the site to which the dirt adheres decreases according to the amount of dirt. Therefore, by comparing the light reception amounts of the individual light reception sensors included in the lidar, an area in which the light reception sensors having a small light reception amount are distributed in the sensor surface of the lidar, that is, an area having a large contamination degree is determined.
  • the cleaning control ECU 22 determines whether the area with the high degree of contamination determined in step 116 is a predetermined area set in advance.
  • the position of the area where the degree of contamination is large is also an example of the index related to the adhesion of the deposit to the object to be cleaned, and more specifically, is an example of the deposition site of the deposit.
  • the light receiving sensor distribution on the sensor surface of the lidar is rough and dense, and an example of the predetermined area is an area of the lidar sensor surface where the distribution density of the light receiving sensor is relatively high.
  • An example of the distribution range of the predetermined area is shown in FIG. Indicated as "A area".
  • step 118 If the area having a high degree of contamination is not the predetermined area, it can be determined that the contamination attached to the sensor surface of the rider has a relatively small influence on the detection accuracy of the rider. Therefore, when the determination in step 118 is negative, the process proceeds to step 122, and the evaluation value of the degree of contamination and the type of contamination are stored in the storage unit 22c.
  • step 120 the cleaning control ECU 22 determines a predetermined value from the evaluation value of the degree of contamination of the cleaning object corresponding to the i-th onboard sensor (lider) Subtract.
  • step 120 the process proceeds to step 122, and the evaluation value of the degree of contamination and the type of contamination are stored in the storage unit 22c.
  • step 126 the cleaning control ECU 22 determines whether the variable i has reached the total number N of on-vehicle sensors. If the determination in step 126 is negative, the process proceeds to step 128. In step 128, the cleaning control ECU 22 increments the variable i by one and then returns to step 104. Thus, steps 104 to 128 are respectively performed on all the on-vehicle sensors. If the determination in step 126 is affirmed, the process returns to step 100, and step 100 and subsequent steps are repeated.
  • the degree of contamination of the corresponding cleaning target is monitored for N on-vehicle sensors, and the evaluation value of the degree of contamination is appropriately updated, and the evaluation value of the degree of contamination is If it is less than the predetermined value (the degree of contamination is large), the type of contamination is also determined.
  • step 150 of the cleaning process the cleaning control ECU 22 sets 1 to the variable i.
  • step 152 the cleaning control ECU 22 reads the evaluation value of the degree of contamination and the type of contamination from the storage unit 22c for the cleaning target corresponding to the ith on-vehicle sensor.
  • step 154 the cleaning control ECU 22 compares the evaluation value of the degree of contamination of the cleaning target corresponding to the i-th on-vehicle sensor read in step 152 with a predetermined value, thereby making the cleaning target corresponding to the i-th on-vehicle sensor It is determined whether there is dirt or not.
  • the predetermined value may differ depending on the type of the on-vehicle sensor (camera or rider), or may differ between the automatic driving and the driving by the driver.
  • step 154 determines whether the evaluation value of the degree of contamination of the object to be cleaned corresponding to the i-th on-vehicle sensor is greater than or equal to a predetermined value (the degree of contamination is small). If the evaluation value of the degree of contamination of the object to be cleaned corresponding to the i-th on-vehicle sensor is greater than or equal to a predetermined value (the degree of contamination is small), the determination at step 154 is negative and the process proceeds to step 178. In step 178, the cleaning control ECU 22 determines whether the variable i has reached the total number N of on-vehicle sensors. If the determination in step 178 is negative, the routine proceeds to step 180, where the cleaning control ECU 22 increments the variable i by 1 and then returns to step 152. If the determination at step 178 is affirmed, the process returns to step 150. Thus, the cleaning target is not cleaned while the on-vehicle sensor whose evaluation value of the degree of contamination of the corresponding cleaning target is less than the predetermined value appears.
  • the determination at step 154 is affirmed, and the process proceeds to step 156.
  • the cleaning control ECU 22 resets a repetition counter, which represents the number of times of cleaning, to one.
  • the cleaning control ECU 22 acquires vehicle information and environmental information from the ADAS-ECU 10.
  • the speed and travel distance (cumulative travel distance) of the vehicle 6 are acquired as an example of the vehicle information
  • the temperature and weather around the vehicle 6 are acquired as an example of the environmental information, but the invention is not limited thereto.
  • the vehicle information is an example of the traveling state of the vehicle
  • the environment information is an example of the environmental state of the vehicle.
  • the cleaning control ECU 22 cleans the cleaning target for the cleaning object corresponding to the i-th on-vehicle sensor based on the vehicle information and the environment information acquired in step 158, the contamination degree and the kind of contamination acquired in step 152 Determine the cleaning voltage of the washer pump motor's operation voltage, operation time and number of operations).
  • the determination of the cleaning condition can be performed using a cleaning condition table 23b as shown in FIG. 6 as an example.
  • cleaning condition table 23b cleaning conditions are defined when each input parameter of vehicle information, environment information, contamination degree, type of contamination and count value of repetition counter is each value, first, each input parameter The cleaning conditions (each cleaning parameter) corresponding to the value of are read out from the cleaning condition table 23b. Then, the value of each cleaning parameter is determined in accordance with the priority defined in the cleaning condition table 23b for each cleaning parameter. Thereby, the cleaning condition of the cleaning object corresponding to the i-th on-vehicle sensor can be determined.
  • each value of the input parameter is (1) the speed of the vehicle 6 is 80 [km / h] or more, (2) the air temperature is 10 [° C.] or more, (3) the weather is rainy, (4) previous cleaning It is assumed that the traveling distance of the vehicle 6 after being carried is less than 50 [km], (5) the type of dirt is "water droplets", and (6) the evaluation value of the degree of dirt is 50 or more.
  • the cleaning conditions are set such that the degree of cleaning increases as the evaluation value of the degree of contamination decreases (the degree of contamination increases). Also, if the type of dirt is "dry mud", the dirt is not more likely to be dropped than the other ("water droplets” or "mud water”), so the cleaning condition table 23b has a type of dirt of "dry mud". The cleaning conditions are set such that the degree of cleaning is greater than in the other cases. Further, since the efficiency of cleaning is reduced by the wind pressure when the speed of the vehicle 6 increases, the cleaning condition table 23b is set such that the degree of cleaning increases as the speed of the vehicle 6 increases.
  • the cleaning condition table 23b is set such that the degree of cleaning increases as the temperature decreases. Also, if the weather is "snow", the adhesion is less likely to fall than the other ("rain” or “smooth / cloudy"), so the cleaning condition table 23b is other than the weather if it is "snow"
  • the cleaning conditions are set so that the degree of cleaning is greater than in the case. In addition, since the degree of contamination tends to increase as the traveling distance after the previous cleaning becomes longer, the cleaning condition table 23b is such that the degree of cleaning becomes larger as the traveling distance after the previous cleaning becomes longer. Cleaning conditions are set.
  • the cleaning control ECU 22 cleans the cleaning target corresponding to the ith on-vehicle sensor under the cleaning condition determined in step 160.
  • the cleaning control ECU 22 controls the motor 62 to have an operating voltage of a magnitude corresponding to the value of the operating voltage included in the cleaning condition.
  • An instruction is output to the voltage modulation unit 24 to be supplied, and is output to the washer pump drive unit 31 so that the motor 62 is turned on and off according to the value of the operation time and the number of operations included in the cleaning condition.
  • the cleaning control ECU 22 controls the opening and closing of the front multi-valve 16 so that the cleaning liquid is supplied to the washer nozzle 40a, and drives the wiper motor 34 to drive the wiper motor 34 so that the wiper 40 is wiped back and forth. Output to section 39.
  • the cleaning liquid is jetted from the washer nozzle 40a in accordance with the cleaning condition determined in step 160, and the wiper 40 is wiped back and forth, whereby the front window 20 including the front surface of the front camera 21 is cleaned.
  • the preliminary cleaning for wetting may be performed at the first time and the main cleaning may be performed at the second time, and the main cleaning is performed at the first time, and the final cleaning is performed at the second time.
  • the preliminary cleaning for wetting may be performed at the first time, the main cleaning may be performed at the second time, and the final cleaning may be performed at the third time.
  • the preliminary cleaning and the finishing cleaning may reduce the operating voltage or shorten the operating time, and the main cleaning may increase the operating voltage or increase the operating time.
  • step 162 when the cleaning is performed in step 162, the time when the cleaning is performed and the cumulative traveling distance of the vehicle 6 are stored in the storage unit 22c together with the variable i.
  • the information stored here is used for grasping the elapsed time since the previous cleaning and the travel distance of the vehicle 6.
  • step 164 the cleaning control ECU 22 increments the repetition counter by one.
  • step 166 the cleaning control ECU 22 reads again from the storage unit 22c the degree of contamination and the type of contamination corresponding to the ith on-vehicle sensor.
  • the dirt degree of the object to be cleaned is monitored and the evaluation value of the dirt degree is appropriately updated. Therefore, if the degree of dirt is decreased by the cleaning of step 162, the cleaning object read again in step 166 The degree of contamination is also smaller than the degree of contamination of the object to be cleaned read in step 152 above.
  • the cleaning control ECU 22 corresponds to the i-th on-vehicle sensor by comparing the evaluation value of the degree of contamination of the cleaning target corresponding to the i-th on-vehicle sensor read again in step 166 with a predetermined value. It is determined whether the object to be cleaned has dirt or not. If the evaluation value of the degree of soiling of the cleaning object corresponding to the ith on-vehicle sensor is less than the predetermined value (the degree of soiling is large), the determination at step 168 is affirmed and the process proceeds to step 170.
  • step 170 the cleaning control ECU 22 determines whether the value of the repetition counter is 3 or more. If the determination in step 170 is negative, the process returns to step 158 to repeat the process from step 158, that is, the cleaning of the object to be cleaned corresponding to the ith on-vehicle sensor.
  • the cleaning condition table 23b shown in FIG. 6 when the value of the repetition counter is 2, the cleaning conditions when the dirt recovery rate is each value are also defined, and the dirt recovery rate becomes smaller (first time The cleaning conditions are set such that the degree of cleaning becomes greater as the degree of dirt removal during the cleaning becomes smaller.
  • step 174 the cleaning control ECU 22 determines whether or not there is an uncleaned cleaning object associated with the cleaning object corresponding to the ith on-vehicle sensor.
  • the objects to be cleaned by the vehicle cleaning system 1 there are objects to be cleaned where no on-vehicle sensor is provided, and for the objects to be cleaned, the cleaning site and the degree of contamination in the vicinity where the on-vehicle sensors are provided. However, when cleaning nearby cleaning sites, they should be cleaned together as an accompanying cleaning site.
  • An example of the cleaning target in which the in-vehicle sensor is not provided is the headlight 30, and an example of the in-vehicle sensor present in the vicinity of the headlight 30 is the lidar 26 or the front grille camera 27.
  • step 174 If there is no accompanying uncleaned cleaning object in the cleaning object corresponding to the ith on-vehicle sensor, the determination at step 174 is negative, and the routine proceeds to step 178. Further, if there is an accompanying uncleaned cleaning object in the cleaning object corresponding to the i-th on-vehicle sensor, the determination at step 174 is affirmed and the process proceeds to step 176. In step 176, the cleaning control ECU 22 Clean the uncleaned cleaning object that accompanies the cleaning object corresponding to the i-th on-vehicle sensor.
  • the cleaning solution is sprayed from the washer nozzle 30a to clean the headlights 30 that are not to be cleaned.
  • step 170 If the evaluation value of the degree of contamination of the cleaning object corresponding to the ith on-vehicle sensor does not reach a predetermined value or more (the degree of contamination is smaller) even if the value of the repetition counter reaches 3, the determination of step 170 is made. Is affirmed and the process moves to step 172.
  • step 172 the cleaning control ECU 22 outputs warning information including information specifying the cleaning target corresponding to the i-th on-vehicle sensor to the ADAS-ECU 10, and proceeds to step 178.
  • the ADAS-ECU 10 performs, for example, a warning display in the instrument panel 18 to urge the occupant of the vehicle 6 to clean the object to be cleaned corresponding to the ith on-vehicle sensor.
  • the vehicle 6 when the ADAS-ECU 10 is performing the automatic driving process, the vehicle 6 may be stopped at a safe place. Furthermore, the cleaning control for the cleaning target corresponding to the ith on-vehicle sensor may be prohibited until the warning display is released.
  • the warning information in step 172 may be omitted.
  • the cleaning process described above cleans the cleaning target for a relatively long period of time until the evaluation value of the soiling degree is less than the predetermined value. Also, when the evaluation value of the degree of contamination is less than a predetermined value, the cleaning is performed with a relatively small degree of cleaning. This suppresses the number of times of cleaning and the degree of cleaning.
  • FIG. 7B for the cleaning target whose contamination degree suddenly increases, when the evaluation value of the contamination degree falls below a predetermined value, it is relatively large according to the evaluation value of the contamination degree. Cleaning is done according to the degree of cleaning. Thereby, it is suppressed that the state where the cleaning object is dirty is left for a long period of time.
  • the front side cleaning system 2 includes an air nozzle 26 b which is provided in the vicinity of the sensor surface of the lidar 26 and jets air toward the sensor surface of the lidar 26.
  • the air nozzle that jets air toward the sensor surface of the air nozzle 26b, the air nozzle 27b, and the side rider 38 is also an example of the cleaning unit.
  • the rear side cleaning system 3 is provided in the vicinity of the rear camera 53 and an air nozzle 52b provided in the vicinity of the sensor surface of the lidar 52 and injecting air toward the sensor surface of the lidar 52.
  • An air nozzle 53b for injecting air to the sensor surface of the rear camera 53, and an air nozzle (not shown) for ejecting air toward the sensor surface of the side lidar 56 provided in the vicinity of the sensor surface of the side lidar 56 Contains.
  • the air nozzle that jets air toward the sensor surface of the air nozzle 52b, the air nozzle 53b, and the side rider 56 is also an example of the cleaning unit.
  • the air nozzle 26 b, the air nozzle 27 b, and the air nozzle for injecting air toward the sensor surface of the side lidar 38 are all connected to the air pump 41 via an air hose.
  • the air pressurized by the air pump 41 is supplied to the air nozzles 26b, 27b, etc. via an air hose.
  • the air nozzle 52b, the air nozzle 53b, and the air nozzle for cleaning the sensor surface of the side rider 56 are all connected to the air pump 49 via an air hose.
  • the air pressurized by the air pump 49 is supplied to the air nozzles 52b, 53b, etc. via an air hose.
  • the cleaning control ECU 22 is connected via a motor 32 for driving the air pump 41 and an air pump drive unit 33.
  • the air pump drive unit 33 is instructed by the cleaning control ECU 22 to operate the motor 32, and turns on the motor 32 for the instructed operation time.
  • the cleaning control ECU 22 is connected via a motor 54 for driving the air pump 49 and an air pump drive unit 57.
  • the air pump drive unit 57 is instructed by the cleaning control ECU 22 to operate the motor 54, and turns on the motor 54 for the instructed operation time.
  • the cleaning control ECU 22 can individually control the air nozzles 26b, 27b, etc. corresponding to the front side cleaning system 2, and the air nozzles 52b, 53b, etc. corresponding to the rear side cleaning system 3, respectively. It is connected by the power supply line.
  • step 158 the cleaning control ECU 22 determines whether only the washer nozzle (no air nozzle is provided) is provided for the cleaning target corresponding to the i-th on-vehicle sensor.
  • the front camera 21 corresponds to the cleaning target corresponding to the front camera 21 as the i-th on-vehicle sensor
  • the cleaning target corresponding to the rear camera 46 corresponds to the rear on the i-th vehicle sensor rear It is affirmed when it is the window 45.
  • step 182 determines the cleaning target corresponding to the i-th on-vehicle sensor based on the contamination degree and the type of contamination acquired in step 152.
  • the cleaning condition the cleaning condition to be cleaned is determined by the cleaning liquid jetted from the washer nozzle.
  • the details of the determination of the cleaning condition in step 190 are the same as step 160 described in the first embodiment.
  • the process proceeds to step 184, and in step 184, the cleaning control ECU 22 branches according to the type of dirt to be cleaned corresponding to the i-th vehicle sensor read in step 152 Do.
  • step 186 the cleaning control ECU 22 uses the air as the cleaning condition for the cleaning target corresponding to the i-th on-vehicle sensor based on the vehicle information and environment information acquired in step 158, the contamination degree and the kind of contamination acquired in step 152. Determine the cleaning conditions to be cleaned by the air injected from the nozzle. As shown in FIG.
  • the cleaning condition table 23b has “air injection frequency” added as a cleaning parameter, and vehicle information, environment information, contamination degree, type of contamination and repeated counter The number of times of air injection corresponding to the value of each input parameter of the count value is read out from the cleaning condition table 23b, and the maximum value of the read number of times of air injection is determined as the cleaning condition.
  • step 188 the cleaning control ECU 22 uses the vehicle information and the environment information acquired in step 158, the contamination degree and the kind of contamination acquired in step 152 as air cleaning conditions for the object to be cleaned corresponding to the i-th on-vehicle sensor.
  • the cleaning conditions to be cleaned are determined by the air jetted from the nozzle and the cleaning liquid jetted from the washer nozzle.
  • step 184 If the type of dirt to be cleaned corresponding to the i-th on-vehicle sensor is "dry mud", the process branches from step 184 to step 190, and as described above, the cleaning conditions for cleaning with the cleaning liquid jetted from the washer nozzle Decide.
  • step 162 the process proceeds to step 162, and the cleaning target corresponding to the i-th on-vehicle sensor is cleaned under the determined cleaning condition.
  • any of the air jet from the air nozzle and the jet of the cleaning liquid from the washer nozzle may be performed first. Further, for example, the cleaning liquid is sprayed first at a short time to the object to be cleaned, the cleaning liquid is ejected long at a second time, air is shortly injected from the air nozzle at a third time, and air is long injected from an air nozzle at a fourth time You may make it
  • the cleaning condition is determined according to the vehicle information, the environmental information, the degree of contamination, and the type of contamination, and the cleaning target is cleaned by the washer nozzle or the air nozzle under the determined cleaning condition.
  • the object to be cleaned can be cleaned automatically and appropriately according to the degree of contamination of the object to be cleaned.
  • the cleaning condition table 23b in which the cleaning conditions when vehicle information, environmental information, the degree of contamination and the type of contamination are each value are registered is stored in the storage unit 22c, and the cleaning condition table 23b is stored. Since the cleaning condition is determined by using it, the process of determining the cleaning condition can be simplified as compared with the case where the cleaning condition is determined by the condition branch.
  • the cleaning object remains dirty even if the cleaning object is cleaned a predetermined number of times by the washer nozzle or air nozzle, a warning is output to notify the occupant, so the washer nozzle or air It can be known that it was estimated that it was difficult to remove the dirt to be cleaned by the nozzle cleaning. Therefore, excessive cleaning by the washer nozzle and the air nozzle can be suppressed.
  • the type of dirt on the cleaning target corresponding to the camera present in the vicinity is acquired as the type of dirt on the cleaning target corresponding to the lidar, and the cleaning condition is determined using the acquired type of dirt Therefore, even for a rider who is difficult to determine the type of dirt on the corresponding cleaning target, it is possible to accurately clean the corresponding cleaning target.
  • Vehicle information, environmental information, degree of dirt, and dirt The cleaning conditions may be determined according to any one of the types, or the cleaning conditions may be determined according to a combination of some of the vehicle information, environmental information, the degree of contamination, and the type of contamination. May be
  • the speed of the vehicle 6 and the travel distance of the vehicle 6 after the previous cleaning are given as an example of the vehicle information used to determine the cleaning condition, but the present invention is not limited thereto.
  • the cleaning condition is determined according to at least one of vehicle information such as a travel distance of the vehicle 6 after the ignition switch of the vehicle is turned on, an elapsed time after the ignition switch of the vehicle 6 is turned on, and a travel route of the vehicle. You may do so.
  • the cleaning condition may be performed according to the environmental information such as the road surface condition. May be determined.
  • the road surface condition can be detected from the temperature, the weather, and the image captured by the on-vehicle camera, and can also be detected from the waveform of the vibration of the vehicle and the waveform of the traveling sound.
  • the evaluation value of a dirt degree, the kind of dirt, and the position of the area with a high dirt degree were mentioned as an example of the "index regarding adhesion of the adhesion thing to cleaning object" used for determination of cleaning conditions above
  • the cleaning condition is determined according to the index related to the attached matter, for example, if the on-vehicle sensor is a camera, the index of the size, color, edge strength, etc. of the image area corresponding to the attached matter. It is also good.
  • Trigger (1) The aspect which performs cleaning of the cleaning object whose evaluation value of a degree of dirt became less than a predetermined value triggered by the fact that the evaluation value of the degree of dirt of cleaning object became less than a predetermined value was explained.
  • the trigger for cleaning the object to be cleaned is not limited to the trigger (1), for example, Trigger (2): Ignition switch switched from off to on Trigger (3): Ignition switch switched from on to off Trigger (4): Rain detected trigger (5): More than predetermined time at predetermined speed or more Trigger (6) in which traveling has continued: A part or all of the objects to be cleaned may be cleaned in response to at least one of the above-mentioned trigger (2) to trigger (6) when the vehicle enters an emergency situation.
  • an on-board sensor such as a camera may be in a state in which extraneous matter such as the sensor surface can be removed in advance. It is possible to suppress a decrease in detection capability of the in-vehicle sensor caused by the adhesion of dirt and the like sometimes.
  • the cleaning target may be cleaned under cleaning conditions corresponding to a large degree.
  • the object to be cleaned can be sufficiently cleaned as needed, and unnecessary consumption of the cleaning liquid can be prevented.
  • the length of the period when the ignition switch was turned off, and the length of the period after cleaning last are an example of the driving
  • the cleaning condition can be determined according to the length of the period since the last cleaning.
  • the cleaning target is cleaned with the trigger (2) or the trigger (3) as a trigger
  • the vehicle 6 is stopped, so there may be a person around the vehicle 6,
  • the cleaning target is cleaned with the cleaning liquid
  • the sprayed cleaning liquid may adhere to the person. Therefore, when cleaning the object to be cleaned triggered by the trigger (2) or the trigger (3), it is determined whether or not a person is present around the vehicle 6 based on the image captured by the camera. Good. Then, when there is a person around the vehicle 6, the cleaning with the cleaning solution may be stopped and the air may be cleaned, or the cleaning with the cleaning solution may be postponed until there are no more people around the vehicle 6. It is also good.
  • the cleaning target cleaning is performed triggered by the trigger (4), for example, air is jetted from the air nozzle, water droplets to be cleaned are blown off by the air jetted from the air nozzle, thereby adhering to the cleaning target It can be removed with the water droplets.
  • the cleaning at the time of rainfall is not limited to the injection of the air from the air nozzle, and the cleaning may be performed by injecting the cleaning liquid from the washer nozzle.
  • the necessity of cleaning at the time of rainfall also differs depending on the amount of rainfall. For example, as the amount of rainfall is large, the possibility that the deposit adheres to the object to be cleaned due to mud splash etc. is increased. Therefore, when the cleaning target is cleaned with the trigger (2) as a trigger, for example, the cleaning condition can be determined according to the rainfall detected by a rainfall sensor or the like.
  • the cleaning target is cleaned under cleaning conditions corresponding to a small degree of cleaning
  • the rainfall is not less than the first predetermined value and less than the second predetermined value (however, the first predetermined value In the case of the second predetermined value)
  • the object to be cleaned is cleaned under the cleaning condition corresponding to the degree of cleaning inside
  • the rainfall is equal to or more than the second predetermined value
  • the object to be cleaned is the cleaning condition corresponding to the large degree of cleaning You may clean it.
  • an example of the cleaning condition corresponding to a small degree of cleaning is the cleaning condition that the time interval for injecting air from the air nozzle is 30 seconds
  • One example of the cleaning condition corresponding to the degree of cleaning is the cleaning condition that the time interval for injecting air from the air nozzle is 15 seconds
  • one example of the cleaning condition corresponding to the large degree of cleaning is the air
  • the cleaning condition is that the time interval for injecting air from the nozzles is 5 seconds. Rainfall is an example of an environmental situation.
  • the cleaning condition can be determined according to at least one of the speed of the vehicle 6, the traveling time, the traveling distance, and the traveling route.
  • the cleaning condition is determined according to the speed of the vehicle 6, for example, when the vehicle 6 travels for 5 minutes or more at 5 [km / h] or more, the cleaning target is cleaned.
  • the speed of the vehicle is less than 20 km / h
  • the object to be cleaned is cleaned under cleaning conditions corresponding to a low degree of cleaning, and the speed of the vehicle is not less than 20 km / h and 80 km / h. If the speed is less than 80 [km / h], the object to be cleaned is cleaned under the corresponding cleaning condition, and if the speed of the vehicle is 80 [km / h] or more, the object to be cleaned is the cleaning condition. May be cleaned.
  • an example of the cleaning condition corresponding to a small degree of cleaning is that air is jetted from the air nozzle at an interval of 180 seconds, and an interval of 1800 seconds from the washer nozzle
  • One example of the cleaning condition in which the cleaning solution is sprayed and the degree of cleaning corresponds to the cleaning condition is to inject air from the air nozzle at intervals of 60 seconds and to spray the cleaning solution from the washer nozzle at intervals of 600 seconds.
  • One example of the cleaning condition corresponding to a large degree of cleaning is air that is jetted from the air nozzle at intervals of 20 seconds and is jetted from the washer nozzle at intervals of 200 seconds.
  • the degree of contamination of the object to be cleaned differs depending on the traveling route of the vehicle 6.
  • the travel route referred to here includes, for example, information on traffic conditions such as traffic congestion information.
  • the travel route of the vehicle 6 is grasped by the ADAS-ECU 10, and can be acquired from the ADAS-ECU 10.
  • An example of determining the cleaning condition according to the traveling route of the vehicle 6 will be described.
  • the cleaning target is selected under the cleaning condition corresponding to a small degree of cleaning.
  • the object to be cleaned is cleaned under the cleaning conditions corresponding to the degree of cleaning.
  • the cleaning target may be cleaned under cleaning conditions corresponding to a large degree of cleaning. In this case, the cleaning target can be cleaned under the cleaning conditions according to the traveling route of the vehicle 6.
  • the ADAS-ECU 10 detects that the vehicle 6 has an emergency, such as when some functions of the vehicle 6 are degraded, high reliability is required for detection by individual on-vehicle sensors .
  • the detection capability of the in-vehicle sensor is suppressed from being reduced, and the ADAS-ECU 10 can accurately control the emergency.
  • the cleaning condition may be determined according to the level of the emergency that has occurred.
  • the cleaning order of the objects to be cleaned may differ depending on, for example, the traveling condition and the environmental condition.
  • the traveling condition and the environmental condition As an example, when traveling forward on a general road, the cleaning object corresponding to the lidar 26 provided at the front center of the front grille 25 which is a sensor for collision avoidance operation is preferentially cleaned. Good.
  • cleaning liquid and the air nozzle which injects air were mentioned as an example of a cleaning part above, it is not limited to this, for example, ultrasonic vibration is added to cleaning object and a water droplet is removed. It is also possible to apply the following configuration.
  • the cleaning control ECU 22 controls the cleaning in the front side cleaning system 2 and the cleaning in the rear side cleaning system 3 as described above, the present invention is not limited thereto.
  • a wiper ECU 60a for controlling the cleaning in the front side cleaning system 2 is provided in the front side cleaning system 2
  • a wiper ECU 60b for controlling the cleaning in the rear side cleaning system 3
  • the rear side cleaning system 3 may be provided.
  • the processing such as the dirt detection processing may be performed by the wiper ECUs 60a and 60b, it may be performed by the ADAS-ECU 10.
  • each in-vehicle sensor in vehicles 6 is not limited to a position shown in Drawing 1 grade.
  • an ultrasonic sensor may be provided in front of, behind or to the side of the vehicle 6.
  • the ultrasonic sensor detects an object such as another vehicle present in the surroundings, and detection of the other vehicle entering the lane in which the vehicle is traveling and detection of an obstacle in the parking assistance system are also used. Since the ultrasonic sensor uses a sound wave, even if dirt adheres to the sensor surface, object obstacles can be detected as long as the sound wave is transmitted. For this reason, although the request
  • the present invention is not limited to this.
  • the present invention may be applied to, for example, a vehicle equipped with a driving support system (this driving support system is an example of a driving support apparatus) that performs a level 1 or level 2 driving support process, or an automatic driving system or Even if the driving support system is not mounted, for example, it is applicable to a vehicle provided with a cleaning target such as an on-vehicle sensor.
  • the front washer pump 14 and the rear washer pump 15 are each provided with a plurality of valves, and the cleaning control ECU 22 controls the plurality of valves to obtain a predetermined washer nozzle.
  • the cleaning solution may be supplied to the
  • the air pump 41 is provided in the front side cleaning system 2 and the air pump 49 is provided in the rear side cleaning system 3 in the second embodiment, the present invention is not limited to this.
  • only one air pump may be provided, or an air pump may be provided corresponding to each air nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

車両に設けられた清掃対象を自動で適切に清掃する。 車両用清掃システムは、車両に設けられた清掃対象を清掃する清掃部と、前記車両の走行状況、前記車両の環境状況、及び、前記車両の清掃対象への付着物の付着に関する指標の少なくとも1つに応じて、前記清掃部による清掃対象の清掃を制御する制御部と、を含んでいる。

Description

車両用清掃システム
 本発明は車両用清掃システムに関する。
 近年、車両の運転支援や自動運転に関する技術の開発が進められている。車両の運転支援や自動運転を行う運転支援システムを車両に搭載するためには、車両の走行状態を検出するために各種の車載センサが必要となる。これらの車載センサの中には、衛星測位システム(例えば、GPS)、加速度センサ、ジャイロセンサ、温度センサ、レベルセンサ、速度センサ、回転数センサ、走行距離センサ、運転操作検出器等の車体の内部に搭載されるセンサの他に、ミリ波レーダ等の電波を用いて車両周囲の状態を検出するレーダや、車両の走行状態、走行車線、標識、走行区分線、他車両、又は、車両外部の障害物等を検知するための光学センサも含まれる。
 ところで、車載センサの表面やその前方に存在するカバーやガラス(センサ面/センシング面)には、泥等の汚れや水滴等の付着物が付着する場合がある。フロントウインドシールドやリアウインドシールドに付着物が付着した場合には、ウォッシャノズルやワイパ等の清掃装置が取り付けられているため、付着物を除去することができる。しかしながら、車外に配置された車載センサのセンサ面に付着物が付着した場合には、車載センサの検知能力が低下する恐れがある。そこで、車載センサのセンサ面を洗浄する技術が提案されている。
 特開2015-224032号公報には、車載型カメラレンズの表面に付着した汚れを除去する技術が開示されている。上記文献に記載の技術は、レンズ表面に対して、液体ノズルから加圧洗浄水を噴射してレンズ表面の汚れを洗浄した後に、空気ノズルから加圧空気を噴射してレンズ表面に残った洗浄水を乾燥させるものである。この技術では、加圧洗浄水と加圧空気との両方を共通の液体ポンプを利用して発生させている。
 運転支援システムを搭載する車両には多数の車載センサが搭載されており、これらの車載センサのセンサ面に付着物が付着した場合には、車載センサの検知能力が低下するおそれがある。上記文献に記載の技術は、手動で洗浄システムを作動させて1つの光学センサを洗浄することについては記載されている。しかし、手動で洗浄システムを作動させる場合、洗浄対象の汚れの程度を把握する必要があり、車両の使用者の負担となる。特に洗浄対象が複数存在している場合、個々の洗浄対象の汚れの程度を全て把握することは困難である。
 本発明は上記事実を考慮して成されたもので、車両に設けられた清掃対象を自動で適切に清掃することができる車両用清掃システムを得ることが目的である。
 本発明の第1の態様に係る車両用清掃システムは、車両に設けられた車載センサを含む清掃対象を清掃する清掃部と、前記車両の走行状況、前記車両の環境状況、及び、前記清掃対象への付着物の付着に関する指標の少なくとも1つに応じて前記清掃部による清掃条件を決定し、前記清掃部により決定した前記清掃条件で前記清掃対象を清掃させる制御部と、を含んでいる。
 本発明の第1の態様では、車両に設けられた清掃対象を清掃する清掃部を含んでいる。ここで、車両の走行状況は清掃対象への付着物の付着状況と相関があり、車両の環境状況も清掃対象への付着物の付着状況と相関があり、車両の清掃対象への付着物の付着に関する指標も清掃対象への付着物の付着状況と相関がある。本発明の第1の態様では、これに基づき制御部が、車両の走行状況、車両の環境状況、及び、車両の清掃対象への付着物の付着に関する指標の少なくとも1つに応じて、清掃部による清掃条件を決定し、清掃部により決定した清掃条件で清掃対象を清掃させる。
 これにより、清掃対象への付着物の付着状況に応じて、清掃対象を自動で適切に清掃することができる。また、清掃部による清掃を、車両の走行状況や、車両の環境状況、清掃対象への付着物の付着に関する指標に拘わらず一律の清掃条件で行わせる場合と比較して、清掃対象への付着物の付着が少ない状況で清掃部による清掃を余剰に行わせることを抑制することができる。
 また、本発明の第2の態様は、本発明の第1の態様において、前記制御部は、前記清掃部による清掃条件として、前記清掃部の作動強度、作動時間及び作動回数の少なくとも1つを含む前記清掃対象の清掃条件を決定し、前記清掃部による前記清掃対象の清掃において、前記清掃部の作動強度、作動時間及び作動回数の少なくとも1つを制御する。これにより、清掃部による清掃を、一律の清掃条件で行わせる場合と比較して、清掃対象への付着物の付着が少ない状況で、清掃部の作動強度、作動時間及び作動回数の少なくとも1つが余剰となることを抑制することができる。
 また、本発明の第3の態様は、本発明の第1の態様又は第2の態様において、前記清掃部による清掃条件を、前記車両の走行状況、前記車両の環境状況、及び、前記清掃対象への付着物の付着に関する指標の少なくとも1つと対応付けて記憶する記憶部を更に含み、前記制御部は、前記記憶部に記憶された情報に基づいて、前記車両の走行状況、前記車両の環境状況、及び、前記清掃対象への付着物の付着に関する指標の少なくとも1つに対応する清掃条件を決定する。このように、清掃部の清掃条件を記憶部に記憶しておくことで、清掃部の清掃条件を条件分岐により判定する場合と比較して、清掃部の清掃条件を決定する処理を簡単にすることができる。
 更に、本発明の第4の態様は、本発明の第1~第3の態様の何れかにおいて、前記制御部は、前記清掃部によって清掃対象の清掃を所定回行わせても、清掃対象への付着物の付着に関する指標が付着有りを示す値であった場合に報知する。これにより、清掃部による清掃では清掃対象に付着した付着物を除去することが困難と推定される場合に、車両の乗員にその旨を伝えることができる。
 また、本発明の第5の態様は、本発明の第1~第4の態様の何れかにおいて、前記清掃部は、車両に設けられた複数の清掃対象に対応して複数設けられており、前記制御部は、個々の清掃部毎に独立に制御する。これにより、車両に設けられた複数の清掃対象の各々に対し、付着物の付着状況に応じて自動で適切に清掃することができる。
 また、車両に設けられた複数の清掃対象への付着物の付着状況には相関がある。これに基づき本発明の第6の態様は、本発明の第5の態様において、前記制御部は、前記車両に設けられた第1の清掃対象への付着物の付着に関する指標を取得し、前記車両に設けられた第2の清掃対象への付着物の付着に関する指標として前記第1の清掃対象への付着物の付着に関する指標を用いて清掃条件を決定し、決定した清掃条件に基づいて前記第2の清掃対象を清掃する前記清掃部を制御する。これにより、車両に設けられた複数の清掃対象のうちの一部の清掃対象が、付着物の付着に関する指標が未取得であったとしても、当該清掃対象の清掃を付着物の付着に関する指標を用いて制御することができ、清掃対象の清掃を精度良く行わせることができる。
 また、本発明の第7の態様は、本発明の第1~第6の態様の何れかにおいて、前記車両の車速、前記車両の走行経路、前記車両の走行距離、及び、所定の処理からの経過時間の少なくとも1つを含んでいる。
 また、本発明の第8の態様は、本発明の第1~第7の態様の何れかにおいて、前記車両の環境状況は、気温、天候の少なくとも一方を含んでいる。
 更に、本発明の第9の態様は、本発明の第1~第8の態様の何れかにおいて、前記車両の清掃対象への付着物の付着に関する指標は、清掃対象への付着物の付着度合、付着物の種類、及び、付着物の付着場所の少なくとも1つを含んでいる。
 また、本発明の第10の態様は、本発明の第1~第9の態様の何れかにおいて、前記清掃部は、清掃対象に液体又は空気を噴射することで清掃する。
 また、本発明の第11の態様は、本発明の第1~第10の態様の何れかにおいて、前記車両は運転支援装置又は自動運転装置が搭載されており、前記車両に設けられた清掃対象は前記運転支援装置又は前記自動運転装置が使用するセンサを含んでいる。これにより、前記車両の清掃対象への付着物の付着状況に応じて、運転支援装置又は自動運転装置の機能が低下することを抑制することができる。
第1実施形態に係る車両用清掃システムが搭載された車両を模式的に示す平面図である。 第1実施形態に係る車両用清掃システムの制御系の概略構成を示すブロック図である。 汚れ検出処理の一例を示すフローチャートである。 ライダのセンサ面に設定された所定エリアの一例を示す平面図である。 第1実施形態に係る清掃処理の一例を示すフローチャートである。 第1実施形態に係る清掃条件テーブルの一例を示す図表である。 清掃対象の汚れ度合の推移の一例を示すタイムチャートである。 清掃対象の汚れ度合の推移の一例を示すタイムチャートである。 第2実施形態に係る車両用清掃システムが搭載された車両を模式的に示す平面図である。 第2実施形態に係る車両用清掃システムの制御系の概略構成を示すブロック図である。 第2実施形態に係る清掃処理の一例を示すフローチャートである。 第2実施形態に係る清掃条件テーブルの一例を示す図表である。 他の構成の車両用清掃システムが搭載された車両を模式的に示す平面図である。
 以下、図面を参照して本発明の実施形態の一例を詳細に説明する。
 〔第1実施形態〕
 図1に示す車両6は、ADAS(先進運転支援システム:Advanced Driver Assistance System)-ECU(エレクトロニックコントロールユニット:Electronic Cont-rol Unit)10が搭載されており、更に、車両6の所定部位の清掃を行う車両用清掃システム1が搭載されている。
 米国のSAEインターナショナル(モビリティ専門家を会員とする米国の非営利団体)が定めた「SAEJ3016」によれば、車両の運転支援を含む自動運転のレベルは以下のように分類されている。
 ・レベル0(運転自動化なし)
 ・レベル1(運転支援)
 ・レベル2(部分運転自動化)
 ・レベル3(条件付き自動運転)
 ・レベル4(高度自動運転)
 ・レベル5(完全自動運転)
 レベル0の車両は、運転者が全ての運転操作を実施する必要がある車両であり、運転自動化システムが付いていない一般の車両が該当する。レベル1の車両は、運転自動化システムが車両のハンドル操作及び加速・減速のいずれかの制御を行うものであり、他の操作は運転者が行うものである。このレベルの車両は、運転者が周囲の状況に応じて適宜に車両を制御し、自動運転システムの操作を監視している必要がある。これにはアダプティブ・クルーズ・コントロール機能(定速走行・車間距離制御装置)を有する車両が該当する。レベル2の車両は、運転自動化システムが車両のハンドル操作及び加速・減速の両方の制御を行うものであり、他の操作は運転者が行うものである。このレベルの車両でも、運転者が周囲の状況に応じて車両を制御し、自動運転システムの操作を監視している必要がある。
 レベル3~レベル5までの車両がいわゆる自動運転システムを備えた車両に分類されるものである。レベル3の車両は、運転自動化システムが周囲の状況に対応して全ての運転操作を行うが、緊急時には運転者の介入が必要なものである。レベル4の車両は、運転自動化システムが周囲の状況に対応して全ての運転操作を行うものであり、運転者の介入は期待されていないものである。このレベル4の車両では、周囲の環境にもよるが、一応の無人運転が可能となる。レベル5の車両は、運転自動化システムが周囲の状況に対応して無条件で全ての運転操作を行うものであり、完全な無人運転が可能となる。
 図2に示すように、ADAS-ECU10は、CPU10a、メモリ10b及び不揮発性の記憶部10cを含んでいる。自動運転処理を行うためのプログラムは記憶部10cに記憶されており、このプログラムは記憶部10cから読み出されてメモリ10bに展開され、CPU10aによって実行される。ADAS-ECU10は、車両6に各々搭載されたカメラ群7、ライダ(LIDAR;Light Detection and Ranging又はLaser Imaging Detection and Ranging)群8、レーダ群9(それぞれの詳細は後述)及びインストルメントパネル18が接続されている。ADAS-ECU10は、カメラ群7の各カメラ、ライダ群8の各ライダ及びレーダ群9の各レーダから検出情報を取得し、取得した検出情報に基づいて車両6の周囲の状況を認識し、レベル3~レベル5の何れかのレベルの自動運転処理を行う。なお、ADAS-ECU10は自動運転装置の一例である。
 なお、ADAS-ECU10は、車両6の走行状況及び車両6の環境状況等の情報を把握している。車両6の走行状況には、車両6の速度、走行距離(累計走行距離)、走行経路(一般道路か高速道路か、舗装路か未舗装路か等の経路の区分、渋滞情報等)、走行方向、車両6のステータス(イグニッションスイッチの状態や、車種等の情報)等の情報が含まれる。環境状況には天候、気温、路面の状況等の情報が含まれる。
 一方、図1に示すように、車両6はフロントウインド(フロント側ウインドシールド)20の上部内側にフロントカメラ21が配置されている。フロントカメラ21は、車室内のフロントウインド20の上方、ルームミラーの裏に車両6の前方へ向けて設置され、フロントウインド20のガラス越しに前方を撮影する。なお、フロントカメラ21はルームミラーの裏に設置することに限定されるものではなく、例えば、フロントカメラ21がフロントウインド20の車室内側の上方に直接取付けられていてもよい。フロントカメラ21は車載センサの一例である。
 フロントカメラ21は、図2に示すカメラ群7に含まれており、フロントカメラ21で撮影された画像はADAS-ECU10へ出力される。ADAS-ECU10は、カメラ群7の各カメラで撮影された画像に対して画像解析処理を行い、車両6の周囲に存在する物体を検出する。例えば、フロントカメラ21で撮影された画像に基づく物体の検出では、物体の識別が可能であり、他車両や歩行者などを他の物体と区別して検出することができ、また、道路標識や路面上のレーンマークの認識も可能である。
 なお、本実施形態では、フロントカメラ21を1つ設けているが、役割に応じて2つ以上設けてもよい。また、フロントカメラ21としては単眼カメラを用いてもよいが、複数(例えば2台)のカメラを含む所謂ステレオカメラを用いてもよく、この場合、撮影した複数の画像の視差に基づいて物体までの距離を推測することが可能となる。
 ところで、フロントカメラ21の前方に存在するフロントウインド20が泥等で汚れた場合には、フロントカメラ21によって撮影される画像に影が映り込むことになる。また、降雨時にはフロントウインド20に水滴が付着することで、画像が不明瞭になると共に、画像解析に支障をきたす可能性がある。このため、フロントカメラ21の前方に存在するフロントウインド20を清掃する要請がある。
 本実施形態では、車両用清掃システム1がフロント側清掃システム2とリア側清掃システム3とを含んでおり、フロント側清掃システム2は、フロントカメラ21の前面に配置されているフロントウインド20を清掃するために、フロントウインド20の前方下部に設けられたワイパ40及びウォッシャノズル40aを含んでいる。ワイパ40及びウォッシャノズル40aは清掃部の一例であり、ウォッシャノズル40aから洗浄液を噴射すると共に、ワイパ40により、フロントカメラ21の前面を含むフロントウインド20の付着物を払拭する。
 フロントグリル25の前面側には、中央部にライダ26、フロントグリルカメラ27及び長距離用ミリ波レーダ28が設けられ、両端部には中距離用ミリ波レーダ29が設けられ、さらに、一対のヘッドライト30が設けられている。ライダ26は図2に示すライダ群8に含まれ、フロントグリルカメラ27は図2に示すカメラ群7に含まれ、ミリ波レーダ28,29は図2に示すレーダ群9に含まれている。ライダ26及びフロントグリルカメラ27は車載センサの一例である。
 ライダ26は、例えば赤外域のレーザ光をパルス状に照射し、物体に反射されて帰ってくるまでの時間から距離を計測するセンサであり、細く絞った赤外域のレーザ光を可動ミラーによって方向を変えてスキャンすることで物体の方位も検出することができる。ライダ26は、赤外域のレーザ光を用いているため、電波の反射率が低い物体も検出でき、特に段ボール箱、木材、発泡スチロールなどの路上散乱物として走行の妨げになる物体も検出可能である。さらに、ライダ26は、高い空間分解能で距離と方位を検出できるため、物体検出だけでなく、それらの間のフリースペースの検出も可能である。
 ライダ26は例えば赤外線等の光を用いているセンサであるため、センサ面に汚れが付着すると検知能力が低下するおそれがある。このため、ライダ26のセンサ面を清掃する要請がある。フロント側清掃システム2は、ライダ26のセンサ面を清掃するために、ライダ26のセンサ面の近傍に設けられ、センサ面に向けて洗浄液を噴射するウォッシャノズル26aを含んでいる。ウォッシャノズル26aは清掃部の一例である。
 電波センサとしてのミリ波レーダ28,29は、ミリ波と呼ばれる非常に波長の短い電波を照射し、物体に反射されて帰ってくる電波を検出することにより、物体までの距離と方向を検出することができる。ミリ波レーダ28,29は、自らの発する電波を利用して検出しているため、光源や天候に左右されず良好な検出特性を維持でき、物体までの距離も正確に計測できる。特に長距離用ミリ波レーダ28は激しい雨、濃霧や降雪時を走行中でも、前方に存在する他車両を正確に検知することができる。ミリ波レーダ28,29は電波を利用しているため、検知面に汚れや水滴等の付着物が付着したとしても、電波を通す限りは検出に支障がない。このため、検出面に対して清掃部を設ける必要性は低い。ただし、必要に応じてウォッシャノズル等の清掃部を設けてもよい。
 フロントグリルカメラ27で撮影された画像に基づく物体の検出では、物体の識別が可能であり、他車両や歩行者などを他の物体と区別して検出することができ、また、道路標識や路面上のレーンマークの認識も可能である。さらに、ラウンドビュー用としても用いることができる。フロントグリルカメラ27のセンサ面が泥等で汚れた場合には、画像に影が映り込むことになる。また、降雨時には水滴が付着することも想定される。この結果、画像が不明瞭になると共に、画像解析に支障をきたすことになる。このため、フロントグリルカメラ27のセンサ面を清掃する要請がある。そこでフロント側清掃システム2は、フロントグリルカメラ27のセンサ面を清掃するために、フロントグリルカメラ27のセンサ面へ向けて洗浄液を噴射するウォッシャノズル27aを含んでいる。ウォッシャノズル27aも清掃部の一例である。
 ヘッドライト30は、フロントグリル25の前面側の左右両側に設けられており、夜間や雨天時に車両6の前方を照明する。ヘッドライト30はフロントグリル25の両端部付近に設けられており、例えば悪路走行時や、降雨時には泥はね等で汚れると、光量不足となるおそれがあるため、清掃部を設ける要請がある。フロント側清掃システム2は、ヘッドライト30の照射面を清掃するために、ヘッドライト30の近傍に設けられ、ヘッドライト30の照射面に向けて洗浄液を噴射するウォッシャノズル30aを含んでいる。ウォッシャノズル30aも清掃部の一例である。なお、ヘッドライト30だけでなく、車幅灯、ウインカー等の照明に対して、ウォッシャノズル等の清掃部を設けてもよい。
 車両6のドアミラー35には後方を撮影するドアミラーカメラ36が設けられており、ドアミラーカメラ36によって撮影された画像は、インストルメントパネル18に設けた表示部に撮影した画像を表示される。また、ドアミラーの下方にはドアミラー下方カメラ37を設けることにより、周囲に存在する他車両や歩行者等を検出することができる。本実施形態では、ドアミラーカメラ36及びドアミラー下方カメラ37に対して清掃部を設けていないが、必要に応じてエアーノズル等の清掃部を設けてもよい。さらに、必要な場合には、ドアミラーやフェンダミラーなどのアウタミラーの反射面に対して、エアーノズル等の清掃部を設けてもよい。例えば、水滴などによりミラーが見にくい場合には、エアーノズルによりエアーを噴射することにより、ミラーの反射面の水滴を吹き飛ばすことができる。なお、エアーノズルについては第2実施形態で説明する。
 また、車両6の側方には、側方ライダ38が設けられており、側方の他車両や歩行者等を検出することができる。側方ライダ38は図2に示すライダ群8に含まれている。ライダは例えば赤外線等の光を用いているセンサであるため、センサ面に汚れが付着すると検知能力が低下するおそれがある。このため、側方ライダ38のセンサ面を清掃する要請がある。フロント側清掃システム2は、側方ライダ38のセンサ面を清掃するために、側方ライダ38のセンサ面の近傍に設けられ、センサ面に向けて洗浄液を噴射するウォッシャノズル38aを含んでいる。ウォッシャノズル38aは清掃部の一例であり、側方ライダ38は車載センサの一例である。
 また、リアウインド(リア側ウインドシールド)45の中央上面の内側にはリアカメラ46が設けられている。リアカメラ46は、いわゆるインナミラー用のカメラであり、例えばバックミラーの位置にリアカメラ46の映像を映し出すことにより、バックミラーの替わりに利用される。さらに、自動運転システムにおいては、リアカメラ46の映像を画像解析することにより、イメージセンサとして用いることも可能である。また、リアカメラ46には、ラウンドビュー用のカメラとしての機能を持たせることもできる。リアカメラ46は図2に示すカメラ群7に含まれており、車載センサの一例である。
 リア側清掃システム3は、リアカメラ46の撮像面側に配置されているリアウインド45を清掃するために、リアウインド45の上方中央に設けられたウォッシャノズル46aと、リアウインド45の下方中央に設けられたリアワイパ47と、を含んでいる。ウォッシャノズル46aから洗浄液を噴射すると共に、リアワイパ47により、リアカメラ46の撮像面側を含むリアウインド45の汚れを払拭することができる。ウォッシャノズル46a及びリアワイパ47は清掃部の一例である。なお、リアカメラ46は、リアバンパ50の中央部に設けてもよい。この場合、リアカメラ46のセンサ面を清掃するために、センサ面へ洗浄液を噴射するウォッシャノズル及びセンサ面へエアーを噴射するエアーノズルなどの清掃部を設けてもよい。
 車両6のリアバンパ50の中央にはライダ52が設けられている。ライダ52は図2に示すライダ群8に含まれており、車載センサの一例である。ライダ52は例えば赤外線等の光を用いているセンサであるため、センサ面に汚れ等の付着物が付着すると検出能力が低下するおそれがある。そこで、リア側清掃システム3は、ライダ52のセンサ面を清掃するために、ライダ52のセンサ面の近傍に設けられセンサ面へ洗浄液を噴射するウォッシャノズル52aを含んでいる。ウォッシャノズル52aは清掃部の一例である。
 車両6は、後部側方の他車両や歩行者等を検出するため、後部側面にも側方ライダ56が設けられている。側方ライダ56は図2に示すライダ群8に含まれており、車載センサの一例である。リア側清掃システム3は、側方ライダ56のセンサ面を清掃するために、側方ライダ56のセンサ面の近傍に設けられ、センサ面に向けて洗浄液を噴射するウォッシャノズル56aを含んでいる。ウォッシャノズル56aも清掃部の一例である。
 また、車両6のリアバンパ50の中央にはリアカメラ53が設けられている。リアカメラ53は、後進時に車両6の後方の画像を撮影してインストルメントパネル18の表示部に表示するために用いられる。リアカメラ53は図2に示すカメラ群7に含まれており、自動運転システムにおいては、リアカメラ46の映像を画像解析するためのイメージセンサとして用いる。リア側清掃システム3は、リアカメラ53のセンサ面を清掃するために、リアカメラ53の近傍に設けられ、センサ面に向けて洗浄液を噴射するウォッシャノズル53aを含んでいる。ウォッシャノズル53aは清掃部の一例である。
 リアバンパ50の両端部付近、又は、リアフェンダーの後方寄りには、中距離用ミリ波レーダ55が設けられており、主として後方から側方にかけての他車両の検出や、車間距離の測定に用いられる。ミリ波レーダ55は図2に示すレーダ群9に含まれている。ミリ波レーダは電波を利用しているため、検知面に汚れが付着したとしても、電波を通す限りは検出に支障がない。このため、検出面に対して清掃部を設ける必要性は低い。そこで、本実施形態では、中距離用ミリ波レーダ55には清掃部を設けていない。ただし、必要に応じてウォッシャノズル等の清掃部を設けてもよい。
 また、ブレーキランプや後方のウインカーや後方の車幅灯に対しても、必要に応じてウォッシャノズルやエアーノズル等の清掃部を設けておくことも可能である。例えば、雨天に泥跳ねによりブレーキランプが汚れた場合には、エアーノズルからエアーを噴射することにより、雨水と共に泥汚れを吹き飛ばすことができる。
 次に洗浄液の供給系統について説明する。車両6のエンジンルーム内には貯蔵部としてのウォッシャタンク12が設けられており、このウォッシャタンク12にはウォッシャタンク12内の洗浄液の残量を検知するためのレベルセンサ13が設けられている。ウォッシャタンク12、又はウォッシャタンク12の近傍には、フロント用マルチバルブ16にウォッシャタンク12の洗浄液を供給するためのフロント用ウォッシャポンプ14が設けられている。フロント用ウォッシャポンプ14とフロント用マルチバルブ16との間は導通部としてのホースで接続されている。
 また、ウォッシャタンク12、又はウォッシャタンク12の近傍には、リア用マルチバルブ17にウォッシャタンク12の洗浄液を供給するためのリア用ウォッシャポンプ15が設けられている。リア用ウォッシャポンプ15とリア用マルチバルブ17との間は導通部としてのホースで接続されている。
 フロント用マルチバルブ16には、ウォッシャタンク12からフロント用ウォッシャポンプ14によりホースを介して洗浄液が供給されている。フロント用マルチバルブ16の出力側にはそれぞれ個別に開閉制御可能な複数のバルブが設けられており。各バルブの出力側には、フロントグリル25の前面側の中央部に設けられたライダ26用のウォッシャノズル26a、フロントグリル25の前面側の中央部に設けられたフロントグリルカメラ27用のウォッシャノズル27a、左右両側のヘッドライト30用のウォッシャノズル30a、側方ライダ38のセンサ面を清掃するためのウォッシャノズル38a、及び、フロントウインド20の前方下部に設けられているウォッシャノズル40aがそれぞれ個別に導通部としてのホースを介して接続されている。洗浄液は加圧された状態で、フロント用マルチバルブ16に供給されるため、フロント用マルチバルブ16のバルブが開制御された時には、対応するウォッシャノズル26a、27a、30a、38a、40aから洗浄液が清掃対象へ噴射される。
 リア用マルチバルブ17には、ウォッシャタンク12からリア用ウォッシャポンプ15によりホースを介して洗浄液が供給されている。リア用マルチバルブ17の出力側にはそれぞれ個別に開閉制御可能な複数のバルブが設けられており、各バルブの出力側には、リアウインド45の上方中央に設けられたウォッシャノズル46a、ライダ52のセンサ面を清掃するためのウォッシャノズル52a、リアカメラ53のセンサ面を清掃するためのウォッシャノズル53a、及び、側方ライダ56のセンサ面を清掃するためのウォッシャノズル56aがそれぞれ個別に導通部としてのホースを介して接続されている。洗浄液は加圧された状態でリア用マルチバルブ17に供給されるため、リア用マルチバルブ17のバルブが開制御された時には、対応するウォッシャノズル46a、52a、53a、56aから洗浄液が清掃対象へ噴射される。
 なお、ウォッシャタンク12は1個設けることに限定されるものではなく、例えば、フロント側清掃システム2及びリア側清掃システム3の配置に合わせてウォッシャタンク12を分散配置してもよい。具体的には、フロント側清掃システム2の近傍にウォッシャタンクを1個設け、リア側清掃システム3の近傍にウォッシャタンクを1個設けてもよい。これにより、車両6の前後方向を接続するホースを省略することが可能となると共に、ウォッシャタンクの総容量を増大させることが可能である。また、ウォッシャタンクを複数個備える場合、各ウォッシャタンク同士をホースにて接続し、どちらか一方のウォッシャタンクの容量が減った際に、他方のウォッシャタンクから一方のウォッシャタンクに洗浄液を供給するようにしてもよい。
 次に制御系について説明する。車両用清掃システム1は清掃制御ECU22を含んでおり、清掃制御ECU22はCPU22a、メモリ22b及び不揮発性の記憶部22cを含んでいる。記憶部22cには清掃制御プログラム23a及び清掃条件テーブル23bが記憶されており、清掃制御プログラム23aは記憶部22cから読み出されてメモリ22bに展開され、CPU22aによって実行される。これにより、清掃制御ECU22は、後述する汚れ検出処理及び清掃処理を行う。清掃制御ECU22はADAS-ECU10とバス19を介して接続されている。清掃制御ECU22は制御部の一例であり、記憶部22cは記憶部の一例である。
 清掃制御ECU22は、フロント用ウォッシャポンプ14を駆動するモータ62と電圧変調部24及びウォッシャポンプ駆動部31を介して接続されている。電圧変調部24は、清掃制御ECU22から指示された大きさの作動電圧をモータ62に供給する。ウォッシャポンプ駆動部31は、清掃制御ECU22からモータ62の作動時間及び作動回数が指示され、指示された作動時間及び作動回数に応じてモータ62をオンオフさせる。また清掃制御ECU22は、フロント用マルチバルブ16が接続されている。清掃制御ECU22は、フロント用マルチバルブ16の複数のバルブの開閉を個別に制御する。
 更に、清掃制御ECU22は、ワイパ40を往復払拭させる駆動力を発生するワイパモータ34とワイパモータ駆動部39を介して接続されている。ワイパモータ駆動部39は、清掃制御ECU22からワイパモータ34の駆動方向及び駆動速度が指示され、指示された駆動方向及び駆動速度に応じてワイパモータ34の駆動を制御する。
 また、清掃制御ECU22は、リア用ウォッシャポンプ15を駆動するモータ42と電圧変調部43及びウォッシャポンプ駆動部44を介して接続されている。電圧変調部43は、清掃制御ECU22から指示された大きさの作動電圧をモータ42に供給する。ウォッシャポンプ駆動部44は、清掃制御ECU22からモータ42の作動時間及び作動回数が指示され、指示された作動時間及び作動回数に応じてモータ42をオンオフさせる。また清掃制御ECU22は、リア用マルチバルブ17が接続されている。清掃制御ECU22は、リア用マルチバルブ17の複数のバルブの開閉を個別に制御する。
 更に、清掃制御ECU22は、ワイパモータ駆動部59を介してワイパモータ58が接続されている。ワイパモータ58とワイパ47との間には、ワイパモータ58の出力軸の一方向回転を往復回動に変換してワイパ47に伝達する図示しないリンク機構が介在されている。ワイパモータ駆動部59は、清掃制御ECU22からワイパモータ58の駆動が指示されると、指示に応じてワイパモータ58を駆動し、これに伴いワイパ47が往復払拭される。また清掃制御ECU22は、レベルセンサ13が接続されており(図示省略)、レベルセンサ13の検出信号が入力される。
 次に第1実施形態の作用として、まず図3を参照し、車両6のイグニッションスイッチがオンの間、清掃制御ECU22が行う汚れ検出処理を説明する。なお、以下では、車両6のうち車両用清掃システム1が清掃対象としている部位に設けられた、カメラ群7の各カメラ及びライダ群8の各ライダを「車載センサ」と総称し、車載センサの総数をNとする。
 汚れ検出処理のステップ100において、清掃制御ECU22は、ADAS-ECU10がN個の車載センサから各々取得して記憶部10c等に記憶している検出情報をADAS-ECU10から取得し、取得した検出情報を記憶部22cに記憶する。車載センサのうち、カメラの検出情報は、例えば、カメラによって撮影された画像情報であり、ライダの検出情報は、例えば、ライダのセンサ面に分布する複数の受光センサ毎の受光量、受光時刻(物体との距離)を含む情報である。
 ステップ102において、清掃制御ECU22は、個々の車載センサを識別するための変数iに1を設定する。ステップ104において、清掃制御ECU22は、i番目の車載センサの検出情報を記憶部22cから読み込む。そしてステップ106において、清掃制御ECU22は、ステップ104で読み込んだ検出情報に基づいて、i番目の車載センサに対応する清掃対象の汚れ度合を評価する評価値を演算する。なお、本実施形態における「i番目の車載センサに対応する清掃対象」は、多くの場合は「i番目の車載センサのセンサ面」であるが、これに限られるものではなく、例えばi番目の車載センサがフロントカメラ21である場合、清掃対象はフロントウインド20になる。
 清掃対象の汚れ度合の評価値としては、一例として、清掃対象の汚れ度合(透過率)を全体的に評価する評価値を適用することができる。例えば、i番目の車載センサがカメラである場合には、その検出情報である画像全体の平均輝度又は最小輝度を、一例として0~100の数値範囲内で規格化した値を清掃対象の汚れ度合の評価値として適用してもよい。また、例えば、i番目の車載センサがライダである場合には、その検出情報に含まれる複数の受光センサ毎の受光量の平均値又は最小値を、一例として0~100の数値範囲内で規格化した値を清掃対象の汚れ度合の評価値として適用してもよい。また、評価値の演算は、一つの時刻の検出情報を用いることに限られるものではなく、ADAS-ECU10から以前に取得した検出情報を記憶部22cに蓄積記憶しておき、今回取得した検出情報を、過去の一つの時刻又は複数の時刻の検出情報と比較し、検出情報の時系列の変化に基づいて清掃対象の汚れ度合の評価値を算出してもよい。この清掃対象の汚れ度合の評価値は、清掃対象への付着物の付着に関する指標の一例であり、より詳しくは、清掃対象への付着物の付着度合の一例である。
 ステップ108において、清掃制御ECU22は、i番目の車載センサに対応する清掃対象の汚れ度合の評価値を所定値と比較することで、i番目の車載センサに対応する清掃対象に汚れが有るか否か判定する。なお、上記の所定値は車載センサの種類(カメラかライダか)に応じて値を相違させてもよい。i番目の車載センサに対応する清掃対象の汚れ度合の評価値が所定値以上(汚れ度合が小さい)の場合には、ステップ108の判定が否定されてステップ124へ移行し、ステップ124において、清掃制御ECU22は、i番目の車載センサに対応する清掃対象について、汚れ度合の評価値を記憶部22cに記憶させる。ステップ124の処理を行うとステップ126へ移行する。
 また、ステップ108において、i番目の車載センサに対応する清掃対象の汚れ度合の評価値が所定値未満(汚れ度合が大きい)の場合には、ステップ108の判定が肯定されてステップ110へ移行し、ステップ110において、清掃制御ECU22は、i番目の車載センサはカメラか否か判定する。ステップ110の判定が肯定された場合はステップ112へ移行し、ステップ112において、清掃制御ECU22は、i番目の車載センサの検出情報、すなわちカメラによって撮影された画像に基づいて、i番目の車載センサに対応する清掃対象の汚れの種類を判定する。
 清掃対象の汚れの種類は、一例として「水滴」「泥水」「乾燥泥」の三種類に大別することができる。清掃対象に水滴が付着している場合、対応するカメラで撮影される画像は、水滴部分で乱反射が生じて輝度が高頻度で変化する。このため、一例として、画像の隣接する画素間の輝度変化を画像全体に亘って積算した評価値を演算し、演算した評価値が所定値以上の場合に清掃対象に水滴が付着していると判定することができる。但し、清掃対象に水滴が付着しているか否かの判定は上記に限られるものではない。
 また、清掃対象に泥水が付着している場合、対応するカメラで撮影される画像の輝度が部分的に低下する。このため、一例として、画像を複数の領域に分割したときの領域毎に平均輝度を演算し、領域毎の平均輝度の分散が所定値以上の場合に清掃対象に泥水が付着していると判定することができる。但し、清掃対象に泥水が付着しているか否かの判定は上記に限られるものではない。
 また、清掃対象に乾燥泥が付着している場合、対応するカメラで撮影される画像の鮮鋭度が低下する。このため、一例として、画像の鮮鋭度を演算し、演算した画像の鮮鋭度が所定値以下の場合に清掃対象に乾燥泥が付着していると判定することができる。但し、清掃対象に乾燥泥が付着しているか否かの判定は上記に限られるものではない。この清掃対象の汚れの種類も、清掃対象への付着部得の付着に関する指標の一例であり、より詳しくは、付着物の種類の一例である。
 ステップ112でi番目の車載センサに対応する清掃対象の汚れの種類を判定すると、ステップ122へ移行し、ステップ122において、清掃制御ECU22は、i番目の車載センサに対応する清掃対象について、汚れ度合の評価値及び汚れの種類を記憶部22cに記憶させる。このように、汚れが有ると判定した清掃対象に対しては、汚れ度合の評価値に加えて汚れの種類も記憶される。ステップ122の処理を行うとステップ126へ移行する。
 一方、ステップ110の判定において、i番目の車載センサがライダであった場合には、ステップ110の判定が否定されてステップ114へ移行する。ステップ114において、清掃制御ECU22は、i番目の車載センサ(ライダ)の近傍に存在するカメラに対応する清掃対象について判定した汚れの種類を、i番目の車載センサ(ライダ)に対応する清掃対象の汚れの種類として読み込む。
 例えば、i番目の車載センサがライダ26であった場合、ライダ26に対応する清掃対象の汚れの種類として、ライダ26に近傍に存在するフロントグリルカメラ27に対応する清掃対象について判定した汚れの種類を読み込む。この例において、フロントグリルカメラ27に対応する清掃対象は第1の清掃対象の一例であり、ライダ26に対応する清掃対象は第2の清掃対象の一例である。
 次のステップ116において、清掃制御ECU22は、i番目の車載センサ(ライダ)の検出情報に基づいて、i番目の車載センサ(ライダ)に対応する清掃対象のうち汚れ度合の大きいエリアを判定する。ライダのセンサ面に汚れが付着すると、汚れの付着している部位に対応する受光センサの受光量が汚れの量に応じて低下する。このため、ライダに含まれる個々の受光センサの受光量を比較することで、ライダのセンサ面のうち受光量の小さい受光センサが分布しているエリア、すなわち汚れ度合の大きいエリアを判定する。
 ステップ118において、清掃制御ECU22は、ステップ116で判定した汚れ度合の大きいエリアが、予め設定した所定エリアか否か判定する。なお、汚れ度合の大きいエリアの位置も、清掃対象への付着物の付着に関する指標の一例であり、より詳しくは、付着物の付着場所の一例である。ライダのセンサ面における受光センサの分布には粗密があり、所定エリアの一例はライダのセンサ面のうち受光センサの分布密度が比較的高いエリアであり、所定エリアの分布範囲の一例を図4に「Aエリア」と表記して示す。汚れ度合の大きいエリアが所定エリアでない場合には、ライダのセンサ面に付着した汚れがライダの検出精度に及ぼす影響は比較的小さいと判断できる。このため、ステップ118の判定が否定された場合はステップ122へ移行し、汚れ度合の評価値及び汚れの種類を記憶部22cに記憶させる。
 一方、汚れ度合の大きいエリアが所定エリアである場合、ライダのセンサ面に付着した汚れがライダの検出精度に及ぼす影響は比較的大きいとみなすことができる。このため、ステップ118の判定が肯定された場合はステップ120へ移行し、ステップ120において、清掃制御ECU22は、i番目の車載センサ(ライダ)に対応する清掃対象の汚れ度合の評価値から所定値を減算する。これにより、i番目の車載センサ(ライダ)に対応する清掃対象に対し、後述する清掃処理での清掃の度合が大きくされる。ステップ120を行うとステップ122へ移行し、汚れ度合の評価値及び汚れの種類を記憶部22cに記憶させる。
 次のステップ126において、清掃制御ECU22は、変数iが車載センサの総数Nに達したか否か判定する。ステップ126の判定が否定された場合はステップ128へ移行し、ステップ128において、清掃制御ECU22は、変数iを1だけインクリメントした後にステップ104に戻る。これにより、全ての車載センサに対してステップ104~128が各々行われる。また、ステップ126の判定が肯定された場合はステップ100に戻り、ステップ100以降を繰り返す。従って、車両6のイグニッションスイッチがオンされている間、N個の車載センサについて、対応する清掃対象の汚れ度合が監視されて汚れ度合の評価値が適宜更新されると共に、汚れ度合の評価値が所定値未満(汚れ度合が大きい)の場合は汚れの種類も判定されることになる。
 次に図5を参照し、車両6のイグニッションスイッチがオンの間、清掃制御ECU22が行う清掃処理を説明する。清掃処理のステップ150において、清掃制御ECU22は、変数iに1を設定する。ステップ152において、清掃制御ECU22は、i番目の車載センサに対応する清掃対象について、汚れ度合の評価値及び汚れの種類を記憶部22cから読み込む。ステップ154において、清掃制御ECU22は、ステップ152で読み込んだi番目の車載センサに対応する清掃対象の汚れ度合の評価値を所定値と比較することで、i番目の車載センサに対応する清掃対象に汚れが有るか否か判定する。なお、上記の所定値は車載センサの種類(カメラかライダか)に応じて値を相違させてもよいし、自動運転時と運転者による運転時とで値を相違させてもよい。
 i番目の車載センサに対応する清掃対象の汚れ度合の評価値が所定値以上(汚れ度合が小さい)の場合は、ステップ154の判定が否定されてステップ178へ移行する。ステップ178において、清掃制御ECU22は、変数iが車載センサの総数Nに達したか否か判定する。ステップ178の判定が否定された場合はステップ180へ移行し、ステップ180において、清掃制御ECU22は、変数iを1だけインクリメントした後にステップ152に戻る。また、ステップ178の判定が肯定された場合はステップ150に戻る。これにより、対応する清掃対象の汚れ度合の評価値が所定値未満の車載センサが出現する迄の間は、清掃対象の清掃は行われない。
 また、i番目の車載センサに対応する清掃対象の汚れ度合の評価値が所定値未満(汚れ度合が大きい)の場合は、ステップ154の判定が肯定されてステップ156へ移行し、ステップ156において、清掃制御ECU22は、清掃の繰り返し回数を表す繰り返しカウンタを1にリセットする。次のステップ158において、清掃制御ECU22は、車両情報及び環境情報をADAS-ECU10から取得する。ここでは、車両情報の一例として車両6の速度及び走行距離(累計走行距離)を取得し、環境情報の一例として車両6の周囲の気温及び天候を取得するが、これらに限定されるものではない。なお、車両情報は車両の走行状況の一例であり、環境情報は車両の環境状況の一例である。
 次のステップ160において、清掃制御ECU22は、ステップ158で取得した車両情報及び環境情報、ステップ152で取得した汚れ度合及び汚れの種類に基づき、i番目の車載センサに対応する清掃対象に対する清掃条件(ウォッシャポンプのモータの作動電圧、作動時間及び作動回数の各清掃パラメータ)を決定する。清掃条件の決定は、一例として図6に示すような清掃条件テーブル23bを用いて行うことができる。清掃条件テーブル23bには、車両情報、環境情報、汚れ度合、汚れの種類及び繰り返しカウンタのカウント値の各入力パラメータが各値のときの清掃条件が各々規定されており、まず、それぞれの入力パラメータの値に対応する清掃条件(各清掃パラメータ)を清掃条件テーブル23bから各々読み出す。そして、清掃パラメータ毎に清掃条件テーブル23bに規定された優先順位に従い、各清掃パラメータの値を決定する。これにより、i番目の車載センサに対応する清掃対象の清掃条件を決定することができる。
 具体例を挙げて更に説明する。一例として、入力パラメータの各値が、(1)車両6の速度が80[km/h]以上、(2)気温が10[℃]以上、(3)天候が雨、(4)前回清掃を行ってからの車両6の走行距離が50[km]未満、(5)汚れの種類が「水滴」、(6)汚れ度合の評価値が50以上、であるとする。入力値(1)に対応する清掃条件として、作動電圧=高、作動時間=中、作動回数=1が読み出され、入力値(2)~(6)のそれぞれに対応する清掃条件として、作動電圧=低、作動時間=短、作動回数=1が読み出される。作動電圧に関しては、読み出した値の集合が{高,低}であるので、優先順位に従って作動電圧=高が選択される。作動時間に関しては、読み出した値の集合が{中,短}であるので、優先順位に従って作動時間=中が選択される。作動回数に関しては、読み出した値が1のみであるので、作動回数=1が設定される。
 なお、図6に示す清掃条件テーブル23bは、汚れ度合の評価値の値が小さくなる(汚れ度合が大きくなる)に従って、清掃の度合が大きくなるように清掃条件が設定されている。また、汚れの種類が「乾燥泥」の場合はそれ以外 (「水滴」や「泥水」)よりも汚れが落ちにくいことから、清掃条件テーブル23bは、汚れの種類が「乾燥泥」の場合はそれ以外の場合よりも清掃の度合が大きくなるように清掃条件が設定されている。また、車両6の速度が上昇すると風圧によって清掃の効率が低下することから、清掃条件テーブル23bは、車両6の速度が高くなるに従って清掃の度合が大きくなるように清掃条件が設定されている。また、気温が低くなると清掃の効率が低下することから、清掃条件テーブル23bは、気温が低くなるに従って清掃の度合が大きくなるように清掃条件が設定されている。また、天候が「雪」の場合はそれ以外 (「雨」や「晴れ・曇り」)よりも付着物が落ちにくいことから、清掃条件テーブル23bは、天候が「雪」の場合はそれ以外の場合よりも清掃の度合が大きくなるように清掃条件が設定されている。また、前回清掃してからの走行距離が長くなると汚れ度合が大きくなる傾向があることから、清掃条件テーブル23bは、前回清掃してからの走行距離が長くなるに従って清掃の度合が大きくなるように清掃条件が設定されている。
 ステップ162において、清掃制御ECU22は、i番目の車載センサに対応する清掃対象を、ステップ160で決定した清掃条件で清掃させる。一例として、i番目の車載センサとしてのフロントカメラ21に対応するフロントウインド20を清掃する場合、清掃制御ECU22は、清掃条件に含まれる作動電圧の値に応じた大きさの作動電圧がモータ62に供給されるように電圧変調部24へ指示を出力すると共に、清掃条件に含まれる作動時間及び作動回数の値に応じてモータ62がオンオフされるようにウォッシャポンプ駆動部31へ出力する。また、清掃制御ECU22は、ウォッシャノズル40aに洗浄液が供給されるようにフロント用マルチバルブ16のバルブの開閉を制御すると共に、ワイパ40が往復払拭されるように、ワイパモータ34の駆動指示をワイパモータ駆動部39へ出力する。これにより、ウォッシャノズル40aからステップ160で決定した清掃条件に応じて洗浄液が噴射されると共に、ワイパ40が往復払拭されることで、フロントカメラ21の前面を含むフロントウインド20が清掃される。
 なお、ウォッシャノズルから洗浄液を複数回噴射する場合、1回目で湿潤のための予備清掃を行い2回目で本清掃を行うようにしてもよいし、1回目で本清掃を行い2回目で仕上げ清掃を行うようにしてもよいし、1回目で湿潤のための予備清掃を行い2回目で本清掃を行い3回目で仕上げ清掃を行うようにしてもよい。さらに、予備清掃と仕上げ清掃は作動電圧を小さく又は作動時間を短くし、本清掃は作動電圧を大きく又は作動時間を長くしてもよい。
 また、ステップ162で清掃を行うと、清掃を行った時刻及び車両6の累計走行距離を変数iと共に記憶部22cに記憶させる。ここで記憶した情報は、前回清掃を行ってからの経過時間や車両6の走行距離の把握に用いられる。また、ステップ164において、清掃制御ECU22は、繰り返しカウンタを1だけインクリメントする。
 ステップ166において、清掃制御ECU22は、i番目の車載センサに対応する清掃対象の汚れ度合及び汚れの種類を記憶部22cから再度読み込む。前述した汚れ検出処理では、清掃対象の汚れ度合が監視されて汚れ度合の評価値が適宜更新されるので、ステップ162の清掃によって汚れ度合が小さくなれば、このステップ166で再度読み込んだ清掃対象の汚れ度合も、先のステップ152で読み込んだ清掃対象の汚れ度合よりも小さくなる。
 次のステップ168において、清掃制御ECU22は、ステップ166で再度読み込んだi番目の車載センサに対応する清掃対象の汚れ度合の評価値を所定値と比較することで、i番目の車載センサに対応する清掃対象に汚れが有るか否か判定する。i番目の車載センサに対応する清掃対象の汚れ度合の評価値が所定値未満(汚れ度合が大きい)の場合は、ステップ168の判定が肯定されてステップ170へ移行する。
 ステップ170において、清掃制御ECU22は、繰り返しカウンタの値が3以上か否か判定する。ステップ170の判定が否定された場合はステップ158に戻り、ステップ158以降の処理、すなわちi番目の車載センサに対応する清掃対象の清掃を繰り返す。但し、図6に示す清掃条件テーブル23bは、繰り返しカウンタの値が2の場合に、汚れの回復率が各値のときの清掃条件も規定されており、汚れの回復率が小さくなる(1回目の清掃での汚れの落ち具合が小さくなる)に従って、清掃の度合が大きくなるように清掃条件が設定されている。
 繰り返しカウンタの値が3に達する前に、i番目の車載センサに対応する清掃対象の汚れ度合の評価値が所定値以上に(汚れ度合が小さく)なった場合は、ステップ168の判定が否定されてステップ174へ移行する。ステップ174において、清掃制御ECU22は、i番目の車載センサに対応する清掃対象に付随する未清掃の清掃対象が有るか否か判定する。
 本実施形態では、車両用清掃システム1による清掃対象の中に車載センサが設けられていない清掃対象が存在しており、当該清掃対象については、車載センサが設けられた近傍の清掃部位と汚れ度合が同程度とみなし、近傍の清掃部位を清掃する際に、付随する清掃部位として併せて清掃を行うようにしている。車載センサが設けられていない清掃対象の一例はヘッドライト30であり、ヘッドライト30の近傍に存在する車載センサの一例はライダ26又はフロントグリルカメラ27である。
 i番目の車載センサに対応する清掃対象に、付随する未清掃の清掃対象が存在しない場合は、ステップ174の判定が否定されてステップ178へ移行する。また、i番目の車載センサに対応する清掃対象に、付随する未清掃の清掃対象が存在する場合は、ステップ174の判定が肯定されてステップ176へ移行し、ステップ176において、清掃制御ECU22は、i番目の車載センサに対応する清掃対象に付随する未清掃の清掃対象を清掃する。
 例えば、i番目の車載センサがライダ26又はフロントグリルカメラ27である場合には、ウォッシャノズル30aから洗浄液を噴射させることで、付随する未清掃の清掃対象であるヘッドライト30を清掃させる。なお、夜間などの状況であれば、ヘッドライト30の照射範囲及び照度(輝度)をフロントカメラ21の撮像画像から判定して、ヘッドライト30に汚れが付着したことを判定することも可能である。
 また、繰り返しカウンタの値が3に達しても、i番目の車載センサに対応する清掃対象の汚れ度合の評価値が所定値以上に(汚れ度合が小さく)ならなかった場合は、ステップ170の判定が肯定されてステップ172へ移行する。ステップ172において、清掃制御ECU22は、i番目の車載センサに対応する清掃対象を特定する情報を含むワーニング情報をADAS-ECU10へ出力し、ステップ178へ移行する。この場合、ADAS-ECU10は、例えばインストルメントパネル18内に、車両6の乗員に対してi番目の車載センサに対応する清掃対象の清掃を促すワーニング表示を行う。また、例えば、ADAS-ECU10が自動運転処理を行っている場合には、車両6を安全な場所に停車させるなどの処理を行ってもよい。さらに、ワーニング表示が解除されるまでi番目の車載センサに対応する清掃対象への清掃制御を禁止するようにしてもよい。
 なお、例えば、汚れの種類が「水滴」の場合や、天候が雨の場合のように、清掃対象に水滴などの付着物が繰り返し付着することが想定される場合には、ステップ172におけるワーニング情報の出力を省略するようにしてもよい。
 上述した清掃処理により、例えば図7Aに示すように、汚れ度合が緩やかに大きくなった清掃対象に対しては、汚れ度合の評価値が所定値未満になる迄の比較的長い期間に亘って清掃が行われず、また、汚れ度合の評価値が所定値未満になった際にも、比較的小さな清掃度合で清掃が行われる。これにより、清掃の回数及び清掃の度合が抑制される。一方、例えば図7Bに示すように、汚れ度合が急に大きくなった清掃対象に対しては、汚れ度合の評価値が所定値未満になると直ちに、かつ汚れ度合の評価値に応じて比較的大きな清掃度合で清掃が行われる。これにより、清掃対象が汚れている状態が長い期間放置されることが抑制される。
 〔第2実施形態〕
 次に本発明の第2実施形態を説明する。なお、第1実施形態と同一の部分には同一の符号を付し、説明を省略する。
 図8に示すように、第2実施形態に係るフロント側清掃システム2は、ライダ26のセンサ面の近傍に設けられライダ26のセンサ面に向けてエアーを噴射するエアーノズル26bと、フロントグリルカメラ27の近傍に設けられフロントグリルカメラ27のセンサ面へエアーを噴射するエアーノズル27bと、側方ライダ38のセンサ面の近傍に設けられ側方ライダ38のセンサ面へエアーを噴射するエアーノズル(図示省略)と、を含んでいる。エアーノズル26b、エアーノズル27b及び側方ライダ38のセンサ面に向けてエアーを噴射するエアーノズルも清掃部の一例である。
 また、第2実施形態に係るリア側清掃システム3は、ライダ52のセンサ面の近傍に設けられライダ52のセンサ面に向けてエアーを噴射するエアーノズル52bと、リアカメラ53の近傍に設けられリアカメラ53のセンサ面へエアーを噴射するエアーノズル53bと、側方ライダ56のセンサ面の近傍に設けられの側方ライダ56のセンサ面に向けてエアーを噴射するエアーノズル(図示省略)と、を含んでいる。エアーノズル52b、エアーノズル53b及び側方ライダ56のセンサ面に向けてエアーを噴射するエアーノズルも清掃部の一例である。
 次に、エアーの供給系統について説明する。フロント側清掃システム2において、エアーノズル26b、エアーノズル27b、及び、側方ライダ38のセンサ面に向けてエアーを噴射するエアーノズルは共に、エアーポンプ41にエアーホースを介して接続されている。エアーポンプ41にて加圧されたエアーが、エアーホースを介して、各エアーノズル26b,27b等に供給される。
 リア側清掃システム3において、エアーノズル52b、エアーノズル53b、及び、側方ライダ56のセンサ面を清掃するためのエアーノズルは共に、エアーポンプ49にエアーホースを介して接続されている。エアーポンプ49にて加圧されたエアーが、エアーホースを介して、各エアーノズル52b,53b等に供給される。
 図9に示すように、清掃制御ECU22は、エアーポンプ41を駆動するモータ32とエアーポンプ駆動部33を介して接続されている。エアーポンプ駆動部33は、清掃制御ECU22からモータ32の作動時間が指示され、指示された作動時間の間、モータ32をオンさせる。また清掃制御ECU22は、エアーポンプ49を駆動するモータ54とエアーポンプ駆動部57を介して接続されている。エアーポンプ駆動部57は、清掃制御ECU22からモータ54の作動時間が指示され、指示された作動時間、モータ54をオンさせる。更に、清掃制御ECU22は、フロント側清掃システム2に対応する各エアーノズル26b,27b等、及び、リア側清掃システム3に対応する各エアーノズル52b,53b等が、個別に制御可能に信号線又は電源線により接続されている。
 次に図10を参照し、第2実施形態に係る清掃処理について、第1実施形態で説明した清掃処理と異なる部分のみ説明する。第2実施形態に係る清掃処理では、ステップ158で車両情報及び環境情報を取得した後、ステップ182へ移行する。ステップ182において、清掃制御ECU22は、i番目の車載センサに対応する清掃対象に設けられているのがウォッシャノズルのみか(エアーノズルが設けられていないか)否か判定する。本実施形態において、ステップ182の判定は、i番目の車載センサがフロントカメラ21で対応する清掃対象がフロントウインド20である場合と、i番目の車載センサがリアカメラ46で対応する清掃対象がリアウインド45である場合に肯定される。
 ステップ182の判定が肯定された場合はステップ190へ移行し、ステップ190において、清掃制御ECU22は、ステップ152で取得した汚れ度合及び汚れの種類に基づき、i番目の車載センサに対応する清掃対象に対する清掃条件として、ウォッシャノズルから噴射する洗浄液によって清掃する清掃条件を決定する。なお、ステップ190における清掃条件の決定の詳細は、第1実施形態で説明したステップ160と同じである。一方、ステップ182の判定が否定された場合はステップ184へ移行し、ステップ184において、清掃制御ECU22は、ステップ152で読み込んだi番目の車載センサに対応する清掃対象の汚れの種類に応じて分岐する。
 i番目の車載センサに対応する清掃対象の汚れの種類が「水滴」の場合は、ステップ184からステップ186へ分岐する。ステップ186において、清掃制御ECU22は、ステップ158で取得した車両情報及び環境情報、ステップ152で取得した汚れ度合及び汚れの種類に基づき、i番目の車載センサに対応する清掃対象に対する清掃条件として、エアーノズルから噴射するエアーによって清掃する清掃条件を決定する。一例として図11に示すように、第2実施形態に係る清掃条件テーブル23bは、清掃パラメータとして「エアー噴射回数」が追加されており、車両情報、環境情報、汚れ度合、汚れの種類及び繰り返しカウンタのカウント値の各入力パラメータの値に対応するエアー噴射回数を清掃条件テーブル23bから各々読み出し、読み出したエアー噴射回数の最大値を清掃条件として決定する。
 また、i番目の車載センサに対応する清掃対象の汚れの種類が「泥水」の場合は、ステップ184からステップ188へ分岐する。ステップ188において、清掃制御ECU22は、ステップ158で取得した車両情報及び環境情報、ステップ152で取得した汚れ度合及び汚れの種類に基づき、i番目の車載センサに対応する清掃対象に対する清掃条件として、エアーノズルから噴射するエアー及びウォッシャノズルから噴射する洗浄液によって清掃する清掃条件を決定する。また、i番目の車載センサに対応する清掃対象の汚れの種類が「乾燥泥」の場合は、ステップ184からステップ190へ分岐し、前述のように、ウォッシャノズルから噴射する洗浄液によって清掃する清掃条件を決定する。
 上記のようにして、ステップ186又はステップ188又はステップ190で清掃条件を決定すると、ステップ162へ移行し、i番目の車載センサに対応する清掃対象を決定した清掃条件で清掃する。なお、エアーノズルから噴射するエアー及びウォッシャノズルから噴射する洗浄液によって清掃を行う場合、エアーノズルからのエアーの噴射とウォッシャノズルからの洗浄液の噴射の何れを先に行ってもよい。また、例えば、清掃対象に対して、1回目に短く洗浄液を噴射させ、2回目に長く洗浄液を噴射させ、3回目にエアーノズルからエアーを短く噴射させ、4回目にエアーノズルから空気を長く噴射させるようにしてもよい。
 このように、上記の実施形態では、車両情報、環境情報、汚れ度合及び汚れの種類に応じて清掃条件を決定し、決定した清掃条件でウォッシャノズルやエアーノズルにより清掃対象を清掃させているので、清掃対象の汚れ度合に応じて清掃対象を自動で適切に清掃することができる。また、清掃部による清掃を一律の清掃条件で行わせる場合と比較して、清掃対象の汚れ度合が小さい状況でウォッシャノズルやエアーノズルによる清掃を余剰に行わせることを抑制することができる。
 また、上記の実施形態では、車両情報、環境情報、汚れ度合及び汚れの種類が各値の場合の清掃条件を登録した清掃条件テーブル23bを記憶部22cに記憶しておき、清掃条件テーブル23bを用いて清掃条件を決定するので、清掃条件を条件分岐により判定する場合と比較して、清掃条件を決定する処理を簡単にすることができる。
 また、上記の実施形態では、ウォッシャノズルやエアーノズルによって清掃対象の清掃を所定回行っても清掃対象が汚れ有りのままの場合に、ワーニングを出力して乗員へ通知させるので、ウォッシャノズルやエアーノズルによる清掃では清掃対象の汚れを除去することが困難と推定されたことを知ることができる。そのため、ウォッシャノズルやエアーノズルによる清掃を余剰に行わせることを抑制することができる。
 また、上記の実施形態では、ライダに対応する清掃対象における汚れの種類として、近傍に存在するカメラに対応する清掃対象における汚れの種類を取得し、取得した汚れの種類を用いて清掃条件を決定するので、対応する清掃対象における汚れの種類を判定することが現状では困難なライダについても、対応する清掃対象の清掃を精度良く行うことができる。
 なお、上記では車両情報、環境情報、汚れ度合及び汚れの種類に応じて清掃条件を決定する態様を説明したが、これに限定されるものではなく、車両情報、環境情報、汚れ度合及び汚れの種類のうちの何れか1つに応じて清掃条件を決定してもよいし、車両情報、環境情報、汚れ度合及び汚れの種類のうちの一部のパラメータの組み合わせに応じて清掃条件を決定してもよい。
 また、上記では、ウォッシャノズルによる清掃の清掃条件として、作動電圧、作動時間及び作動回数の各々を相違させる態様を説明したが、これに限定されるものでなく、作動電圧、作動時間及び作動回数のうちの1つ又は2つのパラメータの値を固定とし、残余のパラメータの値を相違させるようにしてもよい。
 また、上記では清掃条件の決定に用いる車両情報の一例として車両6の速度及び前回清掃を行ってからの車両6の走行距離を挙げたが、これに限定されるものではなく、例えば、車両6のイグニッションスイッチがオンされてからの車両6の走行距離、車両6のイグニッションスイッチがオンされてからの経過時間、車両の走行経路、などの車両情報の少なくとも1つに応じて清掃条件を決定するようにしてもよい。
 また、上記では清掃条件の決定に用いる環境情報の一例として車両6の周囲の気温及び天候を挙げたが、これに限定されるものではなく、例えば、路面状況などの環境情報に応じて清掃条件を決定するようにしてもよい。路面状況は、気温、天候及び車載のカメラで撮影した画像から検出することができ、車両の振動の波形や走行音の波形から検出することも可能である。
 また、上記では清掃条件の決定に用いる「清掃対象への付着物の付着に関する指標」の一例として、汚れ度合の評価値、汚れの種類及び汚れ度合の大きいエリアの位置を挙げたが、これに限定されるものではなく、付着物に関する指標、例えば、車載センサがカメラであれば、付着物に相当する画像領域のサイズ、色、エッジ強度などの指標に応じて清掃条件を決定するようにしてもよい。
 なお、第1実施形態及び第2実施形態では、
トリガ(1):清掃対象の汚れ度合の評価値が所定値未満になった
ことを契機として、汚れ度合の評価値が所定値未満になった清掃対象の清掃を行う態様を説明した。しかし、清掃対象の清掃を行う契機は、トリガ(1)に限られるものではなく、例えば、
トリガ(2):イグニッションスイッチがオフからオンに切り替わった
トリガ(3):イグニッションスイッチがオンからオフに切り替わった
トリガ(4):降雨を検出した
トリガ(5):所定速度以上で所定時間以上の走行が継続した
トリガ(6):車両が緊急事態に陥った
上記のトリガ(2)~トリガ(6)の少なくとも1つを契機として、一部又は全ての清掃対象の清掃を行ってもよい。
 トリガ(2)を契機として清掃対象の清掃を行った場合、駐車中や停車中に清掃対象に汚れ等の付着物が付着した状態のままで、車両6が走行することを防ぐことができる。また、カメラ等の車載センサはイグニッションスイッチがオンに切り替わった際にイニシャルチェックが行われることがあるが、この際、センサ面等の付着物を予め除去した状態とすることができるため、イニシャルチェック時に汚れ等が付着していることに起因する車載センサの検知能力の低下を抑制することができる。
 トリガ(2)を契機として清掃対象の清掃を行う場合には、例えば、イグニッションスイッチがオフになっていた期間の長さ、或いは、最後に清掃を行ってからの期間の長さに応じて清掃条件を決定することができる。一例として、前記期間の長さが30分未満の場合は清掃対象の清掃を省略し、前記期間の長さが30分以上かつ3時間未満の場合は清掃の度合が小に相当する清掃条件で清掃対象を清掃し、前記期問の長さが3時間以上かつ3日未満の場合は清掃の度合が中に相当する清掃条件で清掃対象を清掃し、前記期間が3日以上の場合は清掃の度合が大に相当する清掃条件で清掃対象を清掃してもよい。これにより、必要に応じて、清掃対象を十分に清掃することができると共に、洗浄液などが不必要に消費されることを防ぐことができる。なお、イグニッションスイッチがオフになっていた期間の長さや、最後に清掃を行ってからの期間の長さは車両の走行状況の一例である。
 また、トリガ(3)を契機として清掃対象の清掃を行った場合には、次に車両6に乗車する際に清掃対象への付着物の付着度合を抑制することができる。また、清掃対象に付着物が付着した状態が長く続くことも防止することができる。トリガ(3)を契機として清掃対象の清掃を行う場合には、例えば、最後に清掃を行ってからの期間の長さに応じて清掃条件を決定することができる。
 なお、トリガ(2)やトリガ(3)を契機として清掃対象の清掃を行う際は車両6が停止しているので、車両6の周囲に人が存在している可能性があり、車両6の周囲に人が存在していた場合には、清掃対象を洗浄液で清掃すると噴射した洗浄液が人に付着してしまうおそれがある。そこで、トリガ(2)やトリガ(3)を契機として清掃対象の清掃を行う場合は、カメラによって撮影された画像に基づいて車両6の周囲に人が存在しているか否かを判定してもよい。そして、車両6の周囲に人が存在していた場合は、洗浄液による清掃を中止してエアーにより清掃してもよいし、車両6の周囲から人がいなくなるまで洗浄液による清掃を延期するようにしてもよい。
 また、降雨時には泥はね等により清掃対象に付着物が付着し易い。トリガ(4)を契機として清掃対象の清掃、例えばエアーノズルからエアーの噴射を行った場合、エアーノズルから噴射されるエアーによって清掃対象の水滴が吹き飛ばされることで、清掃対象に付着した付着物を水滴と共に除去することができる。なお、降雨時の清掃はエアーノズルからのエアーの噴射に限定されるものではなく、ウォッシャノズルから洗浄液を噴射することで清掃を行ってもよい。
 降雨時における清掃の必要性は雨量によっても異なり、例えば雨量が多いほど泥はね等により清掃対象に付着物が付着する可能性が高くなる。このため、トリガ(2)を契機として清掃対象の清掃を行う場合は、例えば、降雨センサ等によって検出される雨量に応じて清掃条件を決定することができる。例えば、雨量が第1の所定値未満のときには清掃の度合が小に相当する清掃条件で清掃対象を清掃し、雨量が第1所定値以上かつ第2所定値未満(但し、第1所定値<第2所定値)の場合は清掃の度合が中に相当する清掃条件で清掃対象を清掃し、雨量が第2の所定値以上の場合は清掃の度合が大に相当する清掃条件で清掃対象を清掃するようにしてもよい。一例として、清掃対象にエアーノズルが設けられている場合、清掃の度合が小に相当する清掃条件の一例は、エアーノズルからエアーを噴射する時間間隔を30秒にする、という清掃条件であり、清掃の度合が中に相当する清掃条件の一例は、エアーノズルからエアーを噴射する時間間隔を15秒にする、という清掃条件であり、清掃の度合が大に相当する清掃条件の一例は、エアーノズルからエアーを噴射する時間間隔を5秒にする、という清掃条件である。雨量は環境状況の一例である。
 また、車両6が所定速度以上で所定時間以上走行した場合、清掃対象に汚れ等の付着物が付着する可能性が高くなる。トリガ(5)を契機として清掃対象の清掃を行った場合、車両6の走行に伴って清掃対象に付着した汚れ等を除去することができる。トリガ(5)を契機として清掃対象の清掃を行う場合には、例えば、車両6の速度、走行時間、走行距離及び走行経路の少なくとも1つに応じて清掃条件を決定することができる。
 車両6の速度に応じて清掃条件を決定する例を説明すると、例えば、車両6が5[km/h]以上で3分以上走行した場合に清掃対象の清掃を行う。そして、車両の速度が20[km/h]未満の場合は清掃の度合が小に相当する清掃条件で清掃対象を清掃し、車両の速度が20[km/h]以上かつ80[km/h]未満の場合は、清掃の度合が中に相当する清掃条件で清掃対象を清掃し、車両の速度が80[km/h]以上の場合は清掃の度合が大に相当する清掃条件で清掃対象を清掃するようにしてもよい。一例として、清掃対象にウォッシャノズルとエアーノズルが設けられている場合、清掃の度合が小に相当する清掃条件の一例は、エアーノズルから180秒間隔でエアーを噴射し、ウォッシャノズルから1800秒間隔で洗浄液を噴射する、という清掃条件であり、清掃の度合が中に相当する清掃条件の一例は、エアーノズルから60秒間隔でエアーを噴射し、ウォッシャノズルから600秒間隔で洗浄液を噴射する、という清掃条件であり、清掃の度合が大に相当する清掃条件の一例は、エアーノズルから20秒間隔でエアーを噴射し、ウォッシャノズルから200秒間隔で洗浄液を噴射する、という清掃条件である。上記の一例のように、洗浄液による清掃に加えて、エアーの噴射を併用して清掃を行った場合、清掃対象の清掃の頻度を高めて十分な清掃を行うことができると共に、洗浄液の過剰な消費を防止することができる。
 また、清掃対象の汚れ度合は車両6の走行経路に応じて異なる。ここでいう走行経路には例えば渋滞情報等の交通状況に関する情報も含まれる。車両6の走行経路はADAS-ECU10で把握されており、ADAS-ECU10から取得することができる。車両6の走行経路に応じて清掃条件を決定する例を説明すると、車両6が渋滞の発生している一般道路を走行している場合は清掃の度合が小に相当する清掃条件で清掃対象を清掃し、車両6が渋滞の発生していない一般道路又は渋滞の発生している高速道路を走行している場合は、清掃の度合が中に相当する清掃条件で清掃対象を清掃し、車両6が渋滞の発生していない高速道路を走行している場合は清掃の度合が大に相当する清掃条件で清掃対象を清掃するようにしてもよい。この場合、車両6の走行経路に応じた清掃条件で清掃対象の清掃を行うことができる。
 また、車両6の一部機能が低下した等のように、車両6が緊急事態に陥ったことをADAS-ECU10が検出した場合は、個々の車載センサによる検出に対して高い信頼性が求められる。トリガ(6)を契機として清掃対象の清掃を行った場合、車載センサの検知能力が低下することが抑制され、ADAS-ECU10が緊急時の制御を的確に行うことが可能となる。トリガ(6)を契機として清掃対象の清掃を行う場合は、例えば、発生した緊急事態のレベルに応じて清掃条件を決定してもよい。
 更に、各清掃対象の清掃順序は、例えば走行状況や環境状況に応じて相違させるようにしてもよい。一例として、一般道を前進走行している時には、衝突回避動作用のセンサであるフロントグリル25の前面側中央部に設けられたライダ26に対応する清掃対象を優先して清掃するようにしてもよい。
 また、上記では清掃部の一例として、洗浄液を噴射するウォッシャノズルとエアーを噴射するエアーノズルを挙げたが、これに限定されるものではなく、例えば清掃対象に超音波振動を加えて水滴を除去する構成等を適用することも可能である。
 また、上記ではフロント側清掃システム2における清掃とリア側清掃システム3における清掃を清掃制御ECU22が各々制御する態様を説明したが、これに限定されるものではない。例えば図12に示すように、清掃制御ECU22に代えて、フロント側清掃システム2における清掃を制御するワイパECU60aをフロント側清掃システム2に設けると共に、リア側清掃システム3における清掃を制御するワイパECU60bをリア側清掃システム3に設けるようにしてもよい。この場合、汚れ検出処理などの処理は、ワイパECU60a,60bで行うようにしてもよいが、ADAS-ECU10で行うようにしてもよい。
 なお、車両6における各車載センサの配置は、図1等に示した位置に限定されるものではない。例えば車両6の前方、後方又は側方に超音波センサを設けてもよい。超音波センサは周囲に存在する他車両等の物体を検知するものであり、走行中の車線に入ってくる他車両の検知や、駐車支援システムにおける障害物の検知も用いられる。超音波センサは音波を利用しているため、センサ面に汚れが付着しても音波が伝達されている限りは物体障害物の検知が可能である。このため、超音波センサのセンサ面を清掃する要請は小さいが、必要に応じてウォッシャノズルやエアーノズル等の清掃部を設けてもよい。
 なお、上記ではレベル3~レベル5の自動運転処理を行うADAS-ECU10が搭載された車両6に本発明を適用した態様を説明したが、これに限定されるものではない。本発明は、例えばレベル1又はレベル2の運転支援処理を行う運転支援システム(この運転支援システムは運転支援装置の一例である)が搭載された車両に適用してもよいし、自動運転システムや運転支援システムが未搭載であっても、例えば車載センサ等の清掃対象を備えている車両であれば適用可能である。
 また、上記ではマルチバルブ16,17を設けた態様を説明したが、これに限定されるものではない。例えば、これらのマルチバルブに代えてフロント用ウォッシャポンプ14及びリア用ウォッシャポンプ15にそれぞれ複数個のバルブを設け、これらの複数個のバルブをそれぞれ清掃制御ECU22が制御することで、所定のウォッシャノズルに洗浄液を供給するようにしてもよい。
 なお、第2実施形態ではフロント側清掃システム2にエアーポンプ41を設け、リア側清掃システム3にエアーポンプ49を設けた態様を説明したが、これに限定されるものではない。例えば、エアーポンプを1つのみ設けてもよいし、個々のエアーノズルに対応してエアーポンプを各々設けてもよい。
 2017年12月12日に出願された日本国特許出願2017-237730号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (11)

  1.  車両に設けられた車載センサを含む清掃対象を清掃する清掃部と、
     前記車両の走行状況、前記車両の環境状況、及び、前記清掃対象への付着物の付着に関する指標の少なくとも1つに応じて前記清掃部による清掃条件を決定し、前記清掃部により決定した前記清掃条件で前記清掃対象を清掃させる制御部と、
     を含む車両用清掃システム。
  2.  前記制御部は、前記清掃部による清掃条件として、前記清掃部の作動強度、作動時間及び作動回数の少なくとも1つを含む前記清掃対象の清掃条件を決定し、前記清掃部による前記清掃対象の清掃において、前記清掃部の作動強度、作動時間及び作動回数の少なくとも1つを制御する請求項1記載の車両用清掃システム。
  3.  前記清掃部による清掃条件を、前記車両の走行状況、前記車両の環境状況、及び、前記清掃対象への付着物の付着に関する指標の少なくとも1つと対応付けて記憶する記憶部を更に含み、
     前記制御部は、前記記憶部に記憶された情報に基づいて、前記車両の走行状況、前記車両の環境状況、及び、前記清掃対象への付着物の付着に関する指標の少なくとも1つに対応する清掃条件を決定する請求項1又は請求項2記載の車両用清掃システム。
  4.  前記制御部は、前記清掃部によって清掃対象の清掃を所定回行わせても、清掃対象への付着物の付着に関する指標が付着有りを示す値であった場合に報知する請求項1~請求項3の何れか1項記載の車両用清掃システム。
  5.  前記清掃部は、車両に設けられた複数の清掃対象に対応して複数設けられており、
     前記制御部は、個々の清掃部毎に独立に制御する請求項1~請求項4の何れか1項記載の車両用清掃システム。
  6.  前記制御部は、前記車両に設けられた第1の清掃対象への付着物の付着に関する指標を取得し、前記車両に設けられた第2の清掃対象への付着物の付着に関する指標として前記第1の清掃対象への付着物の付着に関する指標を用いて清掃条件を決定し、決定した清掃条件に基づいて前記第2の清掃対象を清掃する前記清掃部を制御する請求項5記載の車両用清掃システム。
  7.  前記車両の走行状況は、前記車両の車速、前記車両の走行経路、前記車両の走行距離、及び、所定の処理からの経過時間の少なくとも1つを含む請求項1~請求項6の何れか1項記載の車両用清掃システム。
  8.  前記車両の環境状況は、気温、天候の少なくとも一方を含む請求項1~請求項7の何れか1項記載の車両用清掃システム。
  9.  前記車両の清掃対象への付着物の付着に関する指標は、清掃対象への付着物の付着度合、付着物の種類、及び、付着物の付着場所の少なくとも1つを含む請求項1~請求項8の何れか1項記載の車両用清掃システム。
  10.  前記清掃部は、清掃対象に液体又は空気を噴射することで清掃する請求項1~請求項9の何れか1項記載の車両用清掃システム。
  11.  前記車両は運転支援装置又は自動運転装置が搭載されており、前記車両に設けられた清掃対象は前記運転支援装置又は前記自動運転装置が使用するセンサを含む請求項1~請求項10の何れか1項記載の車両用清掃システム。
PCT/JP2018/021938 2017-12-12 2018-06-07 車両用清掃システム WO2019116607A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/771,290 US11708054B2 (en) 2017-12-12 2018-06-07 Vehicle cleaning system
CN201880079745.8A CN111479728B (zh) 2017-12-12 2018-06-07 车用清扫***
JP2019558886A JP6988914B2 (ja) 2017-12-12 2018-06-07 車両用清掃システム
DE112018006324.0T DE112018006324T5 (de) 2017-12-12 2018-06-07 Fahrzeugreinigungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-237730 2017-12-12
JP2017237730 2017-12-12

Publications (1)

Publication Number Publication Date
WO2019116607A1 true WO2019116607A1 (ja) 2019-06-20

Family

ID=66819141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021938 WO2019116607A1 (ja) 2017-12-12 2018-06-07 車両用清掃システム

Country Status (5)

Country Link
US (1) US11708054B2 (ja)
JP (1) JP6988914B2 (ja)
CN (1) CN111479728B (ja)
DE (1) DE112018006324T5 (ja)
WO (1) WO2019116607A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112124254A (zh) * 2019-06-25 2020-12-25 株式会社电装 车载传感器清洗装置
WO2021131520A1 (ja) * 2019-12-27 2021-07-01 株式会社小糸製作所 センサユニット

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230558A1 (ja) * 2017-06-13 2018-12-20 株式会社小糸製作所 車両用クリーナシステムおよび車両用クリーナシステムを備える車両
CN116001730A (zh) * 2017-06-13 2023-04-25 株式会社小糸制作所 车辆用清洁***及具有车辆用清洁***的车辆
JP6772113B2 (ja) * 2017-08-02 2020-10-21 クラリオン株式会社 付着物検出装置、および、それを備えた車両システム
WO2019172306A1 (ja) * 2018-03-07 2019-09-12 株式会社小糸製作所 車両用クリーナシステム、車両システム、車両用クリーナシステムによる洗浄方法、車両用クリーナ制御装置
WO2019172159A1 (ja) * 2018-03-07 2019-09-12 株式会社小糸製作所 車両用クリーナシステムおよび車両システム
US11667268B2 (en) * 2018-03-12 2023-06-06 Koito Manufacturing Co., Ltd. Vehicle cleaner system and vehicle system
JP6988638B2 (ja) * 2018-03-28 2022-01-05 株式会社デンソー 車載センサ洗浄装置
US11977166B2 (en) * 2019-08-16 2024-05-07 WeRide Corp. Optical system, method and apparatus for diagnosing the same
DE102019128392A1 (de) * 2019-10-21 2021-04-22 Webasto SE Dachmodul mit Umfeldsensor und Sensorabdeckung
JP2021076414A (ja) * 2019-11-06 2021-05-20 豊田合成株式会社 車両用センサユニット
US11760313B2 (en) * 2020-04-30 2023-09-19 Zoox, Inc. Sensor pod cleaning system
US11953623B2 (en) 2020-04-30 2024-04-09 Zoox, Inc. Sensor pod assembly
US11623585B2 (en) 2020-04-30 2023-04-11 Zoox, Inc. Sensor pod coverage and placement on vehicle
JP7187528B2 (ja) * 2020-12-28 2022-12-12 本田技研工業株式会社 車両用認識装置、車両制御システム、車両用認識方法、およびプログラム
JP7505416B2 (ja) * 2021-02-15 2024-06-25 トヨタ自動車株式会社 洗浄装置
FR3121896B1 (fr) * 2021-04-14 2024-04-05 Valeo Systemes Dessuyage Procédé de pilotage d’une pompe de nettoyage de capteurs d’un véhicule
DE102021112787B3 (de) * 2021-05-18 2022-08-11 Ford Global Technologies, Llc Verfahren und Vorrichtung zum Überwachen der Verschmutzung von Oberflächen eines Fahrzeuges
FR3125783B1 (fr) * 2021-07-28 2023-06-30 Valeo Systemes Dessuyage Procédé de nettoyage de capteurs de véhicule
CN113709374A (zh) * 2021-09-01 2021-11-26 寒武纪行歌(南京)科技有限公司 摄像头清洗控制方法、装置、设备及***
CN113866097A (zh) * 2021-09-09 2021-12-31 中国科学院大气物理研究所 光学仪器镜面自动清洁***及其使用方法
DE102022202709A1 (de) 2022-03-19 2023-09-21 Bomag Gmbh Baumaschine mit Reinigungssystem für Kamera und Verfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100077A (ja) * 2011-10-14 2013-05-23 Denso Corp カメラ洗浄装置
JP2015137070A (ja) * 2014-01-24 2015-07-30 アスモ株式会社 車載センサ洗浄装置
JP2016009099A (ja) * 2014-06-25 2016-01-18 クラリオン株式会社 洗浄機能付き撮像装置
JP2016078489A (ja) * 2014-10-10 2016-05-16 アスモ株式会社 車載センサ洗浄装置
JP2018047878A (ja) * 2016-09-23 2018-03-29 株式会社デンソーテン 付着物除去装置および付着物除去方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340499A1 (de) * 2003-09-03 2005-03-31 Daimlerchrysler Ag Verfahren zum Betreiben einer Scheibenreinigungsanlage
JP2006347297A (ja) * 2005-06-14 2006-12-28 Toyota Motor Corp 車載装置
JP2007055562A (ja) * 2005-08-26 2007-03-08 Fujitsu Ten Ltd 車両の窓ガラスの異物除去装置
DE102005060326A1 (de) * 2005-12-16 2007-06-21 Robert Bosch Gmbh Vorrichtung zur Steuerung eines Scheibenwischerantriebs und Verfahren dafür
DE102009040993B4 (de) * 2009-09-10 2019-06-13 Valeo Schalter Und Sensoren Gmbh Vorrichtung zum Betreiben einer Wisch- und/oder Spülanlage für eine Scheibe eines Fahrzeugs, Fahrzeug und entsprechendes Verfahren
RU2455177C2 (ru) * 2009-09-29 2012-07-10 Денсо Корпорейшн Оболочка бортового оптического сенсора и устройство бортового оптического сенсора
JP5768866B2 (ja) * 2011-10-14 2015-08-26 株式会社デンソー カメラ洗浄装置
PL2802488T3 (pl) * 2012-01-11 2017-01-31 Saint-Gobain Glass France Sterowanie wycieraczką
JP5779517B2 (ja) * 2012-02-10 2015-09-16 アスモ株式会社 ワイパ装置
JP2014026049A (ja) * 2012-07-25 2014-02-06 Sony Corp クリーニング装置とクリーニング方法および撮像装置
US9707896B2 (en) * 2012-10-15 2017-07-18 Magna Electronics Inc. Vehicle camera lens dirt protection via air flow
EP3131785B1 (en) * 2014-04-16 2019-02-13 dlhBowles Inc. Integrated multi image sensor and lens washing nozzle assembly and method for simultaneously cleaning multiple image sensors
EP2949520B1 (en) 2014-05-27 2018-03-21 Fico Transpar, S.A. System for cleaning a vehicle-mounted optic lens
JP6374238B2 (ja) * 2014-07-01 2018-08-15 クラリオン株式会社 車載装置
US9539988B2 (en) * 2015-03-16 2017-01-10 Thunder Power Hong Kong Ltd. Vehicle camera cleaning system
US9758129B2 (en) * 2015-10-22 2017-09-12 Ford Global Technologies, Llc Method of minimizing ice buildup on a windshield of a vehicle
JP2017144937A (ja) * 2016-02-19 2017-08-24 トヨタ自動車株式会社 撮像システム
US10699305B2 (en) * 2016-11-21 2020-06-30 Nio Usa, Inc. Smart refill assistant for electric vehicles
US20180312141A1 (en) * 2017-04-27 2018-11-01 Ford Global Technologies, Llc Methods and apparatus for application of washer fluid to vehicle cameras
JP6854890B2 (ja) * 2017-06-27 2021-04-07 本田技研工業株式会社 通知システムおよびその制御方法、車両、並びにプログラム
US10173646B1 (en) * 2017-07-07 2019-01-08 Uber Technologies, Inc. Sequential sensor cleaning system for autonomous vehicle
US10703342B2 (en) * 2017-09-14 2020-07-07 Ford Global Technologies, Llc Sensor cleaning
US20190106085A1 (en) * 2017-10-10 2019-04-11 GM Global Technology Operations LLC System and method for automated decontamination of vehicle optical sensor lens covers
US10723325B2 (en) * 2017-11-08 2020-07-28 Uatc, Llc Vehicle sensor cleaning system
CN112118987A (zh) * 2018-04-23 2020-12-22 Dlh鲍尔斯公司 车辆传感器清洁***和用于操作它的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100077A (ja) * 2011-10-14 2013-05-23 Denso Corp カメラ洗浄装置
JP2015137070A (ja) * 2014-01-24 2015-07-30 アスモ株式会社 車載センサ洗浄装置
JP2016009099A (ja) * 2014-06-25 2016-01-18 クラリオン株式会社 洗浄機能付き撮像装置
JP2016078489A (ja) * 2014-10-10 2016-05-16 アスモ株式会社 車載センサ洗浄装置
JP2018047878A (ja) * 2016-09-23 2018-03-29 株式会社デンソーテン 付着物除去装置および付着物除去方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112124254A (zh) * 2019-06-25 2020-12-25 株式会社电装 车载传感器清洗装置
JP2021003910A (ja) * 2019-06-25 2021-01-14 株式会社デンソー 車載センサ洗浄装置
JP7243480B2 (ja) 2019-06-25 2023-03-22 株式会社デンソー 車載センサ洗浄装置
WO2021131520A1 (ja) * 2019-12-27 2021-07-01 株式会社小糸製作所 センサユニット

Also Published As

Publication number Publication date
CN111479728A (zh) 2020-07-31
CN111479728B (zh) 2023-05-19
US20200391702A1 (en) 2020-12-17
US11708054B2 (en) 2023-07-25
JPWO2019116607A1 (ja) 2020-12-03
DE112018006324T5 (de) 2020-08-20
JP6988914B2 (ja) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2019116607A1 (ja) 車両用清掃システム
CN111201166B (zh) 车辆用清洗***
JP6981218B2 (ja) 車両用洗浄システム
US10173646B1 (en) Sequential sensor cleaning system for autonomous vehicle
CN110958962B (zh) 车辆用清洁***及车辆用清洁器控制装置
US11880200B2 (en) Perimeter sensor housings
CN111867898B (zh) 车辆用清洁***及车辆用***
US20190202407A1 (en) Control apparatus and vehicle
US11557127B2 (en) Close-in sensing camera system
JP7402153B2 (ja) 車両用クリーナシステムおよび車両システム
JP7182053B2 (ja) 車両用洗浄システム
JP7236800B2 (ja) 車両洗浄システム
JP5040895B2 (ja) 視界状況判定装置、視界状況判定装置用プログラム及び視界状況判定方法
JP6992706B2 (ja) 車載センサカバーの洗浄装置
WO2022209614A1 (ja) クリーナシステム、プログラム、クリーナ制御方法、及び車両
JP2020078998A (ja) 車両用クリーナシステム
JP2023157297A (ja) 車載センサー用洗浄システム
CN117203102A (zh) 清洁器***、程序、清洁器控制方法以及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558886

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18888896

Country of ref document: EP

Kind code of ref document: A1