WO2019114745A1 - 一种农业活动区流域水资源循环利用污染物控制方法与装置 - Google Patents

一种农业活动区流域水资源循环利用污染物控制方法与装置 Download PDF

Info

Publication number
WO2019114745A1
WO2019114745A1 PCT/CN2018/120543 CN2018120543W WO2019114745A1 WO 2019114745 A1 WO2019114745 A1 WO 2019114745A1 CN 2018120543 W CN2018120543 W CN 2018120543W WO 2019114745 A1 WO2019114745 A1 WO 2019114745A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
water
layer
tank
aeration tank
Prior art date
Application number
PCT/CN2018/120543
Other languages
English (en)
French (fr)
Inventor
王雷
席北斗
王金生
檀文柄
刘慧�
李彤彤
吕宁磬
王杨杨
张亚丽
吴锋
张倩
Original Assignee
中国环境科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国环境科学研究院 filed Critical 中国环境科学研究院
Priority to US16/770,800 priority Critical patent/US11261115B2/en
Publication of WO2019114745A1 publication Critical patent/WO2019114745A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/04Surfactants, used as part of a formulation or alone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • C02F3/046Soil filtration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • C02F3/1284Mixing devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2813Anaerobic digestion processes using anaerobic contact processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the field of water resource recycling pollutant control, and particularly relates to a method and device for controlling water resource recycling pollutants in an agricultural activity area.
  • the basin is the microcosm of the Earth system and the basic unit of the natural water cycle.
  • the watershed is a water circulation unit consisting of a water-producing interval and a catchment channel with a self-organizing structure; ecologically, the watershed constitutes the basic spatial ecological unit of the earth's terrestrial ecosystem; from the socio-economic From the perspective of economic development in the basin as a unit, it is not only the development model of human ancient civilization, but also one of the main modes of contemporary economic development.
  • the inventors conducted intensive research to provide a method and a device for controlling heavy metal pollutants in water resources recycling in an agricultural activity area, and physically removing heavy metals, nitrogen, phosphorus, organic matter and suspended solids in waters of a river basin. Or biodegradation, ensuring the safety of irrigation water, thereby completing the present invention.
  • a method for controlling water resource recycling pollutants in a watershed of an agricultural activity area comprises constructing a constructed wetland at a set distance of the bank revetment, introducing the water into the constructed wetland, and passing the plants and microorganisms in the constructed wetland.
  • the three physical, chemical, and biological synergistic effects of the solid substrate adsorb and degrade the pollutants, and transport the treated water to the agricultural activity area;
  • four layers of filler are provided from the top to the bottom in the constructed wetland:
  • the first layer of filler is a mixed filler of soil and functional biochar, adsorbing heavy metals and degrading organic matter;
  • the second layer of filler is a mixed filler of soil, natural zeolite and limestone, and the heavy metal is adsorbed and fixed;
  • the third layer of filler is a mixed filler of fly ash molecular sieve, Floris diatomaceous earth and biochar, adsorbing heavy metal adsorption, preferably by releasing phosphorus accumulating bacteria in the region to reduce the total phosphorus amount in the water to be purified;
  • the fourth layer of filler is a mixed filler of cobblestone and biochar for heavy metal adsorption, preferably by constructing an anaerobic environment to carry out anaerobic life activities of the polyphosphate bacteria in the region (for example, decomposing the polyphosphate in the body under anaerobic conditions) , sustain life activities).
  • a pollutant control device for recycling water resources in a watershed of an agricultural activity area wherein the device comprises a sequentially connected acidification tank 1, an aeration tank 2, and a set distance at a bank protection bank of an agricultural activity area. Constructed wetland 3,
  • the acidification tank 1 pulverizes and acidifies the duckweed and the algae in the watershed, and transfers the supernatant to the aeration tank 2,
  • the aeration tank 2 receives the supernatant of the acidification tank 1, decomposes the organic matter in the supernatant, and transmits the degraded supernatant to the constructed wetland 3 to provide a carbon source for the microorganisms in the constructed wetland 3;
  • the constructed wetland 3 is a set depth purification tank, in which the water in the basin and the supernatant in the aeration tank 2 are introduced, so that the water to be purified enters one or more layers of fillers laid therein, and the water in the basin is polluted. Degradation and removal.
  • the constructed wetland is laid for a multi-layered filler, and the filler type, the dosage ratio, the particle size and the filling height in each layer of the filler are specifically selected, and the heavy metal adsorption can be effectively realized in the constructed wetland. And dephosphorization and denitrification.
  • an acidification tank and an aeration tank are also provided to provide nutrients (mainly carbon sources) to the microorganisms in the constructed wetland, which promotes microbial reproduction and facilitates dephosphorization and denitrification of the microorganisms in the constructed wetland.
  • the denitrifying bacteria are inoculated in the river channel, and the addition of denitrifying bacteria, especially aerobic denitrifying bacteria, will inevitably further purify the treated water, and at the same time aerobic denitrifying bacteria and constructed wetlands are put into operation.
  • the anaerobic denitrifying bacteria act synergistically to promote the purification of water.
  • FIG. 1 is a schematic view showing the structure of a water resource recycling pollutant control device for an agricultural activity area in a preferred embodiment of the present invention.
  • the object of the present invention is to provide a method for controlling the recycling of water resources in a watershed of an agricultural activity area, so as to effectively control the content of pollutants such as heavy metals in the water in the watershed introduced into the agricultural activity area, as shown in FIG.
  • the method comprises constructing a multi-media constructed wetland at a drainage bank of 4 to 10 meters, introducing the water of the basin into the constructed wetland, and removing and degrading the pollutants by the artificial wetland, and then transporting the treated water to the agricultural activity. In the district.
  • the constructed wetland is used for heavy metal fixation, filtration of suspended matter, organic matter degradation, denitrification and dephosphorization, which is a set depth purification tank in which a watershed to be purified is introduced. Water, the water in the basin to be purified enters one or more layers of fillers laid in the constructed wetland to achieve degradation or removal of the pollutants.
  • each layer of filler may be selected from the group consisting of soil, biochar, functional biochar, ore particles such as gravel, natural zeolite.
  • soil biochar, functional biochar, ore particles such as gravel, natural zeolite.
  • the constructed wetland is provided with four layers of filler from top to bottom:
  • the first layer of filler performs heavy metal adsorption and degradation of organic matter
  • the second layer of filler is subjected to heavy metal adsorption and fixation
  • the third layer of filler is subjected to heavy metal adsorption and reduces the amount of total phosphorus in the water to be purified by the phosphorus-concentrating ability in the region by the phosphorus-concentrating bacteria;
  • the fourth layer of filler is adsorbed by heavy metals and dephosphorization is carried out in this area by constructing an anaerobic environment to promote the ability of phosphorus accumulation in the third layer of filler region, and the water to be purified is lowered by placing anaerobic denitrifying bacteria The nitrogen content in the water.
  • the first layer of filler is laid at 0-500 cm, and the first layer of filler is a mixed filler of soil and functional biochar, and the mixing ratio is 3: (6-8), preferably It is 3:7.
  • biochar is a high carbon content material obtained by high temperature and deoiling of biomass under anoxic conditions.
  • Functional biochar is biochar loaded with transition metals.
  • Functional biochar has the following characteristics of biochar: (1) microscopic structure, porous characteristics, and biochar phase has controllable porosity compared to other materials, ie microporosity ( ⁇ 0.9nm), small pores ( ⁇ 2 nm) and large pores (>50 nm).
  • the macropores can ensure the aeration and water retention capacity of the soil used together with it, and also provide a place for microorganisms to survive and reproduce, thereby increasing the activity and reproduction speed of microorganisms; micro and small pores affect the adsorption and transfer of molecules by biochar
  • the pore structure of biochar can reduce the penetration speed of water, enhance the adsorption capacity of soil for nutrient elements with strong mobility and easy leaching, and thus its porous structure is beneficial to the growth of plants on the first layer of filler;
  • biochar determines that it has a large surface area, and can adsorb a large amount of organic matter in the water in the region, which is beneficial to the degradation of the organic matter after adsorption;
  • the surface of the biochar has a carboxyl group, a phenolic hydroxyl group, and a carbonyl oxygen-containing functional group.
  • the surface negative charge generated by the above functional group makes the biochar have a high cation exchange amount, and can effectively adsorb heavy metal ions in the water of the watershed.
  • biochar in addition to the above-mentioned characteristics common to biochar, functional biochar can be adsorbed by the photocatalysis of transition metals in the presence of oxygen, because it is loaded with transition metals (such as nickel, cobalt, iron). Oxidation of water molecules or hydroxides on the surface of functional biochar to produce active oxygen, such as hydroxyl radicals OH, to degrade organic pollutants, desulfurize (S), dechlorinate (Cl), reduce the toxicity of organic pollutants And odor.
  • transition metals such as nickel, cobalt, iron
  • the functional layer of biochar is mainly used, and the soil is added to the soil to facilitate the planting of the plant on the first layer of filler. It has been found through experiments that when soil and functional biochar are mixed at 3:(6-8), due to the fixation of activated carbon to the soil, good growth of plants can be achieved, and functional biochar-based fillers can adsorb a large amount of organic matter. By photocatalytic action of transition metal ions, the degradation of organic matter can be effectively achieved. If the ratio of soil to functional biochar is less than 3:8, the proportion of soil is reduced, and the plant growth is slow due to lack of necessary nutrients; if the ratio of soil and functional biochar is higher than 3:6, the photocatalytic effect is reduced. The degradation efficiency of organic matter is reduced.
  • the first layer of filler in particular the functional biochar, has a particle size of from 0.10 to 0.30 cm, within which the functional biochar supports the soil to facilitate air entry into the filler layer.
  • the plant roots are in effective contact with the air, which facilitates the growth of aquatic plants grown on the first layer of fillers; the functional biochar located in the lower part of the water body is photocatalyzed in the presence of oxygen to achieve effective degradation.
  • the functional biochar has a particle size of less than 0.10 cm, it is unfavorable for air to enter the filler layer, which is detrimental to plant growth and degradation of organic pollutants due to lack of oxygen; if the particle size of functional biochar is greater than 0.30 cm, particles of large particle size Due to the small surface area, photocatalytic efficiency is disadvantageous.
  • the first layer of filler is planted with aquatic plants, preferably reed and windmill grass.
  • Reed and windmill grass can grow normally in eutrophic water, showing good water purification effect, which can effectively reduce total nitrogen, total phosphorus, and chemical oxygen demand (COD) in water.
  • COD chemical oxygen demand
  • reeds and windmills exhibit extremely high enrichment effects on heavy metals. Therefore, the use of these two aquatic plants for planting is an effective ecological method for reducing heavy metals.
  • the functional biochar can be obtained by carbonizing, activating degreasing, reducing, and drying the aquatic plants grown in the constructed wetland.
  • plants continuously absorb heavy metals into the body, and the plant biomass that absorbs heavy metals is burned into activated carbon.
  • the heavy metals are not bonded to the carbon structure, but are embedded in the plant carbon fiber.
  • the joint structure is incomparably stable, and the heavy metal in the biochar The load is much higher than the existing load mode, with higher capacitance and photocatalytic ability.
  • the wetland aquatic plant growth process is added with one or a combination of rhamnolipid or polyaspartic acid, preferably in combination with rhamnolipid and aspartic acid, to promote heavy metals in the plant. Enrichment allows the plant to reach the highest concentration of heavy metals in the plant.
  • Rhamnolipid and aspartic acid have good biocompatibility and biodegradability.
  • Rhamnolipid is a water-soluble biosurfactant, which can promote the dissolution of heavy metals adsorbed by soil through emulsification and solubilization.
  • the concentration of the rhamnolipid added in the water to be treated is 1 to 20 mg/L, and the concentration of the polyaspartic acid in the water to be treated is 1 to 25 mg/L.
  • the second layer of filler is laid at 500-1000 cm, and the second layer of filler is mixed filler of soil, natural zeolite and limestone, and the mixing ratio is 1: (2 ⁇ 3): (0.5 ⁇ 1), preferably 1:2:0.5.
  • Zeolite is a general term for aqueous porous aluminosilicates, and its crystal structure is mainly composed of a (SiO) tetrahedron.
  • Al 3+ and Si 4+ together form the overall framework of the zeolite molecule as a framework ion and an oxygen atom.
  • Part of Si 4+ is Al 3+ substituted, resulting in excess negative charge, and a certain pore size cavity and pore in the zeolite framework. It has the properties of adsorption and ion exchange, and its adsorption of ammonia nitrogen and adsorption of heavy metals have greater advantages than other ore raw materials.
  • Limestone also has more pore structure, so it can effectively adsorb heavy metals.
  • limestone can effectively regulate the acidity and alkalinity of water bodies, and promote the growth of plants in the upper layer and the growth of microorganisms in water.
  • Important role polyphosphate bacteria mostly multiply at pH 5 ⁇ pH 9, nitrifying bacteria and denitrifying bacteria mostly breed at pH 6.0 ⁇ pH 8.5).
  • limestone has a strong absorption of fluoride ions, effectively reducing the fluorine content in the water.
  • the mixing ratio of soil, natural zeolite and limestone in the second layer of filler is 1: (2 ⁇ 3): (0.5-1), in which most heavy metals can be realized.
  • Adsorption fixation and pH adjustment of water bodies If the proportion of soil increases, the adsorption of heavy metals is weaker than that of natural zeolite and limestone, which reduces the adsorption capacity of heavy metals; on the contrary, it may affect the nutrient reserve of plant growth. If the natural zeolite is increased, the adsorption of heavy metals is enhanced, and the corresponding amount of soil or limestone is reduced, which also poses a threat to plant growth or water pH regulation. Similarly, the increase of the specific gravity of limestone is beneficial to the regulation of water pH, but the efficiency of other components is reduced accordingly. Conversely, the regulation of pH in water can not be carried out quickly and effectively, thus affecting the functional activities of microorganisms.
  • the particle size of the filler of the second layer is from 0.08 to 0.1 cm, which is equal to or lower than the particle size of the functional biochar in the first layer of filler, which is comparable to or higher than the particle size of the third layer of filler.
  • the choice of the particle size range takes into account the coordination of both gas flow and total metal adsorption; when the particle size is below 0.08 cm, although the adsorption of heavy metals is promoted, the air flow is reduced due to the increase of the bulk density, which is not conducive to the third.
  • the phosphorus-concentrating process of the polyphosphate bacteria placed in the layer filling area when the particle diameter is higher than 0.1 cm, the air circulation is promoted, but the corresponding heavy metal adsorption capacity is significantly lower than 0.08 cm.
  • a third layer of filler is laid at 1000-1500 cm, and the third layer of filler is a mixed filler of fly ash molecular sieve, Floris diatomaceous earth and biochar, and the mixing ratio is 1: (3 to 4): (1 to 1.5), preferably 1:3:1.
  • three kinds of porous fillers such as fly ash molecular sieve, Floris diatomaceous earth and biochar, are used for heavy metal adsorption in the deep layer of the constructed wetland.
  • the common feature of the three is that the porosity is high, which is convenient for the growth of microorganisms.
  • fly ash as molecular sieve is based on the main component of fly ash and the main components of molecular sieve, and fly ash is currently treated as waste, because it contains heavy metal ions such as Cr, Hg, As and Pb, to air The water source, the soil, etc. all cause pollution.
  • the cation exchange property and the pore structure can realize the adsorption of heavy metals, and the waste gas pollution source can be effectively utilized.
  • Biochar also has excellent heavy metal adsorption capacity due to its large surface area.
  • Flory diatomaceous earth has higher pore volume, larger specific surface area, and stronger adsorption of heavy metals and organic pollutants than ordinary diatomaceous earth.
  • Flory diatomaceous earth has a deep effect. In deep filtration, the separation process only occurs in the "inside" of the medium, and the relatively small impurity particles that partially pass through the surface of the filter cake are micropores that are bent inside the diatomaceous earth. The structure and the finer pores inside the filter cake are retained. When the particles hit the wall of the channel, it is possible to escape from the liquid flow; this property of Flory diatomaceous earth is beneficial to the bacterial microorganisms in this area. Time is retained to facilitate the release of microorganisms.
  • fly ash molecular sieve, Floris diatomite and biochar have different adsorption advantages for different heavy metals
  • the mixing ratio of fly ash molecular sieve, Flory diatomite and biochar is set to 1: (3 ⁇ 4): (1 to 1.5), while increasing the adsorption of each heavy metal ion, microbial administration can be performed.
  • the particle size of the fly ash molecular sieve, Floris diatomaceous earth, and biochar is 0.05-0.08 cm. Due to the high porosity of the above three fillers, in the small particle size range, the adsorption of heavy metal ions is facilitated, and the growth of microorganisms is facilitated.
  • the phosphorus-concentrating bacteria are disposed in the third layer of the filler region to reduce the total phosphorus amount in the water to be purified, and the phosphorus-concentrating bacteria are selected from the group consisting of Acinetobacter and gas bills.
  • Aeromonas, pseudomonas, preferably Pseudomonas pseudomonas alcaligenes are selected from the group consisting of Aeromonas, pseudomonas, preferably Pseudomonas pseudomonas alcaligenes.
  • polyphosphate bacteria Under aerobic conditions, polyphosphate bacteria oxidize ⁇ -hydroxybutyric acid (PHB) stored in cells with free oxygen as an electron acceptor, and use the energy generated by the reaction to excessively take up phosphate from the water to synthesize high-energy substance adenosine triphosphate (ATP). ), some of which supply bacterial synthesis and life-sustaining activities, and some of which synthesize polyphosphates to accumulate in bacterial cells.
  • PHB ⁇ -hydroxybutyric acid
  • ATP adenosine triphosphate
  • polyphosphate bacteria produce ATP while decomposing polyphosphate in the body, and phosphorus released by polyphosphate bacteria under anaerobic conditions has a higher aerobic phosphorus uptake than anaerobic phosphorus release, so The release of bacteria can effectively control the phosphorus content in the water in the basin.
  • a fourth layer of filler is laid at 1500-2000 cm, and the fourth layer of filler is a mixed filler of cobblestone and biochar, and the mixing ratio is 1: (1 to 2), preferably 1: 1.
  • Cobblestones also have the ability to adsorb heavy metals, and cooperate with biochar to synergistically adsorb heavy metals.
  • the filler of the fourth layer has a particle size of from 0.30 to 0.50 cm, and the larger particle size filler has a larger gap between the fillers to facilitate the circulation of the microorganisms to be placed. Due to the small particle size of the third layer of filler, the microorganisms are restricted to enter the fourth layer of filler to a certain extent. If the particle size of the fourth layer of filler is also reduced, the polyphosphate bacteria cannot effectively travel to and from the third and fourth layers of filler. It is not conducive to the progress of phosphorus-release phosphorus.
  • the fourth layer of filler is an anoxic or anaerobic environment, and an anaerobic denitrifying bacterium, preferably a heterotrophic anaerobic denitrifying bacterium, is added to the fourth layer of filler.
  • Denitrifying bacteria can gradually convert NO 3 - to NO 2 - , NO, N 2 O and N 2 , and detach from the system, thereby achieving the purpose of denitrification. Certain nitrifying bacteria and denitrifying bacteria are present in the water of the basin, and the addition of a set amount of denitrifying bacteria in the present invention can further promote the efficiency of nitrogen removal in the water in the basin.
  • the fourth layer of filler is further doped with a polyphosphate bacteria, and the phosphorus accumulating bacteria release phosphorus under anaerobic conditions, and the phosphorus release under the condition can promote the third layer of the filler region. Better polyphosphate under aerobic conditions.
  • a polar high polymer polyaniline film is filled between the third layer of filler and the fourth layer of filler.
  • the polar polymer polyaniline membrane has the unique function of water-tightness and gas-tightness, which enables water and microbial flow between the third layer filler and the fourth layer filler, but prevents the upper oxygen-containing gas from entering the fourth layer filler, which ensures Life activities of anaerobic denitrifying bacteria and polyphosphate bacteria in this interval.
  • Plant growth requires proper levels of phosphate and nitrogen fertilizers.
  • Phosphorus and nitrogen fertilizers are absorbed by plants in the form of acid ions.
  • the fertilizer applied to the soil every year is only partially absorbed by the seasonal crops, and the rest is fixed by the soil.
  • the water in the basin may be rich in nitrogen and phosphorus.
  • the two are in the form of organic phosphorus, organic nitrogen or inorganic phosphorus and inorganic nitrogen.
  • the organic phosphorus and organic nitrogen are decomposed into inorganic phosphorus, inorganic nitrogen and short carbon chains in the constructed wetland.
  • the inorganic phosphorus and inorganic nitrogen are also present in the water body in the form of acid ions.
  • the inventors have conducted extensive research to determine the aerobic zone and the anaerobic zone in the constructed wetland, and effectively solve the problem of excess nitrogen and phosphorus by putting the polyphosphate bacteria and denitrifying bacteria.
  • the first layer filler, the second layer filler, the third layer filler and the fourth layer filler have a thickness of 500 cm and a total filler thickness of 2000 cm; which is a preferred thickness of the filler layer to effectively perform the functions of the layers.
  • the first layer of filler has a thickness of 100 to 700 cm
  • the second layer of filler has a thickness of 300 to 700 cm
  • the third layer of filler has a thickness of 200 to 600 cm
  • the fourth layer of filler has a thickness of 100 to 600 cm.
  • microorganisms require a carbon source, especially the short-chain carbon source is more convenient for the absorption and utilization of microorganisms.
  • the water content in the water in the basin is especially low in short-chain carbon, so that the growth and reproduction of microorganisms such as artificial wetlands are inevitably affected.
  • the acidification tank and the aeration tank are further increased to provide the microorganism with the necessary nutrients.
  • the acidification tank and the aeration tank are located 4 to 10 meters away from the bank protection bank, and the acidification tank, the aeration tank and the artificial wetland are connected in turn.
  • duckweed or algae in the salvage watershed are acidified and digested in the acidification tank, and the supernatant of the acidification tank is input into the aeration tank for further degradation of the long carbon chain organic matter, and the aeration tank effluent and the basin water are mixed into the multi-media.
  • the aeration tank effluent and the basin water are mixed into the multi-media.
  • the acidification tank is a sandwiched vessel, and a heat transfer medium is passed through the interlayer, and the temperature of the heat transfer medium is measured by a temperature probe in the temperature control device to control the temperature in the acidification tank.
  • the bottom of the acidification tank is provided with a sludge hole. Since duckweed or algae in the basin is used as a raw material for the growth of nutrients in the water, the sludge in the watershed is inevitably brought into the acidification tank, and the arrangement of the sludge hole is arranged. It facilitates the discharge of sludge and reduces the ineffective occupation of the space inside the acidification tank.
  • the acidification tank is further equipped with a mixer to pulverize duckweed or algae to accelerate the acidification decomposition process.
  • the COD of the supernatant of the acidification tank is controlled to be higher than 200 mg/L. At this time, it is considered that the degree of decomposition in the acidification tank is good, and it is determined that a high content of organic matter is obtained.
  • the aeration tank receives the supernatant of the acidification tank, decomposes the long carbon chain organic matter in the supernatant liquid, and obtains a short carbon chain substance, thereby facilitating the microorganisms in the artificial wetland to obtain the carbon source.
  • an aeration tray is placed in the lower portion of the aeration tank, and an oxygen-containing fluid is introduced into the aeration tank.
  • the oxygen-containing fluid that is introduced is nano-bubble water.
  • the nanobubble water is water or an aqueous solution containing fine bubbles of a size of 100 to 500 nm, and the dissolved oxygen amount thereof is 10 to 25 mg/L.
  • the bubble in the nanobubble water and the large specific surface area Due to the small size of the bubble in the nanobubble water and the large specific surface area, it can exhibit characteristics different from ordinary bubbles. For example, due to the small volume, the residence time is long in the device, and after slowly rising, the zeta potential increases and the specific surface area increases (ordinary During the rising of the bubble, the volume increases and the specific surface area decreases; while the nano-bubble is affected by the surface tension, the internal gas generates a self-pressurizing effect, and during the ascending process, the specific surface area increases), and the collapse generates a reactive oxygen radical, such as Hydroxyl radicals, thereby efficiently degrading or mineralizing long carbon chain organics in water; and the high temperature generated by the collapse is also beneficial to the degradation of long carbon chain organics.
  • a reactive oxygen radical such as Hydroxyl radicals
  • the aperture on the aeration disk is a nano-aperture, that is, the aeration disk is a nano-aeration disk, and the arrangement of the nano-aeration disk can further ensure that the oxygen entering the aeration tank is a nano-sized bubble.
  • the bottom of the aeration tank is provided with a secondary sludge drain hole to further remove sludge and algae and duckweed residues from the water in the basin to avoid blocking the pipeline when transported to the constructed wetland, or blocking the exposure.
  • the hole of the aeration disk in the gas pool is provided with a secondary sludge drain hole to further remove sludge and algae and duckweed residues from the water in the basin to avoid blocking the pipeline when transported to the constructed wetland, or blocking the exposure.
  • the aeration disk is sequentially connected to the flow meter and the nano-aerator through a pipeline, the nano-aerator provides an oxygen-containing fluid to the aeration disk, and the flow meter can effectively control the aeration.
  • the amount of oxygen in the pool Based on the amount of liquid in the nano-powder gas pool, the intake air volume is maintained between 0.5-0.7 mg/L, in which the effective decomposition of the long carbon chain organic matter can be achieved, so that the average molecular weight of the organic matter in the effluent of the aeration tank is lower than 308.24 Da. , preferably less than 254.50 Da.
  • the intake air amount is less than 0.5mg/L, the degradation efficiency of long-chain carbon organic compounds is low, and the average molecular weight of organic matter in the effluent of the aeration tank is generally higher than 308.24Da, which is inconvenient for microbial absorption and utilization; and the intake air amount is higher than 0.7mg/ L, the number of bubbles increases, the collision frequency increases, the bubbles rupture more at the bottom of the aeration tank, and the degradation of the upper part is reduced, which also leads to a decrease in degradation efficiency.
  • microorganisms are added to the aeration tank, the microorganism is Acinetobacter junii, and Acinetobacter junii is Acinetobacter junii.
  • Acinetobacter junii can use long carbon chain organics as a carbon source for growth, so its addition can promote the degradation of long carbon chain organic matter.
  • Acinetobacter junii is a polyphosphate mushroom that can denitrify phosphorus by using oxygen, nitrite or nitrate as electron acceptors. Therefore, after using Acinetobacter junii to degrade long carbon chain organic matter in an aeration tank, The short-chain hydrocarbon organic matter obtained by degradation is input into the artificial wetland, which is beneficial to the dephosphorization and denitrification of the water in the artificial wetland.
  • the arrangement of the acidification tank, the aeration tank and the constructed wetland is removed, and the water in the basin is also pretreated, and the pretreatment is to inoculate denitrifying bacteria into the river channel, preferably It is a solid aerobic denitrifying bacteria such as Alicaligenes faecalis or Thiosphaera pantotropha.
  • the concentration of solid denitrifying bacteria in the water in the river basin is 5-10 billion pieces/g, and it can be inoculated only once when the water is irrigated by the river basin.
  • denitrifying bacteria especially aerobic denitrifying bacteria, will inevitably further purify the treated water, and the aerobic denitrifying bacteria synergize with the anaerobic denitrifying bacteria put into the constructed wetlands to promote the purification of the water.
  • Another object of the present invention is to provide a heavy metal control device for recycling water resources in a watershed of an agricultural activity area, which comprises an acidification tank 1 and an aeration tank 2 which are connected in the 4 to 10 meters of the bank of the agricultural activity area. And the artificial wetland 3, the acidification tank 1 smashes and acidifies and digests the duckweed and the algae in the watershed, and transports the supernatant to the aeration tank 2,
  • the aeration tank 2 receives the supernatant of the acidification tank 1, degrades the long carbon chain organic matter in the supernatant liquid, and transmits the degraded supernatant liquid to the artificial wetland 3 to provide a carbon source for the microorganisms in the artificial wetland 3;
  • the constructed wetland 3 is a set depth purification tank, in which the water in the basin water and the aeration tank 2 is introduced, so that the water body to be purified enters one or more layers of the filler laid in the artificial wetland 3, and the water is polluted to the water in the basin.
  • Degradation or removal such as heavy metal fixation, suspension filtration, denitrification and dephosphorization.
  • the acidification tank 1 is a sandwiched vessel, and a heat transfer medium is passed through the interlayer, and the temperature of the heat transfer medium is measured by the temperature sensing probe 5 in the temperature control device 4 to control the acidification tank 1 temperature.
  • the sludge hole 7 is arranged at the bottom of the acidification tank 1, and the sludge in the watershed is inevitably brought into the acidification tank 1 due to the use of duckweed or algae in the basin as a raw material for the growth of nutrients in the water, and the sludge hole is discharged.
  • the setting of 7 facilitates the discharge of sludge and reduces the inefficient occupation of the space inside the acidification tank 1.
  • the acidification tank 1 is further provided with a mixer 8 to allow the duckweed or algae to be pulverized to accelerate the acidification decomposition process.
  • an aeration tray 10 is disposed in the lower portion of the aeration tank 2, and an oxygen-containing fluid is introduced into the aeration tank 2.
  • the oxygen-containing fluid that is introduced is nano-bubble water.
  • the nanobubble water is water or an aqueous solution containing fine bubbles of a size of 100 to 500 nm, and the dissolved oxygen amount thereof is 10 to 25 mg/L.
  • the aperture on the aeration disk 10 is a nano-aperture, that is, the aeration disk 10 is a nano-aeration disk, and the arrangement of the nano-aeration disk can further ensure that the oxygen entering the aeration tank is nano-sized. bubble.
  • the bottom of the aeration tank 2 is provided with a secondary sludge discharge hole 9 to further remove the sludge brought by the water in the drainage basin, to avoid blocking the pipeline when transporting to the artificial wetland, or to block the aeration in the aeration tank 2
  • the hole of the disk 10 is provided with a secondary sludge discharge hole 9 to further remove the sludge brought by the water in the drainage basin, to avoid blocking the pipeline when transporting to the artificial wetland, or to block the aeration in the aeration tank 2 The hole of the disk 10.
  • the aeration disk 10 is sequentially connected to the flow meter 11 and the nano-aerator 12 through a pipeline, the nano-aerator 12 supplies an oxygen-containing fluid to the aeration disk, and the flow meter 11 can Effectively control the amount of oxygen that is introduced into the aeration tank 2.
  • microorganisms are added to the aeration tank 2, the microorganism is Acinetobacter junii, and Acinetobacter junii is Acinetobacter junii.
  • Acinetobacter junii can use long carbon chain organics as a carbon source for growth, so its addition can promote the degradation of long carbon chain organics.
  • the first layer of filler 13 performs heavy metal adsorption and organic matter degradation
  • the second layer of filler 14 is subjected to a large amount of heavy metal adsorption and fixation
  • the third layer of filler 15 is subjected to heavy metal adsorption and reduces the amount of total phosphorus in the water to be purified by the phosphorus-concentrating ability of the phosphorus-concentrating bacteria in the region;
  • the fourth layer of filler 16 is subjected to heavy metal adsorption, and dephosphorization is carried out in this region by constructing an anaerobic environment to promote the ability of phosphorus accumulation in the region of the third layer of filler 15 and to reduce by anaerobic denitrifying bacteria.
  • the nitrogen content of the water to be purified is not limited to heavy metal adsorption, and dephosphorization is carried out in this region by constructing an anaerobic environment to promote the ability of phosphorus accumulation in the region of the third layer of filler 15 and to reduce by anaerobic denitrifying bacteria.
  • the first layer of filler 13 is a mixed filler of soil and functional biochar, and the mixing ratio is 3: (6-8), preferably 3:7, the particle diameter of the filler is 0.10-0.30 cm, and the filler thickness is 100. ⁇ 700cm.
  • the second layer of filler 14 is a mixed filler of soil, natural zeolite and limestone in a mixing ratio of 1: (2 to 3): (0.5 to 1), preferably 1: 2: 0.5, and the particle diameter of the filler is 0.08 to 0.1 cm.
  • the filler has a thickness of 300 to 700 cm.
  • the third layer of filler 15 is a mixed filler of fly ash molecular sieve, Floris diatomaceous earth and biochar, and the mixing ratio is 1: (3 to 4): (1 to 1.5), preferably 1:3:1, filler.
  • the particle size is 0.05-0.08 cm, and the filler thickness is 200-600 cm.
  • the fourth layer filler 16 is a mixed filler of cobblestone and biochar, and the mixing ratio is 1: (1 to 2), preferably 1:1, the particle diameter of the filler is 0.30-0.50 cm, and the filler thickness is 100-600 cm.
  • the ratio of the different materials in each of the filler layers is a weight ratio.
  • aquatic plants 6 are planted within the constructed wetland 3, said aquatic plants being reeds and windmill grasses.
  • the third layer of filler 15 and the fourth layer of filler 16 are filled with a polar polymer polyaniline film, and the third layer of filler 15 is added with a polyphosphate solution in the fourth layer of filler. Denitrifying bacteria and polyphosphate bacteria were added to the 16 areas.
  • the aquatic plant reed and the windmill grass are planted in the constructed wetland, they have an excellent enrichment effect on heavy metals, and thus the preparation of the functional biochar can be carried out by the aquatic plant.
  • the preparation of the functional biochar comprises the following steps:
  • Step 1) crushing the plant body and carbonizing to obtain activated carbon
  • Step 2) the activated carbon is activated to obtain activated carbon after activation
  • Step 3 the activated carbon is subjected to reduction treatment to obtain functional biochar.
  • step 1) the whole plant body is broken to a length of 3-5 mm as needed.
  • the heating vessel such as a tube muffle furnace
  • the heating vessel is filled with argon gas to make it an inert environment.
  • the broken plant particles are placed in a tubular muffle furnace, maintaining 1200 ° C.
  • the biomass was carbonized at 120 min and reduced from 1200 ° C to 20 ° C in 200 min.
  • step 2) the activated carbon is washed with distilled water until the water is cleaned to the cleaning standard. Adding 30-50% by weight of zinc chloride to the washed activated carbon to the liquid level higher than the activated carbon, stirring, microwave irradiation for a set time, soaking at 25 ° C overnight, that is, activation. The activated carbon is washed to neutrality, dried, and ready for use.
  • the activation causes the bio-oil produced by carbonization in step 1) to be separated from the internal pores of the activated carbon, preventing the bio-oil from clogging the internal pores of the activated carbon, and reducing the adsorption and photocatalytic effects.
  • 300W-700W microwave radiation is used for 20-30 minutes.
  • the activated carbon is dried, and the sodium borohydride solution is added dropwise to reduce the metal ions in the activated carbon to a low-valent state, such as reducing the ferrous ions to zero-valent iron.
  • the dropwise addition is simultaneously shaken with a shaker at 120 rpm to promote the progress of the activation reaction.
  • the concentration of the sodium borohydride solution is from 10 mmol/L to 30 mmol/L.
  • the activated carbon After washing the activated carbon with distilled water, it is dried. After cooling to room temperature, the activated carbon after reduction is filled, sealed and placed in an oven, heated at 180-680 ° C for 10 to 60 minutes, and cooled to room temperature.
  • Functional biochar also known as in situ self-reducing supported activated carbon.
  • plants continuously absorb heavy metals into the body, and the plant biomass that absorbs heavy metals is burned into activated carbon.
  • the heavy metals are not bonded to the carbon structure, but are embedded in the plant carbon fiber.
  • the joint structure is incomparably stable, and the heavy metal in the biochar
  • the load is far more than the existing load mode.
  • the surface ash tar is removed, the metal ions are exposed, and the sodium borohydride is reduced to become a heavy metal-loaded activated carbon, which not only has the activated carbon itself regulating urban hydraulic power and increasing the soil. Fertilizer efficiency, nutrient retention and improved microbial habitat performance, with capacitive and catalytic functions.
  • Example 1 Method for controlling water resources recycling pollutants in river basin
  • the acidification tank, the aeration tank and the multi-media constructed wetland are connected in sequence, and duckweed and algae salvaged in the water of the river are used, acidified and digested in the acidification tank after pulverization, and the supernatant of the acidification tank is input to the nano-exposure.
  • the dissolved oxygen in the nano-aeration tank is maintained at 4-6 mg/L, and the nano-aeration tank effluent and the basin water are mixed into the multi-media constructed wetland.
  • the first layer of filler at 0-500cm is a mixed filler of soil and functional biochar.
  • the mixing ratio is 3:7
  • the particle size of the filler is 0.10-0.30cm
  • the planting is aquatic.
  • the second layer of filler at 500-1000cm is mixed filler of soil, natural zeolite and limestone, the mixing ratio is 1:2:0.5, the particle size of the filler is 0.08-0.1cm;
  • the third layer is added at 1000-1500cm Phosphorus pseudomona alcaligenes, the third layer of filler is fly ash molecular sieve (Henan Mingze Environmental Technology Co., Ltd., 13X molecular sieve), Floris diatomaceous earth and biochar mixed filler, mixing ratio of 1:3:1, filler
  • the particle size is 0.05-0.08cm;
  • the fourth layer is added with anaerobic denitrifying bacteria and the polyphosphate bacteria pseudomona alcaligenes, and the fourth layer is mixed with pebbles and biochar, the mixing ratio is 1:1, the filler The particle size is 0.30-0.50cm; the polar polymer polyaniline film is filled between the third layer filler and the fourth layer filler (according to "Wang Hui. Electro
  • the pollutant control method for water resources recycling in the agricultural activity area is implemented, and the pollutants are controlled by the acidification tank, the aeration tank and the multi-media artificial wetland, as shown in Table 1 below.
  • Example Difference from Embodiment 1 (proportional order is the same as Embodiment 1)
  • Example 2 The first layer of filler is soil
  • Example 3 The proportion of filler in the first layer of filler is 1:1
  • Example 4 The first layer of filler has a particle size of 0.01 to 0.08 cm.
  • Example 5 The first layer of filler has a particle size of 5 to 30 mm.
  • Example 6 The second layer of filler is the original proportion of soil and limestone
  • Example 7 The second layer of filler is the original proportion of soil and natural zeolite
  • Example 8 The proportion of filler in the second layer of packing is 1:1:2
  • Example 9 The second layer of filler has a particle size of 0.01-0.05 cm
  • Example 10 The second layer of filler has a particle size of 1 to 10 mm.
  • Example 11 The third layer of filler is the original proportion of fly ash molecular sieve and biochar
  • the third layer of filler is the original proportion of fly ash molecular sieve and Flory diatomaceous earth
  • Example 13 The proportion of filler in the third layer of packing is 1:1:1
  • Example 14 The third layer of filler has a particle size of 0.005-0.03cm
  • Example 15 The fourth layer of filler is pebbles
  • Example 16 The fourth layer of filler has a particle size of 0.001 to 0.30 cm
  • Example 17 Phosphorus-free bacteria are not placed in the third and fourth layers of filler
  • Example 18 No anaerobic denitrifying bacteria are placed in the fourth layer of filler
  • the evaluation water was collected from the water in the river, and SnCl 4 , Zn(NO 3 ) 2 , biogas slurry, Na 3 PO 4 and NaNO 3 were added to the water so that the concentration of Sn in the water was 5.23 mg/L, and the concentration of Zn was 6.88 mg/ L, total P content is 3.36mg / L, total N content is 4.57mg / L, COD Cr is 124mg / L, pH is 7.28; treated water directly into the constructed wetland, the influent rate is 2.5L / Min, the water output rate was 2.5L/min, the treatment time was 12h, and the effluent water quality was measured after 12h.
  • the decrease of the proportion of functional biochar in the first layer of filler mainly affects the reduction of heavy metals and COD values; while the size of the filler becomes smaller, which is beneficial to the adsorption of heavy metals, which may affect the entry of air into the water and reduce the microbial desorption.
  • Phosphorus and denitrification capacity the size of the filler becomes larger, which promotes dephosphorization and denitrification of microorganisms, and decreases the content of phosphorus and nitrogen; however, it also has certain adverse effects on the adsorption of heavy metals.
  • the decrease of the proportion of natural zeolite mainly affects the adsorption and fixation of heavy metals, so that the content of heavy metals in the system is higher after treatment; the decrease of the proportion of limestone makes the pH adjustment in the system be affected, and the dephosphorization and denitrification efficiency of microorganisms Lowering, the total nitrogen and total phosphorus content in the water is higher; while the decrease of the particle size of the filler can significantly enhance the adsorption of heavy metals, but the regulation of COD and total nitrogen and total phosphorus is unfavorable due to the obstruction of gas circulation.
  • Flori diatomite is beneficial to the presence of microorganisms, and promotes dephosphorization and denitrification of microorganisms. With the decrease of the proportion, the dephosphorization and denitrification effect is reduced; and the biochar is excellent in adsorption performance. After removal, it has a certain influence on the level of heavy metals; and the decrease of the particle size of the filler can significantly enhance the adsorption of heavy metals.
  • activated carbon has higher heavy metal adsorption than pebbles. Therefore, replacing the activated carbon with pebbles will slightly increase the level of heavy metals.
  • the decrease of the particle size of the filler enhances the adsorption performance, but the accumulation is tight, which is not conducive to microorganisms. Dephosphorization and denitrification activities, so the total phosphorus and total nitrogen levels increased slightly with the decrease of the particle size of the fourth layer of filler.
  • the anaerobic denitrifying bacteria and the polyphosphate bacteria have the functions of denitrification and dephosphorization respectively. After adding the modified bacteria to the water, the total nitrogen and total phosphorus in the water body are obviously improved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

一种农业活动区流域水资源循环利用污染物控制方法,包括在流域护岸4~10米处建造的依次连接的酸化池(1)、曝气池(2)和多介质人工湿地(3),将流域水引入人工湿地(3)后,通过人工湿地(3)对重金属和有机污染物的吸附或降解后,将处理后的流域水输送至农业活动区中。还公开了一种农业活动区流域水资源循环利用污染物控制装置。

Description

一种农业活动区流域水资源循环利用污染物控制方法与装置 技术领域
本发明涉及水资源循环利用污染物控制领域,特别涉及一种农业活动区流域水资源循环利用污染物控制方法与装置。
背景技术
流域是地球***的缩微,是自然水循环的基本单元。就水文循环而言,流域是由一个具有自组织结构的产水区间和汇水通道构成的水循环单元;从生态上说,流域构成了地球陆地生态***运行的基本空间生态单元;从社会经济的角度,以流域为单元进行经济开发不仅是人类远古文明的发展模式,也仍然是当代经济发展主要模式之一。
近年来,我国的很多河流都面临着水污染问题,一些流域的污染状况触目惊心。水污染不仅导致流域生态***的健康每况愈下,流域的水生物种逐渐消失遁迹,而且已经严重影响到人类的健康,并引起公众的广泛关注和担忧。随着我国城镇化、工业化的快速推进,随之而产生的数量庞大的污水处理需求也将更加紧迫。
水污染不仅导致流域生态***的健康每况愈下,流域的水生物种逐渐消失遁迹,而且已经严重影响到人类的健康,引起公众的广泛关注和担忧。我国农田土壤重金属污染情况严重,约有1/5的耕地受到重金属的污染。由于土壤中的重金属难以降解,容易蓄积且毒性较大,不仅会严重影响作物生长,还可能随食物链进入人体,进而危害人体健康。因此,研究农田土壤重金属修复技术具有重要的现实意义。
我国部分地区如西北地区等农业活动区干旱缺水现象严重,为了保障农作物的正常生长,提高粮食产量,最佳的措施就是发展灌溉农业,一般采用流域水资源循环利用,将流域水引入农业活动区,农业活动区中的水回流至流域中。但是,流域水在循环利用前,需要考察其中污染物质对作物影响,通常恰当含量的氮磷等元素可作为营养物促进植物生长,但氮磷含量过多会造成农田板结,重金属由于严重的毒害作用需要更加严格进行控制,避免其在人体内富集,进而影响人体健康安全。
基于上述状况,亟需开发一种全面考虑流域水用于灌溉的、成本低且效果显著的农业活动区流域水资源循环利用污染物控制方法或装置,对预进入农业活动区的流域水污染物如重金属、氮磷、长碳链有机物、悬浮物含量进行防控,从根本上降低作物中重金属积累,维护农田良好状态,促进作物生长,维护农业的持续健康发展,进而保障人体健康安全。
发明内容
为了解决上述问题,本发明人进行了锐意研究,提供了一种农业活动区流域水资源循环利用重金属污染物控制方法与装置,对流域水中重金属、氮、磷、有机物、悬浮物进行物理脱除或生物降解,保障灌溉用水安全,从而完成本发明。
本发明的目的在于提供以下技术方案:
(1)一种农业活动区流域水资源循环利用污染物控制方法,其中,所述方法包括在流域护岸设定距离处建造人工湿地,将流域水引入人工湿地后,通过人工湿地中植物、微生物、固体基质的物理、化学、生物三种协同作用,对污染物进行吸附和降解,将处理后的流域水输送至农业活动区中;
优选地,人工湿地中由上至下铺设有四层填料:
第一层填料为土壤和功能型生物炭的混合填料,吸附重金属并对有机物进行降解;
第二层填料为土壤、天然沸石、石灰石的混合填料,对重金属进行吸附固定;
第三层填料为粉煤灰分子筛、弗洛里硅藻土和生物炭的混合填料,吸附重金属吸附,优选通过在此区域内投放聚磷菌以降低待净化流域水中总磷量;
第四层填料为鹅卵石、生物炭的混合填料,进行重金属吸附,优选通过构建厌氧环境使聚磷菌在此区域内进行厌氧性生命活动(如在厌氧性条件下分解体内聚磷酸盐,维持生命活动)。
(2)一种农业活动区流域水资源循环利用的污染物控制装置,其中,所述装置包括建造在农业活动区流域护岸的设定距离处的依次连接的酸化池1、曝气池2和人工湿地3,
酸化池1将打捞自流域中的浮萍、水藻进行粉碎和酸化消解,传输上清液至曝气池2中,
曝气池2接收酸化池1的上清液,对上清液中的有机物进行降解,并传输经降解处理后的上清液至人工湿地3,为人工湿地3中微生物提供碳源;
人工湿地3为设定深度的净化池,其中引有流域水和曝气池2中上清液,使待净化的水体进入铺设于其中的一层或多层填料,对流域水进行污染物的降解和脱除。
根据本发明提供的一种农业活动区流域水资源循环利用污染物控制方法与装置,具有以下有益效果:
(1)本发明中人工湿地为多层填料铺设而成,且对每层填料中的填料种类、用量配比、粒径大小和填充高度进行特定的选择,可在人工湿地中有效实现重金属吸附和脱磷脱氮。
(2)本发明中人工湿地中种植特定的水生植物,有利于重金属的富集,且得到的富集有重金属的水生植物可再利用,制备得到具有光催化效果的功能型生物炭。
(3)本发明中还设置了酸化池和曝气池以向人工湿地中微生物提供养分(主要为碳源),促进微生物繁衍,利于微生物在人工湿地中脱磷脱氮。
(4)本发明中在河道内接种反硝化细菌,反硝化细菌特别是好氧反硝化细菌的加入必然会对待处理的流域水起到进一步的净化作用,同时好氧反硝化细菌与人工湿地投入的厌氧反硝化细菌协同作用,促进水体的净化。
附图说明
图1示出本发明中一种优选实施方式的农业活动区流域水资源循环利用污染物控制装置结构示意图。
附图标号说明:
1-酸化池;
2-曝气池;
3-人工湿地;
4-温控装置;
5-感温探头;
6-水生植物
7-排泥孔;
8-搅拌机;
9-二次排泥孔;
10-曝气盘;
11-流量计;
12-纳米曝气机;
13-第一层填料;
14-第二层填料;
15-第三层填料;
16-第四层填料。
具体实施方式
下面通过具体实施方式对本发明进行详细说明,本发明的特点和优点将随着这些说明而变得更为清楚、明确。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
针对我国农业活动区存在的干旱缺水现象,提出了利用流域水进行灌溉的技术路线,然而流域水灌溉的现状为直接抽取未经预处理的流域水引入农业活动区,或者通过简单的过滤,除去明显杂质后引入农业活动区,这两种做法虽然成本低,引水量大,但无法对流域水中污染物如重金属、总磷、总氮或悬浮物等进行控制,以至于影响作 物生长和收成,更严重会导致作物中重金属超标,粮食无法使用,土壤板结,造成重大损失。
基于上述问题,本发明的目的在于,提供一种农业活动区流域水资源循环利用污染物控制方法,以有效控制引入农业活动区的流域水中的污染物如重金属等的含量,如图1所示,所述方法包括在流域护岸4~10米处建造多介质人工湿地,将流域水引入人工湿地后,通过人工湿地对污染物进行脱除和降解后,将处理后的流域水输送至农业活动区中。
在本发明的一种优选的实施方式中,所述人工湿地用于重金属固定、悬浮物的过滤、有机物降解、脱氮和脱磷,其为设定深度的净化池,其中引有待净化的流域水,使待净化的流域水进入铺设于人工湿地中的一层或多层填料,实现污染物的降解或脱除。
在本发明的一种优选的实施方式中,人工湿地中由上至下铺设有三层至六层填料,每层填料可选自土壤、生物炭、功能型生物炭、矿石颗粒如砾石、天然沸石、火山石、方解石、石灰石、鹅卵石等、硅藻土或弗洛里硅藻土中的一种或多种。
在本发明的一种优选的实施方式中,人工湿地由上至下铺设有四层填料:
第一层填料进行重金属吸附和有机物的降解;
第二层填料进行重金属吸附固定;
第三层填料进行重金属吸附并通过在此区域内投放聚磷菌以其聚磷能力降低待净化流域水中总磷量;
第四层填料进行重金属吸附并通过构建厌氧环境使得聚磷菌在此区域内脱磷,以促进在第三层填料区域内的聚磷能力,并通过投放厌氧反硝化细菌降低待净化流域水中的氮含量。
在本发明的一种优选的实施方式中,0-500cm处铺设有第一层填料,第一层填料为土壤和功能型生物炭的混合填料,混合比例为3:(6~8),优选为3:7。
其中,生物炭为在缺氧的条件下生物质经高温、脱油后得到的高碳含量的材料。功能型生物炭为负载有过渡金属的生物炭。
功能型生物炭具有生物炭的以下特点:(1)微观结构上,具有多孔性特征,且生物炭相较于其他材料具有可控的孔隙度即微孔隙(<0.9nm)、小孔隙(<2nm)和大孔隙(>50nm)。大孔隙可以保证与其配合使用的土壤的通气性和保水能力,同时也为微生物提供了生存和繁殖的场所,从而提高微生物的活性和繁衍速度;微、小孔隙影响生物炭对分子的吸附和转移,生物炭的孔隙结构能减小水分的渗透速度,增强了土壤对移动性很强和容易淋失的养分元素的吸附能力,因而其多孔结构利于第一层填料上植物的生长;
(2)生物炭的多孔性能决定其具有较大的表面积,对区域水中的有机物可进行大量吸附,利于对有机物的吸附后降解;
(3)生物炭表面具有羧基﹑酚羟基﹑羰基含氧官能团,上述官能团所产生的表面负电荷使得生物炭具有较高的阳离子交换量,可有效吸附流域水中重金属离子。
值得注意的是,功能型生物炭除了具有生物炭所共有的上述特点外,由于其负载有过渡金属(如镍、钴、铁),可利用过渡金属的光催化作用,在氧气存在下将吸附在功能型生物炭表面的水分子或氢氧根氧化生成活性氧,如羟基自由基·OH,使其对有机污染物进行降解、脱硫(S)、脱氯(Cl),降低有机污染物毒性及臭味。
本发明中在第一层填料中以功能型生物炭为主,辅助加入土壤,土壤的加入以利于第一层填料上植物的种植。经过试验发现,土壤和功能型生物炭以3:(6~8)混合时,由于活性炭对土壤的固定,可实现植物的良好生长,且以功能型生物炭为主的填料,可吸附大量有机物,通过过渡金属离子的光催化作用,可有效对实现对有机物的降解。若土壤和功能型生物炭的比例低于3:8,土壤比例降低,由于缺少必要养分,植物生长态势缓慢;若土壤和功能型生物炭的比例高于3:6,降低了光催化的效果,对有机物的降解效率下降。
在进一步优选地实施方式中,第一层填料特别是功能型生物炭的粒径为0.10-0.30cm,在此粒径范围内,功能型生物炭对土壤起支撑作用,便于空气进入填料层,植物根部与空气得到有效接触,利于种植在第一层填料上的水生植物的生长;位于水体下部的功能型生物炭在氧气存在下进行光催化,实现有效降解。如果功能型生物炭的粒径小于0.10cm,对空气进入填料层不利,由于缺少氧气不利于植物生长和有机污染物降解;如果功能型生物炭的粒径大于0.30cm,但大粒径的颗粒由于较小的表面积,不利于光催化效率。
在更进一步优选地实施方式中,第一层填料上种植水生植物,优选为芦苇和风车草。芦苇和风车草可以在富营养化的水体中正常生长,表现出很好的水体净化效果,可有效降低水中总氮、总磷、和化学需氧量(COD)值。然而,值得关注的是,芦苇和风车草对重金属表现出极高的富集效果,因而,选用此两种水生植物进行种植,为行之有效的降低重金属的生态方法。
在更进一步优选地实施方式中,功能型生物炭可通过人工湿地中种植的水生植物经碳化、活化除油、还原、干燥得到。
植物在生长过程中源源不断吸收重金属至体内,吸收重金属的植物生物质烧制为活性炭,重金属不是粘结在碳结构上,而是镶嵌在植物碳纤维内,其联结结构无比稳固,生物炭内重金属负载量远远超过现有负载方式,具备更高的电容和光催化能力。
在一种优选的实施方式中,湿地水生植物生长过程添加鼠李糖脂或聚天门冬氨酸中一种或其组合,优选鼠李糖脂和天门冬氨酸组合使用,促进植物体内重金属的富集,使得植物体内重金属达到植物能够承受的最高浓度。鼠李糖脂和天门冬氨酸具有良好的生物相容性和生物降解性,鼠李糖脂为水溶性生物表面活性剂,可通过乳化、增溶作用促进土壤等吸附的重金属的溶出,便于植物吸收;而天门冬氨酸具有鳌合活化重 金属离子能力,可将土壤等吸附的重金属溶出,同时还兼具其他螯合剂所不具备的可有效促进植物生长的优势。我们发现,将两者以设定比例混合,可使植物对重金属获得有效富集。
优选的,鼠李糖脂的添加量在待处理流域水中的浓度为1~20mg/L,聚天门冬氨酸的添加量在待处理流域水中的浓度为1~25mg/L。
在本发明的一种优选的实施方式中,500-1000cm处铺设第二层填料,第二层填料为土壤、天然沸石、石灰石的混合填料,混合比例为1:(2~3):(0.5~1),优选为1:2:0.5。
沸石是含水多孔硅铝酸盐的总称,其结晶构造主要由(SiO)四面体组成。Al 3+和Si 4+作为构架离子和氧原子一起构成了沸石分子的整体框架,部分Si 4+为Al 3+取代,导致负电荷过剩,同时沸石构架中有一定孔径的空腔和孔道,决定了其具有吸附和离子交换的性质,其对氨氮的吸附和重金属的吸附固定相较于其他矿石原料有更大的优势。
石灰石同样存在较多的孔隙结构,因而可对重金属起到有效的吸附,同时石灰石可对水体的酸碱性起到有效的调节作用,对上层填料中植物生长以及水体中微生物的繁殖起到至关重要的作用(聚磷菌多在pH5~pH9下繁殖,硝化细菌和反硝化细菌多在pH6.0~pH8.5下繁殖)。同时,石灰石对氟离子有较强的吸收,有效降低水体中氟的含量。
土壤的存在同样为人工湿地中水生植物提供支撑;同时,研究表明,由于土壤中存在黏粒矿物、氧化物和土壤有机质等,土壤对重金属有富集倾向,使得其对重金属离子的吸附能力不容小觑。
经过大量的实验研究,本发明中选择第二层填料中土壤、天然沸石、石灰石的混合比例为1:(2~3):(0.5~1),在此范围内,可实现大部分重金属的吸附固定和对水体的酸碱度调节。如果土壤比例增加,由于其吸附重金属吸附效果弱于天然沸石和石灰石,降低了重金属吸附能力;反之,可能影响植物生长的营养储备。如果天然沸石增加,对重金属的吸附增强,相应的土壤或石灰石量下降,同样对植物生长或水体酸碱度调控造成威胁。同样地,石灰石比重的增加对水体酸碱度调控有利,但相应降低了其他组分的效力;反之,水体酸碱度的调控不能迅速有效进行,进而影响微生物的功能活动。
在进一步优选地实施方式中,第二层的填料的粒径为0.08-0.1cm,相当或低于第一层填料中功能型生物炭的粒径,相当或高于第三层填料的粒径。此粒径范围的选择考虑到气体流通和总金属吸附两者的协调;粒径低于0.08cm时,虽然促进了对重金属的吸附,但由于堆积密度增大,空气流通降低,不利于第三层填料区域中投放的聚磷菌的聚磷过程;粒径高于0.1cm时,促进了空气流通,但相应的重金属吸附能力较0.08cm时有明显的降低。
在本发明的一种优选的实施方式中,1000-1500cm处铺设第三层填料,第三层填料为粉煤灰分子筛、弗洛里硅藻土和生物炭的混合填料,混合比例为1:(3~4):(1~1.5), 优选为1:3:1。
本发明中以粉煤灰分子筛、弗洛里硅藻土和生物炭此三种具有多孔隙的填料在人工湿地深层进行重金属吸附。三者的共同特点是孔隙度高,便于微生物的挂膜生长。其中,采用粉煤灰作为分子筛是基于粉煤灰的主要成分与分子筛的主要成分相近,且粉煤灰目前是作为废弃物处理,由于其包含Cr、Hg、As和Pb等重金属离子,对空气、水源、土壤等都造成了污染,将其作为分子筛,利用其阳离子交换特性和孔道结构,可实现重金属的吸附,且使得废气污染源可得到有效利用。
生物炭由于大表面积,同样具有优异的重金属吸附能力。
弗洛里硅藻土相较于普通硅藻土孔容大、比表面积大、重金属和有机污染物的吸附性更强。特别地,弗洛里硅藻土具有深度效应,在深层过滤时,分离过程只发生在介质的“内部”,部分穿过滤饼表面的比较小的杂质粒子,被硅藻土内部曲折的微孔构造和滤饼内部更细小的孔隙所阻留,当微粒撞到通道的壁上时,才有可能脱离液流;弗洛里硅藻土的这种性质有利于细菌微生物在此区域的较长时间滞留,便于微生物的投放。
由于粉煤灰分子筛、弗洛里硅藻土和生物炭对不同的重金属具有不同的吸附优势,设定粉煤灰分子筛、弗洛里硅藻土和生物炭的混合比例为1:(3~4):(1~1.5),在提高各重金属离子吸附的同时,可进行微生物投放。
在一种优选的实施方式中,粉煤灰分子筛、弗洛里硅藻土和生物炭的粒径为0.05-0.08cm。由于上述三种填料孔隙度高,在此小粒径范围内,有利于对重金属离子的吸附,且便于微生物的挂膜生长。
在一种优选的实施方式中,第三层填料区域内投放聚磷菌以其聚磷能力降低待净化流域水中总磷量,所述聚磷菌选自不动杆菌属(Acinetobacter)、气单胞菌属(Aeromonas)、假单胞菌属(pseudomonas)中一种或多种,优选为假单胞菌pseudomona alcaligenes。
在需氧条件下,聚磷菌以游离氧为电子受体氧化细胞内贮存的β-羟丁酸(PHB),利用该反应产生的能量,过量地从水中摄取磷酸盐合成高能物质三磷酸腺苷(ATP),其中一部分供给细菌合成和维持生命活动,一部分则合成聚磷酸盐蓄积在细菌细胞内。在厌氧条件下,聚磷菌在分解体内聚磷酸盐的同时产生ATP,聚磷菌在厌氧条件下释放出的磷,其好氧吸磷量大于厌氧释磷量,故通过聚磷菌的投放可有效控制流域水中磷含量。
在本发明的一种优选的实施方式中,1500-2000cm处铺设第四层填料,第四层填料为鹅卵石、生物炭的混合填料,混合比例为1:(1~2),优选为1:1。鹅卵石同样具有重金属吸附能力,与生物炭配合,对重金属进行协同吸附作用。
在进一步优选地实施方式中,第四层的填料的粒径为0.30-0.50cm,较大粒径的填料使得填料间具有较大的间隙,便于投放的微生物的流通。由于第三层的填料的粒径 较小,在一定程度上限制了微生物进入第四层填料,若第四层填料粒径同样减小,聚磷菌不能有效往返于第三、四层填料,不利于聚磷—释磷的进行。
在更进一步优选地实施方式中,所述第四层填料为缺氧或厌氧环境,在第四层填料中投加有厌氧反硝化细菌,优选为异养厌氧反硝化细菌。
反硝化细菌能够使NO 3 -逐步转变为NO 2 -、NO、N 2O和N 2,脱离体系,从而达到脱氮的目的。流域水中存在一定的硝化细菌和反硝化细菌,本发明中加入设定量的反硝化细菌,可进一步促进流域水中脱氮效率。
在更进一步优选地实施方式中,所述第四层填料还投加有聚磷菌,聚磷菌在厌氧条件下释磷,此条件下的释磷可促进其在第三层填料区域的好氧条件下更好的聚磷。
为了实现和保持第四层填料的缺氧或厌氧环境,第三层填料与第四层填料之间填充极性高聚物聚苯胺膜。极性高聚物聚苯胺膜具有透水不透气的独特功能,可使得第三层填料和第四层填料间进行水和微生物的流通,但是防止了上层含氧气体进入第四层填料,保证了厌氧反硝化细菌和聚磷菌在此区间的生命活动。
植物的生长需要恰当含量的磷肥和氮肥,磷肥中磷和氮肥中氮以酸根离子形式被植物吸收,但是,每年施入土壤中的肥料只有部分被当季作物吸收利用,其余被土壤固定,形成大量酸盐沉积,造成土壤板结。流域中水可能富含氮、磷,两者以有机磷、有机氮或者无机磷、无机氮的形式存在,有机磷、有机氮在人工湿地中分解为无机磷、无机氮和短碳链,形成的无机磷、无机氮也多以酸根离子形式存在于水体中。若含量超过植物所需,必定影响土壤的状况,同样造成酸盐沉积、土壤板结。因而,本发明人经过大量研究,确定了在人工湿地中设置需氧区和厌氧区,通过投放聚磷菌和反硝化细菌,有效解决氮、磷过量的问题。
上述第一层填料、第二层填料、第三层填料和第四层填料的厚度均为500cm,填料总厚度为2000cm;其为填料层的优选厚度,以有效实施各层的功能。第一层填料厚度为100~700cm,第二层填料厚度为300~700cm,第三层填料厚度为200~600cm,第四层填料厚度为100~600cm。
我们知道,微生物的生长需要碳源,尤其是短链碳源更便于微生物的吸收利用。然而,流域水中含碳量尤其是短链碳较少,这样,投放如人工湿地的微生物的生长繁殖必然受影响。
因而本发明中,进一步增加酸化池和曝气池,以提供微生物以必要的养分。其中,酸化池和曝气池位于流域护岸4~10米处,酸化池、曝气池和人工湿地依次连接。
本发明中,打捞流域中浮萍或水藻在酸化池中酸化消解,将酸化池上清液输入至曝气池中,进行长碳链有机物的进一步降解,曝气池出水与流域水混合输入多介质人工湿地内。
在一种优选的实施方式中,酸化池为带夹层的容器,夹层中通有传热介质,通过温控装置中的感温探头测定传热介质的温度以控制酸化池中的温度。
在一种优选的实施方式中,酸化池底部设置排泥孔,由于采用流域中浮萍或水藻作为细菌生长养分的原材料,流域中的淤泥不可避免的带入酸化池中,排泥孔的设置便于淤泥的排出,减少酸化池内空间的无效占用。
在一种优选的实施方式中,酸化池内还装有搅拌机,使得浮萍或水藻得以粉碎,加快酸化分解过程。
在一种优选的实施方式中,控制酸化池上清液COD高于200mg/L,此时,认为酸化池中分解程度较好,确定为得到高含量的有机物。
本发明中,曝气池接收酸化池的上清液,对上清液中的长碳链有机物进行分解,获得短碳链物质,便于人工湿地中微生物获得碳源。
在一种优选的实施方式中,在曝气池下部设置曝气盘,向曝气池中通入含氧气流体。进一步的,通入的含氧气流体为纳米气泡水。所述纳米气泡水为含有100~500nm尺寸的微小气泡的水或水溶液,其溶氧量为10~25mg/L。
由于纳米气泡水中气泡尺寸小,比表面积大,能表现出有别于普通气泡的特性,如由于体积很小在装置中停留时间长,缓慢上升后,zeta电位升高,比表面积增大(普通气泡上升过程中体积增大,比表面积减小;而纳微气泡由于表面张力影响,内部气体产生自增压效果,上升过程中,比表面积增大),发生溃灭产生活性氧自由基,如羟基自由基,从而对水中的长碳链有机物进行高效降解或矿化;而溃灭瞬间产生的高温同样利于长碳链有机物的降解。
在进一步优选的实施方式中,曝气盘上的孔径为纳米孔径,即曝气盘为纳米曝气盘,纳米曝气盘的设置可进一步保障进入曝气池中的氧气为纳米尺寸的气泡。
在一种优选的实施方式中,曝气池底部设置二次排泥孔,以进一步去除流域水中带来的淤泥及水藻和浮萍的残余物,避免传输至人工湿地时堵塞管道,或堵塞曝气池中曝气盘的孔。
在进一步优选的实施方式中,曝气盘通过管路依次与流量计和纳米曝气机连通,所述纳米曝气机向曝气盘提供含氧气流体,而流量计可有效控制通入曝气池的氧气量。基于纳米瀑气池中液体量,进气量保持在0.5-0.7mg/L之间,在此范围内可实现长碳链有机物的有效分解,使得曝气池出水中有机物平均分子量低于308.24Da,优选低于254.50Da。若进气量低于0.5mg/L,对长链碳有机物的降解效率低,曝气池出水中有机物平均分子量普遍高于308.24Da,不便于微生物吸收利用;而进气量高于0.7mg/L,气泡增多,碰撞频率加大,气泡在曝气池底部下部破裂较多,对上部的降解降低,同样导致降解效率下降。
在更进一步优选的实施方式中,曝气池内投加有微生物,所述微生物为Acinetobacter junii,Acinetobacter junii为琼氏不动杆菌。Acinetobacter junii可以以长碳链有机物作为生长的碳源,因而其加入可促进对长碳链有机物的降解。
同时,Acinetobacter junii为聚磷菌,其可利用氧气、亚硝酸根或硝酸根作为电子 受体进行反硝化摄磷,因而,在利用Acinetobacter junii在曝气池降解长碳链有机物后,将其与降解得到的短链烃有机物共同输入人工湿地,有利于人工湿地中对流域水的脱磷脱氮。
在本发明一种优选的实施方式中,除去酸化池、曝气池和人工湿地的设置,还对流域中的流域水进行了预处理,所述预处理为向河道内接种反硝化细菌,优选为固态好氧反硝化细菌如Alicaligenes faecalis或Thiosphaera pantotropha。
优选地,河道内流域水中固态反硝化细菌浓度为50-100亿个/g,仅在采用流域水灌溉时接种一次即可。反硝化细菌特别是好氧反硝化细菌的加入必然会对待处理的流域水起到进一步的净化作用,同时好氧反硝化细菌与人工湿地投入的厌氧反硝化细菌协同作用,促进水体的净化。
本发明的另一目的在于提供一种农业活动区流域水资源循环利用的重金属控制装置,所述装置包括建造在农业活动区流域护岸4~10米处依次连接的酸化池1、曝气池2和人工湿地3,酸化池1将打捞自流域中的浮萍和水藻进行粉碎和酸化消解,传输上清液至曝气池2中,
曝气池2接收酸化池1的上清液,对上清液中的长碳链有机物进行降解,并传输降解后的上清液至人工湿地3,为人工湿地3中微生物提供碳源;
人工湿地3为设定深度的净化池,其中引有流域水和曝气池2中液体,使待净化的水体进入铺设于人工湿地3中的一层或多层填料,对流域水进行污染物的降解或脱除如重金属固定、悬浮物的过滤、脱氮和脱磷。
在一种优选的实施方式中,酸化池1为带夹层的容器,夹层中通有传热介质,通过温控装置4中的感温探头5测定传热介质的温度以控制酸化池1中的温度。
在进一步优选的实施方式中,酸化池1底部设置排泥孔7,由于采用流域中浮萍或水藻作为细菌生长养分的原材料,流域中的淤泥不可避免的带入酸化池1中,排泥孔7的设置便于淤泥的排出,减少酸化池1内空间的无效占用。
在更进一步优选的实施方式中,酸化池1内还装有搅拌机8,使得浮萍或水藻得以粉碎,加快酸化分解过程。
在一种优选的实施方式中,曝气池2下部设置曝气盘10,向曝气池2中通入含氧气流体。进一步的,通入的含氧气的流体为纳米气泡水。所述纳米气泡水为含有100~500nm尺寸的微小气泡的水或水溶液,其溶氧量为10~25mg/L。
在进一步优选的实施方式中,曝气盘10上的孔径为纳米孔径,即曝气盘10为纳米曝气盘,纳米曝气盘的设置可进一步保障进入曝气池中的氧气为纳米尺寸的气泡。
在更进一步优选的实施方式中,曝气池2底部设置二次排泥孔9,以进一步去除流域水中带来的淤泥,避免传输至人工湿地时堵塞管道,或堵塞曝气池2中曝气盘10的孔。
在更进一步优选的实施方式中,曝气盘10通过管路依次与流量计11和纳米曝气机12连通,所述纳米曝气机12向曝气盘提供含氧气流体,而流量计11可有效控制通入曝气池2的氧气量。
在更进一步优选的实施方式中,曝气池2内投加有微生物,所述微生物为Acinetobacter junii,Acinetobacter junii为琼氏不动杆菌。Acinetobacter junii可以长碳链有机物作为生长的碳源,因而其加入可促进对长碳链有机物的降解。
在本发明的一种优选的实施方式中,人工湿地3中由上至下铺设有四层填料:
第一层填料13进行重金属吸附和有机物降解;
第二层填料14进行大量重金属吸附固定;
第三层填料15进行重金属吸附并通过在此区域内投放聚磷菌以其聚磷能力降低待净化流域水中总磷量;
第四层填料16进行重金属吸附,并通过构建厌氧环境使得聚磷菌在此区域内脱磷,以促进在第三层填料15区域内的聚磷能力,并通过投放厌氧反硝化细菌降低待净化流域水中的氮含量。
具体地,第一层填料13为土壤和功能型生物炭的混合填料,混合比例为3:(6~8),优选为3:7,填料的粒径为0.10-0.30cm,填料厚度为100~700cm。
第二层填料14为土壤、天然沸石、石灰石的混合填料,混合比例为1:(2~3):(0.5~1),优选为1:2:0.5,填料的粒径为0.08-0.1cm,填料厚度为300~700cm。
第三层填料15为粉煤灰分子筛、弗洛里硅藻土和生物炭的混合填料,混合比例为1:(3~4):(1~1.5),优选为1:3:1,填料的粒径为0.05-0.08cm,填料厚度为200~600cm。
第四层填料16为鹅卵石、生物炭的混合填料,混合比例为1:(1~2),优选为1:1,填料的粒径为0.30-0.50cm,填料厚度为100~600cm。
本发明中,各填料层中不同物料的比例为重量比。
在进一步优选的实施方式中,人工湿地3内种植水生植物6,所述水生植物为芦苇和风车草。
在进一步优选的实施方式中,第三层填料15与第四层填料16之间填充极性高聚物聚苯胺膜,在第三层填料15区域内投加聚磷菌,在第四层填料16区域内投加反硝化细菌和聚磷菌。
本发明中,由于在人工湿地中种植了水生植物芦苇和风车草,其对重金属有优异的富集效果,因而可通过该水生植物进行功能型生物炭的制备。
本发明的一种优选的实施方式中,功能型生物炭的制备包括以下步骤:
步骤1),破碎植物体,并进行碳化,得到活性炭;
步骤2),将活性炭进行活化处理,得到活化后活性炭;
步骤3),将活化后活性炭进行还原处理,得到功能型生物炭。
在步骤1)中,根据需要将整株植物体破碎至3-5mm长度。
在加热容器如管式马弗炉内通满氩气,使之成惰性环境,升高加热容器内温度至1200℃后,将破碎的植物体颗粒放置入管式马弗炉中,保持1200℃120min,200min内从1200℃降低至20℃,将生物质碳化。
在步骤2)中,用蒸馏水对活性炭进行清洗,至洗后水清亮为清洗标准。向洗后的活性炭中加入30-50%重量浓度的氯化锌至液面高过活性炭,搅拌,微波辐射设定时间后,25℃浸泡过夜,即为活化。对活化后活性炭进行清洗至中性,干燥,备用。
活化使得步骤1)碳化生成的生物油脱离活性炭内部孔隙,防止生物油堵塞活性炭内部孔隙,降低吸附和光催化效果。
活化过程中,采用300W-700W微波辐射20~30min。
在步骤3)中,将活化后活性炭烘干,在低温的环境下滴加硼氢化钠溶液还原活性炭中金属离子至低价态,如还原亚铁离子为零价铁。优选地,滴加的同时用振荡器以120转/分振摇,促进活化反应的进行。硼氢化钠溶液的浓度为10mmol/L~30mmol/L。
用蒸馏水清洗活性炭后烘干,待冷却至室温后将还原处理后的活性炭,装满容器并密封,置于烘箱中,在180~680℃温度下加热10~60分钟,冷却至室温即制得功能型生物炭(也即原位自还原负载型活性炭)。
植物在生长过程中源源不断吸收重金属至体内,吸收重金属的植物生物质烧制为活性炭,重金属不是粘结在碳结构上,而是镶嵌在植物碳纤维内,其联结结构无比稳固,生物炭内重金属负载量远远超过现有负载方式,生物炭活化后,其表面灰分焦油被清除,金属离子暴露出来,经过硼氢化钠还原,成为负载重金属的活性炭,不但具备活性炭本身调控城市水力、为土壤增加肥效、养分固持以及改善微生物生境的性能,同时具备电容、催化的功能。
实施例
实施例1流域水资源循环利用污染物控制方法
如图1所示,设置依次连接的酸化池、曝气池和多介质人工湿地,采用流域水中打捞的浮萍、水藻,粉碎后在酸化池中酸化消解,将酸化池上清液输入至纳米曝气池中,纳米曝气池中溶氧量保持在4~6mg/L,纳米曝气池出水与流域水混合输入多介质人工湿地内。
多介质人工湿地中设置四层填料,0-500cm处第一层填料为土壤和功能型生物炭的混合填料,混合比例为3:7,填料粒径为0.10-0.30cm,其上种植有水生植物芦苇;500-1000cm处第二层填料为土壤、天然沸石、石灰石的混合填料,混合比例为1:2:0.5,填料粒径为0.08-0.1cm;1000-1500cm处第三层投加聚磷菌pseudomona alcaligenes,第三层填料为粉煤灰分子筛(河南铭泽环保科技有限公司,13X分子筛)、弗洛里硅藻土和生物炭的混合填料,混合比例为1:3:1,填料粒径为0.05-0.08cm;1500-2000cm处第四 层投加厌氧反硝化细菌及聚磷菌pseudomona alcaligenes,第四层填料为鹅卵石、生物炭的混合填料,混合比例为1:1,填料粒径为0.30-0.50cm;第三层填料与第四层填料之间填充极性高聚物聚苯胺膜(根据“王辉.电化学合成聚苯胺薄膜光电性能的研究[J].西安交通大学学报,1999,(08):107-108”合成得到)。
实施例2~18
已与实施例1相同的方式,实施农业活动区流域水资源循环利用污染物控制方法,同样通过酸化池、曝气池和多介质人工湿地进行污染物调控,区别如下表1所示。
表1
实施例 与实施例1的区别(比例顺序同实施例1)
实施例2 第一层填料为土壤
实施例3 第一层填料中填料比例为1:1
实施例4 第一层填料粒径为0.01~0.08cm
实施例5 第一层填料粒径为5~30mm
实施例6 第二层填料为原比例的土壤和石灰石
实施例7 第二层填料为原比例的土壤和天然沸石
实施例8 第二层填料中填料比例为1:1:2
实施例9 第二层填料粒径为0.01-0.05cm
实施例10 第二层填料粒径为1~10mm
实施例11 第三层填料为原比例的粉煤灰分子筛和生物炭
实施例12 第三层填料为原比例的粉煤灰分子筛和弗洛里硅藻土
实施例13 第三层填料中填料比例为1:1:1
实施例14 第三层填料粒径为0.005-0.03cm
实施例15 第四层填料为鹅卵石
实施例16 第四层填料粒径0.001~0.30cm
实施例17 第三、四层填料区域不投放聚磷菌
实施例18 第四层填料区域不投放厌氧反硝化细菌
实验例
通过测定处理前后水中重金属、COD Cr、总磷、总氮含量、pH值,对实施例1~18中污染物控制方法的效果进行评价,结果如表2所示。
评价用水采集自河流中水,向水中加入SnCl 4、Zn(NO 3) 2、沼液、Na 3PO 4、NaNO 3,使得水中Sn的浓度为5.23mg/L,Zn的浓度为6.88mg/L,总P含量为3.36mg/L,总N含量为4.57mg/L,COD Cr为124mg/L,pH为7.28;将处理后的水直接通入人工湿地中,进水速率为2.5L/min,出水速率为2.5L/min,处理时间为12h,测定12h后出水水质。
表2
Figure PCTCN2018120543-appb-000001
由表2可知,第一层填料中功能型生物炭比例的下降,主要影响对重金属和COD 值的降低;而填料尺寸变小,利于重金属的吸附,可能因为影响空气进入水中,降低了微生物脱磷、脱氮能力;填料尺寸变大,促进微生物脱磷、脱氮,磷、氮含量下降;但对重金属的吸附也产生了一定的不利影响。
第二层填料中,天然沸石比例的下降,主要影响对重金属的吸附和固定,使得处理后体系中重金属含量较高;石灰石比例的下降使得体系中pH调节受到影响,微生物的脱磷脱氮效率降低,使得水中总氮、总磷含量较高;而填料粒径的下降,可明显提升的对重金属的吸附,但是由于气体流通受阻,对COD和总氮、总磷的调控不利。
第三层填料中,弗洛里硅藻土有利于微生物存在,且促进微生物脱磷、脱氮,随着其比例的下降,脱磷脱氮效果有所下降;而生物炭由于优异的吸附性能,去除后对重金属水平有一定影响;而填料粒径的下降,可明显提升的对重金属的吸附。
第四层填料中,活性炭相较于鹅卵石具有更高的重金属吸附性,因而用鹅卵石取代活性炭会使重金属水平略有升高;填料粒径的降低增强了吸附性能,但是堆积紧密,不利于微生物脱磷脱氮活动,因而随第四层填料粒径下降,总磷、总氮水平略有升高。
厌氧反硝化细菌和聚磷菌分别有脱氮和脱磷功能,向水中不投加改良中细菌后,水体中总氮、总磷量分别有明显的提升。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”“前”“后”等指示的方位或位置关系为基于本发明工作状态下的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上结合具体实施方式和/或范例性实例以及附图对本发明进行了详细说明,不过这些说明并不能理解为对本发明的限制。本领域技术人员理解,在不偏离本发明精神和范围的情况下,可以对本发明技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本发明的范围内。本发明的保护范围以所附权利要求为准。

Claims (10)

  1. 一种农业活动区流域水资源循环利用污染物控制方法,其特征在于,所述方法包括在流域护岸设定距离处建造人工湿地,将流域水引入人工湿地后,通过人工湿地对污染物进行脱除和降解后,将处理后的流域水输送至农业活动区中。
  2. 根据权利要求1所述的方法,其特征在于,人工湿地中由上至下铺设有三层至六层填料,每层填料可选自土壤、生物炭、功能型生物炭、砾石、天然沸石、火山石、方解石、石灰石、鹅卵石、硅藻土或弗洛里硅藻土中的一种或多种。
  3. 根据权利要求1所述的方法,其特征在于,人工湿地中由上至下铺设有四层填料:
    第一层填料为土壤和功能型生物炭的混合填料,吸附重金属并对有机物进行降解;
    第二层填料为土壤、天然沸石、石灰石的混合填料,对重金属进行吸附固定;
    第三层填料为粉煤灰分子筛、弗洛里硅藻土和生物炭的混合填料,吸附重金属吸附,优选通过在此区域内投放聚磷菌以降低待净化流域水中总磷量;
    第四层填料为鹅卵石、生物炭的混合填料,进行重金属吸附,优选通过构建厌氧环境使聚磷菌在此区域内进行厌氧性生命活动。
  4. 根据权利要求3所述的方法,其特征在于,
    第一层填料中土壤和功能型生物炭的混合重量比例为3:(6~8),优选填料粒径为0.10-0.30cm;
    第二层填料中土壤、天然沸石和石灰石的混合重量比例为1:(2~3):(0.5~1),优选填料粒径为0.08-0.1cm;
    第三层填料中粉煤灰分子筛、弗洛里硅藻土和生物炭的混合重量比例为1:(3~4):(1~1.5),优选填料粒径为0.05-0.08cm;
    第四层填料中鹅卵石、生物炭的混合重量比例为1:(1~2),优选填料粒径为0.30-0.50cm。
  5. 根据权利要求3所述的方法,其特征在于,第三层填料与第四层填料之间填充极性高聚物聚苯胺膜,使第四层填料所在区域形成缺氧或厌氧环境。
  6. 根据权利要求1所述的方法,其特征在于,人工湿地中种植水生植物,优选为 芦苇和风车草,更优选水生植物生长过程添加鼠李糖脂或聚天门冬氨酸中一种或其组合。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括通过设置酸化池和曝气池为微生物提供养分;其中,酸化池、曝气池和人工湿地依次连接,其中,
    酸化池将打捞自流域中的浮萍、水藻进行酸化消解,传输上清液至曝气池中,优选地,传输至曝气池中的上清液的COD高于200mg/L;
    曝气池接收酸化池的上清液,通过通入的含氧气流体对上清液中的有机物进行降解,并将经降解处理的上清液传输至人工湿地;优选地,曝气池出水中有机物的平均分子量低于308.24Da。
  8. 根据权利要求7所述的方法,其特征在于,在曝气池下部设置曝气盘,经曝气盘向曝气池中通入含氧气流体;优选通入的含氧气流体为纳米气泡水,所述纳米气泡水为含有100~500nm尺寸的微小气泡的水或水溶液,其溶氧量为10~25mg/L;和/或
    曝气池内投加有微生物,所述微生物为Acinetobacter junii。
  9. 一种农业活动区流域水资源循环利用的污染物控制装置,其特征在于,所述装置包括建造在农业活动区流域护岸的设定距离处的依次连接的酸化池(1)、曝气池(2)和人工湿地(3),
    酸化池(1)将打捞自流域中的浮萍、水藻进行粉碎和酸化消解,传输上清液至曝气池(2)中,
    曝气池(2)接收酸化池(1)的上清液,对上清液中的有机物进行降解,并传输经降解处理后的上清液至人工湿地(3),为人工湿地(3)中微生物提供碳源;
    人工湿地(3)为设定深度的净化池,其中引有流域水和曝气池(2)中水体,并使待净化的水体进入铺设于人工湿地(3)中的一层或多层填料,对流域水进行污染物脱除和降解。
  10. 根据权利要求9所述的装置,其特征在于,酸化池(1)为带夹层的容器,酸化池(1)内部装有搅拌机(8),对浮萍或水藻进行粉碎;和/或
    所述曝气池(2)下部设置曝气盘(10),经曝气盘(10)向曝气池(2)中通入含氧气流体;优选通入的含氧气流体为纳米气泡水,所述纳米气泡水为含有100~500nm 尺寸的微小气泡的水或水溶液,其溶氧量为10~25mg/L。
PCT/CN2018/120543 2017-12-13 2018-12-12 一种农业活动区流域水资源循环利用污染物控制方法与装置 WO2019114745A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/770,800 US11261115B2 (en) 2017-12-13 2018-12-12 Method and device for controlling pollutants in basin water resources cycling utilization in agricultural activity areas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711330923.3 2017-12-13
CN201711330923.3A CN108083560B (zh) 2017-12-13 2017-12-13 一种农业活动区流域水资源循环利用污染物控制方法与装置

Publications (1)

Publication Number Publication Date
WO2019114745A1 true WO2019114745A1 (zh) 2019-06-20

Family

ID=62175584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120543 WO2019114745A1 (zh) 2017-12-13 2018-12-12 一种农业活动区流域水资源循环利用污染物控制方法与装置

Country Status (3)

Country Link
US (1) US11261115B2 (zh)
CN (1) CN108083560B (zh)
WO (1) WO2019114745A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302497A (zh) * 2020-03-26 2020-06-19 长江大学 农业废水处理装置的快速启动方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108033566B (zh) * 2017-12-13 2018-12-07 中国科学院地理科学与资源研究所 一种重金属防控***以及采用其的重金属防控方法
CN108083560B (zh) * 2017-12-13 2018-12-07 中国科学院地理科学与资源研究所 一种农业活动区流域水资源循环利用污染物控制方法与装置
CN107892441B (zh) * 2017-12-13 2018-11-23 中国科学院地理科学与资源研究所 金属矿山水资源循环利用中污染物控制装置及控制方法
CN108059241B (zh) * 2017-12-13 2019-01-18 中国科学院地理科学与资源研究所 一种极度缺水地区流域水灌溉农田污染物控制方法与装置
CN109596809B (zh) * 2018-12-07 2021-06-22 山西大同大学 一种监测与分析淋滤状态下土壤充填物中污染物动态释放的模拟***
CN110028123A (zh) * 2019-01-31 2019-07-19 环境保护部华南环境科学研究所 人工湿地的重金属废水反应池
CN109721213A (zh) * 2019-01-31 2019-05-07 环境保护部华南环境科学研究所 用于处理重金属废水的多级人工湿地***
CN110790388A (zh) * 2019-11-29 2020-02-14 北京林业大学 基于功能填料结构的复合垂直潜流人工湿地污水净化***
CN113510144B (zh) * 2021-04-22 2022-11-08 贵州星硕铭越环保科技有限公司 一种土法炼锌污染区农用地重金属污染治理方法
CN113750588B (zh) * 2021-08-16 2023-03-28 江苏彦达科技发展有限公司 一种污水处理设备
CN114365601B (zh) * 2022-01-06 2022-11-15 湖南人文科技学院 一种基于复合生物炭和菌液提升低污染水稻田质量的方法
CN114605037B (zh) * 2022-03-22 2023-05-09 中国环境科学研究院 一种农村灰水循环利用一体化处理***
CN114956472B (zh) * 2022-06-16 2023-08-08 河海大学 一种模块化农村生活污水处理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252182B1 (en) * 2008-09-11 2012-08-28 University Of Central Florida Research Foundation, Inc. Subsurface upflow wetland system for nutrient and pathogen removal in wastewater treatment systems
CN104150595A (zh) * 2014-07-25 2014-11-19 张列宇 一种地表漫流生物处理***和处理方法
CN104150705A (zh) * 2014-07-25 2014-11-19 席北斗 交替流人工湿地三级处理高氨氮废水的装置和处理方法
CN205011567U (zh) * 2015-08-13 2016-02-03 惠州市兴牧环保科技有限公司 一种生活污水生物湿地处理***
CN105967328A (zh) * 2016-06-19 2016-09-28 绍兴文理学院 稻草-生物炭-生物集成的人工湿地处理养殖废水的方法
CN106336091A (zh) * 2016-11-21 2017-01-18 珠江水利委员会珠江水利科学研究院 一种基于蚝壳‑碳纤维‑人工湿地的水体净化***和方法
CN108083560A (zh) * 2017-12-13 2018-05-29 中国科学院地理科学与资源研究所 一种农业活动区流域水资源循环利用污染物控制方法与装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101481194B (zh) * 2008-04-26 2011-12-07 张政权 集镇生活污水处理工艺
EP2834322A4 (en) * 2012-04-05 2016-02-17 Full Circle Biochar Inc BIOCHARBON COMPOSITIONS AND METHODS OF USE
US20200223731A1 (en) * 2017-05-24 2020-07-16 Jordan Phasey Method to Improve the Dewatering of Farm Waste Sludges

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252182B1 (en) * 2008-09-11 2012-08-28 University Of Central Florida Research Foundation, Inc. Subsurface upflow wetland system for nutrient and pathogen removal in wastewater treatment systems
CN104150595A (zh) * 2014-07-25 2014-11-19 张列宇 一种地表漫流生物处理***和处理方法
CN104150705A (zh) * 2014-07-25 2014-11-19 席北斗 交替流人工湿地三级处理高氨氮废水的装置和处理方法
CN205011567U (zh) * 2015-08-13 2016-02-03 惠州市兴牧环保科技有限公司 一种生活污水生物湿地处理***
CN105967328A (zh) * 2016-06-19 2016-09-28 绍兴文理学院 稻草-生物炭-生物集成的人工湿地处理养殖废水的方法
CN106336091A (zh) * 2016-11-21 2017-01-18 珠江水利委员会珠江水利科学研究院 一种基于蚝壳‑碳纤维‑人工湿地的水体净化***和方法
CN108083560A (zh) * 2017-12-13 2018-05-29 中国科学院地理科学与资源研究所 一种农业活动区流域水资源循环利用污染物控制方法与装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302497A (zh) * 2020-03-26 2020-06-19 长江大学 农业废水处理装置的快速启动方法

Also Published As

Publication number Publication date
US20210179465A1 (en) 2021-06-17
CN108083560B (zh) 2018-12-07
CN108083560A (zh) 2018-05-29
US11261115B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2019114745A1 (zh) 一种农业活动区流域水资源循环利用污染物控制方法与装置
WO2019114742A1 (zh) 一种流域水资源利用污染物防控方法与装置
WO2019114746A1 (zh) 一种极度缺水地区流域水灌溉农田污染物控制方法与装置
WO2019114743A1 (zh) 金属矿山水资源循环利用中污染物控制装置及控制方法
WO2019114747A1 (zh) 一种极度缺水农业活动区中水回用污染物防控方法及装置
WO2019114744A1 (zh) 一种重金属防控***以及采用其的重金属防控方法
CN203768124U (zh) 一种用于微污染水处理的生态滤池
Huang et al. Research and engineering application of bypass combined artificial wetlands system to improve river water quality
Liu et al. Current problems and countermeasures of constructed wetland for wastewater treatment: A review
CN109095728B (zh) 一种雨水径流净化装置及净化方法
CN204737846U (zh) 一种处理农业面源污染的上升流垂直人工湿地***
CN109879536B (zh) 一种农村生活污水净化***及净化方法
Mao et al. Research on perfermance improvement of constructed wetland wastewater treatment system
CN113087282A (zh) 一种含有固载微生物填料的污水处理装置
CN112794448A (zh) 一种流域污染河流修复的方法
CN220223904U (zh) 生活污水处理***
CN218507655U (zh) 一种城市污水生态修复装置
CN213570007U (zh) 一种基于碳纤维的无动力污水处理一体化设备
CN116534983B (zh) 一种高效处理农村灰水的生态耦合***及其应用
CN220245775U (zh) 一种适用于农村生活污水处理的生态湿地***
CN114538716A (zh) 一种污水生态修复***和修复方法
Wang et al. STUDY ON THE INFLUENCE OF ECOLOGICAL GARDEN LANDSCAPE DESIGN ON WATER ENVIRONMENT
CN117164116A (zh) 一种用于净化城镇污水厂尾水的生态安全缓冲区***
Lingwei et al. A comparative study on the enhanced operation of a BFB and SFCW coupling process for domestic wastewater treatment
CN116573771A (zh) 一种用于入库河流复合污染净化的生态湿地***及其运行工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887883

Country of ref document: EP

Kind code of ref document: A1