WO2019114747A1 - 一种极度缺水农业活动区中水回用污染物防控方法及装置 - Google Patents

一种极度缺水农业活动区中水回用污染物防控方法及装置 Download PDF

Info

Publication number
WO2019114747A1
WO2019114747A1 PCT/CN2018/120546 CN2018120546W WO2019114747A1 WO 2019114747 A1 WO2019114747 A1 WO 2019114747A1 CN 2018120546 W CN2018120546 W CN 2018120546W WO 2019114747 A1 WO2019114747 A1 WO 2019114747A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
nano
layer
water
tank
Prior art date
Application number
PCT/CN2018/120546
Other languages
English (en)
French (fr)
Inventor
席北斗
王雷
李翔
檀文柄
李彤彤
刘慧�
吕宁磬
王金生
张亚丽
吴锋
Original Assignee
中国环境科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国环境科学研究院 filed Critical 中国环境科学研究院
Priority to US16/770,837 priority Critical patent/US11352281B2/en
Publication of WO2019114747A1 publication Critical patent/WO2019114747A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/102Permeable membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/108Immobilising gels, polymers or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/26Activated sludge processes using pure oxygen or oxygen-rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria

Definitions

  • the invention relates to the field of water reuse, and particularly relates to a technology and device for preventing and controlling pollutants in water reuse in an extremely water-deficient agricultural activity area.
  • Agricultural land is the supplier and regulator of the materials needed for the normal growth of crops.
  • the quality of the land directly affects the yield of crops.
  • water resources constraints have become the bottleneck factor of economic development.
  • agricultural irrigation water accounted for 64.5% of the total water use in the country. Therefore, the shortage of water resources is particularly prominent in agricultural production. Liu Changming's investigation found that due to excessive over-exploitation of groundwater, the urban land subsidence in Beijing.
  • Reclaimed water is an important way to solve the water crisis. It is also the fundamental way to coordinate water resources and water environment.
  • the treatment of domestic sewage can reduce the exploitation of groundwater and bring certain economic benefits.
  • Medium water refers to the non-potable water that can be used in various areas of life, municipality and environment after the various drainages have been treated to meet the specified water quality standards. Because its water quality index is lower than the water quality standard of drinking water, but it is higher than the water quality standard of the sewage that is allowed to be discharged, it is called “China Water”.
  • the amount of domestic sewage is huge, stable, and free from climatic conditions and other natural conditions. After the domestic sewage is treated, it can reach the irrigation water quality standard, which can be stably used for irrigation in agricultural activity areas, effectively alleviating the shortage of water resources.
  • the present invention provides an anti-control technology and device for recycling water in an extremely water-deficient agricultural activity area, and processes wastewater in an agricultural activity area or wastewater entering an agricultural activity area to meet irrigation requirements.
  • Water, prevention and control of pollutants such as heavy metals fundamentally reduce heavy metals and other pollutants in farmland crops, promote crop growth, avoid accumulation of heavy metals, endanger human health, maintain good farmland conditions, promote sustainable and healthy development of agriculture, and ensure agricultural safety. And human body safety.
  • the inventors conducted intensive research to provide a pollutant prevention and control device including an A 2 /O, a nano-aeration tank and a rapid soil infiltration device, and a physical body through a body of water, plants, microorganisms, and solid substrates.
  • the three synergistic effects of chemistry and biology reduce or remove the content of pollutants (including nitrogen, phosphorus, organic matter, heavy metals, etc.) in the wastewater to achieve wastewater purification to meet the irrigation requirements, thereby completing the present invention.
  • An anti-remediation device for reclaiming pollutants in an extremely water-deficient agricultural activity area, the device comprising an A 2 /O pool 1, a nano-aeration tank 2 and a rapid soil infiltration device 3 connected in sequence,
  • the A 2 /O pool 1 is filled with waste water to be treated, and the wastewater is sequentially treated in the anaerobic tank 101, the anoxic tank 102 and the aerobic tank 103, and the waste water supernatant after being treated by the aerobic tank 103 is transported.
  • the nano-aeration tank 2 To the nano-aeration tank 2;
  • the nano-aeration tank 2 receives the supernatant of the A 2 /O pool 1, the supernatant is treated under an aerobic environment, and the treated supernatant is transferred to the rapid soil infiltration device 3;
  • the quick earth infiltration device 3 is provided with one or more layers of fillers, and the pollutants are degraded or removed by flowing the received wastewater supernatant through the layers of the filler.
  • a method for preventing and controlling pollutants in water reuse in an extremely water-deficient agricultural activity area, and controlling and controlling pollutants by the above-mentioned (1) prevention and control device comprising setting A 2 /O pools connected in sequence 1. Nano aeration tank 2 and rapid soil infiltration device 3;
  • the wastewater to be treated is introduced into the A 2 /O pool 1 , and the wastewater is sequentially treated in an anaerobic, anoxic and aerobic environment, and the treated wastewater supernatant is transferred to the nano-aeration tank 2;
  • the nano-aeration tank 2 receives the wastewater supernatant of the A 2 /O pool 1 , processes the supernatant in an aerobic environment, and transports the treated supernatant to the rapid soil infiltration device 3;
  • the wastewater supernatant is introduced into the rapid soil infiltration device 3, and one or more layers of the filler placed in the rapid soil infiltration device 3 are used to degrade or remove the pollutants.
  • the A 2 /O pool comprises an anaerobic tank, an anoxic tank and an aerobic tank which are connected in series, and the wastewater can be reduced to a large extent by microbial treatment in an anaerobic-anoxic-aerobic environment.
  • the amount of organic matter, nitrogen and phosphorus in wastewater is not limited.
  • Nano-bubble water in the nano-aeration tank can generate oxygen free radicals to degrade the long-chain organic matter, and the nano-aeration tank is filled with carbon fiber ecological grass, nano-powder gas pool and carbon fiber ecological grass.
  • the combination exhibits significantly enhanced organic degradation, denitrification, suspended solids removal and heavy metal removal compared to the nano-powder gas pool.
  • the rapid soil infiltration device of the present invention is laid with a plurality of layers of fillers, and a specific selection of the type of filler, the ratio of the amount of the particles, the particle size and the filling height in each layer of the filler can be selected in the rapid soil infiltration device. Effectively achieve heavy metal adsorption, suspension filtration, organic matter degradation and dephosphorization and denitrification.
  • Planting a specific wetland plant in the rapid soil infiltration device of the present invention is beneficial to the enrichment of heavy metals, and the obtained wetland plants enriched with heavy metals can be reused to prepare a functional biochar having a photocatalytic effect. .
  • a pollutant prevention and control device including A 2 /O, a nano-aeration tank and a rapid soil infiltration device is provided, and three physical, chemical, and biological synergies are adopted in the device through water, plants, microorganisms, and solid substrates.
  • the role of reducing or removing the pollutants (including nitrogen, phosphorus, organic matter, heavy metals, etc.) in wastewater to achieve wastewater purification to meet the irrigation requirements of the water, can effectively alleviate the problem of water shortage and over-exploitation of groundwater.
  • Fig. 1 is a schematic view showing the structure of an anti-remediation device for water reuse in an extremely water-deficient agricultural activity area according to the present invention.
  • the anti-control device comprises an A 2 /O pool 1, a nano-aeration tank 2 and a rapid soil infiltration device 3 connected in sequence.
  • the wastewater of the A 2 /O pool 1 is treated with the wastewater to be treated, and the wastewater is treated in an anaerobic, anoxic and aerobic environment, and the supernatant of the treated wastewater is transported (the aerobic environment is treated with an aerobic environment) Supernatant) to the nano-aeration tank 2;
  • the nano-aeration tank 2 receives the supernatant of the A 2 /O pool 1 and treats the supernatant in an aerobic environment such as organic matter degradation, suspended solids sedimentation, denitrification and dephosphorization, and transports the supernatant after treatment to a fast soil.
  • Permeation device 3
  • the rapid soil infiltration device 3 is provided with one or more layers of fillers, and the pollutants are degraded or removed by flowing the received wastewater supernatant through various layers of fillers, such as degradation of organic matter, fixation and removal of heavy metals, and filtration of suspended solids. , denitrification and dephosphorization.
  • the A 2 /O pool 1 comprises an anaerobic tank 101, an anoxic tank 102 and an aerobic tank 103 connected in series, the wastewater first enters the anaerobic tank 101, and the facultative anaerobic bacteria converts the easily degradable organic matter in the wastewater.
  • VFAs volatile fatty acids
  • Phosphorus-accumulating bacteria are added to the anaerobic tank 101, and the polyphosphate bacteria decompose the phosphorus in the anaerobic tank 101, and part of the released energy can be used for aerobic phosphorus-concentrating bacteria to survive in an anaerobic environment, and another part to be aggregated.
  • Phosphate actively absorbs VFAs and stores poly- ⁇ -hydroxybutyrate (PHB) in the body.
  • the wastewater then enters the anoxic tank 102, and the denitrifying bacteria added in the anoxic tank 102 are denitrified and denitrified by using organic matter and nitrate. Thereafter, the wastewater enters the aerobic tank 103.
  • the polyphosphate bacteria mainly decompose the PHB stored in the body to generate energy for self-propagation and actively absorb dissolved phosphorus in the environment, in the form of polyphosphorus in the body. storage.
  • Nitrifying bacteria nitrite bacteria and nitric acid bacteria
  • Nitrifying bacteria are introduced into the aerobic tank 103 to oxidize ammonia nitrogen into nitrite and nitrate forms, thereby increasing the nitrogen nutrients available to the plants and facilitating denitrification by subsequent denitrification.
  • the wastewater is passed through the anaerobic tank 101 and the anoxic tank 102, and the concentration of organic matter, nitrogen and phosphorus in the wastewater is effectively reduced by the use of the phosphorus accumulating bacteria and the denitrifying bacteria.
  • the temperature in the A 2 /O cell 1 can be adjusted by a temperature control system that measures the temperature in the A 2 /O cell 1 by the temperature sensing probe 5 in the temperature control device 4 At the temperature, the measured temperature is compared with the set temperature, and the temperature in the A 2 /O cell 1 is adjusted to the set temperature.
  • the anaerobic pool 101 of the A 2 /O pool 1 is filled with aquatic plants such as duckweed and algae, and is acidified and digested by anaerobic and anoxic environments in the A 2 /O pool 1 Degradation of organic matter after acidification in an aerobic environment.
  • the A 2 /O pool 1 is provided on the premise that the standard of organic matter in the irrigation water (chemical oxygen demand (COD Cr ⁇ 150 to 300)) is satisfied.
  • a 2 /O pool 1 can provide the carbon source needed for the microorganisms added in the rapid soil infiltration device 3 to promote nitrogen, phosphorus and long carbon in the wastewater. Removal of chain organics.
  • the bottom of the A 2 /O pool 1 is provided with a sludge discharge hole 7, preferably the anaerobic tank 101 of the A 2 /O pool 1, the anoxic tank 102 and the bottom of the aerobic tank 103 are provided with sludge discharge holes 7, waste water
  • the source is complicated, and if duckweed and algae are used as raw materials for bacterial growth and nutrients, there must be silt or sediment in the wastewater.
  • the arrangement of the sludge hole 7 facilitates the discharge of sludge or sediment and reduces the space inside the A 2 /O pool 1 . Invalid occupancy.
  • a 2 /O pool 1 if duckweed and algae are used as raw materials for bacterial growth nutrients, acidification digestion is carried out in A 2 /O pool 1, then anaerobic tank 101 and anoxic pool of A 2 /O pool 1 102 is equipped with a mixer 8 to pulverize duckweed or algae to accelerate the acidification decomposition process;
  • the supernatant COD of the nano-aeration tank 2 in the A 2 /O pool 1 is controlled to be higher than 200 mg/L. At this time, the degree of decomposition of duckweed and algae in the A 2 /O pool 1 is considered to be good.
  • a nano-aeration disk 10 is disposed in the lower portion of the aerobic tank 103 and the nano-aeration tank 2 of the A 2 /O pool 1, and passes through the nano-aeration disk 10 to the aerobic tank 103 and the nano-aeration tank 2 Into the oxygen containing fluid.
  • the oxygen-containing fluid that is introduced is nano-bubble water.
  • the nanobubble water is water or an aqueous solution containing fine bubbles of a size of 100 to 500 nm, and the dissolved oxygen amount thereof is 10 to 25 mg/L.
  • the bubble in the nanobubble water and the large specific surface area Due to the small size of the bubble in the nanobubble water and the large specific surface area, it can exhibit characteristics different from ordinary bubbles. For example, due to the small volume, the residence time is long in the device, and after slowly rising, the zeta potential increases and the specific surface area increases (ordinary During the rising of the bubble, the volume increases and the specific surface area decreases; while the nano-bubble is affected by the surface tension, the internal gas generates a self-pressurizing effect, and during the ascending process, the specific surface area increases), and the collapse generates a reactive oxygen radical, such as Hydroxyl radicals, thereby efficiently degrading long carbon chain organics in water; and the high temperature generated by the collapse is also beneficial to the degradation of long carbon chain organics.
  • a reactive oxygen radical such as Hydroxyl radicals
  • the pore size on the nano-aeration disk 10 is a nano-aperture, and the arrangement of the nano-aeration disk can further ensure that the bubbles entering the nano-aeration tank 2 are nano-sized bubbles.
  • the nano-aeration disk 10 is sequentially connected to the flow meter 11 and the nano-aerator 12 through a pipeline.
  • the nano-aerator 12 supplies an oxygen-containing fluid to the nano-aeration disk 10, and the flow meter 11 can effectively control the introduction of the nano-exposure.
  • the bottom of the nano-aeration tank 2 is provided with a secondary sludge discharge hole 9 to further remove sludge or sediment brought by the waste water, to avoid clogging the pipeline when transported to the rapid soil seepage device 3, or Accelerate the blockage of the pores in the fast soil infiltration device 3.
  • the nano-aeration tank 2 can further achieve effective degradation of the long carbon chain organic matter, so that the average molecular weight of the organic matter in the effluent of the nano-aeration tank 2 is lower than 308.24 Da, preferably lower than 254.50 Da.
  • the microorganism is added to the nano-aeration tank 2, the microorganism is Bacillus sp., and Bacillus sp. is a genus of Bacillus. Bacillus sp. LY, Bacillus sp. H2 or Bacillus sp. JB4 can use long carbon chain organics as a carbon source for growth, so their addition can promote the degradation of long carbon chain organics.
  • Bacillus sp.LY is a heterotrophic nitrifying bacteria with denitrifying function
  • Bacillus sp.H2 is an aerobic denitrifying bacteria
  • Bacillus sp. JB4 is a heterotrophic nitrifying-aerobic denitrifying bacteria.
  • a variety of bacteria in the nano-aeration tank 2 degradation of long-chain hydrocarbon organic matter can also use oxygen, nitrite or nitrate as an electron acceptor for denitrification and denitrification; the above bacteria and the degraded wastewater together input quickly
  • the soil infiltration device 3 can continue to denitrify the wastewater in the rapid infiltration device 3.
  • the nano-aeration tank 2 is filled with carbon fiber ecological grass.
  • the combination of nano-powder gas pool 2 and carbon fiber ecological grass has significantly enhanced organic matter degradation, nitrogen removal, suspended matter removal and heavy metal removal compared to nano-powder gas pool 2:
  • Carbon fiber ecological grass is a PAN fiber made of long acrylic fiber, which has extremely high adsorption and bioaffinity.
  • the microbial flora can form an adhesive active biofilm on its surface, through organic pollution.
  • the adsorption, biological oxidation and other aspects of the substance, combined with the oxygen-containing fluid to degrade and transform the organic pollutants in the water (b) a section of the biofilm formed on the surface of the carbon fiber ecological grass, forming aerobic from the outside and inside , facultative anaerobic and anaerobic three reaction zones, thus creating suitable conditions for the bacterial community of nitrification and denitrification, and finally achieving the purpose of reducing total nitrogen; (c) a large amount of suspension in wastewater, especially domestic sewage The material can cause the compaction of the farmland.
  • the aerated sedimentation of the nano-aeration tank 2 can remove the inorganic components of the large particles, and the tree-like structure is dispersed underwater by the carbon fiber ecological grass, thereby increasing the contact between the particulate matter and the biofilm, and promoting the exposure.
  • Carbon fiber ecological grass has superior adsorption and enrichment effects on minerals and heavy metals: A large number of microorganisms attached to the surface of the carbon fiber ecological grass continuously absorb and enrich the heavy metals in the process of fully contacting the pollutants; on the other hand, the biofilm on the surface of the ecological grass produces a large amount of bioflocculant, and the heavy metals are fully flocculated.
  • the rapid soil infiltration device 3 is provided with three to six layers of filler from top to bottom, and each layer of filler may be selected from the group consisting of soil, biochar, functional biochar, ore particles such as gravel, natural zeolite, volcanic stone, calcite. One or more of limestone, pebbles, etc., diatomaceous earth or Floris diatomaceous earth.
  • the rapid soil infiltration device 3 is provided with four layers of packing from top to bottom:
  • the first layer of filler 13 performs heavy metal adsorption and degradation of organic matter
  • the second layer of filler 14 is subjected to heavy metal adsorption and fixation
  • the third layer of filler 15 is subjected to heavy metal adsorption and reduces the phosphorus content in the wastewater to be purified by placing the phosphorus accumulating bacteria in the region with its phosphorus accumulation capacity;
  • the fourth layer of filler 16 is subjected to heavy metal adsorption, and the phosphorus-phosphorus bacteria are dephosphorized in the region by constructing an anaerobic environment to promote the phosphorus-concentrating ability in the third-layer filler region, and is lowered by the release of anaerobic denitrifying bacteria. Purify the nitrogen content of the wastewater.
  • a first layer of filler 13 is laid at 0-500 cm, and the first layer of filler 13 is a mixed filler of soil and functional biochar, and the mixing ratio is 3: (6-8) , preferably 3:7.
  • biochar is a high carbon content material obtained by high temperature and deoiling of biomass under anoxic conditions.
  • Functional biochar is biochar loaded with transition metals.
  • Functional biochar has the following characteristics of biochar: (1) microscopic structure, porous characteristics, and biochar phase has controllable porosity compared to other materials, ie microporosity ( ⁇ 0.9nm), small pores ( ⁇ 2 nm) and large pores (>50 nm).
  • the macropores can ensure the aeration and water retention capacity of the soil used together with it, and also provide a place for microorganisms to survive and reproduce, thereby increasing the activity and reproduction speed of microorganisms; micro and small pores affect the adsorption and transfer of molecules by biochar
  • the pore structure of biochar can reduce the penetration speed of water, and enhance the adsorption capacity of soil for nutrient elements with strong mobility and easy leaching; thus, its porous structure is beneficial to the growth of plants on the first layer of filler;
  • biochar determines that it has a large surface area, and can adsorb a large amount of organic matter in the water in the region, which is beneficial to the degradation of the organic matter after adsorption;
  • the surface of the biochar has a carboxyl group, a phenolic hydroxyl group, and a carbonyl oxygen-containing functional group.
  • the surface negative charge generated by the above functional group makes the biochar have a high cation exchange amount, and can effectively adsorb heavy metal ions in the wastewater.
  • biochar in addition to the above characteristics of biochar, functional biochar can be adsorbed by the photocatalysis of transition metals in the presence of oxygen, because it is loaded with transition metals (such as nickel, cobalt, iron). Oxidation of water molecules or hydroxides on the surface of functional biochar to produce active oxygen, such as hydroxyl radicals OH, to degrade organic pollutants, desulfurize (S), dechlorinate (Cl), reduce the toxicity of organic pollutants And odor.
  • transition metals such as nickel, cobalt, iron
  • the first layer of filler 13 is mainly composed of functional biochar, and is added to the soil, and the soil is added to facilitate planting of the plant on the first layer of filler 13. It has been found through experiments that when soil and functional biochar are mixed at 3:(6-8), due to the fixation of activated carbon to the soil, good growth of plants can be achieved, and functional biochar-based fillers can adsorb a large amount of organic matter. The degradation of organic matter is effectively achieved by the photocatalysis of transition metal ions. If the ratio of soil to functional biochar is less than 3:8, the proportion of soil is reduced, and the plant growth is slow due to lack of necessary nutrients; if the ratio of soil and functional biochar is higher than 3:6, the photocatalytic effect is reduced. The degradation efficiency of organic matter is reduced.
  • the first layer of filler 13, in particular the functional biochar has a particle size of from 0.10 to 0.30 cm, in which the functional biochar supports the soil and facilitates the entry of air into the filler layer.
  • the plant roots are in effective contact with the air to facilitate the growth of aquatic plants grown on the first layer of filler 13; the functional biochar located in the lower part of the water body is photocatalyzed in the presence of oxygen to achieve effective degradation.
  • the functional biochar has a particle size of less than 0.10 cm, it is unfavorable for air to enter the filler layer. The lack of oxygen is not conducive to plant growth and organic pollutant degradation; if the functional biochar has a particle size greater than 0.30 cm, the larger particle size is more The small surface area is not conducive to photocatalytic efficiency.
  • the first layer of filler 13 is planted with wetland plants 6, preferably barracuda and canna.
  • Barracuda and canna can grow normally in eutrophic water, showing good water purification effect. It can effectively reduce suspended solids and total nitrogen in water through absorption, evaporation, root filtration, degradation and stabilization of plants. , total phosphorus, and chemical oxygen demand (COD) values.
  • COD chemical oxygen demand
  • barracuda and canna have a very high enrichment ability for heavy metals.
  • the heavy metals accumulated in the two plants are more than 100 times that of ordinary aquatic plants, but their normal growth is not affected. By harvesting plants, heavy metals can be completely removed from the water body. Therefore, the use of these two aquatic plants for planting is an effective ecological method for reducing heavy metals.
  • the functional biochar can be obtained by carbonization, activation, degreasing, reduction, and drying of the wetland plants 6 (Borso and Canna indica) grown in the rapid soil infiltration device 3.
  • plants continuously absorb heavy metals into the body, and the plant biomass that absorbs heavy metals is burned into activated carbon.
  • the heavy metals are not bonded to the carbon structure, but are embedded in the plant carbon fiber.
  • the joint structure is incomparably stable, and the heavy metal in the biochar The load is much higher than the existing load mode, with higher capacitance and photocatalytic ability.
  • the wetland plant 6 is grown by adding one or a combination of rhamnolipid or polyaspartic acid, preferably a combination of rhamnolipid and aspartic acid, to promote heavy metals in the plant. Enrichment allows the plant to reach the highest concentration of heavy metals in the plant.
  • Rhamnolipid and aspartic acid have good biocompatibility and biodegradability.
  • Rhamnolipid is a water-soluble biosurfactant, which can promote the dissolution of heavy metals adsorbed by soil through emulsification and solubilization.
  • the concentration of the rhamnolipid added in the wastewater to be treated is 1 to 20 mg/L, and the concentration of the polyaspartic acid in the wastewater to be treated is 1 to 25 mg/L.
  • a second layer of filler 14 is laid at 500-1000 cm, and the second layer of filler 14 is a mixed filler of soil, natural zeolite and limestone in a mixing ratio of 1: (2 to 3): (0.5 to 1), preferably 1:2:0.5.
  • Zeolite is a general term for aqueous porous aluminosilicates, and its crystal structure is mainly composed of a (SiO) tetrahedron.
  • Al 3+ and Si 4+ together form the overall framework of the zeolite molecule as a framework ion and an oxygen atom.
  • Part of Si 4+ is Al 3+ substituted, resulting in excess negative charge, and a certain pore size cavity and pore in the zeolite framework. It has the properties of adsorption and ion exchange, and its adsorption of ammonia nitrogen and adsorption of heavy metals have greater advantages than other ore raw materials.
  • Limestone also has more pore structure, so it can effectively adsorb heavy metals.
  • limestone can effectively regulate the acidity and alkalinity of water bodies, and promote the growth of plants in the upper layer and the growth of microorganisms in water.
  • Important role polyphosphate bacteria mostly multiply at pH 5 ⁇ pH 9, nitrifying bacteria and denitrifying bacteria mostly breed at pH 6.0 ⁇ pH 8.5).
  • limestone has a strong absorption of fluoride ions, effectively reducing the fluorine content in the water.
  • the mixing ratio of soil, natural zeolite and limestone in the second layer of filler 14 is 1: (2 ⁇ 3): (0.5-1), in which most heavy metals can be realized.
  • the adsorption is fixed and the pH of the water is regulated. If the proportion of soil increases, the adsorption of heavy metals is weaker than that of natural zeolite and limestone, which reduces the adsorption capacity of heavy metals; on the contrary, it may affect the nutrient reserve of plant growth. If the natural zeolite is increased, the adsorption of heavy metals is enhanced, and the corresponding amount of soil or limestone is reduced, which also poses a threat to plant growth or water pH regulation. Similarly, the increase of the specific gravity of limestone is beneficial to the regulation of water pH, but the efficiency of other components is reduced accordingly. Conversely, the regulation of pH in water can not be carried out quickly and effectively, thus affecting the functional activities of microorganisms.
  • the particle size of the filler 13 of the second layer is 0.08-0.1 cm, which is equivalent to or lower than the particle size of the functional biochar in the first layer of filler 13, and is equivalent to or higher than the third.
  • the particle size of the layer filler 15. The choice of the particle size range takes into account the coordination of both gas flow and total metal adsorption; when the particle size is below 0.08 cm, although the adsorption of heavy metals is promoted, the air flow is reduced due to the increase of the bulk density, which is not conducive to the third.
  • the phosphorus-concentrating process of the polyphosphate bacteria placed in the layer 15 region when the particle diameter is higher than 0.1 cm, the air circulation is promoted, but the corresponding heavy metal adsorption capacity is significantly lower than 0.08 cm.
  • a third layer of filler 15 is laid at 1000-1500 cm, and the third layer of filler 15 is a mixed filler of fly ash molecular sieve, Floris diatomaceous earth and biochar, and the mixing ratio is 1: (3 to 4): (1 to 1.5), preferably 1:3:1.
  • three kinds of porous fillers such as fly ash molecular sieve, Floris diatomaceous earth and biochar, are used for heavy metal adsorption in the deep layer of the rapid soil infiltration device.
  • the common feature of the three is that the porosity is high, which is convenient for the growth of microorganisms.
  • fly ash as molecular sieve is based on the main component of fly ash and the main components of molecular sieve, and fly ash is currently treated as waste, because it contains heavy metal ions such as Cr, Hg, As and Pb, to air
  • the water source, the soil and the like all cause pollution.
  • the cation exchange property and the pore structure can realize the adsorption of heavy metals, and the waste pollution source can be effectively utilized.
  • Biochar also has excellent heavy metal adsorption capacity due to its large surface area.
  • Flory diatomaceous earth has higher pore volume, larger specific surface area, and stronger adsorption of heavy metals and organic pollutants than ordinary diatomaceous earth.
  • Flory diatomaceous earth has a deep effect, that is, in deep filtration, the separation process only occurs in the "inside" of the medium, and the relatively small impurity particles partially passing through the surface of Floris diatomaceous earth are diatomized
  • the internal micro-porous structure of the soil and the finer pores inside are retained. When the particles hit the wall of the channel, it is possible to escape from the liquid flow; this property of Flory diatomaceous earth is beneficial to bacterial microorganisms.
  • the long-term retention of the area facilitates the release of microorganisms.
  • fly ash molecular sieve, Floris diatomite and biochar have different adsorption advantages for different heavy metals
  • the mixing ratio of fly ash molecular sieve, Flory diatomite and biochar is set to 1: (3 ⁇ 4): (1 to 1.5), while increasing the adsorption of each heavy metal ion, it can facilitate microbial delivery.
  • the particle size of the fly ash molecular sieve, Floris diatomaceous earth, and biochar is 0.05-0.08 cm. Due to the high porosity of the above three fillers, in the small particle size range, the adsorption of heavy metal ions is facilitated, and the growth of microorganisms is facilitated.
  • the polyphosphate bacteria are placed in the region of the third layer of filler 15 to reduce the phosphorus content of the wastewater to be purified.
  • the polyphosphate bacteria are selected from one or more of the group consisting of Acinetobacter, Aeromonas, and pseudomonas, preferably Pseudomonas pseudomonas alcaligenes.
  • polyphosphate bacteria Under aerobic conditions, polyphosphate bacteria oxidize ⁇ -hydroxybutyric acid (PHB) stored in cells with free oxygen as an electron acceptor, and use the energy generated by the reaction to excessively take up phosphate from the water to synthesize high-energy substance adenosine triphosphate (ATP). ), some of which supply bacterial synthesis and life-sustaining activities, and some of which synthesize polyphosphates to accumulate in bacterial cells.
  • PHB ⁇ -hydroxybutyric acid
  • ATP adenosine triphosphate
  • polyphosphate bacteria produce ATP while decomposing polyphosphate in the body, and polyphosphate bacteria release phosphorus under anaerobic conditions, and the amount of aerobic phosphorus is greater than that of anaerobic phosphorus release. The release can effectively control the phosphorus content in the wastewater.
  • a fourth layer of filler 16 is laid at 1500-2000 cm, and the fourth layer of filler 16 is a mixed filler of cobblestone and biochar, and the mixing ratio is 1: (1 to 2), preferably 1:1.
  • Cobblestones also have the ability to adsorb heavy metals, and cooperate with biochar to synergistically adsorb heavy metals.
  • the fourth layer of filler 16 has a particle size of from 0.30 to 0.50 cm, and the larger particle size filler provides a larger gap between the fillers for ease of circulation of the administered microorganisms. Due to the small particle size of the third layer of filler 15, the microorganisms are restricted to enter the fourth layer of filler 16 to a certain extent. If the particle size of the fourth layer of filler 16 is also reduced, the polyphosphate bacteria cannot effectively travel to and from the third and fourth layers. Layer filler is not conducive to the progress of phosphorus-phosphorus.
  • the fourth layer of filler 16 is an anoxic or anaerobic environment, and an anaerobic denitrifying bacterium, preferably a heterotrophic anaerobic denitrifying bacterium, is added to the fourth layer of filler 16.
  • Denitrifying bacteria can gradually convert NO 3 - to NO 2 - , NO, N 2 O and N 2 , and deviate from the water system to achieve the purpose of denitrification.
  • There are certain nitrifying bacteria and denitrifying bacteria in the wastewater and the addition of a set amount of denitrifying bacteria in the present invention can further promote the denitrification efficiency in the wastewater.
  • the fourth layer of filler 16 is further doped with a polyphosphate bacteria, and the phosphorus accumulating bacteria release phosphorus under anaerobic conditions, and the phosphorus release under the condition can promote the third layer of filler. Better polyphosphate under aerobic conditions in the area.
  • Denitrifying bacteria and polyphosphate bacteria are added to the rapid soil infiltration device 3, or denitrifying bacteria, nitrifying bacteria and polyphosphate bacteria added in the A 2 /O pool 1, or denitrifying function added in the nano aeration tank 2
  • the bacteria together in the rapid soil infiltration device 3 to complete the nitrogen and phosphorus removal, so that the nitrogen and phosphorus content in the wastewater is further effectively reduced, which is conducive to the level of irrigation.
  • a polar high polymer polyaniline film is filled between the third layer of filler 15 and the fourth layer of filler 16.
  • the polar polymer polyaniline film has the unique function of water-tightness and gas-tightness, allowing water and microbial flow between the third layer of filler 15 and the fourth layer of filler 16, but preventing the upper oxygen-containing gas from entering the fourth layer of filler 16 It ensures the life activities of anaerobic denitrifying bacteria and polyphosphate bacteria in this interval.
  • inorganic phosphorus inorganic nitrogen and short carbon chain
  • the inorganic phosphorus and inorganic nitrogen formed are mostly present in the water body in the form of acid ions. If the nitrogen and phosphorus content exceeds the requirements of the plant, it will definitely affect the soil condition, and also cause acid deposition and soil compaction. Therefore, the inventors have conducted extensive research to determine that aerobic zone (first, second and third layer filler zones) and anaerobic zone (fourth zone filler zone) are disposed in the rapid soil infiltration device 3, and the polyphosphate bacteria are placed. And denitrifying bacteria, further effectively solve the problem of excessive nitrogen and phosphorus.
  • the first layer of filler 13, the second layer of filler 14, the third layer of filler 15 and the fourth layer of filler 16 each have a thickness of 500 cm and a total filler thickness of 2000 cm; which is a preferred thickness of each filler layer to effectively implement the layers.
  • the thickness of the first layer of filler 13 may be 100 to 700 cm
  • the thickness of the second layer of filler 14 may be 300 to 700 cm
  • the thickness of the third layer of filler 15 may be 200 to 600 cm
  • the thickness of the fourth layer of filler 16 may be 100 to 600cm.
  • the rapid soil infiltration device 3 is provided with inlet pipes and outlet pipes on both sides along the longitudinal direction thereof, and control valves are provided on the inlet pipes and the outlet pipes.
  • the inlet pipe introduces waste water into the interior of the first layer of packing 13, and the outlet pipe collects the body of water which is discharged from the fourth layer of packing 16.
  • the valves of the inlet pipe and the outlet pipe are opened, and the artificial wetland is in a vertical downstream operation mode.
  • the vertical downstream operation mode greatly increases the contact area between wastewater and air, facilitates the transmission of oxygen, improves the treatment effect of nitrogen and phosphorus, and the wastewater flows vertically from the top to the bottom of the bed to the bottom of the packed bed. Purification of heavy metals and suspended solids is achieved through successive passages of different media layers.
  • Another object of the present invention is to provide a method for preventing and controlling pollutants in water reuse in an extremely water-deficient agricultural activity area, and the above-mentioned prevention and control device is used to effectively control the content of pollutants in the wastewater water introduced into the farmland, and the method includes Connected A 2 /O pool 1, nano aeration tank 2 and rapid soil infiltration device 3;
  • the wastewater to be treated is introduced into the A 2 /O pool 1, and the wastewater is treated in an anaerobic, anoxic and aerobic environment, and the treated supernatant is transported (the supernatant after treatment with an aerobic environment) ) to the nano-aeration tank 2;
  • the nano-aeration tank 2 receives the wastewater supernatant of the A 2 /O pool 1 and treats the supernatant in an aerobic environment such as organic matter degradation, suspended solids sedimentation, denitrification and dephosphorization, and transports the supernatant after treatment to a fast Soil seepage device 3;
  • the wastewater supernatant treated by the nano-aeration tank 2 is introduced into the rapid soil infiltration device 3, and one or more layers of fillers placed in the rapid soil infiltration device 3 are used to degrade or remove the pollutants, such as degradation of organic matter. Heavy metal fixation and removal, suspension filtration, denitrification and dephosphorization.
  • the treated wastewater ie, the medium water, meets the irrigation water quality requirements of the farmland and is transported to the farmland for irrigation.
  • the A 2 /O pool 1 includes an anaerobic tank 101, an anoxic tank 102 and an aerobic tank 103 connected in series, and a polyphosphate bacteria is added to the anaerobic tank 101, and the polyphosphate bacteria in the anaerobic tank 101 will Phosphorus decomposition in the body; denitrifying bacteria are added in the anoxic tank 102, denitrifying and denitrifying by using organic matter and nitrate; in the aerobic tank 103, the phosphorus accumulating bacteria actively absorb dissolved phosphorus in the environment, in the form of polyphosphorus Stored in the body, and the nitrifying bacteria are placed in the aerobic tank 103, the ammonia nitrogen is oxidized into the nitrite and nitrate forms, the nitrogen nutrients available to the plants are increased, and the total nitrogen in the wastewater can be controlled by subsequent denitrification.
  • the aquatic plants such as algae and duckweed A to the anaerobic tank 2 / O cell 1 through 101, was digested acidified A 2 / O pool anaerobic and anoxic environment 1 Degradation of organic matter after acidification by an aerobic environment. Under the premise of meeting the standards of organic matter in irrigation water, the aquatic plants are acidified and degraded into short carbon chain organics in A 2 /O pool 1, which can provide the carbon needed for the microorganisms added in the rapid soil infiltration device 3. Source, improve the removal of nitrogen, phosphorus and long carbon chain organic matter in wastewater.
  • the supernatant COD of the A 2 /O pool 1 is controlled to be higher than 200 mg/L. At this time, it is considered that the decomposition degree of duckweed and algae in the A 2 /O pool 1 is better, and it is determined. In order to obtain high levels of organic matter.
  • a nano-aeration disk 10 is disposed in the lower portion of the aerobic tank 103 and the nano-aeration tank 2 of the A 2 /O pool 1, and passes through the nano-aeration disk 10 to the aerobic tank 103 and the nano-aeration tank 2 Into the oxygen containing fluid.
  • the oxygen-containing fluid that is introduced is nano-bubble water.
  • the nanobubble water is water or an aqueous solution containing fine bubbles of a size of 100 to 500 nm, and the dissolved oxygen amount thereof is 10 to 25 mg/L.
  • the nano-aeration tank 2 is filled with carbon fiber ecological grass.
  • the quick earth infiltration device 3 is provided with four layers of packing from top to bottom:
  • the first layer of filler 13 performs heavy metal adsorption and degradation of organic matter
  • the second layer of filler 14 is subjected to heavy metal adsorption and fixation
  • the third layer of filler 15 is subjected to heavy metal adsorption and reduces the phosphorus content in the wastewater to be purified by placing the phosphorus accumulating bacteria in the region with its phosphorus accumulation capacity;
  • the fourth layer of filler 16 is subjected to heavy metal adsorption, and the phosphorus-phosphorus bacteria are dephosphorized in the region by constructing an anaerobic environment to promote the phosphorus-concentrating ability in the third-layer filler region, and is lowered by the release of anaerobic denitrifying bacteria. Purify the nitrogen content of the wastewater.
  • the first layer of filler 13 is a mixed filler of soil and functional biochar, and the mixing ratio is 3: (6-8), preferably 3:7, the particle diameter of the filler is 0.10-0.30 cm, and the filler thickness is 100. ⁇ 700cm.
  • the second layer of filler 14 is a mixed filler of soil, natural zeolite and limestone in a mixing ratio of 1: (2 to 3): (0.5 to 1), preferably 1: 2: 0.5, and the particle diameter of the filler is 0.08 to 0.1 cm.
  • the filler has a thickness of 300 to 700 cm.
  • the third layer of filler 15 is a mixed filler of fly ash molecular sieve, Floris diatomaceous earth and biochar, and the mixing ratio is 1: (3 to 4): (1 to 1.5), preferably 1:3:1, filler.
  • the particle size is 0.05-0.08 cm, and the filler thickness is 200-600 cm.
  • the fourth layer filler 16 is a mixed filler of cobblestone and biochar, and the mixing ratio is 1: (1 to 2), preferably 1:1, the particle diameter of the filler is 0.30-0.50 cm, and the filler thickness is 100-600 cm.
  • the ratio of the different materials in each of the filler layers is a weight ratio.
  • wetland plants are planted in the rapid soil infiltration device 3 (on the first layer of packing), which are barracuda and canna.
  • the wetland plant 6 is added to the rapid soil infiltration device 3 by adding one or a combination of rhamnolipid or polyaspartic acid, preferably a combination of rhamnolipid and aspartic acid to promote heavy metals in the plant. The enrichment allows the plant to reach the highest concentration of heavy metals in the plant.
  • the third layer of filler 15 and the fourth layer of filler 16 are filled with a polar polymer polyaniline film, and a third layer of filler 15 is added to the phosphorous bacteria in the fourth layer. Denitrifying bacteria and polyphosphate bacteria were added to the area of the filler 16.
  • the wetland plant barracuda and canna indica are planted in the rapid soil infiltration device 3, it has an extremely excellent enrichment effect on heavy metals, and thus can be prepared by preparing the functional biochar through the wetland plant.
  • Functional biochar can be used as a filler for rapid soil infiltration.
  • the preparation of the functional biochar comprises the following steps:
  • Step 1) crushing the plant body, performing carbonization to obtain activated carbon
  • Step 2) the activated carbon is activated to obtain activated carbon after activation
  • Step 3 the activated carbon is subjected to reduction treatment to obtain functional biochar.
  • step 1) the whole plant body is broken into 3-5 mm length as needed.
  • the heating vessel such as a tube muffle furnace
  • the heating vessel is filled with argon gas to make it an inert environment.
  • the broken plant particles are placed in a tubular muffle furnace and kept at 1200 ° C for 120 min.
  • the biomass was carbonized by reducing it from 1200 ° C to 20 ° C in 200 min.
  • step 2) the activated carbon is washed with distilled water until the water is cleaned to the cleaning standard. Adding 30-50% by weight of zinc chloride to the washed activated carbon to the liquid level higher than the activated carbon, stirring, microwave irradiation for a set time, soaking at 25 ° C overnight, that is, activation. The activated carbon is washed to neutrality, dried, and ready for use.
  • the activation causes the bio-oil produced by carbonization in step 1) to be separated from the internal pores of the activated carbon, preventing the bio-oil from clogging the internal pores of the activated carbon, and reducing the adsorption and photocatalytic effects.
  • 300W-700W microwave radiation is used for 20-30 minutes.
  • the activated carbon is dried, and the sodium borohydride solution is added dropwise to reduce the metal ions in the activated carbon to a low-valent state, such as reducing the ferrous ions to zero-valent iron.
  • the dropwise addition is simultaneously shaken with an oscillator at 100 to 140 rpm to promote the progress of the activation reaction.
  • the concentration of the sodium borohydride solution is from 10 mmol/L to 30 mmol/L.
  • the activated carbon After washing the activated carbon with distilled water, it is dried. After cooling to room temperature, the activated carbon after reduction is filled, sealed and placed in an oven, heated at 180-680 ° C for 10 to 60 minutes, and cooled to room temperature.
  • Functional biochar also known as in situ self-reducing supported activated carbon.
  • plants continuously absorb heavy metals into the body, and the plant biomass that absorbs heavy metals is burned into activated carbon.
  • the heavy metals are not bonded to the carbon structure, but are embedded in the plant carbon fiber.
  • the joint structure is incomparably stable, and the heavy metal in the biochar
  • the load is far more than the existing load mode.
  • the surface ash tar is removed, the metal ions are exposed, and the sodium borohydride is reduced to become a heavy metal-loaded activated carbon, which not only has the activated carbon itself regulating urban hydraulic power and increasing the soil. Fertilizer efficiency, nutrient retention and improved microbial habitat performance, with capacitive and catalytic functions.
  • the simulation sets the water reuse pollutant prevention and control device in the extremely water-deficient agricultural activity area, and uses the device to control the pollutants in the wastewater, and sets the A 2 /O pool, the nano-aeration tank and the sequentially connected Rapid soil infiltration device, into the A 2 /O pool into the wastewater and algae to be treated, so that wastewater and algae into the anaerobic tank (dissolved oxygen ⁇ 0.2mg / L), anoxic pool (dissolved oxygen 0.2 ⁇ 0.5mg/L) and aerobic pool (dissolved oxygen 2 ⁇ 4mg/L), and transport aerobic cell supernatant (COD higher than 200mg/L) to nano-aeration tank, in aerobic environment of nano-aeration tank Under the wastewater treatment, the dissolved oxygen in the nano-aeration tank is kept at 4-6 mg/L, and the microbial Bacillus sp.
  • the first layer of packing at 0-500cm is a mixed filler of soil and functional biochar.
  • the mixing ratio is 3:7, the particle size of the packing is 0.10-0.30cm, and the wetland is planted on it. Plant Barracuda and Canna indica; the second layer of filler at 500-1000cm is mixed filler of soil, natural zeolite and limestone.
  • the mixing ratio is 1:2:0.5, the particle size of the filler is 0.08-0.1cm, and the third is 1000-1500cm.
  • the layer is added with polyphosphate bacteria pseudomona alcaligenes
  • the third layer of filler is fly ash molecular sieve (Henan Mingze Environmental Protection Technology Co., Ltd., 13X molecular sieve), Floris diatomaceous earth and biochar mixed filler, the mixing ratio is 1:3 :1, the particle size of the filler is 0.05-0.08cm
  • the fourth layer is added with anaerobic denitrifying bacteria and the polyphosphate bacteria pseudomona alcaligenes at the 1500-2000cm, and the fourth layer is mixed with pebbles and biochar, the mixing ratio is 1 :1, the particle size of the filler is 0.30-0.50cm
  • the polar polymer polyaniline film is filled between the third layer filler and the fourth layer filler (according to "Wang Hui. Photoelectric properties of polyaniline film by electrochemical synthesis [J Journal of Xi'an Jiaotong University, 1999, (08): 107-108" Synthesis To).
  • Example number Difference from Embodiment 1 (proportional order is the same as Embodiment 1)
  • Example 2 The first layer of filler is soil
  • Example 3 The proportion of filler in the first layer of filler is 1:1
  • Example 4 The first layer of filler has a particle size of 0.01 to 0.08 cm.
  • Example 5 The first layer of filler has a particle size of 5 to 30 mm.
  • Example 6 The second layer of filler is the original proportion of soil and limestone
  • Example 7 The second layer of filler is the original proportion of soil and natural zeolite
  • Example 8 The proportion of filler in the second layer of packing is 1:1:2
  • Example 9 The second layer of filler has a particle size of 0.01-0.05 cm
  • Example 10 The second layer of filler has a particle size of 1 to 10 mm.
  • Example 11 The third layer of filler is the original proportion of fly ash molecular sieve and biochar
  • the third layer of filler is the original proportion of fly ash molecular sieve and Flory diatomaceous earth
  • Example 13 The proportion of filler in the third layer of packing is 1:1:1
  • Example 14 The third layer of filler has a particle size of 0.005-0.03cm
  • Example 15 The fourth layer of filler is pebbles
  • Example 16 The fourth layer of filler has a particle size of 0.001 to 0.30 cm
  • Example 17 Phosphorus-free bacteria are not placed in the third and fourth layers of filler
  • Example 18 No anaerobic denitrifying bacteria are placed in the fourth layer of filler
  • the evaluation water was collected from urban sewage in Beijing, and Pb(NO 3 ) 2 , Zn(NO 3 ) 2 , Na 3 PO 4 and NaNO 3 were added to the water, so that the concentration of Pb in the water was 1.15 mg/L, and the concentration of Zn was 5.56.
  • Mg / L total P content of 10.17mg / L, total N content of 27.33mg / L, COD Cr of 224mg / L, pH of 7.35; sewage into the water treatment plant for a series of treatment, the influent rate of 2.5 L / min, the water output rate is 2.5L / min, the treatment time is 24h (A 2 / O pool about 10h, nano-aeration tank about 2h, rapid soil infiltration device about 12h), measured the water quality after 24h.
  • the decrease of the proportion of functional biochar in the first layer of filler mainly affects the reduction of heavy metals and COD values; while the size of the filler becomes smaller, which is beneficial to the adsorption of heavy metals, which may affect the entry of air into the water and reduce the microbial desorption.
  • Phosphorus and denitrification capacity the size of the filler becomes larger, which promotes dephosphorization and denitrification of microorganisms, and decreases the content of phosphorus and nitrogen; however, it also has certain adverse effects on the adsorption of heavy metals.
  • the decrease of the proportion of natural zeolite mainly affects the adsorption and fixation of heavy metals, so that the content of heavy metals in the system is higher after treatment; the decrease of the proportion of limestone makes the pH adjustment in the system be affected, and the dephosphorization and denitrification efficiency of microorganisms Lowering, the total nitrogen and total phosphorus content in the water is higher; while the decrease of the particle size of the filler can significantly enhance the adsorption of heavy metals, but the regulation of COD and total nitrogen and total phosphorus is unfavorable due to the obstruction of gas circulation.
  • Flori diatomite is beneficial to the presence of microorganisms, and promotes dephosphorization and denitrification of microorganisms. With the decrease of the proportion, the dephosphorization and denitrification effect is reduced; and the biochar is excellent in adsorption performance. After removal, it has a certain influence on the level of heavy metals; and the decrease of the particle size of the filler can significantly enhance the adsorption of heavy metals.
  • activated carbon has higher heavy metal adsorption than pebbles. Therefore, replacing the activated carbon with pebbles will slightly increase the level of heavy metals.
  • the decrease of the particle size of the filler enhances the adsorption performance, but the accumulation is tight, which is not conducive to microorganisms. Dephosphorization and denitrification activities, so the total phosphorus and total nitrogen levels increased slightly with the decrease of the particle size of the fourth layer of filler.
  • the anaerobic denitrifying bacteria and the polyphosphate bacteria have the functions of denitrification and dephosphorization respectively. After the two bacteria are not added to the water, the total nitrogen and total phosphorus in the water body are obviously improved.
  • the treatment of the sewage by the device of the invention can reduce the high content of Pb to less than 0.1 mg/L, the high content of Zn to less than 1.5 mg/L, and the COD Cr to less than 100 mg/L.
  • the total P decreased to less than 1.5mg/L, the total N decreased to less than 5.0mg/L, and the pH was maintained at a neutral level, meeting the requirements of the GB5084-2005 National Standard Farmland Irrigation Water Quality Standard.
  • orientations or positional relationships of the terms “upper”, “lower”, “inner”, “outer”, “front”, “rear”, etc. are based on the working state of the present invention.
  • the orientation or the positional relationship is merely for the purpose of describing the present invention and the simplified description, and is not intended to indicate or imply that the device or component referred to has a specific orientation, is constructed and operated in a specific orientation, and therefore is not to be construed as limiting the invention. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Abstract

一种极度缺水农业活动区中水回用污染物防控装置,包括依次连接的A 2/O池(1)、纳米曝气池(2)和快速土渗装置(3),向A 2/O池(1)中通入待处理的废水,将废水依次在厌氧、缺氧和好氧环境下处理,并传输处理后废水上清液至纳米曝气池(2)中,并将经纳米曝气池(2)处理后废水上清液引入快速土渗装置(3),通过流经铺设于快速土渗装置(3)中的一层或多层填料使污染物得到降解或脱除。还公开了一种极度缺水农业活动区中水回用污染物防控方法。

Description

一种极度缺水农业活动区中水回用污染物防控方法及装置 技术领域
本发明涉及中水回用领域,特别涉及一种极度缺水农业活动区中水回用污染物防控、修复技术及装置。
背景技术
农用地是农作物正常生长所需物质的供应者和调节者,土地质量的高低,直接影响着农作物的产量。随着经济发展,农业活动区对水土资源的需求越来越大,但是水资源约束成为经济发展的瓶颈因素。2003年农业灌溉用水占全国用水总量的64.5%,因而用水资源短缺问题在农业生产中尤为突出。刘昌明的调查发现,由于过量超采地下水,导致北京市城市地面沉降。
然而,采用污水灌溉会导致土壤重金属含量增加,土壤板结,甚至产生土壤污染问题。太原市部分地区以及关中交口灌区的调查结果显示,污灌会导致浅层地下水的重金属污染。我们对北京市1000多个样点土壤和蔬菜的大面积调查研究表明,目前北京市土壤和蔬菜都已存在不同程度的重金属污染问题。
中水回用,是解决水资源危机的重要途径,也是协调水资源与水环境的根本出路,生活污水处理回用,既能减小对地下水的开采,又能带来一定的经济效益。中水是指各种排水经处理后,达到规定的水质标准,可在生活、市政、环境等范围内杂用的非饮用水。因为它的水质指标低于生活饮用水的水质标准,但又高于允许排放的污水的水质标准,处于二者之间,所以叫做“中水”。生活污水数量巨大、稳定、不受气候条件和其它自然条件的限制,将生活污水处理后达到农田灌溉水质标准,可稳定用于农业活动区灌溉,有效缓解水资源短缺问题。
随着城市的发展,人口迅速增加,如果不开展中水回用,届时包括城市在内的农业活动区的缺水问题将会更加突出。因此,在缺水或者极度缺水地区开展中水回用具有重要现实意义,并且有必要开发有效的将废水处理为满足农田灌溉水质标准的中水处理方法或装置,实现废水的有效利用。
基于上述状况,本发明提供了一种极度缺水农业活动区中水回用污染物防控技术及装置,将农业活动区中的废水或进入农业活动区中的废水处理为满足灌溉要求的中水,对重金属等污染物含量进行防控,从根本上降低农田作物中重金属等污染物,促进作物生长,避免重金属积累危害人类健康,维护农田良好状况,促进农业的持续健康发展,保证农业安全和人体安全。
发明内容
为了解决上述问题,本发明人进行了锐意研究,提供了包括A 2/O、纳米曝气池和快速土渗装置污染物防控装置,在装置内通过水体、植物、微生物、固体基质的物理、化学、生物三种协同作用,降低或去除废水中的污染物(包括氮、磷、有机物、重金属等)含量,以实现废水净化为满足灌溉要求的中水,从而完成本发明。
本发明的目的在于提供以下技术方案:
1.一种极度缺水农业活动区中水回用污染物防控装置,该装置包括依次连接的A 2/O池1、纳米曝气池2和快速土渗装置3,
所述A 2/O池1中通有待处理的废水,将废水依次在厌氧池101、缺氧池102和好氧池103中进行处理,并传输经好氧池103处理后废水上清液至纳米曝气池2中;
纳米曝气池2接收A 2/O池1的上清液,对上清液进行好氧环境下处理,传输处理后的上清液至快速土渗装置3;
快速土渗装置3中铺设有一层或多层填料,通过使接收的废水上清液流经各层填料使污染物得到降解或脱除。
(2)一种极度缺水农业活动区中水回用污染物防控方法,通过上述(1)所述防控装置进行污染物防控,所述方法包括设置依次连接的A 2/O池1、纳米曝气池2和快速土渗装置3;
向A 2/O池1中通入待处理的废水,将废水依次在厌氧、缺氧和好氧环境下处理,并传输处理后废水上清液至纳米曝气池2中;
纳米曝气池2接收A 2/O池1的废水上清液,对上清液进行好氧环境下处理,传输处理后的上清液至快速土渗装置3;
将经纳米曝气池2处理后废水上清液引入快速土渗装置3,进入铺设于快速土渗装置3中的一层或多层填料使污染物得到降解或脱除。
根据本发明提供的一种极度缺水农业活动区中水回用污染物防控方法与装置,具有以下有益效果:
(1)本发明中A 2/O池包括依次连接的厌氧池、缺氧池和好氧池,废水在厌氧-缺氧-好氧环境下通过微生物处理,可在较大程度上降低废水中有机物量、含氮量和含磷量。
(2)纳米曝气池中通有纳米气泡水,可产生氧自由基对长碳链有机物进行降解,且纳米曝气池内填充碳素纤维生态草,纳米瀑气池和碳素纤维生态草的结合相较于纳米瀑气池表现出明显增强的有机物降解、脱氮、悬浮物去除和重金属去除效果。
(3)本发明中的快速土渗装置为多层填料铺设而成,且对每层填料中的填料种类、用量配比、粒径大小和填充高度进行特定的选择,可在快速土渗装置中有效实现重金属吸附、悬浮物滤除、有机物降解和脱磷脱氮。
(4)本发明中的快速土渗装置中种植特定的湿地植物,有利于重金属的富集,且得到的富集有重金属的湿地植物可再利用,制备得到具有光催化效果的功能型生物 炭。
(5)本发明中提供了包括A 2/O、纳米曝气池和快速土渗装置污染物防控装置,在装置内通过水体、植物、微生物、固体基质的物理、化学、生物三种协同作用,降低或去除废水中的污染物(包括氮、磷、有机物、重金属等)含量,以实现废水净化为满足灌溉要求的中水,可有效缓解水资源短缺和地下水过度开采的问题。
附图说明
图1示出本发明中一种极度缺水农业活动区中水回用污染物防控装置结构示意图。
附图标号说明:
1-A 2/O池;
101-厌氧池;
102-缺氧池;
103-好氧池;
2-纳米曝气池;
3-快速土渗装置;
4-温控装置;
5-感温探头;
6-湿地植物
7-排泥孔;
8-搅拌机;
9-二次排泥孔;
10-纳米曝气盘;
11-流量计;
12-纳米曝气机;
13-第一层填料;
14-第二层填料;
15-第三层填料;
16-第四层填料。
具体实施方式
下面通过具体实施方式对本发明进行详细说明,本发明的特点和优点将随着这些说明而变得更为清楚、明确。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例 的各种方面,但是除非特别指出,不必按比例绘制附图。
如图1所示,本发明人进行了大量研究,提供了一种极度缺水农业活动区中水回用污染物防控装置,以有效控制引入农田中水的污染物如重金属、总氮、总磷含量。该防控装置包括依次连接的A 2/O池1、纳米曝气池2和快速土渗装置3,
所述A 2/O池1中通有待处理的废水,将废水依次在厌氧、缺氧和好氧环境下处理,并传输处理后废水上清液(好氧环境经好氧环境处理后的上清液)至纳米曝气池2中;
纳米曝气池2接收A 2/O池1的上清液,对上清液进行好氧环境下处理如有机物降解、悬浮物沉降和脱氮脱磷,传输处理后的上清液至快速土渗装置3;
快速土渗装置3中铺设有一层或多层填料,通过使接收的废水上清液流经各层填料使污染物得到降解或脱除,如有机物的降解、重金属固定和脱除、悬浮物过滤、脱氮和脱磷。
本发明中,A 2/O池1包括依次连接的厌氧池101、缺氧池102和好氧池103,废水先进入厌氧池101,兼性厌氧菌将废水中的易降解有机物转化为挥发性脂肪酸(VFAs)。在厌氧池101中投加聚磷菌,聚磷菌在厌氧池101将体内聚磷分解,释放的能量一部分可供好氧的聚磷菌在厌氧环境下维持生存,另一部分供聚磷菌主动吸收VFAs,并在体内储存聚-β-羟丁酸(PHB)。废水随后进入缺氧池102,在缺氧池102内投加的反硝化细菌利用有机物和硝酸盐进行反硝化脱氮。其后废水进入好氧池103,聚磷菌除了吸收利用废水中残留的易降解有机物外,主要分解体内储存的PHB产生能量供自身繁殖并主动吸收环境中的溶解磷,以聚磷形式在体内存储。好氧池103内投放硝化细菌(亚硝酸细菌和硝酸细菌),将氨氮氧化成亚硝酸根和硝酸根形式,从而增加植物可利用的氮素营养,且便于通过后续反硝化作用进行脱氮。废水经厌氧池101和缺氧池102,废水中有机物、氮、磷被聚磷菌和反硝化细菌利用后浓度得到有效降低。
在一种优选的实施方式中,A 2/O池1内温度可通过温控***进行调节,所述温控***通过温控装置4中的感温探头5测定A 2/O池1中的温度,将测定的温度与设定温度进行比较,调整A 2/O池1内温度至设定温度。
在一种优选的实施方式中,A 2/O池1的厌氧池101中加有浮萍和水藻等水生植物,经A 2/O池1中厌氧和缺氧环境进行酸化消解,通过好氧环境进行酸化后有机物的降解。通过评价本发明中污染物防控装置对有机物的去除效果,在满足灌溉用水中有机物的标准(化学需氧量(COD Cr≤150~300))的前提下,向A 2/O池1中加入适当量水生植物,在A 2/O池1中将水生植物酸化、降解,可为快速土渗装置3中投加的微生物提供繁衍所需的碳源,促进废水中氮、磷和长碳链有机物的去除。
本发明中,A 2/O池1的底部设置排泥孔7,优选A 2/O池1的厌氧池101、缺氧池102和好氧池103的底部均设置排泥孔7,废水来源复杂,且若采用浮萍和水藻作为细菌生长养分的原材料,废水中必定存在淤泥或沉积物,排泥孔7的设置便于淤泥或沉积物的排出,减少A 2/O池1内空间的无效占用。
在一种优选的实施方式中,若采用浮萍和水藻作为细菌生长养分的原材料,在A 2/O池1中进行酸化消解,则A 2/O池1的厌氧池101和缺氧池102内装有搅拌机8,使得浮萍或水藻得以粉碎,加快酸化分解过程;
优选地,控制A 2/O池1中通入纳米曝气池2的上清液COD高于200mg/L,此时,认为A 2/O池1中浮萍和水藻的分解程度较好。
本发明中,在A 2/O池1的好氧池103和纳米曝气池2的下部设置纳米曝气盘10,通过纳米曝气盘10向好氧池103和纳米曝气池2中通入含氧气流体。进一步的,通入的含氧气流体为纳米气泡水。所述纳米气泡水为含有100~500nm尺寸的微小气泡的水或水溶液,其溶氧量达到10~25mg/L。
由于纳米气泡水中气泡尺寸小,比表面积大,能表现出有别于普通气泡的特性,如由于体积很小在装置中停留时间长,缓慢上升后,zeta电位升高,比表面积增大(普通气泡上升过程中体积增大,比表面积减小;而纳微气泡由于表面张力影响,内部气体产生自增压效果,上升过程中,比表面积增大),发生溃灭产生活性氧自由基,如羟基自由基,从而对水中的长碳链有机物进行高效降解;而溃灭瞬间产生的高温同样利于长碳链有机物的降解。
在一种优选的实施方式中,纳米曝气盘10上的孔径为纳米孔径,纳米曝气盘的设置可进一步保障进入纳米曝气池2中的气泡为纳米尺寸的气泡。纳米曝气盘10通过管路依次与流量计11和纳米曝气机12相连,所述纳米曝气机12向纳米曝气盘10提供含氧气流体,而流量计11可有效控制通入纳米曝气池2中的含氧气流体量(或氧气量)。
在一种优选的实施方式中,纳米曝气池2的底部设置二次排泥孔9,以进一步去除废水中带来的淤泥或沉积物,避免传输至快速土渗装置3时堵塞管道,或加快堵塞快速土渗装置3中填料孔隙。
本发明中,纳米曝气池2可进一步实现长碳链有机物的有效降解,使得纳米曝气池2出水中有机物平均分子量低于308.24Da,优选低于254.50Da。
在一种优选的实施方式中,纳米曝气池2内投加有微生物,所述微生物为Bacillus sp.,Bacillus sp.为芽孢杆菌属。Bacillus sp.中细菌如Bacillus sp.LY、Bacillus sp.H2或Bacillus sp.JB4可以以长碳链有机物作为生长的碳源,因而其加入可促进对长碳链有机物的降解。
同时,Bacillus sp.LY为具有脱氮功能的异养硝化细菌,Bacillus sp.H2为好氧反硝化细菌,Bacillus sp.JB4为异养硝化-好氧反硝化菌,因而,在利用上述一种或多种细菌在纳米曝气池2中降解长链烃有机物时,还可利用氧气、亚硝酸根或硝酸根作为电子受体进行反硝化脱氮;将上述细菌与经过降解后废水共同输入快速土渗装置3,在快速土渗装置3中还可继续对废水进行脱氮。
在本发明中,纳米曝气池2内填充碳素纤维生态草。纳米瀑气池2和碳素纤维生态草的结合相较于纳米瀑气池2具有明显增强的有机物降解、脱氮、悬浮物去除和重金属 去除效果:
(a)碳素纤维生态草是由丙烯酸长纤维制造的PAN系纤维,其具有极高的吸附性和生物亲和性,微生物菌群可在其表面形成粘着性活性生物膜,通过对有机污染物的吸附、生物氧化等环节,结合含氧气流体对水体中的有机污染物进行降解、转化;(b)碳素纤维生态草表面形成生物膜的一个断面上,由外及里形成了好氧、兼性厌氧和厌氧三种反应区,从而为硝化、反硝化作用的细菌群落繁殖创造适宜的条件,最终达到降低总氮的目的;(c)废水中特别是生活污水中含有大量悬浮物可造成农田板结,通过纳米曝气池2的曝气沉沙可去除大颗粒无机组分,通过碳素纤维生态草水下散开树状结构,增加了颗粒物与生物膜的接触,促使曝气沉沙部分未去除的小颗粒悬浮固体在此接触过程中充分沉降;(d)碳素纤维生态草对矿物质、重金属具有超强的吸附和富集作用:一方面碳素纤维生态草表面附着的大量微生物在与污染物充分接触的过程中不断吸收和富集重金属;另一方面生态草表面的生物膜产生大量的生物絮凝剂,将重金属充分絮集。
在本发明中,快速土渗装置3由上至下铺设有三层至六层填料,每层填料可选自土壤、生物炭、功能型生物炭、矿石颗粒如砾石、天然沸石、火山石、方解石、石灰石、鹅卵石等、硅藻土或弗洛里硅藻土中的一种或多种。
在一种优选的实施方式中,快速土渗装置3由上至下铺设有四层填料:
第一层填料13进行重金属吸附和有机物的降解;
第二层填料14进行重金属吸附固定;
第三层填料15进行重金属吸附并通过在此区域内投放聚磷菌以其聚磷能力降低待净化废水中的磷含量;
第四层填料16进行重金属吸附,通过构建厌氧环境使得聚磷菌在此区域内脱磷,以促进其在第三层填料区域内的聚磷能力,并通过投放厌氧反硝化细菌降低待净化废水中的氮含量。
在本发明的一种优选的实施方式中,0-500cm处铺设有第一层填料13,第一层填料13为土壤和功能型生物炭的混合填料,混合比例为3:(6~8),优选为3:7。
其中,生物炭是在缺氧的条件下生物质经高温、脱油后得到的高碳含量的材料。功能型生物炭则是负载有过渡金属的生物炭。
功能型生物炭具有生物炭的以下特点:(1)微观结构上,具有多孔性特征,且生物炭相较于其他材料具有可控的孔隙度即微孔隙(<0.9nm)、小孔隙(<2nm)和大孔隙(>50nm)。大孔隙可以保证与其配合使用的土壤的通气性和保水能力,同时也为微生物提供了生存和繁殖的场所,从而提高微生物的活性和繁衍速度;微、小孔隙影响生物炭对分子的吸附和转移,生物炭的孔隙结构能减小水分的渗透速度,增强了土壤对移动性很强和容易淋失的养分元素的吸附能力;因而其多孔结构利于第一层填料上植物的生长;
(2)生物炭的多孔性能决定其具有较大的表面积,对区域水中的有机物可进行大量吸附,利于对有机物的吸附后降解;
(3)生物炭表面具有羧基﹑酚羟基﹑羰基含氧官能团,上述官能团所产生的表面负电荷使得生物炭具有较高的阳离子交换量,可有效吸附废水中重金属离子。
值得注意的是,功能型生物炭除了具有生物炭所具有的上述特点外,由于其负载有过渡金属(如镍、钴、铁),可利用过渡金属的光催化作用,在氧气存在下将吸附在功能型生物炭表面的水分子或氢氧根氧化生成活性氧,如羟基自由基·OH,使其对有机污染物进行降解、脱硫(S)、脱氯(Cl),降低有机污染物毒性及臭味。
本发明中在第一层填料13中以功能型生物炭为主,辅助加入土壤,土壤的加入以利于第一层填料13上植物的种植。经过试验发现,土壤和功能型生物炭以3:(6~8)混合时,由于活性炭对土壤的固定,可实现植物的良好生长,且以功能型生物炭为主的填料,可吸附大量有机物,通过过渡金属离子的光催化作用,有效实现对有机物的降解。若土壤和功能型生物炭的比例低于3:8,土壤比例降低,由于缺少必要养分,植物生长态势缓慢;若土壤和功能型生物炭的比例高于3:6,降低了光催化的效果,对有机物的降解效率下降。
在进一步优选地实施方式中,第一层填料13特别是功能型生物炭的粒径为0.10-0.30cm,在此粒径范围内,功能型生物炭对土壤起支撑作用,便于空气进入填料层,植物根部与空气得到有效接触,利于种植在第一层填料13上的水生植物的生长;位于水体下部的功能型生物炭在氧气存在下进行光催化,实现有效降解。如果功能型生物炭的粒径小于0.10cm,对空气进入填料层不利,缺少氧气不利于植物生长和有机污染物降解;如果功能型生物炭的粒径大于0.30cm,大粒径的颗粒由于较小的表面积,不利于光催化效率。
在更进一步优选地实施方式中,第一层填料13上种植湿地植物6,优选为梭鱼草和美人蕉。梭鱼草和美人蕉可以在富营养化的水体中正常生长,表现出很好的水体净化效果,通过植物的吸收、挥发、根滤、降解、稳定等作用,可有效降低水中悬浮物、总氮、总磷、和化学需氧量(COD)值。值得关注的是,梭鱼草和美人蕉对重金属表现出极高的富集能力,两种植物在体内积累的重金属是普通水生植物的100倍以上,但其正常生长不受影响。通过收获植物可将重金属从水体中彻底除去,因而,选用此两种水生植物进行种植,为行之有效的降低重金属的生态方法。
在更进一步优选地实施方式中,功能型生物炭可通过快速土渗装置3中种植的湿地植物6(梭鱼草和美人蕉)经碳化、活化除油、还原、干燥得到。植物在生长过程中源源不断吸收重金属至体内,吸收重金属的植物生物质烧制为活性炭,重金属不是粘结在碳结构上,而是镶嵌在植物碳纤维内,其联结结构无比稳固,生物炭内重金属负载量远远超过现有负载方式,具备更高的电容和光催化能力。
在一种优选的实施方式中,湿地植物6生长过程添加鼠李糖脂或聚天门冬氨酸中 一种或其组合,优选鼠李糖脂和天门冬氨酸组合使用,促进植物体内重金属的富集,使得植物体内重金属达到植物能够承受的最高浓度。鼠李糖脂和天门冬氨酸具有良好的生物相容性和生物降解性,鼠李糖脂为水溶性生物表面活性剂,可通过乳化、增溶作用促进土壤等吸附的重金属的溶出,便于植物吸收;而天门冬氨酸具有鳌合活化重金属离子能力,可将土壤等吸附的重金属溶出,同时还兼具其他螯合剂所不具备的可有效促进植物生长的优势。我们发现,将两者以设定比例混合,可使植物对重金属获得有效富集。
优选的,鼠李糖脂的添加量在待处理废水中的浓度为1~20mg/L,聚天门冬氨酸的添加量在待处理废水中的浓度为1~25mg/L。
在本发明的一种优选的实施方式中,500-1000cm处铺设第二层填料14,第二层填料14为土壤、天然沸石、石灰石的混合填料,混合比例为1:(2~3):(0.5~1),优选为1:2:0.5。
沸石是含水多孔硅铝酸盐的总称,其结晶构造主要由(SiO)四面体组成。Al 3+和Si 4+作为构架离子和氧原子一起构成了沸石分子的整体框架,部分Si 4+为Al 3+取代,导致负电荷过剩,同时沸石构架中有一定孔径的空腔和孔道,决定了其具有吸附和离子交换的性质,其对氨氮的吸附和重金属的吸附固定相较于其他矿石原料有更大的优势。
石灰石同样存在较多的孔隙结构,因而可对重金属起到有效的吸附,同时石灰石可对水体的酸碱性起到有效的调节作用,对上层填料中植物生长以及水体中微生物的繁殖起到至关重要的作用(聚磷菌多在pH5~pH9下繁殖,硝化细菌和反硝化细菌多在pH6.0~pH8.5下繁殖)。同时,石灰石对氟离子有较强的吸收,有效降低水体中氟的含量。
土壤的存在同样为人工湿地中湿地植物6提供支撑;同时,研究表明,由于土壤中存在黏粒矿物、氧化物和土壤有机质等,土壤对重金属有富集倾向,使得其对重金属离子的吸附能力不容小觑。
经过大量的实验研究,本发明中选择第二层填料14中土壤、天然沸石、石灰石的混合比例为1:(2~3):(0.5~1),在此范围内,可实现大部分重金属的吸附固定和对水体的酸碱度调节。如果土壤比例增加,由于其吸附重金属吸附效果弱于天然沸石和石灰石,降低了重金属吸附能力;反之,可能影响植物生长的营养储备。如果天然沸石增加,对重金属的吸附增强,相应的土壤或石灰石量下降,同样对植物生长或水体酸碱度调控造成威胁。同样地,石灰石比重的增加对水体酸碱度调控有利,但相应降低了其他组分的效力;反之,水体酸碱度的调控不能迅速有效进行,进而影响微生物的功能活动。
在进一步优选地实施方式中,第二层的填料13的粒径为0.08-0.1cm,相当于或低于第一层填料13中功能型生物炭的粒径,且相当于或高于第三层填料15的粒径。此粒径范围的选择考虑到气体流通和总金属吸附两者的协调;粒径低于0.08cm时,虽然 促进了对重金属的吸附,但由于堆积密度增大,空气流通降低,不利于第三层填料15区域中投放的聚磷菌的聚磷过程;粒径高于0.1cm时,促进了空气流通,但相应的重金属吸附能力较0.08cm时有明显的降低。
在本发明的一种优选的实施方式中,1000-1500cm处铺设第三层填料15,第三层填料15为粉煤灰分子筛、弗洛里硅藻土和生物炭的混合填料,混合比例为1:(3~4):(1~1.5),优选为1:3:1。
本发明中以粉煤灰分子筛、弗洛里硅藻土和生物炭此三种具有多孔隙的填料在快速土渗装置深层进行重金属吸附。三者的共同特点是孔隙度高,便于微生物的挂膜生长。其中,采用粉煤灰作为分子筛是基于粉煤灰的主要成分与分子筛的主要成分相近,且粉煤灰目前是作为废弃物处理,由于其包含Cr、Hg、As和Pb等重金属离子,对空气、水源、土壤等都造成了污染,将其作为分子筛,利用其阳离子交换特性和孔道结构,可实现重金属的吸附,且使得废弃污染源可得到有效利用。
生物炭由于大表面积,同样具有优异的重金属吸附能力。
弗洛里硅藻土相较于普通硅藻土孔容大、比表面积大、重金属和有机污染物的吸附性更强。特别地,弗洛里硅藻土具有深度效应,即在深层过滤时,分离过程只发生在介质的“内部”,部分穿过弗洛里硅藻土表面的比较小的杂质粒子,被硅藻土内部曲折的微孔构造和内部更细小的孔隙所阻留,当微粒撞到通道的壁上时,才有可能脱离液流;弗洛里硅藻土的这种性质有利于细菌微生物在此区域的较长时间滞留,便于微生物的投放。
由于粉煤灰分子筛、弗洛里硅藻土和生物炭对不同的重金属具有不同的吸附优势,设定粉煤灰分子筛、弗洛里硅藻土和生物炭的混合比例为1:(3~4):(1~1.5),在提高各重金属离子吸附的同时,可利于微生物投放。
在一种优选的实施方式中,粉煤灰分子筛、弗洛里硅藻土和生物炭的粒径为0.05-0.08cm。由于上述三种填料孔隙度高,在此小粒径范围内,有利于对重金属离子的吸附,且便于微生物的挂膜生长。
在一种优选的实施方式中,第三层填料15区域内投放聚磷菌以其聚磷能力降低待净化废水中磷含量。所述聚磷菌选自不动杆菌属(Acinetobacter)、气单胞菌属(Aeromonas)、假单胞菌属(pseudomonas)中一种或多种,优选为假单胞菌pseudomona alcaligenes。
在需氧条件下,聚磷菌以游离氧为电子受体氧化细胞内贮存的β-羟丁酸(PHB),利用该反应产生的能量,过量地从水中摄取磷酸盐合成高能物质三磷酸腺苷(ATP),其中一部分供给细菌合成和维持生命活动,一部分则合成聚磷酸盐蓄积在细菌细胞内。在厌氧条件下,聚磷菌在分解体内聚磷酸盐的同时产生ATP,聚磷菌在厌氧条件下释放出磷,其好氧聚磷量大于厌氧释磷量,故通过聚磷菌的投放可有效控制废水中磷含量。
在本发明的一种优选的实施方式中,1500-2000cm处铺设第四层填料16,第四层填料16为鹅卵石、生物炭的混合填料,混合比例为1:(1~2),优选为1:1。鹅卵石同样具有重金属吸附能力,与生物炭配合,对重金属进行协同吸附作用。
在进一步优选地实施方式中,第四层填料16的粒径为0.30-0.50cm,较大粒径的填料使得填料间具有较大的间隙,便于投放的微生物的流通。由于第三层填料15的粒径较小,在一定程度上限制了微生物进入第四层填料16,若第四层填料16的粒径同样减小,聚磷菌不能有效往返于第三、四层填料,不利于聚磷—释磷的进行。
在更进一步优选地实施方式中,所述第四层填料16为缺氧或厌氧环境,在第四层填料16中投加有厌氧反硝化细菌,优选为异养厌氧反硝化细菌。反硝化细菌能够使NO 3 -逐步转变为NO 2 -、NO、N 2O和N 2,脱离水体体系,从而达到脱氮的目的。废水中本身存在一定的硝化细菌和反硝化细菌,本发明中加入设定量的反硝化细菌,可进一步促进废水中脱氮效率。
在更进一步优选地实施方式中,所述第四层填料16中还投加有聚磷菌,聚磷菌在厌氧条件下释磷,此条件下的释磷可促进其在第三层填料区域的好氧条件下更好的聚磷。
在快速土渗装置3中加入反硝化细菌和聚磷菌,或者A 2/O池1中加入的反硝化细菌、硝化细菌和聚磷菌,或者纳米曝气池2中加入的具有脱氮功能的细菌,共同在快速土渗装置3中完成脱氮除磷,使废水中氮磷含量进一步有效降低,利于达到灌溉用水平。
为了实现和保持第四层填料16的缺氧或厌氧环境,第三层填料15与第四层填料16之间填充极性高聚物聚苯胺膜。极性高聚物聚苯胺膜具有透水不透气的独特功能,可使得第三层填料15和第四层填料16间进行水和微生物的流通,但是防止了上层含氧气体进入第四层填料16,保证了厌氧反硝化细菌和聚磷菌在此区间的生命活动。
植物的生长需要适当量的磷肥和氮肥,磷肥中磷和氮肥中氮以酸根离子形式被植物吸收,但是,每年施入土壤中的肥料只有部分被当季作物吸收利用,其余被土壤固定,形成大量酸盐沉积,造成土壤板结。废水尤其是生活污水中可能富含氮、磷,两者以有机磷、有机氮或者无机磷、无机氮的形式存在,有机磷、有机氮在A 2/O池1和快速土渗装置3中分解为无机磷、无机氮和短碳链,形成的无机磷、无机氮也多以酸根离子形式存在于水体中。若氮、磷含量超过植物所需,必定影响土壤的状况,同样造成酸盐沉积、土壤板结。因而,本发明人经过大量研究,确定了在快速土渗装置3中设置好氧区(第一、二和三层填料区)和厌氧区(第四层填料区),通过投放聚磷菌和反硝化细菌,进一步有效解决氮、磷过量的问题。
上述第一层填料13、第二层填料14、第三层填料15和第四层填料16的厚度均为500cm,填料总厚度为2000cm;其为各填料层的优选厚度,以有效实施各层的功能。第一层填料13的厚度可以为100~700cm,第二层填料14的厚度可以为300~700cm,第三 层填料15的厚度可以为200~600cm,第四层填料16的厚度可以为100~600cm。
本发明中,快速土渗装置3在沿其长度方向的两侧设置有进水管和出水管,进水管和出水管上均设置有控制阀门。进水管向第一层填料13内部通入废水,出水管汇集由第四层填料16流出的水体。同时打开进水管和出水管的阀门,人工湿地为垂直下行流运行模式。垂直下行流运行模式大大增加了废水与空气的接触面积,有利于氧的传输,提高了氮磷净化处理效果,且废水从表面由上到下竖向流至填料床底,废水在流动过程中依次经过不同的介质层,从而达到对重金属和悬浮物的净化。
本发明的另一目的在于提供一种极度缺水农业活动区中水回用污染物防控方法,通过上述防控装置以有效控制引入农田的废水水中的污染物含量,所述方法包括设置依次连接的A 2/O池1、纳米曝气池2和快速土渗装置3;
向A 2/O池1中通入待处理的废水,将废水依次在厌氧、缺氧和好氧环境下处理,并传输处理后废水上清液(经好氧环境处理后的上清液)至纳米曝气池2中;
纳米曝气池2接收A 2/O池1的废水上清液,对上清液进行好氧环境下处理如有机物降解、悬浮物沉降和脱氮脱磷,传输处理后的上清液至快速土渗装置3;
将经纳米曝气池2处理后废水上清液引入快速土渗装置3,进入铺设于快速土渗装置3中的一层或多层填料使污染物得到降解或脱除,如有机物的降解、重金属固定和脱除、悬浮物过滤、脱氮和脱磷。处理后的废水即中水满足农田灌溉水质要求,将其输送至农田中进行灌溉。
本发明中,A 2/O池1包括依次连接的厌氧池101、缺氧池102和好氧池103,在厌氧池101中投加聚磷菌,聚磷菌在厌氧池101将体内聚磷分解;在缺氧池102内投加反硝化细菌,利用有机物和硝酸盐进行反硝化脱氮;在好氧池103中,聚磷菌主动吸收环境中的溶解磷,以聚磷形式在体内存储,且好氧池103内投放硝化细菌,将氨氮氧化成亚硝酸根和硝酸根形式,增加植物可利用的氮素营养且可通过后续反硝化作用控制废水中总氮量。
在本发明的一种实施方式中,向A 2/O池1的厌氧池101中通入浮萍和水藻等水生植物,经A 2/O池1中厌氧和缺氧环境进行酸化消解,通过好氧环境进行酸化后有机物的降解。在满足灌溉用水中有机物的标准的前提下,在A 2/O池1中将水生植物酸化、降解为短碳链有机物,可为快速土渗装置3中投加的微生物提供繁衍所需的碳源,提高废水中氮、磷和长碳链有机物的去除。
在本发明的一种实施方式中,控制A 2/O池1的上清液COD高于200mg/L,此时,认为A 2/O池1中浮萍和水藻的分解程度较好,确定为得到高含量的有机物。
本发明中,在A 2/O池1的好氧池103和纳米曝气池2的下部设置纳米曝气盘10,通过纳米曝气盘10向好氧池103和纳米曝气池2中通入含氧气流体。进一步的,通入的含氧气流体为纳米气泡水。所述纳米气泡水为含有100~500nm尺寸的微小气泡的水 或水溶液,其溶氧量达到10~25mg/L。
在一种优选的实施方式中,纳米曝气池2内填充碳素纤维生态草。
在本发明中,快速土渗装置3中由上至下铺设有四层填料:
第一层填料13进行重金属吸附和有机物的降解;
第二层填料14进行重金属吸附固定;
第三层填料15进行重金属吸附并通过在此区域内投放聚磷菌以其聚磷能力降低待净化废水中的磷含量;
第四层填料16进行重金属吸附,通过构建厌氧环境使得聚磷菌在此区域内脱磷,以促进其在第三层填料区域内的聚磷能力,并通过投放厌氧反硝化细菌降低待净化废水中的氮含量。
具体地,第一层填料13为土壤和功能型生物炭的混合填料,混合比例为3:(6~8),优选为3:7,填料的粒径为0.10-0.30cm,填料厚度为100~700cm。
第二层填料14为土壤、天然沸石、石灰石的混合填料,混合比例为1:(2~3):(0.5~1),优选为1:2:0.5,填料的粒径为0.08-0.1cm,填料厚度为300~700cm。
第三层填料15为粉煤灰分子筛、弗洛里硅藻土和生物炭的混合填料,混合比例为1:(3~4):(1~1.5),优选为1:3:1,填料的粒径为0.05-0.08cm,填料厚度为200~600cm。
第四层填料16为鹅卵石、生物炭的混合填料,混合比例为1:(1~2),优选为1:1,填料的粒径为0.30-0.50cm,填料厚度为100~600cm。
本发明中,各填料层中不同物料的比例为重量比。
在一种优选的实施方式中,快速土渗装置3(第一层填料上)内种植湿地植物,所述湿地植物6为梭鱼草和美人蕉。优选地,湿地植物6生长过程向快速土渗装置3中加入鼠李糖脂或聚天门冬氨酸中一种或其组合,优选鼠李糖脂和天门冬氨酸组合使用,促进植物体内重金属的富集,使得植物体内重金属达到植物能够承受的最高浓度。
在一种优选的实施方式中,第三层填料15与第四层填料16之间填充极性高聚物聚苯胺膜,在第三层填料15区域内投加聚磷菌,在第四层填料16区域内投加反硝化细菌和聚磷菌。
本发明中,由于在快速土渗装置3中种植了湿地植物梭鱼草和美人蕉,其对重金属有极为优异的富集效果,因而可通过该湿地植物进行功能型生物炭的制备,制得的功能型生物炭可作为填料回用于快速土渗装置。
本发明的一种优选的实施方式中,功能型生物炭的制备包括以下步骤:
步骤1),破碎植物体,进行碳化,得到活性炭;
步骤2),将活性炭进行活化处理,得到活化后活性炭;
步骤3),将活化后活性炭进行还原处理,得到功能型生物炭。
在步骤1)中,根据需要将整株植物体破碎成3-5mm长度。
在加热容器如管式马弗炉内充满氩气,使之成惰性环境,升高加热容器内温度至1200℃后,将破碎的植物体颗粒放置入管式马弗炉中,保持1200℃120min,200min内从1200℃降低至20℃,将生物质碳化。
在步骤2)中,用蒸馏水对活性炭进行清洗,至洗后水清亮为清洗标准。向洗后的活性炭中加入30-50%重量浓度的氯化锌至液面高过活性炭,搅拌,微波辐射设定时间后,25℃浸泡过夜,即为活化。对活化后活性炭进行清洗至中性,干燥,备用。
活化使得步骤1)碳化生成的生物油脱离活性炭内部孔隙,防止生物油堵塞活性炭内部孔隙,降低吸附和光催化效果。
活化过程中,采用300W-700W微波辐射20~30min。
在步骤3)中,将活化后活性炭烘干,在低温的环境下滴加硼氢化钠溶液还原活性炭中金属离子至低价态,如还原亚铁离子为零价铁。优选地,滴加的同时用振荡器以100~140转/分振摇,促进活化反应的进行。硼氢化钠溶液的浓度为10mmol/L~30mmol/L。
用蒸馏水清洗活性炭后烘干,待冷却至室温后将还原处理后的活性炭,装满容器并密封,置于烘箱中,在180~680℃温度下加热10~60分钟,冷却至室温即制得功能型生物炭(也即原位自还原负载型活性炭)。
植物在生长过程中源源不断吸收重金属至体内,吸收重金属的植物生物质烧制为活性炭,重金属不是粘结在碳结构上,而是镶嵌在植物碳纤维内,其联结结构无比稳固,生物炭内重金属负载量远远超过现有负载方式,生物炭活化后,其表面灰分焦油被清除,金属离子暴露出来,经过硼氢化钠还原,成为负载重金属的活性炭,不但具备活性炭本身调控城市水力、为土壤增加肥效、养分固持以及改善微生物生境的性能,同时具备电容、催化的功能。
实施例
实施例1
如图1所示,模拟设置极度缺水农业活动区中水回用污染物防控装置,并利用该装置进行废水中污染物控制,设置依次连接的A 2/O池、纳米曝气池和快速土渗装置,向A 2/O池中通入待处理的废水和藻类,使废水和藻类依次进入厌氧池(溶氧量≤0.2mg/L)、缺氧池(溶氧量0.2~0.5mg/L)和好氧池(溶氧量2~4mg/L),并传输好氧池上清液(COD高于200mg/L)至纳米曝气池,在纳米曝气池的好氧环境下进行废水处理,纳米曝气池中溶氧量保持在4~6mg/L,纳米曝气池中加入微生物Bacillus sp.(Bacillus sp.H2和Bacillus sp.JB4),以及CFS-1型碳素纤维生态草(北京京阳环保工程有限公司);将经纳米曝气池处理后废水上清液引入快速土渗装置。
快速土渗装置中设置四层填料,0-500cm处第一层填料为土壤和功能型生物炭的混合填料,混合比例为3:7,填料粒径为0.10-0.30cm,其上种植有湿地植物梭鱼草和美 人蕉;500-1000cm处第二层填料为土壤、天然沸石、石灰石的混合填料,混合比例为1:2:0.5,填料粒径为0.08-0.1cm;1000-1500cm处第三层投加聚磷菌pseudomona alcaligenes,第三层填料为粉煤灰分子筛(河南铭泽环保科技有限公司,13X分子筛)、弗洛里硅藻土和生物炭的混合填料,混合比例为1:3:1,填料粒径为0.05-0.08cm;1500-2000cm处第四层投加厌氧反硝化细菌及聚磷菌pseudomona alcaligenes,第四层填料为鹅卵石、生物炭的混合填料,混合比例为1:1,填料粒径为0.30-0.50cm;第三层填料与第四层填料之间填充极性高聚物聚苯胺膜(根据“王辉.电化学合成聚苯胺薄膜光电性能的研究[J].西安交通大学学报,1999,(08):107-108”合成得到)。
实施例2~18
与实施例1类似,区别如下表1所示。
表1
实施例编号 与实施例1的区别(比例顺序同实施例1)
实施例2 第一层填料为土壤
实施例3 第一层填料中填料比例为1:1
实施例4 第一层填料粒径为0.01~0.08cm
实施例5 第一层填料粒径为5~30mm
实施例6 第二层填料为原比例的土壤和石灰石
实施例7 第二层填料为原比例的土壤和天然沸石
实施例8 第二层填料中填料比例为1:1:2
实施例9 第二层填料粒径为0.01-0.05cm
实施例10 第二层填料粒径为1~10mm
实施例11 第三层填料为原比例的粉煤灰分子筛和生物炭
实施例12 第三层填料为原比例的粉煤灰分子筛和弗洛里硅藻土
实施例13 第三层填料中填料比例为1:1:1
实施例14 第三层填料粒径为0.005-0.03cm
实施例15 第四层填料为鹅卵石
实施例16 第四层填料粒径0.001~0.30cm
实施例17 第三、四层填料区域不投放聚磷菌
实施例18 第四层填料区域不投放厌氧反硝化细菌
实验例
通过测定处理前后水中重金属、COD Cr、总磷、总氮含量、pH值,对实施例1~18中污染物控制方法的效果进行评价,结果如表2所示。
评价用水采集自北京市城市污水,向水中加入Pb(NO 3) 2、Zn(NO 3) 2、Na 3PO 4、NaNO 3,使得水中Pb的浓度为1.15mg/L,Zn的浓度为5.56mg/L,总P含量为10.17mg/L,总N含量为27.33mg/L,COD Cr为224mg/L,pH为7.35;将污水通入水处理装置中进行一系列处理,进水速率为2.5L/min,出水速率为2.5L/min,处理时间为24h(A 2/O池约10h、纳米曝气池约2h,快速土渗装置约12h),测定24h后出水水质。
表2
Figure PCTCN2018120546-appb-000001
Figure PCTCN2018120546-appb-000002
由表2可知,第一层填料中功能型生物炭比例的下降,主要影响对重金属和COD值的降低;而填料尺寸变小,利于重金属的吸附,可能因为影响空气进入水中,降低了微生物脱磷、脱氮能力;填料尺寸变大,促进微生物脱磷、脱氮,磷、氮含量下降;但对重金属的吸附也产生了一定的不利影响。
第二层填料中,天然沸石比例的下降,主要影响对重金属的吸附和固定,使得处理后体系中重金属含量较高;石灰石比例的下降使得体系中pH调节受到影响,微生物的脱磷脱氮效率降低,使得水中总氮、总磷含量较高;而填料粒径的下降,可明显提升的对重金属的吸附,但是由于气体流通受阻,对COD和总氮、总磷的调控不利。
第三层填料中,弗洛里硅藻土有利于微生物存在,且促进微生物脱磷、脱氮,随着其比例的下降,脱磷脱氮效果有所下降;而生物炭由于优异的吸附性能,去除后对重金属水平有一定影响;而填料粒径的下降,可明显提升的对重金属的吸附。
第四层填料中,活性炭相较于鹅卵石具有更高的重金属吸附性,因而用鹅卵石取代活性炭会使重金属水平略有升高;填料粒径的降低增强了吸附性能,但是堆积紧密,不利于微生物脱磷脱氮活动,因而随第四层填料粒径下降,总磷、总氮水平略有升高。
厌氧反硝化细菌和聚磷菌分别有脱氮和脱磷功能,向水中不投加该两种细菌后,水体中总氮、总磷量分别有明显的提升。
由实施例中实验结果可知,采用本发明装置对污水进行处理后可以使高含量Pb降至0.1mg/L以下,高含量Zn降至1.5mg/L以下,COD Cr降至100mg/L以下,总P降至1.5mg/L以下,总N降至5.0mg/L以下,pH维持在中性水平,满足《GB5084-2005中华人民共和国国家标准农田灌溉水质标准》要求。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”、“前”、“后”等指示的方位或位置关系为基于本发明工作状态下的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上结合具体实施方式和/或范例性实例以及附图对本发明进行了详细说明,不过这些说明并不能理解为对本发明的限制。本领域技术人员理解,在不偏离本发明精神和范围的情况下,可以对本发明技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本发明的范围内。本发明的保护范围以所附权利要求为准。

Claims (10)

  1. 一种极度缺水农业活动区中水回用污染物防控装置,该装置包括依次连接的A 2/O池(1)、纳米曝气池(2)和快速土渗装置(3),
    所述A 2/O池(1)中通有待处理的废水,将废水依次在厌氧池(101)、缺氧池(102)和好氧池(103)中进行处理,并传输经好氧池(103)处理后废水上清液至纳米曝气池(2)中;
    纳米曝气池(2)接收A 2/O池(1)的上清液,对上清液进行好氧环境下处理,传输处理后的上清液至快速土渗装置(3);
    快速土渗装置(3)中铺设有一层或多层填料,通过使接收的废水上清液流经各层填料使污染物得到降解或脱除。
  2. 根据权利要求1所述的装置,其特征在于,A 2/O池(1)的厌氧池(101)中加有水生植物浮萍和水藻,经A 2/O池(1)中厌氧和缺氧环境进行酸化消解,通过好氧环境进行酸化后有机物的降解;
    A 2/O池(1)的厌氧池(101)和缺氧池(102)内装有搅拌机8,使得浮萍或水藻得以粉碎;
    优选地,控制A 2/O池(1)中通入纳米曝气池(2)的上清液COD高于200mg/L。
  3. 根据权利要求1所述的装置,其特征在于,在A 2/O池(1)的好氧池(103)和纳米曝气池(2)的下部设置纳米曝气盘(10),通过纳米曝气盘(10)向好氧池(103)和纳米曝气池(2)中通入含氧气流体;
    优选地,通入的含氧气流体为纳米气泡水,所述纳米气泡水为含有100~500nm尺寸的微小气泡的水或水溶液,其溶氧量达到10~25mg/L。
  4. 根据权利要求1所述的装置,其特征在于,纳米曝气池(2)内投加有微生物,所述微生物为芽孢杆菌属Bacillus sp.;
    纳米曝气池(2)出水中有机物平均分子量低于308.24Da。
  5. 根据权利要求1所述的装置,其特征在于,纳米曝气池(2)内填充碳素纤维生态草。
  6. 根据权利要求1所述的装置,其特征在于,快速土渗装置(3)由上至下铺设有四层填料:
    第一层填料(13)中土壤和功能型生物炭的混合重量比例为3:(6~8),优选填料粒径为0.10-0.30cm,进行重金属吸附和有机物的降解;
    第二层填料(14)中土壤、天然沸石和石灰石的混合重量比例为1:(2~3):(0.5~1),优选填料粒径为0.08-0.1cm,进行重金属吸附固定;
    第三层填料(15)粉煤灰分子筛、弗洛里硅藻土和生物炭的混合重量比例为1:(3~4): (1~1.5),优选填料粒径为0.05-0.08cm,进行重金属吸附并通过在此区域内投放聚磷菌以其聚磷能力降低废水中的磷含量;
    第四层填料(16)中鹅卵石、生物炭的混合重量比例为1:(1~2),优选填料粒径为0.30-0.50cm,进行重金属吸附,通过构建厌氧环境使得聚磷菌在此区域内脱磷。
  7. 根据权利要求6所述的装置,其特征在于,第三层填料(15)与第四层填料(16)之间填充极性高聚物聚苯胺膜,使第四层填料所在区域形成厌氧环境;
    所述第四层填料(16)中投加有厌氧反硝化细菌;
    所述第四层填料(16)中投加有聚磷菌。
  8. 根据权利要求7所述的装置,其特征在于,快速土渗装置(3)中种植湿地植物(6),优选为梭鱼草和美人蕉;
    湿地植物(6)生长过程添加鼠李糖脂或聚天门冬氨酸中一种或其组合,优选鼠李糖脂和天门冬氨酸组合使用。
  9. 根据权利要求8所述的装置,其特征在于,第一层填料(13)中功能型生物炭通过快速土渗装置(3)中种植的湿地植物(6)制备得到,制备方法包括以下步骤:
    步骤1),破碎植物体,在惰性环境下于1200℃保持120min,200min内从1200℃降低至20℃,进行碳化,得到活性炭;
    步骤2),用蒸馏水对活性炭进行清洗,至洗后水清亮,向洗后的活性炭中加入30-50%重量浓度的氯化锌至液面高过活性炭,搅拌,300W-700W微波辐射20~30min,25℃浸泡过夜,得到活化后活性炭;
    步骤3),将活化后活性炭烘干,在低温的环境下滴加10mmol/L~30mmol/L硼氢化钠溶液还原活性炭中金属离子至低价态,蒸馏水清洗活性炭后烘干,得到功能型生物炭。
  10. 一种极度缺水农业活动区中水回用污染物防控方法,通过权利要求1至9之一所述防控装置进行污染物防控,所述方法包括设置依次连接的A 2/O池(1)、纳米曝气池(2)和快速土渗装置(3);
    向A 2/O池(1)中通入待处理的废水,将废水依次在厌氧、缺氧和好氧环境下处理,并传输处理后废水上清液至纳米曝气池(2)中;
    纳米曝气池(2)接收A 2/O池(1)的废水上清液,对上清液进行好氧环境下处理,传输处理后的上清液至快速土渗装置(3);
    将经纳米曝气池(2)处理后废水上清液引入快速土渗装置(3),进入铺设于快速土渗装置(3)中的一层或多层填料使污染物得到降解或脱除。
PCT/CN2018/120546 2017-12-13 2018-12-12 一种极度缺水农业活动区中水回用污染物防控方法及装置 WO2019114747A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/770,837 US11352281B2 (en) 2017-12-13 2018-12-12 Method and device for preventing and controlling pollutants in the reuse of reclaimed water in agricultural activity areas with extreme water shortage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711332313.7A CN108059242B (zh) 2017-12-13 2017-12-13 一种极度缺水农业活动区中水回用污染物防控方法及装置
CN201711332313.7 2017-12-13

Publications (1)

Publication Number Publication Date
WO2019114747A1 true WO2019114747A1 (zh) 2019-06-20

Family

ID=62138582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120546 WO2019114747A1 (zh) 2017-12-13 2018-12-12 一种极度缺水农业活动区中水回用污染物防控方法及装置

Country Status (3)

Country Link
US (1) US11352281B2 (zh)
CN (1) CN108059242B (zh)
WO (1) WO2019114747A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110482683A (zh) * 2019-07-23 2019-11-22 武汉新奇华清膜分离技术工程有限公司 基于活性炭技术的污水深度处理方法及设备
CN110759472A (zh) * 2019-11-18 2020-02-07 南京华创环境技术研究院有限公司 一种河道污水处理装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108059241B (zh) * 2017-12-13 2019-01-18 中国科学院地理科学与资源研究所 一种极度缺水地区流域水灌溉农田污染物控制方法与装置
CN107892441B (zh) * 2017-12-13 2018-11-23 中国科学院地理科学与资源研究所 金属矿山水资源循环利用中污染物控制装置及控制方法
CN108059242B (zh) * 2017-12-13 2019-01-18 中国科学院地理科学与资源研究所 一种极度缺水农业活动区中水回用污染物防控方法及装置
CN108033566B (zh) * 2017-12-13 2018-12-07 中国科学院地理科学与资源研究所 一种重金属防控***以及采用其的重金属防控方法
US10899643B2 (en) * 2018-08-07 2021-01-26 Gross-Wen Technologies, Inc. Targeted pollutant release in microorganisms
CN110192453B (zh) * 2019-06-19 2024-04-26 大连地拓环境科技有限公司 一种用于矿山废弃地植物栽培的方法
CN111099793A (zh) * 2020-01-15 2020-05-05 成都翌达环境保护检测有限公司 一种生活污水脱氮处理装置
CN111573852A (zh) * 2020-05-26 2020-08-25 南京公诚节能新材料研究院有限公司 一种碳素纤维生态草
CN112679035A (zh) * 2020-11-19 2021-04-20 濮阳泓天威药业有限公司 一种污水氨氮快速降解及脱色工艺
CN113620430B (zh) * 2021-08-06 2022-06-07 江苏龙腾工程设计股份有限公司 一种智能曝气式浮料模块生物滞留池
CN113666493A (zh) * 2021-08-16 2021-11-19 天津大学 一种厌氧/缺氧反硝化除磷菌生物膜反应方法及设备
CN113716819B (zh) * 2021-10-14 2023-06-23 重庆工商大学 一种水产养殖废水的净化循环***及方法
KR20230055598A (ko) * 2021-10-19 2023-04-26 씨제이제일제당 (주) 아미노산 발효 미생물을 활용한 하폐수 처리 시스템
CN114230103B (zh) * 2021-12-23 2023-04-07 西南交通大学 基于多级土壤渗滤***的农村分散式生活污水处理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252182B1 (en) * 2008-09-11 2012-08-28 University Of Central Florida Research Foundation, Inc. Subsurface upflow wetland system for nutrient and pathogen removal in wastewater treatment systems
CN104193074A (zh) * 2014-07-25 2014-12-10 中国环境科学研究院 一种高浓度难降解有机废水的处理装置和处理方法
CN104761057A (zh) * 2015-03-25 2015-07-08 山东大学 一种生物炭模块化复合垂直流人工湿地***
CN205011567U (zh) * 2015-08-13 2016-02-03 惠州市兴牧环保科技有限公司 一种生活污水生物湿地处理***
CN105967328A (zh) * 2016-06-19 2016-09-28 绍兴文理学院 稻草-生物炭-生物集成的人工湿地处理养殖废水的方法
CN106336091A (zh) * 2016-11-21 2017-01-18 珠江水利委员会珠江水利科学研究院 一种基于蚝壳‑碳纤维‑人工湿地的水体净化***和方法
CN108059242A (zh) * 2017-12-13 2018-05-22 中国科学院地理科学与资源研究所 一种极度缺水农业活动区中水回用污染物防控方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP0401968A2 (en) * 2001-11-14 2008-02-28 Dharma Living Systems Integrated hydroponic and fixed-film wastewater treatment systems and associated methods
CN101475284B (zh) * 2008-12-24 2011-06-15 江苏百纳环境工程有限公司 一种生活污水处理工艺及设备
CN201873573U (zh) * 2010-11-05 2011-06-22 刘云根 微纳米气浮垂直潜流式人工湿地污水处理装置
CN104944679B (zh) * 2015-05-19 2017-01-18 江苏省环境科学研究院 一种分散型高氨氮污水的处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252182B1 (en) * 2008-09-11 2012-08-28 University Of Central Florida Research Foundation, Inc. Subsurface upflow wetland system for nutrient and pathogen removal in wastewater treatment systems
CN104193074A (zh) * 2014-07-25 2014-12-10 中国环境科学研究院 一种高浓度难降解有机废水的处理装置和处理方法
CN104761057A (zh) * 2015-03-25 2015-07-08 山东大学 一种生物炭模块化复合垂直流人工湿地***
CN205011567U (zh) * 2015-08-13 2016-02-03 惠州市兴牧环保科技有限公司 一种生活污水生物湿地处理***
CN105967328A (zh) * 2016-06-19 2016-09-28 绍兴文理学院 稻草-生物炭-生物集成的人工湿地处理养殖废水的方法
CN106336091A (zh) * 2016-11-21 2017-01-18 珠江水利委员会珠江水利科学研究院 一种基于蚝壳‑碳纤维‑人工湿地的水体净化***和方法
CN108059242A (zh) * 2017-12-13 2018-05-22 中国科学院地理科学与资源研究所 一种极度缺水农业活动区中水回用污染物防控方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110482683A (zh) * 2019-07-23 2019-11-22 武汉新奇华清膜分离技术工程有限公司 基于活性炭技术的污水深度处理方法及设备
CN110482683B (zh) * 2019-07-23 2024-02-23 武汉新奇华清膜分离技术工程有限公司 基于活性炭技术的污水深度处理方法及设备
CN110759472A (zh) * 2019-11-18 2020-02-07 南京华创环境技术研究院有限公司 一种河道污水处理装置

Also Published As

Publication number Publication date
CN108059242A (zh) 2018-05-22
US20210188677A1 (en) 2021-06-24
US11352281B2 (en) 2022-06-07
CN108059242B (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2019114747A1 (zh) 一种极度缺水农业活动区中水回用污染物防控方法及装置
WO2019114743A1 (zh) 金属矿山水资源循环利用中污染物控制装置及控制方法
WO2019114742A1 (zh) 一种流域水资源利用污染物防控方法与装置
WO2019114746A1 (zh) 一种极度缺水地区流域水灌溉农田污染物控制方法与装置
US11261115B2 (en) Method and device for controlling pollutants in basin water resources cycling utilization in agricultural activity areas
WO2019114744A1 (zh) 一种重金属防控***以及采用其的重金属防控方法
CN102863081B (zh) 立体生态除臭除磷脱氮方法及装置和应用
CN203768124U (zh) 一种用于微污染水处理的生态滤池
Ni et al. Demonstration research project of a new three-stage bio-oxidation pond for purifying black smelly water bodies
JP2019181465A (ja) 汚水処理装置
CN113480099B (zh) 一种景观湖水原位循环处理工艺
CN212375121U (zh) 模拟自然环境生物污水处理***
CN113403221A (zh) 一种培养水体净化土著微生物复合菌剂的方法
CN112794448A (zh) 一种流域污染河流修复的方法
Mao et al. Research on perfermance improvement of constructed wetland wastewater treatment system
CN213570007U (zh) 一种基于碳纤维的无动力污水处理一体化设备
CN112919631B (zh) 分级生物过滤介质及其制备方法、分级生物过滤***
Lingwei et al. A comparative study on the enhanced operation of a BFB and SFCW coupling process for domestic wastewater treatment
CN114538716A (zh) 一种污水生态修复***和修复方法
Wang et al. STUDY ON THE INFLUENCE OF ECOLOGICAL GARDEN LANDSCAPE DESIGN ON WATER ENVIRONMENT
Shao et al. BACTERIA IMMOBILIZED ON MICROPOROUS POLYURE-THANE TO ENHANCE CAMPUS SEWAGE TREATMENT IN CONSTRUCTED WETLANDS MICROCOSMOS
KR20200108391A (ko) 토양블록을 이용한 오수정화장치
CN117164116A (zh) 一种用于净化城镇污水厂尾水的生态安全缓冲区***
CN118026479A (zh) 尾水中传统污染物协同抗生素类新兴污染物的去除方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887968

Country of ref document: EP

Kind code of ref document: A1