WO2019109815A1 - 一种纳米纤维素、制备方法及用途 - Google Patents

一种纳米纤维素、制备方法及用途 Download PDF

Info

Publication number
WO2019109815A1
WO2019109815A1 PCT/CN2018/117073 CN2018117073W WO2019109815A1 WO 2019109815 A1 WO2019109815 A1 WO 2019109815A1 CN 2018117073 W CN2018117073 W CN 2018117073W WO 2019109815 A1 WO2019109815 A1 WO 2019109815A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocellulose
raw material
sanding
dispersion
diameter
Prior art date
Application number
PCT/CN2018/117073
Other languages
English (en)
French (fr)
Inventor
张金柱
王鹏辉
张安
刘顶
Original Assignee
济南圣泉集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南圣泉集团股份有限公司 filed Critical 济南圣泉集团股份有限公司
Publication of WO2019109815A1 publication Critical patent/WO2019109815A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining

Definitions

  • the present disclosure is in the field of nanomaterial preparation, such as a nanocellulose, a preparation method, and use.
  • Nanocellulose not only has the basic structure and properties of natural cellulose, such as sustainable regenerability, biodegradability, etc., but also has some characteristics of nanoparticles, such as large specific surface area, high crystallinity, high purity and high transparency. Nanocellulose has a series of unique properties that make it widely used in nanocomposites, fine chemicals, electronics, new energy, medicine, health, etc., also in biomedical, bioimaging, gas barrier films and transparent optics. The functional materials aspect shows great application potential.
  • the common preparation methods of nanocellulose are chemical method, mechanical method, biological method and artificial synthesis method.
  • the preparation of nanocellulose by chemical method requires a large amount of chemical reagents, which has a great impact on the environment; the preparation of nanocellulose by biological method is complicated, time-consuming and costly; the nanocellulose prepared by artificial synthesis has low polymerization degree and low molecular weight, which is difficult to achieve.
  • nanocellulose does not require chemical reagents, has little impact on the environment, but exists: 1) easy to block during high pressure homogenization, high energy consumption, long processing time, low production efficiency 2)
  • the preparation of nanocellulose by ball milling is discontinuous and subsequent separation is difficult, and the concentration of prepared nanocellulose is low; 3)
  • the nanocellulose prepared by the disc mill does not reach the required size, and when the concentration of nanocellulose is slightly When it is high, it is difficult to discharge, and the machine wears up. And the products prepared by the above mechanical methods do not reach the nanometer level.
  • CN105625077A discloses a preparation method of nano cellulose, wherein sulfuric acid is used in the process of the invention, and the environment has a great influence;
  • CN105369663A discloses a method for preparing nano cellulose with high efficiency and low energy consumption, which can improve production efficiency, but the preparation process A large number of chemical reagents are still used;
  • CN105646721A discloses a preparation method of nanocellulose fibrils, which does not use a catalyst during the preparation process and is environmentally friendly, but the concentration of the prepared nanocellulose is low.
  • One of the objects of the present disclosure is to provide a method for preparing nanocellulose, characterized in that the preparation method comprises:
  • the sanded product is homogenized by a high pressure homogenizer to obtain a nanocellulose dispersion.
  • the method for preparing nanocellulose in combination with sanding and high-pressure homogenization means, firstly breaks the nanocellulose into cellulose particles, and then places the sanded cellulose particles in a high-pressure homogenizer, on the fiber The pigment particles are peeled off to obtain a nanocellulose dispersion.
  • the nanocellulose has a diameter of 2 to 60 nm and an aspect ratio of ⁇ 200.
  • the nanocellulose has a diameter of 5 to 15 nm, for example, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm, 12 nm, 13 nm, 14 nm, and the like.
  • the diameter of the nanocellulose defined by the present disclosure is the D90 diameter of the nanocellulose, that is, 90% of the nanocellulose has a diameter below the D90 diameter.
  • the concentration of the nanocellulose dispersion is 5 to 7 wt%, such as 5.5 wt%, 6.0 wt%, 6.5 wt%, and the like.
  • the cellulose raw material comprises any one of furfural residue, bleached wood pulp, bleached straw pulp, cotton pulp, dissolving pulp, secondary fiber, unbleached wood pulp, unbleached straw pulp, and straw agricultural waste. Or a combination of at least two.
  • the content of cellulose is 95% by weight or more, for example, 96% by weight, 97% by weight, 98% by weight, 99% by weight or the like.
  • the concentration of the cellulose raw material is 2 to 10% by weight, for example, 3 wt%, 4 wt%, 5 wt%, 6 wt%, 7 wt%, 8 wt%, 9 wt%, etc., preferably 5 wt%.
  • the zirconium beads have a particle diameter of 0.8 to 1.5 mm (for example, 0.9 mm, 1.0 mm, 1.1 mm, 1.2 mm, 1.3 mm, 1.4 mm, etc.), and the zirconium beads filling ratio is 50 to 70%. (for example, 55%, 60%, 65%, etc.), the sand mill rotation speed is 1000 to 3000 rpm (for example, 1500 rpm, 2000 rpm, 2500 rpm, etc.).
  • the number of cycles of the sanding is greater than or equal to one (for example, 2, 3, 4, 5, 6, 7, 8, 11, etc.).
  • the number of cycles of the sanding is 1 to 3 times, and the particle size of the sanded product is 300 to 500 nm (for example, 320 nm, 350 nm, 380 nm, 400 nm, 450 nm, etc.).
  • the number of cycles of the sanding is ⁇ 5 times, and the particle size of the sanded product is obtained to be 100 to 200 nm (for example, 120 nm, 140 nm, 160 nm, 180 nm, etc.).
  • the homogeneous pressure is 60 to 150 MPa (e.g., 70 MPa, 90 MPa, 110 MPa, 120 MPa, 140 MPa, etc.), preferably 100 to 130 MPa.
  • the number of homogenized cycles is 3 to 10 (e.g., 4, 5, 6, 7, 8, 9, etc.), preferably 3 to 5 times.
  • step (4) is carried out: the nanocellulose dispersion is post-treated to obtain a nanocellulose powder.
  • the post treatment comprises any one or a combination of at least two of washing, grinding, and spray drying.
  • a second object of the present disclosure is to provide a nanocellulose which is prepared by the preparation method described in one of the objects.
  • the nanocellulose has a diameter of 2 to 60 nm and an aspect ratio of ⁇ 200.
  • the nanocellulose has a diameter of 5 to 15 nm.
  • the third object of the present disclosure is to provide a use of the nanocellulose according to the second object, which is used in the textile field, the pharmaceutical field, the high performance auxiliary field, the adsorption material field, the food packaging field, the composite material. field.
  • the present disclosure combines sanding and high-pressure homogenization means to first grind the cellulose raw material into cellulose particles, and then enter the high-pressure homogenizer into the high-pressure homogenizer for stripping, without adding chemical agents (such as stripping agent).
  • chemical agents such as stripping agent
  • the present disclosure provides a sanding step prior to high pressure homogenization, which can effectively reduce the size of the cellulose particles, ensure that the high pressure homogenizer is not blocked during the high pressure homogenization process, and reduce the wear on the high pressure homogenizer;
  • the sanding-high pressure homogenizing method provided by the present disclosure has high production efficiency, strong continuity, low cost, no chemical agent added, environmental protection, and the product fineness can achieve the effect of chemical peeling (2 to 60 nm). And can adjust the fineness of the product by adding or subtracting the number of sanding or adding or subtracting the sanding medium;
  • the sanding-high pressure homogenizing method provided by the present disclosure has a high product concentration and can be more than 7 wt%.
  • a method for preparing nanocellulose comprising the following steps:
  • the zirconium beads have a particle diameter of 0.8 to 1.5 mm, the zirconium beads filling rate is 60%, the sand mill rotation speed is 1000 rpm, and the circulation sanding is performed 5 times. Obtaining a peeling material having a diameter of about 190 nm;
  • a method for preparing nanocellulose comprising the following steps:
  • the zirconium beads have a particle diameter of 0.8 to 1.5 mm, the zirconium beads filling rate is 60%, the sand mill rotation speed is 2000 rpm, and the circulation sanding is performed 3 times. Obtaining a peeling material having a diameter of about 150 nm;
  • Example 3 The difference from Example 1 is that the amount of water used in step (1) is 90 mL (Example 3), 490 mL (Example 4);
  • the concentration of the nanocellulose dispersion obtained in Example 3 was 9.8 wt%, the nanocellulose D90 was 10 nm, and the aspect ratio was 210;
  • the concentration of the nanocellulose dispersion obtained in Example 4 was 2.0% by weight, the nanocellulose D90 was 10 nm, and the aspect ratio was 265.
  • Example 2 The difference from Example 1 is that the zirconium bead filling rate of the step (2) is 50% (Example 5), 70% (Example 6);
  • the concentration of the nanocellulose dispersion obtained in Example 5 was 4.9 wt%, the nanocellulose D90 was 10 nm, and the aspect ratio was 210;
  • the concentration of the nanocellulose dispersion obtained in Example 6 was 4.9 wt%, the nanocellulose D90 was 10 nm, and the aspect ratio was 271.
  • nanocellulose having a D90 ⁇ 10 nm (ie, 90%) can be obtained as long as the number of sanding operations is three or more and the pressure is at least three times higher than 100 MPa.
  • the nanocellulose particles have a particle size of less than 10 nm or less.
  • a method for preparing nanocellulose comprising the following steps:
  • the zirconium beads have a particle diameter of 0.8 to 1.5 mm, the zirconium beads filling rate is 50%, the sand mill rotation speed is 1000 rpm, and the circulation sanding is performed 5 times.
  • a method for preparing nanocellulose comprising the following steps:
  • the mixed solution in the step (1) is placed in a sand mill, the zirconium beads have a particle diameter of 0.8 to 1.5 mm, the zirconium beads filling rate is 50%, the sand mill rotation speed is 1000 rpm, and the circulation sanding is performed once. Obtaining a peeling material having a diameter of about 500 nm;
  • the step (4) is carried out to spray-dry the nanocellulose dispersion to obtain a nanocellulose powder.
  • the D90 particle size was 15 nm and the aspect ratio was 245.
  • a method for preparing nanocellulose comprising the following steps:
  • a method for preparing nanocellulose comprising the following steps:
  • the zirconium beads have a particle diameter of 0.8 to 1.5 mm, the zirconium beads filling rate is 60%, the sand mill rotation speed is 1000 rpm, and the circulation sanding is performed 5 times. Obtaining a peeling material having a diameter of about 190 nm;
  • the sanding pretreatment combined with the high-pressure homogenizer homogenizing the preparation of the nanocellulose can obtain the size of the nanocellulose which can be obtained by chemical means, and the sanding is replaced by the ball milling, and the introduction is carried out. A large amount of water is washed and separated to cause low concentration of nanocellulose, low ball milling efficiency, resulting in large size of nanocellulose, which cannot reach the size range of nanomaterials; and replacing high pressure homogenizer with disk milling, the obtained nanocellulose can only be obtained. To the size range of ordinary physical methods of nanocellulose.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种纳米纤维素的制备方法,其包括:(1)将纤维素原料分散在水中,得到原料分散液;(2)将所述原料分散液置于砂磨机中进行砂磨,得到砂磨产物;(3)将砂磨产物进行高压均质机均质,得到纳米纤维素分散液。该方法通过结合砂磨和高压均质手段,能够在不加入化学试剂的前提下,得到化学手段才能够获得的纳米纤维素尺寸。

Description

一种纳米纤维素、制备方法及用途 技术领域
本公开属于纳米材料制备领域,例如一种纳米纤维素、制备方法及用途。
背景技术
随着社会经济的不断发展,石油、煤炭等不可再生资源日益匮乏,环境污染等问题日益突出,以及各国对环境问题的日益重视及对绿色化学的呼吁,可再生资源在各个领域中的应用越来越受到重视。纤维素作为自然界中最为丰富的一种天然高分子材料,逐渐走进人们的视野。纤维素是由植物通过光合作用合成,广泛存在于自然界中,是一种可降解无污染的天然高分子材料。纳米纤维素不但具有天然纤维素的基本结构和性能,如可持续再生性、生物降解性等,而且具有纳米粒子的一些特性,如大的比表面积、高结晶度、高纯度和高透明性等,纳米纤维素具有的一系列独特性质,使其在纳米复合材料、精细化工、电子产业、新能源、医药、卫生等领域得到广泛应用,也在生物医疗、生物影像、气体阻隔薄膜及透明光学功能材料方面显示了巨大的应用潜能。
纳米纤维素常见的制备方法有化学法、机械法、生物法和人工合成法。化学法制备纳米纤维素需要使用大量的化学试剂,对环境影响大;生物法制备纳米纤维素操作复杂,耗时长,成本高;人工合成法制备的纳米纤维素聚合度低,分子量低,难以达到高度聚合的织态结构;机械法制备纳米纤维素不需要化学试剂,对环境影响小,但存在:1)采用高压均质法制备过程中易堵塞,耗能高,处理时间长,生产效率低;2)球磨法制备纳米纤维素不连续、后续分离困难,制备的纳米纤维素的浓度低;3)盘磨机制备的纳米纤维素达不到所要求得尺寸,且当纳米纤维素浓度稍高时,难以出料,机器磨损大等问题。且采用以上机械 法制备的产品达不到纳米级别。
CN105625077A公开了一种纳米纤维素的制备方法,该发明过程中使用硫酸,对环境影响较大;CN105369663A公开了一种高效率、低能耗制备纳米纤维素的方法,可提高生产效率,但制备过程中仍使用大量的化学试剂;CN105646721A公开了一种纳米纤维素纤丝的制备方法,制备过程中不使用催化剂,对环境友好,但制备的纳米纤维素的浓度低。
本领域需要开发一种纳米纤维素的制备方法,所述方法能够仅使用物理方法就可以达到化学剥离纳米纤维素的直径尺寸,减少了环境污染,且能够获得小尺寸纳米纤维素。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开的目的之一在于提供一种纳米纤维素的制备方法,其特征在于,所述制备方法包括:
(1)将纤维素原料分散在水中,得到原料分散液;
(2)将所述原料分散液置于砂磨机中进行砂磨,得到砂磨产物;
(3)将砂磨产物进行高压均质机均质,得到纳米纤维素分散液。
本公开提供的纳米纤维素的制备方法,结合砂磨和高压均质手段,首先使纳米纤维素破碎成纤维素颗粒,之后将砂磨后的纤维素颗粒置于高压均质机中,对纤维素颗粒剥离得到纳米纤维素分散液。
优选地,所述纳米纤维素的直径为2~60nm,长径比≥200。
优选地,所述纳米纤维素的直径为5~15nm,例如6nm、7nm、8nm、9nm、10nm、11nm、12nm、13nm、14nm等。
本公开限定的纳米纤维素的直径为纳米纤维素的D90直径,即90%的纳米纤维素的直径都在D90直径以下。
优选地,所述纳米纤维素分散液的浓度为5~7wt%,例如5.5wt%、6.0wt%、6.5wt%等。
优选地,所述纤维素原料包括糠醛渣、漂白木浆、漂白草浆、棉浆、溶解浆、二次纤维、未漂木浆、未漂草浆、秸秆类农业废弃物中的任意1种或至少2种的组合。
优选地,所述纤维素原料中,纤维素的含量在95wt%以上,例如96wt%、97wt%、98wt%、99wt%等。
优选地,所述原料分散液中,纤维素原料的浓度为2~10wt%,例如3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%等,优选5wt%。
优选地,所述砂磨过程中,锆珠粒径为0.8~1.5mm(例如0.9mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm等),锆珠填充率为50~70%(例如55%、60%、65%等),砂磨机转速为1000~3000rpm(例如1500rpm、2000rpm、2500rpm等)。
优选地,所述砂磨的循环次数大于等于1次(例如2次、3次、4次、5次、6次、7次、8次、11次等)。
优选地,所述砂磨的循环次数为1~3次,得到砂磨产物的粒径为300~500nm(例如320nm、350nm、380nm、400nm、450nm等)。
优选地,所述砂磨的循环次数≥5次,得到砂磨产物的粒径为100~200nm(例如120nm、140nm、160nm、180nm等)。
优选地,所述均质的压力为60~150MPa(例如70MPa、90MPa、110MPa、120MPa、140MPa等),优选100~130MPa。
优选地,所述均质的循环次数为3~10次(例如4次、5次、6次、7次、8 次、9次等),优选3~5次。
优选地,步骤(3)之后进行步骤(4):将纳米纤维素分散液后处理,得到纳米纤维素粉体。
优选地,所述后处理包括洗涤、研磨、喷雾干燥中的任意1种或至少2种的组合。
本公开目的之二是提供一种纳米纤维素,所述纳米纤维素通过目的之一所述的制备方法制备得到。
优选地,所述纳米纤维素的直径为2~60nm,长径比≥200。
优选地,所述纳米纤维素的直径为5~15nm。
本公开提供的纳米纤维素的制备过程中,不加入任何化学试剂,因此不存在任何由化学试剂引入的化学元素,如氮、硫、磷等元素。
本公开目的之三是提供一种如目的之二所述纳米纤维素的用途,所述纳米纤维素用于纺织领域、医药领域、高性能助剂领域、吸附材料领域、食品包装领域、复合材料领域。
与现有技术相比,本公开具有以下有益效果:
(1)本公开结合砂磨和高压均质手段,将纤维素原料先砂磨成纤维素颗粒,再将纤维素颗粒进入高压均质机,进行剥离,能够在不加入化学试剂(如剥离剂等)的前提下,得到化学手段才能够获得的纳米纤维素的尺寸(10nm以下);
(2)本公开在高压均质之前设置砂磨步骤,能够有效降低纤维素颗粒的尺寸,保证在高压均质过程中不堵塞高压均质机,减少对高压均质机的磨损;
(3)本公开提供的砂磨-高压均质的方式,生产效率高、连续性强,成本低,不加入化学试剂,环保,且产品细度能够达到化学剥离的效果(2~60nm),且能够通过加减砂磨次数或加减砂磨介质来调整产品细度;
(3)本公开提供的砂磨-高压均质的方式,产物浓度高,能够在7wt%以上。
具体实施方式
下面通过具体实施方式来进一步说明本公开的技术方案。
本领域技术人员应该明了,所述实施例仅仅是帮助理解本公开,不应视为对本公开的具体限制。
实施例1
一种纳米纤维素的制备方法,具体包括如下步骤:
(1)称取10g木浆(纤维素含量为97.5wt%)溶于190mL水中,搅拌均匀;
(2)将步骤(1)中的混合溶液置于砂磨机中,锆珠粒径为0.8~1.5mm,锆珠填充率为60%,砂磨机转速为1000rpm,循环砂磨5次,得到直径190nm左右的剥离物;
(3)将步骤(2)制备的剥离物转移至高压均质机中,在100MPa压力下,高压破碎3次,得到纳米纤维素的分散液,所述纳米纤维素分散液的浓度为4.9wt%,纳米纤维素的直径为D90=10nm,长径比为250。
实施例2
一种纳米纤维素的制备方法,具体包括如下步骤:
(1)称取10g木浆溶于190mL水中,搅拌均匀;
(2)将步骤(1)中的混合溶液置于砂磨机中,锆珠粒径为0.8~1.5mm,锆珠填充率为60%,砂磨机转速为2000rpm,循环砂磨3次,得到直径150nm左右的剥离物;
(3)将步骤(2)制备的剥离物转移至高压均质机中,在130MPa压力下,高压破碎5次,得到纳米纤维素的分散液,所述纳米纤维素分散液的浓度为4.9wt%,纳米纤维素的直径为D90=9nm,长径比为242。
实施例3~4
与实施例1的区别在于,步骤(1)水的使用量为90mL(实施例3)、490mL(实施例4);
实施例3得到的纳米纤维素分散液的浓度为9.8wt%,纳米纤维素D90为10nm,长径比为210;
实施例4得到的纳米纤维素分散液的浓度为2.0wt%,纳米纤维素D90为10nm,长径比为265。
实施例5~6
与实施例1的区别在于,步骤(2)锆珠填充率为50%(实施例5)、70%(实施例6);
实施例5得到的纳米纤维素分散液的浓度为4.9wt%,纳米纤维素D90为10nm,长径比为210;
实施例6得到的纳米纤维素分散液的浓度为4.9wt%,纳米纤维素D90为10nm,长径比为271。
本公开提供的纳米纤维素的制备方法中,只要能够保证砂磨次数在3次以上,压力在100MPa以上的高压均质至少3次,就能够得到D90≤10nm的纳米纤维素(即90%的纳米纤维素颗粒的粒径都在10nm以下甚至更小)。
实施例7
一种纳米纤维素的制备方法,具体包括如下步骤:
(1)称取10g糠醛渣(纤维素含量为95wt%)溶于190mL水中,搅拌均匀;
(2)将步骤(1)中的混合溶液置于砂磨机中,锆珠粒径为0.8~1.5mm,锆珠填充率为50%,砂磨机转速为1000rpm,循环砂磨5次,得到直径200nm左右的剥离物;
(3)将步骤(2)制备的剥离物转移至高压均质机中,在60MPa压力下,高压破碎10次,得到纳米纤维素的分散液,所述纳米纤维素分散液的浓度为4.8wt%,纳米纤维素的直径为D90=15nm,长径比为245。
实施例8
一种纳米纤维素的制备方法,具体包括如下步骤:
(1)称取10g棉浆(纤维素含量为99.5wt%)溶于190mL水中,搅拌均匀;
(2)将步骤(1)中的混合溶液置于砂磨机中,锆珠粒径为0.8~1.5mm,锆珠填充率为50%,砂磨机转速为1000rpm,循环砂磨1次,得到直径500nm左右的剥离物;
(3)将步骤(2)制备的剥离物转移至高压均质机中,在60MPa压力下,高压破碎10次,得到纳米纤维素的分散液,所述纳米纤维素分散液的浓度为5wt%,纳米纤维素的直径为D90=60nm,长径比为200。
实施例9
在实施例1的步骤(3)之后进行步骤(4)将纳米纤维素分散液喷雾干燥, 得到纳米纤维素粉体。
所述纳米纤维素粉体再分散后D90粒径为15nm,长径比为245。
对比例1
一种纳米纤维素的制备方法,具体包括如下步骤:
(1)称取10g木浆(纤维素含量为97.5wt%)溶于190mL水中,搅拌均匀;
(2)将步骤(1)中的混合溶液置于球磨机中,转速为300~500rpm,球磨3h,得到直径890nm左右剥离物;
(3)将步骤(2)制备的剥离物转移至高压均质机中,在100MPa压力下,高压破碎3次,得到纳米纤维素的分散液,由于球磨后磨球与纤维素剥离物粘结成一团,引入大量水进行分离,所述纳米纤维素分散液的浓度降为1.1wt%,纳米纤维素的直径为D90=180nm,长径比为50。
对比例2
一种纳米纤维素的制备方法,具体包括如下步骤:
(1)称取10g木浆(纤维素含量为97.5wt%)溶于190mL水中,搅拌均匀;
(2)将步骤(1)中的混合溶液置于砂磨机中,锆珠粒径为0.8~1.5mm,锆珠填充率为60%,砂磨机转速为1000rpm,循环砂磨5次,得到直径190nm左右的剥离物;
(3)将步骤(2)制备的剥离物转移至盘磨机中,循环盘磨15循环,盘磨转速1500rpm,得到纳米纤维素分散液,所述分散液浓度为4.9wt%,纳米纤维 素的直径为D90=30nm,长径比为180。
从实施例和对比例的结果可以看出,砂磨预处理结合高压均质机均质制备纳米纤维素能够得到化学手段才能够获得的纳米纤维素的尺寸,而将砂磨替换成球磨,引入大量水冲洗分离物料造成纳米纤维素浓度低,球磨研磨效率低,造成纳米纤维素尺寸大,无法达到纳米材料尺寸范畴;而将高压均质机替换成盘磨,制得的纳米纤维素仅能到普通物理法纳米纤维素的尺寸范畴。
申请人声明,本公开通过上述实施例来说明本发明的工艺方法,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本公开的任何改进,对本公开所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (12)

  1. 一种纳米纤维素的制备方法,其包括:
    (1)将纤维素原料分散在水中,得到原料分散液;
    (2)将所述原料分散液置于砂磨机中进行砂磨,得到砂磨产物;
    (3)将砂磨产物进行高压均质机均质,得到纳米纤维素分散液。
  2. 如权利要求1所述的制备方法,其中,所述纳米纤维素的直径为2~60nm,长径比≥200。
  3. 如权利要求1或2所述的制备方法,其中,所述纳米纤维素的直径为5~15nm。
  4. 如权利要求1~3任一项所述的制备方法,其中,所述纳米纤维素分散液的浓度为5~7wt%。
  5. 如权利要求1~4任一项所述的制备方法,其中,所述纤维素原料包括糠醛渣、漂白木浆、漂白草浆、棉浆、溶解浆、二次纤维、未漂木浆、未漂草浆、秸秆类农业废弃物中的任意1种或至少2种的组合;
    优选地,所述纤维素原料中,纤维素的含量在95wt%以上;
    优选地,所述原料分散液中,纤维素原料的浓度为2~10wt%,优选5wt%。
  6. 如权利要求1~5之一所述的制备方法,其中,所述砂磨过程中,锆珠粒径为0.8~1.5mm,锆珠填充率为50~70%,砂磨机转速为1000~3000rpm;
    优选地,所述砂磨的循环次数大于等于1次;
    优选地,所述砂磨的循环次数为1~3次,得到砂磨产物的粒径为300~500nm;
    优选地,所述砂磨的循环次数≥5次,得到砂磨产物的粒径为100~200nm。
  7. 如权利要求1~6之一所述的制备方法,其中,所述均质的压力为60~150MPa,优选100~130MPa;
    优选地,所述均质的循环次数为3~10次,优选3~5次。
  8. 如权利要求1~7之一所述的制备方法,其中,当砂磨循环3~5次,在100~130MPa下,高压均质3次以上时,得到D90≤10nm的纳米纤维素。
  9. 如权利要求1~8之一所述的制备方法,其中,步骤(3)之后进行步骤(4):将纳米纤维素分散液后处理,得到纳米纤维素粉体;
    优选地,所述后处理包括洗涤、研磨、喷雾干燥中的任意1种或至少2种的组合。
  10. 一种纳米纤维素,其通过权利要求1~9之一所述的制备方法制备得到。
  11. 如权利要求10所述的纳米纤维素,其中,所述纳米纤维素的直径为2~60nm,长径比≥200;
    优选地,所述纳米纤维素的直径为5~15nm。
  12. 一种如权利要求10或11所述纳米纤维素的用途,其用于纺织领域、医药领域、高性能助剂领域、吸附材料领域、食品包装领域、复合材料领域。
PCT/CN2018/117073 2017-12-06 2018-11-23 一种纳米纤维素、制备方法及用途 WO2019109815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711275998.6 2017-12-06
CN201711275998.6A CN109881521A (zh) 2017-12-06 2017-12-06 一种纳米纤维素、制备方法及用途

Publications (1)

Publication Number Publication Date
WO2019109815A1 true WO2019109815A1 (zh) 2019-06-13

Family

ID=66750785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117073 WO2019109815A1 (zh) 2017-12-06 2018-11-23 一种纳米纤维素、制备方法及用途

Country Status (2)

Country Link
CN (1) CN109881521A (zh)
WO (1) WO2019109815A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117461830A (zh) * 2023-11-14 2024-01-30 北京工商大学 一种具有润滑效果的纤维素纳米纤维和海藻酸钠复合微凝胶及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181421A (ja) * 2013-03-19 2014-09-29 Daicel Corp 微細セルロース繊維及びその製造方法並びに分散液
CN106633101A (zh) * 2015-10-28 2017-05-10 新材料与产业技术北京研究院 一种纳米纤维素分散液的制备方法
CN107197545A (zh) * 2017-06-20 2017-09-22 广西大学 纳米纤维素石墨烯复合电热膜及其绿色制备工艺
CN107236049A (zh) * 2017-06-29 2017-10-10 东北农业大学 一种纳米纤维素及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544747B2 (ja) * 2009-04-21 2014-07-09 王子ホールディングス株式会社 微細繊維状セルロースの製造方法
DK3071517T3 (en) * 2013-11-22 2019-02-04 Univ Queensland nano Cellulose
CN103643577B (zh) * 2013-11-27 2015-10-28 上海大学 一种利用蒜皮制备纳米纤维素晶须的方法
CN104311675A (zh) * 2014-10-08 2015-01-28 王天黎 一种机械力制备亚微米、纳米纤维素的方法
CN105646721B (zh) * 2016-01-21 2019-01-22 中国科学院青岛生物能源与过程研究所 一种纳米纤维素纤丝的制备方法
CN107286259B (zh) * 2016-03-31 2019-08-02 新材料与产业技术北京研究院 一种纳米纤维素的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181421A (ja) * 2013-03-19 2014-09-29 Daicel Corp 微細セルロース繊維及びその製造方法並びに分散液
CN106633101A (zh) * 2015-10-28 2017-05-10 新材料与产业技术北京研究院 一种纳米纤维素分散液的制备方法
CN107197545A (zh) * 2017-06-20 2017-09-22 广西大学 纳米纤维素石墨烯复合电热膜及其绿色制备工艺
CN107236049A (zh) * 2017-06-29 2017-10-10 东北农业大学 一种纳米纤维素及其制备方法

Also Published As

Publication number Publication date
CN109881521A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
Zhang et al. Lignin nanoparticles and their nanocomposites
Yang et al. Recent progress in preparation and application of nano‐chitin materials
Tang et al. Green acid-free hydrolysis of wasted pomelo peel to produce carboxylated cellulose nanofibers with super absorption/flocculation ability for environmental remediation materials
Kim et al. Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch
Agustin et al. Rapid and direct preparation of lignin nanoparticles from alkaline pulping liquor by mild ultrasonication
Lin et al. TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges
JP7501712B2 (ja) 複合粒子の製造方法
Gopi et al. Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell
Mariano et al. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges
Li et al. Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly (vinyl alcohol) composites
Sun et al. Melt-processed poly (vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics
Mincea et al. Preparation, modification, and applications of chitin nanowhiskers: a review
Deng et al. Cellulose nanofibril as a crosslinker to reinforce the sodium alginate/chitosan hydrogels
CN110055796B (zh) 一种微纳米木质素纤维素及其制备方法和用途
Dutta et al. Preparation of chitin nanofibers from dry chitin powder by star burst system: Dependence on number of passes
Qi et al. Nanocellulose: a review on preparation routes and applications in functional materials
KR20160007525A (ko) 자외선 산란제를 함유하는 수지 분체 및 그의 제조 방법, 및 화장료
Tingaut et al. Functional polymer nanocomposite materials from microfibrillated cellulose
Yang et al. A lignin-based epoxy/TiO2 hybrid nanoparticle for multifunctional bio-based epoxy with improved mechanical, UV absorption and antibacterial properties
HPS et al. Nanofibrillated cellulose reinforcement in thermoset polymer composites
Huang et al. Structure and properties of cellulose nanofibrils
Liu et al. Hydrophobic polydopamine nanoparticles filled poly (butylene adipate-co-terephthalate) composites with improved dispersion for UV-shielding
Aklog et al. Effect of grinder pretreatment for easy disintegration of chitin into nanofiber
WO2019109815A1 (zh) 一种纳米纤维素、制备方法及用途
Selianitis et al. Nanocellulose production from different sources and their self-assembly in composite materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885728

Country of ref document: EP

Kind code of ref document: A1