WO2019109800A1 - 电路板组件和天线装置 - Google Patents

电路板组件和天线装置 Download PDF

Info

Publication number
WO2019109800A1
WO2019109800A1 PCT/CN2018/116322 CN2018116322W WO2019109800A1 WO 2019109800 A1 WO2019109800 A1 WO 2019109800A1 CN 2018116322 W CN2018116322 W CN 2018116322W WO 2019109800 A1 WO2019109800 A1 WO 2019109800A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal line
circuit board
board assembly
insulating tape
assembly according
Prior art date
Application number
PCT/CN2018/116322
Other languages
English (en)
French (fr)
Inventor
徐挺威
冯茂秘
张凡
何鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019109800A1 publication Critical patent/WO2019109800A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines

Definitions

  • the present application relates to the field of base station antenna technologies, and in particular, to a connection structure between a radio frequency coaxial line and a circuit board.
  • Coaxial cables are commonly used to connect components within the base station antenna, such as a coaxial cable to a circuit board, and a signal is transmitted between the coaxial cable and the microstrip line on the circuit board.
  • the connection structure between the coaxial cable and the circuit board is called a coaxial microstrip conversion structure.
  • An important indicator for measuring the coaxial microstrip conversion structure is the standing wave. The larger the standing wave, the larger the reflection energy, the larger the loss, and even the damage to the components.
  • the connection structure between the coaxial cable and the microstrip line of the circuit board can expand the bandwidth of the antenna device, and can reduce the connection structure pair
  • the influence of standing waves is the direction of continuous research and development in the industry.
  • the embodiment of the present application provides a circuit board assembly and an antenna device.
  • the circuit board assembly can more flexibly adapt the capacitive impedance between the various structures, can realize an ultra-wide bandwidth operating frequency band, and has good standing wave matching performance.
  • the present application provides a circuit board assembly for use in an antenna device of a base station, the circuit board assembly including a circuit board and a transmission cable, the circuit board including oppositely disposed first and second surfaces,
  • the circuit board can be a single layer board or a double layer board or a multilayer board.
  • the first surface is provided with an area and a first signal line, the connection area encloses the first signal line, and the connection area and the first signal line are separated by an insulating tape.
  • a large area of copper foil is first laid on the first surface, and then part of the copper is removed on the large-area copper foil to form an insulating tape, and the insulating tape is closed end-to-end ring shape.
  • the first signal line A part of the copper surrounded by the insulating tape is the first signal line.
  • the second surface is provided with a second signal line, and the second surface may be provided with a ground layer, a pad, an electronic component or other wires in addition to the second signal line.
  • the second signal line and the first signal line are electrically connected, and the electrical connection is electrically connected through a wiring in the circuit board, or may be electrically connected through a conductive hole disposed in the circuit board.
  • the transmission cable includes an inner core and an outer conductor surrounding the inner core, the outer conductor being fixed to the connection region, the inner core being electrically connected to the first signal line.
  • the transmission cable is a coaxial cable and is a feeder of the antenna device.
  • the transmission cable may also be another two-conductor transmission cable, such as a parallel two-conductor transmission cable, wherein a first conductor of the (parallel) two-conductor transmission cable is connected to the first signal line, A second conductor of the (parallel) two conductor transmission cable is connected to the junction region.
  • a parallel two-conductor transmission cable such as a parallel two-conductor transmission cable, wherein a first conductor of the (parallel) two-conductor transmission cable is connected to the first signal line, A second conductor of the (parallel) two conductor transmission cable is connected to the junction region.
  • the present application surrounds the first signal line by providing a connection area on the first surface of the circuit board, and fixes the outer conductor of the transmission cable to the connection area, and the inner core of the transmission cable is electrically connected to the first signal line, and passes through the transmission line.
  • the cable transmits a signal to the first signal line and further transmits the signal to the second signal line through an electrical connection between the first signal line and the second signal line.
  • the application can effectively widen the working bandwidth of the antenna device by adjusting the size of the first signal line and the capacitive impedance between the first signal line and the second signal line, and the insulating tape between the first signal line and the connection region Equivalent to distributed capacitance, you can also adjust the capacitance value and widen the bandwidth of the antenna device by adjusting the width of the insulation tape.
  • the insulating tape is formed by providing a groove on the first surface, and the groove extends into the insulating medium of the circuit board, that is, on the basis of removing the copper foil, a part of the insulating medium is also removed.
  • a groove is formed.
  • the depth of the groove is the size of the groove in a direction perpendicular to the first surface, and the width of the groove is the shortest distance between the first signal line and the junction region in the direction of the first surface.
  • the present application can adjust the bandwidth of the antenna device by adjusting the depth of the groove and/or the width of the groove.
  • the shape and size of the first signal line can be used as a factor for adjusting the bandwidth of the antenna device.
  • the groove is filled with an insulating medium, and a surface of the insulating medium is flush with a surface of the connection region and/or the first signal line.
  • the filling of the insulating medium in the groove is advantageous for ensuring the insulation between the first signal line and the connection region, and preventing the short circuit between the first signal line and the connection region.
  • the insulating tape has a closed loop structure that is connected end to end, and the insulating tape has a uniform width, and the width is a shortest distance between the first signal line and the connecting region.
  • the uniform width of the insulating tape makes the width of the insulating tape a stable factor of the capacitive impedance, and the bandwidth of the antenna device is adjusted by simply adjusting the size. If the width of the insulating tape is not uniform, the size of a certain position is calculated, and the size adjustment of a specific position is calculated, so that the adjustment of the bandwidth is complicated.
  • the present application can also set the insulating tape to an irregular shape or a non-uniform distribution state. Because the antenna device adjusts the parameters before leaving the factory, the subsequent modification does not need to be changed. Applies to the specified application environment.
  • the circuit board is a single-layer board, and the circuit board is provided with a conductive hole, and the first signal line and the second signal line are electrically connected through the conductive hole.
  • the inner core of the transmission cable may protrude into the conductive hole and protrude to the second surface.
  • the circuit board includes a laminated bottom plate and a top plate, the first surface is a surface of the bottom plate facing away from the top plate, and the second surface is a back surface of the top plate a surface of the bottom plate, the bottom plate includes a first dielectric layer, the connection region and the first signal line are formed on a surface of the first dielectric layer, and the top plate includes a second dielectric layer, a second signal line is formed on a surface of the second dielectric layer, and at least one transmission layer is disposed between the first dielectric layer and the second dielectric layer, the transmission layer includes a signal transmission line and a floor, and the signal The transmission line and the floor are separated by an intermediate insulating tape, and the signal transmission line is electrically connected to the first signal line and the second signal line.
  • At least one intermediate medium layer may be disposed between the top board and the bottom board, and the transport layer may be the surface of any one of the intermediate medium layers, and the signal transmission line becomes a transmission line between the first signal line and the second signal line, the signal transmission line and
  • the design of the shape and size of the intermediate insulating tape is also a factor that affects the bandwidth of the antenna device.
  • the signal transmission line and the first and second signal lines can be electrically connected through the conductive holes.
  • the intermediate transmission layer, the floor and the intermediate insulating tape are added, so that the tuning of the antenna bandwidth is more flexible.
  • the first dielectric layer is provided with a first conductive hole, and the signal transmission line is electrically connected to the first signal line through the first conductive hole.
  • the inner core at least partially protrudes into the first conductive hole.
  • the advantage of the inner core extending into the first conductive hole is that it is easier to determine the position of the inner core and to ensure the reliability of the electrical connection between the inner core and the first signal line.
  • the inner core may not protrude into the first conductive hole.
  • the inner core and the first conductive hole are separated by a predetermined distance, and the inner core is soldered to the first signal line.
  • the width of the intermediate insulating tape is the same as the width of the insulating tape, and the width of the insulating tape is the shortest distance between the first signal line and the connection region, and the intermediate insulation
  • the width of the belt is the shortest distance between the floor and the signal transmission line.
  • the shape and size of the first signal line and the signal transmission line are the same. This embodiment is also advantageous for the circuit board manufacturing process, and the process is simple, and the manufacturing cost and efficiency are saved.
  • the first signal line includes at least two microstrip lines of different widths, and the width is a size of the microstrip line in a direction perpendicular to the extending direction of the first signal line. This embodiment adapts the bandwidth requirements of different frequency bands by the design of the shape of the first signal line.
  • connection area is provided with a receiving slot
  • the outer conductor cooperates with the receiving slot to realize positioning of the transmission cable and the circuit board. Further, the outer conductor is welded to the junction area.
  • the present application further provides an antenna device including a feed circuit and the circuit board assembly, the transmission cable being electrically connected between the feed circuit and the first signal line.
  • FIG. 1 and 2 are schematic perspective views of a circuit board assembly according to a first embodiment of the present application
  • FIG. 3 and FIG. 4 are schematic perspective views of a circuit board assembly according to a second embodiment of the present application.
  • FIG. 5 and FIG. 6 are schematic perspective views of a circuit board assembly according to a third embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional view of a circuit board assembly provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a circuit board assembly according to an embodiment of the present invention, wherein a first region, a first signal line, and an insulating tape are formed on a first surface by providing a groove;
  • Figure 9 is a schematic view showing the filling of the insulating medium in the groove on the basis of Figure 8;
  • FIG. 10 is a schematic diagram of a circuit board assembly according to an embodiment of the present invention, in which a receiving slot is provided in a receiving area, and an outer conductor of the transmission cable is installed in the receiving slot.
  • the application provides a circuit board assembly and an antenna device.
  • the circuit board assembly is applied to an antenna device of a base station.
  • the circuit board assembly includes a circuit board 10 and a transmission cable 20, the circuit board 10 includes a first surface 11 and a second surface 12 disposed opposite each other, and the circuit board 10 may be a single layer board It can also be a double-layer board or a multi-layer board.
  • the first surface 11 is provided with a connection region 112 and a first signal line 114.
  • the connection region 112 surrounds the first signal line 114, and the connection region 112 and the first signal line 114 are insulated. With 116 isolation.
  • a large area of copper foil is first laid on the first surface 11, and then part of the copper is removed on the large area copper foil to form an insulating tape 116.
  • the insulating tape 116 is closed end to end. A portion of the copper surrounded by the insulating tape 116 is the first signal line 114.
  • the second surface 12 is provided with a second signal line 124.
  • the second surface 12 may be provided with a ground layer, a pad, an electronic component or other wires in addition to the second signal line 124.
  • the second signal line 124 and the first signal line 114 are electrically connected, and the electrical connection is electrically connected through a wiring in the circuit board, or may be electrically connected through a conductive hole disposed in the circuit board 10.
  • the transmission cable 20 includes an inner core 22 and an outer conductor 21 enclosing the inner core 22, the outer conductor 21 being fixed to the connection region 112, and the outer conductor 21 being grounded through the connection region 112.
  • the inner core 22 is electrically connected to the first signal line 114.
  • the transmission cable 20 is a coaxial cable and is a feeder of the antenna device.
  • the present application surrounds the first signal line 114 by providing the connection region 112 on the first surface 11 of the circuit board 10, and fixes the outer conductor 21 of the transmission cable 20 to the connection region 112, and the inner core 22 of the transmission cable 20 is electrically connected.
  • the signal is transmitted to the first signal line 114 through the transmission cable 20, and further transmitted to the second signal line 124 through the electrical connection of the first signal line 114 and the second signal line 124.
  • the application can effectively widen the working bandwidth of the antenna device by adjusting the size of the first signal line 114 and the capacitive impedance between the first signal line 114 and the second signal line 124, and the first signal line 114 and the connection region 112
  • the insulating tape 116 is equivalent to the distributed capacitance, and the capacitance value can be adjusted and the bandwidth of the antenna device can be widened by adjusting the width of the insulating tape 116.
  • the insulating tape 116 has a closed loop structure that is connected end to end.
  • the width of the insulating tape 116 is uniform, and the width is The shortest distance between the first signal line 114 and the connected region 112 is described.
  • the insulating tape 116 having a uniform width makes the width of the insulating tape 116 a stable factor of the capacitive impedance, and the bandwidth of the antenna device is adjusted by simply adjusting the size. If the width of the insulating tape 116 is not uniform, the size of a certain position is calculated, and the size adjustment of a specific position is calculated, so that the adjustment of the bandwidth is complicated.
  • the present application can also set the insulating tape 116 to an irregular shape or a non-uniform width. Because the antenna device adjusts the parameters before leaving the factory, the subsequent modification does not need to be changed. Applies to the specified application environment.
  • the insulating tape 116 may have a ring shape (as shown in FIG. 5 ), a rectangular ring shape (as shown in FIG. 1 ), a triangular ring shape (not shown), a polygonal ring shape (not shown), and the like. The shape of the insulating tape 116.
  • the circuit board 10 includes a bottom plate 101 and a top plate 102 which are stacked.
  • the first surface 11 is a surface of the bottom plate 101 facing away from the top plate 102
  • the second surface 12 is a surface of the top plate 102 facing away from the bottom plate 101
  • the bottom plate 101 includes a first surface
  • the dielectric layer 1011, the connection region 112 and the first signal line 114 are formed on a surface of the first dielectric layer 1011
  • the top plate 102 includes a second dielectric layer 1021
  • the second signal line 124 is formed at a surface of the second dielectric layer 1021
  • the transport layer 103 includes a signal transmission line 1031 and a floor 1032
  • the signal transmission line 1031 and the floor 1032 are separated by an intermediate insulating tape 1033 electrically connected to the first signal line 114 and the second signal line 124.
  • At least one intermediate dielectric layer 104 may be disposed between the top plate 102 and the bottom plate 101.
  • the transmission layer 103 may be the surface of any one of the intermediate dielectric layers 104, and the signal transmission line 1031 becomes the first signal line 114 and the second signal line 124.
  • the design of the shape and size of the transmission line between the signal transmission line 1031 and the intermediate insulation strip 1033 is also a factor affecting the bandwidth of the antenna device.
  • the signal transmission line 1031 and the first and second signal lines 124 can be electrically connected through the conductive holes.
  • the intermediate transmission layer, the floor 1032, and the intermediate insulating tape 1033 are added, so that the tuning of the antenna bandwidth is more flexible.
  • the circuit board 10 shown in Fig. 7 is a multilayer circuit board.
  • the number of layers of the transport layer 103 shown in FIG. 7 is four, the number of layers of the intermediate dielectric layer 104 is two, and each layer of the intermediate dielectric layer 104 is provided with a transport layer, and the two intermediate dielectric layers 104 are provided.
  • the first dielectric layer 1011 and the second dielectric layer 1021 are respectively attached, and at least one dielectric layer may be disposed between the two intermediate dielectric layers 104.
  • the two layers are used to indicate that the dielectric layer is omitted.
  • the first dielectric layer 1011 is provided with a first conductive via 10112
  • the signal transmission line 1031 is electrically connected to the first signal line 114 through the first conductive via 10112 .
  • the electrical connection between the first signal line 114 and the signal transmission line 1031 is achieved by a layer (e.g., tin).
  • the inner core 22 at least partially protrudes into the first conductive hole 10112.
  • the advantage of the inner core 22 extending into the first conductive hole 10112 is that it is easier to determine the position of the inner core 22 and to ensure the reliability of the electrical connection between the inner core 22 and the first signal line 114.
  • the inner core 22 may not protrude into the first conductive hole 10112.
  • the inner core 22 and the first conductive hole 10112 are separated by a predetermined distance, and the inner core 22 is soldered to the first signal line 114.
  • the inner core is soldered to the first through the solder 30.
  • Signal line 114, wherein the inner core is wrapped by solder 30, and not shown in FIG. 3, outer conductor 21 is soldered to junction area 112 by solder 40.
  • the number of the first conductive vias 10112 may also be two. As shown in FIG. 3 , the number of the first conductive vias 10112 may also be multiple, and the plurality of first conductive vias 10112 are arranged in an array, for example. The first conductive vias 10112 shown in FIG. 3 are distributed in a 2x3 array. Two or more first conductive holes 10112 may match two or more transmission cables 20. That is, the circuit board assembly of the present application may include at least two transmission cables, and correspondingly, a corresponding number of first conductive holes 10112 may be disposed on the first signal line 114.
  • the second dielectric layer 1021 is provided with a second conductive via 10212, and the second conductive via 10212 is electrically connected to the second signal line 124.
  • the number and arrangement of the second conductive vias 10212 are also the same as the number and arrangement of the first conductive vias 10112.
  • the intermediate dielectric layer 104 is also provided with conductive holes 1042, and the conductive holes 1042 on the intermediate dielectric layer 104 are electrically connected between the signal transmission lines on the adjacent two transmission layers 103.
  • the circuit board 10 of the present application may also be a single-layer board, the circuit board is provided with a conductive hole, and the first signal line 114 and the second signal line 124 are electrically connected through the conductive hole. .
  • the inner core 22 of the transmission cable 20 can extend into the conductive hole and protrude to the second surface 12.
  • the shape and size of the first signal line 114 and the signal transmission line 1031 are the same. This embodiment is also advantageous for the manufacturing process of the circuit board 10, and the process is simple, and the manufacturing cost and efficiency are saved.
  • the first signal line 114 includes at least two microstrip lines of different widths, and the width is: a dimension of the microstrip line in a direction perpendicular to the extending direction of the first signal line 114. .
  • This embodiment adapts the bandwidth requirements of the different frequency bands by the design of the shape of the first signal line 114.
  • the shape of the second signal line 124 may be the same as the shape of the first signal line. As shown in FIG. 2, FIG. 4 and FIG.
  • the second signal line 126 includes two microstrip lines of different widths, and the second signal line 126
  • the second conductive vias 10212 extend toward the edge of the circuit board, and a portion of the second signal lines 126 connected to the second conductive vias 10212 have a width greater than a width of the second signal lines 126 near the edge portions of the circuit board.
  • the insulating tape 116 is formed by providing a groove on the first surface 11 , and the groove extends into the insulating medium of the circuit board 10 , that is, on the basis of removing the copper foil, the part is also removed. Insulating medium to form a groove.
  • the depth of the groove is the size of the groove in a direction perpendicular to the first surface 11, and the width of the groove is the shortest distance between the first signal line 114 and the land 112 in the direction of the first surface 11.
  • the present application can adjust the bandwidth of the antenna device by adjusting the depth of the groove and/or the width of the groove.
  • the shape and size of the first signal line 114 can be used as a factor for adjusting the bandwidth of the antenna device.
  • the cross section of the groove may be various shapes such as a rectangle, an arc, a triangle, and the like.
  • the recess is filled with an insulating medium, and the surface of the insulating medium is flush with the surface of the grounding region 112 and/or the first signal line 114.
  • the filling of the insulating medium in the recess is advantageous for ensuring insulation between the first signal line 114 and the connection region 112, and the short circuit between the first signal line 114 and the connection region 112 can be prevented.
  • the insulating medium filled in the recess may also be an anticorrosive material such as green oil.
  • FIG. 8 is that the insulating tape 116 is formed by providing a groove on the first surface 11, and the inside of the groove is air, and is not filled with any medium.
  • Fig. 9 is a view showing a state in which an insulating medium is filled in a groove on the basis of Fig. 8.
  • connection area 112 is provided with a receiving slot, and the outer conductor 21 cooperates with the receiving slot to realize positioning of the transmission cable 20 and the circuit board 10. Further, the outer conductor 21 is soldered to the junction region 112.
  • FIG. 10 shows a receiving groove 1122 in the connecting area 112.
  • the outer conductor 21 is received in the receiving groove 1122, and the inner core 22 extends above the first surface 11, and the receiving groove shown in FIG.
  • the shape of the 1122 is merely an example, and the shape of the receiving groove 1122 is not limited in the present application.
  • An antenna device provided by an embodiment of the present application includes a feed circuit and the circuit board assembly, and the transmission cable 20 is electrically connected between the feed circuit and the first signal line 114.
  • the feed circuit can be disposed on the circuit board 10.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

一种电路板组件,应用于基站的天线装置中,所述电路板组件包括电路板和传输线缆,所述电路板包括相对设置的第一表面和第二表面,所述第一表面设有接地区和第一信号线,所述接地区包围所述第一信号线,且所述接地区和所述第一信号线之间通过绝缘带隔离,所述第二表面设有第二信号线,所述第二信号线和所述第一信号线电连接,所述传输线缆包括内芯和包围所述内芯的外导体,所述外导体固接至所述接地区,所述内芯电连接至所述第一信号线。本申请还公开一种天线装置。本申请提供的电路板组件能更灵活地调适容性阻抗,实现超宽带宽工作频带且具良好的驻波匹配性能。

Description

电路板组件和天线装置
本申请要求于2017年12月8日提交中国专利局、申请号为2017113034211,发明名称为“电路板组件和天线装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及基站天线技术领域,特别涉及射频同轴线与电路板之间的连接结构。
背景技术
基站天线内的部件之间普遍使用同轴线缆进行连接,例如同轴线缆与电路板连接,通过同轴线缆与电路板上的微带线之间传输信号。同轴线缆与电路板之间的连接结构称之为同轴微带转换结构。衡量同轴微带转换结构的重要指标是驻波,驻波越大反射能量越大,损耗即越大,甚至对元器件造成损害。如何设计同轴线缆与电路板微带线之间的连接结构,通过同轴线缆与电路板微带线之间的连接结构能够使得天线装置的带宽得到拓展,以及可以减小连接结构对驻波影响为业界持续研发的方向。
发明内容
本申请实施例提供一种电路板组件和天线装置,电路板组件能够更灵活地调适各部分结构之间的容性阻抗,能实现超宽带宽工作频带且具良好的驻波匹配性能。
第一方面,本申请提供一种电路板组件,应用于基站的天线装置中,所述电路板组件包括电路板和传输线缆,所述电路板包括相对设置的第一表面和第二表面,电路板可以为单层板,也可以为双层板或多层板。所述第一表面设有接地区和第一信号线,所述接地区包围所述第一信号线,且所述接地区和所述第一信号线之间通过绝缘带隔离。具体而言,在制作电路板过程中,先在第一表面铺设大面积的铜箔,然后在大面积铜箔上移除部分铜,形成绝缘带,绝缘带呈封闭的首尾相连的环状,绝缘带包围的部分铜为第一信号线。所述第二表面设有第二信号线,第二表面除了第二信号线,还可以设置接地层、焊盘、电子元件或其它的导线。所述第二信号线和所述第一信号线电连接,电连接的方式或以通过电路板内走线电连接,也可以通过设置在电路板内的导电孔电连接。所述传输线缆包括内芯和包围所述内芯的外导体,所述外导体固接至所述接地区,所述内芯电连接至所述第一信号线。具体而言,传输线缆为同轴线缆,为天线装置的馈电线。
所述传输线缆还可以是其他双导体传输线缆,如平行双导体传输线缆,其中,所述(平行)双导体传输线缆的第一导体连接至所述第一信号线,所述(平行)双导体传输线缆的第二导体连接至所述接地区。
本申请通过在电路板的第一表面设置接地区包围第一信号线,并将传输线缆的外导体固接至接地区,传输线缆的内芯电连接至第一信号线,通过传输线缆传输信号至第一信号线,并进一步通过第一信号线和第二信号线的电连接,将信号传送至第二信号线。本申请可以通过调节第一信号线的尺寸及第一信号线和第二信号线之间的容感性阻抗,有效拓宽 天线装置的工作带宽,而且,第一信号线和接地区之间的绝缘带等效于分布式电容,还可以通过调节绝缘带的宽度,可以调节电容值并拓宽天线装置的带宽。
一种实施方式中,所述绝缘带通过在所述第一表面设置凹槽形成,凹槽延伸至电路板的绝缘介质内,即在去除铜箔的基础上,还要挖除部分绝缘介质,形成凹槽。凹槽的深度为垂直于第一表面的方向上凹槽的尺寸,凹槽的宽度为在第一表面的方向上,第一信号线和接地区之间的最短距离。一种实施方式中,本申请可以通过调节凹槽的深度和/或凹槽的宽度来调整天线装置的带宽。当然第一信号线的形状、尺寸均可以作为调整天线装置的带宽的因素。
一种实施方式中,所述凹槽内填充绝缘介质,所述绝缘介质的表面与所述接地区和/或所述第一信号线的表面齐平。凹槽内填充绝缘介质有利于保证第一信号线和接地区之间的绝缘性,可以防止第一信号线和接地区之间的短路。
一种实施方式中,所述绝缘带呈首尾相接的闭合环结构,所述绝缘带的宽度均匀,所述宽度为所述第一信号线与所述接地区之间的最短距离。宽度均匀的绝缘带,使得绝缘带的宽度成为容性阻抗的稳定的因素,通过简单的调节尺寸,调节天线装置带宽。若绝缘带宽度不均匀,还要计算某个位置的尺寸,及计算特定位置的尺寸调节,使得带宽的调整较为复杂。当然为了得到特殊带宽的天线,本申请也可以将绝缘带设置为不规则的形状或宽度不均匀的分布状态,因为天线装置只要在出厂之前将参数调整好,后续就不需要再变更了,只要应用在指定的应用环境中即可。
一种实施方式中,所述电路板为单层板,所述电路板设有导电孔,所述第一信号线和所述第二信号线通过所述导电孔电连接。具体而言,传输线缆的内芯可以伸入所述导电孔,并伸出至第二表面。
一种实施方式中,所述电路板包括层叠设置的底层板和顶层板,所述第一表面为所述底层板背离所述顶层板的表面,所述第二表面为所述顶层板背离所述底层板的表面,所述底层板包括第一介质层,所述接地区和所述第一信号线形成在所述第一介质层的表面,所述顶层板包括第二介质层,所述第二信号线形成在所述第二介质层的表面,所述第一介质层和所述第二介质层之间设至少一层传输层,所述传输层包括信号传输线和地板,所述信号传输线和所述地板之间通过中间绝缘带隔离,所述信号传输线电连接至与所述第一信号线和所述第二信号线。顶层板和底层板之间还可以设置至少一层中间介质层,传输层可以为任意一层中间介质层的表面,信号传输线成为第一信号线和第二信号线之间的传输线,信号传输线和中间绝缘带的形状、尺寸的设计也是影响天线装置带宽的因素。信号传输线与第一、第二信号线之间均可以通过导电孔电连接。本实施方式因增加了中间传输层、地板和中间绝缘带,使得天线带宽的调谐更灵活。
一种实施方式中,所述第一介质层设有第一导电孔,所述信号传输线通过所述第一导电孔电连接至所述第一信号线。
一种实施方式中,所述内芯至少部分伸入所述第一导电孔。内芯伸入第一导电孔的好处在于,较容易确定内芯的位置,且能保证内芯和第一信号线之间电连接的可靠性。
一种实施方式中,内芯也可以不伸入第一导电孔。所述内芯与所述第一导电孔之间相隔预设距离,所述内芯焊接至所述第一信号线。
一种实施方式中,所述中间绝缘带的宽度与所述绝缘带的宽度相同,所述绝缘带的宽度为所述第一信号线与所述接地区之间的最短距离,所述中间绝缘带的宽度为所述地板和所述信号传输线之间的最短距离。通过中间绝缘带与绝缘带宽度相同的设置,使得电路板制作过程,工艺简单,节约制造成本和效率。
一种实施方式中,所述第一信号线和所述信号传输线的形状、尺寸均相同。本实施方式同样有利于电路板制作过程,工艺简单,节约制造成本和效率。
一种实施方式中,所述第一信号线包括至少两段不同宽度的微带线,所述宽度是:在垂直于所述第一信号线延伸方向上,所述微带线的尺寸。本实施方式通过第一信号线形状的设计来适配不同频带的带宽要求。
一种实施方式中,所述接地区设有收容槽,所述外导体与所述收容槽配合以实现所述传输线缆与所述电路板的定位。进一步而言,外导体焊接至接地区。
第二方面,本申请还提供一种天线装置,包括馈电电路和所述电路板组件,所述传输线缆电连接在所述馈电电路和所述第一信号线之间。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1和图2是本申请第一种实施方式提供的电路板组件的立体示意图;
图3和图4是本申请第二种实施方式提供的电路板组件的立体示意图;
图5和图6是本申请第三种实施方式提供的电路板组件的立体示意图;
图7是本申请一种实施方式提供的电路板组件的截面示意图;
图8是本申请一种实施方式提供的电路板组件中在第一表面通过设置凹槽形成接地区、第一信号线和绝缘带的示意图;
图9是在图8的基础上,在凹槽内填充绝缘介质的示意图;
图10是本申请一种实施方式提供的电路板组件中在接地区上设收容槽,将传输线缆的外导体安装在收容槽内的示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请提供一种电路板组件和天线装置。电路板组件应用于基站的天线装置中。
请参阅图1和图2,所述电路板组件包括电路板10和传输线缆20,所述电路板10包括相对设置的第一表面11和第二表面12,电路板10可以为单层板,也可以为双层板或多层板。所述第一表面11设有接地区112和第一信号线114,所述接地区112包围所述第一信号线114,且所述接地区112和所述第一信号线114之间通过绝缘带116隔离。具体而言,在制作电路板10过程中,先在第一表面11铺设大面积的铜箔,然后在大面积铜箔上移除部分铜,形成绝缘带116,绝缘带116呈封闭的首尾相连的环状,绝缘带116包围的部分铜为第一信号线114。所述第二表面12设有第二信号线124,第二表面12除了第二信号线124,还可以设置接地层、焊盘、电子元件或其它的导线。所述第二信号线124和所述第一 信号线114电连接,电连接的方式或以通过电路板内走线电连接,也可以通过设置在电路板10内的导电孔电连接。
所述传输线缆20包括内芯22和包裹所述内芯22的外导体21,所述外导体21固接至所述接地区112,外导体21通过接地区112接地。所述内芯22电连接至所述第一信号线114。具体而言,传输线缆20为同轴线缆,为天线装置的馈电线。
本申请通过在电路板10的第一表面11设置接地区112包围第一信号线114,并将传输线缆20的外导体21固接至接地区112,传输线缆20的内芯22电连接至第一信号线114,通过传输线缆20传输信号至第一信号线114,并进一步通过第一信号线114和第二信号线124的电连接,将信号传送至第二信号线124。本申请可以通过调节第一信号线114的尺寸及第一信号线114和第二信号线124之间的容感性阻抗,有效拓宽天线装置的工作带宽,而且,第一信号线114和接地区112之间的绝缘带116等效于分布式电容,还可以通过调节绝缘带116的宽度,可以调节电容值并拓宽天线装置的带宽。
一种实施方式中,如图1、图3和图5所示的实施例中,所述绝缘带116呈首尾相接的闭合环结构,所述绝缘带116的宽度均匀,所述宽度为所述第一信号线114与所述接地区112之间的最短距离。宽度均匀的绝缘带116,使得绝缘带116的宽度成为容性阻抗的稳定的因素,通过简单的调节尺寸,调节天线装置带宽。若绝缘带116宽度不均匀,还要计算某个位置的尺寸,及计算特定位置的尺寸调节,使得带宽的调整较为复杂。当然为了得到特殊带宽的天线,本申请也可以将绝缘带116设置为不规则的形状或宽度不均匀的状态,因为天线装置只要在出厂之前将参数调整好,后续就不需要再变更了,只要应用在指定的应用环境中即可。绝缘带116可以为圆环形状(如图5所示)、长方形环状(如图1所示)、三角形环状(未图示)、多边形环状(未图示)等,本申请不限定绝缘带116的形状。
请参阅图1、图2和图7,一种实施方式中,所述电路板10包括层叠设置的底层板101和顶层板102。所述第一表面11为所述底层板101背离所述顶层板102的表面,所述第二表面12为所述顶层板102背离所述底层板101的表面,所述底层板101包括第一介质层1011,所述接地区112和所述第一信号线114形成在所述第一介质层1011的表面,所述顶层板102包括第二介质层1021,所述第二信号线124形成在所述第二介质层1021的表面,所述第一介质层1011和所述第二介质层1021之间设至少一层传输层103,所述传输层103包括信号传输线1031和地板1032,所述信号传输线1031和所述地板1032之间通过中间绝缘带1033隔离,所述信号传输线1031电连接至与所述第一信号线114和所述第二信号线124。顶层板102和底层板101之间还可以设置至少一层中间介质层104,传输层103可以为任意一层中间介质层104的表面,信号传输线1031成为第一信号线114和第二信号线124之间的传输线,信号传输线1031和中间绝缘带1033的形状、尺寸的设计也是影响天线装置带宽的因素。信号传输线1031与第一、第二信号线124之间均可以通过导电孔电连接。本实施方式因增加了中间传输层、地板1032和中间绝缘带1033,使得天线带宽的调谐更灵活。
图7所示的电路板10为多层电路板。图7中显示的传输层103的层数为四层,中间介质层104的层数为两层,每层中间介质层104的两个面均设一层传输层,这两层中间介质层104分别贴合第一介质层1011和第二介质层1021,且这两层中间介质层104之间可以 设置至少一层介质层,图中用两个圆点表示省略了介质层。
一种实施方式中,所述第一介质层1011设有第一导电孔10112,所述信号传输线1031通过所述第一导电孔10112电连接至所述第一信号线114。其它实施方式中,也可以通过在第一介质层1011内埋导线的方式,或者通过打孔并在孔内设置金属柱(例如铜柱)的方式,或者通过打孔并在孔内覆上金属层(例如锡)的方式,实现第一信号线114和信号传输线1031之间的电连接。
一种实施方式中,如图5所示,所述内芯22至少部分伸入所述第一导电孔10112。内芯22伸入第一导电孔10112的好处在于,较容易确定内芯22的位置,且能保证内芯22和第一信号线114之间电连接的可靠性。
一种实施方式中,如图1和图3所示,内芯22也可以不伸入第一导电孔10112。所述内芯22与所述第一导电孔10112之间相隔预设距离,所述内芯22焊接至所述第一信号线114,如图3所示,内芯通过焊锡30焊接至第一信号线114,其中内芯被焊锡30包裹,而未显现在图3中,外导体21通过焊锡40焊接至接地区112。
如图1所示,第一导电孔10112的数量也可以为两个,如图3所示,第一导电孔10112的数量也可以为多个,多个第一导电孔10112呈阵列排列,例如图3所示的第一导电孔10112呈2x3阵列分布。两个或两个以上的第一导电孔10112可以匹配两条或两条以上的传输线缆20。也就是说,本申请电路板组件所包括的传输线缆可以为至少两条,相应地,可以在第一信号线114上设置相应数量的第一导电孔10112。
第二介质层1021设有第二导电孔10212,第二导电孔10212电连接至第二信号线124。一种实施方式中,第二导电孔10212的数量及排布方式也第一导电孔10112的数量和排布方式相同。相应地,中间介质层104上也设有导电孔1042,中间介质层104上的导电孔1042电连接在相邻的两个传输层103上的信号传输线之间。
一种实施方式中,本申请的电路板10也可以为单层板,所述电路板设有导电孔,所述第一信号线114和所述第二信号线124通过所述导电孔电连接。具体而言,传输线缆20的内芯22可以伸入所述导电孔,并伸出至第二表面12。
一种实施方式中,所述中间绝缘带1033的宽度与所述绝缘带116的宽度相同,所述绝缘带116的宽度为所述第一信号线114与所述接地区112之间的最短距离,所述中间绝缘带1033的宽度为所述地板1032和所述信号传输线1031之间的最短距离。通过中间绝缘带1033与绝缘带116宽度相同的设置,使得电路板10制作过程,工艺简单,节约制造成本和效率。
一种实施方式中,所述第一信号线114和所述信号传输线1031的形状、尺寸均相同。本实施方式同样有利于电路板10制作过程,工艺简单,节约制造成本和效率。
一种实施方式中,所述第一信号线114包括至少两段不同宽度的微带线,所述宽度是:在垂直于所述第一信号线114延伸方向上,所述微带线的尺寸。本实施方式通过第一信号线114形状的设计来适配不同频带的带宽要求。第二信号线124的形状可以与第一信号线的形状相同,如图2、图4和图6所示,第二信号线126包括两段不同宽度的微带线,第二信号线126从第二导电孔10212向电路板边缘延伸,与第二导电孔10212相连的部分第二信号线126的宽度大于靠近电路板边缘部分的第二信号线126的宽度。
一种实施方式中,所述绝缘带116通过在所述第一表面11设置凹槽形成,凹槽延伸至电路板10的绝缘介质内,即在去除铜箔的基础上,还要挖除部分绝缘介质,形成凹槽。凹槽的深度为垂直于第一表面11的方向上凹槽的尺寸,凹槽的宽度为在第一表面11的方向上,第一信号线114和接地区112之间的最短距离。一种实施方式中,本申请可以通过调节凹槽的深度和/或凹槽的宽度来调整天线装置的带宽。第一信号线114的形状、尺寸均可以作为调整天线装置的带宽的因素。
凹槽的截面(在垂直于第一表面11且垂直于第一绝缘带116延伸方向的表面上的截面)可以为矩形、弧形、三角形等多种形状。
一种实施方式中,所述凹槽内填充绝缘介质,所述绝缘介质的表面与所述接地区112和/或所述第一信号线114的表面齐平。凹槽内填充绝缘介质有利于保证第一信号线114和接地区112之间的绝缘性,可以防止第一信号线114和接地区112之间的短路。凹槽内填充的绝缘介质也可以为防腐材料,例如绿油。
如图8和图9所示,图8为通过在第一表面11设置凹槽形成绝缘带116,凹槽内为空气,未填充任何介质。图9为在图8的基础上,在凹槽内填充了绝缘介质的状态。
一种实施方式中,所述接地区112设有收容槽,所述外导体21与所述收容槽配合以实现所述传输线缆20与所述电路板10的定位。进一步而言,外导体21焊接至接地区112。
如图10所示,图10所示为在接地区112上设收容槽1122,外导体21收容在收容槽1122中,内芯22在第一表面11的上方延伸,图10所示的收容槽1122的形状仅为示例,本申请对收容槽1122的形状不做限制。
本申请一种实施方式提供的天线装置包括馈电电路和所述电路板组件,所述传输线缆20电连接在所述馈电电路和所述第一信号线114之间。馈电电路可以设置在电路板10上。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 电路板组件,应用于基站的天线装置中,其特征在于,所述电路板组件包括电路板和传输线缆,所述电路板包括相对设置的第一表面和第二表面,所述第一表面设有接地区和第一信号线,所述接地区包围所述第一信号线,且所述接地区和所述第一信号线之间通过绝缘带隔离,所述第二表面设有第二信号线,所述第二信号线和所述第一信号线电连接,所述传输线缆包括内芯和包围所述内芯的外导体,所述外导体固接至所述接地区,所述内芯电连接至所述第一信号线。
  2. 如权利要求1所述的电路板组件,其特征在于,所述绝缘带通过在所述第一表面设置凹槽形成。
  3. 如权利要求2所述的电路板组件,其特征在于,所述凹槽内填充绝缘介质,所述绝缘介质的表面与所述接地区和/或所述第一信号线的表面齐平。
  4. 如权利要求1所述的电路板组件,其特征在于,所述绝缘带呈首尾相接的闭合环结构,所述绝缘带的宽度均匀,所述宽度为所述第一信号线与所述接地区之间的最短距离。
  5. 如权利要求1所述的电路板组件,其特征在于,所述绝缘带呈首尾相接的闭合环结构,所述绝缘带的宽度不均匀分布,所述宽度为所述第一信号线与所述接地区之间的最短距离。
  6. 如权利要求1所述的电路板组件,其特征在于,所述电路板为单层板,所述电路板设有导电孔,所述第一信号线和所述第二信号线通过所述导电孔电连接。
  7. 如权利要求1所述的电路板组件,其特征在于,所述电路板包括层叠设置的底层板和顶层板,所述第一表面为所述底层板背离所述顶层板的表面,所述第二表面为所述顶层板背离所述底层板的表面,所述底层板包括第一介质层,所述接地区和所述第一信号线形成在所述第一介质层的表面,所述顶层板包括第二介质层,所述第二信号线形成在所述第二介质层的表面,所述第一介质层和所述第二介质层之间设至少一层传输层,所述传输层包括信号传输线和地板,所述信号传输线和所述地板之间通过中间绝缘带隔离,所述信号传输线电连接至与所述第一信号线和所述第二信号线。
  8. 如权利要求7所述的电路板组件,其特征在于,所述第一介质层设有第一导电孔,所述信号传输线通过所述第一导电孔电连接至所述第一信号线。
  9. 如权利要求8所述的电路板组件,其特征在于,所述内芯至少部分伸入所述第一导电孔。
  10. 如权利要求8所述的电路板组件,其特征在于,所述内芯与所述第一导电孔之间相隔预设距离,所述内芯焊接至所述第一信号线。
  11. 如权利要求7所述的电路板组件,其特征在于,所述中间绝缘带的宽度与所述绝缘带的宽度相同,所述绝缘带的宽度为所述第一信号线与所述接地区之间的最短距离,所述中间绝缘带的宽度为所述地板和所述信号传输线之间的最短距离。
  12. 如权利要求7所述的电路板组件,其特征在于,所述第一信号线和所述信号传输线的形状、尺寸均相同。
  13. 如权利要求1所述的电路板组件,其特征在于,所述第一信号线包括至少两段不 同宽度的微带线,所述宽度是:在垂直于所述第一信号线延伸方向上,所述微带线的尺寸。
  14. 如权利要求1所述的电路板组件,其特征在于,所述接地区设有收容槽,所述外导体与所述收容槽配合以实现所述传输线缆与所述电路板的定位。
  15. 一种天线装置,其特征在于,包括馈电电路和如权利要求1-14任意一项所述的电路板组件,所述传输线缆电连接在所述馈电电路和所述第一信号线之间。
PCT/CN2018/116322 2017-12-08 2018-11-20 电路板组件和天线装置 WO2019109800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711303421.1A CN108054505B (zh) 2017-12-08 2017-12-08 电路板组件和天线装置
CN201711303421.1 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019109800A1 true WO2019109800A1 (zh) 2019-06-13

Family

ID=62123978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116322 WO2019109800A1 (zh) 2017-12-08 2018-11-20 电路板组件和天线装置

Country Status (2)

Country Link
CN (1) CN108054505B (zh)
WO (1) WO2019109800A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108054505B (zh) * 2017-12-08 2020-08-07 华为技术有限公司 电路板组件和天线装置
WO2021000173A1 (zh) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 一种传输线
CN110911795B (zh) * 2019-11-21 2021-10-26 南京软赫波誉电子科技有限公司 双面平行带线-同轴线转换结构及降低回波损耗的方法
CN111585007B (zh) * 2020-05-08 2022-04-15 武汉虹信科技发展有限责任公司 高集成mimo天线
CN113708032B (zh) * 2020-05-21 2023-01-31 大富科技(安徽)股份有限公司 一种滤波器及通信设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1856931A (zh) * 2003-07-23 2006-11-01 哈佛大学校长及研究员协会 基于共面带线的方法和设备
CN2850007Y (zh) * 2005-06-06 2006-12-20 富士康(昆山)电脑接插件有限公司 印刷式偶极天线
CN200944432Y (zh) * 2006-05-12 2007-09-05 汉达精密电子(昆山)有限公司 平面印刷电路板天线
CN104051849A (zh) * 2014-07-10 2014-09-17 重庆大学 一种紧凑型宽带八角形槽天线
CN106876969A (zh) * 2017-01-22 2017-06-20 华为机器有限公司 一种天线及无线信号收发***
CN108054505A (zh) * 2017-12-08 2018-05-18 华为技术有限公司 电路板组件和天线装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196342A (ja) * 1998-12-28 2000-07-14 Kojima Press Co Ltd アンテナ
CN102811549A (zh) * 2011-06-03 2012-12-05 鸿富锦精密工业(深圳)有限公司 电路板
CN202797223U (zh) * 2011-09-27 2013-03-13 上海无线电设备研究所 一种带状线与同轴连接器转换结构
CN203225342U (zh) * 2013-01-21 2013-10-02 咏业科技股份有限公司 耦合馈入式微带天线
JP6474121B2 (ja) * 2014-07-18 2019-02-27 日本ピラー工業株式会社 同軸ケーブル・マイクロストリップ線路変換器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1856931A (zh) * 2003-07-23 2006-11-01 哈佛大学校长及研究员协会 基于共面带线的方法和设备
CN2850007Y (zh) * 2005-06-06 2006-12-20 富士康(昆山)电脑接插件有限公司 印刷式偶极天线
CN200944432Y (zh) * 2006-05-12 2007-09-05 汉达精密电子(昆山)有限公司 平面印刷电路板天线
CN104051849A (zh) * 2014-07-10 2014-09-17 重庆大学 一种紧凑型宽带八角形槽天线
CN106876969A (zh) * 2017-01-22 2017-06-20 华为机器有限公司 一种天线及无线信号收发***
CN108054505A (zh) * 2017-12-08 2018-05-18 华为技术有限公司 电路板组件和天线装置

Also Published As

Publication number Publication date
CN108054505B (zh) 2020-08-07
CN108054505A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
WO2019109800A1 (zh) 电路板组件和天线装置
JP6524986B2 (ja) 高周波モジュール、アンテナ付き基板、及び高周波回路基板
JP5413467B2 (ja) 広帯域アンテナ
JP5408166B2 (ja) アンテナ装置
JP6129857B2 (ja) 偏波共用アンテナ
JP5408160B2 (ja) 水平方向放射アンテナ
JP6065203B2 (ja) 伸張可能アームアンテナ、ならびにそれらアンテナが一体化されるモジュールおよびシステム
JP6602324B2 (ja) 無線装置
US8502747B2 (en) Dipole antenna assembly
US9985363B2 (en) Electrical connectors with low passive intermodulation
US10749236B2 (en) Transmission line
JP6990833B2 (ja) アンテナ装置
WO2012081288A1 (ja) 高周波用パッケージ
CN103650132A (zh) 无线模块
US10553954B2 (en) Wireless device
US9472857B2 (en) Antenna device
KR20150033187A (ko) 다층 기판내에 구비된 원편파 수평 방사 안테나 및 그제조방법
TWI543445B (zh) 天線及其製造方法
JP2015171108A (ja) パッチアンテナ
JP6320791B2 (ja) 伝送線路構造体、筐体および電子装置
WO2021258270A1 (zh) 一种电路板、电子设备和电路板的加工方法
US20140043190A1 (en) Planar inverted f antenna structure
KR20100005616A (ko) 손실 개선을 위한 rf 전송 선로
JP5279424B2 (ja) 高周波伝送装置
JP4990021B2 (ja) 高周波伝送線路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885881

Country of ref document: EP

Kind code of ref document: A1