WO2019109251A1 - 光路调制器及其制作方法、指纹识别装置和终端设备 - Google Patents

光路调制器及其制作方法、指纹识别装置和终端设备 Download PDF

Info

Publication number
WO2019109251A1
WO2019109251A1 PCT/CN2017/114620 CN2017114620W WO2019109251A1 WO 2019109251 A1 WO2019109251 A1 WO 2019109251A1 CN 2017114620 W CN2017114620 W CN 2017114620W WO 2019109251 A1 WO2019109251 A1 WO 2019109251A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
path modulator
hole
optical
etched
Prior art date
Application number
PCT/CN2017/114620
Other languages
English (en)
French (fr)
Inventor
王红超
沈健
Original Assignee
深圳市为通博科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市为通博科技有限责任公司 filed Critical 深圳市为通博科技有限责任公司
Priority to EP17931827.4A priority Critical patent/EP3531336A4/en
Priority to CN201780002010.0A priority patent/CN110168558B/zh
Priority to PCT/CN2017/114620 priority patent/WO2019109251A1/zh
Priority to US16/418,992 priority patent/US10922524B2/en
Publication of WO2019109251A1 publication Critical patent/WO2019109251A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms

Definitions

  • the present application relates to the field of biometrics, and more particularly to an optical path modulator, a method of fabricating the same, a fingerprint identification device, and a terminal device.
  • the optical fingerprint recognition system usually uses an optical path modulator (hereinafter referred to as an optical path modulator) to guide the downwardly transmitted light to guide the reflected light reflected by the finger to the optical detecting unit, so that the optical detecting unit uses the fingerprint path to align the light.
  • an optical path modulator hereinafter referred to as an optical path modulator
  • the difference in reflection can obtain a fingerprint image, and based on the matching verification of the fingerprint feature points, fingerprint recognition is implemented on a terminal device such as a mobile phone.
  • the thinning of the terminal device has strict requirements on the overall thickness of the under-screen optical fingerprint module, and is limited by the current semiconductor etching process, which limits the optical path modulation and optical imaging effects of the optical path modulator to some extent.
  • the embodiment of the present application provides an optical path modulator, a manufacturing method thereof, a fingerprint identification device, and a terminal device, which can have a smaller thickness while ensuring effective optical path modulation.
  • an optical path modulator is provided, the optical path modulator being applied to a fingerprint recognition device for guiding reflected light reflected from a surface of a finger to an optical detecting unit disposed under the optical path modulator, The optical detecting unit is configured to detect the received reflected light,
  • the optical path modulator has an array of through holes between the upper surface and the lower surface
  • the through hole array includes a plurality of inclined through holes, wherein each of the inclined through holes has an inclination angle greater than 0°, and the inclination angle is An angle between an axial direction of the inclined through hole and a normal direction perpendicular to a surface of the optical path modulator.
  • the optical path modulator of the embodiment of the present application has an array of through holes composed of oblique through holes, and in the case of the same hole depth, the optical path modulator can be made to have a smaller thickness.
  • tilt The vias can achieve a thinner optical path modulator thickness while ensuring the same aperture aspect ratio.
  • the propagation path and angle of the optical path can be effectively changed, so that the modulation of the optical path is more flexible.
  • the inclined through holes have an inclination angle greater than 0° and less than 40°.
  • the inclined through holes are circular through holes, elliptical through holes, or square through holes.
  • the material of the optical path modulator is silicon, silicon carbide, silicon oxide or nitride.
  • a method for fabricating an optical path modulator in any of the first aspect or the first aspect of the first aspect comprising: forming an etch stop layer on the etched sheet according to the etched pattern Fixing the etched sheet on the inclined groove of the slide, the inclined surface of the inclined groove has a predetermined inclination angle with respect to the surface of the slide; etching the etched piece by the etch stop layer And forming an array of through holes having a plurality of inclined through holes in the etched sheet, wherein each of the inclined through holes has an inclination angle equal to a predetermined inclination angle of the inclined surface, and the inclination angle is the inclined angle An angle between an axial direction of the aperture and a normal direction perpendicular to the surface of the optical path modulator; the optical path modulator is formed based on the etched sheet having the array of vias.
  • the fixing the etched sheet to the inclined groove of the slide comprises: fixing the etched sheet to the inclined groove by temporary bonding or silicone oil bonding Inclined surface.
  • the method further includes cutting the etched sheet according to the size of the inclined groove before fixing the etched sheet in the inclined groove in the slide to The etched sheet can be placed in the inclined groove.
  • the predetermined inclination angle of the inclined surface is greater than 0° and less than 40°.
  • the material of the etched sheet is silicon, silicon carbide, silicon oxide or silicon nitride.
  • the material of the slide is silicon, silicon carbide or surface covering. Silicon with a passivation layer.
  • the etching the etched sheet by using the etch barrier layer comprises: anisotropically etching the etched sheet by using the etch barrier layer.
  • the anisotropic etch includes dry plasma etching.
  • a fingerprint identification apparatus comprising the optical path modulator in any of the above-described first aspect or any possible implementation of the first aspect, and an optical detection unit disposed under the optical path modulator.
  • a terminal device comprising a display screen, and the fingerprint recognition device in any of the possible implementations of the third aspect or the third aspect, wherein the fingerprint recognition device is disposed on the display Below the screen.
  • FIG. 1 is a schematic structural diagram of a terminal device applicable to an embodiment of the present application.
  • FIG. 2 is a detailed schematic view of the optical fingerprint device of FIG. 1.
  • FIG. 3 is a schematic structural diagram of an optical path modulator according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for fabricating an optical path modulator according to an embodiment of the present application.
  • 5(a) to 5(g) are schematic views showing a method of fabricating the optical path modulator of the embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a fingerprint detecting apparatus according to an embodiment of the present application.
  • embodiments of the present application may be applied to an optical fingerprinting system, including but not limited to an optical fingerprinting system and a medical diagnostic product based on optical fingerprint imaging.
  • the embodiment of the present application only uses an optical fingerprinting system as an example, but should not The embodiments of the present application constitute any limitation, and the embodiments of the present application are equally applicable to other systems using optical imaging technologies and the like.
  • the fingerprint identification method, the fingerprint identification device, and the fingerprint identification chip according to the embodiments of the present application may be applied to a smart phone, a tablet computer, and other mobile terminals or other terminal devices having a display screen; more specifically,
  • the fingerprint recognition system may be specifically an optical fingerprint system, which may be disposed in a partial area or an entire area below the display screen, thereby forming an under-display optical fingerprint system.
  • FIG. 1 is a schematic structural diagram of a terminal device applicable to an embodiment of the present application.
  • the optical fingerprint system of the terminal device 100 includes a display screen 120 and an optical fingerprint device 130.
  • the optical fingerprint device 130 is configured at least in the A partial area below the display screen 120.
  • the optical fingerprint device 130 may be an optical fingerprint sensor, which includes a sensing array having a plurality of optical sensing units, and the sensing array is located in the fingerprint identification area 103 of the optical fingerprint device 130.
  • the fingerprint identification area 103 is located in the display area 102 of the display screen 120. Therefore, when the user needs to unlock the terminal device or perform other fingerprint verification, the user only needs to press the finger. Fingerprint input can be implemented in the fingerprint recognition area 103 of the display screen 120.
  • the terminal device 100 adopting the above structure does not need to reserve a space for setting a fingerprint button (such as a Home button) on the front side, so that a full screen scheme, that is, a display area of the display screen 120 can be adopted.
  • the 102 can be substantially extended to the front of the entire terminal device 100.
  • the display screen 120 may be a self-illuminating display screen, which adopts a self-luminous display unit as a display pixel, such as an Organic Light-Emitting Diode (OLED) display or a miniature Light-emitting diode (Micro-LED) display.
  • OLED Organic Light-Emitting Diode
  • Micro-LED miniature Light-emitting diode
  • the optical fingerprint device 130 can utilize an OLED display unit (ie, an OLED light source) of the OLED display 120 located in the fingerprint recognition area 103 as an excitation light source for optical fingerprint detection.
  • the sensing array of the optical fingerprint device 130 is specifically a photo detector array including a plurality of photodetectors distributed in an array, and the photodetectors can be used as the optical sensing unit as described above.
  • the light emitted by the display unit of the fingerprint recognition area 103 reflects on the fingerprint of the finger surface and forms reflected light.
  • the reflected light of the ridges and valleys of the fingerprint of the finger is different, and the reflected light is received from the display screen 120 and received by the photodetector array and converted into a corresponding electrical signal, that is, a fingerprint detection signal.
  • Fingerprint image data can be obtained based on the fingerprint detection signal, and fingerprint matching verification can be further performed, thereby implementing an optical fingerprint recognition function at the terminal device 100.
  • the optical fingerprint device 130 may also be disposed over the entire area below the display screen 120, thereby extending the fingerprint identification area 103 to the entire display area 102 of the display screen 120, Full screen fingerprint detection.
  • the optical fingerprint device 130 may also be disposed in a predetermined area inside the terminal device 100, such as an edge region of the terminal device 100, and a light guiding structure is disposed under the display screen 120 to reflect the surface of the finger. The light guide Leading to the sensing array of the optical fingerprint device 130.
  • the terminal device 100 further includes a transparent protective cover 110, and the cover plate 110 may be a transparent cover plate, such as a glass cover or a sapphire cover, which is located on the display screen. Above the 120 and covering the front side of the terminal device 100. Therefore, in the embodiment of the present application, the so-called finger touch, press or proximity on the display screen 120 actually refers to the finger touching, pressing or approaching the cover plate 110 above the display screen 120 or covering the cover plate 110. The surface of the protective layer.
  • the terminal device 100 may further include a touch sensor, which may be specifically a touch panel, which may be disposed on the surface of the display screen 120, or may be partially or integrally integrated into the display screen 120, that is, The display screen 120 is specifically a touch display screen.
  • a touch sensor which may be specifically a touch panel, which may be disposed on the surface of the display screen 120, or may be partially or integrally integrated into the display screen 120, that is, The display screen 120 is specifically a touch display screen.
  • the optical fingerprint device 130 includes an optical detecting unit 134 and an optical component 132, and the optical detecting unit 134 includes the sensing array and the sensing array electrical Connected read circuits and other auxiliary circuits, which may be fabricated on a chip by a semiconductor process; the optical components 132 may be disposed above the sensing array of the optical detecting unit 134, which may specifically include filtering a filter, an optical path modulator, and other optical components, the filter layer can be used to filter ambient light penetrating the finger, and the optical path modulator can adopt an array of through holes having a high aspect ratio, mainly used for The light that propagates downward is collimated and modulated, and the reflected light reflected from the surface of the finger is guided to the sensing array for optical detection.
  • the optical fingerprint device 130 of FIG. 1 shows the optical fingerprint device 130 of FIG. 1 including an optical component 132 and an optical detection unit 134.
  • the optical component 132 includes a light path modulator and a filter layer, and the light emitted by the display screen is to be detected above the display screen. Reflecting on the surface of the finger, the optical path modulator collimates and modulates the reflected light reflected from the surface of the finger through its through-hole array, and guides the reflected light to the filter layer, and the reflected light is filtered by the filter layer
  • the optical detecting unit 134 can further detect the received reflected light to implement fingerprint recognition. It should be understood that the optical fingerprint device 130 shown in FIG. 2 is only an exemplary structure.
  • the position of the filter layer of the optical component 132 is not limited to the optical path modulator; for example, in a
  • the filter layer may also be disposed between the optical path modulator and the display screen, that is, above the optical path modulator.
  • the optical component 132 may include two layers of filter layers, which are respectively disposed in the optical path modulation. Above and below the device.
  • the filter layer can also be integrated into the optical path modulator, or even omitted. This application does not limit this.
  • the optical component 132 may be packaged in the same optical fingerprint chip as the optical detecting unit 134, or may be installed inside the optical fingerprint module as a component independent of the optical detecting unit 134.
  • the optical path modulator may be specifically a collimator layer or a lens (Lens) layer made of a semiconductor silicon wafer or a silicon oxide (such as silicon dioxide) or a nitride (such as silicon nitride). It has a plurality of collimating units or lens units, and the collimating unit or the lens unit can be used as a modulating unit of the optical path modulator.
  • the modulating unit can be specifically a small hole having a high aspect ratio, reflected from the finger.
  • the light incident on the modulation unit can pass through and be received by the optical sensing unit below, and each optical sensing unit can basically receive the reflected light of the fingerprint pattern guided by the small hole above it.
  • the sensing array can detect the fingerprint image of the finger.
  • each modulation unit of the optical path modulator may respectively correspond to one of the optical sensing units of the sensing array; alternatively, the modulation unit and the optical sensing unit of the sensing array A non-one-to-one correspondence may also be used to reduce the occurrence of moiré interference.
  • an optical sensing unit may correspond to a plurality of modulation units, or the modulation unit may also be implemented in an irregular arrangement. There is no specific correspondence between the optical sensing units of the array.
  • the optical fingerprint device 130 can correct the reflected light detected by each sensing unit by a post-software algorithm.
  • FIG. 3 shows an optical path modulator 300 of an embodiment of the present application, which can be applied to a fingerprint recognition device such as the optical fingerprint device 130 shown in FIGS. 1 and 2 as a display screen and optical detection unit 134.
  • the optical path modulator 300 is configured to guide the reflected light reflected from the surface of the finger to an optical detecting unit disposed under the optical path modulator 300, and the optical detecting unit is configured to detect the received reflected light to acquire a finger. Fingerprint image.
  • the optical path modulator 300 has an array of through holes between the upper surface and the lower surface, the through hole array includes a plurality of inclined through holes, wherein each inclined through hole can serve as the optical path modulator 300.
  • an angle a between an axial direction of each of the oblique through holes and a normal direction perpendicular to the optical path modulator is greater than 0°.
  • the present application defines the above-mentioned angle a as the inclination angle of the inclined through hole, that is, the inclination angle a of the through hole array of the optical path modulator 300 is greater than 0°.
  • the above collimation actually refers to The light is guided such that the reflected light passing through each of the through holes of the optical path modulator 300 is obliquely incident on the sensing array of the optical detecting unit at a predetermined angle (i.e., the above-mentioned angle a greater than 0°).
  • the inclination angle a of the inclined through hole satisfies 0° ⁇ a ⁇ 40°.
  • the material of the optical path modulator 300 is opaque to the corresponding wavelength band used by the fingerprint recognition device.
  • the material of the optical path modulator may be silicon, silicon carbide, silicon oxide or nitride, or the like.
  • the inclined through hole in the through-hole array of the optical path modulator 300 may be a circular through hole, an elliptical through hole or a square through hole; or any other shape of the through hole, which is not limited in this application. .
  • the optical path modulator of the embodiment of the present application has an array of through holes composed of oblique through holes, and in the case of the same hole depth, the optical path modulator can be made to have a smaller thickness.
  • the inclined vias can achieve a thinner optical path modulator thickness while ensuring the same aperture aspect ratio.
  • the propagation path and angle of the optical path can be effectively changed, so that the modulation of the optical path is more flexible.
  • the present embodiment provides a through hole having an oblique angle as a modulation unit of the optical path modulator 300, and can also avoid reflected light reflected from the surface of the finger.
  • the optical detecting unit directly under the optical path modulator 300 is directly incident, and the noise is effectively suppressed during the above-mentioned reflected light transmission, thereby improving the signal-to-noise ratio of the fingerprint detecting device, thereby effectively improving the fingerprint imaging effect.
  • the embodiment of the present application further provides a method for fabricating an optical path modulator.
  • FIG. 4 shows a schematic flow chart of a method 400 of fabricating an optical path modulator according to an embodiment of the present application, which can fabricate the optical path modulator 300 shown in FIG. 3, wherein the optical path modulator 300 is on the optical path modulator 300.
  • the optical path modulator 300 fabricated by the method 400 provided by the embodiment of the present application can be applied to a fingerprint recognition device such as the optical fingerprint device 130 shown in FIGS. 1 and 2.
  • the fingerprint identification device in the embodiment of the present application may include a fingerprint identification chip, which may be a push-type fingerprint recognition chip, a scratch-type fingerprint recognition chip, or a touch fingerprint.
  • the identification chip or the like the embodiment of the present application is not limited thereto.
  • the fingerprint identification device can be applied to a terminal device, such as a mobile terminal device such as a smart phone, a tablet computer, or a notebook computer.
  • the method 400 for fabricating the optical path modulator may include:
  • Step 410 forming an etch barrier layer on the etched sheet according to the etched pattern.
  • an etched sheet is prepared, which is a substrate for fabricating an optical path modulator, and may be, for example, an etched sheet as shown in FIG. 5(a), the thickness of the etched sheet and the to-be-made The target thickness of the optical path modulator is the same.
  • the etched pattern may specifically refer to a planar pattern corresponding to the array of vias to be fabricated, such as the via pattern shown in the top view on the right side of FIG.
  • the etch stop layer is formed on the etched sheet.
  • the etch stop layer may be formed with a plurality of etch openings, and the plurality of etch openings are arranged in an array, each moment The etch openings respectively correspond to one of the inclined via holes of the via array that needs to be formed in the etched sheet.
  • the etch opening of the etch stop layer may be a through hole perpendicular to the surface of the etch stop layer, and the opening shape of the etch opening may be designed to be at an oblique angle a when the etched piece When placed, the effective opening area of the horizontal projection of the etched opening on the surface of the etched sheet coincides with its corresponding etched pattern, as shown by the through hole pattern shown in the top view on the right side of FIG.
  • the material of the etched sheet is silicon, silicon carbide, silicon oxide or silicon nitride.
  • the etched sheet may be a silicon wafer
  • the etch stop layer may be a silicon dioxide layer or a silicon nitride layer grown on the surface of the etched sheet, and The silicon dioxide layer or the silicon nitride layer is formed into an etching opening by an etching process.
  • step 420 the etched sheet is fixed to the inclined groove of the slide, and the inclined surface of the inclined groove has a predetermined inclination angle with respect to the surface of the slide.
  • step 420 a slide having an inclined groove is first provided, and the etched sheet having the etch stop layer is fixed to the inclined groove of the slide.
  • the inclined groove is used for fixing the etched piece so that the etched piece can be kept inclined during the etching process, so that the etched through hole is an inclined through hole.
  • the slide carrying the inclined groove shown in FIG. 5(d) may include a vertical surface perpendicular to the surface of the inclined groove and an inclined surface having a predetermined inclination angle a with respect to the surface of the inclined groove.
  • the angle between the inclined surface of the inclined groove and the surface of the slide i.e., the inclination angle a of the inclined surface is greater than 0°.
  • the etched sheet is fixedly disposed on the inclined surface of the inclined groove, which is mainly convenient for real In the through hole array formed by etching the etched sheet, the axial direction of each inclined through hole and the normal direction perpendicular to the surface of the etched sheet have the same inclination angle a as the inclined surface.
  • the angle a that is, the predetermined inclination angle of the inclined surface of the inclined groove is equal to the inclination angle of the inclined through hole to be fabricated of the etched sheet.
  • the inclined angle a of the inclined surface is greater than 0° and less than 40°.
  • the etched sheet may be fixed to the inclined surface of the inclined groove by temporary bonding or silicone oil bonding.
  • the process can also function as a heat transfer.
  • the method further includes: before the step 420, that is, before the etched sheet is fixed on the inclined groove of the slide, cutting the etched sheet according to the size of the inclined groove, so that the etched sheet is cut An etched sheet can be placed in the inclined groove.
  • the etched sheet obtained in FIG. 5(b) is cut into small pieces together with the etch stop layer located above the etched sheet so that it can be placed in FIG. 5(d).
  • the inclined grooves of the slide are formed to form an inclined state as shown in Fig. 5(e).
  • the inclined groove of the slide may be sized to match the size of the optical path modulator, that is, the etched piece may be cut into a plurality of etched piece units, and each etched piece unit is respectively It is used to fabricate an optical path modulator, and the inclined grooves of each of the slides can be used to fix one of the etched sheet units.
  • the slide piece may also include a plurality of inclined grooves, and each of the inclined grooves may be respectively used for fixing an etched sheet unit, so that a plurality of etched sheet units can be simultaneously etched in a subsequent process step. The steps are simultaneously etched to form an array of vias having oblique vias, respectively.
  • Step 430 etching the etched sheet by using the etch barrier layer to form an array of via holes having a plurality of oblique via holes in the etched sheet.
  • an angle between an axial direction of each of the inclined through holes and a normal direction perpendicular to the surface of the optical path modulator is equal to an inclination angle of the inclined surface of the inclined groove.
  • the etched sheet may be etched by an anisotropic etching, and the etching direction may be specifically perpendicular to the surface of the carrier.
  • the etched sheet and the etch stop layer formed on the surface thereof are fixed on the inclined surface of the inclined groove, so the etched sheet is placed in an inclined state together with the etch stop layer formed on the surface thereof, relative to the surface of the slide A certain angle (that is, the angle of inclination of the inclined surface).
  • the etched sheet when the etched sheet is etched by using the etch barrier layer in a direction perpendicular to the surface of the carrier, the etched sheet is etched by the etch stop layer. Blocking outside The portion is not etched, and since the etch barrier layer is in an inclined state, the opening direction of the etch opening of the etch barrier layer is not perpendicular to the surface of the carrier, so the edge of the etched opening and a portion of the inner side thereof The wall will block the vertical etching of the etched sheet, and only the effective opening area of the horizontal projection of the etched opening on the surface of the etched sheet (the through-hole pattern shown in the top view on the right side of FIG. 3) Can be etched.
  • an inclined through hole corresponding to the etched pattern can be formed, for example, as shown in the cross-sectional view on the left side of FIG. Tilt the through hole.
  • the material of the slide is silicon, silicon carbide or silicon whose surface is covered with a passivation layer.
  • an anisotropic etching method is preferably used to etch the oblique via holes in the etched sheet.
  • the anisotropic etch refers to an etch process in which the etch rate in the vertical direction is greater than the etch rate in the horizontal direction, including but not limited to dry plasma etching.
  • the etching manner of the anisotropic strips can ensure the etching precision of the inclined via holes formed in the etched sheet, and the internal properties of the inclined via holes are prevented from affecting the optical performance due to the lateral etching.
  • Step 440 forming the optical path modulator based on the etched sheet having the via array.
  • the etched sheet may be separated from the inclined trench by cleaning, debonding, or the like, and the etch barrier layer on the surface thereof may be removed; Alternatively, the etched sheet may be further cut to obtain an optical path modulator satisfying the size and shape requirements as shown, for example, in FIG. 5(g).
  • FIG. 6 shows a schematic block diagram of a fingerprint identification device 600 of an embodiment of the present application.
  • the fingerprint identification device 600 can be applied to a mobile terminal device as shown in FIG. 1 or FIG. 2, as shown in FIG. 6, the fingerprint recognition device 600 includes an optical path modulator 610 and optical detection disposed under the optical path modulator 610. Unit 620.
  • the optical path modulator 610 can be the optical path modulator 300 shown in FIG. 3 described above.
  • the optical path modulator 610 is configured to guide the reflected light reflected from the surface of the finger to an optical detecting unit 620 disposed under the optical path modulator 610, where the optical detecting unit 620 is configured to detect the received reflected light.
  • the optical path modulator 610 has an array of through holes between the upper surface and the lower surface, the through hole array including a plurality of inclined through holes, wherein the inclined angle of each inclined through hole More than 0°, the inclination angle is an angle between an axial direction of the inclined through hole and a normal direction perpendicular to a surface of the optical path modulator 610.
  • the embodiment of the present application further provides a terminal device, which may include a display screen and any one of the above-mentioned fingerprint recognition devices in the embodiment of the present application, wherein the fingerprint recognition device is disposed below the display screen.
  • the terminal device in the embodiment of the present application may be an electronic device equipped with a fingerprint identification device, such as a mobile phone, a tablet computer, a notebook computer, or the like, and may be, for example, a mobile phone with a fingerprint identification chip.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one detecting unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)
  • Micromachines (AREA)

Abstract

一种光路调制器(300),应用于指纹识别装置(130),用于将从手指表面反射回来的反射光导引至设置在光路调制器(300)下方的光学检测单元(134),光学检测单元(134)用于对接收到的反射光进行检测,其中,光路调制器(300)的上表面与下表面之间具有通孔阵列,通孔阵列包括多个倾斜通孔,其中每个倾斜通孔的倾斜角度大于0°,倾斜角度为倾斜通孔的轴线方向与垂直于光路调制器(300)表面的法线方向之间的夹角。由于该光路调制器(300)具有由倾斜通孔组成的通孔阵列,在相同孔深的情况下,可以得到更薄的光路调制器(300)的厚度。并且,通过调整光路调制器(300)里边的倾斜通孔的倾斜角度,可以有效地改变光路的传播路径和角度,使其对光路的调制更为灵活。

Description

光路调制器及其制作方法、指纹识别装置和终端设备 技术领域
本申请涉及生物识别技术领域,更具体地,涉及一种光路调制器及其制作方法、指纹识别装置和终端设备。
背景技术
随着具有大屏占比的全面屏的广泛应用,移动终端对屏下指纹识别的设计需求越来越多;传统电容式指纹识别技术面临穿透能力的限制,难以应用在屏下指纹识别***,而光学指纹识别技术可以较好地突破了显示屏和玻璃厚度的限制,因此具有较好的应用前景。
光学指纹识别***通常采用光学通路调制器(后面简称光路调制器)对向下传输的光线进行导引,实现将手指反射的反射光导引至光学检测单元,从而光学检测单元利用手指纹路对光的反射差异可以获取到指纹图像,并根据对指纹特征点的匹配验证,在终端设备比如手机上实现指纹识别。然而,终端设备的薄型化对于屏下光学指纹模组的整体厚度有较为严格的要求,并且受制于目前的半导体刻蚀工艺,在一定程度上限制了光路调制器的光路调制和光学成像效果。
发明内容
本申请实施例提供了一种光路调制器及其制作方法、指纹识别装置和终端设备,能够在保证有效的光路调制的同时,具有更小的厚度。
第一方面,提供了一种光路调制器,所述光路调制器应用于指纹识别装置,用于将从手指表面反射回来的反射光导引至设置在所述光路调制器下方的光学检测单元,所述光学检测单元用于对接收到的所述反射光进行检测,
其中,所述光路调制器的上表面与下表面之间具有通孔阵列,所述通孔阵列包括多个倾斜通孔,其中每个倾斜通孔的倾斜角度大于0°,所述倾斜角度为所述倾斜通孔的轴线方向与垂直于所述光路调制器表面的法线方向之间的夹角。
因此,本申请实施例的光路调制器具有由倾斜通孔组成的通孔阵列,在相同孔深的情况下,可以使该光路调制器具有更小的厚度。换句话说,倾斜 通孔在保证相同的孔深宽比的情况下,可以得到更薄的光路调制器的厚度。并且,通过调整光路调制器里边的倾斜通孔的倾斜角度,可以有效地改变光路的传播路径和角度,使其对光路的调制更为灵活。
在一些可能的实现方式中,所述倾斜通孔的倾斜角度大于0°且小于40°。
在一些可能的实现方式中,所述倾斜通孔为圆形通孔、椭圆形通孔或者方形通孔。
在一些可能的实现方式中,所述光路调制器的材料为硅、碳化硅、氧化硅或者氮化物。
第二方面,提供了一种制作上述第一方面或第一方面的任意可能的实现方式中的光路调制器的方法,所述方法包括:根据刻蚀图形,在刻蚀片上制作刻蚀阻挡层;将所述刻蚀片固定在载片的倾斜槽,所述倾斜槽的倾斜面相对于所述载片的表面具有预定倾斜角度;利用所述刻蚀阻挡层对所述刻蚀片进行刻蚀,以在所述刻蚀片制作出具有多个倾斜通孔的通孔阵列,其中每个倾斜通孔的倾斜角度与所述倾斜面的预定倾斜角度相同,所述倾斜角度为所述倾斜通孔的轴线方向与垂直于所述光路调制器表面的法线方向之间的夹角;基于具有所述通孔阵列的所述刻蚀片,形成所述光路调制器。
因此,通过将刻蚀片安装在载片上的倾斜槽里,能够在不改变现有刻蚀设备的工艺条件的情况下,得到具有多个倾斜通孔的通孔阵列的刻蚀片,从而制作出光路调制器。
在一些可能的实现方式中,所述将所述刻蚀片固定在载片的倾斜槽,包括:通过临时键合或者硅油粘合的方式,将所述刻蚀片固定在所述倾斜槽的倾斜面。
在一些可能的实现方式中,所述方法还包括:在将所述刻蚀片固定在载片中的倾斜槽里之前,根据所述倾斜槽的大小,对所述刻蚀片进行切割,以使所述刻蚀片能够放置在所述倾斜槽。
在一些可能的实现方式中,所述倾斜面的预定倾斜角度大于0°且小于40°。
在一些可能的实现方式中,所述刻蚀片的材料为硅、碳化硅、氧化硅或者氮化硅。
在一些可能的实现方式中,所述载片的材料为硅、碳化硅或者表面覆盖 有钝化层的硅。
在一些可能的实现方式中,所述利用所述刻蚀阻挡层对所述刻蚀片进行刻蚀,包括:利用所述刻蚀阻挡层对所述刻蚀片进行各向异性刻蚀。
在一些可能的实现方式中,所述各向异性刻蚀包括干法等离子刻蚀。
第三方面,提供了一种指纹识别装置,包括上述第一方面或第一方面的任意可能的实现方式中的光路调制器,以及设置在所述光路调制器下方的光学检测单元。
第四方面,提供了一种终端设备,该终端设备包括显示屏以及上述第三方面或第三方面的任意可能的实现方式中的指纹识别装置,其中,所述指纹识别装置设置在所述显示屏的下方。
附图说明
图1是本申请实施例可以适用的终端设备的结构示意图。
图2是图1中的光学指纹装置的一个具体的示意图。
图3是根据本申请实施例的光路调制器的示意性结构图。
图4是本申请实施例的光路调制器的制作方法的示意性流程图。
图5(a)至图5(g)是本申请实施例的光路调制器的制作方法的示意图。
图6是本申请实施例的指纹检测装置的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例可以应用于光学指纹***,包括但不限于光学指纹识别***和基于光学指纹成像的医疗诊断产品等,本申请实施例仅以光学指纹***为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的***等。
作为一种常见的应用场景,本申请实施例涉及的指纹识别方法、指纹识别装置以及指纹识别芯片可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备;更具体地,在上述终端设备中,指纹识别***可以具体为光学指纹***,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹***。
如图1所示为本申请实施例可以适用的终端设备的结构示意图,该终端设备100的光学指纹***包括显示屏120和光学指纹装置130,其中,所述光学指纹装置130至少设置在所述显示屏120下方的局部区域。所述光学指纹装置130可以具体为光学指纹传感器,其包括具有多个光学感应单元的感应阵列,所述感应阵列所在区域为所述光学指纹装置130的指纹识别区域103。如图1所示,所述指纹识别区域103位于所述显示屏120的显示区域102之中,因此,使用者在需要对所述终端设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹识别区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的终端设备100无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域102可以基本扩展到整个终端设备100的正面。
作为一种优选的实施例中,所述显示屏120可以为自发光显示屏,其采用具有自发光显示单元的作为显示像素,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,所述光学指纹装置130可以利用所述OLED显示屏120位于所述指纹识别区域103的OLED显示单元(即OLED光源)来作为光学指纹检测的激励光源。并且,所述光学指纹装置130的感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元。当手指触摸、按压或者接近(为便于描述,本申请统称为触摸)在所述指纹识别区域103时,所述指纹识别区域103的显示单元发出的光线在手指表面的指纹发生反射并形成反射光,其中所述手指指纹的纹脊和纹谷的反射光是不同的,反射光从所述显示屏120并被所述光探测器阵列所接收并转换为相应的电信号,即指纹检测信号。基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述终端设备100实现光学指纹识别功能。
在其他替代实施例中,所述光学指纹装置130也可以设置在所述显示屏120下方的整个区域,从而将所述指纹识别区域103扩展到整个所述显示屏120的整个显示区域102,实现全屏指纹检测。或者,所述光学指纹装置130也可以设置在所述终端设备100内部的预定区域,比如所述终端设备100的边缘区域,并在所述显示屏120下方设置导光结构来将手指表面的反射光导 引到所述光学指纹装置130的感应阵列。
应当理解的是,在具体实现上,所述终端设备100还包括透明保护盖板110,所述盖板110可以具体为透明盖板,比如玻璃盖板或者蓝宝石盖板,其位于所述显示屏120的上方并覆盖所述终端设备100的正面。因此,本申请实施例中,所谓的手指触摸、按压或者接近在所述显示屏120实际上是指手指触摸、按压或者接近在所述显示屏120上方的盖板110或者覆盖所述盖板110的保护层表面。另外,所述终端设备100还可以包括触摸传感器,所述触摸传感器可以具体为触控面板,其可以设置在所述显示屏120表面,也可以部分或者整体集成到所述显示屏120内部,即所述显示屏120具体为触控显示屏。
作为一种可选的实现方式,如图1所示,所述光学指纹装置130包括光学检测单元134和光学组件132,所述光学检测单元134包括所述感应阵列以及与所述感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die);所述光学组件132可以设置在所述光学检测单元134的感应阵列的上方,其可以具体包括滤光层(Filter)、光路调制器以及其他光学元件,所述滤光层可以用于滤除穿透手指的环境光,而所述光路调制器可以采用具有高深宽比的通孔阵列,主要用于对向下传播的光线进行准直和调制等,实现从手指表面反射回来的反射光导引至所述感应阵列进行光学检测。
图2示出了图1中的光学指纹装置130,其中包括光学组件132和光学检测单元134,光学组件132包括光路调制器和滤光层,显示屏发出的光线在该显示屏上方的待检测手指表面发生反射,该光路调制器通过其通孔阵列对从手指表面反射回来的反射光进行准直和调制,并将反射光导引至滤光层,该反射光经过滤光层的滤波后被光学检测单元134接收,光学检测单元134可以进一步对接收到的该反射光进行检测,以实现指纹识别。应当理解,图2所示的光学指纹装置130仅是一种示例性的结构,在具体实现上,该光学组件132的滤光层的位置并不局限在光路调制器的下方;比如,在一种替代实施例中,该滤光层也可以设置在光路调制器和显示屏之间,即位于光路调制器上方;或者,光学组件132可以包括两层滤光层,二者分别设置在光路调制器的上方和下方。在其他替代实施例中,该滤光层也可以集成到光路调制器内部,甚至也可以省略掉,本申请对此不做限制。
在具体实现上,所述光学组件132可以与所述光学检测单元134封装在同一个光学指纹芯片,也可以是作为与光学检测单元134相对独立的部件安装在光学指纹模组内部。其中,该光路调制器可以具体为在半导体硅片或者硅氧化物(比如二氧化硅)或氮化物(比如氮化硅)制作而成的准直器(Collimator)层或者透镜(Lens)层,其具有多个准直单元或者透镜单元,所述准直单元或者透镜单元可以作为光路调制器的调制单元,具体地,所述调制单元可以具体为具有高深宽比的小孔,从手指反射回来的反射光中,入射到所述调制单元的光线可以穿过并被其下方的光学感应单元接收,每一个光学感应单元基本上能够接收到其上方的小孔导引过来的指纹纹路的反射光,从而所述感应阵列便可以检测出手指的指纹图像。
在所述光学指纹装置130中,光路调制器的每一个调制单元可以分别对应所述感应阵列的其中一个光学感应单元;可替代地,所述调制单元跟所述感应阵列的光学感应单元之间也可以采用非一一对应的关系来降低产生莫尔条纹干扰,比如一个光学感应单元可以对应于多个调制单元,或者,所述调制单元也可以采用不规则排列的方式来实现跟所述感应阵列的光学感应单元之间不具有特定的对应关系。当所述光路调制器的调制单元采用不规则排列方式时,所述光学指纹装置130可以通过后期软件算法来对每一个感应单元检测到的反射光线进行校正。
图3所示为本申请实施例的光路调制器300,该光路调制器300可以应用于指纹识别装置例如图1和图2中所示的光学指纹装置130,来作为显示屏和光学检测单元134之间的光路调制器。该光路调制器300用于将从手指表面反射回来的反射光导引至设置在该光路调制器300下方的光学检测单元,该光学检测单元用于对接收到的该反射光进行检测以获取手指的指纹图像。
其中,如图3所示,该光路调制器300的上表面与下表面之间具有通孔阵列,该通孔阵列包括多个倾斜通孔,其中每个倾斜通孔可以作为该光路调制器300的调制单元,用于对向该光路调制器300下方的光学检测单元传播的反射光进行准直和调制。具体地,该通孔阵列中的每个倾斜通孔的轴线方向与垂直于该光路调制器的法线方向之间的夹角a大于0°。为便于描述,本申请将上述夹角a定义为所述倾斜通孔的倾斜角度,即该光路调制器300的通孔阵列的倾斜角度a大于0°。另外,应当理解,上述准直实际上是指 将光线进行导引以使得经过该光路调制器300的每一个通孔的反射光以预定角度(即上述大于0°的夹角a)倾斜地入射到该光学检测单元的感应阵列。
优选地,该倾斜通孔的倾斜角度a满足0°<a<40°。
该光路调制器300的材料对该指纹识别装置所使用的相应波段不透光,例如该光路调制器的材料可以为硅、硅的碳化物、硅的氧化物或氮化物等。
可选地,该光路调制器300的通孔阵列中的倾斜通孔可以为圆形通孔、椭圆形通孔或者方形通孔;也可以为其他任何形状的通孔,本申请对此不作限定。
因此,本申请实施例的光路调制器具有由倾斜通孔组成的通孔阵列,在相同孔深的情况下,可以使该光路调制器具有更小的厚度。换句话说,倾斜通孔在保证相同的孔深宽比的情况下,可以得到更薄的光路调制器的厚度。并且,通过调整光路调制器里边的倾斜通孔的倾斜角度,可以有效地改变光路的传播路径和角度,使其对光路的调制更为灵活。
另一方面,相较于采用垂直通孔的光路调制器,本实施例提供的采用具有倾斜角度的通孔来作为光路调制器300的调制单元,还可以避免在从手指表面反射回来的反射光直接垂直入射到光路调制器300下方的光学检测单元,并且在上述反射光传输过程中对噪声进行有效抑制,提高所述指纹检测装置的信噪比,从而有效改善指纹成像效果。
需要注意的是,采用半导体制作工艺的常规刻蚀技术进行通孔刻蚀时一般难以形成具有较高精度的倾斜角度通孔,因此难以制作出本申请实施例提供的光路调制器。有鉴于此,本申请实施例还提供了一种光路调制器的制作方法。
具体地,图4示出了根据本申请实施例的光路调制器的制作方法400的示意性流程图,该方法可以制作图3中所示的光路调制器300,其中该光路调制器300的上表面与下表面之间存在包括多个倾斜通孔的通孔阵列,其中每个倾斜通孔的轴线方向与垂直于该光路调制器表面的法线方向之间的夹角大于0°(即每个倾斜通孔的倾斜角度a大于0°)。采用本申请实施例提供的方法400制作的光路调制器300可以应用于指纹识别装置,例如图1和图2中所示的光学指纹装置130。
应理解,本申请实施例中的指纹识别装置可以包括指纹识别芯片,该指纹识别芯片可以为按压式指纹识别芯片、刮擦式指纹识别芯片或触摸式指纹 识别芯片等,本申请实施例并不限于此。该指纹识别装置可以应用于终端设备,比如智能手机、平板电脑、笔记本电脑等移动终端设备。
具体地,如图4所示,该光路调制器的制作方法400可以包括:
步骤410,根据刻蚀图形,在刻蚀片上制作刻蚀阻挡层。
具体地,首先准备一个刻蚀片,该刻蚀片为用于制作光路调制器的基片,例如可以为图5(a)所示的刻蚀片,该刻蚀片的厚度与待制作的该光路调制器的目标厚度相同。
在步骤410中,该刻蚀图形可以具体是指与待制作的通孔阵列相对应的平面图形,例如图3右侧的顶视图所示的通孔图形。
接着,在该刻蚀片上制作刻蚀阻挡层,例如图5(b)所示,该刻蚀阻挡层可以形成有多个刻蚀开口,该多个刻蚀开口呈阵列式分布,每一个刻蚀开口分别对应需要在该刻蚀片制作的通孔阵列的其中一个倾斜通孔。在本实施例中,该刻蚀阻挡层的刻蚀开口可以为垂直于该刻蚀阻挡层表面的通孔,且该刻蚀开口的开口形状可以被设计成当该刻蚀片以倾斜角度a进行放置时,该刻蚀开口在该刻蚀片表面的水平投影的有效开口区域与其对应的刻蚀图形一致,如图3右侧的顶视图所示的通孔图形所示。可选地,该刻蚀片的材料为硅、碳化硅、氧化硅或者氮化硅。
作为一种可选的实施例,所述刻蚀片可以为硅片,而所述刻蚀阻挡层可以为在所述刻蚀片表面生长而成的二氧化硅层或氮化硅层,且所述二氧化硅层或氮化硅层通过刻蚀工艺来形成上述刻蚀开口。
步骤420,将该刻蚀片固定在载片的倾斜槽,该倾斜槽的倾斜面相对于该载片的表面具有预定的倾斜角度。
具体地,在步骤420中,首先提供具有倾斜槽的载片,并将该具有刻蚀阻挡层的刻蚀片固定在该载片的倾斜槽。该倾斜槽用于对该刻蚀片进行固定,以使刻蚀过程中该刻蚀片能够保持倾斜状态,从而使刻蚀出来的通孔为倾斜通孔。
例如图5(d)所示的携带倾斜槽的载片,该倾斜槽可以包括一个与该倾斜槽表面垂直的垂直面以及一个相对于该倾斜槽表面之间具有预定倾斜角度a的倾斜面,该倾斜槽的倾斜面与该载片的表面之间的夹角(即该倾斜面的倾斜角度a)大于0°。
在步骤420中,将该刻蚀片固定设置在该倾斜槽的倾斜面主要是便于实 现在对该刻蚀片进行刻蚀所形成的通孔阵列中,每个倾斜通孔的轴线方向与垂直于该刻蚀片表面的法线方向之间具有与该倾斜面的倾斜角度a相同的夹角a,即,该倾斜槽的倾斜面的预定倾斜角度与该刻蚀片待制作的倾斜通孔的倾斜角度是相等的。
可选地,该倾斜面的倾斜角度a大于0°且小于40°。
可选地,在步骤420中,该刻蚀片可以通过临时键合或者硅油粘合的方式固定在该倾斜槽的倾斜面。并且,该过程还可以起到导热的作用。
可选地,该方法还包括:在步骤420之前,即,在将所述刻蚀片固定在载片的倾斜槽之前,根据该倾斜槽的大小,对该刻蚀片进行切割,以使该刻蚀片能够放置在该倾斜槽。
例如图5(c)所示,将图5(b)中得到的刻蚀片连同位于该刻蚀片上方的刻蚀阻挡层,切割成小片,使其可以放置在图5(d)中的载片的倾斜槽,以形成图5(e)所示的倾斜放置状态。
作为一种具体实施例,该载片的倾斜槽的尺寸可以设计为与该光路调制器的大小相匹配,即该刻蚀片可以切割成多个刻蚀片单元,每一个刻蚀片单元分别用于制作一个光路调制器,且每一个载片的倾斜槽恰好可以用于固定放置其中一个刻蚀片单元。可替代地,该载片也可以包括多个倾斜槽,且每一个倾斜槽分别可以用来固定放置一个刻蚀片单元,从而可以在后续工艺步骤实现多个刻蚀片单元在同一个刻蚀步骤同时进行刻蚀处理来分别形成具有倾斜通孔的通孔阵列。
步骤430,利用该刻蚀阻挡层对该刻蚀片进行刻蚀,以在该刻蚀片制作出具有多个倾斜通孔的通孔阵列。
其中,每个倾斜通孔的轴线方向与垂直于所述光路调制器表面的法线方向之间的夹角,等于该倾斜槽的倾斜面具有的倾斜角度。
具体地,在步骤430中,该刻蚀片可以采用各向异性的刻蚀方式进行刻蚀,且刻蚀方向可以具体为垂直于该载片表面的方向。该刻蚀片及其表面形成的刻蚀阻挡层由于被固定在该倾斜槽的倾斜面,因此该刻蚀片连同制作在其表面的刻蚀阻挡层处于倾斜放置状态,相对于该载片表面一定的夹角(也即是该倾斜面的倾斜角度)。
例如图5(f)所示,在利用该刻蚀阻挡层并以垂直于该载片表面的方向对该刻蚀片进行刻蚀时,该刻蚀片被该刻蚀阻挡层的刻蚀开口以外区域阻挡 的部分并不会被刻蚀,而由于该刻蚀阻挡层处于倾斜状态,该刻蚀阻挡层的刻蚀开口的开口方向并非垂直于该载片表面,因此该刻蚀开口的边缘以及部分内侧壁将对该刻蚀片的垂直刻蚀造成一定阻挡,只有与该刻蚀开口在该刻蚀片表面的水平投影的有效开口区域(如图3右侧的顶视图所示的通孔图形)才可以被刻蚀到。因此,在该刻蚀阻挡层的阻挡下,固定在倾斜槽的刻蚀片经过刻蚀之后,可以形成与该刻蚀图形相对应的倾斜通孔,例如图3左侧的截面图所示的倾斜通孔。
可选地,该载片的材料为硅、碳化硅或者表面覆盖有钝化层的硅。
在步骤430中,在利用该刻蚀阻挡层对该刻蚀片进行刻蚀的过程中,优选地,采用各向异性的刻蚀方式来在所述刻蚀片刻蚀出倾斜通孔。该各向异性刻蚀是指,在垂直方向的刻蚀速率大于水平方向刻蚀速率的刻蚀工艺,该各向异性刻蚀包括但不限于干法等离子刻蚀。采用所述各项异性的刻蚀方式可以保证在所述刻蚀片形成的倾斜通孔的刻蚀精度,避免所述倾斜通孔内部由于横向刻蚀而影响光学性能。
步骤440,基于具有该通孔阵列的刻蚀片,形成该光路调制器。
具体地,在该刻蚀片刻蚀并形成具有倾斜通孔得到通孔阵列之后,可以通过清洗、解键合等方式将该刻蚀片从倾斜槽中分离,并去除其表面的刻蚀阻挡层;并且,可选地,对该刻蚀片可以进一步切割,得到例如图5(g)所示的满足尺寸和形状要求的光路调制器。
本申请实施例的光路调制器的制作方法中,通过将刻蚀片安装在载片上的倾斜槽里,能够在不改变现有工艺设备条件的情况下,制作出具有多个倾斜通孔的通孔阵列的光路调制器。
图6示出了本申请实施例的指纹识别装置600的示意性框图。该指纹识别装置600可以应用到如图1或图2所示的移动终端设备,如图6所示,该指纹识别装置600包括光路调制器610以及设置在所述光路调制器610下方的光学检测单元620。该光路调制器610可以为前述图3中所示的光路调制器300。
该光路调制器610用于将从手指表面反射回来的反射光导引至设置在该光路调制器610下方的光学检测单元620,该光学检测单元620用于对接收到的该反射光进行检测,其中,该光路调制器610的上表面与下表面之间具有通孔阵列,该通孔阵列包括多个倾斜通孔,其中每个倾斜通孔的倾斜角度 大于0°,该倾斜角度为该倾斜通孔的轴线方向与垂直于该光路调制器610表面的法线方向之间的夹角。
本申请实施例还提供了一种终端设备,该终端设备可以包括显示屏和上述本申请实施例中的任意一种指纹识别装置,其中,所述指纹识别装置设置在所述显示屏的下方。
应理解,本申请实施例中的终端设备可以为手机、平板电脑、笔记本电脑等安装有指纹识别装置的电子设备,例如可以为安装有指纹识别芯片的手机。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个检测单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请适合私利的保护范围之内。因此,本申请实施例的保护范围应该以权利要求的保护范围为准。

Claims (14)

  1. 一种光路调制器,其特征在于,所述光路调制器应用于指纹识别装置,用于将从手指表面反射回来的反射光导引至设置在所述光路调制器下方的光学检测单元,所述光学检测单元用于对接收到的所述反射光进行检测,
    其中,所述光路调制器的上表面与下表面之间具有通孔阵列,所述通孔阵列包括多个倾斜通孔,其中每个倾斜通孔的倾斜角度大于0°,所述倾斜角度为所述倾斜通孔的轴线方向与垂直于所述光路调制器表面的法线方向之间的夹角。
  2. 根据权利要求1所述的光路调制器,其特征在于,所述倾斜通孔的倾斜角度大于0°且小于40°。
  3. 根据权利要求1或2所述的光路调制器,其特征在于,所述倾斜通孔为圆形通孔、椭圆形通孔或者方形通孔。
  4. 根据权利要求1至3中任一项所述的光路调制器,其特征在于,所述光路调制器的材料为硅、碳化硅、氧化硅或者氮化物。
  5. 一种光路调制器的制作方法,其特征在于,所述方法包括:
    根据刻蚀图形,在刻蚀片上制作刻蚀阻挡层;
    将所述刻蚀片固定在载片的倾斜槽,所述倾斜槽的倾斜面相对于所述载片的表面具有预定倾斜角度;
    利用所述刻蚀阻挡层对所述刻蚀片进行刻蚀,以在所述刻蚀片上制作出具有多个倾斜通孔的通孔阵列,其中每个倾斜通孔的倾斜角度与所述倾斜面的预定倾斜角度相同,所述倾斜角度为所述倾斜通孔的轴线方向与垂直于所述光路调制器表面的法线方向之间的夹角;
    基于具有所述通孔阵列的所述刻蚀片,形成所述光路调制器。
  6. 根据权利要求5所述的方法,其特征在于,所述将所述刻蚀片固定在载片的倾斜槽,包括:
    通过临时键合或者硅油粘合的方式,将所述刻蚀片固定在所述倾斜槽的倾斜面。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    在将所述刻蚀片固定在载片中的倾斜槽里之前,根据所述倾斜槽的大小,对所述刻蚀片进行切割,以使所述刻蚀片能够放置在所述倾斜槽。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述倾斜 面的预定倾斜角度大于0°且小于40°。
  9. 根据权利要求5至8中任一项所述的方法,其特征在于,所述刻蚀片的材料为硅、碳化硅、氧化硅或者氮化硅。
  10. 根据权利要求5至9中任一项所述的方法,其特征在于,所述载片的材料为硅、碳化硅或者表面覆盖有钝化层的硅。
  11. 根据权利要求5至10中任一项所述的方法,其特征在于,所述利用所述刻蚀阻挡层对所述刻蚀片进行刻蚀,包括:
    利用所述刻蚀阻挡层对所述刻蚀片进行各向异性刻蚀。
  12. 根据权利要求11所述的方法,其特征在于,所述各向异性刻蚀包括干法等离子刻蚀。
  13. 一种指纹识别装置,其特征在于,包括如权利要求1至4中任一项所述的光路调制器以及设置在所述光路调制器下方的光学检测单元。
  14. 一种终端设备,其特征在于,包括显示屏以及如权利要求13所述的指纹识别装置,其中,所述指纹识别装置设置在所述显示屏的下方。
PCT/CN2017/114620 2017-12-05 2017-12-05 光路调制器及其制作方法、指纹识别装置和终端设备 WO2019109251A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17931827.4A EP3531336A4 (en) 2017-12-05 2017-12-05 OPTICAL PATH MODULATOR AND MANUFACTURING METHOD THEREOF, FINGERPRINT RECOGNITION DEVICE, AND TERMINAL DEVICE
CN201780002010.0A CN110168558B (zh) 2017-12-05 2017-12-05 光路调制器及其制作方法、指纹识别装置和终端设备
PCT/CN2017/114620 WO2019109251A1 (zh) 2017-12-05 2017-12-05 光路调制器及其制作方法、指纹识别装置和终端设备
US16/418,992 US10922524B2 (en) 2017-12-05 2019-05-21 Optical path modulator and manufacturing method thereof, fingerprint identification apparatus and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/114620 WO2019109251A1 (zh) 2017-12-05 2017-12-05 光路调制器及其制作方法、指纹识别装置和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/418,992 Continuation US10922524B2 (en) 2017-12-05 2019-05-21 Optical path modulator and manufacturing method thereof, fingerprint identification apparatus and terminal device

Publications (1)

Publication Number Publication Date
WO2019109251A1 true WO2019109251A1 (zh) 2019-06-13

Family

ID=66750407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114620 WO2019109251A1 (zh) 2017-12-05 2017-12-05 光路调制器及其制作方法、指纹识别装置和终端设备

Country Status (4)

Country Link
US (1) US10922524B2 (zh)
EP (1) EP3531336A4 (zh)
CN (1) CN110168558B (zh)
WO (1) WO2019109251A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108647558B (zh) * 2018-03-21 2021-01-08 京东方科技集团股份有限公司 一种指纹识别显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569080A (en) * 1982-07-09 1986-02-04 Fingermatrix, Inc. Fingerprint image refinement
CN1815262A (zh) * 2005-02-03 2006-08-09 达方电子股份有限公司 光学式移动传感模块及其光学式移动传感器
CN106503635A (zh) * 2016-10-11 2017-03-15 广东欧珀移动通信有限公司 用于光学指纹识别的盖板、输入组件及电子装置
CN106934384A (zh) * 2017-03-24 2017-07-07 京东方科技集团股份有限公司 指纹识别器件及控制方法、触摸显示面板、触摸显示装置
CN107038434A (zh) * 2017-05-12 2017-08-11 广东欧珀移动通信有限公司 光学指纹识别组件、显示装置和移动终端

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355917A (ja) * 1990-10-12 1992-12-09 Seiko Epson Corp 半導体装置の製造装置
JP4522086B2 (ja) * 2003-12-15 2010-08-11 キヤノン株式会社 梁、梁の製造方法、梁を備えたインクジェット記録ヘッド、および該インクジェット記録ヘッドの製造方法
US20100019756A1 (en) * 2006-05-17 2010-01-28 Matsushita Electric Industrial Co., Ltd. Device for measuring cellular potential, substrate used for the same and method of manufacturing substrate for device for measuring cellular potential
US20090026581A1 (en) * 2007-07-25 2009-01-29 Jin-Ha Park Flash memory device and method of manufacturing the same
JP5521359B2 (ja) * 2008-03-13 2014-06-11 セイコーエプソン株式会社 光偏向器及びその製造方法
CN103026486B (zh) * 2010-07-26 2016-08-03 浜松光子学株式会社 中介物的制造方法
JP6098198B2 (ja) * 2013-02-05 2017-03-22 セイコーエプソン株式会社 光スキャナー、画像表示装置、ヘッドマウントディスプレイおよび光スキャナーの製造方法
CN104079718B (zh) * 2014-06-18 2016-09-28 京东方科技集团股份有限公司 具有指纹识别功能的个人移动终端设备
CN204143460U (zh) * 2014-08-26 2015-02-04 南昌欧菲生物识别技术有限公司 指纹识别装置及终端设备
US10410037B2 (en) * 2015-06-18 2019-09-10 Shenzhen GOODIX Technology Co., Ltd. Under-screen optical sensor module for on-screen fingerprint sensing implementing imaging lens, extra illumination or optical collimator array
CN107004130B (zh) * 2015-06-18 2020-08-28 深圳市汇顶科技股份有限公司 用于屏幕上指纹感应的屏幕下光学传感器模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569080A (en) * 1982-07-09 1986-02-04 Fingermatrix, Inc. Fingerprint image refinement
CN1815262A (zh) * 2005-02-03 2006-08-09 达方电子股份有限公司 光学式移动传感模块及其光学式移动传感器
CN106503635A (zh) * 2016-10-11 2017-03-15 广东欧珀移动通信有限公司 用于光学指纹识别的盖板、输入组件及电子装置
CN106934384A (zh) * 2017-03-24 2017-07-07 京东方科技集团股份有限公司 指纹识别器件及控制方法、触摸显示面板、触摸显示装置
CN107038434A (zh) * 2017-05-12 2017-08-11 广东欧珀移动通信有限公司 光学指纹识别组件、显示装置和移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531336A4 *

Also Published As

Publication number Publication date
CN110168558A (zh) 2019-08-23
US10922524B2 (en) 2021-02-16
CN110168558B (zh) 2022-07-05
EP3531336A1 (en) 2019-08-28
EP3531336A4 (en) 2020-02-26
US20190272410A1 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
US11275922B2 (en) Fingerprint identification apparatus and electronic device
WO2020151158A1 (zh) 生物特征识别的装置
US11455823B2 (en) Under-screen fingerprint identification apparatus and electronic device
CN207557977U (zh) 光路调制器、指纹识别装置和终端设备
US11514709B2 (en) Biometric identification device using a light detection apparatus with light blocking layer/diaphragm
CN109271837B (zh) 用于以成角度的过滤器进行光学感测的***和方法
EP3620975B1 (en) Fingerprint identification apparatus and electronic device
WO2020191596A1 (zh) 指纹识别装置和电子设备
WO2020133378A1 (zh) 指纹识别装置和电子设备
KR102374723B1 (ko) 광학 지문 장치 및 전자 기기
WO2018201800A1 (zh) 光学指纹识别装置及显示面板
WO2020146985A1 (zh) 指纹识别装置和电子设备
TW201909022A (zh) 取像裝置
WO2021051737A1 (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
WO2020186415A1 (zh) 指纹识别的装置、方法和电子设备
WO2021007730A1 (zh) 指纹检测装置和电子设备
CN208298199U (zh) 光学通路调制器、图像识别传感器和电子设备
WO2021077368A1 (zh) 指纹识别装置和电子设备
WO2020206966A1 (zh) 光学指纹装置和电子设备
WO2021007964A1 (zh) 指纹检测装置和电子设备
WO2021007953A1 (zh) 指纹检测装置和电子设备
WO2019109251A1 (zh) 光路调制器及其制作方法、指纹识别装置和终端设备
WO2021056392A1 (zh) 光学指纹装置,电子设备和测量距离的方法
CN213211040U (zh) 指纹识别装置及电子设备
CN110199292B (zh) 光学通路调制器及制造方法、图像识别传感器和电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017931827

Country of ref document: EP

Effective date: 20190524

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE